WO2022065519A1 - Mobile body - Google Patents

Mobile body Download PDF

Info

Publication number
WO2022065519A1
WO2022065519A1 PCT/JP2021/036536 JP2021036536W WO2022065519A1 WO 2022065519 A1 WO2022065519 A1 WO 2022065519A1 JP 2021036536 W JP2021036536 W JP 2021036536W WO 2022065519 A1 WO2022065519 A1 WO 2022065519A1
Authority
WO
WIPO (PCT)
Prior art keywords
propeller
wheel
shaft
rotation axis
gear
Prior art date
Application number
PCT/JP2021/036536
Other languages
French (fr)
Japanese (ja)
Inventor
香織 田中
亮平 田中
Original Assignee
香織 田中
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香織 田中 filed Critical 香織 田中
Priority to JP2022552121A priority Critical patent/JP7225519B2/en
Publication of WO2022065519A1 publication Critical patent/WO2022065519A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60FVEHICLES FOR USE BOTH ON RAIL AND ON ROAD; AMPHIBIOUS OR LIKE VEHICLES; CONVERTIBLE VEHICLES
    • B60F5/00Other convertible vehicles, i.e. vehicles capable of travelling in or on different media
    • B60F5/02Other convertible vehicles, i.e. vehicles capable of travelling in or on different media convertible into aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C37/00Convertible aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/70Convertible aircraft, e.g. convertible into land vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D11/00Clutches in which the members have interengaging parts
    • F16D11/08Clutches in which the members have interengaging parts actuated by moving a non-rotating part axially
    • F16D11/10Clutches in which the members have interengaging parts actuated by moving a non-rotating part axially with clutching members movable only axially

