WO2022065260A1 - Ophthalmic optical apparatus - Google Patents

Ophthalmic optical apparatus Download PDF

Info

Publication number
WO2022065260A1
WO2022065260A1 PCT/JP2021/034426 JP2021034426W WO2022065260A1 WO 2022065260 A1 WO2022065260 A1 WO 2022065260A1 JP 2021034426 W JP2021034426 W JP 2021034426W WO 2022065260 A1 WO2022065260 A1 WO 2022065260A1
Authority
WO
WIPO (PCT)
Prior art keywords
eye
inspected
optical system
scanning
light
Prior art date
Application number
PCT/JP2021/034426
Other languages
French (fr)
Japanese (ja)
Inventor
泰史 西
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2022551969A priority Critical patent/JPWO2022065260A1/ja
Publication of WO2022065260A1 publication Critical patent/WO2022065260A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions

Definitions

  • This disclosure relates to ophthalmic optics.
  • a lens attachment is arranged between an objective lens and an eye to be inspected in an optical interference tomography device that acquires a tomographic image of the posterior eye portion such as the fundus of the eye to be inspected. It is disclosed to acquire a tomographic image of the anterior segment of the eye.
  • this optical interference tomography apparatus by using a lens attachment, it is possible to acquire tomographic images of the posterior eye portion and the anterior eye portion of the eye to be inspected by one apparatus.
  • the ophthalmic optical apparatus comprises a scanning member that scans the eye to be inspected with a light beam from a light source, a light guide optical system that guides the light beam from the light source to the scanning member, and a scanning member.
  • An objective optical system that guides the scanning light beam to the eye to be inspected is provided, and in the posterior eye imaging state in which the posterior eye portion of the eye to be inspected is photographed, a position conjugate with the scanning member is formed in the anterior eye portion of the eye to be inspected.
  • the eye to be inspected and the objective optical system In the anterior segment imaging state in which the scanning light beam from the scanning member is focused on the posterior eye portion of the eye to be inspected and the anterior segment of the eye to be inspected is photographed, the eye to be inspected and the objective optical system
  • the working distance which is a distance, becomes larger than the working distance in the posterior eye imaging state, the scanning light beam from the scanning member is focused on the anterior segment of the eye to be inspected, and the scanning direction of the scanning light beam by the scanning member is changed. It is the same in the posterior segment imaging state and the anterior segment imaging state.
  • optical path diagram which looked at the structure of the optical system which concerns the alignment of an ophthalmologic optical apparatus from the side at the time of observing the posterior eye part. It is an optical path diagram which looked at the structure of the optical system which concerns the alignment of an ophthalmologic optical apparatus from above at the time of observing the posterior eye part. It is an optical path diagram which looked at the structure of the optical system which concerns the alignment of an ophthalmologic optical apparatus from the side at the time of observing the anterior segment of the eye. It is an optical path diagram which looked at the structure of the optical system which concerns the alignment of an ophthalmologic optical apparatus from above at the time of observing the anterior segment of the eye.
  • optical path diagram which looked at the other structure of the optical system which concerns the alignment of an ophthalmologic optical apparatus from the side at the time of observation of the posterior eye part. It is an optical path diagram which looked at the structure of the optical system which concerns the alignment of an ophthalmologic optical apparatus from the side at the time of observing the anterior segment of the eye.
  • FIG. 1 shows a schematic configuration of an ophthalmic optical device 110.
  • the scanning laser ophthalmoscope is referred to as "SLO”.
  • the optical coherence tomography is referred to as "OCT”.
  • the horizontal direction is "X direction”
  • the direction perpendicular to the horizontal plane is “Y direction”
  • the optical axis direction of the photographing optical system 116A is "Z direction”.
  • the device is arranged with respect to the eye to be inspected so that the center of the pupil of the inspected eye is located on the optical axis in the Z direction.
  • the X, Y, and Z directions are perpendicular to each other.
  • the ophthalmic optical device 110 includes a photographing device 14 and a control device 16.
  • the imaging device 14 includes an SLO unit 18 that acquires an image of the fundus 12A of the eye to be inspected 12, and an OCT unit 20 that acquires a tomographic image of the eye to be inspected 12.
  • the fundus image generated based on the SLO data acquired by the SLO unit 18 is referred to as an SLO image.
  • a tomographic image generated based on the OCT data acquired by the OCT unit 20 is referred to as an OCT image.
  • the SLO image may be referred to as a two-dimensional fundus image.
  • the OCT image may be referred to as a fundus tomographic image or an anterior ocular segment tomographic image depending on the imaging site of the eye to be inspected 12.
  • the control device 16 includes a computer having a CPU (Central Processing Unit) 16A, a RAM (Random Access Memory) 16B, a ROM (Read-Only memory) 16C, and an input / output (I / O) port 16D. ing.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read-Only memory
  • I / O input / output
  • the control device 16 includes an input / display device 16E connected to the CPU 16A via the I / O port 16D.
  • the input / display device 16E has a graphic user interface for displaying an image of the eye to be inspected 12 and receiving various instructions from the user.
  • the input / display device 16E can use a touch panel display.
  • control device 16 includes an image processing device 17 connected to the I / O port 16D.
  • the image processing device 17 generates an image of the eye to be inspected 12 based on the data obtained by the photographing device 14.
  • the control device 16 of the ophthalmologic optical device 110 includes an input / display device 16E, but the technique of the present disclosure is not limited to this.
  • the control device 16 of the ophthalmologic optical device 110 may not include the input / display device 16E, but may include an input / display device that is physically independent of the ophthalmologic optical device 110.
  • the display device includes an image processing processor unit that operates under the control of the CPU 16A of the control device 16.
  • the image processing processor unit may display an SLO image or the like based on the image signal output instructed by the CPU 16A.
  • the photographing device 14 operates under the control of the control device 16.
  • the imaging device 14 includes an SLO unit 18, an imaging optical system 116A, and an OCT unit 20.
  • the photographing optical system 116A is moved in the X, Y, and Z directions by the photographing optical system driving unit 116M under the control of the CPU 16A.
  • the alignment (alignment) between the photographing device 14 and the eye 12 to be inspected is, for example, not only the photographing device 14, but also the entire ophthalmologic optical device 110, or a part of the optical elements in the photographing optical system 116A, X, Y. , May be done by moving in the Z direction.
  • the SLO system is realized by the control device 16, the SLO unit 18, and the photographing optical system 116A shown in FIG.
  • the SLO unit 18 includes a plurality of light sources.
  • the SLO unit 18 includes a B light (blue light) light source 40, a G light (green light) light source 42, an R light (red light) light source 44, and an IR light (infrared light). (For example, near-infrared light)).
  • the light emitted from each of the light sources 40, 42, 44, 46 is directed to the same optical path via the respective optical members 48, 50, 52, 54, 56.
  • the optical members 48 and 56 are mirrors, and the optical members 50, 52 and 54 are beam splitters.
  • the B light is guided to the optical path of the photographing optical system 116A via the optical members 48, 50, and 54.
  • the G light is guided to the optical path of the photographing optical system 116A via the optical members 50 and 54.
  • the R light is guided to the optical path of the photographing optical system 116A via the optical members 52 and 54.
  • the IR light is guided to the optical path of the photographing optical system 116A via the optical members 56 and 52.
  • the light sources 40, 42, 44, 46 an LED light source or a laser light source can be used. An example using a laser light source will be described below.
  • a total reflection mirror can be used as the optical members 48 and 56.
  • a dichroic mirror, a half mirror, or the like can be used as the optical members 50, 52, 54.
  • the SLO unit 18 is configured to be able to switch between various light emission modes such as a light emission mode that emits G light, R light, B light, and IR light individually, and a light emission mode that emits all of them at the same time or several at the same time. ..
  • the example shown in FIG. 1 includes four light sources: a light source 40 for B light (blue light), a light source 42 for G light, a light source 44 for R light, and a light source 46 for IR light.
  • the SLO unit 18 may further include a light source of white light. In this case, in addition to the above-mentioned various light emission modes, a light emission mode or the like that emits only white light may be set.
  • the laser beam incident on the photographing optical system 116A from the SLO unit 18 is scanned in the X direction and the Y direction by the scanning unit (120, 142) described later.
  • the scanning light is applied to the posterior eye portion (for example, the fundus 12A) of the eye to be inspected 12 via the pupil 27.
  • the reflected light reflected by the fundus 12A is incident on the SLO unit 18 via the photographing optical system 116A.
  • the scanning unit (120, 142, 168) is an example of the “scanning member” of the technique of the present disclosure, together with the relay lens device 140 described later.
  • the reflected light reflected by the fundus 12A is detected by the photodetection elements 70, 72, 74, 76 provided in the SLO unit 18.
  • the SLO unit 18 corresponds to a plurality of light sources, that is, a B light source 40, a G light source 42, an R light source 44, and an IR light source 46
  • the SLO unit 18 includes a B light detection element 70, a G light detection element 72, and R light. It includes a detection element 74 and an IR light detection element 76.
  • the B photodetection element 70 detects the B light reflected by the beam splitter 64.
  • the G photodetection element 72 passes through the beam splitter 64 and detects the G light reflected by the beam splitter 58.
  • the R photodetection element 74 passes through the beam splitters 64 and 58 and detects the R light reflected by the beam splitter 60.
  • the IR photodetection element 76 passes through the beam splitters 64, 58, and 60 and detects the IR light reflected by the beam splitter 62.
  • Examples of the photodetectors 70, 72, 74, and 76 include an APD (avalanche photodiode).
  • the image processing apparatus 17 uses signals detected by each of the B photodetection element 70, the G photodetection element 72, the R photodetection element 74, and the IR photodetection element 76 for each color. Generate the corresponding SLO image.
  • the SLO images corresponding to each color include a B-SLO image generated by using the signal detected by the B photodetection element 70 and a G-SLO image generated by using the signal detected by the G photodetection element 72. , An R-SLO image generated using the signal detected by the R photodetection element 74, and an IR-SLO image generated using the signal detected by the IR photodetection element 76.
  • the respective signals detected by the R light detection element 74, the G light detection element 72, and the B light detection element 70 are used.
  • An RGB-SLO image may be combined from the generated B-SLO image, G-SLO image, and R-SLO image.
  • the G-SLO image and the R-SLO generated by using the respective signals detected by the R photodetection element 74 and the G light detection element 72 are used.
  • An RG-SLO image may be combined from the image.
  • the RG-SLO image is used as the SLO image, but the present invention is not limited to this, and other SLO images can be used.
  • the beam splitters 58, 60, 62, 64 a dichroic mirror, a half mirror, or the like can be used.
  • the OCT system is a three-dimensional image acquisition device realized by the control device 16, the OCT unit 20, and the photographing optical system 116A shown in FIG.
  • the OCT unit 20 includes a light source 20A, a sensor (detection element) 20B, a first optical coupler 20C, a reference optical system 20D, a collimator lens 20E, and a second optical coupler 20F.
  • the light source 20A generates light for optical interference tomography.
  • a super luminescent diode SLD
  • the light source 20A generates low coherence light of a wideband light source having a wide spectral width.
