WO2022065595A1 - Strength signal measuring method and device for monitoring strength of hydration reaction material structure - Google Patents
Strength signal measuring method and device for monitoring strength of hydration reaction material structure Download PDFInfo
- Publication number
- WO2022065595A1 WO2022065595A1 PCT/KR2020/018345 KR2020018345W WO2022065595A1 WO 2022065595 A1 WO2022065595 A1 WO 2022065595A1 KR 2020018345 W KR2020018345 W KR 2020018345W WO 2022065595 A1 WO2022065595 A1 WO 2022065595A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- piezoelectric element
- impedance
- electrical signal
- frequency
- intensity
- Prior art date
Links
- 238000006703 hydration reaction Methods 0.000 title claims abstract description 82
- 238000000034 method Methods 0.000 title claims abstract description 55
- 238000012544 monitoring process Methods 0.000 title claims abstract description 52
- 239000000463 material Substances 0.000 title claims abstract description 43
- 230000008859 change Effects 0.000 claims description 121
- 230000036571 hydration Effects 0.000 claims description 49
- 239000000376 reactant Substances 0.000 claims description 49
- 238000012937 correction Methods 0.000 claims description 26
- 238000001514 detection method Methods 0.000 claims description 22
- 238000012360 testing method Methods 0.000 claims description 22
- 238000012545 processing Methods 0.000 claims description 18
- 238000005259 measurement Methods 0.000 claims description 16
- 238000004891 communication Methods 0.000 claims description 11
- 230000004044 response Effects 0.000 abstract description 3
- 230000005284 excitation Effects 0.000 abstract description 2
- 230000005540 biological transmission Effects 0.000 abstract 1
- 238000004364 calculation method Methods 0.000 description 14
- 238000010998 test method Methods 0.000 description 7
- 230000003321 amplification Effects 0.000 description 6
- 238000003199 nucleic acid amplification method Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000010276 construction Methods 0.000 description 5
- 230000001066 destructive effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 238000003908 quality control method Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 206010000117 Abnormal behaviour Diseases 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/32—Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
- G01N3/38—Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces generated by electromagnetic means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/18—Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
- G01L1/183—Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material by measuring variations of frequency of vibrating piezo-resistive material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/16—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
- G01L5/167—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using piezoelectric means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/38—Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
- G01N33/383—Concrete or cement
Definitions
- the present invention relates to a strength signal measuring method and strength signal measuring apparatus for monitoring the strength of a hydration reactant structure, and more particularly, to a concrete structure, which is a type of structure made of a hydration reactant, when vibration is applied by an external factor. Since the speed at which the material is delivered is different according to the strength and modulus of elasticity, and the response characteristics according to the input frequency are different, it is possible to reliably monitor the strength of the structure by measuring the strength of the structure and the ground using this. It relates to a strength signal measuring method and a strength signal measuring device for monitoring the strength of a hydration reactant structure, which can measure the strength of the structure regardless of location by securing portability and portability because it can be manufactured.
- strength is a basic factor to evaluate the stability of a structure, and securing the required strength and maintaining homogeneity is essential to secure the stability of the structure itself, and it is a basic criterion for evaluating various other properties.
- the strength of concrete is treated as the most important factor in quality control.
- the quality control of concrete is mainly based on the strength of 28 days of standard curing, there is a time difference between the progress of construction and the time of strength evaluation.
- the results of the quality test of hardened concrete cannot be reflected in the construction work quickly, and when the required strength is excessive or insufficient, it becomes difficult to deal with strength problems such as safety issues as well as economic and administrative losses.
- the concrete curing strength estimation method uses the method using the integrated temperature or the method using the Schmitt hammer.
- the strength of the concrete structure constructed by pouring ready-mixed concrete and the ground improved by a method such as DCM is gradually expressed by the hydration reaction of the cement, which is its constituent. That is, since the intensity value changes with time, there is a limit in which the intensity cannot be accurately known without taking a sample.
- the present invention for solving the above-mentioned problems of the prior art, the concrete structure, which is a kind of structure made of a hydration reaction material, when vibration is applied by external factors, the speed transmitted inside the material according to the strength and elastic modulus, etc.
- a strength signal measuring method for monitoring the strength of a hydration reactant structure which enables reliable monitoring of the strength of the structure by measuring the strength of the structure and the ground using it, and the response characteristics according to the excitation frequency are different.
- another object of the present invention is to provide a strength signal measuring device for monitoring the strength of the hydration reactant structure, which can be manufactured in miniaturization and can measure strength regardless of location by securing portability and mobility.
- a method for measuring the strength of a hydration reaction material structure through an intensity signal measuring device comprising: an AC electrical signal generating step of generating an AC electrical signal of a specific waveform having a frequency of a predetermined frequency band; an AC electrical signal applying step of applying the generated AC electrical signal to the piezoelectric element for a predetermined time; a frequency-impedance detection step of detecting a change in the resonance frequency and impedance of the piezoelectric element according to the frequency of the AC electrical signal applied in the AC electrical signal application step; and a pressure change measuring step of measuring a change in physical pressure applied to the piezoelectric element as an intensity signal based on the detected change in resonance frequency and impedance of the piezoelectric element.
- a method for measuring an intensity signal for monitoring is
- the step of generating the AC electrical signal consists of sequentially generating an AC electrical signal in the form of a sine wave having a predetermined frequency band for a predetermined time, the frequency band of the AC electrical signal and the The generation time is characterized in that it is determined according to the frequency characteristics of the piezoelectric element.
- the pressure change detecting step is made to detect the amplified electric signal after amplifying the electric signal according to the change in the impedance and the resonance frequency of the piezoelectric element according to the frequency of the AC electric signal, , in the pressure change measuring step, the AC electrical signal generated from the AC electrical signal generator is removed through a low-pass filter, and only the electrical signal according to the change in the resonance frequency and impedance of the piezoelectric element is passed to measure the electrical signal can be done
- the temperature around the impedance is detected and the measured resonance frequency and impedance are corrected to minimize the measurement error.
- the method further includes; in the correcting step, a resonant frequency and a corrected impedance may be obtained through Equations 1 and 2 below.
- f corrected resonance frequency
- z corrected impedance
- f1 measured resonance frequency
- z1 measured impedance
- A temperature characteristic coefficient of piezoelectric element 1
- C temperature characteristic coefficient of piezoelectric element 3
- B temperature characteristic coefficient of piezoelectric element 2
- D temperature characteristic coefficient of piezoelectric element 4
- Tc measured current temperature
- Tref reference temperature
- A, B, C, D and Tref are the temperature characteristic tests for piezoelectric element. constant value obtained through
- the control module is provided in the piezoelectric element a device housing configured with a connector to which the accessory is electrically connected; an AC electrical signal generator provided in the device housing and configured to generate an AC electrical signal of a specific waveform having a frequency of a predetermined frequency band; It is provided in the device housing, and the AC electrical signal generator controls to generate an AC electrical signal of a specific waveform having a frequency of a predetermined frequency band, applies the generated AC electrical signal to the piezoelectric element, and applies the generated AC electrical signal to the piezoelectric element a control module unit for measuring a change in physical pressure applied to the piezoelectric element based on the obtained AC electrical signal; and a power supply unit provided in the device housing and configured to supply necessary power to the control module unit; a strength signal measuring device for monitoring the strength of
- the AC electrical signal generator comprises a sine wave signal generator that generates an AC electrical signal of a sine wave having a predetermined frequency band
- the control module includes an AC electrical signal generated by the sine wave signal generator.
- An AC electrical signal control unit to control and apply to the piezoelectric element, and a frequency-impedance detection unit for detecting a change in the resonance frequency and impedance of the piezoelectric element according to the frequency of the AC electric signal applied to the piezoelectric element, and the frequency-impedance It may include a pressure change measuring unit that measures a change in physical pressure applied to the piezoelectric element based on a change in the resonance frequency and impedance of the piezoelectric element detected by the detection unit.
- control module unit a signal amplifying unit for amplifying the magnitude of the electric signal according to the change in the resonance frequency and impedance of the piezoelectric element; a low-pass filter unit configured to remove an AC electrical signal generated by the AC electrical signal generator among the electrical signals outputted from the signal amplifying unit, and to pass only an electrical signal according to a change in the resonance frequency and impedance of the piezoelectric element; and an analog-to-digital converter unit configured to convert and output an analog electrical signal according to a change in the resonance frequency and impedance of the piezoelectric element filtered through the low-pass filter unit and output to a digital signal.
- the device housing to transmit pressure change data measuring the change in physical pressure applied to the piezoelectric element based on the digital signal of the resonance frequency and impedance change of the piezoelectric element to an external upper processing device.
- a wired/wireless communication module unit provided; and a GPS module provided in the device housing and configured to transmit the location information of the piezoelectric element to an external higher-level processing device.
- the control module unit calculates and calculates the intensity based on the pressure change data measuring the change in physical pressure applied to the piezoelectric element based on the digital signal of the resonance frequency and impedance change of the piezoelectric element
- the apparatus further comprises a strength calculation unit, wherein the apparatus for measuring the strength signal comprises: a wired/wireless communication module unit provided to transmit the strength data calculated by the strength calculation unit to an external upper processing device; and the strength data calculated by the strength calculation unit It may further include; a display unit for displaying, and a GPS module unit provided in the device housing and configured to transmit the location information of the piezoelectric element to an external higher-level processing device.
- a temperature sensor installed on the lower end surface of the device housing to detect an ambient temperature of the impedance
- the control module unit are configured, and the frequency-resonance frequency and impedance of the piezoelectric element in the impedance detection unit
- the frequency-impedance correction unit When detecting , the frequency-impedance correction unit to minimize the measurement error by correcting the measured resonance frequency and impedance value based on the temperature detected by the temperature sensor; further comprising, wherein the frequency-impedance correction unit,
- the corrected resonant frequency and corrected impedance can be obtained through Equations 1 and 2.
- f corrected resonance frequency
- z corrected impedance
- f1 measured resonance frequency
- z1 measured impedance
- A temperature characteristic coefficient of piezoelectric element 1
- C temperature characteristic coefficient of piezoelectric element 3
- B temperature characteristic coefficient of piezoelectric element 2
- D temperature characteristic coefficient of piezoelectric element 4
- Tc measured current temperature
- Tref reference temperature
- A, B, C, D and Tref are the temperature characteristic tests for piezoelectric element. constant value obtained through
- the present invention has the effect of reliably measuring the strength of the structure using the impedance characteristics of the piezoelectric element and providing continuous monitoring.
- the present invention can be manufactured in a small size, portability and portability can be secured, and accordingly, strength can be easily measured regardless of location.
- FIG. 1 is a flowchart schematically illustrating a method for measuring an intensity signal for monitoring the intensity of a hydration reactant structure according to the present invention.
- FIG. 3 is a resonant frequency characteristic of a piezoelectric element according to a change in the frequency of an AC electrical signal applied to the piezoelectric element in a state in which a constant pressure is applied to the piezoelectric element in the intensity arc measurement method for monitoring the strength of the hydration reactant structure according to the present invention;
- a graph measuring the signal output through the low-pass filter with respect to the impedance characteristic.
- FIG 5 is a graph used in the calibration process of the intensity signal measuring method for monitoring the intensity of the hydration reactant structure according to the present invention.
- FIG. 6 is a graph comparing graph 1 and graph 2 of FIG. 5 .
- FIG. 7 is a block diagram schematically showing the configuration of the intensity signal measuring apparatus for monitoring the intensity of the hydration reactant structure according to the present invention.
- FIG. 8 is a block diagram schematically showing the configuration of a control module unit constituting the intensity signal measuring apparatus for monitoring the intensity of the hydration reactant structure according to the present invention.
- unit that processes at least one function or operation, which may be implemented as hardware or software or a combination of hardware and software.
- FIG. 1 is a flowchart schematically illustrating a method for measuring an intensity signal for monitoring the intensity of a hydration reactant structure according to the present invention.
- the intensity signal measurement method for monitoring the strength of the hydration reaction material structure is installed in a structure made of a hydration reaction material (for example, a concrete structure constructed by pouring ready-mixed concrete or a ground improved by a method such as DCM)
- a method for measuring the intensity signal of the hydration reactant structure through an intensity signal measuring device connected to the piezoelectric element to generate and measure an intensity signal for measuring the intensity of the hydration reactant structure as shown in FIG.
- the intensity signal measuring method for monitoring the strength of the hydration reactant structure is connected to a piezoelectric element installed in a structure made of a hydration reactant material to generate an intensity signal for measuring the strength of the hydration reactant structure, and As a method for measuring the intensity signal of the hydration reaction material structure through the intensity signal measuring device to measure, as shown in FIG.
- the AC electrical signal generating step (S100) is a step of generating an AC electrical signal of a specific waveform having a frequency of a predetermined frequency band, and generates an AC electrical signal in the form of a sine wave having a frequency band of a low frequency to a high frequency. It consists of generating sequentially within a certain period of time.
- the frequency and generation time of the AC electrical signal generated in the AC electrical signal generating step (S100) are determined according to the frequency characteristics of the associated piezoelectric element.
- the AC electrical signal generating step (S100) consists of generating a sine wave of 5KHz to 100KHz for 1 second.
- the AC electrical signal generating step (S100) is generated by a sine wave signal generator provided in the intensity signal measuring apparatus.
- the AC electrical signal applying step (S200) consists of applying the AC electrical signal generated in the AC electrical signal generating step (S100) to the piezoelectric element for a predetermined time.
- the AC electrical signal application step (S200) is made to generate and apply an AC electrical signal set according to the frequency characteristics of the piezoelectric element in the sine wave signal generator through the control module unit provided in the intensity signal measuring device.
- the pressure change measuring step (S400) is made to measure the change in the physical pressure applied to the piezoelectric element based on the intrinsic resonance frequency and impedance of the piezoelectric element detected in the frequency-impedance detection step (S300).
- the intrinsic resonance frequency and impedance of the piezoelectric element change according to the change in the frequency of the AC electrical signal applied to the piezoelectric element, and this change is converted into a fine electric signal. and a signal amplification process of amplifying the signal amplitude through a signal amplifying unit in order to amplify the signal to a measurable signal level.
- the signal output through the signal amplification process through the signal amplification unit is an AC electrical signal generated by the sine wave signal generator and electricity according to the change in the natural resonance frequency and impedance of the piezoelectric element Since the signals are mixed together, in the pressure change measuring step (S400), the AC electrical signal generated from the sine wave signal generator and output from the piezoelectric element is removed through a low pass filter provided in the intensity signal measuring device. , it is preferable to pass only the electric signal according to the change of the resonance frequency (intrinsic resonance frequency) and impedance of the pure piezoelectric element.
- the pressure change measuring step (S400) the analog electric signal according to the change of the resonance frequency and impedance of the piezoelectric element filtered through the low-pass filter and output, digital through the analog-to-digital converter provided in the intensity signal measuring device converted into a signal to be output.
- the pressure change measuring step (S400) measures the change in the physical pressure applied to the piezoelectric element based on the digital signal (digital signal according to the change of the resonance frequency and impedance) of the resonance frequency and impedance of the piezoelectric element,
- the pressure change data is transmitted to an external upper processing device (for example, a computer or a server, etc.) through a wired/wireless communication unit provided in the intensity signal measuring device to calculate the intensity based on the pressure change data in the upper processing device. or the intensity calculated through the intensity calculator based on the pressure change data may be transmitted to an external higher-level processing device through a wired/wireless communication unit.
- the pressure change measuring step ( S400 ) will be described with reference to FIGS. 2 and 3 .
- 3 is a state in which a constant pressure is applied to the piezoelectric element in the method for measuring the strength signal for monitoring the strength of the hydration reactant structure according to the present invention It is a graph measuring the signal output through the low-pass filter with respect to the resonance frequency characteristic and the impedance characteristic of the piezoelectric element according to the frequency change of the AC electrical signal applied to the piezoelectric element.
- the frequency change of the AC electrical signal applied to the piezoelectric element As a result of measuring the signal output through a low pass filter for the resonance frequency characteristic and impedance characteristic of the piezoelectric element, it shows two distinct peak outputs with respect to a specific frequency as shown in the red circle.
- the signal output through the low-pass filter is measured for the resonance frequency characteristic and impedance characteristic of the piezoelectric element according to the frequency change of the AC electrical signal applied to the piezoelectric element.
- the pressure applied to the piezoelectric element is calculated by correlating the displacement difference of the peak frequency and the frequency characteristic of the piezoelectric element, and the intensity is measured and calculated by using the calculated pressure change data of the piezoelectric element as a measurement factor for measuring the strength.
- the trend (upward linearity) of the impedance increase of the piezoelectric element according to the increase in the square wave frequency is removed through the Kalman filter, and the intensity is maximized in the profile after the trend is removed. This can be done by finding points that are (maximum) and minimum (minimum).
- the external upper processing device calculates the intensity based on the pressure change data, or transmits the intensity calculated through the intensity calculation unit based on the pressure change data to the external upper processing device through the wired/wireless communication unit, the pressure
- the calculation of the intensity based on the change data will be described as follows.