Definitions

  • the present invention relates to a moving body capable of traveling on the ground and moving in the air or underwater.
  • Patent Document 1 discloses a moving body that travels on the ground by a rotary drive means and flies by a rotor blade.
  • Patent Document 2 discloses a steering system with an in-wheel motor for an amphibious vehicle that can switch between a land traveling mode by rolling a wheel and a water navigation mode by a propulsive force accompanying the rotation of a screw propeller. ..
  • Patent Document 1 has a complicated structure because different rotation mechanisms are provided for the rotary drive means and the rotor.
  • the present invention has been made in consideration of such circumstances, and an object of the present invention is to provide a moving body having a simple and lightweight structure.
  • the moving body according to the present invention rotates around the main body and the wheel rotation axis, and rotates around the wheel that moves the main body on the ground and the propeller rotation axis, and causes the main body.
  • a propeller to be moved in the air or water, a shaft rotated by a rotation drive source, and the shaft are connected to the wheel or the propeller, and the wheel or the propeller is rotated around the wheel rotation axis or the propeller rotation axis. It is provided with a connection mechanism for making the shaft connect to the wheel or a switching mechanism for switching the connection destination of the shaft to the wheel or the propeller.
  • the moving body according to the present invention can have a simple and lightweight structure.
  • External perspective view of a flying car robot Exploded view of the tire part. The figure which specifically explains the connection mechanism of a tire part and a shaft.
  • FIG. 1 is an external perspective view of the flying car robot 1.
  • FIG. 2 is an exploded view of the tire portion 30.
  • FIG. 3 is a diagram particularly illustrating a connection mechanism between the tire portion 30 and the shaft 20. In FIG. 3, for the sake of explanation, only the portion related to the connection mechanism of the tire portion 30 is shown, and other configurations are omitted.
  • the flying car robot 1 has a main body 10, a shaft 20, and a tire portion 30.
  • the main body 10 accommodates a motor, a control unit 16 for controlling an air-land robot 1, and the like.
  • the main body 10 has an inclined surface 11 on a surface that is at least a part of the left and right side surfaces and faces the tire portion 30.
  • the shaft 20 is arranged at two front and rear positions on the left and right side surfaces of the main body 10.
  • the shaft 20 is connected to a motor (rotational drive source) at one end on the main body 10 side and is rotated.
  • the motor may be four motors (motor 60 in FIG. 4) that rotate the four shafts 20 independently, or one motor that rotates the four shafts 20 in common.
  • the shaft 20 has an outer traveling gear 12, a flight gear 13, and an inner traveling gear 14 in order from the other end on the tire portion 30 side.
  • the outer traveling gear 12, the flight gear 13, and the inner traveling gear 14 are convex gears having outer teeth, respectively.
  • the flight gear 13 and the inner traveling gear 14 are arranged so as to be convex in opposite directions to each other, and a stopper 15 is arranged between them.
  • the stopper 15 has an outer diameter larger than the outer diameter of the flight gear 13 and the inner travel gear 14, and connects the flight gear 13 and the inner travel gear 14.
  • the tire portion 30 is connected to the other end side of each shaft 20 and is arranged at two front and rear positions on the left and right side surfaces of the main body 10.
  • the tire portion 30 rotates around the tire portion rotation shaft 30a coaxial with the rotation shaft of the shaft 20 by transmitting the rotational force of the motor via the shaft 20.
  • the tire portion 30 is arranged so that the tire portion rotation shaft 30a (wheel rotation shaft 30b and propeller rotation shaft 30c) is non-parallel to the ground (horizontal plane).
  • the other end of the shaft 20 on the tire portion 30 side extends diagonally upward from the main body 10.
  • the tire portion 30 is arranged so that the inner and outer surfaces of the tire portion 30 are orthogonal to the shaft 20 and the inner and outer surfaces of the tire portion 30 form an angle ⁇ with respect to the ground.
  • the angle ⁇ is determined, for example, in relation to the inclined surface 11 described above. That is, the angle ⁇ is such that the inclined surface 11 receives the thrust accompanying the rotation of the propeller 41 (described later), and a part of the thrust colliding with the inclined surface 11 can be converted into a vertically downward force, that is, lift. Is determined (for example, 0 degree ⁇ ⁇ 10 degree). Further, the smaller the angle ⁇ is, the smaller the thrust loss can be and the more effective it is for flight. Therefore, it is preferable that the angle ⁇ is small within the range in which the vehicle can travel.
  • the tire portion 30 has an inner wheel 31, an outer wheel 35, a tire 38, and a propeller 41.
  • the inner wheel 31 and the outer wheel 35 are made of alloy or resin and are arranged facing each other with a certain interval.
  • the inner wheel 31 and the outer wheel 35 have a wheel rotation shaft 30b coaxial with the rotation shaft of the shaft 20.
  • the inner wheel 31 is arranged on the main body 10 side with respect to the propeller 41.
  • the inner wheel 31 has an inner wheel coupling portion 32 that penetrates the shaft 20 at the center of rotation.
  • the inner wheel coupling portion 32 has a concave inner wheel gear 33 having internal teeth on the side facing the propeller coupling portion 42.
  • the outer wheel 35 is arranged on the opposite side of the inner wheel 31 with respect to the propeller 41.
  • the outer wheel 35 has an outer wheel coupling portion 36 that penetrates the shaft 20 at the center of rotation.
  • the outer wheel coupling portion 36 has a concave outer wheel gear 37 having internal teeth on the side opposite to the side facing the propeller coupling portion 42.
  • the inner wheel gear 33 and the outer wheel gear 37 mesh with the inner traveling gear 14 and the outer traveling gear 12, respectively, and the rotational force of the motor is transmitted from the shaft 20 (see FIG. 3B).
  • the tire 38 is arranged on the outer periphery of the inner wheel 31 and the outer wheel 35.
  • the tire 38 (and the inner wheel 31, the outer wheel 35) rotates around the tire portion rotation axis 30a (wheel rotation axis 30b) while touching the ground or the like, so that the air-land amphibious robot 1 travels on the ground and moves.
  • the tire 38 (wheel) has a ground plane 39 parallel to the ground. That is, since the tire portion rotation shaft 30a is provided non-parallel to the ground, the tire 38 has an outer surface larger than the diameter 38a on the inner side surface side from the viewpoint of ensuring stability when traveling on the ground. It has a side diameter of 38b. As a result, even when the tire portion rotation shaft 30a forms an angle ⁇ with respect to the ground, the air-land amphibious robot 1 can increase the contact area of the tire 38 during traveling, and can effectively accelerate and stop.
  • a rubber pneumatic tire or a non-pneumatic tire can be applied.
  • troubles such as air bleeding and bursting of the tire 38 can be reduced due to a change in air pressure during flight.
  • the propeller 41 is arranged between the inner wheel 31 and the outer wheel 35.
  • the propeller 41 has a propeller rotating shaft 30c coaxial with the rotating shaft of the shaft 20.
  • the propeller 41 has a required number of blades 45 arranged radially from the propeller rotation shaft 30c.
  • the propeller 41 rotates around the propeller rotation shaft 30c and moves the main body 10 in the air.
  • the propeller 41 has a propeller coupling portion 42 that penetrates the shaft 20 at the center of rotation.
  • the propeller coupling portion 42 has a concave propeller gear 43 having internal teeth on the side facing the inner wheel coupling portion 32.
  • the propeller gear 43 meshes with the flight gear 13, and the rotational force of the motor is transmitted from the shaft 20 (see FIG. 3C).
  • the propeller 41 has dimensions (outer diameter) such that the thrust required for the air-and-land robot 1 can be obtained.
  • the inner wheel 31, the outer wheel 35 and the tire 38 have dimensions (inner diameter and outer diameter) corresponding to the dimensions of the propeller 41.
  • the outer diameter of the propeller 41 that is, the inner diameter of the inner wheel 31 and the outer wheel 35 (hereinafter, the inner wheel 31 and the outer wheel 35 may be collectively referred to as “wheels 31, 35”) is four. It is preferable that the diameter is larger than the dimensional ratio between the inner diameter of the wheel of a wheeled vehicle or the like and the vehicle body from the viewpoint of obtaining the thrust of the propeller 41.
  • the inner wheel coupling portion 32, the outer wheel coupling portion 36, and the propeller coupling portion 42 have a required structure such as a bearing so that the rotation of the shaft 20 penetrating the shaft 20 is not transmitted and is supported by the shaft 20 at a predetermined position.
  • the inner traveling gear 14, the outer traveling gear 12, and the flight gear 13, and the inner wheel gear 33, the outer wheel gear 37, and the propeller gear 43 that mesh with these, connect the shaft 20 to the wheels 31, 35, or the propeller 41, and the wheels. It functions as a connection mechanism for rotating the wheels 31, 35 or the propeller 41 around the rotating shaft 30b or around the propeller rotating shaft 30c.
  • the state of FIG. 3A is a neutral state in which the inner traveling gear 14, the outer traveling gear 12, and the flight gear 13 are not connected to any of the inner wheel gear 33, the outer wheel gear 37, and the propeller gear 43. be.
  • the air-and-land robot 1 further has a switching mechanism 50 for switching the connection destination of the shaft 20 to the wheels 31, 35 or the propeller 41.
  • FIG. 4 is a conceptual diagram illustrating the switching mechanism 50. In FIG. 4, for simplification of the description, only a set of tire portions 30 and a shaft 20 facing each other on the left and right are shown, and other configurations are omitted.
  • the switching mechanism 50 is a mechanism for sliding the shaft 20 in the axial direction, and has a first rack 51, a second rack 52, a third rack 53, a fourth rack 54, a first pinion 55, and a first pinion 55. It has a second pinion 56 and a third pinion 57.
  • the first rack 51 and the second rack 52 are arranged substantially parallel to the ground and facing each other with a predetermined interval.
  • the third rack 53 and the fourth rack 54 are provided on the main body 10 side of each motor 60 that rotates the shaft 20.
  • the first pinion 55 is rotated in the forward and reverse directions by a motor (not shown).
  • the first pinion 55 meshes with the first rack 51 and the second rack 52, and slides the first rack 51 and the second rack 52 in opposite directions to each other according to the rotation direction of the motor.
  • the second pinion 56 meshes with the first rack 51 and the third rack 53 arranged at a required angle.
  • the second pinion 56 rotates at a predetermined position along with the slide of the first rack 51, and the rotation is transmitted to the third rack 53 to slide the third rack 53.
  • the shaft 20 connected to the third rack 53 slides in the axial direction.
  • the third pinion 57 meshes with the first rack 51 and the fourth rack 54 arranged at a required angle.
  • the third pinion 57 rotates at a predetermined position along with the slide of the second rack 52, and the rotation is transmitted to the fourth rack 54 to slide the fourth rack 54.
  • the shaft 20 connected to the fourth rack 54 slides in the axial direction.
  • Such a switching mechanism 50 is controlled by the control unit 16 based on the detection result of the sensor or the like, and as an example, transitions between the state shown in FIG. 4A and the state shown in FIG. 4B. ..
  • the sensor detects, for example, that the inner traveling gear 14 and the inner wheel gear 33 mesh with the stopper 15 of the shaft 20 at an appropriate position, and that the flight gear 13 and the propeller gear 43 mesh with each other at an appropriate position. It is a sensor.
  • the switching mechanism 50 slides the shaft 20 toward the main body 10 until the sensor detects that the inner traveling gear 14 and the inner wheel gear 33 are engaged with each other at an appropriate position. Let me. Further, when the flying car robot 1 flies, the switching mechanism 50 keeps the shaft 20 in the direction opposite to the main body 10 side until the sensor detects that the flight gear 13 and the propeller gear 43 are engaged at an appropriate position. Slide to. For example, a pressure sensor, a proximity sensor, or the like can be applied to the sensor.
  • the air-and-land robot 1 transmits the rotational force of the shaft 20 by the motor to the wheels 31 and 35 to control so that only the wheels 31, 35 and the tires 38 rotate during traveling.
  • the air-and-land robot 1 controls the switching mechanism 50 and slides the shaft 20, and as shown in FIG. 3B, the outer traveling gear 12 and the inner traveling gear 14 of the shaft 20 are the wheels 31. It is controlled so as to mesh with the inner wheel gear 33 and the outer wheel gear 37 of the 35.
  • the stopper 15 of the shaft 20 acts to stop the slide of the shaft 20 at an appropriate meshing position between the outer traveling gear 12 and the inner traveling gear 14 and the inner wheel gear 33 and the outer wheel gear 37.
  • the shaft 20, wheels 31, and 35 are designed so that an excessive load in the axial direction is not applied.
  • the air-and-land robot 1 controls the motor at a rotation speed suitable for traveling, and rotates the wheels 31 and 35 via the shaft 20. As a result, the wheels 31 and 35 rotate, and the flying car robot 1 travels on the ground. At this time, since the tire 38 has a diameter 38b on the outer surface side that is larger than the diameter 38a on the inner side surface side so as to have the ground contact surface 39, the tire 38 and the ground are compared with the case where the tire 38 does not have the ground contact surface 39. The ground contact area can be increased. As a result, the flying car robot 1 can effectively accelerate and stop.
  • the air-and-land robot 1 transmits the rotational force of the shaft 20 by the motor to the propeller 41 during flight to control only the propeller 41 to rotate.
  • the flying car robot 1 controls the switching mechanism 50 and slides the shaft 20 so that the flight gear 13 of the shaft 20 meshes with the propeller gear 43 of the propeller 41 as shown in FIG. 3 (C).
  • the air-and-land robot 1 controls the motor at a rotation speed suitable for flight, and rotates the wheels 31 and 35 via the shaft 20.
  • the propeller 41 rotates to obtain thrust, and the air-land robot 1 flies in the air.
  • the tire portion 30 is arranged with an angle ⁇ , and the main body 10 has an inclined surface 11. Therefore, although the thrust of the propeller 41 collides with the main body 10, it is converted into a vertically downward force on the inclined surface 11, and the air-land robot 1 can suitably obtain lift.
  • the air-and-land robot 1 can switch the transmission destination of the rotational force of the motor by a simple operation of sliding the shaft 20, and can easily switch between traveling and flying.
  • the air-and-land robot 1 can be made lighter, the manufacturing cost can be reduced, and the manufacturing process can be simplified.
  • the air-and-land robot 1 can reduce the loss of thrust of the propeller 41 arranged on the tire portion 30. Further, since the main body 10 has the inclined surface 11, the air-and-land robot 1 can convert the thrust in which a collision with the main body 10 is unavoidable due to its structure vertically downward, and can further reduce the loss of the thrust of the propeller 41.
  • the air-and-land robot 1 can realize stable running.
  • the non-rotating tire 38 plays a role of protecting the propeller 41 during flight, so that the inside of the building and the tunnel can be inspected or the building can be invaded in the event of a fire.
  • the air-land dual-purpose robot 1 can integrally realize the functions of both an unmanned aerial vehicle and an unmanned ground vehicle by traveling and flying in a building such as a nuclear power plant where it is difficult for people to enter.
  • the air-and-land robot 1 can be used as a security drone, it can rush to the site by flight or travel in an area where it cannot fly due to obstacles such as utility poles, so that the monitoring area can be expanded and a long time can be achieved. Can be monitored.
  • FIG. 5 is a conceptual diagram corresponding to FIG. 3, illustrating a first modification of the connection mechanism.
  • 5 (A) shows a state in which neither flight nor running is performed
  • FIG. 5 (B) shows a state in running
  • FIG. 5 (C) shows a state in flight.
  • the shaft 120 has an outer sleeve 112 and an inner sleeve 113 in this order from the tire portion side.
  • the inner wheel coupling portion 132 has an inner wheel gear 133 and a synchronizer ring 133a on the side facing the propeller coupling portion 142.
  • the outer wheel coupling portion 136 has an outer wheel gear 137 and a synchronizer ring 137a on a side opposite to the side facing the propeller coupling portion 142.
  • the inner wheel gear 133 and the outer wheel gear 137 mesh with the inner sleeve 113 and the outer sleeve 112, and the rotational force of the motor is transmitted from the shaft 120 (see FIG. 5B).
  • the propeller coupling portion 142 has a propeller gear 143 and a synchronizer ring 143a on a surface facing the inner wheel coupling portion 132.
  • the propeller gear 143 meshes with the inner sleeve 113, and the rotational force of the motor is transmitted from the shaft 120 (see FIG. 5C).
  • the air-and-land robot can reduce the generation of noise when switching between running and flying.
  • FIG. 6 is a conceptual diagram corresponding to FIG. 3, illustrating a second modification of the connection mechanism.
  • FIG. 6A shows a state in which neither flight nor running is performed
  • FIG. 6B shows a state during running
  • FIG. 6C shows a state during flight.
  • the tire portion 30 of the air-and-land robot 1 has an inner wheel 31, an outer wheel 35 and a propeller 41, whereas the tire portion of the air-and-land robot of the second modification has a wheel 231 and a propeller 241 and has a wheel 231 and a propeller 241.
  • the propeller 241 is connected to the shaft 220 by a tire shaft 230a that is not coaxial with the shaft 220.
  • the shaft 220 has a flight gear 212 and a traveling gear 213 in order from the tire portion side.
  • the flight gear 212 and the traveling gear 213 have external teeth.
  • the wheel coupling portion 232 of the wheel 231 has a wheel gear 233 having external teeth on the side facing the propeller coupling portion 242.
  • the wheel coupling portion 232 is rotatably supported at a predetermined position by a bearing or the like with respect to the tire portion shaft 230a.
  • the wheel gear 233 meshes with the traveling gear 213, and the rotational force of the motor is transmitted from the shaft 220 (see FIG. 6B). At this time, the tire portion shaft 230a and the propeller coupling portion 242 do not rotate.
  • the propeller coupling portion 242 of the propeller 241 has a propeller gear 243 having external teeth on the side facing the wheel coupling portion 232.
  • the propeller coupling portion 242 is rotatably supported at a predetermined position by a bearing or the like with respect to the tire portion shaft 230a.
  • the propeller gear 243 meshes with the flight gear 212, and the rotational force of the motor is transmitted from the shaft 220 (see FIG. 6C). At this time, the tire portion shaft 230a and the wheel coupling portion 232 do not rotate.
  • the propeller 241 does not have to be arranged between the pair of wheels or on the inner peripheral side of the tire, and there is a degree of freedom in design.
  • FIG. 7 is an external perspective view corresponding to FIG. 1, showing a first modification of the air-land robot 1.
  • lift is the vertically downward component of the thrust of the propeller.
  • the angle ⁇ of the tire portion 30 may be variable by the angle control mechanism.
  • the angle control mechanism is provided, for example, on the shaft 20 or its connection destination, and controls the angle ⁇ of the tire portion 30 (the angle between the shaft 20 and the tire portion rotation shaft 30a).
  • the angle control mechanism is controlled by the control unit 16 based on instructions from the user, a program stored in advance, and the like in order to control the attitude of the air-land robot 1 during flight, control the direction of travel, and control lift. To. It is preferable that the angle control mechanism can individually control each tire portion 30.
  • the air-and-land robot 1 can control the angle ⁇ of the tire portion 30 during traveling and flight, the air-and-land robot 1 can realize optimum movement for both traveling and flight. For example, when traveling, stable traveling can be realized by controlling the angle ⁇ to 90 degrees. On the other hand, during flight (during hovering), the thrust can be used as lift without loss by controlling the angle ⁇ to 0 degrees.
  • FIG. 8 is an external perspective view corresponding to FIG. 1, showing a second modification of the air-and-land robot 1.
  • the flying car robot 301 has a front arm 318 provided in the lower front of the main body 310 and a rear arm 319 arranged in the lower rear of the main body 310.
  • Each shaft 320 is rotatably supported by a front arm 318 or a rear arm 319, respectively.
  • the shaft 320 and the tire portion 330 are attached via the front arm 318 and the rear arm 319, so that the degree of freedom of the angle of the shaft 320 with respect to the main body 310 is increased and the angle ⁇ is reduced. can.
  • the air-and-land robot 301 can reduce the component of the thrust that collides with the main body 310, makes it easier to obtain a desired lift, and can improve the flight performance.
  • the front arm 318 and the rear arm 319 are placed on the ground by locating the tire portion 330 above the front arm 318 and the rear arm 319 during flight. Can function as a landing gear (skid) against.
  • the tire portion 30 does not have to have the tire 38.
  • the ground plane 39 is provided on the wheels 31 and 35.
  • the rotational drive source of the tire portion 30 may be an engine instead of the motor.
  • the number of tire portions 30 whose connection destination of the rotation drive source is controlled by the switching mechanism 50 is not limited to four, but may be two as long as the functions of the air-land robot 1 can be realized. ..
  • the unevenness (male / female) relationship between the inner wheel gear 33 and the outer wheel gear 37 and the inner traveling gear 14 and the outer traveling gear 12 and the unevenness relationship between the propeller gear 43 and the flight gear 13 may be reversed.
  • the flying car robot 1 may have wings for flight control.
  • the moving body according to the present invention has been described by applying it to the air-and-land robot 1 as an example, it can also be applied to an air-and-land vehicle operated by a human. In this case, since the moving body can fly and rush to the site and then travel overland, it can function as a doctor helicopter and an ambulance. Further, the moving body according to the present invention can also be applied to an amphibious robot and an amphibious vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Remote Sensing (AREA)
  • Toys (AREA)

