WO2022067586A1 - Apparatus and method for enabling a user equipment to access one or more second networks - Google Patents

Apparatus and method for enabling a user equipment to access one or more second networks Download PDF

Info

Publication number
WO2022067586A1
WO2022067586A1 PCT/CN2020/119097 CN2020119097W WO2022067586A1 WO 2022067586 A1 WO2022067586 A1 WO 2022067586A1 CN 2020119097 W CN2020119097 W CN 2020119097W WO 2022067586 A1 WO2022067586 A1 WO 2022067586A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
activation
networks
pdu session
communication path
Prior art date
Application number
PCT/CN2020/119097
Other languages
French (fr)
Inventor
Qing Wei
Riccardo Trivisonno
Chan Zhou
Hualin ZHU
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to PCT/CN2020/119097 priority Critical patent/WO2022067586A1/en
Publication of WO2022067586A1 publication Critical patent/WO2022067586A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • H04W8/186Processing of subscriber group data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/18Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information

Definitions

  • the present disclosure relates generally to apparatus for enabling a user equipment (UE) coupled to a first network to access one or more second networks. Moreover, the present disclosure relates generally to methods for configuring apparatus for enabling a user equipment (UE) coupled to a first network to access one or more second networks. Furthermore, the present disclosure relates to computer program products to execute the aforementioned methods.
  • NPN Non-Public Network
  • An NPN is susceptible to being deployed as a Stand-alone Non-Public Network (SNPN) , wherein the SNPN is operated by an NPN operator and does not rely on network functions provided by a public network (PLMN) .
  • PLMN public network
  • the SNPN is deployable for private use in a factory, in a company premises, in a campus, in a stadium and so forth; moreover, such a SNPN is normally limited in its scale of deployment and its spatial coverage.
  • a communication network arrangement is indicated generally by 10.
  • the arrangement 10 includes communication network nodes such as a public network node PLMN NG_RAN + 5GC node 30, a SNPN N3IWF node 40, a SNPN AMF node 50, a SNPN SMF node 60, a SNPN UPF node 70 and a SNPN NG-RAN node 90.
  • the nodes 40 to 70 belong to a stand-alone private network (SNPN) .
  • SNPN stand-alone private network
  • a user equipment (UE) 20 for example, commences operation by having a communication session 80 within the Stand-alone Non-Public Network (SNPN) , but then has a need to connect up to other networks external to the SNPN, for example to the public network (PLMN) .
  • PLMN public network
  • UE 20 commences operation by having a communication session 80 within the public network (PLMN) and then needing to connect up to networks external to the PLMN, for example to the Stand-alone Non-Public Network (SNPN) .
  • Such a procedure to switch between the networks takes a long time for the user equipment (UE) 20 to implement, in particularly single radio UE, because the user equipment (UE) 20 needs to disconnect from its current network, for example at the first city, and then run a series of procedures to connect to a new network, for example at the second city, as shown in FIG. 1. It is conventional practice to allow the user equipment (UE) 20 to continue a session by using a 3GPP access path to the other networks.
  • AMF refers to Access and Mobility Function
  • UPF User Plane Function
  • a user equipment uses a non-3GPP access mode after the handover.
  • the user equipment experiences a long e2e service delay due to a long data path being provided to the user equipment (UE) .
  • a standard S2-2005532 proposes a method of switching between PLMN 3GPP access and SNPN 3GPP access.
  • a user equipment (UE) registers and establish a PDU session in the SNPN via N3IWF before a coverage loss of PLMN NG-RAN occurs.
  • the user equipment (UE) registers to the SNPN using 3GPP access and handovers the established non-3GPP access PDU session to the newly established 3GPP access PDU session. Since SNPN has an initial user equipment (UE) context already in its initial steps, the service interruption during the switching between the two networks can be reduced.
  • UE user equipment
  • the present disclosure seeks to provide an improved method for configuring apparatus to enable user equipment (UE) coupled to a first network to access one or more second networks; such an improvement is desired to provide a shorter period of switchover for the user equipment (UE) from the first network to the one or more second networks. Moreover, the present disclosure seeks to provide an improved apparatus to enable user equipment (UE) coupled to a first network to access one or more second networks.
  • the present disclosure provides a method of a first network for operating a user equipment, namely hereinafter “UE” , to access one or more second networks.
  • the method includes obtaining an activation indication, wherein the activation indication is used to indicate to the UE to connect to the one or more second networks via a communication path in the first network.
  • the method includes providing the activation indication to the user equipment UE.
  • the method is of advantage in that the first network is more effectively able to provide the UE an activation indication to the UE than the UE itself handling access to the one or more second networks; the activation indication is capable of enabling faster handover of the UE from the first network to the one or more second networks.
  • the first network can be private, and the one or more second networks can be public.
  • the first network can be public, and the one or more second networks can be private.
  • the first network can be public, and the one or more second networks can be alternative public networks.
  • the first network can be private, and he one or more second networks can be alternative private networks.
  • the one or more second network can be a combination of at least one private network and at least one public network.
  • the activation indication comprises an activation option, wherein the activation option comprises at least one of operations:
  • PDU packet data unit
  • the activation indication further comprises at least one of:
  • the PDU session type comprises a normal PDU session type or an assistant PDU session type.
  • obtaining the activation indication comprises deciding the activation indication based on at least one of:
  • the method further comprises:
  • AF an application function
  • the activation indication when providing the activation indication to the UE, the activation indication comprises:
  • AMF Access and Mobility Function
  • the method further comprises:
  • a method for operating a user equipment hereinafter “UE” , served by a first network to access one or more second networks.
  • the method comprises obtaining an activation indication, wherein the activation indication is used to indicate to the UE to connect to the one or more second networks via a communication path in the first network.
  • the method comprises performing activation actions to the one or more second networks via the communication path in the first network.
  • the activation indication comprises executing an activation option, wherein the activation option comprises at least one of operations:
  • PDU packet data unit
  • the activation indication further comprises at least one of:
  • the PDU session type comprises a normal PDU session type or an assistant PDU session type.
  • obtaining an activation indication comprises:
  • the method further comprises:
  • the one or more activation actions comprise sending one or more signals to the one or more second networks. More optionally, in the implementation of the method, the local UE context comprises at least one of:
  • the user UE executes a final decision on the one or more activation actions based on an indication from the first network, wherein the local UE context comprises at least one of:
  • the activation actions comprise at least one of:
  • the parameters of the activation action comprise at least one of:
  • SSC session service continuity
  • a first network that is configured to enable a user equipment UE to access one or more second networks, wherein the first network comprises:
  • a processor that is configured to obtain an activation indication, wherein the activation indication is useable to indicate to the UE to connect to the one or more second networks via a communication path in the first network;
  • a transceiver that is configured to send the activation indication to the UE to access the one or more second networks.
  • the activation indication comprises an activation option, wherein the activation option comprises at least one of operations:
  • PDU packet data unit
  • the activation indication further comprises at least one of:
  • the PDU session type comprises a normal PDU session type or an assistant PDU session type.
  • the first network is configured to obtain the activation indication by deciding the activation indication based on at least one of:
  • the transceiver is further configured to:
  • an activation request from an application function (AF) , wherein the activation request comprises: activation actions to be executed, one or more target network information, area information.
  • AF application function
  • the activation indication when providing the activation indication to the UE, the activation indication comprises:
  • AMF Access and Mobility Function
  • the processor is further configured to:
  • a user equipment hereinafter “UE” , that is configured to be served by a first network to access one or more second networks.
  • the UE comprises:
  • a processor that is configured to:
  • the activation indication is used to indicate to the UE to connect to the one or more second networks via a communication path in the first network
  • the activation indication comprises executing an activation option, wherein the activation option comprises at least one of operations:
  • PDU packet data unit
  • the activation indication further comprises at least one of:
  • the PDU session type comprises a normal PDU session type or an assistant PDU session type.
  • the UE is configured to obtain an activation indication by:
  • the UE is configured:
  • the one or more activation actions comprise sending one or more signals to the one or more second networks.
  • the local UE context comprises at least one of:
  • the processor is further configured to:
  • the local UE context comprises at least one of: a location of the UE, ongoing applications of the UE, ongoing applications requirements of the UE, subscriptions information of the UE, radio capability of the UE.
  • the activation actions comprise at least one of:
  • the parameters of the activation action comprise at least one of:
  • SSC session service continuity
  • the method comprises:
  • UE user equipment
  • the activation actions comprise at least one of:
  • parameters of the activation action comprise at least one of:
  • target network identification ID
  • PDU session type PDU session type
  • SSC session service continuity
  • the access mode comprises 3GPP access mode or non-3GPP access mode.
  • the PDU session type comprises a normal PDU session type or an assistant PDU session type.
  • the method further comprises:
  • the present disclosure provide a computer program product comprising a non-transitory (namely, non-transient) computer-readable storage medium having computer-readable instructions stored thereon, the computer-readable instructions being executable by a computerized device comprising processing hardware to execute the aforementioned method pursuant to the aforementioned first, second or fifth aspect.
  • a computerized device comprising processing hardware to execute the aforementioned method pursuant to the aforementioned first, second or fifth aspect.
  • FIG. 1 is a schematic illustration of a known arrangement for user equipment, hereinafter “UE” , operating in combination with a first network to access one or more second networks via a 3GPP tunnel;
  • UE user equipment
  • FIG. 2 is a schematic illustration of a roaming 5G system architecture in a home routed scenario
  • FIG. 3 is a schematic illustration of an arrangement pursuant to implementations of the present disclosure UE operating in combination with a first network to access one or more second networks, for example via a non-3GPP communication;
  • FIG. 4 is an interaction diagram of a procedure for UE to access one or more second networks, for example via a non-3GPP communication, wherein Tracking Area Update (TAU) -based activation signalling is employed in a lower portion of the procedure in FIG. 4 and UE configuration update-based activation signalling is employed in an upper portion of the procedure in FIG. 4;
  • TAU Tracking Area Update
  • FIG. 5 is an interaction diagram of a procedure for UE to access one or more second networks, for example via a non-3GPP communication for activation mode, progressing to 3GPP communication, wherein the procedure allows to switch for example from PLMN 3GPP to SNPN 3GPP access with various activation options;
  • FIG. 6 is an illustration of an interaction diagram for UE to access one or more second networks with the activation actions of register to a second network and request an assistant PDU session establishment, from a perspective of underlay and overlay networks, where the underlay network is for example PLMN and underlay network is for example NPN;
  • FIG 7 and FIG. 8 are illustrations of steps of methods employed in implementations of the present disclosure.
  • FIG. 9 is illustration of component parts of the UE and a first network.
  • an underlined number is employed to represent an item over which the underlined number is positioned or an item to which the underlined number is adjacent.
  • a non-underlined number relates to an item identified by a line linking the non-underlined number to the item.
  • FIG. 2 there is shown a schematic illustration of a known roaming 5G system architecture in a home routed scenario; in FIG. 2, following abbreviations are used:
  • a 3GPP mobile network indicated generally by 100, includes nodes, denoted by 110 to 240, that are configured to support user equipment (UE) 20 service continuity, for example when the UE 20 moves between a home network (HPLMN) and a visit network (VPLMN) in the home routed scenario.
  • UE user equipment
  • the network 100 requires a fixed User Plane Function (UPF) anchor before and after the UE 20 performs network switching as well as the close interaction between the home network and visit network to coordinate a UE context (for example, subscription, policy, access and session context, etc. as shown in FIG. 2 as N8, N24, N16, ...reference points between the VPLMN and HPLMN) .
  • UPF User Plane Function
  • the NPN network specifies that the UE 20 can use PLMN access to establish a tunnel to SNPN N3IWF node 40 (namely a SNPN Non-3GPP Interworking Function) and receive the SNPN service, or vice versa.
  • SNPN N3IWF node 40 namely a SNPN Non-3GPP Interworking Function
  • Such a manner of operation is called a non-3GPP access mode in the present disclosure.
  • Such a non-3GPP access mode allows the UE 20 to continue the SNPN communication service when the UE moves out the SNPN radio coverage.
  • the communication service is via a tunnel established in PLMN to SNPN N3IWF and then the PDU session in SNPN. This results in a long data path which is not ideal for a service that is required to provide a short end-to-end delay, namely a low latency.
  • the UE 20 in particularly single radio UE, still needs to run through a series of procedures to access to PLMN and additionally establish a tunnel to SNPN N3IWF before a switchover of the current session from SNPN 3GPP access to SNPN non-3GPP access using an IPSec tunnel in PLMN can be achieved.
  • implementations of the present disclosure are based on a principle that a UE 20 serving network decides on:
  • the UE serving network provides the results of the decision to the UE 20 via use of activation signaling; for example, such activation signaling can potentially occur via the
  • the activation signaling provides an indication of an activation action to the UE 20, which includes supplementary information such as an activation option, and/or an optional target network ID and associated area information.
  • the user UE 20 makes a final decision on the activation action based on the indication received from a first network and local information;
  • the local information includes, for example, a UE location, UE service requirements, UE capabilities, UE subscriptions, ongoing UE applications and so forth.
  • the UE takes responsibility for executing the activation action.
  • the action is optionally one of following:
  • the UE 20 decides also a final timing for executing the activation action based on the indication from the first network, UE location and on a status of ongoing UE services; for example, the UE 20 is permitted to execute the activation action when it does not affect/less impacts to the quality of service (QoS) of the ongoing service or when UE enters the area indicated by the activation action (namely action indication) .
  • QoS quality of service
  • the activation action is pre-configured in the UE 20, wherein the user equipment (UE 20) executes the pre-configured activation action when the UE 20 receives instructions from the first network.
  • Implementations are of advantage, in contradistinction to known technology, in that they are able to reduce service interruption time and a handover (HO) failure ratio, in a situation where a given UE, for example a single radio UE 20, moves between SNPN and PLMN networks, for example from SNPN network to PLMN network or from PLMN network to SNPN network.
  • a given UE for example a single radio UE 20
  • moves between SNPN and PLMN networks for example from SNPN network to PLMN network or from PLMN network to SNPN network.
  • implementations of the present disclosure avoid a need for SNPN and PLMN networks to mutually interact in an event of the UE 20 switches over between SNPN and PLMN networks. Furthermore, the UE 20 does not need to employ a fixed anchor to ensure that service continuity support is provided in an event of the UE 20 switches over between SNPN and PLMN networks.
  • implementations of the present disclosure are capable of supporting direct 3GPP access for communications in respect of the UE 20, both for SNPN and PLMN networks.
  • implementations namely, embodiments of the present disclosure concern a UE 20 that obtains an indication of activation from a first network to enable access, for example non-3GPP access, to one or more second networks; the UE 20 decides and executes activation actions based on the indication of activation provide by the first network and a local context of the UE 20.
  • the local context of the UE 20 includes, for example, information regarding a location of the UE 20, radio measurements made at the UE 20 and ongoing services that are supporting operation of the UE 20.