- the peak frequency (resonant frequency) In a state where there is no change in intensity, the peak frequency (resonant frequency) has a constant value.
- the peak frequency (resonant frequency) value shifts, and this variation value is different for each material (material).
- the intensity cannot be extracted using the absolute value, and the intensity test is performed using a sample extracted from the structure at the beginning, and the park frequency (resonant frequency) at the same age is equal to the intensity value 1: 1
- the intensity according to the change in the peak frequency (resonant frequency) measured later is calculated. In other words, the strength can be measured for the same material based on a reference value.
- a strength test method for a sample a compressive strength test using a universal testing machine (UTM), a Marshall test method, a non-destructive test method using ultrasonic waves, etc. can be utilized.
- UPM universal testing machine
- Marshall test method a non-destructive test method using ultrasonic waves, etc.
- the intensity signal measuring method for monitoring the intensity of the hydration reaction material structure when detecting the resonance frequency and impedance generated in the piezoelectric element in the frequency-impedance detection step (S300), the temperature around the impedance A correction step of minimizing the measurement error by detecting and correcting the measured resonance frequency and impedance (values of the measured resonance frequency and the measured impedance) through a temperature characteristic correction algorithm of the piezoelectric element based on the detected temperature (S500); may further include.
- the piezoelectric element has a property that the resonance frequency and impedance are slightly changed according to the temperature.
- the change causes a change in the resonance frequency and impedance of the piezoelectric element regardless of the pressure of the hydration heat reactant.
- the change in the resonance frequency and impedance of the piezoelectric element caused by such a change in the temperature of the hydration heat reactant may be mistakenly recognized as a change in the pressure of the hydration heat reactant, which may cause a measurement error in the pressure measurement of the hydration heat reactant.
- the temperature sensor is positioned as close as possible to the piezoelectric element, and when measuring the resonance frequency and impedance of the piezoelectric element, the temperature around the piezoelectric element is measured and through the temperature characteristic correction algorithm of the piezoelectric element, the measured resonance By correcting the values of frequency and impedance, it is to derive the values of the corrected resonance frequency and the corrected impedance that minimize the measurement error.
- the change in the temperature of the hydration heat reactant according to the external temperature change causes a change in the resonance frequency and impedance of the piezoelectric element regardless of the pressure of the hydration heat reactant. Accordingly, the resonant frequency measured from the piezoelectric element is corrected together with the measured temperature in the following manner.
- A, B, C, D and Tref are different depending on the piezoelectric element used, so it can be obtained through a temperature characteristic test for the piezoelectric element.
- the present invention can further correct the corrected values of the resonant frequency and impedance by further supplementing the above correction method.
- the strength of a substance gradually increases according to the hydration reaction, and then converges to a constant strength at the same time as the hydration reaction is completed after a considerable period of time.
- the strength can be calculated using the following empirical formula.
- the correction value (the value of the correction resonance frequency and the correction impedance) obtained through the above equations 1 and 2 is supplemented using the above calculation method (Equation 3) to be additionally corrected.
- the additional correction method according to another embodiment is a correction method according to the actual strength test result, and the correction value obtained through Equations 1 and 2 may be additionally corrected by reflecting the strength test result at a specific time point.
- Figure 5 is a graph used in the calibration process of the intensity signal measurement method for monitoring the intensity of the hydration reaction material structure according to the present invention
- Graph 1 is a graph in which the intensity is calculated over time in an empirical formula according to the basic frequency pattern change
- Graph 2 is a graph in which the strength value at the time the strength test result comes out is confirmed as the test result value, and the strength value is calculated by accumulating the difference between ⁇ test result value - calculated value ⁇ after that point.
- 6 is a graph comparing graph 1 and graph 2 of FIG. 5 .
- FIG. 7 is a block diagram schematically showing the configuration of a strength signal measuring apparatus for monitoring the strength of a hydration reactant structure according to the present invention
- FIG. 8 is a strength signal for monitoring the strength of a hydration reaction material structure according to the present invention. It is a block diagram schematically showing the configuration of the control module unit constituting the measurement device in blocks.
- the intensity signal measuring device for monitoring the strength of the hydration reaction material structure is installed in a structure made of a hydration reaction material (for example, a concrete structure constructed by pouring ready-mixed concrete or a ground improved by a method such as DCM)
- a hydration reaction material for example, a concrete structure constructed by pouring ready-mixed concrete or a ground improved by a method such as DCM
- the device housing 100; AC electrical signal generator 200; control module unit 300; and a power supply unit 400 As an intensity signal measuring device connected to the piezoelectric element to generate and measure an intensity signal for measuring the intensity of the hydration reactant structure, as shown in FIGS. 7 and 8, the device housing 100; AC electrical signal generator 200; control module unit 300; and a power supply unit 400 .
- the strength signal measuring device for monitoring the strength of the hydration reaction material structure is a structure made of a hydration reaction material (for example, a concrete structure constructed by pouring ready-mixed concrete or a ground improved by a method such as DCM) ) as an intensity signal measuring device connected to the piezoelectric element installed to generate and measure an intensity signal for measuring the strength of the hydration reaction material structure, and as shown in FIGS.
- a hydration reaction material for example, a concrete structure constructed by pouring ready-mixed concrete or a ground improved by a method such as DCM
- the device housing 100 is made so that the above-described components are mounted therein, has a handle for portability and portability, and can be manufactured in a small size, and is partially opened or closed or divided for maintenance of internal components. can be configured.
- the AC electrical signal generator 200 can generate an AC electrical signal of a specific waveform having a frequency of a predetermined frequency band, that is, an AC electrical signal in the form of a sine wave having a frequency band of a low frequency to a high frequency. It consists of a sine wave signal generator capable of sequentially generating within a predetermined time.
- control module unit 300 controls the AC electrical signal generator 200 to generate an AC electrical signal of a specific waveform having a frequency of a predetermined frequency band, and applies the generated AC electrical signal to the piezoelectric element. is applied, and is made to measure the change in physical pressure applied to the piezoelectric element based on the AC electrical signal applied to the piezoelectric element. It includes a detection unit 320 and a pressure change measurement unit 330 .
- the control module unit 300 controls the AC electrical signal generator 200 so that an AC electrical signal of a predetermined frequency (frequency band) and generation time is applied to the piezoelectric element.
- the frequency-impedance detector 320 includes a pressure change measuring unit 330 that measures a change in physical pressure applied to the piezoelectric element based on the change in the resonance frequency and impedance of the piezoelectric element.
- the frequency and the generation time of the AC electrical signal generator controlled by the AC electrical signal controller 310 of the control module 300 are determined according to the frequency characteristics of the piezoelectric element.
- the AC electrical signal control unit 310 may control the AC electrical signal generator 200 to generate a sine wave of 5 KHz to 100 KHz for 1 second.
- the frequency-impedance detection unit 320 is configured to detect a change in the intrinsic resonance frequency and impedance generated in the piezoelectric element by the frequency of the AC electrical signal controlled by the AC electrical signal control unit 310 .
- the pressure change measuring unit 330 is configured to measure a change in the physical pressure applied to the piezoelectric element based on the change in the resonance frequency and impedance of the piezoelectric element detected by the frequency-impedance detector 320 .
- the pressure change measuring unit 330 changes the resonance frequency and impedance of the piezoelectric element according to the change in the frequency of the AC electrical signal applied to the piezoelectric element, and this change is converted into a fine electric signal
- the present invention It may further include a component for amplifying the fine electric signal.
- control module unit 300 of the intensity signal measuring apparatus for monitoring the intensity of the hydration reaction material structure according to the present invention is for amplifying the magnitude of the electric signal according to the change in the resonance frequency and impedance of the piezoelectric element.
- a signal amplifier 340 may be further included.
- the signal output through the signal amplification process through the signal amplification unit 340 is mixed with the AC electrical signal generated by the AC electrical signal generator 200 and the electrical signal according to the resonance frequency and impedance change of the piezoelectric element, It may further include a component for removing the AC electrical signal generated by the AC electrical signal generating unit 200, and passing only the electrical signal according to the change in the resonance frequency and impedance of the piezoelectric element.
- control module unit 300 of the apparatus for measuring the strength signal for monitoring the strength of the hydration reactant structure removes the AC electrical signal generated by the AC electrical signal generating unit 200, and the piezoelectric element It may further include a low pass filter part (Low PassFilter part) 350 made to pass only the electrical signal according to the resonance frequency and impedance change of the.
- Low PassFilter part Low PassFilter part
- control module unit 300 of the apparatus for measuring the strength signal for monitoring the strength of the hydration reactant structure according to the present invention changes the resonance frequency and impedance of the piezoelectric element filtered through the low-pass filter unit 350 and output. It may further include an analog-to-digital converter unit 360 configured to convert an analog electrical signal according to a digital signal and output it.
- the intensity signal measuring apparatus for monitoring the strength of the hydration reaction material structure is pressure change data obtained by measuring the change in physical pressure applied to the piezoelectric element based on the digital signal of the resonance frequency and impedance change of the piezoelectric element. It may further include a wired/wireless communication module unit 500 configured to transmit to an external higher-level processing device (eg, a computer or a server). At this time, the upper-level processing device derives the intensity based on the received pressure change data.
- an external higher-level processing device eg, a computer or a server.
- the control module unit 300 of the apparatus for measuring the intensity signal for monitoring the intensity of the hydration reactant structure according to the present invention is a physical pressure applied to the piezoelectric element based on the digital signal of the resonance frequency and impedance change of the piezoelectric element. Further comprising a strength calculation unit 370 for calculating and calculating the strength based on the pressure change data measured the change of, the strength data calculated by the strength calculation unit 370 is the wire/wireless communication module unit 500 It may be configured to be transmitted to an external upper processing device through the
- the present invention is provided in the device housing 100 in order to display the intensity data calculated by the intensity calculation unit 370 , is connected to the control module unit 300 , and is used in the strength calculation unit 370 .
- the display unit 600 for displaying the calculated intensity data may further include.
- the intensity calculation in the upper-level processing device or the intensity calculation in the intensity calculation unit 370 of the control module unit 300 will be described as follows.
- the peak frequency (resonant frequency) In a state where there is no change in intensity, the peak frequency (resonant frequency) has a constant value.
- the peak frequency (resonant frequency) value shifts, and this variation value is different for each material (material).
- the intensity cannot be extracted using the absolute value, and the intensity test is performed using a sample extracted from the structure at the beginning, and the park frequency (resonant frequency) at the same age is equal to the intensity value 1: 1
- the intensity according to the change in the peak frequency (resonant frequency) measured later is calculated.
- the strength can be measured for the same material based on a reference value.
- a strength test method for a sample a compressive strength test using a universal testing machine (UTM), a Marshall test method, a non-destructive test method using ultrasonic waves, etc. can be utilized.
- the power supply unit 400 may be configured as a replaceable battery or a rechargeable battery.
- the strength signal measuring apparatus for monitoring the strength of the hydration reactant structure is a GPS configured to transmit location information of a measurement point or construction location information to a higher processing device through the wired/wireless communication module unit 500 .
- the module unit 700 may further include.
- the intensity signal measuring device for monitoring the intensity of the hydration reactant structure is a temperature sensor 800 installed on the lower surface of the device housing 100 to detect the ambient temperature of the impedance, and the When the frequency-impedance detection unit 320 detects the resonance frequency and impedance of the piezoelectric element, the temperature characteristic of the piezoelectric element is corrected based on the temperature detected by the temperature sensor 800 .
- the frequency-impedance correction unit 380 for minimizing the measurement error by correcting the resonant frequency and impedance values measured through the algorithm; may further include.
- the frequency-impedance corrector 380 may obtain a corrected resonant frequency and a corrected impedance through Equations 1 and 2 below.
- A, B, C, D, and Tref are constant values obtained through a temperature characteristic experiment on the piezoelectric element because it is different depending on the piezoelectric element used.
- This correction of the resonance frequency and impedance is based on the fact that the change in the temperature of the hydration heat reactant according to the external temperature change causes the change in the resonance frequency and impedance of the piezoelectric element regardless of the pressure of the hydration heat reactant.
- the strength of the structure is reliably measured and continuous monitoring is provided using the impedance characteristic of the piezoelectric element. This can be done and can be manufactured in a small size, so portability and portability can be secured, and accordingly, there is an advantage that strength can be easily measured regardless of location.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Pathology (AREA)
- Ceramic Engineering (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Electromagnetism (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
The present invention provides a strength signal measuring method and device for monitoring strength of a hydration reaction material structure. A concrete structure or the like, which is a sort of structure formed of a hydration reaction material, exhibits a transmission speed inside the material and a response characteristic based on an excitation frequency, which are different according to strength, elastic modulus, and the like when vibration by an external factor is applied to. This may be used to measure strength of a structure and the ground to reliably monitor strength of a structure. The device can be made compact to secure portability and mobility, thereby measuring strength regardless of location.
Description
본 발명은 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 방법 및 강도신호 측정 장치에 관한 것으로, 더욱 상세하게는 수화반응물질로 이루어진 구조체의 일종인 콘크리트 구조물 등은 외부 요인에 의해 진동이 가해질 때 강도 및 탄성계수 등에 따라 물질의 내부에서 전달되는 속도가 다르고, 입력주파수에 따른 응답특성이 다르므로 이를 이용하여 구조물과 지반의 강도를 측정함으로써 구조체의 강도를 신뢰성 있게 모니터링할 수 있도록 하며, 소형화로 제작 가능하여 휴대성과 이동성을 확보함으로써 장소에 구애받지 않고 구조체의 강도를 측정할 수 있는, 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 방법 및 강도신호 측정 장치에 관한 것이다.The present invention relates to a strength signal measuring method and strength signal measuring apparatus for monitoring the strength of a hydration reactant structure, and more particularly, to a concrete structure, which is a type of structure made of a hydration reactant, when vibration is applied by an external factor. Since the speed at which the material is delivered is different according to the strength and modulus of elasticity, and the response characteristics according to the input frequency are different, it is possible to reliably monitor the strength of the structure by measuring the strength of the structure and the ground using this. It relates to a strength signal measuring method and a strength signal measuring device for monitoring the strength of a hydration reactant structure, which can measure the strength of the structure regardless of location by securing portability and portability because it can be manufactured.
최근 들어 우리나라는 물론 세계 각국마다 경제 산업발전을 위한 사회기반시설의 확충으로 사회 공공핵심 구조들이 늘어나고 있으며, 이러한 건설 규모는 계속 대형화되고 있다.Recently, social and public core structures have been increasing due to the expansion of social infrastructure for economic and industrial development in Korea as well as in countries around the world, and the scale of these constructions continues to increase.
건축생산에 있어 콘크리트는 가장 일반적이며 보편화된 주요 구조재로 폭넓게 사용되고 있으며, 성능의 향상 및 안정적인 품질관리에 대한 연구가 활발하게 진행되고 있다.Concrete is widely used as the most common and general structural material in building production, and research on performance improvement and stable quality control is being actively conducted.
특히 콘크리트 구조물에 있어서 강도는 구조물의 안정성을 평가하는 기본적인 요소로서 소요의 강도를 확보하고 균질성을 유지하는 것은 구조물 자체의 안정성을 확보하는데 필수적이며 다른 여러 가지 성질을 평가할 수 있는 기본적인 기준이 된다.In particular, in concrete structures, strength is a basic factor to evaluate the stability of a structure, and securing the required strength and maintaining homogeneity is essential to secure the stability of the structure itself, and it is a basic criterion for evaluating various other properties.
이러한 콘크리트의 강도는 품질관리상 가장 중요하게 다루어지고 있으나, 콘크리트의 품질관리는 주로 표준양생한 재령 28일 강도를 기준으로 하고 있기 때문에 공사의 진행속도와 강도평가시기 사이에는 시간적 차이가 생기므로 이미 경화한 콘크리트의 품질시험 결과는 공사에 신속하게 반영할 수 없으며, 소요의 강도가 과부족일 경우 안전의 문제뿐만이 아니라 경제적·행정적 손실을 부담해야 하는 등 강도상의 문제가 발생할 때에는 처리가 곤란하게 된다.The strength of concrete is treated as the most important factor in quality control. However, since the quality control of concrete is mainly based on the strength of 28 days of standard curing, there is a time difference between the progress of construction and the time of strength evaluation. The results of the quality test of hardened concrete cannot be reflected in the construction work quickly, and when the required strength is excessive or insufficient, it becomes difficult to deal with strength problems such as safety issues as well as economic and administrative losses.
콘크리트 양생 강도 추정 기법은 적산온도를 이용한 방법이나 슈미트 해머를 이용한 방법을 사용한다.The concrete curing strength estimation method uses the method using the integrated temperature or the method using the Schmitt hammer.
이는 콘크리트 구조물 내부를 직접적으로 측정하는 것이 아니라 정확한 강도 추정이 어렵고 실시간으로 강도 추정을 하기 어려운 문제점이 있으며, 계측 지점의 접근성이 어려운 경우 측정에 어려움이 있는 다른 문제점이 있다.This does not directly measure the inside of the concrete structure, but has a problem in that it is difficult to accurately estimate the strength and to estimate the strength in real time, and there are other problems in that it is difficult to measure when the accessibility of the measurement point is difficult.