  • the light emitted from the light source 20A is divided by the first optical coupler 20C.
  • One of the divided lights is converted into parallel light by the collimator lens 20E as measurement light, and then incident on the photographing optical system 116A.
  • the measurement light is scanned in the X direction and the Y direction by the scanning unit (148, 168) described later.
  • the scanning light is applied to the anterior segment of the eye to be inspected and the posterior segment of the eye via the pupil 27.
  • the measurement light reflected by the anterior eye portion or the posterior eye portion is incident on the OCT unit 20 via the photographing optical system 116A, and is incident on the OCT unit 20 via the collimeter lens 20E and the first optical coupler 20C to the second optical coupler 20F.
  • SD-OCT using SLD as the light source 20A is exemplified, but the present invention is not limited to this, and SS-OCT using a wavelength sweep light source may be adopted instead of SLD.
  • the other light emitted from the light source 20A and branched by the first optical coupler 20C is incident on the reference optical system 20D as reference light, and is incident on the second optical coupler 20F via the reference optical system 20D. do.
  • the measurement light (return light) reflected and scattered by the eye 12 to be inspected and the reference light are combined by the second optical coupler 20F to generate interference light.
  • the interference light is detected by the sensor 20B.
  • the image processing device 17 generates a tomographic image of the eye to be inspected 12 based on the detection signal (OCT data) from the sensor 20B.
  • the OCT system produces a tomographic image of the anterior or posterior eye of the eye 12 to be inspected.
  • the anterior segment of the eye 12 to be inspected is a portion including, for example, a cornea, an iris, an angle, a crystalline lens, a ciliary body, and a part of a vitreous body as an anterior segment.
  • the posterior segment of the eye 12 to be inspected is a segment of the posterior eye that includes, for example, the rest of the vitreous, the retina, the choroid, and the sclera.
  • the vitreous body belonging to the anterior segment of the eye is a portion of the vitreous body on the corneal side with the XY plane passing through the point closest to the center O of the crystalline lens as a boundary, and the vitreous body belonging to the posterior eye region is. , The part of the vitreous body other than the vitreous body that belongs to the anterior segment of the eye.
  • the OCT system generates, for example, a tomographic image of the cornea when the anterior segment of the eye to be inspected 12 is the imaging target site. Further, when the posterior eye portion of the eye to be inspected 12 is the imaging target site, the OCT system generates, for example, a tomographic image of the retina.
  • the ophthalmic optical device 110 includes a fixative target control device 90 that lights a fixative target composed of a light emitting device (for example, an LED) that is lit so as to direct the line of sight of the eye to be inspected 12 in a predetermined direction.
  • a fixative target control device 90 that lights a fixative target composed of a light emitting device (for example, an LED) that is lit so as to direct the line of sight of the eye to be inspected 12 in a predetermined direction.
  • FIG. 2A shows the schematic configuration of each photographing optical system 116A at the time of observing the posterior eye portion
  • FIG. 2B shows the schematic configuration at the time of observing the anterior eye portion
  • the photographing optical system 116A includes an objective lens 130 arranged in order from the side of the eye to be inspected 12, a dichroic mirror 178 which is an optical path synthesis member, a horizontal scanning unit 142, a relay lens device 140, a dichroic mirror 147, a vertical scanning unit 120, 168, and the like.
  • the focus adjusting device 150 is provided.
  • the objective lens 130 is an example of the "objective optical system” of the technique of the present disclosure, and the focus adjusting device 150 is a part of the "light guide optical system" of the technique of the present disclosure.
  • the dichroic mirror 178 is an optical member that synthesizes the light emitted from the SLO optical system, the light emitted from the OCT optical system, and the light of the fixative target emitted from the fixative target projection system 138. As shown in FIGS. 2A and 2B, the dichroic mirror 178 transmits the light emitted from the SLO optical system and the light emitted from the OCT optical system, and is emitted from the fixation target projection system 138.
  • the objective lens reflects the light of the fixation target and emits the light emitted from the SLO optical system, the light emitted from the OCT optical system, and the light of the fixation target emitted from the fixation target projection system 138. Lead to 130.
  • the fixative target projection system 138 has a fixative target 138A and a condensing lens 138B that supplies light from the fixative target 138A toward the fundus of the eye 12 to be inspected, and the fixative target 138A and the condensing lens 138B.
  • the fixative target projection system 138 is an example of the "fixation guide optical system" of the technique of the present disclosure.
  • the horizontal scanning unit 142 is an optical scanner that horizontally scans each of the SLO laser light incident through the relay lens device 140 and the OCT measurement light.
  • the focus adjusting device 150 to which the measurement light emitted from the end portion 158 of the fiber to which the light emitted from the OCT unit 20 travels is incident includes a plurality of lenses 152 and 154.
  • the focus position of the measured light in the eye 12 to be inspected is adjusted by appropriately moving each of the plurality of lenses 152 and 154 in the optical axis direction according to the imaged portion in the eye 12 to be inspected.
  • the lens 152, 154 is set so that the fundus, which is the posterior eye portion of the eye subject 12, and the cornea, which is the anterior eye portion of the eye subject 12 in FIG. 2B, are at the focus positions of the OCT measurement light.
  • the focus adjustment device drives the lenses 152 and 154 according to the focus detection state to automatically perform focusing, so that the autofocus device is provided. It is possible to realize.
  • the vertical scanning unit 168 is an optical scanner that vertically scans the OCT measurement light incident through the focus adjusting device 150.
  • the vertical scanning unit 120 is an optical scanner that vertically scans the laser beam incident from the SLO unit 18.
  • the relay lens device 140 includes lenses 144 and 146 having a plurality of positive powers. With the plurality of lenses 144 and 146, the position of the vertical scanning unit 168 and the position of the horizontal scanning unit 142 are conjugated, and the position of the vertical scanning unit 120 and the position of the horizontal scanning unit 142 are conjugated.
  • the relay lens device 140 is configured. More specifically, the relay lens device 140 is configured so that the center positions of the angular scans of both scanning portions are conjugated. As shown in FIG. 2A, in the rear eye observation state, the focusing position of the measurement light emitted from the end portion 158 of the fiber by the focus adjusting device 150 is set by the two positive lens groups in the relay lens device 140. It is formed between a lens 146 and a lens 144.
  • the luminous flux of the measurement light emitted from the end portion 158 of the fiber by the focus adjusting device 150 is generated by the two positive lens groups in the relay lens device 140.
  • a substantially parallel luminous flux is formed between a certain lens 146 and the lens 144.
  • the dichroic mirror 147 is arranged between the lens 144 and the lens 146 of the relay lens device 140.
  • the dichroic mirror 147 reflects the SLO light emitted from the SLO unit 18 toward the horizontal scanning unit 142 via the lens 144.
  • the light emitted from the SLO unit 18 is two-dimensionally scanned by the vertical scanning unit 120 and the horizontal scanning unit 142 constituting the SLO optical system.
  • the two-dimensionally scanned SLO laser beam is incident on the eye 12 to be inspected through the objective lens 130.
  • the SLO laser light reflected by the eye 12 passes through the objective lens 130, the dichroic mirror 178, the horizontal scanning unit 142, the lens 144 which is a positive lens group in the relay lens device 140, the dichroic mirror 147, and the vertical scanning unit 120. Then, it is incident on the SLO unit 18.
  • the measurement light emitted from the OCT unit 20 is two-dimensionally scanned by the focus adjusting device 150 and the vertical scanning unit 168, passes through the dichroic mirror 147, and is orthogonal to the scanning direction of the vertical scanning unit 168 by the horizontal scanning unit 142. Two-dimensional scanning is performed in the direction, and as a result, two-dimensional scanning is performed. Further, the OCT measurement light reflected by the eye 12 to be inspected passes through the objective lens 130, the dichroic mirror 178, the horizontal scanning unit 142, the relay lens device 140, the dichroic mirror 147, the vertical scanning unit 168, and the focus adjusting device 150. , Is incident on the OCT unit 20.
  • the horizontal scanning unit 142 and the vertical scanning unit 120 and 168 for example, a resonant scanner, a galvano mirror, a polygon mirror, a rotating mirror, a dowel prism, a double dowel prism, a rotation prism, a MEMS mirror scanner, an acoustic optical element (AOM) and the like are suitable.
  • a galvano mirror is used as the vertical scanning unit 168
  • a polygon mirror is used as the vertical scanning unit 120.
  • the incident light can be two-dimensionally angle-scanned by the reflecting element. Therefore, the relay lens device 140 may be eliminated.
  • the vertical scanning units 120 and 168 are configured to be able to scan in the horizontal direction, the horizontal scanning unit 142 may be omitted.
  • the vertical scanning unit 120, 168 and the horizontal scanning unit 142 have the scanning angles of the scanning light beam by the vertical scanning unit 120, 168 and the horizontal scanning unit 142, which are set according to the scanning range in the eye 12 under the control of the CPU 16A.
  • the eye 12 to be inspected is scanned by the scanning light beam in the range.
  • the CPU 16A is an example of the "scanning member control unit" of the technique of the present disclosure.
  • the objective lens 130 includes a first lens group 132 and a second lens group 134 in order from the horizontal scanning unit 142 side.
  • the second lens group 134 has a function of outputting scanning light having an ultra-wide angle toward the pupil of the eye 12 to be inspected.
  • the first lens group 132 and the second lens group 134 are positive lens groups having positive power as a whole.
  • the first lens group 132 is an example of the "first positive lens group” of the technique of the present disclosure
  • the second lens group 134 is an example of the "second positive lens group" of the technique of the present disclosure.
  • the luminous flux from the fixative projection system 138 passes through the objective lens 130 via the reflection by the dichroic mirror 178 and becomes a parallel luminous flux toward the eye to be inspected 12.
  • the eye 12 to be inspected can stare at the image of the fixative eye, and by changing the position of the fixative eye, the direction of the eye to be inspected 12 can be changed, and the posterior eye portion and the anterior eye of the eye to be inspected 12 can be changed. It is possible to shoot the required area of the part.
  • the working distance WD which is the distance between the objective lens 130 and the eye to be inspected 12, changes between the time of observing the posterior eye and the time of observing the anterior eye.
  • the working distance WD is changed by changing the distance between the fixative projection system 138 and the dichroic mirror 178.
  • the objective optical system may be composed of not only the objective lens 130 as shown in FIGS. 2A and 2B but also an optical system including a reflecting mirror such as a concave elliptical mirror.
  • 3A is a schematic optical path diagram showing the state of the optical system centered on the objective lens 130 at the time of observing the posterior eye portion, FIG. 3B at the time of observing the anterior eye portion, and FIG. 3C at the time of observing the inside of the eyeball.
  • the distance between the objective lens 130 and the eye 12 to be inspected is adjusted according to the image conjugate position changed by the upstream optical system provided with the focus adjusting device 150.
  • This upstream optical system corresponds to a light guide optical system that guides a light flux from a light source to a scanning unit.
  • the parallel luminous fluxes at three angles of the parallel luminous flux supplied from the scanning surface represented by the horizontal scanning portion 142 are two positive lens groups (first lens group 132 and first lens group 132).