Abstract

Provided is a mobile body having a simple and light structure. The present invention comprises: a main body; a wheel that rotates about a wheel rotation axis and moves the main body over the ground; a propeller that rotates about a propeller rotation axis and moves the main body in the air or water; a shaft that is rotated by a rotary drive source; a connection mechanism that connects the shaft to the wheel or the propeller, and rotates the wheel or propeller about the wheel rotation axis or the propeller rotation axis, respectively; and a switching mechanism that switches the connection destination of the shaft to the wheel or the propeller.

Description

移動体Mobile
 本発明は、地面の走行及び空中又は水中の移動が可能な移動体に関する。 The present invention relates to a moving body capable of traveling on the ground and moving in the air or underwater.
 例えば、特許文献1には、回転ドライブ手段により地上を走行し、ロータブレードにより飛行する移動体が開示されている。 For example, Patent Document 1 discloses a moving body that travels on the ground by a rotary drive means and flies by a rotor blade.
 特許文献2には、車輪の転動による陸上走行モードと、スクリュープロペラの回転に伴う推進力による水上航行モードとを切り替え可能にした水陸両用車のインホイールモータ付転舵システムが開示されている。 Patent Document 2 discloses a steering system with an in-wheel motor for an amphibious vehicle that can switch between a land traveling mode by rolling a wheel and a water navigation mode by a propulsive force accompanying the rotation of a screw propeller. ..
特表2015−523933号公報Japanese Patent Application Laid-Open No. 2015-523933 特開2016−22756号公報Japanese Unexamined Patent Publication No. 2016-22756
 特許文献1の移動体は、回転ドライブ手段とロータとに異なる回転機構を設けているため、構造が複雑化している。 The moving body of Patent Document 1 has a complicated structure because different rotation mechanisms are provided for the rotary drive means and the rotor.
 特許文献2のシステムは、ホイール内にモータを設置したことにより、スクリュープロペラが小さくなり、飛行のための必要な推力が得られないおそれがある。 In the system of Patent Document 2, since the motor is installed in the wheel, the screw propeller becomes small, and there is a possibility that the necessary thrust for flight cannot be obtained.
 本発明はこのような事情を考慮してなされたもので、簡易及び軽量な構造を有する移動体を提供することを目的とする。 The present invention has been made in consideration of such circumstances, and an object of the present invention is to provide a moving body having a simple and lightweight structure.
 本発明に係る移動体は、上述した課題を解決するために、本体と、ホイール回転軸回りに回転し、前記本体を地面上で移動させるホイールと、プロペラ回転軸回りに回転し、前記本体を空中又は水中で移動させるプロペラと、回転駆動源により回転されるシャフトと、前記シャフトを前記ホイール又は前記プロペラに接続し、前記ホイール回転軸回り又は前記プロペラ回転軸回りに前記ホイール又は前記プロペラを回転させる接続機構と、前記シャフトの接続先を前記ホイール又は前記プロペラに切り替える切替機構と、を備える。 In order to solve the above-mentioned problems, the moving body according to the present invention rotates around the main body and the wheel rotation axis, and rotates around the wheel that moves the main body on the ground and the propeller rotation axis, and causes the main body. A propeller to be moved in the air or water, a shaft rotated by a rotation drive source, and the shaft are connected to the wheel or the propeller, and the wheel or the propeller is rotated around the wheel rotation axis or the propeller rotation axis. It is provided with a connection mechanism for making the shaft connect to the wheel or a switching mechanism for switching the connection destination of the shaft to the wheel or the propeller.
 本発明に係る移動体は、簡易及び軽量な構造を有することができる。 The moving body according to the present invention can have a simple and lightweight structure.
空陸両用ロボットの外観斜視図。External perspective view of a flying car robot. タイヤ部の分解図。Exploded view of the tire part. タイヤ部及びシャフトの接続機構を特に説明する図。The figure which specifically explains the connection mechanism of a tire part and a shaft. 切替機構を説明する概念図。A conceptual diagram illustrating the switching mechanism. 接続機構の第1変形例を説明する概念図。The conceptual diagram explaining the 1st modification of the connection mechanism. 接続機構の第2変形例を説明する概念図。The conceptual diagram explaining the 2nd modification of the connection mechanism. 空陸両用ロボットの第1変形例を示す外観斜視図。The external perspective view which shows the 1st modification of the air-and-land robot. 空陸両用ロボットの第2変形例を示す外観斜視図。The external perspective view which shows the 2nd modification of the air-and-land robot.
 本発明に係る移動体の実施形態を添付図面に基づいて説明する。本実施形態においては、本発明の移動体を空陸両用ロボット1に適用した場合を例として説明する。 An embodiment of the moving body according to the present invention will be described with reference to the attached drawings. In the present embodiment, a case where the mobile body of the present invention is applied to the air-land amphibious robot 1 will be described as an example.
 図1は、空陸両用ロボット1の外観斜視図である。
 図2は、タイヤ部30の分解図である。
 図3は、タイヤ部30及びシャフト20の接続機構を特に説明する図である。図3においては、説明のためタイヤ部30の接続機構に関連する部分のみを図示し、他の構成は省略した。
FIG. 1 is an external perspective view of the flying car robot 1.
FIG. 2 is an exploded view of the tire portion 30.
FIG. 3 is a diagram particularly illustrating a connection mechanism between the tire portion 30 and the shaft 20. In FIG. 3, for the sake of explanation, only the portion related to the connection mechanism of the tire portion 30 is shown, and other configurations are omitted.
 以下の説明において、「前」、「後」、「上」、「下」、「右」、及び「左」は、図1における定義「Fr.」、「Re.」、「To.」、「Bo.」、「R」、及び「L」に従う。 In the following description, "front", "rear", "top", "bottom", "right", and "left" are defined in FIG. 1 as "Fr.", "Re.", "To.", Follow "Bo.", "R", and "L".
 空陸両用ロボット1は、本体10と、シャフト20と、タイヤ部30と、を有する。 The flying car robot 1 has a main body 10, a shaft 20, and a tire portion 30.
 本体10は、モータや、空陸両用ロボット1を制御するためのコントロールユニット16等を収容する。本体10は、左右側面の少なくとも一部であって、タイヤ部30と対向する面に、傾斜面11を有する。 The main body 10 accommodates a motor, a control unit 16 for controlling an air-land robot 1, and the like. The main body 10 has an inclined surface 11 on a surface that is at least a part of the left and right side surfaces and faces the tire portion 30.
 シャフト20は、本体10の左右側面においてそれぞれ前後2箇所に配置される。シャフト20は、本体10側の一端でモータ(回転駆動源)に接続されて、回転される。モータは、4本のシャフト20を独立して回転させる4つのモータ(図4のモータ60)であってもよいし、4本のシャフト20を共通で回転させる1つのモータであってもよい。シャフト20は、タイヤ部30側の他端から順に、外走行ギア12と、飛行ギア13と、内走行ギア14と、を有する。外走行ギア12、飛行ギア13及び内走行ギア14は、それぞれ外歯を有する凸状のギアである。飛行ギア13及び内走行ギア14は、互いに反対方向に凸となるように配置されており、これらの間にはストッパー15が配置される。ストッパー15は、飛行ギア13及び内走行ギア14の外径よりも大きい外径を有し、飛行ギア13及び内走行ギア14を連結する。 The shaft 20 is arranged at two front and rear positions on the left and right side surfaces of the main body 10. The shaft 20 is connected to a motor (rotational drive source) at one end on the main body 10 side and is rotated. The motor may be four motors (motor 60 in FIG. 4) that rotate the four shafts 20 independently, or one motor that rotates the four shafts 20 in common. The shaft 20 has an outer traveling gear 12, a flight gear 13, and an inner traveling gear 14 in order from the other end on the tire portion 30 side. The outer traveling gear 12, the flight gear 13, and the inner traveling gear 14 are convex gears having outer teeth, respectively. The flight gear 13 and the inner traveling gear 14 are arranged so as to be convex in opposite directions to each other, and a stopper 15 is arranged between them. The stopper 15 has an outer diameter larger than the outer diameter of the flight gear 13 and the inner travel gear 14, and connects the flight gear 13 and the inner travel gear 14.
 タイヤ部30は、各シャフト20の他端側に接続されて、本体10の左右側面のそれぞれ前後2箇所に配置される。タイヤ部30は、シャフト20を介してモータの回転力が伝達されることにより、シャフト20の回転軸と同軸のタイヤ部回転軸30a回りに回転する。タイヤ部30は、このタイヤ部回転軸30a(ホイール回転軸30b及びプロペラ回転軸30c)が、地面(水平面)に対して非平行となるように、配置されている。 The tire portion 30 is connected to the other end side of each shaft 20 and is arranged at two front and rear positions on the left and right side surfaces of the main body 10. The tire portion 30 rotates around the tire portion rotation shaft 30a coaxial with the rotation shaft of the shaft 20 by transmitting the rotational force of the motor via the shaft 20. The tire portion 30 is arranged so that the tire portion rotation shaft 30a (wheel rotation shaft 30b and propeller rotation shaft 30c) is non-parallel to the ground (horizontal plane).
 すなわち、図1に示すように、シャフト20は、タイヤ部30側の他端が斜め上方に向かって本体10から伸びる。シャフト20の他端側には、タイヤ部30の内外側面がシャフト20と直交し、かつタイヤ部30の内外側面が地面に対して角度θをなすように、タイヤ部30が配置されている。角度θは、例えば上述した傾斜面11との関係で決定される。すなわち、角度θは、プロペラ41(後述)の回転に伴う推力を傾斜面11が受け、この傾斜面11に衝突した推力の一部を鉛直下向きの力、すなわち揚力に変換することが可能なように決定される(例えば0度<θ<10度)。また、角度θが小さいほど、推力の損失を小さくでき飛行には有効であるため、走行可能な範囲で角度θが小さい方が好ましい。 That is, as shown in FIG. 1, the other end of the shaft 20 on the tire portion 30 side extends diagonally upward from the main body 10. On the other end side of the shaft 20, the tire portion 30 is arranged so that the inner and outer surfaces of the tire portion 30 are orthogonal to the shaft 20 and the inner and outer surfaces of the tire portion 30 form an angle θ with respect to the ground. The angle θ is determined, for example, in relation to the inclined surface 11 described above. That is, the angle θ is such that the inclined surface 11 receives the thrust accompanying the rotation of the propeller 41 (described later), and a part of the thrust colliding with the inclined surface 11 can be converted into a vertically downward force, that is, lift. Is determined (for example, 0 degree <θ <10 degree). Further, the smaller the angle θ is, the smaller the thrust loss can be and the more effective it is for flight. Therefore, it is preferable that the angle θ is small within the range in which the vehicle can travel.
 タイヤ部30は、内ホイール31と、外ホイール35と、タイヤ38と、プロペラ41と、を有する。 The tire portion 30 has an inner wheel 31, an outer wheel 35, a tire 38, and a propeller 41.
 内ホイール31及び外ホイール35は、合金や樹脂からなり、一定の間隔を有して対向配置される。内ホイール31及び外ホイール35は、シャフト20の回転軸と同軸のホイール回転軸30bを有する。 The inner wheel 31 and the outer wheel 35 are made of alloy or resin and are arranged facing each other with a certain interval. The inner wheel 31 and the outer wheel 35 have a wheel rotation shaft 30b coaxial with the rotation shaft of the shaft 20.