  • the implementations employ activation signaling with activation instructions indicating the activation actions that the UE 20 is to take, wherein the activation instructions include the activation options to be executed, together with parameters of one or more activation options pertaining to the activation actions.
  • the activation options include at least one of operations:
  • the aforesaid parameters of the activation actions include:
  • target network ID namely, identity of the one or more second networks
  • an activation area (namely, a spatial area where UE 20 is to perform the activation actions to the one or more second networks) ;
  • an access mode to be used for the UE 20 when the UE 20 achieves access to the one or more second networks for example 3GPP access, non-3GPP access, or a combination of 3GPP and non-3GPP access
  • a PDU session type and/or a Session Service Continuity (SSC) mode to be used when the UE 20 achieves access to the one or more second networks.
  • SSC Session Service Continuity
  • a network (NW) entity decides on the activation actions and activation parameters of UE non-3GPP access to the one or more second networks and indicates that to the UE 20.
  • an Access and Mobility Function (AMF) non-3GPP access service is beneficially used to enable other network functions (NFs) , for example AF, PCF, Network Data Analytics Function (NWDAF) , to activate the non-3GPP access mode for the UE 20 to the one or more second networks.
  • NFs network functions
  • AF Access and Mobility Function
  • PCF PCF
  • NWDAAF Network Data Analytics Function
  • the aforementioned UE 20 context is used to decide on the activation parameters, as aforementioned; such activation parameters include UE 20 mobility information, UE 20 spatial location, UE 20 service requirements, UE 20 capability, and an area of interest for the UE 20 application.
  • the network decision that is based on the context of the UE 20 is made by processing parameters such as the spatial location of the UE 20, edge of a network deployment, a service level agreement (SLA) between network (NW) operators, a service level agreement (SLA) between a network (NW) operator and various applications, a mobility pattern of the UE 20, an application of the UE 20, and so forth.
  • SLA service level agreement
  • NW network
  • SLA service level agreement
  • the aforementioned Access and Mobility Function beneficially decides to send an activation signal to the UE 20 when the AMF detects that the UE 20 is entering a given spatial area; when activation of the UE 20 non-3GPP access to the one or more second networks is necessary, such a detection is beneficially derived from a UE 20 location update, from a network data analytic function (NWDAF) providing a UE 20 spatial location prediction, UE 20 location information from a location management function (LMF) , and so forth.
  • NWDAF network data analytic function
  • LMF location management function
  • the given spatial area is beneficially computed from a Tracking Area ID/Cell ID: “ID” is an abbreviation for “identification” .
  • the given spatial area is susceptible to being computed by the first network based on a network coverage provided by the first network, a SLA between network operators, an analysis of UE 20 service experience at various spatial locations, or provided directly by an application to the first network, for example via an Application Function (for example area information provided from the AF to 5G Core (5GC) ) .
  • ID is an abbreviation for “identification” .
  • ID is an abbreviation for “identification” .
  • the given spatial area is susceptible to being computed by the first network based on a network coverage provided by the first network, a SLA between network operators, an analysis of UE 20 service experience at various spatial locations, or provided directly by an application to the first network, for example via an Application Function (for example area information provided from the AF to 5G Core (5GC) ) .
  • 5GC 5G Core
  • the Access and Mobility Function sets the activation option to “Registration” in an event that an ongoing UE 20 application does not support service continuity, and to “Registration and PDU session establishment” if the ongoing UE 20 application supports service continuity.
  • the Access and Mobility Function receives an explicit indication from other network functions (NFs) , for example from PCF, AF, which asks the Access and Mobility Function (AMF) to activate the UE 20 non-3GPP access to the one or more second networks.
  • NFs network functions
  • AF Access and Mobility Function
  • the Access and Mobility Function provides a network activation service to handle the activation request from one or more second networks.
  • An example of an AMF non-3GPP activation service requires following input data in order to function:
  • ID network identification
  • PLMN ID for example network ID (NID)
  • TA IDs for example cell IDs
  • SSC modes for example modes 1 to 3
  • access mode for example modes 1 to 3
  • the AMF non-3GPP activation service generates an acknowledge output or network acknowledgement (Ack/NAck) when the activation notification is transmitted to the UE 20.
  • Ack/NAck acknowledge output or network acknowledgement
  • a Network Exposure Function for example, by exposing the AMF non-3GPP activation service to the application function (AF)
  • NEF Network Exposure Function
  • An activation signal is provided from the aforesaid Access and Mobility Function (AMF) to the UE 20, whereon the activation signals conveys one or more of the following information:
  • AMF Access and Mobility Function
  • Parameters of the activation action which includes Session Service Continuity mode (SSC) of the PDU session. This information is optional.
  • SSC Session Service Continuity mode
  • the first network allows for the UE 20 to have established thereto connectivity to a new PDU session anchor to a same data network before previous PDU session anchor is released, thereby enabling a seamless transition from the first network to the one or more second networks to be achieved without an interruption of service occurring.
  • the first network decides whether or not to select a PDU Session Anchor UPF suitable for the UE's 20 new conditions, for example a point of attachment to the network first network;
  • An identification (ID) of the one or more second networks to activate the non-3GPP access mode is used.
  • the identification (ID) is optionally a list of one or more second networks. However, it will be appreciated that use of such identification (ID) information is optional; the first network can, for example, just indicate to the UE 20 that the user equipment UE 20 should activate the non-3GPP access mode to the one or more second networks whenever possible by the (for example, preconfigured at the user UE 20) ; and
  • the first network provides the area of activation information to the UE 20 in a situation where the activation action does not need to be performed immediately, or the activation action could be performed at any time when the UE 20 is within that area range.
  • the activation option optionally includes one or more procedures and actions which UE 20 should take to activate the non-3GPP access mode; alternatively, the activation option optionally includes just using an action identification (ID) occupying two or more bits and mutually different values corresponding to mutually different indications as given above.
  • ID action identification
  • the Access and Mobility Function provides the activation signal to the UE 20 using multiple steps; for example, the Access and Mobility Function (AMF) firstly indicates to the UE 20 to register itself to a second network using a non-3GPP mode (using the activation option of “registration” ) .
  • the Access and Mobility Function indicates to the UE 20 to establish a PDU session in the second network using the non-3GPP mode (using the activation option of “PDU session establishment” ) .
  • the activation signal is optionally sent, for example in a tracking area update accept message or a UE 20 configuration update message from the Access and Mobility Function (AMF) to the UE 20 as illustrated in FIG. 4. As illustrated in FIG. 4, the activation signal is also optionally sent to the UE 20 in any other non-Access-Stratum (NAS) signaling form.
  • AMF Access and Mobility Function
  • NAS non-Access-Stratum
  • the AMF Access and Mobility Function
  • the AMF may obtain the related context for the decision from other network functions.
  • the AMF obtains explicit activation request from other network functions or AF as illustrated in FIG. 4.
  • the UE 20 has an ongoing PDU session in a first network (PLMN) using 3GPP access.
  • PLMN first network
  • the first network decides to activate the user equipment to access the one or more second networks (SNPN) using non-3GPP access; the first network send an activation signal to the UE 20 including information defining an activation option and optionally an identification (ID) of the one or more second networks (SNPN ID) .
  • first network and the second network referring as PLMN and SNPN respectively in this embodiment is just an example. It is also possible that the first network is a SNPN and the second network is a PLMN, or both the first and second network are SNPNs. In FIG. 5, there is shown possible example, although examples are feasible.
  • the UE 20 also establishes a PDU session in SNPN via SNPN N3IWF according to a received action parameter (for example, SSC mode 3) .
  • a received action parameter for example, SSC mode 3
  • a step 4 when the UE 20 decides to connect to SNPN using 3GPP access (for example, when loses the coverage of PLMN NG-RAN) , the UE 20 registers to SNPN via an SNPN 3GPP access; this is an update of the registration executed in the step 2.
  • a step 5a in a situation that the activation action is “Registration+ PDU session establishment” , the UE 20 performs a handover of the PDU session established in step 3 from non-3GPP access to 3GPP access.
  • a step 5b in an event that the activation action is “Registration” , the UE 20 establishes a new PDU session in SNPN via an SNPN 3GPP access.
  • the first network includes the one or more second network identifications (ID) but no area information in the activation signaling.
  • the UE 20 performs the access procedure to the one or more second networks (from step 2) following the instructions in the activation signaling directly after receiving the activation signaling.
  • the first network includes the one or more networks identification (ID) and also the corresponding area information in the activation signaling.
  • the UE 20 checks its own location (for example, as an observed cell ID or a TA ID that is sent from a base station, or a subscription to a 5GC location service, or from other positioning methods such as GPS, and so forth) , as well as the ongoing service in the step 2.
  • the UE 20 When the UE 20 identifies that it is in the corresponding area and the ongoing service will not be affected, the UE 20 performs the access procedure to the one or more second networks (from step 2) following the instructions received in the activation signaling.
  • the first network includes neither an indication of the one or more second networks identification (ID) nor area information in the activation signaling.
  • the UE 20 selects the one or more second networks according to the local configuration (for example, preconfigured network selection policy) considering a type of the ongoing application and also a current UE 20 spatial location in step 2. Afterwards, the UE 20 performs the access procedure to the one or more second networks (from step 2) following the instructions received in the activation signaling.
  • the local configuration for example, preconfigured network selection policy
  • the first network includes area information but no one or more second network identifications (ID) in the activation signaling.
  • the UE 20 checks its own location (for example, an observed cell ID or TA ID sent from a base station or subscription to a 5GC location service, or from other positioning methods such as GPS, and so forth) , as well as the ongoing service in step 2.
  • the UE 20 identifies that it is in the corresponding area and the ongoing service will not be affected, the UE 20 checks whether or not there are one or more second networks that are potentially available to the UE 20 that could serve the UE 20. In the event that the one or more second networks are available, the UE 20 selects that one or more second networks as a target network and performs the access procedure to that target network (from step 2) following the instructions received in the activation signaling.
  • the procedure illustrated in FIG. 5 is susceptible to being used (namely vice versa) for a scenario where the UE 20 switches from SNPN 3GPP access to PLMN 3GPP access
  • the activation option and parameters for the activation action are beneficially preconfigured at the UE 20, for example as a network selection policy, and be updated by the UE 20 serving network.
  • the UE 20 uses that information same as received from the network as explicit signaling. All the procedure stays the same from step 2 onwards.
  • An assistant PDU session is a duplicated PDU session (of a given established session in a first current network using 3GPP access) established in one or more second networks, namely target network, using a non-3GPP access mode.
  • the assistant PDU session is used to indicate the user equipment (UE) PDU session context to the SMF in the target network.
  • UE user equipment
  • the assistant PDU session is optionally a full PDU session or a dummy PDU session without actual user plane resource allocation (for example, radio bandwidth, User Plane Function (UPF) resource, and so forth) .
  • user plane resource allocation for example, radio bandwidth, User Plane Function (UPF) resource, and so forth.
  • An assistant PDU session is established in a short time period to help reduce a service interruption time when the UE 20 switches from the first network to the one or more second networks.
  • the UE 20 establishes the assistance PDU session when the UE 20 receives an indication of assistance PDU session establishment from the first network.
  • This assistant PDU session is removed automatically after handover of this assistant PDU session to the new PDU session established in the one or more second networks, namely target network, using the 3GPP access.
  • the example establishment procedure includes following steps:
  • Step 1 the UE 20 receives the activation signaling from an underlay network (NW AMF) with an activation option of “with assistant PDU session” and optional overlay network identification (NW ID) .
  • NW AMF underlay network
  • NW ID overlay network identification
  • Step 2 the UE 20 performs a registration with an overlay network (NW) using a non-3GPP access.
  • NW overlay network
  • Step 3 the UE 20 sends a PDU session establish request to the overlay network (NW) with the indication of “assistant PDU session” .
  • Step 4 there is performed PDU session policy checking in respect of the overlay network (NW) .
  • Step 5 After the checking and setup in overlay network (NW) , the overlay network (NW AMF) sends a PDU session request to N3IWF.
  • Step 6 After performing internal processing at the N3IWF, the N3IWF sends the PDU session establishment accept message to the UE 20 via an IPsec tunnel in the underlay network (NW) and a N2 PDU session response back to overlay network (NW) . Comparing to the current PDU session setup procedure using non-3GPP access, the procedure of quality of service flows (QoS Flows) insider IPsec child SA is skipped.
  • QoS Flows quality of service flows insider IPsec child SA is skipped.
  • Step 7 The overlay network (NW) completes the PDU session establishment procedure without actual UPF resource allocation.
  • PCF indicates to the SMF that it is an “assistant PDU session” , whereafter the SMF instructs the UPF on no bandwidth allocation for the quality of service (QoS) flows of this PDU session.
  • QoS quality of service
  • the flow chart 700 depicts steps of a method of a first network for operating a UE, 20 to access one or more second networks.
  • a first step 710 of the method includes obtaining an activation indication, wherein the activation indication is useable to indicate to the UE 20 to connect to the one or more second networks via a communication path in the first network.
  • a second step 720 of the method includes providing the activation indication to the UE 20 to use to access one or more second networks.
  • the flow chart 800 depicts steps of a method for operating a UE 20 served by a first network to access one or more second networks.
  • a first step 810 of the method includes obtaining an activation indication, wherein the activation indication is used to indicate to the UE 20 to connect to the one or more second network via a communication path in the first network.
  • An optional second step 820 of the method includes deciding one or more activation actions based on the activation indication and a local UE 20 context.
  • a third step 830 of the method includes performing activation actions to the one or more second networks via the communication path in the first network to access one or more second networks.
  • the first network can be private, and the one or more second networks can be public, private, or a combination of public and private.
  • the first network can be public, and the one or more second networks can be private.
  • the one or more second network can be a combination of at one private network and at least one public network.
  • the UE 20 is susceptible to being implemented, for example, as at least one of: a portable handheld device, a wireless enabled measuring instrument, a smart phone, a mobile telephone, a computer, a laptop computer, a tablet computer, a personal computer, a drone, an autonomous robotic device, an autonomous robotic vehicle, a self-drive vehicle.
  • the UE 20 includes a processor 900 that is coupled to associated data memory 910 and also to a wireless transceiver 920.
  • the UE 20 also includes a user interface 930 for enable interaction with a user 940 or an environment 950.
  • One or more software products for example software applications 960, are stored in the data memory 910, wherein the processor 900 is configured to execute the one or more software products.
  • the aforesaid first network is denoted by 1000 and includes computing hardware 1010, data memory 1020, and one or more wireless transceivers 1030.
  • the one or more wireless transceivers 1030 are configured to communicate with the UE 20.
  • the data memory 1020 includes one or more software products that are executable in the computing hardware 1010.
  • the first network 1000 is deployed at a plurality of spatially distributed notes providing an area coverage for communication purposes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