  • the state of the light beam focused on the fundus 12A of the eye 12 to be inspected 12 through the two lens groups 134) is shown.
  • the luminous fluxes at these three angles are shown as an example of the scanning luminous flux of only one of the vertical scanning by the vertical scanning units 120 and 168 and the two-dimensional scanning by the horizontal scanning unit 142.
  • the circular arrows in the figure indicate the direction of the angular scanning of the scanning light by the scanning unit and the direction of the angular scanning on the side to be inspected. The same applies to FIGS. 3B and 3C below.
  • the vertical scanning unit 120 and 168 and the horizontal scanning unit 142 are arranged at the pupil coupling position 180 shown in FIG. 3A so as to be coupled to the pupil position Pp of the eye 12 to be inspected, and the vertical scanning unit
  • the pupil conjugate position 200 on which the conjugate image of 120, 168 and the horizontal scanning unit 142 is formed coincides with the pupil position Pp of the eye to be inspected.
  • a fundus image of the eye 12 to be inspected is formed at a position 210 between the first lens group 132 and the second lens group 134. That is, the surface 182 in contact with the fundus of the eye 12 to be inspected and the surface at the position 210 are geometrically conjugated.
  • the working distance WD is substantially equal to the distance between the second lens group 134 of the objective lens 130 and the pupil conjugate position 200.
  • the SLO laser light scanned by the vertical scanning unit 120 and the horizontal scanning unit 142 in the SLO optical system of the eye to be inspected is centered on the pupil position Pp of the eye to be inspected 12 via the objective lens 130.
  • the angle is scanned two-dimensionally.
  • the focusing point of the SLO laser beam is two-dimensionally scanned in the fundus 12A.
  • the measurement light scanned by the vertical scanning unit 168 and the horizontal scanning unit 142 passes through the objective lens 130 and is centered on the pupil position Pp of the eye to be inspected 12 in the OCT optical system. Two-dimensional angle scanning is performed.
  • the focusing point of the measurement light is two-dimensionally scanned in the fundus 12A.
  • the SLO unit 18 acquires a two-dimensional image of the fundus
  • the OCT unit 20 acquires a tomographic image of the fundus.
  • the luminous flux of the same three angles supplied from the horizontal scanning portion 142 is emitted by the two positive lens groups (first lens group 132 and second lens group 134) to the eye 12 to be inspected.
  • the light beam focused on the cornea is shown.
  • the vertical scanning unit 120, 168 and the horizontal scanning unit 142 are coupled to the pupil position Pp of the eye 12 to be examined, as in the case of observing the posterior eye. Arranged at position 180. However, the pupil conjugate position 202 on which the conjugate images of the vertical scanning unit 120 and 168 and the horizontal scanning unit 142 are formed does not coincide with the pupil position Pp of the eye to be inspected, and is formed between the eye to be inspected and the second lens group 134. To.
  • an image conjugate position 212 is formed between the first lens group 132 and the pupil conjugate position 180 to form an image of the anterior segment of the eye to be inspected 12, and the image conjugate position 184 is formed on a surface in contact with the front end of the eye to be inspected 12. Is formed.
  • the working distance WD is larger than the distance between the second lens group 134 of the objective lens 130 and the pupil conjugate position 202.
  • the pupil conjugate position 180 is a conjugate position with the scanning portions 120, 142 and 168, and coincides with the pupil Pp of the eye 12 to be inspected when observing the posterior eye portion, but is shown in FIG. 3B when observing the anterior eye portion.
  • the conjugate position with the scanning unit may be referred to as the pupil conjugate position thereafter.
  • the SLO laser light scanned by the vertical scanning unit 120 and the horizontal scanning unit 142 in the SLO optical system of the eye to be inspected is two-dimensionally centered on the pupil conjugate position 202 via the objective lens 130.
  • the angle is scanned.
  • the focusing point of the SLO laser beam is two-dimensionally scanned in the anterior segment of the eye.
  • the measurement light scanned by the vertical scanning unit 168 and the horizontal scanning unit 142 is two-dimensionally centered on the pupil conjugate position 202 via the objective lens 130 in the OCT optical system.
  • the focusing point of the OCT measurement light is scanned two-dimensionally in the anterior segment of the eye to be inspected 12.
  • the light rays of the same three angles supplied from the horizontal scanning unit 142 are generated by the objective lens 130 having two positive lens groups (first lens group 132 and second lens group 134).
  • first lens group 132 and second lens group 134 As an example, a light beam focused on the crystalline lens 12L of the eye 12 to be inspected is shown.
  • the vertical scanning unit 120, 168 and the horizontal scanning unit 142 are coupled to the pupil position Pp of the eye 12 to be examined, as in the case of observing the posterior eye portion. Arranged at 180.
  • the pupil conjugate position 204 on which the conjugate images of the vertical scanning unit 120 and 168 and the horizontal scanning unit 142 are formed does not coincide with the pupil position Pp of the eye to be inspected, and is formed between the eye to be inspected and the second lens group 134.
  • the image conjugate position 214 is formed between the first lens group 132 and the second lens group 134, and the image conjugate position 186 is formed on the surface of the eye 12 in contact with the rear end portion of the crystalline lens 12L.
  • the working distance WD is larger than the distance between the second lens group 134 of the objective lens 130 and the pupil conjugate position 204, but not as much as in the case of FIG. 3B. That is, it is a value between the operating distance WD in the rear eye observation state shown in FIG. 3A and the operating distance WD in the anterior eye observation state shown in FIG. 3B.
  • the working distance WD can be continuously changed from the state shown in FIG. 3A to the state shown in FIG. 3C to the state shown in FIG. 3B.
  • the SLO laser light scanned by the vertical scanning unit 120 and the horizontal scanning unit 142 in the SLO optical system of the subject is two-dimensionally centered on the pupil conjugate position 204 via the objective lens 130.
  • the angle is scanned.
  • the focusing point of the SLO laser beam is two-dimensionally scanned inside the eyeball of the eye to be inspected.
  • the measurement light scanned by the vertical scanning unit 168 and the horizontal scanning unit 142 is two-dimensionally centered on the pupil conjugate position 204 via the objective lens 130.
  • the angle is scanned, and the condensing point of the measurement light scans the inside of the eyeball of the subject. This makes it possible to observe at an arbitrary position inside the eyeball between the fundus of the eye to be inspected and the cornea.
  • the vertical scanning unit 120 and the horizontal scanning unit 142 are angularly scanned in the direction of the arrow 190.
  • the optical path of the luminous flux passing through the objective lens 130 changes in the direction of arrow 192, passes through the pupil conjugate positions 200, 202, and 204, and scans the posterior segment of the eye to be inspected 12 in the direction of arrow 194. ..
  • the scanning directions of the vertical scanning unit 120 and 168 and the horizontal scanning unit 142 are the same at the time of observing the posterior eye portion, observing the anterior eye portion, and observing the inside of the eyeball, and the eye to be inspected 12
  • the SLO laser light and the OCT measurement light scan in the same direction.
  • the image inversion processing is not required for the time of observing the posterior eye portion, the time of observing the anterior eye portion, or the time of observing the inside of the eyeball.
  • the scanning direction does not change, and the positional relationship between the observer and the image obtained as a result of scanning does not change, which is practical. There is no confusion and operability is improved.
  • the focus switching method of the focus adjusting device 150 from the time of observing the posterior eye to the time of observing the anterior eye is as follows.
  • the optical system of the focus adjusting device 150 is configured to be interchangeable with an optical system corresponding to the observation of the posterior eye portion and an optical system corresponding to the observation of the anterior eye portion.
  • the focus adjusting device 150 normally has an optical system corresponding to the observation of the posterior eye portion, and by adding an optical system that can be inserted and removed during the observation of the anterior eye portion, the focus adjustment device 150 corresponds to the observation of the anterior eye portion.
  • the focus adjusting device 150 normally has an optical system corresponding to the observation of the anterior eye portion, and by adding an optical system that can be inserted and removed during the observation of the posterior eye portion, the focus adjusting device 150 corresponds to the observation of the posterior eye portion.
  • the focus adjusting device 150 is configured so that the distance between the optical system of the focus adjusting device 150 and the vertical scanning unit 168 can be changed.
  • the optical system of the focus adjusting device 150 is configured so that the focal length of the optical system of the focus adjusting device 150 can be changed.
  • the optical system of the focus adjusting device 150 is composed of a zoom lens, a liquid lens, or the like.
  • FIG. 4A is an explanatory diagram of light ray angle calculation at the positions (scanner position) of the vertical scanning unit 120 and 168 and the horizontal scanning unit 142 existing at the pupil conjugate position 180 when observing the anterior eye portion.
  • ⁇ A is the ray angle at the scanner position
  • ⁇ A' is the ray angle after emission from the objective lens 130
  • WD P is the working distance during the posterior eye scan
  • WD A is the anterior. It is the working distance at the time of eye scan.
  • LA presents an image of the anterior eye portion acquired in advance to the subject, and determines based on the scanning range instructed by the subject on the screen.
  • LA / 2 (WD A -WD P ) tan ⁇ A ' ... (2)
  • the ray angle ⁇ A at the scanner position is calculated by the following equation (3).
  • the angle scanning by OCT is performed based on the calculated ray angle ⁇ A.
  • ⁇ A arctan ⁇ LA / 2 * (WD A - WD P ) ⁇ / MA ... (3)
  • FIG. 4B is an explanatory diagram for calculating the ray angle at the scanner position existing at the pupil conjugate position 180 when observing the inside of the eyeball.
  • ⁇ M is the light ray angle at the scanner position
  • ⁇ M' is the light ray angle after emission from the objective lens 130
  • WD P is the working distance during rear eye scan
  • GA is the subject.
  • It is a refraction system in which the anterior segment of the optometry 12 is regarded as a single thin-walled lens
  • WDM is the operating distance at the time of scanning the inside of the eyeball, specifically, the distance from the objective lens 130 to the refraction system GA .
  • the focal length of the refraction system G A is f A
  • the refractive index on the posterior eye side from the refraction system G A is n A '.
  • FIG. 4B scans the inside of the eyeball, the portion actually scanned is the position of WD M + s from the objective lens 130.
  • FIG. 5A shows the state of the fixation target projection system 138 and the state of the optical system centered on the objective lens 130 in each state when observing the posterior eye portion
  • FIG. 5B shows the state of the optical system when observing the anterior eye portion.
  • the developed optical path diagram centered on the objective lens 130 is used for explanation.
  • the condenser lens 138B of the fixative projection system 138 is also shown as a positive lens 224, 226.
  • the surface 220 on which the fixative is placed corresponds to the focal position of the positive lens 224, and the light beam from the fixative is a substantially parallel light flux, which is supplied as a parallel light flux to the eye to be inspected by the objective lens 130. Then, it is incident on the eye to be inspected and is focused on the fundus of the eye to be inspected.
  • the vertical broken line in the figure is shown with reference to the above-mentioned pupil conjugate position.
  • the fixative projection system 138 When observing the posterior eye portion shown in FIG. 5A, the fixative projection system 138 is arranged on the surface 220 corresponding to the conjugate position with the fundus. Then, an image of the fixative target 138A is formed at the fundus conjugate position 228 between the first lens group 132 and the second lens group 134, and a surface of the eye 12 in contact with the fundus is formed as the conjugate position 236. The fixative is recognized by the optometry 12.