 内ホイール31は、プロペラ41に関して本体10側に配置される。内ホイール31は、回転中心に、シャフト20を貫通させる内ホイール結合部32を有する。内ホイール結合部32は、プロペラ結合部42と対向する側に、内歯を有する凹状の内ホイールギア33を有する。外ホイール35は、プロペラ41に関して内ホイール31の反対側に配置される。外ホイール35は、回転中心に、シャフト20を貫通させる外ホイール結合部36を有する。外ホイール結合部36は、プロペラ結合部42と対向する側と反対側に、内歯を有する凹状の外ホイールギア37を有する。内ホイールギア33及び外ホイールギア37は、内走行ギア14及び外走行ギア12とそれぞれ噛み合い、シャフト20からモータの回転力が伝達される(図3(B)参照)。 The inner wheel 31 is arranged on the main body 10 side with respect to the propeller 41. The inner wheel 31 has an inner wheel coupling portion 32 that penetrates the shaft 20 at the center of rotation. The inner wheel coupling portion 32 has a concave inner wheel gear 33 having internal teeth on the side facing the propeller coupling portion 42. The outer wheel 35 is arranged on the opposite side of the inner wheel 31 with respect to the propeller 41. The outer wheel 35 has an outer wheel coupling portion 36 that penetrates the shaft 20 at the center of rotation. The outer wheel coupling portion 36 has a concave outer wheel gear 37 having internal teeth on the side opposite to the side facing the propeller coupling portion 42. The inner wheel gear 33 and the outer wheel gear 37 mesh with the inner traveling gear 14 and the outer traveling gear 12, respectively, and the rotational force of the motor is transmitted from the shaft 20 (see FIG. 3B).
 タイヤ38は、内ホイール31及び外ホイール35の外周に配置される。タイヤ38(及び内ホイール31、外ホイール35)は、地面等に接地しながらタイヤ部回転軸30a(ホイール回転軸30b)回りに回転することにより、空陸両用ロボット1を地面上を走行して移動させる。タイヤ38(ホイール)は、地面に対して平行な、地面に対する接地面39を有する。すなわち、タイヤ部回転軸30aが地面に対して非平行に設けられていることに伴い、地面走行時の安定性を確保する観点から、タイヤ38は、内側面側の径38aよりも大きい外側面側の径38bを有する。これにより、タイヤ部回転軸30aが地面に対して角度θをなす場合であっても、走行時において、空陸両用ロボット1は、タイヤ38の接地面積を大きくでき、効果的に加速、停止できる。 The tire 38 is arranged on the outer periphery of the inner wheel 31 and the outer wheel 35. The tire 38 (and the inner wheel 31, the outer wheel 35) rotates around the tire portion rotation axis 30a (wheel rotation axis 30b) while touching the ground or the like, so that the air-land amphibious robot 1 travels on the ground and moves. Let me. The tire 38 (wheel) has a ground plane 39 parallel to the ground. That is, since the tire portion rotation shaft 30a is provided non-parallel to the ground, the tire 38 has an outer surface larger than the diameter 38a on the inner side surface side from the viewpoint of ensuring stability when traveling on the ground. It has a side diameter of 38b. As a result, even when the tire portion rotation shaft 30a forms an angle θ with respect to the ground, the air-land amphibious robot 1 can increase the contact area of the tire 38 during traveling, and can effectively accelerate and stop.
 タイヤ38は、ゴム製の空気入りタイヤや非空気入りタイヤを適用し得る。タイヤ38が非空気入りタイヤである場合、飛行時における空気圧の変化により、空気抜けやタイヤ38の破裂等のトラブルを低減できる。 As the tire 38, a rubber pneumatic tire or a non-pneumatic tire can be applied. When the tire 38 is a non-pneumatic tire, troubles such as air bleeding and bursting of the tire 38 can be reduced due to a change in air pressure during flight.
 プロペラ41は、内ホイール31と外ホイール35との間に配置される。プロペラ41は、シャフト20の回転軸と同軸のプロペラ回転軸30cを有する。プロペラ41は、プロペラ回転軸30cから放射状に配置された所要数の翼45を有する。プロペラ41は、プロペラ回転軸30c回りに回転し、本体10を空中で移動させる。プロペラ41は、回転中心に、シャフト20を貫通させるプロペラ結合部42を有する。プロペラ結合部42は、内ホイール結合部32と対向する側に、内歯を有する凹状のプロペラギア43を有する。プロペラギア43は、飛行ギア13と噛み合い、シャフト20からモータの回転力が伝達される(図3(C)参照)。 The propeller 41 is arranged between the inner wheel 31 and the outer wheel 35. The propeller 41 has a propeller rotating shaft 30c coaxial with the rotating shaft of the shaft 20. The propeller 41 has a required number of blades 45 arranged radially from the propeller rotation shaft 30c. The propeller 41 rotates around the propeller rotation shaft 30c and moves the main body 10 in the air. The propeller 41 has a propeller coupling portion 42 that penetrates the shaft 20 at the center of rotation. The propeller coupling portion 42 has a concave propeller gear 43 having internal teeth on the side facing the inner wheel coupling portion 32. The propeller gear 43 meshes with the flight gear 13, and the rotational force of the motor is transmitted from the shaft 20 (see FIG. 3C).
 プロペラ41は、空陸両用ロボット1に求められる推力が得られるような寸法(外径)を有する。これに伴い、内ホイール31、外ホイール35及びタイヤ38は、プロペラ41の寸法に対応する寸法(内径及び外径)を有する。一例としては、プロペラ41の外径、すなわち内ホイール31と外ホイール35(以下、内ホイール31と外ホイール35をまとめて「ホイール31、35」という場合がある。)の内径は、通常の四輪自動車等のホイールの内径と車体との寸法比率よりも大きくなることが、プロペラ41の推力を得る観点から好ましい。 The propeller 41 has dimensions (outer diameter) such that the thrust required for the air-and-land robot 1 can be obtained. Along with this, the inner wheel 31, the outer wheel 35 and the tire 38 have dimensions (inner diameter and outer diameter) corresponding to the dimensions of the propeller 41. As an example, the outer diameter of the propeller 41, that is, the inner diameter of the inner wheel 31 and the outer wheel 35 (hereinafter, the inner wheel 31 and the outer wheel 35 may be collectively referred to as “ wheels 31, 35”) is four. It is preferable that the diameter is larger than the dimensional ratio between the inner diameter of the wheel of a wheeled vehicle or the like and the vehicle body from the viewpoint of obtaining the thrust of the propeller 41.
 なお、内ホイール結合部32、外ホイール結合部36及びプロペラ結合部42は、貫通するシャフト20の回転が伝達されず、かつシャフト20に所定位置で支持されるよう、ベアリング等の所要の構造を有している。また、内走行ギア14、外走行ギア12及び飛行ギア13と、これらと噛み合う内ホイールギア33、外ホイールギア37及びプロペラギア43は、シャフト20をホイール31、35又はプロペラ41に接続し、ホイール回転軸30b回り又はプロペラ回転軸30c回りにホイール31、35又はプロペラ41を回転させる接続機構として機能する。また、図3(A)の状態は、内走行ギア14、外走行ギア12及び飛行ギア13が、内ホイールギア33、外ホイールギア37及びプロペラギア43のいずれとも接続されていないニュートラルな状態である。 The inner wheel coupling portion 32, the outer wheel coupling portion 36, and the propeller coupling portion 42 have a required structure such as a bearing so that the rotation of the shaft 20 penetrating the shaft 20 is not transmitted and is supported by the shaft 20 at a predetermined position. Have. Further, the inner traveling gear 14, the outer traveling gear 12, and the flight gear 13, and the inner wheel gear 33, the outer wheel gear 37, and the propeller gear 43 that mesh with these, connect the shaft 20 to the wheels 31, 35, or the propeller 41, and the wheels. It functions as a connection mechanism for rotating the wheels 31, 35 or the propeller 41 around the rotating shaft 30b or around the propeller rotating shaft 30c. Further, the state of FIG. 3A is a neutral state in which the inner traveling gear 14, the outer traveling gear 12, and the flight gear 13 are not connected to any of the inner wheel gear 33, the outer wheel gear 37, and the propeller gear 43. be.
 空陸両用ロボット1は、シャフト20の接続先をホイール31、35又はプロペラ41に切り替える切替機構50をさらに有する。図4は、切替機構50を説明する概念図である。図4においては、説明の簡素化のため、左右に対向する一組のタイヤ部30及びシャフト20のみが図示され、他の構成は省略されている。 The air-and-land robot 1 further has a switching mechanism 50 for switching the connection destination of the shaft 20 to the wheels 31, 35 or the propeller 41. FIG. 4 is a conceptual diagram illustrating the switching mechanism 50. In FIG. 4, for simplification of the description, only a set of tire portions 30 and a shaft 20 facing each other on the left and right are shown, and other configurations are omitted.
 切替機構50は、シャフト20を軸方向にスライドさせるための機構であり、第一ラック51と、第二ラック52と、第三ラック53と、第四ラック54と、第一ピニオン55と、第二ピニオン56と、第三ピニオン57と、を有する。 The switching mechanism 50 is a mechanism for sliding the shaft 20 in the axial direction, and has a first rack 51, a second rack 52, a third rack 53, a fourth rack 54, a first pinion 55, and a first pinion 55. It has a second pinion 56 and a third pinion 57.
 第一ラック51及び第二ラック52は、地面とほぼ平行、かつ所定の間隔を介して互いに対向して配置される。第三ラック53及び第四ラック54は、シャフト20を回転させる各モータ60よりも本体10側に設けられる。第一ピニオン55は、図示しないモータにより正逆方向に回転する。第一ピニオン55は、第一ラック51及び第二ラック52と噛み合い、モータの回転方向に応じて第一ラック51及び第二ラック52を互いに左右逆方向にスライドさせる。 The first rack 51 and the second rack 52 are arranged substantially parallel to the ground and facing each other with a predetermined interval. The third rack 53 and the fourth rack 54 are provided on the main body 10 side of each motor 60 that rotates the shaft 20. The first pinion 55 is rotated in the forward and reverse directions by a motor (not shown). The first pinion 55 meshes with the first rack 51 and the second rack 52, and slides the first rack 51 and the second rack 52 in opposite directions to each other according to the rotation direction of the motor.
 第二ピニオン56は、所要の角度を形成して配置される第一ラック51及び第三ラック53と噛み合う。第二ピニオン56は、第一ラック51のスライドに伴い所定位置で回転し、その回転を第三ラック53に伝達して第三ラック53をスライドさせる。これにより、第三ラック53と接続されたシャフト20は、軸方向にスライドする。第三ピニオン57は、所要の角度を形成して配置される第一ラック51及び第四ラック54と噛み合う。第三ピニオン57は、第二ラック52のスライドに伴い所定位置で回転し、その回転を第四ラック54に伝達して第四ラック54をスライドさせる。これにより、第四ラック54と接続されたシャフト20は、軸方向にスライドする。 The second pinion 56 meshes with the first rack 51 and the third rack 53 arranged at a required angle. The second pinion 56 rotates at a predetermined position along with the slide of the first rack 51, and the rotation is transmitted to the third rack 53 to slide the third rack 53. As a result, the shaft 20 connected to the third rack 53 slides in the axial direction. The third pinion 57 meshes with the first rack 51 and the fourth rack 54 arranged at a required angle. The third pinion 57 rotates at a predetermined position along with the slide of the second rack 52, and the rotation is transmitted to the fourth rack 54 to slide the fourth rack 54. As a result, the shaft 20 connected to the fourth rack 54 slides in the axial direction.
 このような切替機構50は、センサ等の検出結果に基づいて、コントロールユニット16により制御され、一例として、図4(A)に示す状態と図4(B)に示す状態との間で遷移する。センサは、例えばシャフト20のストッパー15に、内走行ギア14と内ホイールギア33とが適切な位置で噛み合ってること、及び飛行ギア13とプロペラギア43とが適切な位置で噛み合ってることを検出するセンサである。 Such a switching mechanism 50 is controlled by the control unit 16 based on the detection result of the sensor or the like, and as an example, transitions between the state shown in FIG. 4A and the state shown in FIG. 4B. .. The sensor detects, for example, that the inner traveling gear 14 and the inner wheel gear 33 mesh with the stopper 15 of the shaft 20 at an appropriate position, and that the flight gear 13 and the propeller gear 43 mesh with each other at an appropriate position. It is a sensor.