There is provided a method of a first network for operating a user equipment UE to access one or more second networks. The method includes obtaining an activation indication, wherein the activation indication is useable to indicate to the UE to connect to the one or more second networks via a communication path in the first network. Moreover, the method further includes providing, to the UE, the activation indication for enabling the UE to connect to the one or more second networks.

Description

APPARATUS AND METHOD FOR ENABLING A USER EQUIPMENT TO ACCESS ONE OR MORE SECOND NETWORKS TECHNICAL FIELD
The present disclosure relates generally to apparatus for enabling a user equipment (UE) coupled to a first network to access one or more second networks. Moreover, the present disclosure relates generally to methods for configuring apparatus for enabling a user equipment (UE) coupled to a first network to access one or more second networks. Furthermore, the present disclosure relates to computer program products to execute the aforementioned methods.
BACKGROUND
Referring to FIG. 1, it is feasible to implement a 5G communication system for private use, namely in a form of a Non-Public Network (NPN) . An NPN is susceptible to being deployed as a Stand-alone Non-Public Network (SNPN) , wherein the SNPN is operated by an NPN operator and does not rely on network functions provided by a public network (PLMN) . For example, the SNPN is deployable for private use in a factory, in a company premises, in a campus, in a stadium and so forth; moreover, such a SNPN is normally limited in its scale of deployment and its spatial coverage.
In FIG. 1, a communication network arrangement is indicated generally by 10. The arrangement 10 includes communication network nodes such as a public network node PLMN NG_RAN + 5GC node 30, a SNPN N3IWF node 40, a SNPN AMF node 50, a SNPN SMF node 60, a SNPN UPF node 70 and a SNPN NG-RAN node 90. The nodes 40 to 70 belong to a stand-alone private network (SNPN) .
A user equipment (UE) 20, for example, commences operation by having a communication session 80 within the Stand-alone Non-Public Network (SNPN) , but then has a need to connect up to other networks external to the SNPN, for example to the public network (PLMN) . Mutatis mutandis, such a need also applies to the user equipment (UE) 20, for example, commencing operation by having a communication session 80 within the public network (PLMN) and then needing to connect up to networks external to the PLMN, for example to the Stand-alone Non-Public Network (SNPN) .
For example, a scenario arises where a user equipment (UE) 20 needs to move out of a SNPN coverage site or move between SNPN coverage sites, for example from a factory to a  port, from a factory premises at a first city to a factory premises in a second city and so forth; the user equipment (UE) 20 needs to be able to gain access to the other networks, for example to PLMN, when the user equipment (UE) 20 moves out of a range of coverage provided by the SNPN in order to continue an ongoing communication session.
Such a procedure to switch between the networks takes a long time for the user equipment (UE) 20 to implement, in particularly single radio UE, because the user equipment (UE) 20 needs to disconnect from its current network, for example at the first city, and then run a series of procedures to connect to a new network, for example at the second city, as shown in FIG. 1. It is conventional practice to allow the user equipment (UE) 20 to continue a session by using a 3GPP access path to the other networks. In FIG. 1. “AMF” refers to Access and Mobility Function, and “UPF” refers to User Plane Function.
In a published PCT patent application WO2020098609, there is described a method for reducing a service interruption time during a handover procedure based on an interaction between AMF’s of two networks. However, a user equipment (UE) uses a non-3GPP access mode after the handover. Moreover, the user equipment (UE) experiences a long e2e service delay due to a long data path being provided to the user equipment (UE) .
A standard S2-2005532 proposes a method of switching between PLMN 3GPP access and SNPN 3GPP access. When the method is invoked, a user equipment (UE) registers and establish a PDU session in the SNPN via N3IWF before a coverage loss of PLMN NG-RAN occurs. After the coverage loss, the user equipment (UE) registers to the SNPN using 3GPP access and handovers the established non-3GPP access PDU session to the newly established 3GPP access PDU session. Since SNPN has an initial user equipment (UE) context already in its initial steps, the service interruption during the switching between the two networks can be reduced. However, in the method, it is not clear how the user equipment (UE) knows that it should activate the non-3GPP access mode, and what actions the user equipment (UE) should take to activate the non-3GPP access mode. In other words, it is not clear how the method could be made to work in practice.
SUMMARY
The present disclosure seeks to provide an improved method for configuring apparatus to enable user equipment (UE) coupled to a first network to access one or more second networks; such an improvement is desired to provide a shorter period of switchover for the user  equipment (UE) from the first network to the one or more second networks. Moreover, the present disclosure seeks to provide an improved apparatus to enable user equipment (UE) coupled to a first network to access one or more second networks.
According to a first aspect, the present disclosure provides a method of a first network for operating a user equipment, namely hereinafter “UE” , to access one or more second networks. The method includes obtaining an activation indication, wherein the activation indication is used to indicate to the UE to connect to the one or more second networks via a communication path in the first network. Moreover, the method includes providing the activation indication to the user equipment UE.
The method is of advantage in that the first network is more effectively able to provide the UE an activation indication to the UE than the UE itself handling access to the one or more second networks; the activation indication is capable of enabling faster handover of the UE from the first network to the one or more second networks.
It will be appreciated that the first network can be private, and the one or more second networks can be public. Alternatively, the first network can be public, and the one or more second networks can be private. Alternatively, the first network can be public, and the one or more second networks can be alternative public networks. Yet alternatively, the first network can be private, and he one or more second networks can be alternative private networks. Optionally, the one or more second network can be a combination of at least one private network and at least one public network.
Optionally, in an implementation of the method, the activation indication comprises an activation option, wherein the activation option comprises at least one of operations:
-registering the UE to the one or more second networks via a communication path in the first network;
-establishing a packet data unit, hereinafter “PDU” , session in the one or more second networks via a communication path in the first network; and
-registering the UE to the one or more second networks via a communication path in the first network and establishing a PDU session in the one or more second networks via a communication path in the first network.
Optionally, only one of the operations is utilized.
Optionally, in an implementation of the method, the activation indication further comprises at least one of:
(i) one or more target network identifications (IDs) ,
(ii) area information,
(iii) an access mode,
(iv) a PDU session type, or
(v) a session service continuity (SSC) mode.
More optionally, in the implementation of the method, the PDU session type comprises a normal PDU session type or an assistant PDU session type.
Optionally, in an implementation of the method, obtaining the activation indication comprises deciding the activation indication based on at least one of:
(i) a location of the UE,
(ii) an edge of network deployment,
(iii) a service level agreement with one or more second networks,
(iv) a mobility pattern of the UE,
(iv) an application of the UE,
(v) ongoing applications requirements of the UE, and
(vi) an ongoing applications activation request of the UE.
Optionally, in an implementation of the method, the method further comprises:
receiving an activation request from an application function, hereinafter “AF” , wherein the activation request comprises:
(i) activation actions to be executed,
(ii) one or more target network identifications, (IDs) ,
(iii) area information.
Optionally, in an implementation of the method, when providing the activation indication to the UE, the activation indication comprises:
using an Access and Mobility Function, hereinafter “AMF” , in the first network to provide the activation indication to the UE.
Optionally, in an implementation of the method, the method further comprises:
providing the activation indication to the UE when the first network detects that the UE enters a given spatial area or location.
According to a second aspect of the disclosure, there is provided a method for operating a user equipment, hereinafter “UE” , served by a first network to access one or more second networks. The method comprises obtaining an activation indication, wherein the activation indication is used to indicate to the UE to connect to the one or more second networks via a communication path in the first network. Moreover, the method comprises performing activation actions to the one or more second networks via the communication path in the first network.
Optionally, in an implementation of the method, the activation indication comprises executing an activation option, wherein the activation option comprises at least one of operations:
-registering to the one or more second networks via a communication path in the first network;
-requesting a packet data unit, hereinafter “PDU” , session establishment in the one or more second networks via a communication path in the first network; and
-registering to the one or more second networks via a communication path in the first network and requesting a PDU session establishment in the second network via a communication path in the first network.
Optionally, in an implementation of the method, the activation indication further comprises at least one of:
(i) one or more target network identifications (IDs) ,
(ii) area information,
(iii) an access mode,
(iv) a PDU session type, and
(v) a session service continuity (SSC) mode.
More optionally, in an implementation of the method, the PDU session type comprises a normal PDU session type or an assistant PDU session type.
Optionally, in an implementation of the method, obtaining an activation indication comprises:
acquiring the activation indication by pre-configuring or receiving the activation indication from the first network.
Optionally, in an implementation of the method, the method further comprises:
deciding one or more activation actions based on the activation indication and a local UE context; and
performing the one or more activation actions to the one or more second networks.
More optionally, in the implementation of the method, the one or more activation actions comprise sending one or more signals to the one or more second networks. More optionally, in the implementation of the method, the local UE context comprises at least one of:
(i) a spatial location of a node associated with the UE,
(ii) a measure of radio conditions at the node associated with the UE,
(iii) a measure of ongoing service provision at the node associated with the UE.
More optionally, in the implementation of the method, the user UE executes a final decision on the one or more activation actions based on an indication from the first network, wherein the local UE context comprises at least one of:
(i) a location of the UE,
(ii) ongoing applications of the UE,
(iii) ongoing applications requirements of the UE,
(iv) subscriptions information of the UE,
(v) radio capability of the UE.
Yet more optionally, in the implementation of the method, the activation actions comprise at least one of:
-registering to the one or more second networks via a communication path in the first network; and
-establishing a PDU session in the one or more second networks via a communication path in the first network.
Yet more optionally, in the implementation of the method, the parameters of the activation action comprise at least one of:
(i) a target network identification (ID) ,
(ii) an access mode,
(iii) a PDU session type, or
(iv) a session service continuity (SSC) mode.
According to a third aspect of the disclosure, there is provided a first network that is configured to enable a user equipment UE to access one or more second networks, wherein the first network comprises:
(i) a processor that is configured to obtain an activation indication, wherein the activation indication is useable to indicate to the UE to connect to the one or more second networks via a communication path in the first network; and
(ii) a transceiver that is configured to send the activation indication to the UE to access the one or more second networks.