  • the fixative is placed at the position shown as the surface 220, and the light from the fixative is supplied to the subject 12 along the optical path shown in FIG. 5A, but the scan is exceptional. I don't need a part.
  • what is shown in the figure shows the luminous flux from three points, a point on the axis on the fixative and two points off the axis, and a point light source such as an LED is placed at these three points independently.
  • the fixative target 138A of the fixative target projection system 138 is arranged at the illustrated image conjugate position 222, and the luminous flux from the positive lens 226 is almost the same as when observing the posterior eye portion. It is a parallel luminous flux.
  • the surface 220 on which the fixative is arranged and the positive lens 224 are in a state of being integrally moved to the objective lens 130 side. Therefore, the conjugate position in the vicinity of the positive lens 226 shown by the vertical broken line with respect to the objective lens 130 becomes conjugate at the position 234 farther than the position 232 in FIG. In 5B), the working distance is larger than that in the rear eye observation state (FIG. 5A).
  • the luminous flux emitted from the fixation target projection system 138 enters the first lens group 132 via the positive lens 226 at the pupil conjugate position, passes through the image conjugate position 230, and passes through the second lens group 134. Emit from. Then, it is incident on the eye to be inspected 12 through the position 234 which is a conjugated position formed between the second lens group 134 and the eye to be inspected 12. Further, the surface of the eye 12 in contact with the fundus is formed as the conjugated position 238, and the fixative is recognized by the eye 12.
  • the distance between the second lens group 134 of the objective lens 130 and the eye 12 to be inspected is larger than that when observing the posterior eye portion.
  • the distance between the fixation target projection system 138 and the objective lens 130 is changed.
  • the optical distance between the fixation target projection system 138 and the first lens group 132 of the objective lens 130 is shortened as compared with the case of observing the posterior eye portion.
  • the increase in the distance between the second lens group 134 of 130 and the eye 12 to be inspected corresponds to the increase in the distance between the second lens group 134 of 130 and the eye 12 to be inspected.
  • FIG. 6 is a flowchart showing a processing example in the ophthalmic optical device 110 according to the present embodiment. The process shown in FIG. 6 is started, for example, when the OCT unit 20 of the ophthalmologic optical device 110 takes an image of the eye 12 to be inspected.
  • step 600 it is determined whether or not an instruction for observing the anterior segment of the eye has been given. In step 600, if the instruction for observing the anterior segment of the eye is given, the procedure shifts to step 602, and if the instruction for observing the anterior segment of the eye is not given, the procedure shifts to step 620.
  • step 602 the distance between the objective optical system (objective lens 130) and the eye to be inspected 12 in observing the anterior eye portion is secured. Specifically, when the distance between the objective optical system and the eye to be inspected is the working distance WD P corresponding to the observation of the posterior eye, the objective optical system is set to the working distance WD A corresponding to the observation of the anterior eye. WD A -WD P , which is the difference between the working distance WD A when observing the anterior eye and the working distance WD P when observing the posterior eye.
  • the method of adjusting the distance between the objective optical system and the eye 12 to be inspected is, for example, as follows. (1) The photographing optical system 116A is moved to secure the working distance WD A. (2) The entire ophthalmologic optical device 110 is moved to secure the working distance WD A. (3) The chin rest that holds the subject's jaw or the headrest that holds the subject's head is moved to secure the working distance WD A.
  • the movement of the photographing optical system 116A, the entire ophthalmologic optical device 110, the chin rest and the head rest may be driven by a motor or may be manually moved.
  • each of the chin rest and the head rest may be prepared in advance with a thickness corresponding to the observation of the posterior eye portion and a thickness corresponding to the observation of the anterior eye portion, and may be replaced depending on the situation.
  • a method of moving the objective optical system by a motor is preferable.
  • the fixative projection system 138 is set at a position corresponding to the anterior eye scan. Specifically, as shown in FIG. 5B, when observing the anterior eye portion, the optical distance between the fixation target projection system 138 and the first lens group 132 of the objective lens 130 is higher than that when observing the posterior eye portion. By reducing the size of the lens 130, the distance between the second lens group 134 of the objective lens 130 and the eye 12 to be inspected 12 is increased.
  • step 606 the focus adjustment device 150 switches the focus of the OCT scan to the position of the anterior eye portion. Specifically, as shown in FIG. 3B, the image conjugate position 184 is formed on the surface in contact with the front end portion of the eye 12 to be inspected.
  • the scanning angle is set. Specifically, the image of the anterior eye portion acquired in advance is displayed on a screen that can be confirmed by the subject, and the subject is instructed to scan the range. Then, based on the range instructed by the subject and the scan pattern (for example, 3D scan or linear scan), the length LA to be scanned on the anterior eye portion is calculated. Further, the ray angle ⁇ A at the scanner position is automatically calculated by the length LA and the above equation (3), and is set as the scanning angle.
  • the scan pattern for example, 3D scan or linear scan
  • step 610 the OCT scan is started according to the set scanning angle. Then, in step 612, the focus positions are measured at arbitrary points of the anterior eye portion, and the shape of the cornea is calculated.
  • step 614 an OCT scan is performed in the designated scan pattern and scan range while adjusting the focus according to the shape of the cornea.
  • step 616 it is determined whether or not to end the OCT scan.
  • step 616 when it is determined that the OCT scan is terminated when the entire scan range specified by the set scan pattern is scanned, but the doctor determines that it is not necessary to scan the entire specified scan range. Also determines that the OCT scan is finished. If it is determined in step 616 to end the OCT scan, the procedure proceeds to step 618, and if it is not determined to end the OCT scan, the procedure proceeds to step 610.
  • step 618 image processing for the anterior eye portion is performed, the result is displayed, and the processing is completed. Specifically, noise reduction processing or the like is performed from the image data obtained by the OCT scan to generate the OCT image data of the anterior eye portion.
  • the distance between the objective optical system and the eye 12 to be inspected in the observation of the posterior eye is secured in step 620. Specifically, the distance between the objective optical system and the eye to be inspected is set to the working distance WD P corresponding to the observation of the posterior eye portion.
  • the method for adjusting the distance between the objective optical system and the eye 12 to be inspected is as follows, as in the case of observing the anterior segment of the eye.
  • the photographing optical system 116A is moved to secure the working distance WD P.
  • the entire ophthalmologic optical device 110 is moved to secure the working distance WD P.
  • the chin rest that holds the subject's jaw or the headrest that holds the subject's head is moved to secure the working distance WD P.
  • the movement of the photographing optical system 116A, the entire ophthalmologic optical device 110, the chin rest and the head rest may be driven by a motor or may be manually moved.
  • each of the chin rest and the head rest may be prepared in advance with a thickness corresponding to the observation of the posterior eye portion and a thickness corresponding to the observation of the anterior eye portion, and may be replaced depending on the situation.
  • it is a method of moving the objective optical system by a motor as in the case of observing the anterior eye portion.
  • the fixative projection system 138 is set at a position corresponding to the posterior eye scan. Specifically, as shown in FIG. 5A, when observing the posterior eye, the optical distance between the fixation target projection system 138 and the first lens group 132 of the objective lens 130 is compared with that when observing the anterior eye. Corresponds to the reduction of the distance between the second lens group 134 of the objective lens 130 and the eye 12 to be inspected by enlarging.
  • step 624 the focus of the OCT scan is switched to the position of the back eye by the focus adjusting device 150. Specifically, as shown in FIG. 3A, the image conjugate position is formed on the surface 182 in contact with the rear end portion of the eye 12 to be inspected.
  • a scan pattern and a scan range are set. Specifically, the image of the posterior eye portion acquired in advance is displayed on a screen that can be confirmed by the subject, and the subject is instructed to scan the range.
  • step 628 the OCT scan is started. Then, in step 630, the focus positions are measured at arbitrary points of the back eye portion, and the shape of the retina is calculated.
  • an OCT scan is performed in the designated scan pattern and scan range while adjusting the focus according to the shape of the retina.
  • the scanning directions of the vertical scanning unit 120 and 168 and the horizontal scanning unit 142 are the same at the time of observing the posterior eye portion, observing the anterior eye portion, and observing the inside of the eyeball.
  • the direction in which the SLO laser beam and the OCT measurement light scan the eye 12 to be inspected is the same.
  • the image inversion processing is not required for the time of observing the posterior eye portion, the time of observing the anterior eye portion, or the time of observing the inside of the eyeball.
  • step 634 it is determined whether or not to end the OCT scan.
  • step 616 when it is determined that the OCT scan is terminated when the entire scan range specified by the set scan pattern is scanned, but the doctor determines that it is not necessary to scan the entire specified scan range. Also determines that the OCT scan is finished. If it is determined in step 634 that the OCT scan is to be completed, the procedure is shifted to step 636, and if it is not determined to end the OCT scan, the procedure is shifted to step 628.
  • step 636 image processing for the back eye portion is performed, the result is displayed, and the processing is completed. Specifically, noise reduction processing or the like is performed from the image data obtained by the OCT scan to generate the OCT image data of the posterior eye portion.
  • the ophthalmologic optical device 110 relates to the relationship between the horizontal and vertical positions of the eye to be inspected with respect to the optical axis of the eye to be inspected 12 and the objective lens 130 of the ophthalmologic optical device, and the objective lens 130 for accurate alignment of the observation site. It is necessary to adjust the distance, that is, the focus.
  • FIG. 7A is an optical path diagram of the configuration of the optical system related to the alignment of the ophthalmic optical device 110 when observing the posterior eye portion
  • FIG. 7B shows the alignment of the ophthalmic optical apparatus 110 when observing the posterior eye portion.
  • It is an optical path diagram which looked at the structure of the optical system from above, and shows the state which the viewpoint was moved upward by 90 ° from FIG. 7A.
  • the illustrated light rays are only the main light rays of the off-axis luminous flux for alignment.
  • the light from the eye 12 to be inspected reaches the dichroic mirror 178 via the second lens group 132 and the first lens group 134 of the objective lens 130.
  • the light that reaches the dichroic mirror 178 is reflected by the dichroic mirror 178 and is covered by the condenser lenses 242A and 242B of the pair of eye position detection optical systems 240A and 240B arranged symmetrically with the optical axis 196 in between. It is incident on the image sensors 244A and 244B of the eye inspection position detection optical systems 240A and 240B, respectively.
  • the image sensors 244A and 244B can form images of the eye to be inspected 12 and detect the position of the eye to be inspected 12 from the image positions thereof.
  • the configuration for detecting the position of the eye to be inspected through the objective lens 130 as in the present embodiment can be said to be a through-the-lens (TTL: Through the Rems) alignment system.
  • TTL Through the Rems
  • Such a configuration in which the position of the eye to be inspected is detected through the objective lens 130 is effective when the working distance becomes extremely small when a wide-angle objective lens for obtaining a wide-angle fundus image is used. It is extremely useful in a so-called UWF fundus observation device having an ultra-wide angle of more than 130 degrees with an operating distance of about 20 mm.