또한, 적산온도를 이용하는 방법 이외에도, 기존 현장 타설 콘크리트의 발현 강도 평가와 관련한 대부분의 연구는 전기 화학적 촉진법, 그리고 각종 비파괴 시험법 등을 대상으로 하고 있다.In addition to the method using the integrated temperature, most studies related to the evaluation of the expression strength of the existing cast-in-place concrete target the electrochemical acceleration method and various non-destructive test methods.
또한, 수학적인 모델링에 의해 제안된 이론식 뿐만 아니라, 실제 실험을 수행하거나 경험에 근거한 식의 형태로도 제안되고 있는데, 이러한 평가방법은 고가의 장비가 필요하거나 제안된 식 자체가 복잡하여 실무에서 크게 활용되지 못하는 실정이다.In addition, not only the theoretical formula proposed by mathematical modeling, but also the form of an expression based on actual experiments or experience is being proposed. It is not currently being used.
다시 말해서, DCM 등의 공법에 의해 개량된 지반과 레미콘 타설에 의해 시공되는 콘크리트 구조물은 그 구성물인 시멘트의 수화반응에 의해 강도가 서서히 발현된다. 즉, 시간에 따라 강도값이 변하므로 샘플을 취하지 않고서는 정확히 그 강도를 알 수 없는 한계가 있다.In other words, the strength of the concrete structure constructed by pouring ready-mixed concrete and the ground improved by a method such as DCM is gradually expressed by the hydration reaction of the cement, which is its constituent. That is, since the intensity value changes with time, there is a limit in which the intensity cannot be accurately known without taking a sample.
레미콘 타설 등 시공 당시 공시체를 제작하고, 강도시험을 함으로써 간접적으로 구조물의 강도를 추정할 수 있으나, 해당 구조물의 직접적인 강도를 알수는 없고, 이에 따라 구조물의 강도는 힘과 변형의 관계곡선으로부터 선형변형의 한계치를 구함으로써 측정하게 되므로, 실제 구조물의 경우, 변형을 주지 않은 상태에서 강도를 알아낸다는 것이 쉽지 않은 한계가 있다. 따라서, 초음파 또는 탄성파를 이용하거나, GPR 등 비파괴 방법에 의해 구조물 등의 강도, 탄성계수 등의 물리적 특징을 추정할 수 있으나, 수화반응 초기의 저강도 상태에서는 이들 방법을 적용하기 어려운 실정이다.It is possible to estimate the strength of a structure indirectly by manufacturing a specimen at the time of construction such as pouring ready-mixed concrete and performing a strength test, but it is not possible to know the direct strength of the structure. Since it is measured by finding the limit value of Therefore, physical characteristics such as strength and modulus of a structure can be estimated using ultrasonic waves or elastic waves or by non-destructive methods such as GPR, but it is difficult to apply these methods in a low-intensity state in the initial stage of the hydration reaction.
이에 따라 현장 타설 콘크리트 구조물의 강도발현 평가를 고려한 효율적인 실시간 상시 계측 모니터링을 통하여 이상 거동을 감지하고, 적절한 조치를 취함으로써 시설물 붕괴를 미연에 방지할 필요가 있다.Accordingly, it is necessary to prevent the collapse of facilities in advance by detecting abnormal behavior through efficient real-time measurement and monitoring that considers the evaluation of strength development of cast-in-place concrete structures and taking appropriate measures.
따라서, 상기한 종래의 문제점을 해결하기 위한 본 발명은, 수화반응물질로 이루어진 구조체의 일종인 콘크리트 구조물 등은 외부 요인에 의해 진동이 가해질 때 강도 및 탄성계수 등에 따라 물질의 내부에서 전달되는 속도가 다르고, 가진주파수에 따른 응답특성이 다르므로 이를 이용하여 구조물과 지반의 강도를 측정함으로써 구조체의 강도를 신뢰성 있게 모니터링할 수 있도록 하는, 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 방법을 제공하는데 그 목적이 있다.Therefore, the present invention for solving the above-mentioned problems of the prior art, the concrete structure, which is a kind of structure made of a hydration reaction material, when vibration is applied by external factors, the speed transmitted inside the material according to the strength and elastic modulus, etc. To provide a strength signal measuring method for monitoring the strength of a hydration reactant structure, which enables reliable monitoring of the strength of the structure by measuring the strength of the structure and the ground using it, and the response characteristics according to the excitation frequency are different. There is a purpose.
또한, 본 발명은 소형화로 제작 가능하여 휴대성과 이동성을 확보함으로써 장소에 구애받지 않고 강도를 측정할 수 있는, 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 장치를 제공하는데 다른 목적이 있다.In addition, another object of the present invention is to provide a strength signal measuring device for monitoring the strength of the hydration reactant structure, which can be manufactured in miniaturization and can measure strength regardless of location by securing portability and mobility.
본 발명의 해결과제는 이상에서 언급한 것들에 한정되지 않으며, 언급되지 아니한 다른 해결과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The problems to be solved of the present invention are not limited to those mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
상기 본 발명의 목적들 및 다른 특징들을 달성하기 위한 본 발명의 일 관점에 따르면, 수화반응물질로 이루어지는 구조체에 설치된 압전소자에 연결되어 수화반응물질 구조체의 강도를 측정하기 위한 강도신호를 생성하고 측정하는 강도신호 측정 장치를 통해 수화반응물질 구조체의 강도를 측정하기 위한 방법으로서, 소정 주파수 대역의 주파수를 갖는 특정 파형의 교류전기신호를 발생시키는 교류전기신호 발생 단계; 상기 발생된 교류전기신호를 일정 시간 동안 압전소자에 인가하는 교류전기신호 인가 단계; 상기 교류전기신호 인가 단계에서 가해지는 교류전기신호의 주파수에 따른 압전소자의 공진 주파수와 임피던스의 변화를 검출하는 주파수-임피던스 검출 단계; 및 상기 검출된 압전소자의 공진 주파수와 임피던스의 변화에 기반하여 상기 압전 소자에 가해진 물리적인 압력의 변화를 강도 신호로서 측정하는 압력 변화 측정 단계;를 포함하는 것을 특징으로 하는 수화반응 물질 구조체의 강도 모니터링을 위한 강도신호 측정 방법가 제공된다.According to one aspect of the present invention for achieving the objects and other features of the present invention, it is connected to a piezoelectric element installed in a structure made of a hydration reactant material to generate and measure an intensity signal for measuring the strength of the hydration reactant structure A method for measuring the strength of a hydration reaction material structure through an intensity signal measuring device comprising: an AC electrical signal generating step of generating an AC electrical signal of a specific waveform having a frequency of a predetermined frequency band; an AC electrical signal applying step of applying the generated AC electrical signal to the piezoelectric element for a predetermined time; a frequency-impedance detection step of detecting a change in the resonance frequency and impedance of the piezoelectric element according to the frequency of the AC electrical signal applied in the AC electrical signal application step; and a pressure change measuring step of measuring a change in physical pressure applied to the piezoelectric element as an intensity signal based on the detected change in resonance frequency and impedance of the piezoelectric element. A method for measuring an intensity signal for monitoring is provided.
본 발명의 일 관점에 있어서, 상기 교류전기신호 발생 단계는 소정의 주파수 대역을 갖는 사인파(Sine Wave) 형태의 교류전기신호를 일정시간 순차적으로 발생시키는 것으로 이루어지며, 상기 교류전기신호의 주파수 대역과 발생 시간은 상기 압전소자의 주파수 특성에 따라 결정되는 것을 특징으로 한다.In one aspect of the present invention, the step of generating the AC electrical signal consists of sequentially generating an AC electrical signal in the form of a sine wave having a predetermined frequency band for a predetermined time, the frequency band of the AC electrical signal and the The generation time is characterized in that it is determined according to the frequency characteristics of the piezoelectric element.
본 발명의 일 관점에 있어서, 상기 압력 변화 검출 단계는, 상기 교류전기신호의 주파수에 따른 압전소자의 공진 주파수와 임피던스의 변화에 따른 전기신호를 증폭시킨 후, 증폭된 전기신호를 검출하도록 이루어지며, 상기 압력 변화 측정 단계는, 저역 필터를 통해 상기 교류전기신호 발생부에서 발생된 교류전기신호는 제거되고, 상기 압전소자의 공진 주파수와 임피던스 변화에 따른 전기신호만이 통과된 전기신호를 측정하도록 이루어질 수 있다.In one aspect of the present invention, the pressure change detecting step is made to detect the amplified electric signal after amplifying the electric signal according to the change in the impedance and the resonance frequency of the piezoelectric element according to the frequency of the AC electric signal, , in the pressure change measuring step, the AC electrical signal generated from the AC electrical signal generator is removed through a low-pass filter, and only the electrical signal according to the change in the resonance frequency and impedance of the piezoelectric element is passed to measure the electrical signal can be done
본 발명의 일 관점에 있어서, 상기 주파수-임피던스 검출 단계에서 압전소자에서 발생하는 공진 주파수와 임피던스의 검출 시, 임피던스 주변의 온도를 검출하여 측정된 공진 주파수와 임피던스를 보정하여 측정 오차를 최소화하는 보정단계;를 더 포함하며, 상기 보정 단계는, 아래의 식 1 및 식 2를 통해 보정된 공진 주파수와 보정된 임피던스를 구할 수 있다.In one aspect of the present invention, when the resonance frequency and impedance generated in the piezoelectric element are detected in the frequency-impedance detection step, the temperature around the impedance is detected and the measured resonance frequency and impedance are corrected to minimize the measurement error. The method further includes; in the correcting step, a resonant frequency and a corrected impedance may be obtained through Equations 1 and 2 below.
f = f1 + A * (Tc-Tref) + B (식 1)f = f1 + A * (Tc-Tref) + B (Equation 1)
z = z1 + C * (Tc-Tref) + B (식 2)z = z1 + C * (Tc-Tref) + B (Equation 2)
(여기에서, f : 보정된 공진 주파수, z : 보정된 임피던스, f1 : 측정된 공진 주파수, z1: 측정된 임피던스, A : 압전소자의 온도특성계수 1, C : 압전소자의 온도특성계수 3, B : 압전소자의 온도특성계수 2, D : 압전소자의 온도특성계수 4, Tc: 측정된 현재 온도, Tref: 기준온도, A, B, C, D 및 Tref는 압전소자에 대한 온도특성실험을 통해 얻은 상수값)(here, f: corrected resonance frequency, z: corrected impedance, f1: measured resonance frequency, z1: measured impedance, A: temperature characteristic coefficient of piezoelectric element 1, C: temperature characteristic coefficient of piezoelectric element 3, B: temperature characteristic coefficient of piezoelectric element 2, D: temperature characteristic coefficient of piezoelectric element 4, Tc: measured current temperature, Tref: reference temperature, A, B, C, D and Tref are the temperature characteristic tests for piezoelectric element. constant value obtained through
본 발명의 다른 관점에 따르면, 수화반응물질로 이루어지는 구조체에 설치된 압전소자에 연결되어 수화반응물질 구조체의 강도를 측정하기 위한 강도신호를 생성하고 측정하는 강도신호 측정 장치로서, 압전 소자에 상기 제어 모듈부가 전기적으로 접속되는 접속부를 구비하여 구성되는 장치 하우징; 상기 장치 하우징에 구비되고, 소정 주파수 대역의 주파수를 갖는 특정 파형의 교류전기신호를 발생시키는 교류전기신호 발생부; 상기 장치 하우징에 구비되고, 상기 교류전기신호 발생부에서 소정 주파수 대역의 주파수를 갖는 특정 파형의 교류전기신호가 발생되도록 제어하고, 발생된 교류전기신호를 압전소자에 인가하며, 상기 압전소자로 인가된 교류전기신호에 기반하여 압전소자에 가해진 물리적인 압력의 변화를 측정하는 제어 모듈부; 및 상기 장치 하우징에 구비되며, 상기 제어 모듈부에 필요 전력을 공급하도록 구성되는 전원부;를 포함하는 것을 특징으로 하는 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 장치가 제공된다.According to another aspect of the present invention, as an intensity signal measuring device connected to a piezoelectric element installed in a structure made of a hydration reaction material to generate and measure an intensity signal for measuring the strength of the hydration reaction material structure, the control module is provided in the piezoelectric element a device housing configured with a connector to which the accessory is electrically connected; an AC electrical signal generator provided in the device housing and configured to generate an AC electrical signal of a specific waveform having a frequency of a predetermined frequency band; It is provided in the device housing, and the AC electrical signal generator controls to generate an AC electrical signal of a specific waveform having a frequency of a predetermined frequency band, applies the generated AC electrical signal to the piezoelectric element, and applies the generated AC electrical signal to the piezoelectric element a control module unit for measuring a change in physical pressure applied to the piezoelectric element based on the obtained AC electrical signal; and a power supply unit provided in the device housing and configured to supply necessary power to the control module unit; a strength signal measuring device for monitoring the strength of the hydration reactant structure comprising a.
본 발명의 다른 관점에 있어서, 상기 교류전기신호 발생부는 소정 주파수 대역을 갖는 사인파의 교류전기신호를 발생시키는 사인파 신호 발생부로 이루어지고, 상기 제어 모듈부는, 상기 사인파 신호 발생부에서 발생되는 교류전기신호를 제어하여 압전 소자로 인가되도록 하는 교류전기신호 제어부와, 상기 압전 소자로 가해지는 교류전기신호의 주파수에 따른 압전소자의 공진 주파수와 임피던스의 변화를 검출하는 주파수-임피던스 검출부, 및 상기 주파수-임피던스 검출부에서 검출된 압전소자의 공진 주파수와 임피던스의 변화에 기반하여 압전 소자에 가해진 물리적인 압력의 변화를 측정하는 압력변화 측정부를 포함할 수 있다.In another aspect of the present invention, the AC electrical signal generator comprises a sine wave signal generator that generates an AC electrical signal of a sine wave having a predetermined frequency band, and the control module includes an AC electrical signal generated by the sine wave signal generator. An AC electrical signal control unit to control and apply to the piezoelectric element, and a frequency-impedance detection unit for detecting a change in the resonance frequency and impedance of the piezoelectric element according to the frequency of the AC electric signal applied to the piezoelectric element, and the frequency-impedance It may include a pressure change measuring unit that measures a change in physical pressure applied to the piezoelectric element based on a change in the resonance frequency and impedance of the piezoelectric element detected by the detection unit.
본 발명의 다른 관점에 있어서, 상기 제어 모듈부는, 상기 압전소자의 공진주파수와 임피던스의 변화에 따른 전기신호의 크기를 증폭시키기 위한 신호 증폭부; 상기 신호 증폭부로부터 출력되는 나오는 전기신호 중 상기 교류전기신호 발생부에서 발생한 교류전기신호는 제거하고, 상기 압전소자의 공진주파수와 임피던스 변화에 따른 전기신호만을 통과시키도록 이루어지는 저역 필터부; 및 상기 저역 필터부를 통해 필터링되어 출력되는 압전소자의 공진주파수와 임피던스 변화에 따른 아날로그 전기신호를 디지털 신호로 변환시켜 출력하도록 이루어지는 아날로그-디지털 컨버터부;를 더 포함할 수 있다.In another aspect of the present invention, the control module unit, a signal amplifying unit for amplifying the magnitude of the electric signal according to the change in the resonance frequency and impedance of the piezoelectric element; a low-pass filter unit configured to remove an AC electrical signal generated by the AC electrical signal generator among the electrical signals outputted from the signal amplifying unit, and to pass only an electrical signal according to a change in the resonance frequency and impedance of the piezoelectric element; and an analog-to-digital converter unit configured to convert and output an analog electrical signal according to a change in the resonance frequency and impedance of the piezoelectric element filtered through the low-pass filter unit and output to a digital signal.
본 발명의 다른 관점에 있어서, 압전소자의 공진주파수와 임피던스 변화의 디지털 신호에 기반하여 압전소자에 가해진 물리적인 압력의 변화를 측정한 압력변화 데이터를 외부의 상위 처리장치로 전송하도록 상기 장치 하우징에 구비되는 유무선 통신 모듈부; 및 상기 장치 하우징에 구비되며, 상기 압전 소자의 위치정보를 외부의 상위 처리장치로 전송하도록 구성되는 GPS 모듈부;를 더 포함할 수 있다.In another aspect of the present invention, the device housing to transmit pressure change data measuring the change in physical pressure applied to the piezoelectric element based on the digital signal of the resonance frequency and impedance change of the piezoelectric element to an external upper processing device. a wired/wireless communication module unit provided; and a GPS module provided in the device housing and configured to transmit the location information of the piezoelectric element to an external higher-level processing device.