Optionally, in a implementation of the first network, the activation indication comprises an activation option, wherein the activation option comprises at least one of operations:
-registering the UE to the one or more second networks via a communication path in the first network;
-establishing a packet data unit, hereinafter “PDU” , session in the one or more second networks via a communication path in the first network; and
-registering the UE to the one or more second networks via a communication path in the first network and establishing a PDU session in the one or more second networks via a communication path in the first network.
Optionally, in an implementation of the first network, the activation indication further comprises at least one of:
(i) one or more target network identifications (IDs) ,
(ii) area information,
(iii) an access mode,
(iv) a PDU session type, or
(v) a session service continuity (SSC) mode.
More optionally, in the implementation of the first network, the PDU session type comprises a normal PDU session type or an assistant PDU session type.
Optionally, in an implementation of the first network, the first network is configured to obtain the activation indication by deciding the activation indication based on at least one of:
(i) a location of the UE,
(ii) an edge of network deployment,
(iii) a service level agreement with one or more second networks,
(iv) a mobility pattern of the UE,
(v) an application of the UE,
(vi) ongoing applications requirements of the UE,
(vii) an ongoing applications activation request of the UE.
Optionally, in an implementation of the first network, the transceiver is further configured to:
receive an activation request from an application function (AF) , wherein the activation request comprises: activation actions to be executed, one or more target network information, area information.
Optionally, in an implementation of the first network, when providing the activation indication to the UE, the activation indication comprises:
using an Access and Mobility Function, hereinafter “AMF” , in the first network to provide the activation indication to the UE.
Optionally, in an implementation of the first network, the processor is further configured to:
provide the activation indication to the UE when the first network detects that the UE enters a given spatial area or location.
According to a fourth aspect, there is provided a user equipment, hereinafter “UE” , that is configured to be served by a first network to access one or more second networks. The UE comprises:
a processor that is configured to:
obtain an activation indication, wherein the activation indication is used to indicate to the UE to connect to the one or more second networks via a communication path in the first network; and
perform activation actions initiated by the activation indication to the one or more second networks via the communication path in the first network to connect the UE to the one or more second networks.
Optionally, in an implementation of the UE, the activation indication comprises executing an activation option, wherein the activation option comprises at least one of operations:
-registering to the one or more second networks via a communication path in the first network;
-requesting a packet data unit, hereinafter “PDU” , session establishment in the one or more second networks via a communication path in the first network; and
-registering to the one or more second networks via a communication path in the first network and requesting a PDU session establishment in the one or more second networks via a communication path in the first network.
Optionally, in an implementation of the UE, the activation indication further comprises at least one of:
(i) one or more target network identifications (IDs) ,
(ii) area information,
(iii) an access mode,
(iv) a PDU session type, and
(v) a session service continuity (SSC) mode.
More optionally, in the implementation of the UE, the PDU session type comprises a normal PDU session type or an assistant PDU session type.
Optionally, in an implementation of the UE, the UE is configured to obtain an activation indication by:
acquiring the activation indication by pre-configuring or receiving the activation indication from the first network.
Optionally, in an implementation of the UE, the UE is configured:
to decide one or more activation actions based on the activation indication and a local UE context; and
to perform the one or more activation actions to the one or more second networks.
More optionally, in the implementation of the UE, the one or more activation actions comprise sending one or more signals to the one or more second networks.
More optionally, in the implementation of the user UE, the local UE context comprises at least one of:
(i) a spatial location of a node associated with the UE,
(ii) a measure of radio conditions at the node associated with the UE, and
(iii) a measure of ongoing service provision at the node associated with the UE.
More optionally, in the implementation of the UE, the processor is further configured to:
execute a final decision on the one or more activation actions based on an indication from the first network, wherein the local UE context comprises at least one of: a location of the UE, ongoing applications of the UE, ongoing applications requirements of the UE, subscriptions information of the UE, radio capability of the UE.
More optionally, in the implementation of the UE, the activation actions comprise at least one of:
-registering to the one or more second networks via a communication path in the first network; and
-establishing a PDU session in the one or more second networks via a communication path in the first network.
More optionally, in the implementation of the UE, the parameters of the activation action comprise at least one of:
(i) a target network identification (ID) ,
(ii) an access mode,
(iii) a PDU session type, or
(iv) a session service continuity (SSC) mode.
According to a fifth aspect, there is provided method for a second network. The method comprises:
obtaining one or more activation actions, wherein the one or more activation actions is used to indicate to the second network a user equipment, hereinafter “UE” , to access to the second network;
registering the UE in the second network, and/or establishing the PDU session in the second network according to the one or more activation actions.
Optionally, in an implementation of the method, the activation actions comprise at least one of:
-registering the UE to the second network; and
-establishing a communication session in the second network.
Optionally, in an implementation of the method, parameters of the activation action comprise at least one of:
target network identification (ID) , an access mode, PDU session type, or a session service continuity SSC, mode.
More optionally, in the implementation of the method, the access mode comprises 3GPP access mode or non-3GPP access mode.
More optionally, in the implementation of the method, the PDU session type comprises a normal PDU session type or an assistant PDU session type.
More optionally, in the implementation of the method, the method further comprises:
establishing normal PDU session to the first network and/or establishing assistant PDU session in the second network.
According to a sixth aspect, the present disclosure provide a computer program product comprising a non-transitory (namely, non-transient) computer-readable storage medium having computer-readable instructions stored thereon, the computer-readable instructions being executable by a computerized device comprising processing hardware to execute the aforementioned method pursuant to the aforementioned first, second or fifth aspect.
Additional aspects, advantages, features and objects of the present disclosure would be made apparent from the drawings and the detailed description of the illustrative embodiments construed in conjunction with the appended claims that follow.
It will be appreciated that features of the present disclosure are susceptible to being combined in various combinations without departing from the scope of the present disclosure as defined by the appended claims.
DESCRIPTION OF THE DRAWINGS
The summary above, as well as the following detailed description of illustrative embodiments, is better understood when read in conjunction with the appended drawings. For the purpose of illustrating the present disclosure, exemplary constructions of the disclosure are shown in the drawings. However, the present disclosure is not limited to specific methods and apparatus disclosed herein. Moreover, those in the art will understand that the drawings are not to scale. Wherever possible, like elements have been indicated by identical numbers.
Embodiments of the present disclosure will now be described, by way of example only, with reference to the following diagrams wherein:
FIG. 1 is a schematic illustration of a known arrangement for user equipment, hereinafter “UE” , operating in combination with a first network to access one or more second networks via a 3GPP tunnel;
FIG. 2 is a schematic illustration of a roaming 5G system architecture in a home routed scenario;
FIG. 3 is a schematic illustration of an arrangement pursuant to implementations of the present disclosure UE operating in combination with a first network to access one or more second networks, for example via a non-3GPP communication;
FIG. 4 is an interaction diagram of a procedure for UE to access one or more second networks, for example via a non-3GPP communication, wherein Tracking Area Update (TAU) -based activation signalling is employed in a lower portion of the procedure in FIG. 4 and UE configuration update-based activation signalling is employed in an upper portion of the procedure in FIG. 4;
FIG. 5 is an interaction diagram of a procedure for UE to access one or more second networks, for example via a non-3GPP communication for activation mode, progressing to 3GPP communication, wherein the procedure allows to switch for example from PLMN 3GPP to SNPN 3GPP access with various activation options;
FIG. 6 is an illustration of an interaction diagram for UE to access one or more second networks with the activation actions of register to a second network and request an assistant PDU session establishment, from a perspective of underlay and overlay  networks, where the underlay network is for example PLMN and underlay network is for example NPN;
FIG 7 and FIG. 8 are illustrations of steps of methods employed in implementations of the present disclosure; and
FIG. 9 is illustration of component parts of the UE and a first network.
In the accompanying diagrams, an underlined number is employed to represent an item over which the underlined number is positioned or an item to which the underlined number is adjacent. A non-underlined number relates to an item identified by a line linking the non-underlined number to the item.
DETAILED DESCRIPTION OF EMBODIMENTS
In the following detailed description, illustrative embodiments of the present disclosure and ways in which they can be implemented are elucidated. Although some modes of carrying out the present disclosure is described, those skilled in the art would recognize that other embodiments for carrying out or practicing the present disclosure are also possible.
Referring to FIG. 2, there is shown a schematic illustration of a known roaming 5G system architecture in a home routed scenario; in FIG. 2, following abbreviations are used:
PLMN       Public Land Mobile Network
vPLMN      visit PLMN
hPLMN      home PLMN
SMF        Session Management Function
AF         Application Function
AMF        Access and Mobility Management Function
PCF        Policy Control Function
NSSF       Network Slice Selection Function
(R) AN     Radio Access Network
UPF        User Plane Function
UDM        Unified Data Management
NSSAAF     Network Slice-Specific Authentication and Authorization Function
AUSF       Authentication Server Function
H-         Home-
V-       Visit-
In FIG. 2, a 3GPP mobile network, indicated generally by 100, includes nodes, denoted by 110 to 240, that are configured to support user equipment (UE) 20 service continuity, for example when the UE 20 moves between a home network (HPLMN) and a visit network (VPLMN) in the home routed scenario.
However, the network 100 requires a fixed User Plane Function (UPF) anchor before and after the UE 20 performs network switching as well as the close interaction between the home network and visit network to coordinate a UE context (for example, subscription, policy, access and session context, etc. as shown in FIG. 2 as N8, N24, N16, …reference points between the VPLMN and HPLMN) .
Such interaction is not feasible in a situation where one of the networks is a SNPN, which requires completely independent operation from the PLMN. Meanwhile, the fixed UPF anchor in the home network results in a long data path for the UE 20.
When the network 100 is in operation, the NPN network specifies that the UE 20 can use PLMN access to establish a tunnel to SNPN N3IWF node 40 (namely a SNPN Non-3GPP Interworking Function) and receive the SNPN service, or vice versa. Such a manner of operation is called a non-3GPP access mode in the present disclosure.
Such a non-3GPP access mode allows the UE 20 to continue the SNPN communication service when the UE moves out the SNPN radio coverage. However, the communication service is via a tunnel established in PLMN to SNPN N3IWF and then the PDU session in SNPN. This results in a long data path which is not ideal for a service that is required to provide a short end-to-end delay, namely a low latency.