  • the second lens group 134 on the side to be inspected outputs scanning light at a wide angle toward the pupil of the eye to be inspected 12, so that the eye to be inspected 12 is as shown in the optical path diagram shown in FIG. 7B.
  • the angle of the main light beam with respect to the anterior segment of the eye is increased, and it is possible to improve the position detection accuracy of alignment. It goes without saying that this configuration is more advantageous than a UWF objective lens.
  • the distance between the objective lens 130 and the eye 12 to be inspected in the optical axis 196 direction can be calculated from the images acquired by the pair of left and right image sensors 244A and 244B.
  • FIG. 8A is an optical path diagram of the configuration of the optical system related to the alignment of the ophthalmic optical device 110 when observing the anterior eye portion
  • FIG. 8B shows the alignment of the ophthalmic optical device 110 when observing the anterior eye portion.
  • It is an optical path diagram which looked at the structure of the optical system from above, and shows the state which the viewpoint was moved upward by 90 ° from FIG. 8A.
  • the illustrated light rays are only the main light rays of the off-axis luminous flux for alignment.
  • the distance between the second lens group 134 of the objective lens 130 and the eye 12 to be inspected is longer than when observing the posterior eye portion.
  • the distance between the eye position detection optical systems 240A and 240B to be inspected and the objective lens 130 is changed.
  • the optical distance between the eye position detection optical systems 240A and 240B to be inspected and the first lens group 132 of the objective lens 130 is shortened as compared with the case of observing the posterior eye portion.
  • the increase in the distance between the second lens group 134 of the objective lens 130 and the eye 12 to be inspected corresponds to the increase in the distance between the second lens group 134 of the objective lens 130 and the eye 12 to be inspected.
  • FIG. 9 is an optical path diagram of another configuration of the optical system related to the alignment of the ophthalmologic optical device 110 when observing the posterior eye portion as viewed from the side.
  • each of the eye position detection optical systems 250A and 250B to be inspected is arranged between the objective lens 130 and the eye to be inspected 12.
  • the light from the eye to be inspected 12 does not pass through the objective lens 130, but is a condensing lens of a pair of optical systems for detecting the position of the eye to be inspected 250A and 250B arranged symmetrically with the optical axis 196 in between.
  • the image sensors 254A and 254B of the eye position detection optical systems 250A and 250B can form images of the eye to be inspected 12 and detect the position of the eye to be inspected 12 from the image positions thereof.
  • Each of the eye position detection optical systems 240A, 240B, 250A, and 250B is an example of the "eye position detection device" of the technique of the present disclosure.
  • FIG. 10 is an optical path diagram of the configuration of the optical system related to the alignment of the ophthalmologic optical device 110 when observing the anterior eye portion as viewed from the side.
  • the distance between the second lens group 134 of the objective lens 130 and the eye 12 to be inspected is longer than when observing the posterior eye portion.
  • the angle of the optical system 250A and 250B for detecting the position of the eye to be inspected with respect to the optical axis 196 is changed to receive the light from the eye to be inspected 12.
  • the angle with respect to the optical axis 196 is changed by moving each of the eye position detection optical systems 250A and 250B to be inspected in the directions indicated by the arrows 260 as compared with the case of observing the posterior eye portion.
  • the angle with respect to the optical axis 196 is changed by moving each of the eye position detection optical systems 250A and 250B to be inspected in the directions indicated by the arrows 260 as compared with the case of observing the posterior eye portion.
  • the increase in the distance between the second lens group 134 of the objective lens 130 and the eye 12 to be inspected corresponds to the increase in the distance between the second lens group 134 of the objective lens 130 and the eye 12 to be inspected.
  • the light source for illuminating the eye to be inspected 12 is provided at the tip of the objective lens 130.
  • a light source such as an LED at a position symmetrical with respect to the optical axis 196 of the objective lens 130, or to provide a ring-shaped light source at the tip of the objective lens 130.
  • the ophthalmologic optical device 110 of the present embodiment since the fundus can be observed without mydriasis, it is possible to suffice only with the illumination in the room where the device is installed.
  • the objective lens 130 and the eye to be inspected 12 are changed by changing the working distance WD between the objective lens 130 and the eye to be inspected 12 between the observation of the posterior eye portion and the observation of the anterior eye portion. It is not necessary to place a separate lens attachment between and.
  • the luminous flux of the measurement light of the OCT is adjusted by the focus adjusting device 150 in response to the change of the working distance WD, and the fixative target projection system 138 and the eye position detection optical system 240A, 240B, 250A, Change the optical position in each of the 250Bs.
  • the scanning directions of the vertical scanning unit 120 and 168 and the horizontal scanning unit 142 are the same. Yes, and the direction in which the SLO laser light and the OCT measurement light scan the eye 12 to be inspected is the same.
  • the image inversion processing is not required for the time of observing the posterior eye portion, the time of observing the anterior eye portion, or the time of observing the inside of the eyeball.

Abstract

When imaging and observing a posterior eye part of a target eye, this ophthalmic optical apparatus forms a position conjugate with a vertical scan unit at an anterior eye part of the target eye, and focuses a scan light flux from the vertical scan unit on the posterior eye part of the target eye. When imaging and observing the anterior eye part of the target eye, the ophthalmic optical apparatus enlarges an operation distance, i.e. a distance between the target eye and an objective lens, as compared to an operation distance when observing the posterior eye part, and focuses the scan light flux from the vertical scan unit on the anterior eye part of the target eye. The scan direction of the scan light flux from the vertical scan unit when observing the posterior eye part is identical to that of when observing the anterior eye part.

Description

眼科光学装置Ophthalmic optics
 本開示は、眼科光学装置に関する。 This disclosure relates to ophthalmic optics.
 米国特許7830525号明細書には、被検眼の眼底等の後眼部の断層画像を取得する光干渉断層撮影装置において、対物レンズと、被検眼との間にレンズアタッチメントを配置して、角膜等の前眼部の断層画像を取得することが開示されている。この光干渉断層撮影装置によれば、レンズアタッチメントを用いることで、1つの装置で被検眼の後眼部及び前眼部の各々の断層画像を取得することができる。 According to U.S. Pat. No. 7,830,525, a lens attachment is arranged between an objective lens and an eye to be inspected in an optical interference tomography device that acquires a tomographic image of the posterior eye portion such as the fundus of the eye to be inspected. It is disclosed to acquire a tomographic image of the anterior segment of the eye. According to this optical interference tomography apparatus, by using a lens attachment, it is possible to acquire tomographic images of the posterior eye portion and the anterior eye portion of the eye to be inspected by one apparatus.
 上記従来の光干渉断層撮影装置では、レンズアタッチメントが被検眼と対物レンズとの間に配置されるため、被験者が眼前で行われるアタッチメントの交換作業のために被検者の移動が必要であり、被検者にとって負担になると共に、検査に時間を要していた。 In the above-mentioned conventional optical interference tomography apparatus, since the lens attachment is arranged between the subject and the objective lens, it is necessary for the subject to move the subject for the attachment replacement work performed in front of the subject. It was a burden to the subject and it took time for the examination.
 本開示の技術の第1態様の眼科光学装置は、光源からの光束で被検眼を走査する走査部材と、前記光源からの光束を前記走査部材に導く導光光学系と、前記走査部材からの走査光束を前記被検眼に導く対物光学系と、を備え、前記被検眼の後眼部を撮影する後眼部撮影状態では、前記走査部材と共役な位置が前記被検眼の前眼部に形成され、かつ前記走査部材からの走査光束が前記被検眼の後眼部に集光され、前記被検眼の前眼部を撮影する前眼部撮影状態では、前記被検眼と前記対物光学系との距離である作動距離が前記後眼部撮影状態における作動距離より大きくなり、前記走査部材からの走査光束が前記被検眼の前眼部に集光され、前記走査部材による前記走査光束の走査方向が前記後眼部撮影状態と前記前眼部撮影状態とで同一である。 The ophthalmic optical apparatus according to the first aspect of the technique of the present disclosure comprises a scanning member that scans the eye to be inspected with a light beam from a light source, a light guide optical system that guides the light beam from the light source to the scanning member, and a scanning member. An objective optical system that guides the scanning light beam to the eye to be inspected is provided, and in the posterior eye imaging state in which the posterior eye portion of the eye to be inspected is photographed, a position conjugate with the scanning member is formed in the anterior eye portion of the eye to be inspected. In the anterior segment imaging state in which the scanning light beam from the scanning member is focused on the posterior eye portion of the eye to be inspected and the anterior segment of the eye to be inspected is photographed, the eye to be inspected and the objective optical system The working distance, which is a distance, becomes larger than the working distance in the posterior eye imaging state, the scanning light beam from the scanning member is focused on the anterior segment of the eye to be inspected, and the scanning direction of the scanning light beam by the scanning member is changed. It is the same in the posterior segment imaging state and the anterior segment imaging state.
本実施形態の眼科光学装置の概略構成図である。It is a schematic block diagram of the ophthalmologic optical apparatus of this embodiment. 本実施形態の後眼部観察時の撮影光学系の概略構成を示す光路図である。It is an optical path diagram which shows the schematic structure of the photographing optical system at the time of observing the posterior eye part of this embodiment. 本実施形態の前眼部観察時の撮影光学系の概略構成を示す光路図である。It is an optical path diagram which shows the schematic structure of the photographing optical system at the time of observing the anterior eye part of this embodiment. 後眼部観察時における対物レンズを中心とした光学系の状態を示す概略光路図である。It is a schematic optical path diagram which shows the state of the optical system centering on an objective lens at the time of observing the posterior eye part. 前眼部観察時における対物レンズを中心とした光学系の状態を示す概略光路図である。It is a schematic optical path diagram which shows the state of the optical system centering on an objective lens at the time of observing the anterior segment of the eye. 眼球内部観察時における対物レンズを中心とした光学系の状態を示す概略光路図である。It is a schematic optical path diagram which shows the state of the optical system centering on an objective lens at the time of observing the inside of an eyeball. 前眼部観察時における瞳共役位置に存在するスキャナ位置での光線角度算出の説明図である。It is explanatory drawing of the ray angle calculation at the scanner position existing in the pupil conjugate position at the time of the front eye part observation. 眼球内部観察時における瞳共役位置に存在するスキャナ位置での光線角度算出の説明図である。It is explanatory drawing of the ray angle calculation at the scanner position existing in the pupil conjugate position at the time of the inside observation of an eyeball. 後眼部観察時における固視標投影系及び対物レンズを中心とした光学系の状態を示した概略光路図である。It is a schematic optical path diagram showing the state of the fixative target projection system and the optical system centering on the objective lens at the time of observing the rear eye portion. 前眼部観察時における固視標投影系及び対物レンズを中心とした光学系の状態を示した概略光路図である。It is a schematic optical path diagram showing the state of the fixative target projection system and the optical system centering on the objective lens at the time of observing the anterior segment of the eye. 本実施形態に係る眼科光学装置における処理例を示したフローチャートである。It is a flowchart which showed the processing example in the ophthalmologic optical apparatus which concerns on this embodiment. 後眼部観察時において眼科光学装置のアライメントに係る光学系の構成を側方から見た光路図である。It is an optical path diagram which looked at the structure of the optical system which concerns the alignment of an ophthalmologic optical apparatus from the side at the time of observing the posterior eye part. 後眼部観察時において眼科光学装置のアライメントに係る光学系の構成を上方から見た光路図である。It is an optical path diagram which looked at the structure of the optical system which concerns the alignment of an ophthalmologic optical apparatus from above at the time of observing the posterior eye part. 前眼部観察時において眼科光学装置のアライメントに係る光学系の構成を側方から見た光路図である。It is an optical path diagram which looked at the structure of the optical system which concerns the alignment of an ophthalmologic optical apparatus from the side at the time of observing the anterior segment of the eye. 前眼部観察時において眼科光学装置のアライメントに係る光学系の構成を上方から見た光路図である。It is an optical path diagram which looked at the structure of the optical system which concerns the alignment of an ophthalmologic optical apparatus from above at the time of observing the anterior segment of the eye. 後眼部観察時において眼科光学装置のアライメントに係る光学系の他の構成を側方から見た光路図である。It is an optical path diagram which looked at the other structure of the optical system which concerns the alignment of an ophthalmologic optical apparatus from the side at the time of observation of the posterior eye part. 前眼部観察時において眼科光学装置のアライメントに係る光学系の構成を側方から見た光路図である。It is an optical path diagram which looked at the structure of the optical system which concerns the alignment of an ophthalmologic optical apparatus from the side at the time of observing the anterior segment of the eye.