본 발명의 다른 관점에 있어서, 상기 제어 모듈부는 압전소자의 공진주파수와 임피던스 변화의 디지털 신호에 기반하여 압전소자에 가해진 물리적인 압력의 변화를 측정한 압력변화 데이터에 기초하여 강도를 계산하고 산출하는 강도 산출부를 더 포함하며, 상기 강도신호 측정 장치는, 상기 강도 산출부에서 산출된 강도 데이터를 외부의 상위 처리장치로 전송하도록 구비되는 유무선 통신 모듈부와, 상기 강도 산출부에서 산출된 강도 데이터를 표시하는 디스플레이부, 및 상기 장치 하우징에 구비되며, 상기 압전 소자의 위치 정보를 외부의 상위 처리장치로 전송하도록 구성되는 GPS 모듈부;를 더 포함할 수 있다.In another aspect of the present invention, the control module unit calculates and calculates the intensity based on the pressure change data measuring the change in physical pressure applied to the piezoelectric element based on the digital signal of the resonance frequency and impedance change of the piezoelectric element The apparatus further comprises a strength calculation unit, wherein the apparatus for measuring the strength signal comprises: a wired/wireless communication module unit provided to transmit the strength data calculated by the strength calculation unit to an external upper processing device; and the strength data calculated by the strength calculation unit It may further include; a display unit for displaying, and a GPS module unit provided in the device housing and configured to transmit the location information of the piezoelectric element to an external higher-level processing device.
본 발명의 다른 관점에 있어서, 상기 장치 하우징의 하단면에 설치되어 임피던스의 주변 온도를 검출하도록 구비되는 온도 센서, 및 상기 제어 모듈부를 구성하며, 상기 주파수-임피던스 검출부에서 압전소자의 공진주파수와 임피던스를 검출할 때, 상기 온도 센서에 의해 검출된 온도에 기반하여 측정된 공진주파수와 임피던스 값을 보정하여 측정 오차를 최소화하는 주파수-임피던스 보정부;를 더 포함하며, 상기 주파수-임피던스 보정부는, 아래의 식 1 및 식 2를 통해 보정된 공진주파수와 보정된 임피던스를 얻을 수 있다.In another aspect of the present invention, a temperature sensor installed on the lower end surface of the device housing to detect an ambient temperature of the impedance, and the control module unit are configured, and the frequency-resonance frequency and impedance of the piezoelectric element in the impedance detection unit When detecting , the frequency-impedance correction unit to minimize the measurement error by correcting the measured resonance frequency and impedance value based on the temperature detected by the temperature sensor; further comprising, wherein the frequency-impedance correction unit, The corrected resonant frequency and corrected impedance can be obtained through Equations 1 and 2.
f = f1 + A * (Tc-Tref) + B (식 1)f = f1 + A * (Tc-Tref) + B (Equation 1)
z = z1 + C * (Tc-Tref) + B (식 2)z = z1 + C * (Tc-Tref) + B (Equation 2)
(여기에서, f : 보정된 공진주파수, z : 보정된 임피던스, f1 : 측정된 공진주파수, z1: 측정된 임피던스, A : 압전소자의 온도특성계수 1, C : 압전소자의 온도특성계수 3, B : 압전소자의 온도특성계수 2, D : 압전소자의 온도특성계수 4, Tc: 측정된 현재 온도, Tref: 기준온도, A, B, C, D 및 Tref는 압전소자에 대한 온도특성실험을 통해 얻은 상수값)(here, f: corrected resonance frequency, z: corrected impedance, f1: measured resonance frequency, z1: measured impedance, A: temperature characteristic coefficient of piezoelectric element 1, C: temperature characteristic coefficient of piezoelectric element 3, B: temperature characteristic coefficient of piezoelectric element 2, D: temperature characteristic coefficient of piezoelectric element 4, Tc: measured current temperature, Tref: reference temperature, A, B, C, D and Tref are the temperature characteristic tests for piezoelectric element. constant value obtained through
본 발명에 따른 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 방법 및 강도신호 측정 장치에 의하면 다음과 같은 효과를 제공한다.According to the intensity signal measuring method and intensity signal measuring apparatus for monitoring the intensity of the hydration reactant structure according to the present invention, the following effects are provided.
첫째, 본 발명은 압전소자의 임피던스 특성을 이용하여 구조체의 강도를 신뢰성 있게 측정하고 지속적인 모니터링을 제공할 수 있는 효과가 있다.First, the present invention has the effect of reliably measuring the strength of the structure using the impedance characteristics of the piezoelectric element and providing continuous monitoring.
둘째, 본 발명은 소형으로 제작할 수 있어 휴대성과 이동성을 확보할 수 있고, 이에 따라 장소에 구애받지 않고 용이하게 강도를 측정할 수 있는 효과가 있다.Second, since the present invention can be manufactured in a small size, portability and portability can be secured, and accordingly, strength can be easily measured regardless of location.
본 발명의 효과는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 해결과제들은 아래의 기재로부터 당업자에게 명확하게 이해되어 질 수 있을 것이다.Effects of the present invention are not limited to those mentioned above, and other solutions not mentioned will be clearly understood by those skilled in the art from the following description.
도 1은 본 발명에 따른 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 방법을 개략적으로 나타내는 플로차트.1 is a flowchart schematically illustrating a method for measuring an intensity signal for monitoring the intensity of a hydration reactant structure according to the present invention.
도 2는 본 발명에 따른 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 방법에서, 압전소자에 아무런 압력이 가해지지 않은 상태에서 압전소자에가해지는 교류전기신호의 주파수 변화에 따른 압전소자의 공진주파수 특성과 임피던스 특성에 대하여 저역 필터를 통해 출력된 신호를 측정한 그래프.2 is the resonance of the piezoelectric element according to the frequency change of the AC electrical signal applied to the piezoelectric element in a state in which no pressure is applied to the piezoelectric element in the method for measuring the intensity signal for monitoring the intensity of the hydration reactant structure according to the present invention; A graph measuring the signal output through the low-pass filter with respect to the frequency characteristic and the impedance characteristic.
도 3은 본 발명에 따른 수화반응물질 구조체의 강도 모니터링을 위한 강도호 측정 방법에서, 압전소자에 일정한 압력이 가해진 상태에서 압전소자에 가해지는 교류전기신호의 주파수 변화에 따른 압전소자의 공진주파수 특성과 임피던스 특성에 대하여 저역 필터를 통해 출력된 신호를 측정한 그래프.3 is a resonant frequency characteristic of a piezoelectric element according to a change in the frequency of an AC electrical signal applied to the piezoelectric element in a state in which a constant pressure is applied to the piezoelectric element in the intensity arc measurement method for monitoring the strength of the hydration reactant structure according to the present invention; A graph measuring the signal output through the low-pass filter with respect to the impedance characteristic.
도 4는 온도와 공진주파수와 임피던스 간의 관계를 나타내는 그래프.4 is a graph showing the relationship between temperature, resonant frequency, and impedance;
도 5는 본 발명에 따른 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 방법의 보정 과정에 이용되는 그래프.5 is a graph used in the calibration process of the intensity signal measuring method for monitoring the intensity of the hydration reactant structure according to the present invention.
도 6은 도 5의 그래프1과 그래프2를 비교한 그래프.6 is a graph comparing graph 1 and graph 2 of FIG. 5 .
도 7은 본 발명에 따른 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 장치의 구성을 블록화하여 개략적으로 나타내는 블록도.7 is a block diagram schematically showing the configuration of the intensity signal measuring apparatus for monitoring the intensity of the hydration reactant structure according to the present invention.
도 8은 본 발명에 따른 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 장치를 구성하는 제어 모듈부의 구성을 블록화하여 개략적으로 나타내는 블록도.8 is a block diagram schematically showing the configuration of a control module unit constituting the intensity signal measuring apparatus for monitoring the intensity of the hydration reactant structure according to the present invention.
본 발명의 추가적인 목적들, 특징들 및 장점들은 다음의 상세한 설명 및 첨부도면으로부터 보다 명료하게 이해될 수 있다.Additional objects, features and advantages of the present invention may be more clearly understood from the following detailed description and accompanying drawings.
본 발명의 상세한 설명에 앞서, 본 발명은 다양한 변경을 도모할 수 있고, 여러 가지 실시 예를 가질 수 있는바, 아래에서 설명되고 도면에 도시된 예시들은 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Prior to the detailed description of the present invention, the present invention can make various changes and can have various embodiments, and the examples described below and shown in the drawings are not intended to limit the present invention to specific embodiments. No, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.When an element is referred to as being “connected” or “connected” to another element, it is understood that it may be directly connected or connected to the other element, but other elements may exist in between. it should be On the other hand, when it is said that a certain element is "directly connected" or "directly connected" to another element, it should be understood that the other element does not exist in the middle.
본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used herein are used only to describe specific embodiments, and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. In the present specification, terms such as “comprise” or “have” are intended to designate that a feature, number, step, operation, component, part, or combination thereof described in the specification exists, but one or more other features It should be understood that this does not preclude the existence or addition of numbers, steps, operations, components, parts, or combinations thereof.
또한, 명세서에 기재된 "부", "유닛", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.Also, terms such as “unit”, “unit”, and “module” described in the specification mean a unit that processes at least one function or operation, which may be implemented as hardware or software or a combination of hardware and software.
또한, 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일한 참조부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.In addition, in the description with reference to the accompanying drawings, the same components are given the same reference numerals regardless of the reference numerals, and the overlapping description thereof will be omitted. In describing the present invention, if it is determined that a detailed description of a related known technology may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.
이하, 본 발명의 바람직한 실시 예에 따른 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 방법 및 강도신호 측정 장치에 대하여 첨부도면을 참조하여 상세히 설명한다.Hereinafter, a method and an apparatus for measuring an intensity signal for monitoring the intensity of a hydration reaction material structure according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
먼저, 본 발명에 따른 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 방법에 대하여 도 1을 참조하여 상세히 설명한다.First, the intensity signal measuring method for monitoring the intensity of the hydration reactant structure according to the present invention will be described in detail with reference to FIG. 1 .
도 1은 본 발명에 따른 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 방법을 개략적으로 나타내는 플로차트이다.1 is a flowchart schematically illustrating a method for measuring an intensity signal for monitoring the intensity of a hydration reactant structure according to the present invention.
본 발명에 따른 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 방법은, 수화반응물질로 이루어지는 구조체(예를 들면, 레미콘 타설에 의해 시공되는 콘크리트 구조물 또는 DCM 등의 공법으로 개량된 지반)에 설치된 압전소자에 연결되어 수화반응물질 구조체의 강도를 측정하기 위한 강도신호를 생성하고 측정하는 강도신호 측정 장치를 통해 수화반응물질 구조체의 강도신호를 측정하기 위한 방법으로서, 도 1에 나타낸 바와 같이, 크게 교류전기신호 발생 단계(S100); 교류전기신호 인가 단계(S200); 주파수-임피던스 검출 단계(S300); 및 압력 변화 측정 단계(S400);를 포함한다.The intensity signal measurement method for monitoring the strength of the hydration reaction material structure according to the present invention is installed in a structure made of a hydration reaction material (for example, a concrete structure constructed by pouring ready-mixed concrete or a ground improved by a method such as DCM) As a method for measuring the intensity signal of the hydration reactant structure through an intensity signal measuring device connected to the piezoelectric element to generate and measure an intensity signal for measuring the intensity of the hydration reactant structure, as shown in FIG. AC electrical signal generating step (S100); AC electrical signal application step (S200); frequency-impedance detection step (S300); and a pressure change measuring step (S400).
구체적으로, 본 발명에 따른 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 방법은, 수화반응물질로 이루어지는 구조체에 설치된 압전소자에 연결되어 수화반응물질 구조체의 강도를 측정하기 위한 강도신호를 생성하고 측정하는 강도신호 측정 장치를 통해 수화반응물질 구조체의 강도신호를 측정하기 위한 방법으로서, 도 1에 나타낸 바와 같이, 소정 주파수 대역의 주파수를 갖는 특정 파형의 교류전기신호를 발생시키는 교류전기신호 발생 단계(S100); 상기 교류전기신호 발생 단계(S100)에서 발생된 교류전기신호를 일정 시간 동안 압전 소자에 인가하는 교류전기신호 인가 단계(S200); 상기 교류전기신호 인가 단계(S200)에서 가해지는 교류전기신호의 주파수에 따른 압전소자의 공진주파수(고유 공진주파수)와 임피던스를 검출하는 주파수-임피던스 검출 단계(S300); 및 상기 주파수-임피던스 검출 단계(S300)에서 검출된 압전소자의 고유 공진주파수와 임피던스에 기반하여 압전 소자에 가해진 물리적인 압력의 변화를 측정하는 압력 변화 측정 단계(S400);를 포함하는 것을 특징으로 한다.Specifically, the intensity signal measuring method for monitoring the strength of the hydration reactant structure according to the present invention is connected to a piezoelectric element installed in a structure made of a hydration reactant material to generate an intensity signal for measuring the strength of the hydration reactant structure, and As a method for measuring the intensity signal of the hydration reaction material structure through the intensity signal measuring device to measure, as shown in FIG. 1, an AC electrical signal generating step of generating an AC electrical signal of a specific waveform having a frequency of a predetermined frequency band (S100); AC electrical signal application step (S200) of applying the AC electrical signal generated in the AC electrical signal generating step (S100) to the piezoelectric element for a predetermined time; Frequency-impedance detection step (S300) of detecting the resonance frequency (intrinsic resonance frequency) and impedance of the piezoelectric element according to the frequency of the AC electrical signal applied in the AC electrical signal application step (S200); and a pressure change measuring step (S400) of measuring a change in physical pressure applied to the piezoelectric element based on the intrinsic resonance frequency and impedance of the piezoelectric element detected in the frequency-impedance detecting step (S300). do.
상기 교류전기신호 발생 단계(S100)는 소정 주파수 대역의 주파수를 갖는 특정 파형의 교류전기신호를 발생시키는 단계로서, 낮은 주파수에서 높은 주파수의 주파수 대역을 갖는 사인파(Sine Wave) 형태의 교류전기신호를 일정시간 이내에 순차적으로 발생시키는 것으로 이루어진다.The AC electrical signal generating step (S100) is a step of generating an AC electrical signal of a specific waveform having a frequency of a predetermined frequency band, and generates an AC electrical signal in the form of a sine wave having a frequency band of a low frequency to a high frequency. It consists of generating sequentially within a certain period of time.
상기 교류전기신호 발생 단계(S100)에서 발생되는 교류전기신호의 주파수와 발생 시간은 연계되는 압전소자의 주파수 특성에 따라 결정되게 된다. 예를 들면, 상기 교류전기신호 발생 단계(S100)는 5KHz에서 100KHz의 사인파를 1초 동안 발생시키는 것으로 이루어진다.The frequency and generation time of the AC electrical signal generated in the AC electrical signal generating step (S100) are determined according to the frequency characteristics of the associated piezoelectric element. For example, the AC electrical signal generating step (S100) consists of generating a sine wave of 5KHz to 100KHz for 1 second.
여기에서, 상기 교류전기신호 발생 단계(S100)는 강도신호 측정 장치에 구비되는 사인파 신호 발생부에 의해 발생되게 된다.Here, the AC electrical signal generating step (S100) is generated by a sine wave signal generator provided in the intensity signal measuring apparatus.
그리고 상기 교류전기신호 인가 단계(S200)는, 상기 교류전기신호발생 단계(S100)에서 발생된 교류전기신호를 일정 시간 동안 압전 소자에 인가하는 것으로 이루어진다.And the AC electrical signal applying step (S200) consists of applying the AC electrical signal generated in the AC electrical signal generating step (S100) to the piezoelectric element for a predetermined time.
여기에서, 상기 교류전기신호 인가 단계(S200)는 강도신호 측정 장치에 구비되는 제어 모듈부를 통하여, 상기 사인파 신호 발생부에서 압전 소자의 주파수 특성에 따라 설정된 교류전기신호를 발생시키고 인가되도록 이루어진다.Here, the AC electrical signal application step (S200) is made to generate and apply an AC electrical signal set according to the frequency characteristics of the piezoelectric element in the sine wave signal generator through the control module unit provided in the intensity signal measuring device.
계속해서, 상기 주파수-임피던스 검출 단계(S300)는, 상기 교류전기신호 인가 단계(S200)에서 가해지는 교류전기신호의 주파수에 의해 상기 압전소자에서 발생하는 공진주파수(고유 공진주파수)와 임피던스(공진주파수와 임피던스값)를 검출하는 것으로 이루어진다.Subsequently, in the frequency-impedance detection step (S300), the resonance frequency (intrinsic resonance frequency) and impedance (resonance) generated in the piezoelectric element by the frequency of the AC electrical signal applied in the AC electrical signal application step (S200) frequency and impedance).
그리고 상기 압력 변화 측정 단계(S400)는, 상기 주파수-임피던스 검출 단계(S300)에서 검출된 압전소자의 고유 공진주파수와 임피던스에 기반하여 압전 소자에 가해진 물리적인 압력의 변화를 측정하도록 이루어진다.And the pressure change measuring step (S400) is made to measure the change in the physical pressure applied to the piezoelectric element based on the intrinsic resonance frequency and impedance of the piezoelectric element detected in the frequency-impedance detection step (S300).