 例えば空陸両用ロボット1が走行する際には、切替機構50は、内走行ギア14と内ホイールギア33とが適切な位置で噛み合ってることをセンサが検出するまで、シャフト20を本体10側にスライドさせる。また、空陸両用ロボット1が飛行する際には、切替機構50は、飛行ギア13とプロペラギア43とが適切な位置で噛み合ってることをセンサが検出するまで、シャフト20を本体10側と反対方向にスライドさせる。センサには、例えば圧力センサや近接センサ等を適用し得る。 For example, when the flying car robot 1 is traveling, the switching mechanism 50 slides the shaft 20 toward the main body 10 until the sensor detects that the inner traveling gear 14 and the inner wheel gear 33 are engaged with each other at an appropriate position. Let me. Further, when the flying car robot 1 flies, the switching mechanism 50 keeps the shaft 20 in the direction opposite to the main body 10 side until the sensor detects that the flight gear 13 and the propeller gear 43 are engaged at an appropriate position. Slide to. For example, a pressure sensor, a proximity sensor, or the like can be applied to the sensor.
 次に、本実施形態における空陸両用ロボット1の走行時及び飛行時の動作について説明する。 Next, the operation of the air-and-land robot 1 during traveling and flight in the present embodiment will be described.
 空陸両用ロボット1は、走行時においては、モータによるシャフト20の回転力をホイール31、35に伝達してホイール31、35及びタイヤ38のみが回転するように制御する。具体的には、空陸両用ロボット1は、切替機構50を制御しシャフト20をスライドさせて、図3(B)に示すように、シャフト20の外走行ギア12及び内走行ギア14がホイール31、35の内ホイールギア33及び外ホイールギア37と噛み合うように制御する。このとき、シャフト20のストッパー15が作用し、外走行ギア12及び内走行ギア14と内ホイールギア33及び外ホイールギア37との適切な噛み合い位置でシャフト20のスライドが停止するように作用し、シャフト20やホイール31、35に軸方向の過剰な負荷がかからないようになっている。 The air-and-land robot 1 transmits the rotational force of the shaft 20 by the motor to the wheels 31 and 35 to control so that only the wheels 31, 35 and the tires 38 rotate during traveling. Specifically, the air-and-land robot 1 controls the switching mechanism 50 and slides the shaft 20, and as shown in FIG. 3B, the outer traveling gear 12 and the inner traveling gear 14 of the shaft 20 are the wheels 31. It is controlled so as to mesh with the inner wheel gear 33 and the outer wheel gear 37 of the 35. At this time, the stopper 15 of the shaft 20 acts to stop the slide of the shaft 20 at an appropriate meshing position between the outer traveling gear 12 and the inner traveling gear 14 and the inner wheel gear 33 and the outer wheel gear 37. The shaft 20, wheels 31, and 35 are designed so that an excessive load in the axial direction is not applied.
 空陸両用ロボット1は、走行に適した回転数でモータを制御し、シャフト20を介してホイール31、35を回転させる。これにより、ホイール31、35は回転し、空陸両用ロボット1は地上を走行する。このとき、タイヤ38が接地面39を有するように内側面側の径38aよりも大きい外側面側の径38bを有するため、接地面39を有さない場合に比べて、タイヤ38と地面との接地面積を大きくできる。これにより、空陸両用ロボット1は、効果的に加速・停止ができる。 The air-and-land robot 1 controls the motor at a rotation speed suitable for traveling, and rotates the wheels 31 and 35 via the shaft 20. As a result, the wheels 31 and 35 rotate, and the flying car robot 1 travels on the ground. At this time, since the tire 38 has a diameter 38b on the outer surface side that is larger than the diameter 38a on the inner side surface side so as to have the ground contact surface 39, the tire 38 and the ground are compared with the case where the tire 38 does not have the ground contact surface 39. The ground contact area can be increased. As a result, the flying car robot 1 can effectively accelerate and stop.
 空陸両用ロボット1は、飛行時においては、モータによるシャフト20の回転力をプロペラ41に伝達してプロペラ41のみが回転するように制御する。具体的には、空陸両用ロボット1は、切替機構50を制御しシャフト20をスライドさせて、図3(C)に示すように、シャフト20の飛行ギア13がプロペラ41のプロペラギア43と噛み合うように制御する。また、空陸両用ロボット1は、飛行に適した回転数でモータを制御し、シャフト20を介してホイール31、35を回転させる。 The air-and-land robot 1 transmits the rotational force of the shaft 20 by the motor to the propeller 41 during flight to control only the propeller 41 to rotate. Specifically, the flying car robot 1 controls the switching mechanism 50 and slides the shaft 20 so that the flight gear 13 of the shaft 20 meshes with the propeller gear 43 of the propeller 41 as shown in FIG. 3 (C). To control. Further, the air-and-land robot 1 controls the motor at a rotation speed suitable for flight, and rotates the wheels 31 and 35 via the shaft 20.
 プロペラ41は回転して推力を得て、空陸両用ロボット1は空中を飛行する。このとき、タイヤ部30が角度θを有して配置され、かつ本体10は傾斜面11を有する。このため、プロペラ41の推力は、本体10に衝突するが傾斜面11で鉛直下向きの力に変換され、空陸両用ロボット1は好適に揚力を得ることができる。 The propeller 41 rotates to obtain thrust, and the air-land robot 1 flies in the air. At this time, the tire portion 30 is arranged with an angle θ, and the main body 10 has an inclined surface 11. Therefore, although the thrust of the propeller 41 collides with the main body 10, it is converted into a vertically downward force on the inclined surface 11, and the air-land robot 1 can suitably obtain lift.
 このような空陸両用ロボット1は、以上のように構成することで、簡易及び軽量な構造を実現できる。すなわち、空陸両用ロボット1は、シャフト20のスライドという容易な動作で、モータの回転力の伝達先を切り替えることができ、走行と飛行を簡易に切り替えることができる。これに伴い、空陸両用ロボット1は、軽量化でき、製造コストの低減、製造工程の簡素化も実現できる。 By configuring such an air-land robot 1 as described above, a simple and lightweight structure can be realized. That is, the air-and-land robot 1 can switch the transmission destination of the rotational force of the motor by a simple operation of sliding the shaft 20, and can easily switch between traveling and flying. Along with this, the air-and-land robot 1 can be made lighter, the manufacturing cost can be reduced, and the manufacturing process can be simplified.
 また、タイヤ部30が地面に対して垂直ではなく、角度θを有して配置されているため、空陸両用ロボット1は、タイヤ部30に配置されるプロペラ41の推力の損失を低減できる。また、空陸両用ロボット1は、本体10が傾斜面11を有することにより、構造上本体10への衝突が避けられない推力を鉛直下向きに変換でき、プロペラ41の推力の損失をさらに低減できる。 Further, since the tire portion 30 is not perpendicular to the ground and is arranged at an angle θ, the air-and-land robot 1 can reduce the loss of thrust of the propeller 41 arranged on the tire portion 30. Further, since the main body 10 has the inclined surface 11, the air-and-land robot 1 can convert the thrust in which a collision with the main body 10 is unavoidable due to its structure vertically downward, and can further reduce the loss of the thrust of the propeller 41.
 さらに、タイヤ38が接地面39を有するため、空陸両用ロボット1は、安定した走行を実現できる。 Further, since the tire 38 has the ground contact surface 39, the air-and-land robot 1 can realize stable running.
 このような空陸両用ロボット1は、飛行時においては、回転しないタイヤ38がプロペラ41の防護の役割をなすため、建物及びトンネル内を点検したり、火災の際に建物に侵入したりするためのロボットとして好適に用いられる。また、空陸両用ロボット1は、原子力発電所等、人の立ち入りが困難な建物において走行及び飛行することにより、無人航空機及び無人地上車両の両者の機能を一体的に実現できる。さらに、空陸両用ロボット1は、警備用ドローンとして用いられることにより、飛行により現場に急行したり、電柱等の障害物により飛行できない領域では走行したりできるため、監視領域を拡大し、長時間の監視ができる。 In such an air-and-land robot 1, the non-rotating tire 38 plays a role of protecting the propeller 41 during flight, so that the inside of the building and the tunnel can be inspected or the building can be invaded in the event of a fire. It is suitably used as a robot. Further, the air-land dual-purpose robot 1 can integrally realize the functions of both an unmanned aerial vehicle and an unmanned ground vehicle by traveling and flying in a building such as a nuclear power plant where it is difficult for people to enter. Furthermore, since the air-and-land robot 1 can be used as a security drone, it can rush to the site by flight or travel in an area where it cannot fly due to obstacles such as utility poles, so that the monitoring area can be expanded and a long time can be achieved. Can be monitored.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.
 例えば、上述した空陸両用ロボット1においては、内歯及び外歯を有するギアの噛み合いにより接続機構を実現する例を説明したが、シンクロメッシュ式の接続機構を利用してシャフトの回転をホイール及びプロペラに伝達してもよい。ここで、図5は、接続機構の第1変形例を説明する、図3に対応する概念図である。図5(A)は飛行及び走行のいずれも行わない状態、図5(B)は走行時の状態、図5(C)は飛行時の状態を示す。 For example, in the above-mentioned air-and-land robot 1, an example of realizing a connection mechanism by meshing gears having internal teeth and external teeth has been described, but a wheel and a propeller rotate a shaft by using a synchromesh type connection mechanism. May be communicated to. Here, FIG. 5 is a conceptual diagram corresponding to FIG. 3, illustrating a first modification of the connection mechanism. 5 (A) shows a state in which neither flight nor running is performed, FIG. 5 (B) shows a state in running, and FIG. 5 (C) shows a state in flight.
 シャフト120は、タイヤ部側から順に、外スリーブ112と、内スリーブ113と、を有する。 The shaft 120 has an outer sleeve 112 and an inner sleeve 113 in this order from the tire portion side.
 内ホイール結合部132は、プロペラ結合部142と対向する側に、内ホイールギア133と、シンクロナイザーリング133aと、を有する。外ホイール結合部136は、プロペラ結合部142と対向する側と反対側に、外ホイールギア137と、シンクロナイザーリング137aと、を有する。内ホイールギア133及び外ホイールギア137は、内スリーブ113及び外スリーブ112と噛み合い、シャフト120からモータの回転力が伝達される(図5(B)参照)。 The inner wheel coupling portion 132 has an inner wheel gear 133 and a synchronizer ring 133a on the side facing the propeller coupling portion 142. The outer wheel coupling portion 136 has an outer wheel gear 137 and a synchronizer ring 137a on a side opposite to the side facing the propeller coupling portion 142. The inner wheel gear 133 and the outer wheel gear 137 mesh with the inner sleeve 113 and the outer sleeve 112, and the rotational force of the motor is transmitted from the shaft 120 (see FIG. 5B).
 プロペラ結合部142は、内ホイール結合部132と対向する側の面に、プロペラギア143と、シンクロナイザーリング143aと、を有する。プロペラギア143は、内スリーブ113と噛み合い、シャフト120からモータの回転力が伝達される(図5(C)参照)。 The propeller coupling portion 142 has a propeller gear 143 and a synchronizer ring 143a on a surface facing the inner wheel coupling portion 132. The propeller gear 143 meshes with the inner sleeve 113, and the rotational force of the motor is transmitted from the shaft 120 (see FIG. 5C).
 空陸両用ロボットは、このようなシンクロメッシュ式の接続機構を有することにより、走行と飛行を切り替える際の騒音の発生を低減できる。 By having such a synchromesh type connection mechanism, the air-and-land robot can reduce the generation of noise when switching between running and flying.