Meanwhile, the UE 20, in particularly single radio UE, still needs to run through a series of procedures to access to PLMN and additionally establish a tunnel to SNPN N3IWF before a switchover of the current session from SNPN 3GPP access to SNPN non-3GPP access using an IPSec tunnel in PLMN can be achieved.
However, such an approach does not need interaction between the SNPN and PLMN networks, but nevertheless has a technical problem of resulting in a relatively long duration of service interruption.
In overview, implementations of the present disclosure are based on a principle that a UE 20 serving network decides on:
(i) an activation of a UE 20 non-3GPP access mode to one or more other networks (for example, one or more second networks) , and
(ii) related UE 20 actions to connect the UE 20 to the one or more other networks via non-3GPP access mode.
The UE serving network provides the results of the decision to the UE 20 via use of activation signaling; for example, such activation signaling can potentially occur via the
Figure PCTCN2020119097-appb-000001
The activation signaling provides an indication of an activation action to the UE 20, which includes supplementary information such as an activation option, and/or an optional target network ID and associated area information.
However, in implementations (namely, embodiments) of the present disclosure, the user UE 20 makes a final decision on the activation action based on the indication received from a first network and local information; the local information includes, for example, a UE location, UE service requirements, UE capabilities, UE subscriptions, ongoing UE applications and so forth. The UE takes responsibility for executing the activation action. The action is optionally one of following:
(i) “Do nothing” , namely no action is implemented; for example, in an event that the UE 20 does not support a dual registration of both the first network and the one or more second networks. For example, it is found that the UE 20 does not support a non-3GPP access mode, or it is found that the UE 20 ongoing application does not require any service continuity, and so forth;
(ii) “Perform dual registration without PDU session establishment” ; such an option is beneficially employed when there is a lack of application layer service continuity support, and so forth; and
(iii) “Perform both dual registration and PDU session establishment” , for example in a case of a dual radio UE 20 or with application layer service continuity support, and so forth.
Moreover, it will be appreciated that the UE 20 decides also a final timing for executing the activation action based on the indication from the first network, UE location and on a status of ongoing UE services; for example, the UE 20 is permitted to execute the activation action  when it does not affect/less impacts to the quality of service (QoS) of the ongoing service or when UE enters the area indicated by the activation action (namely action indication) .
Optionally, the activation action is pre-configured in the UE 20, wherein the user equipment (UE 20) executes the pre-configured activation action when the UE 20 receives instructions from the first network.
Implementations (namely, embodiments) of the present disclosure described below are of advantage, in contradistinction to known technology, in that they are able to reduce service interruption time and a handover (HO) failure ratio, in a situation where a given UE, for example a single radio UE 20, moves between SNPN and PLMN networks, for example from SNPN network to PLMN network or from PLMN network to SNPN network.
Moreover, implementations of the present disclosure avoid a need for SNPN and PLMN networks to mutually interact in an event of the UE 20 switches over between SNPN and PLMN networks. Furthermore, the UE 20 does not need to employ a fixed anchor to ensure that service continuity support is provided in an event of the UE 20 switches over between SNPN and PLMN networks.
Additionally, implementations of the present disclosure are capable of supporting direct 3GPP access for communications in respect of the UE 20, both for SNPN and PLMN networks.
In overview, implementations (namely, embodiments) of the present disclosure concern a UE 20 that obtains an indication of activation from a first network to enable access, for example non-3GPP access, to one or more second networks; the UE 20 decides and executes activation actions based on the indication of activation provide by the first network and a local context of the UE 20.
The local context of the UE 20 includes, for example, information regarding a location of the UE 20, radio measurements made at the UE 20 and ongoing services that are supporting operation of the UE 20.
The implementations employ activation signaling with activation instructions indicating the activation actions that the UE 20 is to take, wherein the activation instructions include the activation options to be executed, together with parameters of one or more activation options pertaining to the activation actions. Moreover, the activation options include at least one of operations:
(a) registering the UE, 20 to the one or more second networks via a communication path in the first network;
(b) establishing a packet data unit (PDU) session in the one or more second networks via a communication path in the first network; and
(c) registering the UE, 20 to the one or more second networks via a communication path in the first network and establishing a PDU session in the one or more second networks via a communication path in the first network.
The aforesaid parameters of the activation actions include:
(i) an identification of a target network, namely target network ID (namely, identity of the one or more second networks) ;
(ii) an activation area (namely, a spatial area where UE 20 is to perform the activation actions to the one or more second networks) ;
(iii) an access mode to be used for the UE 20 when the UE 20 achieves access to the one or more second networks (for example 3GPP access, non-3GPP access, or a combination of 3GPP and non-3GPP access) ;
(iv) a PDU session type and/or a Session Service Continuity (SSC) mode to be used when the UE 20 achieves access to the one or more second networks.
It will be appreciated that a network (NW) entity decides on the activation actions and activation parameters of UE non-3GPP access to the one or more second networks and indicates that to the UE 20.
Moreover, it will be appreciated that an Access and Mobility Function (AMF) non-3GPP access service is beneficially used to enable other network functions (NFs) , for example AF, PCF, Network Data Analytics Function (NWDAF) , to activate the non-3GPP access mode for the UE 20 to the one or more second networks.
Furthermore, the aforementioned UE 20 context is used to decide on the activation parameters, as aforementioned; such activation parameters include UE 20 mobility information, UE 20 spatial location, UE 20 service requirements, UE 20 capability, and an area of interest for the UE 20 application.
Next, a procedure for providing the network decision on activation of non-3GPP access of the UE 20 to the one or more second networks will be described. The network decision that is based on the context of the UE 20 is made by processing parameters such as the spatial location of the UE 20, edge of a network deployment, a service level agreement (SLA) between network (NW) operators, a service level agreement (SLA) between a network (NW) operator and various applications, a mobility pattern of the UE 20, an application of the UE 20, and so forth.
For example, the aforementioned Access and Mobility Function (AMF) beneficially decides to send an activation signal to the UE 20 when the AMF detects that the UE 20 is entering a given spatial area; when activation of the UE 20 non-3GPP access to the one or more second networks is necessary, such a detection is beneficially derived from a UE 20 location update, from a network data analytic function (NWDAF) providing a UE 20 spatial location prediction, UE 20 location information from a location management function (LMF) , and so forth.
The given spatial area is beneficially computed from a Tracking Area ID/Cell ID: “ID” is an abbreviation for “identification” . Moreover, the given spatial area is susceptible to being computed by the first network based on a network coverage provided by the first network, a SLA between network operators, an analysis of UE 20 service experience at various spatial locations, or provided directly by an application to the first network, for example via an Application Function (for example area information provided from the AF to 5G Core (5GC) ) .
Although use of AMF is described in the foregoing, other network functions are optionally used to generate the decision.
In an example implementation of the present disclosure, the Access and Mobility Function (AMF) sets the activation option to “Registration” in an event that an ongoing UE 20 application does not support service continuity, and to “Registration and PDU session establishment” if the ongoing UE 20 application supports service continuity.
Optionally, the Access and Mobility Function (AMF) receives an explicit indication from other network functions (NFs) , for example from PCF, AF, which asks the Access and Mobility Function (AMF) to activate the UE 20 non-3GPP access to the one or more second networks. In such an implementation, the Access and Mobility Function (AMF) provides a network activation service to handle the activation request from one or more second networks.
An example of an AMF non-3GPP activation service requires following input data in order to function:
(i) one or more activation actions; and
(ii) optional parameters of the one or more activation actions: network identification (ID) , for example network ID (NID) , PLMN ID, area information (TA IDs, cell IDs) , SSC modes (for example modes 1 to 3) , and access mode.
Moreover, the AMF non-3GPP activation service generates an acknowledge output or network acknowledgement (Ack/NAck) when the activation notification is transmitted to the UE 20.
Furthermore, in a situation that a request for action if generated from an application function (AF) , a Network Exposure Function (NEF) (for example, by exposing the AMF non-3GPP activation service to the application function (AF) ) needs to be enhanced, namely to map the area or location information received from the application function (AF) to area information in, for example, a 5G system (for example, TA ID (s) , cell ID (s) ) and so forth.
Next, with reference to FIG. 4, activation signaling used in implementations of the disclosure will be described in greater detail. An activation signal is provided from the aforesaid Access and Mobility Function (AMF) to the UE 20, whereon the activation signals conveys one or more of the following information:
(i) Activation options for the non-3GPP access mode which includes one of: a Registration, a PDU session establishment, a Registration and PDU session establishment;
(ii) Parameters of the activation action which includes Session Service Continuity mode (SSC) of the PDU session. This information is optional. When a PDU session of the SSC is set to a mode 3, the first network allows for the UE 20 to have established thereto connectivity to a new PDU session anchor to a same data network before previous PDU session anchor is released, thereby enabling a seamless transition from the first network to the one or more second networks to be achieved without an interruption of service occurring.
When trigger conditions apply, the first network decides whether or not to select a PDU Session Anchor UPF suitable for the UE's 20 new conditions, for example a point of attachment to the network first network;
(iii) An identification (ID) of the one or more second networks to activate the non-3GPP access mode is used. The identification (ID) is optionally a list of one or more second  networks. However, it will be appreciated that use of such identification (ID) information is optional; the first network can, for example, just indicate to the UE 20 that the user equipment UE 20 should activate the non-3GPP access mode to the one or more second networks whenever possible by the (for example, preconfigured at the user UE 20) ; and
(iv) An area for the activation. This area information is optional. The first network, for example, provides the area of activation information to the UE 20 in a situation where the activation action does not need to be performed immediately, or the activation action could be performed at any time when the UE 20 is within that area range.
The activation option optionally includes one or more procedures and actions which UE 20 should take to activate the non-3GPP access mode; alternatively, the activation option optionally includes just using an action identification (ID) occupying two or more bits and mutually different values corresponding to mutually different indications as given above.
Optionally, the Access and Mobility Function (AMF) provides the activation signal to the UE 20 using multiple steps; for example, the Access and Mobility Function (AMF) firstly indicates to the UE 20 to register itself to a second network using a non-3GPP mode (using the activation option of “registration” ) .