여기에서, 상기 압력 변화 측정 단계(S400)는, 압전소자에 가해지는 교류전기신호의 주파수의 변화에 따라 압전소자의 고유 공진주파수와 임피던스가 변화하고, 이 변화는 미세한 전기신호로 바뀌는데 이 미세 전기신호를 측정가능한 신호의 크기로 증폭시키기 위하여 신호 증폭부를 통해 신호의 크기를 증폭시키는 신호 증폭 과정을 포함한다.Here, in the pressure change measuring step (S400), the intrinsic resonance frequency and impedance of the piezoelectric element change according to the change in the frequency of the AC electrical signal applied to the piezoelectric element, and this change is converted into a fine electric signal. and a signal amplification process of amplifying the signal amplitude through a signal amplifying unit in order to amplify the signal to a measurable signal level.
또한, 상기 압력 변화 측정 단계(S400)에 있어, 상기 신호 증폭부를 통해 신호 증폭 과정을 거쳐 출력되는 신호는 사인파 신호 발생부에서 발생한 교류 전기신호와 압전소자의 고유 공진주파수와 임피던스의 변화에 따른 전기신호가 함께 섞여 있으므로, 상기 압력 변화 측정 단계(S400)는, 강도신호 측정 장치에 구비되는 저역 필터(Low Pass Filter)를 통해 사인파 신호 발생부에서 발생되어 압전소자로부터 출력되는 교류전기신호는 제거하고, 순수한 압전소자의 공진주파수(고유공진주파수)와 임피던스의 변화에 따른 전기신호만을 통과시키도록 이루어지는 것이 바람직하다.In addition, in the pressure change measuring step (S400), the signal output through the signal amplification process through the signal amplification unit is an AC electrical signal generated by the sine wave signal generator and electricity according to the change in the natural resonance frequency and impedance of the piezoelectric element Since the signals are mixed together, in the pressure change measuring step (S400), the AC electrical signal generated from the sine wave signal generator and output from the piezoelectric element is removed through a low pass filter provided in the intensity signal measuring device. , it is preferable to pass only the electric signal according to the change of the resonance frequency (intrinsic resonance frequency) and impedance of the pure piezoelectric element.
그리고 상기 압력 변화 측정 단계(S400)는, 상기 저역 필터를 통해 필터링되어 출력되는 압전소자의 공진주파수 및 임피던스의 변화에 따른 아날로그 전기신호를, 강도신호 측정 장치에 구비되는 아날로그-디지털 컨버터부를 통해 디지털 신호로 변환시켜 출력되도록 이루어진다.And the pressure change measuring step (S400), the analog electric signal according to the change of the resonance frequency and impedance of the piezoelectric element filtered through the low-pass filter and output, digital through the analog-to-digital converter provided in the intensity signal measuring device converted into a signal to be output.
또한, 상기 압력 변화 측정 단계(S400)는, 압전소자의 공진주파수와 임피던스의 디지털 신호(공진주파수와 임피던스의 변화에 따른 디지털 신호)에 기반하여 압전소자에 가해진 물리적인 압력의 변화를 측정하고, 강도신호 측정 장치에 구비되는 유무선 통신부를 통해 그 압력 변화 데이터를 외부의 상위 처리장치(예를 들면, 컴퓨터 또는 서버 등)로 전송하여 상위 처리장치에서 그 압력 변화 데이터에 기초하여 강도를 계산하도록 이루어지거나, 그 압력 변화 데이터에 기초하여 강도 계산부를 통해 계산된 강도를 유무선 통신부를 통해 외부의 상위 처리장치로 전송하도록 이루어질 수 있다.In addition, the pressure change measuring step (S400) measures the change in the physical pressure applied to the piezoelectric element based on the digital signal (digital signal according to the change of the resonance frequency and impedance) of the resonance frequency and impedance of the piezoelectric element, The pressure change data is transmitted to an external upper processing device (for example, a computer or a server, etc.) through a wired/wireless communication unit provided in the intensity signal measuring device to calculate the intensity based on the pressure change data in the upper processing device. or the intensity calculated through the intensity calculator based on the pressure change data may be transmitted to an external higher-level processing device through a wired/wireless communication unit.
상기 압력 변화 측정 단계(S400)와 관련하여, 도 2 및 도 3을 참고하여 설명한다.The pressure change measuring step ( S400 ) will be described with reference to FIGS. 2 and 3 .
도 2는 본 발명에 따른 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 방법에서, 압전소자에 아무런 압력이 가해지지 않은 상태에서 압전소자에 가해지는 교류전기신호의 주파수 변화에 따른 압전소자의 공진주파수 특성과 임피던스 특성에 대하여 저역 필터를 통해 출력된 신호를 측정한 그래프이며, 도 3은 본 발명에 따른 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 방법에서, 압전소자에 일정한 압력이 가해진 상태에서 압전소자에 가해지는 교류전기신호의 주파수 변화에 따른 압전소자의 공진주파수 특성과 임피던스 특성에 대하여 저역 필터를 통해 출력된 신호를 측정한 그래프이다.2 is the resonance of the piezoelectric element according to the frequency change of the AC electrical signal applied to the piezoelectric element in a state in which no pressure is applied to the piezoelectric element in the intensity signal measuring method for monitoring the intensity of the hydration reaction material structure according to the present invention; It is a graph measuring the signal output through the low-pass filter with respect to the frequency characteristic and the impedance characteristic, and FIG. 3 is a state in which a constant pressure is applied to the piezoelectric element in the method for measuring the strength signal for monitoring the strength of the hydration reactant structure according to the present invention It is a graph measuring the signal output through the low-pass filter with respect to the resonance frequency characteristic and the impedance characteristic of the piezoelectric element according to the frequency change of the AC electrical signal applied to the piezoelectric element.
본 발명에 따른 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 방법에 있어서, 도 2에 나타낸 바와 같이, 압전소자에 아무런 압력이 가해지지 않은 상태에서 압전소자에 가해지는 교류전기신호의 주파수 변화에 따른 압전소자의 공진주파수 특성과 임피던스 특성에 대하여 저역 필터(Low Pass Filter)를 통해 출력된 신호를 측정한 것으로, 빨간색 원과 같이 특정 주파수에 대하여 확연한 2개의 피크(Peak) 출력을 나타낸다.In the method for measuring the intensity signal for monitoring the intensity of the hydration reaction material structure according to the present invention, as shown in FIG. 2 , in a state in which no pressure is applied to the piezoelectric element, the frequency change of the AC electrical signal applied to the piezoelectric element As a result of measuring the signal output through a low pass filter for the resonance frequency characteristic and impedance characteristic of the piezoelectric element, it shows two distinct peak outputs with respect to a specific frequency as shown in the red circle.
그리고 도 3에 나타낸 바와 같이, 압전소자에 일정한 압력이 가해진 상태에서 압전소자에 가해지는 교류전기신호의 주파수 변화에 따른 압전소자의 공진주파수 특성과 임피던스 특성에 대하여 저역 필터를 통해 출력된 신호를 측정한 것으로, 압력이 가해지지 않은 상태와 동일하게 빨간색 원과 같이 특정 주파수에 대하여 확연한 2개의 피크 출력을 나타내지만, 압력이 가해지지 않은 상태에 비해 그 피크 출력의 주파수가 변화한다.And, as shown in FIG. 3, in a state where a constant pressure is applied to the piezoelectric element, the signal output through the low-pass filter is measured for the resonance frequency characteristic and impedance characteristic of the piezoelectric element according to the frequency change of the AC electrical signal applied to the piezoelectric element As a result, it shows two distinct peak outputs with respect to a specific frequency as shown in the red circle in the same state as in the state without pressure, but the frequency of the peak output changes compared to the state in which no pressure is applied.
따라서, 압전소자에 가해진 압력은 피크 주파수의 변위차와 압전소자의 주파수 특성을 상관 관계로 하여 계산하고, 계산된 압전 소자의 압력변화 데이터를 강도 측정을 위한 측정 인자로서 활용하여 강도를 측정하고 산출하게 된다.Therefore, the pressure applied to the piezoelectric element is calculated by correlating the displacement difference of the peak frequency and the frequency characteristic of the piezoelectric element, and the intensity is measured and calculated by using the calculated pressure change data of the piezoelectric element as a measurement factor for measuring the strength. will do
여기에서, 피크(Peak)가 되는 주파수를 찾기 위하여 Kalman필터를 통해 정형파 주파수 증가에 따른 압전소자의 임피던스 증가의 트렌드(우상향 선형성)를 제거하고, 트렌드 제거 후 프로파일 내에서 강도(intensity)가 최대(maximum) 및 최소(minimum)이 되는 점을 찾음으로써 이루어질 수 있다.Here, in order to find the peak frequency, the trend (upward linearity) of the impedance increase of the piezoelectric element according to the increase in the square wave frequency is removed through the Kalman filter, and the intensity is maximized in the profile after the trend is removed. This can be done by finding points that are (maximum) and minimum (minimum).
상기 외부의 상위 처리 장치에서 압력 변화 데이터에 기초하여 강도를 계산하도록 이루어지거나, 그 압력 변화 데이터에 기초하여 강도 계산부를 통해 계산된 강도를 유무선 통신부를 통해 외부의 상위 처리장치로 전송함에 있어, 압력변화 데이터에 기초한 강도의 산출에 대하여 설명하면 다음과 같다.When the external upper processing device calculates the intensity based on the pressure change data, or transmits the intensity calculated through the intensity calculation unit based on the pressure change data to the external upper processing device through the wired/wireless communication unit, the pressure The calculation of the intensity based on the change data will be described as follows.
강도 변화가 없는 상태에서 피크 주파수(공진 주파수)는 일정한 값을 갖는다. 물질의 강도가 변하게 되면 피크 주파수(공진 주파수) 값의 이동이 생기는데, 이 변동값은 재료(물질)마다 다르게 나타난다. 즉, 절대값을 이용하여 강도를 추출할 수는 없고, 초기에 구조물에서 추출한 샘플을 이용하여 강도시험을 수행하고, 같은 재령(age)에서의 파크 주파수(공진 주파수)를 해당 강도값과 1:1 대응하여 강도값과 주파수값의 관계식을 근거로, 추후 측정되는 피크 주파수(공진 주파수)의 변화에 따른 강도를 산출하게 된다. 다시 말해서, 기준(reference) 값을 근거로 같은 재료에 대한 강도를 측정할 수 있다.In a state where there is no change in intensity, the peak frequency (resonant frequency) has a constant value. When the strength of a material changes, the peak frequency (resonant frequency) value shifts, and this variation value is different for each material (material). In other words, the intensity cannot be extracted using the absolute value, and the intensity test is performed using a sample extracted from the structure at the beginning, and the park frequency (resonant frequency) at the same age is equal to the intensity value 1: 1 Correspondingly, based on the relation between the intensity value and the frequency value, the intensity according to the change in the peak frequency (resonant frequency) measured later is calculated. In other words, the strength can be measured for the same material based on a reference value.
여기에서, 샘플에 대한 강도시험 방법으로는 만능재료시험기(UTM:Universal Testing Machine)를 이용한 압축강도시험, 마샬시험법, 초음파에 의한 비파괴시험법 등을 활용할 수 있다.Here, as a strength test method for a sample, a compressive strength test using a universal testing machine (UTM), a Marshall test method, a non-destructive test method using ultrasonic waves, etc. can be utilized.
한편, 본 발명에 따른 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 방법은, 상기 주파수-임피던스 검출 단계(S300)에서 압전소자에서 발생하는 공진주파수와 임피던스를 검출할 때, 임피던스 주변의 온도를 검출하고, 검출된 온도에 기반하여 압전소자의 온도특성보정알고리즘을 통해 측정된 공진주파수와 임피던스(측정된 공진주파수와 측정된 임피던스의 값)을 보정하여 측정 오차를 최소화 하는 보정 단계(S500);를 더 포함할 수 있다.On the other hand, in the intensity signal measuring method for monitoring the intensity of the hydration reaction material structure according to the present invention, when detecting the resonance frequency and impedance generated in the piezoelectric element in the frequency-impedance detection step (S300), the temperature around the impedance A correction step of minimizing the measurement error by detecting and correcting the measured resonance frequency and impedance (values of the measured resonance frequency and the measured impedance) through a temperature characteristic correction algorithm of the piezoelectric element based on the detected temperature (S500); may further include.
구체적으로, 압전소자는 온도에 따라 공진주파수와 임피던스가 미세하게 변화는 성질이 있는데, 수화열반응물질의 양생과정에서 발생하는 열이나, 양생이 완료된 이후에 외부기온 변화에 따른 수화열반응물질의 온도의 변화는 수화열 반응물질의 압력과 무관하게 압전소자의 공진주파수와 임피던스가 변화를 발생시키게 된다. 이와 같은 수화열반응물질의 온도의 변화에 의해 발생되는 압전소자의 공진주파수와 임피던스의 변화는 수화열반응물질의 압력의 변화로 잘못 인식될 수 있어, 수화열반응물잘의 압력측정에 있어서 측정 오차를 발생시킬 수 있으므로, 온도센서를 압전소자와 최대한 근접한 거리에 위치되도록 하고, 압전소자의 공진주파수와 임피던스를 측정할 때 압전소자 주변의 온도를 측정하여 압전소자의 온도특성보정알고리즘을 통하여, 상기 측정된 공진주파수와 임피던스의 값을 보정함으로써 측정 오차를 최소화 한 보정 공진주파수와 보정 임피던스의 값을 도출하는 것이다.Specifically, the piezoelectric element has a property that the resonance frequency and impedance are slightly changed according to the temperature. The change causes a change in the resonance frequency and impedance of the piezoelectric element regardless of the pressure of the hydration heat reactant. The change in the resonance frequency and impedance of the piezoelectric element caused by such a change in the temperature of the hydration heat reactant may be mistakenly recognized as a change in the pressure of the hydration heat reactant, which may cause a measurement error in the pressure measurement of the hydration heat reactant. Therefore, the temperature sensor is positioned as close as possible to the piezoelectric element, and when measuring the resonance frequency and impedance of the piezoelectric element, the temperature around the piezoelectric element is measured and through the temperature characteristic correction algorithm of the piezoelectric element, the measured resonance By correcting the values of frequency and impedance, it is to derive the values of the corrected resonance frequency and the corrected impedance that minimize the measurement error.
보다 구체적으로, 온도측정을 통하여 측정된 공진주파수와 임피던스의 값을 보정하는 보정 방법에 대하여 설명한다.More specifically, a correction method for correcting the values of the resonance frequency and impedance measured through temperature measurement will be described.
도 4는 온도와 공진주파수와 임피던스 간의 관계를 나타내는 그래프이다.4 is a graph showing the relationship between temperature, resonant frequency, and impedance.
도 4에 나타낸 바와 같이, 외부기온 변화에 따른 수화열반응물질의 온도의 변화는 수화열반응물질의 압력과 무관하게 압전소자의 공진주파수와 임피던스의 변화를 발생시키게 된다. 따라서, 압전소자로부터 측정된 공진주파수는 측정된 온도와 함께 다음과 같은 방식으로 보정된다.As shown in FIG. 4 , the change in the temperature of the hydration heat reactant according to the external temperature change causes a change in the resonance frequency and impedance of the piezoelectric element regardless of the pressure of the hydration heat reactant. Accordingly, the resonant frequency measured from the piezoelectric element is corrected together with the measured temperature in the following manner.
f = f1 + A * (Tc-Tref) + B (식 1)f = f1 + A * (Tc-Tref) + B (Equation 1)
z = z1 + C * (Tc-Tref) + B (식 2)z = z1 + C * (Tc-Tref) + B (Equation 2)
(f : 보정된 공진주파수, z : 보정된 임피던스, f1 : 측정된 공진주파수, z1: 측정된 임피던스, A : 압전소자의 온도특성계수 1, C : 압전소자의 온도특성계수 3, B : 압전소자의 온도특성계수 2, D : 압전소자의 온도특성계수 4, Tc : 측정된 현재 온도, Tref : 기준온도)(f: corrected resonance frequency, z: corrected impedance, f1: measured resonance frequency, z1: measured impedance, A: temperature characteristic coefficient of piezoelectric element 1, C: temperature characteristic coefficient of piezoelectric element 3, B: piezoelectric element Temperature characteristic coefficient of element 2, D: temperature characteristic coefficient of piezoelectric element 4, Tc: current measured temperature, Tref: reference temperature)
A, B, C, D 및 Tref는 사용하는 압전소자에 따라 상이함으로 압전소자에 대한 온도특성실험을 통해 얻을 수 있다.A, B, C, D and Tref are different depending on the piezoelectric element used, so it can be obtained through a temperature characteristic test for the piezoelectric element.
본 발명은 상기한 보정 방법을 추가 보완하여 보정된 공진주파수와 임피던스의 값을 추가 보정할 수 있다.The present invention can further correct the corrected values of the resonant frequency and impedance by further supplementing the above correction method.
추가 보정에 대한 일 실시 예를 설명한다.An example of additional correction will be described.