 また、接続機構は、シャフトの回転軸と、ホイール及びプロペラの回転軸が同軸でなく、平行であってもよい。ここで、図6は、接続機構の第2変形例を説明する、図3に対応する概念図である。図6(A)は飛行及び走行のいずれも行わない状態、図6(B)は走行時の状態、図6(C)は飛行時の状態を示す。 Further, in the connection mechanism, the rotation axis of the shaft and the rotation axis of the wheel and the propeller may not be coaxial but parallel. Here, FIG. 6 is a conceptual diagram corresponding to FIG. 3, illustrating a second modification of the connection mechanism. FIG. 6A shows a state in which neither flight nor running is performed, FIG. 6B shows a state during running, and FIG. 6C shows a state during flight.
 空陸両用ロボット1のタイヤ部30が内ホイール31、外ホイール35及びプロペラ41を有するのに対し、第2変形例の空陸両用ロボットのタイヤ部は、ホイール231及びプロペラ241を有し、ホイール231及びプロペラ241がシャフト220と非同軸のタイヤ部シャフト230aにより連結されている。 The tire portion 30 of the air-and-land robot 1 has an inner wheel 31, an outer wheel 35 and a propeller 41, whereas the tire portion of the air-and-land robot of the second modification has a wheel 231 and a propeller 241 and has a wheel 231 and a propeller 241. The propeller 241 is connected to the shaft 220 by a tire shaft 230a that is not coaxial with the shaft 220.
 シャフト220は、タイヤ部側から順に、飛行ギア212と、走行ギア213と、を有する。飛行ギア212及び走行ギア213は、外歯を有する。 The shaft 220 has a flight gear 212 and a traveling gear 213 in order from the tire portion side. The flight gear 212 and the traveling gear 213 have external teeth.
 ホイール231のホイール結合部232は、プロペラ結合部242と対向する側に、外歯を有するホイールギア233を有する。ホイール結合部232は、タイヤ部シャフト230aに対してベアリング等により所定位置で回転可能に支持されている。ホイールギア233は、走行ギア213と噛み合い、シャフト220からモータの回転力が伝達される(図6(B)参照)。このとき、タイヤ部シャフト230a及びプロペラ結合部242は回転しない。 The wheel coupling portion 232 of the wheel 231 has a wheel gear 233 having external teeth on the side facing the propeller coupling portion 242. The wheel coupling portion 232 is rotatably supported at a predetermined position by a bearing or the like with respect to the tire portion shaft 230a. The wheel gear 233 meshes with the traveling gear 213, and the rotational force of the motor is transmitted from the shaft 220 (see FIG. 6B). At this time, the tire portion shaft 230a and the propeller coupling portion 242 do not rotate.
 プロペラ241のプロペラ結合部242は、ホイール結合部232と対向する側に、外歯を有するプロペラギア243を有する。プロペラ結合部242は、タイヤ部シャフト230aに対してベアリング等により所定位置で回転可能に支持されている。プロペラギア243は、飛行ギア212と噛み合い、シャフト220からモータの回転力が伝達される(図6(C)参照)。このとき、タイヤ部シャフト230a及びホイール結合部232は回転しない。 The propeller coupling portion 242 of the propeller 241 has a propeller gear 243 having external teeth on the side facing the wheel coupling portion 232. The propeller coupling portion 242 is rotatably supported at a predetermined position by a bearing or the like with respect to the tire portion shaft 230a. The propeller gear 243 meshes with the flight gear 212, and the rotational force of the motor is transmitted from the shaft 220 (see FIG. 6C). At this time, the tire portion shaft 230a and the wheel coupling portion 232 do not rotate.
 このように、空陸両用ロボットは、プロペラ241が一対のホイール間又はタイヤの内周側に配置されていなくてもよく、設計の自由度がある。 As described above, in the air-and-land robot, the propeller 241 does not have to be arranged between the pair of wheels or on the inner peripheral side of the tire, and there is a degree of freedom in design.
 また、空陸両用ロボット1においては、プロペラ41の推力から本体10の傾斜面11を利用して揚力を発生させたが、本体10を利用することなく揚力を発生させてもよい。例えば、図7は空陸両用ロボット1第1変形例を示す、図1に対応する外観斜視図である。この場合、揚力はプロペラの推力の鉛直下向き成分である。 Further, in the air-and-land robot 1, the lift is generated by using the inclined surface 11 of the main body 10 from the thrust of the propeller 41, but the lift may be generated without using the main body 10. For example, FIG. 7 is an external perspective view corresponding to FIG. 1, showing a first modification of the air-land robot 1. In this case, lift is the vertically downward component of the thrust of the propeller.
 さらに、空陸両用ロボット1は、角度制御機構によりタイヤ部30の角度θが可変であってもよい。角度制御機構は、例えばシャフト20やその接続先に設けられ、タイヤ部30の角度θ(シャフト20、タイヤ部回転軸30aの角度)を制御する。角度制御機構は、飛行時における空陸両用ロボット1の姿勢制御や進行方向の制御、揚力の制御等を行うために、ユーザからの指示や予め記憶されたプログラム等に基づいてコントロールユニット16により制御される。角度制御機構は、各タイヤ部30を個別に制御可能であることが好ましい。 Further, in the air-and-land robot 1, the angle θ of the tire portion 30 may be variable by the angle control mechanism. The angle control mechanism is provided, for example, on the shaft 20 or its connection destination, and controls the angle θ of the tire portion 30 (the angle between the shaft 20 and the tire portion rotation shaft 30a). The angle control mechanism is controlled by the control unit 16 based on instructions from the user, a program stored in advance, and the like in order to control the attitude of the air-land robot 1 during flight, control the direction of travel, and control lift. To. It is preferable that the angle control mechanism can individually control each tire portion 30.
 空陸両用ロボット1は、走行及び飛行時にはそれぞれタイヤ部30の角度θを制御可能にしたため、空陸両用ロボット1は、走行及び飛行の両方に最適な移動を実現できる。例えば、走行時には、角度θを90度に制御することで、安定した走行を実現できる。一方、飛行時(ホバリング時)には、角度θを0度に制御することで、推力を損失なく揚力として利用できる。 Since the air-and-land robot 1 can control the angle θ of the tire portion 30 during traveling and flight, the air-and-land robot 1 can realize optimum movement for both traveling and flight. For example, when traveling, stable traveling can be realized by controlling the angle θ to 90 degrees. On the other hand, during flight (during hovering), the thrust can be used as lift without loss by controlling the angle θ to 0 degrees.
 また、空陸両用ロボット1においては、シャフト20が本体10から伸びる例を説明したが、シャフト20が本体10下方に配置されたアームから伸びていてもよい。図8は、空陸両用ロボット1の第2変形例を示す、図1に対応する外観斜視図である。 Further, in the air-and-land robot 1, the example in which the shaft 20 extends from the main body 10 has been described, but the shaft 20 may extend from the arm arranged below the main body 10. FIG. 8 is an external perspective view corresponding to FIG. 1, showing a second modification of the air-and-land robot 1.
 空陸両用ロボット301は、本体310の下方前方に設けられた前アーム318と、本体310の下方後方に配置された後アーム319と、を有する。各シャフト320は、前アーム318又は後アーム319にそれぞれ回転可能に支持される。 The flying car robot 301 has a front arm 318 provided in the lower front of the main body 310 and a rear arm 319 arranged in the lower rear of the main body 310. Each shaft 320 is rotatably supported by a front arm 318 or a rear arm 319, respectively.
 このような空陸両用ロボット301は、前アーム318、後アーム319を介して各シャフト320、タイヤ部330が取り付けられることにより、シャフト320の本体310に対する角度の自由度が高くなり、角度θを小さくできる。その結果、空陸両用ロボット301は、推力のうち本体310に衝突する成分を低減でき、所望の揚力を得やすくなり飛行性を向上し得る。 In such an air-and-land robot 301, the shaft 320 and the tire portion 330 are attached via the front arm 318 and the rear arm 319, so that the degree of freedom of the angle of the shaft 320 with respect to the main body 310 is increased and the angle θ is reduced. can. As a result, the air-and-land robot 301 can reduce the component of the thrust that collides with the main body 310, makes it easier to obtain a desired lift, and can improve the flight performance.
 また、空陸両用ロボット301が上述した角度制御機構を有する場合には、飛行時においては前アーム318、後アーム319より上方にタイヤ部330を位置させることで、前アーム318、後アーム319が地面に対する着陸脚(スキッド)として機能し得る。 When the air-landing robot 301 has the above-mentioned angle control mechanism, the front arm 318 and the rear arm 319 are placed on the ground by locating the tire portion 330 above the front arm 318 and the rear arm 319 during flight. Can function as a landing gear (skid) against.
 また、タイヤ部30はタイヤ38を有していなくてもよい。この場合、接地面39は、ホイール31、35に設けられる。 Further, the tire portion 30 does not have to have the tire 38. In this case, the ground plane 39 is provided on the wheels 31 and 35.
 タイヤ部30の回転駆動源は、モータに代えてエンジンであってもよい。 The rotational drive source of the tire portion 30 may be an engine instead of the motor.
 構造の簡素化及びコスト低減の観点から、空陸両用ロボット1の機能が実現可能であれば切替機構50で回転駆動源の接続先が制御されるタイヤ部30は4つに限らず2つでもよい。 From the viewpoint of structural simplification and cost reduction, the number of tire portions 30 whose connection destination of the rotation drive source is controlled by the switching mechanism 50 is not limited to four, but may be two as long as the functions of the air-land robot 1 can be realized. ..
 内ホイールギア33及び外ホイールギア37と、内走行ギア14及び外走行ギア12との凹凸(雄雌)関係、及びプロペラギア43と飛行ギア13との凹凸関係は、逆であってもよい。 The unevenness (male / female) relationship between the inner wheel gear 33 and the outer wheel gear 37 and the inner traveling gear 14 and the outer traveling gear 12 and the unevenness relationship between the propeller gear 43 and the flight gear 13 may be reversed.
 空陸両用ロボット1は、飛行制御のため翼を有していてもよい。 The flying car robot 1 may have wings for flight control.
 本発明に係る移動体を、一例として空陸両用ロボット1に適用して説明したが、人により操縦される空陸両用車にも適用できる。この場合、移動体が飛行して現場に急行でき、その後、陸路を走行できるため、ドクターヘリと救急車の機能を果たすことができる。また、本発明に係る移動体は、水陸両用ロボット及び水陸両用車にも適用できる。 Although the moving body according to the present invention has been described by applying it to the air-and-land robot 1 as an example, it can also be applied to an air-and-land vehicle operated by a human. In this case, since the moving body can fly and rush to the site and then travel overland, it can function as a doctor helicopter and an ambulance. Further, the moving body according to the present invention can also be applied to an amphibious robot and an amphibious vehicle.
1、301 空陸両用ロボット
10、310 本体
11 傾斜面
12 外走行ギア
13 飛行ギア
14 内走行ギア
15 ストッパー
16 コントロールユニット
20、120、220、320 シャフト
30、330 タイヤ部
30a タイヤ部回転軸
30b ホイール回転軸
30c プロペラ回転軸
31 内ホイール
32、132 内ホイール結合部
33、133 内ホイールギア
35 外ホイール
36、136 外ホイール結合部
37、137 外ホイールギア
38 タイヤ
39 接地面
41、241 プロペラ
42、142、242 プロペラ結合部
43、143、243 プロペラギア
45 翼
50 切替機構
60 モータ
112 外スリーブ
113 内スリーブ
212 飛行ギア
213 走行ギア
230a タイヤ部シャフト
231 ホイール
232 ホイール結合部
233 ホイールギア
1,301 Amphibious robot 10,310 Main body 11 Inclined surface 12 Outside traveling gear 13 Flying gear 14 Internal traveling gear 15 Stopper 16 Control unit 20, 120, 220, 320 Shaft 30, 330 Tire part 30a Tire part Rotating shaft 30b Wheel rotation Shaft 30c Propeller Rotating Shaft 31 Inner Wheel 32, 132 Inner Wheel Coupling 33, 133 Inner Wheel Gear 35 Outer Wheel 36, 136 Outer Wheel Coupling 37, 137 Outer Wheel Gear 38 Tire 39 Ground Surface 41, 241 Propeller 42, 142, 242 Propeller joint 43, 143, 243 Propeller gear 45 Wing 50 Switching mechanism 60 Motor 112 Outer sleeve 113 Inner sleeve 212 Flying gear 213 Travel gear 230a Tire part Shaft 231 Wheel 232 Wheel joint part 233 Wheel gear