In a second step, the Access and Mobility Function (AMF) indicates to the UE 20 to establish a PDU session in the second network using the non-3GPP mode (using the activation option of “PDU session establishment” ) .
The activation signal is optionally sent, for example in a tracking area update accept message or a UE 20 configuration update message from the Access and Mobility Function (AMF) to the UE 20 as illustrated in FIG. 4. As illustrated in FIG. 4, the activation signal is also optionally sent to the UE 20 in any other non-Access-Stratum (NAS) signaling form.
In case the activation decision is made by the Access and Mobility Function (AMF) , the AMF may obtain the related context for the decision from other network functions. In case the activation decision is made by other network functions or application function (AF) , the AMF obtains explicit activation request from other network functions or AF as illustrated in FIG. 4.
Referring next to FIG. 5, an example procedure with mutually different activation options will be described.
In a step 0, the UE 20 has an ongoing PDU session in a first network (PLMN) using 3GPP access.
In a step 1, the first network (PLMN) decides to activate the user equipment to access the one or more second networks (SNPN) using non-3GPP access; the first network send an activation signal to the UE 20 including information defining an activation option and optionally an identification (ID) of the one or more second networks (SNPN ID) .
It should be noted that the first network and the second network referring as PLMN and SNPN respectively in this embodiment is just an example. It is also possible that the first network is a SNPN and the second network is a PLMN, or both the first and second network are SNPNs. In FIG. 5, there is shown possible example, although examples are feasible.
In a step 2, the UE 20 makes a final decision on the activation action (namely, activation option and SNPN ID) of the non-3GPP access and performs registration to the one or more second networks (SNPN) via SNPN N3IWF according to a received action parameter (for example, access mode = 3GPP + non-3GPP) .
In a step 3, in a situation where the decided activation action is “Registration+ PDU session establishment” , the UE 20 also establishes a PDU session in SNPN via SNPN N3IWF according to a received action parameter (for example, SSC mode 3) .
In a step 4, when the UE 20 decides to connect to SNPN using 3GPP access (for example, when loses the coverage of PLMN NG-RAN) , the UE 20 registers to SNPN via an SNPN 3GPP access; this is an update of the registration executed in the step 2.
In a step 5a, in a situation that the activation action is “Registration+ PDU session establishment” , the UE 20 performs a handover of the PDU session established in step 3 from non-3GPP access to 3GPP access.
Finally, in a step 5b, in an event that the activation action is “Registration” , the UE 20 establishes a new PDU session in SNPN via an SNPN 3GPP access.
With reference to FIG. 5, in a first use case (case 1) , the first network includes the one or more second network identifications (ID) but no area information in the activation signaling. In this case (case 1) , the UE 20 performs the access procedure to the one or more second networks (from step 2) following the instructions in the activation signaling directly after receiving the activation signaling.
With reference to FIG. 5, in a second use case (case 2) , the first network includes the one or more networks identification (ID) and also the corresponding area information in the activation signaling. In this second use case (case 2) , the UE 20 checks its own location (for  example, as an observed cell ID or a TA ID that is sent from a base station, or a subscription to a 5GC location service, or from other positioning methods such as GPS, and so forth) , as well as the ongoing service in the step 2.
When the UE 20 identifies that it is in the corresponding area and the ongoing service will not be affected, the UE 20 performs the access procedure to the one or more second networks (from step 2) following the instructions received in the activation signaling.
With reference to FIG. 5, in a third use case (case 3) , the first network includes neither an indication of the one or more second networks identification (ID) nor area information in the activation signaling. In this third use case, the UE 20 selects the one or more second networks according to the local configuration (for example, preconfigured network selection policy) considering a type of the ongoing application and also a current UE 20 spatial location in step 2. Afterwards, the UE 20 performs the access procedure to the one or more second networks (from step 2) following the instructions received in the activation signaling.
With reference to FIG. 5, in a fourth use case (case 4) , the first network includes area information but no one or more second network identifications (ID) in the activation signaling.
In this case 4, the UE 20 checks its own location (for example, an observed cell ID or TA ID sent from a base station or subscription to a 5GC location service, or from other positioning methods such as GPS, and so forth) , as well as the ongoing service in step 2. When the UE 20 identifies that it is in the corresponding area and the ongoing service will not be affected, the UE 20 checks whether or not there are one or more second networks that are potentially available to the UE 20 that could serve the UE 20. In the event that the one or more second networks are available, the UE 20 selects that one or more second networks as a target network and performs the access procedure to that target network (from step 2) following the instructions received in the activation signaling. It will be appreciated that the procedure illustrated in FIG. 5 is susceptible to being used (namely vice versa) for a scenario where the UE 20 switches from SNPN 3GPP access to PLMN 3GPP access
In a scenario where the UE 20 decision conveyed in the activation action to the UE 20 is to establish a non-3GPP access to the one or more second networks, the activation option and parameters for the activation action are beneficially preconfigured at the UE 20, for example as a network selection policy, and be updated by the UE 20 serving network. In this scenario, the UE 20 uses that information same as received from the network as explicit signaling. All the procedure stays the same from step 2 onwards.
Next, with reference to FIG. 6, an assistant PDU session will be described. An assistant PDU session is a duplicated PDU session (of a given established session in a first current network using 3GPP access) established in one or more second networks, namely target network, using a non-3GPP access mode. The assistant PDU session is used to indicate the user equipment (UE) PDU session context to the SMF in the target network.
Moreover, the assistant PDU session is optionally a full PDU session or a dummy PDU session without actual user plane resource allocation (for example, radio bandwidth, User Plane Function (UPF) resource, and so forth) .
An assistant PDU session is established in a short time period to help reduce a service interruption time when the UE 20 switches from the first network to the one or more second networks. The UE 20 establishes the assistance PDU session when the UE 20 receives an indication of assistance PDU session establishment from the first network. This assistant PDU session is removed automatically after handover of this assistant PDU session to the new PDU session established in the one or more second networks, namely target network, using the 3GPP access.
Next, with reference to FIG. 6, an example establishment procedure of assistant PDU session will be described. The example establishment procedure includes following steps:
(i) Step 1: the UE 20 receives the activation signaling from an underlay network (NW AMF) with an activation option of “with assistant PDU session” and optional overlay network identification (NW ID) .
(ii) Step 2: the UE 20 performs a registration with an overlay network (NW) using a non-3GPP access.
(iii) Step 3: the UE 20 sends a PDU session establish request to the overlay network (NW) with the indication of “assistant PDU session” .
(iv) Step 4: there is performed PDU session policy checking in respect of the overlay network (NW) .
(v) Step 5: After the checking and setup in overlay network (NW) , the overlay network (NW AMF) sends a PDU session request to N3IWF.
(vi) Step 6: After performing internal processing at the N3IWF, the N3IWF sends the PDU session establishment accept message to the UE 20 via an IPsec tunnel in the underlay network (NW) and a N2 PDU session response back to overlay network (NW) . Comparing to the current PDU session setup procedure using non-3GPP access, the procedure of quality of service flows (QoS Flows) insider IPsec child SA is skipped.
(vii) Step 7: The overlay network (NW) completes the PDU session establishment procedure without actual UPF resource allocation.
There are different implementation options of “no UPF resource allocation” , the options being as follows:
(a) PCF indicates to the SMF that it is an “assistant PDU session” , whereafter the SMF skips all the related communication with the UPF on this PDU session; and
(b) PCF indicates to the SMF that it is an “assistant PDU session” , whereafter the SMF instructs the UPF on no bandwidth allocation for the quality of service (QoS) flows of this PDU session.
Referring next to FIG. 7, there is shown an illustration of a flow chart indicated generally by 700. The flow chart 700 depicts steps of a method of a first network for operating a UE, 20 to access one or more second networks.
first step 710 of the method includes obtaining an activation indication, wherein the activation indication is useable to indicate to the UE 20 to connect to the one or more second networks via a communication path in the first network.
second step 720 of the method includes providing the activation indication to the UE 20 to use to access one or more second networks.
Referring next to FIG. 8, there is shown an illustration of a flow chart indicated generally by 800. The flow chart 800 depicts steps of a method for operating a UE 20 served by a first network to access one or more second networks.
first step 810 of the method includes obtaining an activation indication, wherein the activation indication is used to indicate to the UE 20 to connect to the one or more second network via a communication path in the first network.
An optional second step 820 of the method includes deciding one or more activation actions based on the activation indication and a local UE 20 context.
third step 830 of the method includes performing activation actions to the one or more second networks via the communication path in the first network to access one or more second networks.
It will be appreciated in FIG 7 and FIG. 8 that the first network can be private, and the one or more second networks can be public, private, or a combination of public and private. Alternatively, the first network can be public, and the one or more second networks can be private. Optionally, the one or more second network can be a combination of at one private network and at least one public network.
Referring next to FIG. 9, the UE 20 will be described in greater detail. The UE 20 is susceptible to being implemented, for example, as at least one of: a portable handheld device, a wireless enabled measuring instrument, a smart phone, a mobile telephone, a computer, a laptop computer, a tablet computer, a personal computer, a drone, an autonomous robotic device, an autonomous robotic vehicle, a self-drive vehicle. The UE 20 includes a processor 900 that is coupled to associated data memory 910 and also to a wireless transceiver 920. Beneficially, the UE 20 also includes a user interface 930 for enable interaction with a user 940 or an environment 950. One or more software products, for example software applications 960, are stored in the data memory 910, wherein the processor 900 is configured to execute the one or more software products.
Moreover, in FIG. 9, the aforesaid first network is denoted by 1000 and includes computing hardware 1010, data memory 1020, and one or more wireless transceivers 1030. The one or more wireless transceivers 1030 are configured to communicate with the UE 20. The data memory 1020 includes one or more software products that are executable in the computing hardware 1010. Beneficially, the first network 1000 is deployed at a plurality of spatially distributed notes providing an area coverage for communication purposes.
Modifications to embodiments of the invention described in the foregoing are possible without departing from the scope of the invention as defined by the accompanying claims. Expressions such as “including” , “comprising” , “incorporating” , “consisting of” , “have” , “is” used to describe and claim the present invention are intended to be construed in a non-exclusive manner, namely allowing for items, components or elements not explicitly described also to be present. Reference to the singular is also to be construed to relate to the plural. Numerals included within parentheses in the accompanying claims are intended to assist understanding of the claims and should not be construed in any way to limit subject matter claimed by these claims.