 以下、本開示の実施形態に係る眼科光学装置110について図面を参照して説明する。図1には、眼科光学装置110の概略構成が示されている。 Hereinafter, the ophthalmologic optical device 110 according to the embodiment of the present disclosure will be described with reference to the drawings. FIG. 1 shows a schematic configuration of an ophthalmic optical device 110.
 説明の便宜上、走査型レーザ検眼鏡(Scanning Laser Ophthalmoscope)を「SLO」と称する。また、光干渉断層計(Optical Coherence Tomography)を「OCT」と称する。 For convenience of explanation, the scanning laser ophthalmoscope is referred to as "SLO". Further, the optical coherence tomography is referred to as "OCT".
 なお、眼科光学装置110が水平面に設置された場合の水平方向を「X方向」、水平面に対する垂直方向を「Y方向」、撮影光学系116Aの光軸方向を「Z方向」とする。このZ方向の光軸上に被検眼の瞳孔中心が位置するように装置が被検眼に対して配置される。そして、X方向、Y方向、およびZ方向は互いに垂直である。 When the ophthalmic optical device 110 is installed on a horizontal plane, the horizontal direction is "X direction", the direction perpendicular to the horizontal plane is "Y direction", and the optical axis direction of the photographing optical system 116A is "Z direction". The device is arranged with respect to the eye to be inspected so that the center of the pupil of the inspected eye is located on the optical axis in the Z direction. The X, Y, and Z directions are perpendicular to each other.
 眼科光学装置110は、撮影装置14および制御装置16を含む。撮影装置14は、被検眼12の眼底12Aの画像を取得するSLOユニット18と、被検眼12の断層画像を取得するOCTユニット20とを備えている。以下、SLOユニット18により取得されたSLOデータに基づいて生成された眼底画像をSLO画像と称する。また、OCTユニット20により取得されたOCTデータに基づいて生成された断層画像をOCT画像と称する。なお、SLO画像は、2次元眼底画像と言及されることもある。また、OCT画像は、被検眼12の撮影部位に応じて、眼底断層画像、前眼部断層画像と言及されることもある。 The ophthalmic optical device 110 includes a photographing device 14 and a control device 16. The imaging device 14 includes an SLO unit 18 that acquires an image of the fundus 12A of the eye to be inspected 12, and an OCT unit 20 that acquires a tomographic image of the eye to be inspected 12. Hereinafter, the fundus image generated based on the SLO data acquired by the SLO unit 18 is referred to as an SLO image. Further, a tomographic image generated based on the OCT data acquired by the OCT unit 20 is referred to as an OCT image. The SLO image may be referred to as a two-dimensional fundus image. Further, the OCT image may be referred to as a fundus tomographic image or an anterior ocular segment tomographic image depending on the imaging site of the eye to be inspected 12.
 制御装置16は、CPU(Central Processing Unit(中央処理装置))16A、RAM(Random Access Memory)16B、ROM(Read-Only memory)16C、および入出力(I/O)ポート16Dを有するコンピュータを備えている。 The control device 16 includes a computer having a CPU (Central Processing Unit) 16A, a RAM (Random Access Memory) 16B, a ROM (Read-Only memory) 16C, and an input / output (I / O) port 16D. ing.
 制御装置16は、I/Oポート16Dを介してCPU16Aに接続された入力/表示装置16Eを備えている。入力/表示装置16Eは、被検眼12の画像を表示したり、ユーザから各種指示を受け付けたりするグラフィックユーザインターフェースを有する。入力/表示装置16Eは、タッチパネル・ディスプレイを用いることができる。 The control device 16 includes an input / display device 16E connected to the CPU 16A via the I / O port 16D. The input / display device 16E has a graphic user interface for displaying an image of the eye to be inspected 12 and receiving various instructions from the user. The input / display device 16E can use a touch panel display.
 また、制御装置16は、I/Oポート16Dに接続された画像処理装置17を備えている。画像処理装置17は、撮影装置14によって得られたデータに基づき被検眼12の画像を生成する。 Further, the control device 16 includes an image processing device 17 connected to the I / O port 16D. The image processing device 17 generates an image of the eye to be inspected 12 based on the data obtained by the photographing device 14.
 上記のように、図1では、眼科光学装置110の制御装置16が入力/表示装置16Eを備えているが、本開示の技術はこれに限定されない。例えば、眼科光学装置110の制御装置16は入力/表示装置16Eを備えず、眼科光学装置110とは物理的に独立した別個の入力/表示装置を備えるようにしてもよい。この場合、当該表示装置は、制御装置16のCPU16Aの制御下で動作する画像処理プロセッサユニットを備える。画像処理プロセッサユニットが、CPU16Aが出力指示した画像信号に基づいて、SLO画像等を表示するようにしてもよい。 As described above, in FIG. 1, the control device 16 of the ophthalmologic optical device 110 includes an input / display device 16E, but the technique of the present disclosure is not limited to this. For example, the control device 16 of the ophthalmologic optical device 110 may not include the input / display device 16E, but may include an input / display device that is physically independent of the ophthalmologic optical device 110. In this case, the display device includes an image processing processor unit that operates under the control of the CPU 16A of the control device 16. The image processing processor unit may display an SLO image or the like based on the image signal output instructed by the CPU 16A.
 撮影装置14は、制御装置16の制御下で作動する。撮影装置14は、SLOユニット18、撮影光学系116A、およびOCTユニット20を含む。撮影光学系116Aは、CPU16Aの制御下で、撮影光学系駆動部116MによりX、Y、Z方向に移動される。撮影装置14と被検眼12とのアライメント(位置合わせ)は、例えば、撮影装置14のみばかりではなく、眼科光学装置110全体を、或いは撮影光学系116A内の一部の光学素子を、X、Y、Z方向に移動させることにより、行われてもよい。 The photographing device 14 operates under the control of the control device 16. The imaging device 14 includes an SLO unit 18, an imaging optical system 116A, and an OCT unit 20. The photographing optical system 116A is moved in the X, Y, and Z directions by the photographing optical system driving unit 116M under the control of the CPU 16A. The alignment (alignment) between the photographing device 14 and the eye 12 to be inspected is, for example, not only the photographing device 14, but also the entire ophthalmologic optical device 110, or a part of the optical elements in the photographing optical system 116A, X, Y. , May be done by moving in the Z direction.
 SLOシステムは、図1に示す制御装置16、SLOユニット18、および撮影光学系116Aによって実現される。 The SLO system is realized by the control device 16, the SLO unit 18, and the photographing optical system 116A shown in FIG.
 SLOユニット18は、複数の光源を備えている。例えば、図1に示されるように、SLOユニット18は、B光(青色光)の光源40、G光(緑色光)の光源42、R光(赤色光)の光源44、およびIR光(赤外線(例えば、近赤外光))の光源46を備える。各光源40、42、44、46から出射された光は、各光学部材48、50、52、54、56を介して同一光路に指向される。光学部材48、56は、ミラーであり、光学部材50、52、54は、ビームスプリッタ―である。B光は、光学部材48、50、54を経由して、撮影光学系116Aの光路に導かれる。G光は、光学部材50、54を経由して、撮影光学系116Aの光路に導かれる。R光は、光学部材52、54を経由して、撮影光学系116Aの光路に導かれる。IR光は、光学部材56、52を経由して、撮影光学系116Aの光路に導かれる。なお、光源40、42、44、46としては、LED光源や、レーザ光源を用いることができる。なお、以下には、レーザ光源を用いた例を説明する。光学部材48、56として、全反射ミラーを用いることができる。また、光学部材50、52、54として、ダイクロイックミラー、ハーフミラー等を用いることができる。 The SLO unit 18 includes a plurality of light sources. For example, as shown in FIG. 1, the SLO unit 18 includes a B light (blue light) light source 40, a G light (green light) light source 42, an R light (red light) light source 44, and an IR light (infrared light). (For example, near-infrared light)). The light emitted from each of the light sources 40, 42, 44, 46 is directed to the same optical path via the respective optical members 48, 50, 52, 54, 56. The optical members 48 and 56 are mirrors, and the optical members 50, 52 and 54 are beam splitters. The B light is guided to the optical path of the photographing optical system 116A via the optical members 48, 50, and 54. The G light is guided to the optical path of the photographing optical system 116A via the optical members 50 and 54. The R light is guided to the optical path of the photographing optical system 116A via the optical members 52 and 54. The IR light is guided to the optical path of the photographing optical system 116A via the optical members 56 and 52. As the light sources 40, 42, 44, 46, an LED light source or a laser light source can be used. An example using a laser light source will be described below. A total reflection mirror can be used as the optical members 48 and 56. Further, as the optical members 50, 52, 54, a dichroic mirror, a half mirror, or the like can be used.
 SLOユニット18は、G光、R光、B光およびIR光をそれぞれ個別に発する発光モードや、それらすべてを同時にもしくは幾つかを同時に発する発光モードなど、各種発光モードを切り替え可能に構成されている。図1に示す例では、B光(青色光)の光源40、G光の光源42、R光の光源44、およびIR光の光源46の4つの光源を備えるが、本開示の技術は、これに限定されない。例えば、SLOユニット18は、更に、白色光の光源を更に備えていてもよい。この場合、上記各種発光モードに加えて、白色光のみを発する発光モード等を設定してもよい。 The SLO unit 18 is configured to be able to switch between various light emission modes such as a light emission mode that emits G light, R light, B light, and IR light individually, and a light emission mode that emits all of them at the same time or several at the same time. .. The example shown in FIG. 1 includes four light sources: a light source 40 for B light (blue light), a light source 42 for G light, a light source 44 for R light, and a light source 46 for IR light. Not limited to. For example, the SLO unit 18 may further include a light source of white light. In this case, in addition to the above-mentioned various light emission modes, a light emission mode or the like that emits only white light may be set.