Claims (9)

  1.  本体と、
     ホイール回転軸回りに回転し、前記本体を地面上で移動させるホイールと、
     プロペラ回転軸回りに回転し、前記本体を空中又は水中で移動させるプロペラと、
     回転駆動源により回転されるシャフトと、
     前記シャフトを前記ホイール又は前記プロペラに接続し、前記ホイール回転軸回り又は前記プロペラ回転軸回りに前記ホイール又は前記プロペラを回転させる接続機構と、
     前記シャフトの接続先を前記ホイール又は前記プロペラに切り替える切替機構と、を備える移動体。
    With the main body
    A wheel that rotates around the wheel rotation axis and moves the main body on the ground,
    A propeller that rotates around the propeller rotation axis and moves the main body in the air or water.
    A shaft rotated by a rotary drive source and
    A connection mechanism that connects the shaft to the wheel or the propeller and rotates the wheel or the propeller around the wheel rotation axis or the propeller rotation axis.
    A moving body including a switching mechanism for switching the connection destination of the shaft to the wheel or the propeller.
  2.  前記シャフトの回転軸は、前記ホイール回転軸及び前記プロペラ回転軸と同軸である、請求項1記載の移動体。 The moving body according to claim 1, wherein the rotation axis of the shaft is coaxial with the wheel rotation axis and the propeller rotation axis.
  3.  前記シャフトの回転軸は、前記ホイール回転軸及び前記プロペラ回転軸と平行である、請求項1記載の移動体。 The moving body according to claim 1, wherein the rotation axis of the shaft is parallel to the wheel rotation axis and the propeller rotation axis.
  4.  前記ホイール回転軸及び前記プロペラ回転軸は、前記地面に対して非平行である、請求項1から3のいずれか一項記載の移動体。 The moving body according to any one of claims 1 to 3, wherein the wheel rotation axis and the propeller rotation axis are non-parallel to the ground.
  5.  前記ホイールは、前記地面に対して平行な、前記地面に対する接地面を有する、請求項4記載の移動体。 The moving body according to claim 4, wherein the wheel has a contact patch with respect to the ground, which is parallel to the ground.
  6.  前記ホイール回転軸及び前記プロペラ回転軸は、前記地面に対する角度が可変である、請求項1から4のいずれか一項記載の移動体。 The moving body according to any one of claims 1 to 4, wherein the wheel rotation axis and the propeller rotation axis have a variable angle with respect to the ground.
  7.  前記本体は、前記プロペラの回転に伴う推力のうち前記本体に衝突する成分を鉛直下向きに変換する傾斜面を有する、請求項1から6のいずれか一項記載の移動体。 The moving body according to any one of claims 1 to 6, wherein the main body has an inclined surface that converts a component of the thrust accompanying rotation of the propeller that collides with the main body vertically downward.
  8.  前記ホイールは、外周にタイヤを有する、請求項1から7のいずれか一項記載の移動体。 The moving body according to any one of claims 1 to 7, wherein the wheel has a tire on the outer periphery.
  9.  前記タイヤは、非空気入りタイヤである、請求項8記載の移動体。 The moving body according to claim 8, wherein the tire is a non-pneumatic tire.
PCT/JP2021/036536 2020-09-28 2021-09-24 Mobile body WO2022065519A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022552121A JP7225519B2 (en) 2020-09-28 2021-09-24 moving body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020173596 2020-09-28
JP2020-173596 2020-09-28