수화반응에 따라 물질의 강도는 점차 증가하다가 상당한 기간이 지나 수화반응이 끝남과 동시에 일정한 강도로 수렴한다. 일반 콘크리트의 경우에는 다음과 같은 경험식으로 강도를 계산할 수 있다.The strength of a substance gradually increases according to the hydration reaction, and then converges to a constant strength at the same time as the hydration reaction is completed after a considerable period of time. In the case of general concrete, the strength can be calculated using the following empirical formula.
일반 콘크리트의 강도 = 28일 강도 × {21 + 61 × log(양생기간 동안의 양생온도의 평균값 × 양생기간)} (식 3)Strength of general concrete = 28-day strength × {21 + 61 × log (average value of curing temperature during curing period × curing period)} (Equation 3)
따라서, 일 실시 예에 따른 추가 보정 방법은, 상기한 계산법(식3)을 이용하여 상기한 식 1과 식 2를 통해 얻어진 보정 값(보정 공진주파수와 보정 임피던스의 값)을 보완하여 추가 보정할 수 있다.Therefore, in the additional correction method according to an embodiment, the correction value (the value of the correction resonance frequency and the correction impedance) obtained through the above equations 1 and 2 is supplemented using the above calculation method (Equation 3) to be additionally corrected. can
계속해서, 추가 보정에 대한 다른 실시 예를 설명한다.Continuing, another embodiment of the additional correction will be described.
다른 실시 예에 따른 추가 보정 방법은, 실제 강도시험결과에 따른 보정 방법으로, 특정 시점에서의 강도시험결과를 반영하여 상기한 식 1과 식 2를 통해 얻어진 보정 값을 추가 보정할 수 있다.The additional correction method according to another embodiment is a correction method according to the actual strength test result, and the correction value obtained through Equations 1 and 2 may be additionally corrected by reflecting the strength test result at a specific time point.
또한, 추가 보정에 대한 또 다른 실시 예를 설명한다.In addition, another embodiment of the additional correction will be described.
도 5는 본 발명에 따른 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 방법의 보정 과정에 이용되는 그래프로서, 그래프 1은 기본 주파수 패턴변화에 따른 경험식으로 시간흐름에 따른 강도계산을 한 그래프이며, 그래프 2는 강도시험 결과가 나오는 시점에서의 강도값을 시험결과값으로 확정하고, {시험결과값 - 계산값}의 차이를 그 해당 시점 이후에 누적시켜서 강도값을 계산한 그래프이며, 도 6은 도 5의 그래프1과 그래프2를 비교한 그래프이다.Figure 5 is a graph used in the calibration process of the intensity signal measurement method for monitoring the intensity of the hydration reaction material structure according to the present invention, Graph 1 is a graph in which the intensity is calculated over time in an empirical formula according to the basic frequency pattern change; Graph 2 is a graph in which the strength value at the time the strength test result comes out is confirmed as the test result value, and the strength value is calculated by accumulating the difference between {test result value - calculated value} after that point. 6 is a graph comparing graph 1 and graph 2 of FIG. 5 .
또 다른 실시 예에 따른 추가 보정은, 그래프 1과 같이 강도값을 계산하다가, 양생시작 후 24시간이 지난 시점에 강도시험을 한 결과, 주파수에 의해 계산한 값보다 시험결과값이 다소 높게 나오는 경우, 강도시험결과값을 양생시작 후 24시간에서의 강도값으로 확정하고, 그 뒤의 강도계산에, {시험결과값 - 계산값} 만큼의 차이를 더해줌으로써 상기한 식 1과 식 2를 통해 얻어진 보정 값을 추가 보정할 수 있다.Additional correction according to another embodiment, while calculating the intensity value as shown in Graph 1, when the test result value is somewhat higher than the value calculated by the frequency as a result of performing the intensity test 24 hours after the start of curing , obtained through Equations 1 and 2 above by determining the strength test result value as the strength value at 24 hours after the start of curing, and adding the difference as much as {test result value - calculated value} to the strength calculation thereafter The correction value can be further corrected.
다음으로, 본 발명에 따른 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 장치에 대하여 도 7 및 도 8을 참조하여 상세히 설명한다.Next, the intensity signal measuring apparatus for monitoring the intensity of the hydration reactant structure according to the present invention will be described in detail with reference to FIGS. 7 and 8 .
도 7은 본 발명에 따른 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 장치의 구성을 블록화하여 개략적으로 나타내는 블록도이며, 도 8은 본 발명에 따른 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정장치를 구성하는 제어 모듈부의 구성을 블록화하여 개략적으로 나타내는 블록도이다.7 is a block diagram schematically showing the configuration of a strength signal measuring apparatus for monitoring the strength of a hydration reactant structure according to the present invention, and FIG. 8 is a strength signal for monitoring the strength of a hydration reaction material structure according to the present invention. It is a block diagram schematically showing the configuration of the control module unit constituting the measurement device in blocks.
본 발명에 따른 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 장치는, 수화반응물질로 이루어지는 구조체(예를 들면, 레미콘 타설에 의해 시공되는 콘크리트 구조물 또는 DCM 등의 공법으로 개량된 지반)에 설치된 압전소자에 연결되어 수화반응물질 구조체의 강도를 측정하기 위한 강도신호를 생성하고 측정하는 강도신호 측정 장치로서, 도 7 및 도 8에 나타낸 바와 같이, 크게 장치 하우징(100); 교류전기신호 발생부(200); 제어 모듈부(300); 및 전원부(400);를 포함한다.The intensity signal measuring device for monitoring the strength of the hydration reaction material structure according to the present invention is installed in a structure made of a hydration reaction material (for example, a concrete structure constructed by pouring ready-mixed concrete or a ground improved by a method such as DCM) As an intensity signal measuring device connected to the piezoelectric element to generate and measure an intensity signal for measuring the intensity of the hydration reactant structure, as shown in FIGS. 7 and 8, the device housing 100; AC electrical signal generator 200; control module unit 300; and a power supply unit 400 .
구체적으로, 본 발명에 따른 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 장치는, 수화반응물질로 이루어지는 구조체(예를 들면, 레미콘 타설에 의해 시공되는 콘크리트 구조물 또는 DCM 등의 공법으로 개량된 지반)에 설치된 압전소자에 연결되어 수화반응물질 구조체의 강도를 측정하기 위한 강도신호를 생성하고 측정하는 강도신호 측정 장치로서, 도 7 및 도 8에 나타낸 바와 같이, 압전 소자에 전기적으로 접속되는 접속 포트 또는 접속 케이블의 접속부를 구비하여 구성되는 장치 하우징(100); 상기 장치 하우징(100)에 구비되고, 소정 주파수 대역의 주파수를 갖는 특정 파형의 교류전기신호를 발생시키는 교류전기신호 발생부(200); 상기 장치 하우징(100)에 구비되고, 상기 교류전기신호 발생부(200)에서 소정 주파수 대역의 주파수를 갖는 특정 파형의 교류전기신호가 발생되도록 제어하고, 발생된 교류전기신호를 압전소자에 인가하며, 상기 압전소자로 인가된 교류전기신호에 기반하여 압전소자에 가해진 물리적인 압력의 변화를 측정하는 제어 모듈부(300); 및 상기 장치 하우징(100)에 구비되며, 상기 제어 모듈부(300)에 필요 전력을 공급하도록 구성되는 전원부(400);를 포함하여 구성되는 것을 특징으로 한다.Specifically, the strength signal measuring device for monitoring the strength of the hydration reaction material structure according to the present invention is a structure made of a hydration reaction material (for example, a concrete structure constructed by pouring ready-mixed concrete or a ground improved by a method such as DCM) ) as an intensity signal measuring device connected to the piezoelectric element installed to generate and measure an intensity signal for measuring the strength of the hydration reaction material structure, and as shown in FIGS. 7 and 8, a connection port electrically connected to the piezoelectric element or a device housing 100 configured with a connection portion of a connection cable; an AC electrical signal generator 200 provided in the device housing 100 and configured to generate an AC electrical signal of a specific waveform having a frequency of a predetermined frequency band; It is provided in the device housing 100, and the AC electrical signal generator 200 controls to generate an AC electrical signal of a specific waveform having a frequency of a predetermined frequency band, and applies the generated AC electrical signal to the piezoelectric element, , a control module unit 300 for measuring a change in physical pressure applied to the piezoelectric element based on the AC electrical signal applied to the piezoelectric element; and a power supply unit 400 provided in the device housing 100 and configured to supply necessary power to the control module unit 300 .
상기 장치 하우징(100)는 내부에 상기한 구성부들이 장착되도록 이루어지고, 이동성과 휴대성을 위하여 손잡이부를 갖고 소형으로 제작될 수 있으며, 내부의 구성부들의 유지보수를 위하여 일부가 개폐되거나, 분할되어 구성될 수 있다.The device housing 100 is made so that the above-described components are mounted therein, has a handle for portability and portability, and can be manufactured in a small size, and is partially opened or closed or divided for maintenance of internal components. can be configured.
상기 교류전기신호 발생부(200)는 소정 주파수 대역의 주파수를 갖는 특정 파형의 교류전기신호를 발생시킬 수 있는, 즉 낮은 주파수에서 높은 주파수의 주파수 대역을 갖는 사인파(Sine Wave) 형태의 교류전기신호를 일정시간 이내에 순차적으로 발생시킬 수 있는 사인파 신호 발생부로 이루어진다.The AC electrical signal generator 200 can generate an AC electrical signal of a specific waveform having a frequency of a predetermined frequency band, that is, an AC electrical signal in the form of a sine wave having a frequency band of a low frequency to a high frequency. It consists of a sine wave signal generator capable of sequentially generating within a predetermined time.
다음으로, 상기 제어 모듈부(300)는, 상기 교류전기신호 발생부(200)에서 소정 주파수 대역의 주파수를 갖는 특정 파형의 교류전기신호가 발생되도록 제어하고, 발생된 교류전기신호를 압전소자에 인가하며, 상기 압전소자로 인가된 교류전기신호에 기반하여 압전소자에 가해진 물리적인 압력의 변화를 측정하도록 이루어지는 것으로, 도 5에 나타낸 바와 같이, 크게 교류전기신호 제어부(310)와, 주파수-임피던스 검출부(320), 및 압력변화 측정부(330)를 포함한다.Next, the control module unit 300 controls the AC electrical signal generator 200 to generate an AC electrical signal of a specific waveform having a frequency of a predetermined frequency band, and applies the generated AC electrical signal to the piezoelectric element. is applied, and is made to measure the change in physical pressure applied to the piezoelectric element based on the AC electrical signal applied to the piezoelectric element. It includes a detection unit 320 and a pressure change measurement unit 330 .
구체적으로, 상기 제어 모듈부(300)는, 도 5에 나타낸 바와 같이, 상기 교류전기신호 발생부(200)를 제어하여 소정 주파수(주파수 대역)와 발생 시간의 교류전기신호가 압전 소자로 인가되도록 하는 교류전기신호 제어부(310)와, 상기 압전 소자로 가해지는 교류전기신호의 주파수에 따른 압전소자의 공진주파수(고유 공진주파수)와 임피던스의 변화를 검출하는 주파수-임피던스 검출부(320), 및 상기 주파수-임피던스 검출부(320)에서 검출된 압전소자의 공진주파수와 임피던스의 변화에 기반하여 압전 소자에 가해진 물리적인 압력의 변화를 측정하는 압력변화 측정부(330)를 포함한다.Specifically, as shown in FIG. 5 , the control module unit 300 controls the AC electrical signal generator 200 so that an AC electrical signal of a predetermined frequency (frequency band) and generation time is applied to the piezoelectric element. an AC electrical signal control unit 310, and a frequency-impedance detection unit 320 for detecting a change in the resonant frequency (intrinsic resonance frequency) and impedance of the piezoelectric element according to the frequency of the AC electric signal applied to the piezoelectric element-impedance detection unit 320, and the The frequency-impedance detector 320 includes a pressure change measuring unit 330 that measures a change in physical pressure applied to the piezoelectric element based on the change in the resonance frequency and impedance of the piezoelectric element.
상기 제어 모듈부(300)의 교류전기신호 제어부(310)에서 제어하는 교류전기신호 발생부의 주파수와 발생시간은, 상기 압전소자의 주파수 특성에 따라 결정되게 된다. 예를 들면, 상기 교류전기신호 제어부(310)는 교류전기신호 발생부(200)에서 5KHz에서 100KHz의 사인파가 1초 동안 발생되도록 제어할 수 있다.The frequency and the generation time of the AC electrical signal generator controlled by the AC electrical signal controller 310 of the control module 300 are determined according to the frequency characteristics of the piezoelectric element. For example, the AC electrical signal control unit 310 may control the AC electrical signal generator 200 to generate a sine wave of 5 KHz to 100 KHz for 1 second.
상기 주파수-임피던스 검출부(320)는, 상기 교류전기신호 제어부(310)에서 제어되는 교류전기신호의 주파수에 의해 상기 압전소자에서 발생하는 고유 공진주파수와 임피던스의 변화를 검출하도록 이루어진다.The frequency-impedance detection unit 320 is configured to detect a change in the intrinsic resonance frequency and impedance generated in the piezoelectric element by the frequency of the AC electrical signal controlled by the AC electrical signal control unit 310 .
그리고 상기 압력변화 측정부(330)는, 상기 주파수-임피던스 검출부(320)에서 검출된 압전소자의 공진주파수와 임피던스의 변화에 기반하여 압전 소자에 가해진 물리적인 압력의 변화를 측정하도록 이루어진다.And the pressure change measuring unit 330 is configured to measure a change in the physical pressure applied to the piezoelectric element based on the change in the resonance frequency and impedance of the piezoelectric element detected by the frequency-impedance detector 320 .
여기에서, 상기 압력변화 측정부(330)는, 압전소자에 가해지는 교류전기신호의 주파수의 변화에 따라 압전소자의 공진주파수와 임피던스가 변화하고, 이 변화는 미세한 전기신호로 바뀌는데, 본 발명은 상기한 미세한 전기신호를 증폭시키기 위한 구성부를 더 포함할 수 있다.Here, the pressure change measuring unit 330 changes the resonance frequency and impedance of the piezoelectric element according to the change in the frequency of the AC electrical signal applied to the piezoelectric element, and this change is converted into a fine electric signal, the present invention It may further include a component for amplifying the fine electric signal.
보다 구체적으로, 본 발명에 따른 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 장치의 제어 모듈부(300)는, 상기 압전소자의 공진주파수와 임피던스의 변화에 따른 전기신호의 크기를 증폭시키기 위한 신호 증폭부(340)를 더 포함할 수 있다.More specifically, the control module unit 300 of the intensity signal measuring apparatus for monitoring the intensity of the hydration reaction material structure according to the present invention is for amplifying the magnitude of the electric signal according to the change in the resonance frequency and impedance of the piezoelectric element. A signal amplifier 340 may be further included.
또한, 상기 신호 증폭부(340)를 통해 신호 증폭 과정을 거쳐 출력되는 신호는 교류전기신호 발생부(200)에서 발생한 교류전기신호와 압전소자의 공진주파수와 임피던스 변화에 따른 전기신호가 함께 섞여 있으므로, 상기 교류전기신호 발생부(200)에서 발생한 교류전기신호는 제거하고, 상기 압전소자의 공진주파수와 임피던스 변화에 따른 전기신호만을 통과시키기 위한 구성부를 더 포함할 수 있다.In addition, since the signal output through the signal amplification process through the signal amplification unit 340 is mixed with the AC electrical signal generated by the AC electrical signal generator 200 and the electrical signal according to the resonance frequency and impedance change of the piezoelectric element, , It may further include a component for removing the AC electrical signal generated by the AC electrical signal generating unit 200, and passing only the electrical signal according to the change in the resonance frequency and impedance of the piezoelectric element.
구체적으로, 본 발명에 따른 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 장치의 제어 모듈부(300)는, 상기 교류전기신호 발생부(200)에서 발생한 교류전기신호는 제거하고, 상기 압전소자의 공진주파수와 임피던스 변화에 따른 전기신호만을 통과시키도록 이루어지는 저역 필터부(Low PassFilter part)(350)를 더 포함할 수 있다.Specifically, the control module unit 300 of the apparatus for measuring the strength signal for monitoring the strength of the hydration reactant structure according to the present invention removes the AC electrical signal generated by the AC electrical signal generating unit 200, and the piezoelectric element It may further include a low pass filter part (Low PassFilter part) 350 made to pass only the electrical signal according to the resonance frequency and impedance change of the.
상기 압력변화 측정부(330)에 의한 압력 변화의 측정은 앞서 도 2 및 도 3을 참고하여 설명하였으므로 설명의 간략화를 위하여 이에 대한 설명은 생략한다.Since the measurement of the pressure change by the pressure change measuring unit 330 has been previously described with reference to FIGS. 2 and 3 , a description thereof will be omitted for the sake of simplicity.