 SLOユニット18から撮影光学系116Aに入射されたレーザ光は、後述する走査部(120、142)によってX方向およびY方向に走査される。走査光は瞳孔27を経由して、被検眼12の後眼部(例えば、眼底12A)に照射される。眼底12Aにより反射された反射光は、撮影光学系116Aを経由してSLOユニット18へ入射される。走査部(120、142、168)は、後述するリレーレンズ装置140と共に、本開示の技術の「走査部材」の一例である。 The laser beam incident on the photographing optical system 116A from the SLO unit 18 is scanned in the X direction and the Y direction by the scanning unit (120, 142) described later. The scanning light is applied to the posterior eye portion (for example, the fundus 12A) of the eye to be inspected 12 via the pupil 27. The reflected light reflected by the fundus 12A is incident on the SLO unit 18 via the photographing optical system 116A. The scanning unit (120, 142, 168) is an example of the “scanning member” of the technique of the present disclosure, together with the relay lens device 140 described later.
 眼底12Aで反射された反射光は、SLOユニット18に設けられた光検出素子70、72、74、76で検出される。本実施形態では、複数の光源、すなわち、B光源40、G光源42、R光源44およびIR光源46に対応させて、SLOユニット18は、B光検出素子70、G光検出素子72、R光検出素子74およびIR光検出素子76を備える。B光検出素子70は、ビームスプリッタ64で反射されたB光を検出する。G光検出素子72は、ビームスプリッタ64を透過し、ビームスプリッタ58で反射されたG光を検出する。R光検出素子74は、ビームスプリッタ64、58を透過し、ビームスプリッタ60で反射されたR光を検出する。IR光検出素子76は、ビームスプリッタ64、58、60を透過し、ビームスプリッタ62で反射されたIR光を検出する。光検出素子70、72、74、76として、例えば、APD(avalanche photodiode:アバランシェ・フォトダイオード)が挙げられる。 The reflected light reflected by the fundus 12A is detected by the photodetection elements 70, 72, 74, 76 provided in the SLO unit 18. In the present embodiment, the SLO unit 18 corresponds to a plurality of light sources, that is, a B light source 40, a G light source 42, an R light source 44, and an IR light source 46, and the SLO unit 18 includes a B light detection element 70, a G light detection element 72, and R light. It includes a detection element 74 and an IR light detection element 76. The B photodetection element 70 detects the B light reflected by the beam splitter 64. The G photodetection element 72 passes through the beam splitter 64 and detects the G light reflected by the beam splitter 58. The R photodetection element 74 passes through the beam splitters 64 and 58 and detects the R light reflected by the beam splitter 60. The IR photodetection element 76 passes through the beam splitters 64, 58, and 60 and detects the IR light reflected by the beam splitter 62. Examples of the photodetectors 70, 72, 74, and 76 include an APD (avalanche photodiode).
 画像処理装置17は、CPU16Aの制御のもと、B光検出素子70、G光検出素子72、R光検出素子74、およびIR光検出素子76のそれぞれで検出された信号を用いて、各色に対応するSLO画像を生成する。各色に対応するSLO画像には、B光検出素子70で検出された信号を用いて生成されたB-SLO画像、G光検出素子72で検出された信号を用いて生成されたG-SLO画像、R光検出素子74で検出された信号を用いて生成されたR-SLO画像、及びIR光検出素子76で検出された信号を用いて生成されたIR-SLO画像である。また、B光源40、G光源42、R光源44が同時に発光する発光モードの場合、R光検出素子74、G光検出素子72、及びB光検出素子70で検出されたそれぞれの信号を用いて生成されたB-SLO画像、G-SLO画像およびR-SLO画像から、RGB-SLO画像を合成してもよい。また、G光源42、R光源44が同時に発光する発光モードの場合、R光検出素子74及びG光検出素子72で検出されたそれぞれの信号を用いて生成されたG-SLO画像およびR-SLO画像から、RG-SLO画像を合成してもよい。本実施形態では、SLO画像としてRG-SLO画像が用いられるが、これに限定されず、他のSLO画像を用いることができる。 Under the control of the CPU 16A, the image processing apparatus 17 uses signals detected by each of the B photodetection element 70, the G photodetection element 72, the R photodetection element 74, and the IR photodetection element 76 for each color. Generate the corresponding SLO image. The SLO images corresponding to each color include a B-SLO image generated by using the signal detected by the B photodetection element 70 and a G-SLO image generated by using the signal detected by the G photodetection element 72. , An R-SLO image generated using the signal detected by the R photodetection element 74, and an IR-SLO image generated using the signal detected by the IR photodetection element 76. Further, in the case of the light emission mode in which the B light source 40, the G light source 42, and the R light source 44 emit light at the same time, the respective signals detected by the R light detection element 74, the G light detection element 72, and the B light detection element 70 are used. An RGB-SLO image may be combined from the generated B-SLO image, G-SLO image, and R-SLO image. Further, in the case of the light emission mode in which the G light source 42 and the R light source 44 emit light at the same time, the G-SLO image and the R-SLO generated by using the respective signals detected by the R photodetection element 74 and the G light detection element 72 are used. An RG-SLO image may be combined from the image. In the present embodiment, the RG-SLO image is used as the SLO image, but the present invention is not limited to this, and other SLO images can be used.
 ビームスプリッタ58、60、62、64として、ダイクロイックミラー、ハーフミラー等を用いることができる。 As the beam splitters 58, 60, 62, 64, a dichroic mirror, a half mirror, or the like can be used.
 OCTシステムは、図1に示す制御装置16、OCTユニット20、および撮影光学系116Aによって実現される三次元画像取得装置である。OCTユニット20は、光源20A、センサ(検出素子)20B、第1の光カプラ20C、参照光学系20D、コリメータレンズ20E、および第2の光カプラ20Fを含む。 The OCT system is a three-dimensional image acquisition device realized by the control device 16, the OCT unit 20, and the photographing optical system 116A shown in FIG. The OCT unit 20 includes a light source 20A, a sensor (detection element) 20B, a first optical coupler 20C, a reference optical system 20D, a collimator lens 20E, and a second optical coupler 20F.
 光源20Aは、光干渉断層撮影のための光を発生する。光源20Aとしては、例えば、スーパールミネセントダイオード(Super Luminescent Diode;SLD)を用いることができる。光源20Aは、広いスペクトル幅をもつ広帯域光源の低干渉性の光を発生する。光源20Aから射出された光は、第1の光カプラ20Cで分割される。分割された一方の光は、測定光として、コリメータレンズ20Eで平行光にされた後、撮影光学系116Aに入射される。測定光は、後述する走査部(148、168)によってX方向およびY方向に走査される。走査光は、被検眼の前眼部や、瞳孔27を経由して後眼部に照射される。前眼部又は後眼部で反射された測定光は、撮影光学系116Aを経由してOCTユニット20へ入射され、コリメータレンズ20Eおよび第1の光カプラ20Cを介して、第2の光カプラ20Fに入射する。なお、本実施形態では、光源20AとしてSLDを用いるSD-OCTが例示されているが、これに限定されず、SLDに替えて波長掃引光源を用いるSS-OCTが採用されてもよい。 The light source 20A generates light for optical interference tomography. As the light source 20A, for example, a super luminescent diode (SLD) can be used. The light source 20A generates low coherence light of a wideband light source having a wide spectral width. The light emitted from the light source 20A is divided by the first optical coupler 20C. One of the divided lights is converted into parallel light by the collimator lens 20E as measurement light, and then incident on the photographing optical system 116A. The measurement light is scanned in the X direction and the Y direction by the scanning unit (148, 168) described later. The scanning light is applied to the anterior segment of the eye to be inspected and the posterior segment of the eye via the pupil 27. The measurement light reflected by the anterior eye portion or the posterior eye portion is incident on the OCT unit 20 via the photographing optical system 116A, and is incident on the OCT unit 20 via the collimeter lens 20E and the first optical coupler 20C to the second optical coupler 20F. Incident to. In this embodiment, SD-OCT using SLD as the light source 20A is exemplified, but the present invention is not limited to this, and SS-OCT using a wavelength sweep light source may be adopted instead of SLD.
 光源20Aから射出され、第1の光カプラ20Cで分岐された他方の光は、参照光として、参照光学系20Dへ入射され、参照光学系20Dを経由して、第2の光カプラ20Fに入射する。 The other light emitted from the light source 20A and branched by the first optical coupler 20C is incident on the reference optical system 20D as reference light, and is incident on the second optical coupler 20F via the reference optical system 20D. do.
 被検眼12で反射および散乱された測定光(戻り光)と、参照光とは、第2の光カプラ20Fで合成されて干渉光が生成される。干渉光はセンサ20Bで検出される。画像処理装置17は、センサ20Bからの検出信号(OCTデータ)に基づいて、被検眼12の断層画像を生成する。 The measurement light (return light) reflected and scattered by the eye 12 to be inspected and the reference light are combined by the second optical coupler 20F to generate interference light. The interference light is detected by the sensor 20B. The image processing device 17 generates a tomographic image of the eye to be inspected 12 based on the detection signal (OCT data) from the sensor 20B.
 本実施形態では、OCTシステムは、被検眼12の前眼部又は後眼部の断層画像を生成する。 In this embodiment, the OCT system produces a tomographic image of the anterior or posterior eye of the eye 12 to be inspected.
 被検眼12の前眼部は、前眼セグメントとして、例えば、角膜、虹彩、隅角、水晶体、毛様体、および硝子体の一部を含む部分である。被検眼12の後眼部は、後眼セグメントとして、例えば、硝子体の残りの一部、網膜、脈絡膜、及び強膜を含む部分である。なお、前眼部に属する硝子体は、硝子体の内、水晶体の最も眼球中心Oに近い点を通るX-Y平面を境界として、角膜側の部分であり、後眼部に属する硝子体は、硝子体の内、前眼部に属する硝子体以外の部分である。 The anterior segment of the eye 12 to be inspected is a portion including, for example, a cornea, an iris, an angle, a crystalline lens, a ciliary body, and a part of a vitreous body as an anterior segment. The posterior segment of the eye 12 to be inspected is a segment of the posterior eye that includes, for example, the rest of the vitreous, the retina, the choroid, and the sclera. The vitreous body belonging to the anterior segment of the eye is a portion of the vitreous body on the corneal side with the XY plane passing through the point closest to the center O of the crystalline lens as a boundary, and the vitreous body belonging to the posterior eye region is. , The part of the vitreous body other than the vitreous body that belongs to the anterior segment of the eye.
 OCTシステムは、被検眼12の前眼部が撮影対象部位である場合、例えば、角膜の断層画像を生成する。また、被検眼12の後眼部が撮影対象部位である場合、OCTシステムは、例えば、網膜の断層画像を生成する。 The OCT system generates, for example, a tomographic image of the cornea when the anterior segment of the eye to be inspected 12 is the imaging target site. Further, when the posterior eye portion of the eye to be inspected 12 is the imaging target site, the OCT system generates, for example, a tomographic image of the retina.