Publications (1)

Publication Number Publication Date
WO2022065519A1 true WO2022065519A1 (en) 2022-03-31

Family

ID=80845505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036536 WO2022065519A1 (en) 2020-09-28 2021-09-24 Mobile body

Country Status (2)

Country Link
JP (1) JP7225519B2 (en)
WO (1) WO2022065519A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023194989A1 (en) * 2022-04-03 2023-10-12 B.G. Negev Technologies And Applications Ltd., At Ben-Gurion University Hybrid flying driving robot with a clutch mechanism for energy efficiency

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013129301A (en) * 2011-12-21 2013-07-04 Ihi Aerospace Co Ltd Small unmanned aircraft
JP2015523933A (en) * 2012-06-07 2015-08-20 ミェルニチェク, ヴィトルトMIELNICZEK, Witold Propulsion system for mobile or toy mobile
CN106240262A (en) * 2016-08-05 2016-12-21 广州市轻工职业学校 The compound mobile flight amphibious robot device of wing wheel
US20180281537A1 (en) * 2017-01-03 2018-10-04 Joshua Leppo Multi-Dimensional Vehicle
WO2018207398A1 (en) * 2017-05-11 2018-11-15 株式会社ブリヂストン Tire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013129301A (en) * 2011-12-21 2013-07-04 Ihi Aerospace Co Ltd Small unmanned aircraft
JP2015523933A (en) * 2012-06-07 2015-08-20 ミェルニチェク, ヴィトルトMIELNICZEK, Witold Propulsion system for mobile or toy mobile
CN106240262A (en) * 2016-08-05 2016-12-21 广州市轻工职业学校 The compound mobile flight amphibious robot device of wing wheel
US20180281537A1 (en) * 2017-01-03 2018-10-04 Joshua Leppo Multi-Dimensional Vehicle
WO2018207398A1 (en) * 2017-05-11 2018-11-15 株式会社ブリヂストン Tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023194989A1 (en) * 2022-04-03 2023-10-12 B.G. Negev Technologies And Applications Ltd., At Ben-Gurion University Hybrid flying driving robot with a clutch mechanism for energy efficiency

Also Published As

Publication number Publication date
JP7225519B2 (en) 2023-02-21
JPWO2022065519A1 (en) 2022-03-31

Similar Documents

Publication Publication Date Title
EP2858730B1 (en) Propulsion system for a vehicle or a toy vehicle
EP2563657B1 (en) Drive unit for aircraft running gear
US9428266B2 (en) Aircraft landing gear
JP2019199254A (en) Landing gear drive systems
KR101776825B1 (en) Hybrid drone capable of traveling and flying
US20080048065A1 (en) Flying Device With Improved Movement on The Ground
CN108819631B (en) Amphibious robot with two rotor wing balance cars and control method thereof
KR20170066567A (en) A directional control system and method for a hybrid air and ground transportation vehicle
CN110395070B (en) Multifunctional wheel and axle system applied to amphibious principle combat tank
US10017278B2 (en) Gyroscopic orbiter with vertical takeoff and vertical landing capabilities
JP2014240242A (en) Vertical take-off and landing flight vehicle
JP2009045986A (en) Helicopter
US20210387739A1 (en) Propulsion system for an aerial vehicle
JP3787330B2 (en) Vehicle steer drive
KR20170092068A (en) A unmanned robot caparable of operating in the air and on the ground
KR101468339B1 (en) Automobile having flying function of helicopter
WO2022065519A1 (en) Mobile body
US20180057158A1 (en) Rotorcraft having a rotary wing and an orientable propeller, and a method applied by the rotorcraft
CN112238719A (en) Driving device of aerocar
KR101556261B1 (en) Automobile having flying function of helicopter
WO2019052142A1 (en) Flying car
US20190256218A1 (en) Transmission system for aircraft structure
RU2539679C1 (en) High-speed rotary-wing aircraft
KR101529856B1 (en) Flight vehicle having flying function of helicopter
KR20180134244A (en) Quadcopter based vertical take-off and landing 4-wheel driving car

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872644

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022552121

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872644

Country of ref document: EP

Kind code of ref document: A1