Claims (39)

  1. A method of a first network for operating a user equipment, UE, to access one or more second networks, wherein the method includes:
    obtaining an activation indication, wherein the activation indication is used to indicate to the UE to connect to the one or more second networks via a communication path in the first network; and
    providing the activation indication to the UE.
  2. The method of claim 1, wherein the activation indication comprises an activation option, wherein the activation option comprises at least one of operations:
    - registering the UE to the one or more second networks via a communication path in the first network;
    - establishing a packet data unit, PDU, session in the one or more second networks via a communication path in the first network; and
    - registering the UE to the one or more second networks via a communication path in the first network and establishing a PDU session in the second network via a communication path in the first network.
  3. The method of claim 1 or 2, wherein the activation indication further comprises at least one of:
    (i) one or more target network identifications, IDs,
    (ii) area information,
    (iii) an access mode,
    (iv) a PDU session type, or
    (v) a session service continuity, SSC, mode.
  4. The method of claim 3, wherein the PDU session type comprises a normal PDU session type or an assistant PDU session type.
  5. The method of any one of claims 1 to 3, wherein obtaining the activation indication comprises:
    deciding the activation indication based on at least one of: a location of the UE, an edge of network deployment, a service level agreement with one or more second networks, a  mobility pattern of the UE, an application of the UE, ongoing applications requirements of the UE, an ongoing applications activation request of the UE.
  6. The method of any one of claims 1 to 5, further comprising:
    receiving an activation request from an application function, AF, wherein the activation request comprises: activation actions to be executed, one or more target network IDs area information.
  7. The method of any one of the preceding claims, wherein, when providing the activation indication to the UE, the activation indication comprises:
    using an Access and Mobility Function, AMF, in the first network to provide the activation indication to the UE.
  8. The method of any one of the preceding claims, wherein the method further comprises:
    providing the activation indication to the UE when the first network detects that the UE enters a given spatial area or location.
  9. A method for operating a user equipment UE served by a first network to access one or more second networks, wherein the method comprises:
    obtaining an activation indication, wherein the activation indication is used to indicate to the UE to connect to the one or more second networks via a communication path in the first network; and
    performing activation actions to the one or more second networks via the communication path in the first network.
  10. The method of claim 9, wherein the activation indication comprises executing an activation option, wherein the activation option comprises at least one of operations:
    - registering to the one or more second networks via a communication path in the first network;
    - requesting a packet data unit, PDU, session establishment in the one or more second networks via a communication path in the first network; and
    - registering to the one or more second networks via a communication path in the first network and requesting a PDU session establishment in the one or more second networks via a communication path in the first network.
  11. The method of claim 9 or 10, wherein the activation indication further comprises at least one of:
    (i) one or more target network identifications, IDs,
    (ii) area information,
    (iii) an access mode,
    (iv) a PDU session type, and
    (v) a session service continuity, SSC, mode.
  12. The method of any one of claims 9 to 11, wherein the PDU session type comprises a normal PDU session type or an assistant PDU session type.
  13. The method of any one of claims 9 to 11, wherein obtaining an activation indication comprises:
    acquiring the activation indication by pre-configuring or receiving the activation indication from the first network.
  14. The method of any one of claims 9 to 13 further comprising:
    deciding one or more activation actions based on the activation indication and a local UE context; and
    performing the one or more activation actions to the one or more second networks.
  15. The method of claim 14, wherein the one or more activation actions comprise sending one or more signals to the one or more second networks.
  16. The method of claim 14 or 15, wherein the local UE context comprises at least one of:
    (i) a spatial location of a node associated with the UE,
    (ii) a measure of radio conditions at the node associated with the UE,
    (iii) a measure of ongoing service provision at the node associated with the UE.
  17. The method of claim 14, 15, or 16, wherein the UE executes a final decision on the one or more activation actions based on an indication from the first network, wherein the local UE context comprises at least one of: a location of the UE, ongoing applications of the  UE, ongoing applications requirements of the UE, subscriptions information of the UE, radio capability of the UE.
  18. The method of claim 15, 16, or 17, wherein the activation actions comprise at least one of:
    - registering to the one or more second networks via a communication path in the first network; and
    - establishing a PDU session in the one or more second networks via a communication path in the first network.
  19. The method of any one of claims 15, 16, or 17, wherein the parameters of the activation action comprise at least one of:
    (i) a target network ID,
    (ii) an access mode,
    (iii) a PDU session type, or
    (iv) a SSC mode.
  20. A first network (1000) that is configured to enable a user equipment, UE, (20) to access one or more second networks, wherein the first network comprises:
    (i) a processor (1010) that is configured to obtain an activation indication, wherein the activation indication is useable to indicate to the UE to connect to the one or more second networks via a communication path in the first network; and
    (ii) a transceiver (1030) that is configured to send the activation indication to the UE to access the one or more second networks.
  21. The first network of claim 20, wherein the activation indication comprises an activation option, wherein the activation option comprises at least one of operations:
    (i) registering the UE to the one or more second networks via a communication path in the first network;
    (ii) establishing a packet data unit, PDU, session in the one or more second networks via a communication path in the first network; and
    (iii) registering the UE to the one or more second networks via a communication path in the first network and establishing a PDU session in the one or more second networks via a communication path in the first network.
  22. The first network of claim 20 or 21, wherein the activation indication further comprises at least one of:
    (i) one or more target network identifications, IDs,
    (ii) area information,
    (iii) an access mode,
    (iv) a PDU session type, or
    (v) a session service continuity, SSC, mode.
  23. The first network of claim 22, wherein the PDU session type comprises a normal PDU session type or an assistant PDU session type.
  24. The first network of any one of claims 20 to 23, wherein the first network is configured to obtain the activation indication by deciding the activation indication based on at least one of:
    (i) a location of the UE,
    (ii) an edge of network deployment,
    (iii) a service level agreement with one or more second networks,
    (iv) a mobility pattern of the UE,
    (v) an application of the UE,
    (vi) ongoing applications requirements of the UE,
    (vii) an ongoing applications activation request of the UE.
  25. The first network of any one of claims 20 to 24, wherein the transceiver (1030) is further configured to:
    receive an activation request from an application function, AF, wherein the activation request comprises: activation actions to be executed, one or more target network information, area information.
  26. The first network of any one of claims 20 to 25, wherein, when providing the activation indication to the UE, the activation indication comprises:
    using an Access and Mobility Function, AMF, in the first network to provide the activation indication to the UE.
  27. The first network of any one of claims 20 to 26, wherein the processor is further configured to:
    provide the activation indication to the UE when the first network detects that the UE enters a given spatial area or location.
  28. A user equipment, UE, (20) that is configured to be served by a first network (1000) to access one or more second networks, wherein the UE comprises:
    a processor (900) that is configured to:
    obtain an activation indication, wherein the activation indication is used to indicate to the UE to connect to the one or more second networks via a communication path in the first network; and
    perform activation actions initiated by the activation indication to the one or more second networks via the communication path in the first network to connect the UE to the one or more second networks.
  29. The UE of claim 28, wherein the activation indication comprises executing an activation option, wherein the activation option comprises at least one of operations:
    - registering to the one or more second networks via a communication path in the first network;
    - requesting a packet data unit, PDU, session establishment in the one or more second networks via a communication path in the first network; and
    - registering to the one or more second networks via a communication path in the first network and requesting a PDU session establishment in the one or more second networks via a communication path in the first network.
  30. The UE of claim 28 or 29, wherein the activation indication further comprises at least one of:
    (i) one or more target network identifications, IDs,
    (ii) area information,
    (iii) an access mode,
    (iv) a PDU session type, and
    (v) a session service continuity, SSC, mode.
  31. The UE of claim 30, wherein the PDU session type comprises a normal PDU session type or an assistant PDU session type.
  32. The UE of any one of claims 28 to 30, wherein the UE is configured to obtain an activation indication by:
    acquiring the activation indication by pre-configuring or receiving the activation indication from the first network.
  33. The UE of any one of claims 28 to 32, wherein the processor is configured:
    to decide one or more activation actions based on the activation indication and a local UE context; and
    to perform the one or more activation actions to the one or more second networks.
  34. The UE of claim 33, wherein the one or more activation actions comprise sending one or more signals to the one or more second networks.
  35. The UE of claim 32 or 33, wherein the local UE context comprises at least one of:
    (i) a spatial location of a node associated with the UE,
    (ii) a measure of radio conditions at the node associated with the UE, and
    (iii) a measure of ongoing service provision at the node associated with the UE.
  36. The user UE of claim 32, 33, or 34, wherein the processor is further configured to:
    execute a final decision on the one or more activation actions based on an indication from the first network, wherein the local UE context comprises at least one of: a location of the UE, ongoing applications of the UE, ongoing applications requirements of the UE, subscriptions information of the UE, radio capability of the UE.
  37. The UE of claim 34, 35 or 36, wherein the activation actions comprise at least one of:
    (i) registering to the one or more second networks via a communication path in the first network; and
    (ii) establishing a PDU session in the one or more second networks via a communication path in the first network.
  38. The UE of any one of claims 34 to 37, wherein the parameters of the activation action comprise at least one of:
    (i) a target network ID,
    (ii) an access mode,
    (iii) a PDU session type, or
    (iv) a SSC mode.
  39. A computer program product comprising a non-transitory computer-readable storage medium having computer-readable instructions stored thereon, the computer-readable instructions being executable by a computerized device comprising processing hardware to execute a method of any one of claims 1 to 9, or 9 to 19.
PCT/CN2020/119097 2020-09-29 2020-09-29 Apparatus and method for enabling a user equipment to access one or more second networks WO2022067586A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119097 WO2022067586A1 (en) 2020-09-29 2020-09-29 Apparatus and method for enabling a user equipment to access one or more second networks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119097 WO2022067586A1 (en) 2020-09-29 2020-09-29 Apparatus and method for enabling a user equipment to access one or more second networks