계속해서, 본 발명에 따른 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 장치의 제어 모듈부(300)는, 상기 저역 필터부(350)를 통해 필터링되어 출력되는 압전소자의 공진주파수와 임피던스 변화에 따른 아날로그 전기신호를 디지털 신호로 변환시켜 출력하도록 이루어지는 아날로그-디지털 컨버터부(360)를 더 포함할 수 있다.Subsequently, the control module unit 300 of the apparatus for measuring the strength signal for monitoring the strength of the hydration reactant structure according to the present invention changes the resonance frequency and impedance of the piezoelectric element filtered through the low-pass filter unit 350 and output. It may further include an analog-to-digital converter unit 360 configured to convert an analog electrical signal according to a digital signal and output it.
한편, 본 발명에 따른 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 장치는, 압전소자의 공진주파수와 임피던스 변화의 디지털 신호에 기반하여 압전소자에 가해진 물리적인 압력의 변화를 측정한 압력변화 데이터를 외부의 상위 처리장치(예를 들면, 컴퓨터 또는 서버 등)로 전송하도록 구성되는 유무선 통신 모듈부(500)를 더 포함할 수 있다. 이때, 상기 상위 처리장치에서는 전송받은 압력변화 데이터에 기초하여 강도를 도출하게 된다.On the other hand, the intensity signal measuring apparatus for monitoring the strength of the hydration reaction material structure according to the present invention is pressure change data obtained by measuring the change in physical pressure applied to the piezoelectric element based on the digital signal of the resonance frequency and impedance change of the piezoelectric element. It may further include a wired/wireless communication module unit 500 configured to transmit to an external higher-level processing device (eg, a computer or a server). At this time, the upper-level processing device derives the intensity based on the received pressure change data.
여기에서, 본 발명에 따른 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 장치의 제어 모듈부(300)는, 압전소자의 공진주파수와 임피던스 변화의 디지털 신호에 기반하여 압전소자에 가해진 물리적인 압력의 변화를 측정한 압력변화 데이터에 기초하여 강도를 계산하고 산출하는 강도 산출부(370)를 더 포함하며, 상기 강도 산출부(370)에서 산출된 강도 데이터는 상기 유무선 통신모듈부(500)를 통해 외부의 상위 처리장치로 전송하도록 이루어질 수도 있다. 여기에서, 본 발명은 상기 강도 산출부(370)에서 산출된 강도 데이터를 표시하기 위하여 상기 장치 하우징(100)에 구비되며, 상기 제어 모듈부(300)와 연결되어 상기 강도 산출부(370)에서 산출된 강도 데이터를 표시하는 디스플레이부(600);를 더 포함할 수 있다.Here, the control module unit 300 of the apparatus for measuring the intensity signal for monitoring the intensity of the hydration reactant structure according to the present invention is a physical pressure applied to the piezoelectric element based on the digital signal of the resonance frequency and impedance change of the piezoelectric element. Further comprising a strength calculation unit 370 for calculating and calculating the strength based on the pressure change data measured the change of, the strength data calculated by the strength calculation unit 370 is the wire/wireless communication module unit 500 It may be configured to be transmitted to an external upper processing device through the Here, the present invention is provided in the device housing 100 in order to display the intensity data calculated by the intensity calculation unit 370 , is connected to the control module unit 300 , and is used in the strength calculation unit 370 . The display unit 600 for displaying the calculated intensity data; may further include.
상기 상위 처리장치에서의 강도 산출 또는 상기 제어 모듈부(300)의 강도 산출부(370)에서의 강도 산출에 대하여 설명하면 다음과 같다.The intensity calculation in the upper-level processing device or the intensity calculation in the intensity calculation unit 370 of the control module unit 300 will be described as follows.
강도 변화가 없는 상태에서 피크 주파수(공진 주파수)는 일정한 값을 갖는다. 물질의 강도가 변하게 되면 피크 주파수(공진 주파수) 값의 이동이 생기는데, 이 변동값은 재료(물질)마다 다르게 나타난다. 즉, 절대값을 이용하여 강도를 추출할 수는 없고, 초기에 구조물에서 추출한 샘플을 이용하여 강도시험을 수행하고, 같은 재령(age)에서의 파크 주파수(공진 주파수)를 해당 강도값과 1:1 대응하여 강도값과 주파수값의 관계식을 근거로, 추후 측정되는 피크 주파수(공진 주파수)의 변화에 따른 강도를 산출하게 된다. 다시 말해서, 기준(reference) 값을 근거로 같은 재료에 대한 강도를 측정할 수 있다. 여기에서, 샘플에 대한 강도시험 방법으로는 만능재료시험기(UTM: Universal Testing Machine)를 이용한 압축강도시험, 마샬시험법, 초음파에 의한 비파괴시험법 등을 활용할 수 있다.In a state where there is no change in intensity, the peak frequency (resonant frequency) has a constant value. When the strength of a material changes, the peak frequency (resonant frequency) value shifts, and this variation value is different for each material (material). In other words, the intensity cannot be extracted using the absolute value, and the intensity test is performed using a sample extracted from the structure at the beginning, and the park frequency (resonant frequency) at the same age is equal to the intensity value 1: 1 Correspondingly, based on the relation between the intensity value and the frequency value, the intensity according to the change in the peak frequency (resonant frequency) measured later is calculated. In other words, the strength can be measured for the same material based on a reference value. Here, as a strength test method for a sample, a compressive strength test using a universal testing machine (UTM), a Marshall test method, a non-destructive test method using ultrasonic waves, etc. can be utilized.
다음으로, 상기 전원부(400)는 교체형 배터리 또는 충전형 배터리로 구성될 수 있다.Next, the power supply unit 400 may be configured as a replaceable battery or a rechargeable battery.
또한, 본 발명에 따른 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 장치는, 측정 지점의 위치 정보 또는 시공되는 위치 정보를 유무선 통신 모듈부(500)를 통해 상위의 처리장치로 전송하도록 이루어지는 GPS 모듈부(700);를 더 포함할 수 있다.In addition, the strength signal measuring apparatus for monitoring the strength of the hydration reactant structure according to the present invention is a GPS configured to transmit location information of a measurement point or construction location information to a higher processing device through the wired/wireless communication module unit 500 . The module unit 700; may further include.
한편, 본 발명에 따른 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 장치는, 상기 장치 하우징(100)의 하단면에 설치되어 임피던스의 주변 온도를 검출하도록 구비되는 온도 센서(800), 및 상기 제어 모듈부(300)를 구성하며, 주파수-임피던스 검출부(320)에서 압전소자의 공진주파수와 임피던스를 검출할 때, 상기 온도 센서(800)에 의해 검출된 온도에 기반하여 압전소자의 온도특성 보정알고리즘을 통해 측정된 공진주파수와 임피던스 값을 보정하여 측정 오차를 최소화하는 주파수-임피던스 보정부(380);를 더 포함할 수 있다.On the other hand, the intensity signal measuring device for monitoring the intensity of the hydration reactant structure according to the present invention is a temperature sensor 800 installed on the lower surface of the device housing 100 to detect the ambient temperature of the impedance, and the When the frequency-impedance detection unit 320 detects the resonance frequency and impedance of the piezoelectric element, the temperature characteristic of the piezoelectric element is corrected based on the temperature detected by the temperature sensor 800 . The frequency-impedance correction unit 380 for minimizing the measurement error by correcting the resonant frequency and impedance values measured through the algorithm; may further include.
상기 주파수-임피던스 보정부(380)는, 아래의 식 1 및 식 2를 통해 보정된 공진주파수와 보정된 임피던스를 얻을 수 있다.The frequency-impedance corrector 380 may obtain a corrected resonant frequency and a corrected impedance through Equations 1 and 2 below.
f = f1 + A * (Tc-Tref) + B (식 1)f = f1 + A * (Tc-Tref) + B (Equation 1)
z = z1 + C * (Tc-Tref) + B (식 2)z = z1 + C * (Tc-Tref) + B (Equation 2)
(f : 보정된 공진주파수, z : 보정된 임피던스, f1 : 측정된 공진주파수, z1: 측정된 임피던스, A : 압전소자의 온도특성계수 1, C : 압전소자의 온도특성계수 3, B : 압전소자의 온도특성계수 2, D : 압전소자의 온도특성계수 4, Tc : 측정된 현재 온도, Tref : 기준온도)(f: corrected resonance frequency, z: corrected impedance, f1: measured resonance frequency, z1: measured impedance, A: temperature characteristic coefficient of piezoelectric element 1, C: temperature characteristic coefficient of piezoelectric element 3, B: piezoelectric element Temperature characteristic coefficient of element 2, D: temperature characteristic coefficient of piezoelectric element 4, Tc: current measured temperature, Tref: reference temperature)
A, B, C, D 및 Tref는 사용하는 압전소자에 따라 상이함으로 압전소자에 대한 온도특성실험을 통해 얻는 상수값이다.A, B, C, D, and Tref are constant values obtained through a temperature characteristic experiment on the piezoelectric element because it is different depending on the piezoelectric element used.
이러한 공진주파수와 임피던스의 보정은, 외부기온 변화에 따른 수화열반응물질의 온도의 변화가 수화열반응물질의 압력과 무관하게 압전소자의 공진주파수와 임피던스의 변화를 발생시키는 것에 기반하는 것이다.This correction of the resonance frequency and impedance is based on the fact that the change in the temperature of the hydration heat reactant according to the external temperature change causes the change in the resonance frequency and impedance of the piezoelectric element regardless of the pressure of the hydration heat reactant.
또한, 상기한 공진주파수와 임피던스의 보정은, 앞서 설명한 추가 보정을 토해 보완될 수 있다.In addition, the above-described resonant frequency and impedance correction may be supplemented by the additional correction described above.
이상에서 설명한 바와 같은 본 발명에 따른 수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 방법 및 강도신호 측정 장치에 의하면, 압전소자의 임피던스 특성을 이용하여 구조체의 강도를 신뢰성 있게 측정하고 지속적인 모니터링을 제공할 수 있으며, 소형으로 제작할 수 있어 휴대성과 이동성을 확보할 수 있고, 이에 따라 장소에 구애받지 않고 용이하게 강도를 측정할 수 있는 이점이 있다.According to the intensity signal measuring method and intensity signal measuring apparatus for monitoring the intensity of the hydration reaction material structure according to the present invention as described above, the strength of the structure is reliably measured and continuous monitoring is provided using the impedance characteristic of the piezoelectric element. This can be done and can be manufactured in a small size, so portability and portability can be secured, and accordingly, there is an advantage that strength can be easily measured regardless of location.
본 명세서에서 설명되는 실시 예와 첨부된 도면은 본 발명에 포함되는 기술적 사상의 일부를 예시적으로 설명하는 것에 불과하다. 따라서, 본 명세서에 개시된 실시 예는 본 발명의 기술적 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이므로, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아님은 자명하다. 본 발명의 명세서 및 도면에 포함된 기술적 사상의 범위 내에서 당업자가 용이하게 유추할 수 있는 변형 예와 구체적인 실시 예는 모두 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The embodiments described in this specification and the accompanying drawings are merely illustrative of some of the technical ideas included in the present invention. Accordingly, since the embodiments disclosed in the present specification are for explanation rather than limitation of the technical spirit of the present invention, it is obvious that the scope of the technical spirit of the present invention is not limited by these embodiments. Modifications and specific embodiments that can be easily inferred by those skilled in the art within the scope of the technical spirit included in the specification and drawings of the present invention should be interpreted as being included in the scope of the present invention.
부호의설명Explanation of signs
S100: 교류전기신호 발생 단계S100: AC electrical signal generation step
S200: 교류전기신호 인가 단계S200: AC electrical signal application step
S300: 주파수-임피던스 검출 단계S300: frequency-impedance detection stage
S400: 압력 변화 측정 단계S400: pressure change measurement step
S500: 보정 단계S500: Calibration step
100: 장치 하우징100: device housing
200: 교류전기신호 발생부200: AC electrical signal generator
300: 제어 모듈부300: control module unit
310: 교류전기신호 제어부310: AC electrical signal control unit
320: 주파수-임피던스 검출부320: frequency-impedance detection unit
330: 압력변화 측정부330: pressure change measuring unit
340: 신호 증폭부340: signal amplification unit
350: 저역 필터부350: low-pass filter unit
360: 아날로그-디지털 컨버터부360: analog-digital converter unit
370: 강도 산출부370: strength calculator
380: 주파수-임피던스 보정부380: frequency-impedance correction unit
400: 전원부400: power unit
500: 유무선 통신 모듈부500: wired and wireless communication module unit
600: 디스플레이부600: display unit
700: GPS 모듈부700: GPS module unit
800: 온도 센서800: temperature sensor
Claims (10)
- 수화반응물질로 이루어지는 구조체에 설치된 압전소자에 연결되어 수화반응물질 구조체의 강도를 측정하기 위한 강도신호를 생성하고 측정하는 강도신호 측정장치를 통해 수화반응물질 구조체의 강도를 측정하기 위한 방법으로서,A method for measuring the strength of a hydration reaction material structure through an intensity signal measuring device that is connected to a piezoelectric element installed in a structure made of a hydration reaction material and generates and measures an intensity signal for measuring the strength of the hydration reaction material structure,소정 주파수 대역의 주파수를 갖는 특정 파형의 교류전기신호를 발생시키는교류전기신호 발생 단계;AC electrical signal generating step of generating an AC electrical signal of a specific waveform having a frequency of a predetermined frequency band;상기 발생된 교류전기신호를 일정 시간 동안 압전 소자에 인가하는 교류전기신호 인가 단계;an AC electrical signal applying step of applying the generated AC electrical signal to the piezoelectric element for a predetermined time;상기 교류전기신호 인가 단계에서 가해지는 교류전기신호의 주파수에 따른 압전소자의 공진주파수와 임피던스의 변화를 검출하는 주파수-임피던스 검출 단계; 및 a frequency-impedance detection step of detecting a change in the resonance frequency and impedance of the piezoelectric element according to the frequency of the AC electrical signal applied in the AC electrical signal application step; and상기 검출된 압전소자의 공진주파수와 임피던스의 변화에 기반하여 상기 압전 소자에 가해진 물리적인 압력의 변화를 강도신호로서 측정하는 압력 변화 측정단계;를 포함하는 것을 특징으로 하는 and a pressure change measuring step of measuring a change in physical pressure applied to the piezoelectric element as an intensity signal based on the detected change in resonance frequency and impedance of the piezoelectric element.수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 방법.A method of measuring an intensity signal for monitoring the intensity of a hydration reactant structure.
- 제1항에 있어서, According to claim 1,상기 교류전기신호 발생 단계는 소정의 주파수 대역을 갖는 사인파(Sine Wave) 형태의 교류전기신호를 일정시간 순차적으로 발생시키는 것으로 이루어지며,The step of generating the AC electrical signal consists of sequentially generating an AC electrical signal in the form of a sine wave having a predetermined frequency band for a predetermined time,상기 교류전기신호의 주파수 대역과 발생 시간은 상기 압전소자의 주파수 특성에 따라 결정되는 것을 특징으로 하는 The frequency band and the generation time of the AC electrical signal are determined according to the frequency characteristics of the piezoelectric element.수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 방법.A method for measuring intensity signals for monitoring the intensity of the hydration reactant structure.
- 제1항에 있어서,According to claim 1,상기 압력 변화 검출 단계는, 상기 교류전기신호의 주파수에 따른 압전소자의 공진주파수와 임피던스의 변화에 따른 전기신호를 증폭시킨 후, 증폭된 전기신호를 검출하도록 이루어지며,The pressure change detection step is configured to detect the amplified electrical signal after amplifying the electrical signal according to the change in the resonance frequency and impedance of the piezoelectric element according to the frequency of the AC electrical signal,상기 압력 변화 측정 단계는, 저역 필터를 통해 상기 교류전기신호 발생부에서 발생된 교류전기신호는 제거되고, 상기 압전소자의 공진주파수와 임피던스 변화에 따른 전기신호만이 통과된 전기신호를 측정하도록 이루어지는 것을 특징으로 하는In the pressure change measuring step, the AC electrical signal generated by the AC electrical signal generating unit is removed through a low-pass filter, and only the electrical signal according to the change in the resonance frequency and impedance of the piezoelectric element is passed to measure the electrical signal characterized by수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 방법.A method of measuring an intensity signal for monitoring the intensity of a hydration reactant structure.