Publications (1)

Publication Number Publication Date
WO2022067586A1 true WO2022067586A1 (en) 2022-04-07

Family

ID=80951025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119097 WO2022067586A1 (en) 2020-09-29 2020-09-29 Apparatus and method for enabling a user equipment to access one or more second networks

Country Status (1)

Country Link
WO (1) WO2022067586A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110213808A (en) * 2019-05-06 2019-09-06 腾讯科技(深圳)有限公司 Access control method, device, computer-readable medium and electronic equipment
CN111182593A (en) * 2019-04-04 2020-05-19 维沃移动通信有限公司 Method for supporting roaming and communication equipment
CN111182543A (en) * 2018-11-12 2020-05-19 华为技术有限公司 Method and device for switching network
US20200245235A1 (en) * 2019-01-24 2020-07-30 Lg Electronics Inc. Method for selecting non-public network in wireless communication system and apparatus thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111182543A (en) * 2018-11-12 2020-05-19 华为技术有限公司 Method and device for switching network
US20200245235A1 (en) * 2019-01-24 2020-07-30 Lg Electronics Inc. Method for selecting non-public network in wireless communication system and apparatus thereof
CN111182593A (en) * 2019-04-04 2020-05-19 维沃移动通信有限公司 Method for supporting roaming and communication equipment
CN110213808A (en) * 2019-05-06 2019-09-06 腾讯科技(深圳)有限公司 Access control method, device, computer-readable medium and electronic equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Procedures for handover between SNPN and PLMN", 3GPP DRAFT; S2-2000185, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Incheon, Korea; 20200113 - 20200118, 7 January 2020 (2020-01-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051842291 *

Similar Documents

Publication Publication Date Title
US10313997B2 (en) User equipment registration method for network slice selection and network controller and network communication system using the same
US11653296B2 (en) Isolated network slice selection
CN109219111B (en) Slice selection method and device
US11197204B2 (en) Voice service handover
JP7075066B2 (en) UE configuration and update with network slice selection policy
RU2585720C2 (en) Methods and nodes for selecting target base network for terminal voice communication session handover
US11032746B2 (en) Voice service handover
CN108174433B (en) Method, network element and system for determining target
EP3096558B1 (en) System and method for access point selection with evolved packet data gateway
US20190394684A1 (en) Method and device for determining a bearer identifier, and storage medium therefor
US11690002B2 (en) Communication method and communications apparatus
CN103945406A (en) Wireless communication system utilizing enhanced air-interface
US11902379B2 (en) Method for determining SSC mode and apparatus
US9351212B2 (en) PLMN selection method, mobile terminal, BSC and core network device
CN110662274A (en) Method for accessing network slice and user device using the same
TWI791016B (en) An information processing method and device
CN108024204B (en) Local network connection method, device and system
US20230370934A1 (en) Systems and methods for reducing slice access failures
CN106063327B (en) Method and terminal for processing voice service
JP5838182B2 (en) Location information registration method and mobile communication terminal
WO2015109582A1 (en) Load balancing method and base station
CN113950111A (en) Session switching method and device
WO2022067586A1 (en) Apparatus and method for enabling a user equipment to access one or more second networks
CN107770787B (en) Method and device for determining target operator network
EP3567936A1 (en) Computer program product for controlling user equipment to perform cell selection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955611

Country of ref document: EP

Kind code of ref document: A1