- 제1항에 있어서,According to claim 1,상기 주파수-임피던스 검출 단계에서 압전소자에서 발생하는 공진주파수와 임피던스의 검출 시, 임피던스 주변의 온도를 검출하여 측정된 공진주파수와 임피던스를 보정하여 측정 오차를 최소화하는 보정 단계;를 더 포함하며,In the frequency-impedance detection step, when the resonance frequency and impedance generated in the piezoelectric element are detected, a correction step of detecting the temperature around the impedance and correcting the measured resonance frequency and impedance to minimize the measurement error; further comprising,상기 보정 단계는, 아래의 식 1 및 식 2를 통해 보정된 공진주파수와 보정된임피던스를 구하는 것을 특징으로 하는In the correction step, the resonant frequency and the corrected impedance are obtained through Equations 1 and 2 below.f = f1 + A * (Tc-Tref) + B (식 1)f = f1 + A * (Tc-Tref) + B (Equation 1)z = z1 + C * (Tc-Tref) + B (식 2)z = z1 + C * (Tc-Tref) + B (Equation 2)(여기에서, f : 보정된 공진주파수, z : 보정된 임피던스, f1 : 측정된 공진주파수, z1: 측정된 임피던스, A : 압전소자의 온도특성계수 1, C : 압전소자의 온도특성계수 3, B : 압전소자의 온도특성계수 2, D : 압전소자의 온도특성계수 4, Tc : 측정된 현재 온도, Tref : 기준온도, A, B, C, D 및 Tref는 압전소자에 대한 온도특성실험을 통해 얻은 상수값)(here, f: corrected resonance frequency, z: corrected impedance, f1: measured resonance frequency, z1: measured impedance, A: temperature characteristic coefficient of piezoelectric element 1, C: temperature characteristic coefficient of piezoelectric element 3, B: temperature characteristic coefficient of piezoelectric element 2, D: temperature characteristic coefficient of piezoelectric element 4, Tc: measured current temperature, Tref: reference temperature, A, B, C, D and Tref are temperature characteristic tests for piezoelectric element constant value obtained through수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 방법.A method of measuring an intensity signal for monitoring the intensity of a hydration reactant structure.
- 수화반응물질로 이루어지는 구조체에 설치된 압전소자에 연결되어 수화반응물질 구조체의 강도를 측정하기 위한 강도신호를 생성하고 측정하는 강도신호 측정장치로서,An intensity signal measuring device connected to a piezoelectric element installed in a structure made of a hydration reaction material to generate and measure an intensity signal for measuring the strength of a hydration reaction material structure,압전 소자에 상기 제어 모듈부가 전기적으로 접속되는 접속부를 구비하여 구성되는 장치 하우징;an apparatus housing configured with a connection portion electrically connected to the control module portion to a piezoelectric element;상기 장치 하우징에 구비되고, 소정 주파수 대역의 주파수를 갖는 특정 파형의 교류전기신호를 발생시키는 교류전기신호 발생부;an AC electrical signal generator provided in the device housing and configured to generate an AC electrical signal of a specific waveform having a frequency of a predetermined frequency band;상기 장치 하우징에 구비되고, 상기 교류전기신호 발생부에서 소정 주파수 대역의 주파수를 갖는 특정 파형의 교류전기신호가 발생되도록 제어하고, 발생된 교류전기신호를 압전소자에 인가하며, 상기 압전소자로 인가된 교류전기신호에 기반하여 압전소자에 가해진 물리적인 압력의 변화를 측정하는 제어 모듈부; 및It is provided in the device housing, and the AC electrical signal generator controls so that an AC electrical signal of a specific waveform having a frequency of a predetermined frequency band is generated, and applies the generated AC electrical signal to the piezoelectric element, and is applied to the piezoelectric element a control module unit for measuring a change in physical pressure applied to the piezoelectric element based on the obtained AC electrical signal; and상기 장치 하우징에 구비되며, 상기 제어 모듈부에 필요 전력을 공급하도록구성되는 전원부;를 포함하는 것을 특징으로 하는and a power supply unit provided in the device housing and configured to supply necessary power to the control module unit.수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 장치.Intensity signal measuring device for monitoring the strength of the hydration reactant structure.
- 제5항에 있어서,6. The method of claim 5,상기 교류전기신호 발생부는 소정 주파수 대역을 갖는 사인파의 교류전기신호를 발생시키는 사인파 신호 발생부로 이루어지고, The AC electrical signal generator consists of a sine wave signal generator that generates an AC electrical signal of a sine wave having a predetermined frequency band,상기 제어 모듈부는, 상기 사인파 신호 발생부에서 발생되는 교류전기신호를 제어하여 압전 소자로 인가되도록 하는 교류전기신호 제어부와, 상기 압전 소자로 가해지는 교류전기신호의 주파수에 따른 압전소자의 공진주파수와 임피던스의 변화 를 검출하는 주파수-임피던스 검출부, 및 상기 주파수-임피던스 검출부에서 검출된 압전소자의 공진주파수와 임피던스의 변화에 기반하여 압전 소자에 가해진 물리적인 압력의 변화를 측정하는 압력변화 측정부를 포함하는 것을 특징으로 하는The control module unit includes an AC electrical signal control unit that controls the AC electrical signal generated by the sine wave signal generator to be applied to the piezoelectric element, and a resonance frequency of the piezoelectric element according to the frequency of the AC electrical signal applied to the piezoelectric element; Frequency-impedance detection unit for detecting a change in impedance, and a pressure change measuring unit for measuring a change in physical pressure applied to the piezoelectric element based on the change in the resonance frequency and impedance of the piezoelectric element detected by the frequency-impedance detection unit characterized by수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 장치.Intensity signal measuring device for monitoring the strength of the hydration reactant structure.
- 제6항에 있어서,7. The method of claim 6,상기 제어 모듈부는,The control module unit,상기 압전소자의 공진주파수와 임피던스의 변화에 따른 전기신호의 크기를 증폭시키기 위한 신호 증폭부;a signal amplifying unit for amplifying a magnitude of an electric signal according to a change in a resonance frequency and an impedance of the piezoelectric element;상기 신호 증폭부로부터 출력되는 나오는 전기신호 중 상기 교류전기신호 발생부에서 발생한 교류전기신호는 제거하고, 상기 압전소자의 공진주파수와 임피던스 변화에 따른 전기신호만을 통과시키도록 이루어지는 저역 필터부; 및a low-pass filter unit configured to remove an AC electrical signal generated by the AC electrical signal generator among the electrical signals outputted from the signal amplifying unit, and to pass only an electrical signal according to a change in the resonance frequency and impedance of the piezoelectric element; and상기 저역 필터부를 통해 필터링되어 출력되는 압전소자의 공진주파수와 임피던스 변화에 따른 아날로그 전기신호를 디지털 신호로 변환시켜 출력하도록 이루어지는 아날로그-디지털 컨버터부;를 더 포함하는 것을 특징으로 하는An analog-to-digital converter unit configured to convert and output an analog electric signal according to a change in the resonance frequency and impedance of the piezoelectric element filtered through the low-pass filter unit and outputted into a digital signal; characterized in that it further comprises수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 장치.Intensity signal measuring device for monitoring the strength of the hydration reactant structure.
- 제7항에 있어서,8. The method of claim 7,압전소자의 공진주파수와 임피던스 변화의 디지털 신호에 기반하여 압전소자에 가해진 물리적인 압력의 변화를 측정한 압력변화 데이터를 외부의 상위 처리장치로 전송하도록 상기 장치 하우징에 구비되는 유무선 통신 모듈부; 및a wired/wireless communication module unit provided in the device housing to transmit pressure change data measuring a change in physical pressure applied to the piezoelectric element based on a digital signal of a resonant frequency and impedance change of the piezoelectric element to an external upper processing device; and상기 장치 하우징에 구비되며, 상기 압전 소자의 위치 정보를 외부의 상위처리장치로 전송하도록 구성되는 GPS 모듈부;를 더 포함하는 것을 특징으로 하는A GPS module provided in the device housing and configured to transmit the location information of the piezoelectric element to an external higher-level processing device; characterized in that it further comprises수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 장치.Intensity signal measuring device for monitoring the strength of the hydration reactant structure.
- 제7항에 있어서,8. The method of claim 7,상기 제어 모듈부는 압전소자의 공진주파수와 임피던스 변화의 디지털 신호에 기반하여 압전소자에 가해진 물리적인 압력의 변화를 측정한 압력변화 데이터에기초하여 강도를 계산하고 산출하는 강도 산출부를 더 포함하며,The control module unit further includes a strength calculator that calculates and calculates the strength based on the pressure change data that measures the change in the physical pressure applied to the piezoelectric element based on the digital signal of the resonance frequency and impedance change of the piezoelectric element,상기 강도신호 측정 장치는, 상기 강도 산출부에서 산출된 강도 데이터를 외부의 상위 처리장치로 전송하도록 구비되는 유무선 통신 모듈부와, 상기 강도 산출부에서 산출된 강도 데이터를 표시하는 디스플레이부, 및 상기 장치 하우징에 구비되며, 상기 압전 소자의 위치 정보를 외부의 상위 처리장치로 전송하도록 구성되는GPS 모듈부;를 더 포함하는 것을 특징으로 하는The apparatus for measuring the intensity signal includes a wired/wireless communication module configured to transmit the intensity data calculated by the intensity calculator to an external higher-level processing device, a display unit for displaying the intensity data calculated by the intensity calculator, and the A GPS module unit provided in the device housing and configured to transmit the location information of the piezoelectric element to an external higher-level processing device; characterized by further comprising:수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 장치.Intensity signal measuring device for monitoring the strength of the hydration reactant structure.
- 제6항에 있어서,7. The method of claim 6,상기 장치 하우징의 하단면에 설치되어 임피던스의 주변 온도를 검출하도록 구비되는 온도 센서, 및 상기 제어 모듈부를 구성하며, 상기 주파수-임피던스 검출부에서 압전소자의 공진주파수와 임피던스를 검출할 때, 상기 온도 센서에 의해 검출된 온도에 기반하여 측정된 공진주파수와 임피던스 값을 보정하여 측정 오차를 최소화하는 주파수-임피던스 보정부;를 더 포함하며,A temperature sensor installed on the lower end surface of the device housing to detect an ambient temperature of impedance, and the control module unit, the frequency-impedance detecting unit detects the resonance frequency and impedance of the piezoelectric element, the temperature sensor It further includes; a frequency-impedance correcting unit that minimizes the measurement error by correcting the measured resonance frequency and impedance value based on the temperature detected by the상기 주파수-임피던스 보정부는, 아래의 식 1 및 식 2를 통해 보정된 공진주파수와 보정된 임피던스를 얻는 것을 특징으로 하는The frequency-impedance correcting unit, characterized in that it obtains the corrected resonant frequency and the corrected impedance through Equations 1 and 2 below.f = f1 + A * (Tc-Tref) + B (식 1)f = f1 + A * (Tc-Tref) + B (Equation 1)z = z1 + C * (Tc-Tref) + B (식 2)z = z1 + C * (Tc-Tref) + B (Equation 2)(여기에서, f : 보정된 공진주파수, z : 보정된 임피던스, f1 : 측정된 공진주파수, z1 : 측정된 임피던스, A : 압전소자의 온도특성계수 1, C : 압전소자의 온도특성계수 3, B : 압전소자의 온도특성계수 2, D : 압전소자의 온도특성계수 4, Tc : 측정된 현재 온도, Tref : 기준온도, A, B, C, D 및 Tref는 압전소자에 대한 온도특성실험을 통해 얻은 상수값)(here, f: corrected resonance frequency, z: corrected impedance, f1: measured resonance frequency, z1: measured impedance, A: temperature characteristic coefficient of piezoelectric element 1, C: temperature characteristic coefficient of piezoelectric element 3, B: temperature characteristic coefficient of piezoelectric element 2, D: temperature characteristic coefficient of piezoelectric element 4, Tc: measured current temperature, Tref: reference temperature, A, B, C, D and Tref are temperature characteristic tests for piezoelectric element constant value obtained through수화반응물질 구조체의 강도 모니터링을 위한 강도신호 측정 장치.Intensity signal measuring device for monitoring the strength of the hydration reactant structure.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2020-0125670 | 2020-09-28 | ||
KR1020200125670A KR102256047B1 (en) | 2020-09-28 | 2020-09-28 | Strength signal measuring method and strength signal measuring device for monitoring strength of hydration reaction materials |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022065595A1 true WO2022065595A1 (en) | 2022-03-31 |
Family
ID=76145197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/018345 WO2022065595A1 (en) | 2020-09-28 | 2020-12-15 | Strength signal measuring method and device for monitoring strength of hydration reaction material structure |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102256047B1 (en) |
WO (1) | WO2022065595A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11575362B2 (en) * | 2018-07-01 | 2023-02-07 | Friedrich-Alexander-Universitat Erlangen-Nurnberg | Electromagnetic interference suppression components |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102409861B1 (en) * | 2021-11-11 | 2022-06-17 | 에코엔텍 주식회사 | Apparatus for monitoring strength of hydration reaction materials and a method for monitoring strength by using same. |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004271351A (en) * | 2003-03-10 | 2004-09-30 | Shoryo Denshi Kk | Probe |
KR20140109079A (en) * | 2013-03-05 | 2014-09-15 | 성균관대학교산학협력단 | A system and a method for monitoring the curing process of concrete structures |
KR101551446B1 (en) * | 2014-10-30 | 2015-09-08 | 한국건설기술연구원 | Remote wireless monitoring system for cementitious composites in which electro conductive fibers are mixed, and method for the same |
KR20160123691A (en) * | 2015-04-16 | 2016-10-26 | 원준연 | Concrete quality prediction system using a mobile terminal |
KR101684428B1 (en) * | 2015-06-03 | 2016-12-20 | 한국과학기술원 | Multi-Directional Damage Detection System Embedded in Concrete And Method for Detecting Damage in Concrete Structure |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101225234B1 (en) | 2010-04-26 | 2013-01-22 | 성균관대학교산학협력단 | A system and a method for monitoring the curing process of concrete structures |
KR101184048B1 (en) | 2011-12-28 | 2012-09-27 | (주)대우건설 | Early-age concrete strength estimation apparatus and method for using impedance |
KR101645622B1 (en) | 2015-03-23 | 2016-08-12 | 전남대학교산학협력단 | Apparatus and method for concrete-curing measurement |
-
2020
- 2020-09-28 KR KR1020200125670A patent/KR102256047B1/en active IP Right Grant
- 2020-12-15 WO PCT/KR2020/018345 patent/WO2022065595A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004271351A (en) * | 2003-03-10 | 2004-09-30 | Shoryo Denshi Kk | Probe |
KR20140109079A (en) * | 2013-03-05 | 2014-09-15 | 성균관대학교산학협력단 | A system and a method for monitoring the curing process of concrete structures |
KR101551446B1 (en) * | 2014-10-30 | 2015-09-08 | 한국건설기술연구원 | Remote wireless monitoring system for cementitious composites in which electro conductive fibers are mixed, and method for the same |
KR20160123691A (en) * | 2015-04-16 | 2016-10-26 | 원준연 | Concrete quality prediction system using a mobile terminal |
KR101684428B1 (en) * | 2015-06-03 | 2016-12-20 | 한국과학기술원 | Multi-Directional Damage Detection System Embedded in Concrete And Method for Detecting Damage in Concrete Structure |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11575362B2 (en) * | 2018-07-01 | 2023-02-07 | Friedrich-Alexander-Universitat Erlangen-Nurnberg | Electromagnetic interference suppression components |
Also Published As
Publication number | Publication date |
---|---|
KR102256047B1 (en) | 2021-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022065595A1 (en) | Strength signal measuring method and device for monitoring strength of hydration reaction material structure | |
WO2015182891A1 (en) | Device for evaluating deterioration and estimating strength by using ultrasound waves and method for evaluating deterioration and estimating strength by using same | |
WO2016171391A1 (en) | Device for measuring friction of vibrating structure | |
WO2014204179A1 (en) | Method for verifying bad pattern in time series sensing data and apparatus thereof | |
WO2022114871A1 (en) | Battery diagnosis device, battery diagnosis method, battery pack, and vehicle | |
WO2009136768A1 (en) | Collapse prediction method for ground structure | |
WO2021177569A1 (en) | Thin film specimen for tensile test and physical property evaluation method for thin film specimen | |
WO2012036376A1 (en) | Insulator checking module and method for driving same, and insulator checking apparatus and method for same | |
WO2019083144A1 (en) | Device and method for detecting failure location of underground cable | |
WO2016199987A1 (en) | Impedance measurement device | |
WO2014073759A1 (en) | Multi-purpose load trial tester for actuator and trial test system using same | |
WO2023128135A1 (en) | Ae sensor node network system | |
WO2012081873A2 (en) | Ultra high frequency fatigue tester | |
WO2020045915A1 (en) | System and method for correcting current value of shunt resistor | |
WO2022035130A1 (en) | Battery management device and method | |
JP2007225519A (en) | Material testing method | |
WO2021101237A1 (en) | Metal property measurement system and method | |
WO2023085525A1 (en) | Apparatus for monitoring strength of hydration reaction material structure and strength monitoring method using same | |
WO2017039195A1 (en) | Large-space structure collapse sensing device, structure monitoring device, and method using same | |
WO2012070910A2 (en) | Representative-value calculating device and method | |
WO2022080837A1 (en) | Battery diagnostic apparatus and method | |
WO2021261781A1 (en) | Battery state management system and method | |
WO2021025450A1 (en) | Method for measuring state of battery, and electronic device for supporting same | |
WO2018182304A1 (en) | Three-dimensional radio measurement method for extracting radio wave propagation parameter components, and device therefor | |
WO2012011631A1 (en) | Apparatus for detecting magnetic field including a differential magnetic sensor module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20955393 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20955393 Country of ref document: EP Kind code of ref document: A1 |