 眼科光学装置110は、被検眼12の視線を所定方向に向かせるように点灯される発光装置(例えば、LED)により構成される固視標を点灯させる固視標制御装置90を備えている。 The ophthalmic optical device 110 includes a fixative target control device 90 that lights a fixative target composed of a light emitting device (for example, an LED) that is lit so as to direct the line of sight of the eye to be inspected 12 in a predetermined direction.
 図2Aは後眼部観察時の、図2Bは前眼部観察時の各々の撮影光学系116Aの概略構成を示している。撮影光学系116Aは、被検眼12側から順に配置された対物レンズ130、光路合成部材であるダイクロイックミラー178、水平走査部142、リレーレンズ装置140、ダイクロイックミラー147、垂直走査部120、168、及びフォーカス調整装置150を備えている。対物レンズ130は、本開示の技術の「対物光学系」の一例であり、フォーカス調整装置150は、本開示の技術の「導光光学系」の一部である。 FIG. 2A shows the schematic configuration of each photographing optical system 116A at the time of observing the posterior eye portion, and FIG. 2B shows the schematic configuration at the time of observing the anterior eye portion. The photographing optical system 116A includes an objective lens 130 arranged in order from the side of the eye to be inspected 12, a dichroic mirror 178 which is an optical path synthesis member, a horizontal scanning unit 142, a relay lens device 140, a dichroic mirror 147, a vertical scanning unit 120, 168, and the like. The focus adjusting device 150 is provided. The objective lens 130 is an example of the "objective optical system" of the technique of the present disclosure, and the focus adjusting device 150 is a part of the "light guide optical system" of the technique of the present disclosure.
 ダイクロイックミラー178は、SLO光学系から出射された光とOCT光学系から出射された光と固視標投影系138から出射された固視標の光とを合成する光学部材である。ダイクロイックミラー178は、図2A及び図2Bに示したように、SLO光学系から出射された光、及びOCT光学系から出射された光の各々を透過すると共に、固視標投影系138から出射された固視標の光を反射して、SLO光学系から出射された光、OCT光学系から出射された光、及び固視標投影系138から出射された固視標の光の各々を対物レンズ130に導く。 The dichroic mirror 178 is an optical member that synthesizes the light emitted from the SLO optical system, the light emitted from the OCT optical system, and the light of the fixative target emitted from the fixative target projection system 138. As shown in FIGS. 2A and 2B, the dichroic mirror 178 transmits the light emitted from the SLO optical system and the light emitted from the OCT optical system, and is emitted from the fixation target projection system 138. The objective lens reflects the light of the fixation target and emits the light emitted from the SLO optical system, the light emitted from the OCT optical system, and the light of the fixation target emitted from the fixation target projection system 138. Lead to 130.
 固視標投影系138は、固視標138Aと固視標138Aからの光を被検眼12の眼底に向けて供給する集光レンズ138Bとを有し、固視標138Aと集光レンズ138Bとを一体的に固視標投影系138の光軸138Cに沿って移動することにより、後眼部観察時と前眼部観察時とに対応する。固視標投影系138は、本開示の技術の「固視票光学系」の一例である。 The fixative target projection system 138 has a fixative target 138A and a condensing lens 138B that supplies light from the fixative target 138A toward the fundus of the eye 12 to be inspected, and the fixative target 138A and the condensing lens 138B. By integrally moving along the optical axis 138C of the fixative projection system 138, it corresponds to the time of observing the posterior eye and the time of observing the anterior eye. The fixative target projection system 138 is an example of the "fixation guide optical system" of the technique of the present disclosure.
 水平走査部142は、リレーレンズ装置140を介して入射したSLOのレーザ光、及びOCTの測定光の各々を水平方向に走査する光学スキャナである。 The horizontal scanning unit 142 is an optical scanner that horizontally scans each of the SLO laser light incident through the relay lens device 140 and the OCT measurement light.
 OCTユニット20から出射した光が進むファイバの端部158から出射される測定光が入射されるフォーカス調整装置150は、複数のレンズ152、154を備える。被検眼12における撮影部位に応じて、複数のレンズ152、154それぞれを、適宜光軸方向に移動させることにより、被検眼12における測定光のフォーカス位置を調整する。例えば、図2Aでは被検眼12の後眼部である眼底が、図2Bでは被検眼12の前眼部である角膜が、各々OCTの測定光のフォーカス位置になるように、レンズ152、154を、適宜光軸方向に移動させる。なお、図示しないが、フォーカス検出装置を備える場合には、焦点検出の状態に応じてフォーカス調整装置にてレンズ152、154を駆動して、自動的に焦点合わせをおこなうようにして、オートフォーカス装置を実現することが可能である。 The focus adjusting device 150 to which the measurement light emitted from the end portion 158 of the fiber to which the light emitted from the OCT unit 20 travels is incident includes a plurality of lenses 152 and 154. The focus position of the measured light in the eye 12 to be inspected is adjusted by appropriately moving each of the plurality of lenses 152 and 154 in the optical axis direction according to the imaged portion in the eye 12 to be inspected. For example, in FIG. 2A, the lens 152, 154 is set so that the fundus, which is the posterior eye portion of the eye subject 12, and the cornea, which is the anterior eye portion of the eye subject 12 in FIG. 2B, are at the focus positions of the OCT measurement light. , Move in the direction of the optical axis as appropriate. Although not shown, when a focus detection device is provided, the focus adjustment device drives the lenses 152 and 154 according to the focus detection state to automatically perform focusing, so that the autofocus device is provided. It is possible to realize.
 垂直走査部168は、フォーカス調整装置150を介して入射したOCTの測定光を垂直方向に走査する光学スキャナである。 The vertical scanning unit 168 is an optical scanner that vertically scans the OCT measurement light incident through the focus adjusting device 150.
 垂直走査部120は、SLOユニット18から入射したレーザ光を垂直方向に走査する光学スキャナである。 The vertical scanning unit 120 is an optical scanner that vertically scans the laser beam incident from the SLO unit 18.
 リレーレンズ装置140は、複数の正のパワーを有するレンズ144、146を備える。複数のレンズ144、146により、垂直走査部168の位置と水平走査部142の位置とが共役になるように、また、垂直走査部120の位置と水平走査部142の位置とが共役になるように、リレーレンズ装置140が構成されている。より具体的には、両走査部の角度走査の中心位置が共役になるように、リレーレンズ装置140が構成されている。図2Aに示したように、後眼部観察状態では、フォーカス調整装置150により、ファイバの端部158から出射される測定光の集光位置が、リレーレンズ装置140内の2つの正レンズ群であるレンズ146とレンズ144との間に形成される。また、図2Bに示したように、前眼部観察状態では、フォーカス調整装置150により、ファイバの端部158から出射される測定光の光束が、リレーレンズ装置140内の2つの正レンズ群であるレンズ146とレンズ144との間で略平行光束となる。 The relay lens device 140 includes lenses 144 and 146 having a plurality of positive powers. With the plurality of lenses 144 and 146, the position of the vertical scanning unit 168 and the position of the horizontal scanning unit 142 are conjugated, and the position of the vertical scanning unit 120 and the position of the horizontal scanning unit 142 are conjugated. The relay lens device 140 is configured. More specifically, the relay lens device 140 is configured so that the center positions of the angular scans of both scanning portions are conjugated. As shown in FIG. 2A, in the rear eye observation state, the focusing position of the measurement light emitted from the end portion 158 of the fiber by the focus adjusting device 150 is set by the two positive lens groups in the relay lens device 140. It is formed between a lens 146 and a lens 144. Further, as shown in FIG. 2B, in the front eye observation state, the luminous flux of the measurement light emitted from the end portion 158 of the fiber by the focus adjusting device 150 is generated by the two positive lens groups in the relay lens device 140. A substantially parallel luminous flux is formed between a certain lens 146 and the lens 144.
 ダイクロイックミラー147は、リレーレンズ装置140のレンズ144とレンズ146との間に配置されている。ダイクロイックミラー147は、SLOユニット18から出射されたSLO光をレンズ144を介して水平走査部142に向けて反射する。SLOユニット18から出射された光は、SLO光学系を構成する垂直走査部120および水平走査部142により2次元走査される。2次元走査されたSLOレーザ光は対物レンズ130を介して被検眼12へ入射される。被検眼12で反射されたSLOレーザ光は、対物レンズ130、ダイクロイックミラー178、水平走査部142、リレーレンズ装置140内の正レンズ群であるレンズ144、ダイクロイックミラー147および垂直走査部120を経由して、SLOユニット18に入射される。 The dichroic mirror 147 is arranged between the lens 144 and the lens 146 of the relay lens device 140. The dichroic mirror 147 reflects the SLO light emitted from the SLO unit 18 toward the horizontal scanning unit 142 via the lens 144. The light emitted from the SLO unit 18 is two-dimensionally scanned by the vertical scanning unit 120 and the horizontal scanning unit 142 constituting the SLO optical system. The two-dimensionally scanned SLO laser beam is incident on the eye 12 to be inspected through the objective lens 130. The SLO laser light reflected by the eye 12 passes through the objective lens 130, the dichroic mirror 178, the horizontal scanning unit 142, the lens 144 which is a positive lens group in the relay lens device 140, the dichroic mirror 147, and the vertical scanning unit 120. Then, it is incident on the SLO unit 18.
 OCTユニット20から出射された測定光は、フォーカス調整装置150、垂直走査部168で2次元走査されて、ダイクロイックミラー147を透過し、水平走査部142によって垂直走査部168の走査方向とは直交する方向に2次元走査され、結果として2次元走査される。また、被検眼12で反射されたOCT測定光は、対物レンズ130、ダイクロイックミラー178、水平走査部142、リレーレンズ装置140、ダイクロイックミラー147、垂直走査部168、及びフォーカス調整装置150を経由して、OCTユニット20へ入射される。 The measurement light emitted from the OCT unit 20 is two-dimensionally scanned by the focus adjusting device 150 and the vertical scanning unit 168, passes through the dichroic mirror 147, and is orthogonal to the scanning direction of the vertical scanning unit 168 by the horizontal scanning unit 142. Two-dimensional scanning is performed in the direction, and as a result, two-dimensional scanning is performed. Further, the OCT measurement light reflected by the eye 12 to be inspected passes through the objective lens 130, the dichroic mirror 178, the horizontal scanning unit 142, the relay lens device 140, the dichroic mirror 147, the vertical scanning unit 168, and the focus adjusting device 150. , Is incident on the OCT unit 20.
 水平走査部142及び垂直走査部120、168としては、例えば、レゾナントスキャナ、ガルバノミラー、ポリゴンミラー、回転ミラー、ダボプリズム、ダブルダボプリズム、ローテーションプリズム、MEMSミラースキャナー、音響光学素子(AOM)等が好適に用いられる。本実施形態では、垂直走査部168としてガルバノミラーが用いられ、また、垂直走査部120としてポリゴンミラーが用いられている。なお、ポリゴンミラーや、ガルバノミラーなどの光学スキャナに替えて、MEMSミラースキャナーなどの2次元光学スキャナを用いる場合には、入射光をその反射素子で2次元的に角度走査することが可能であるため、リレーレンズ装置140を無くしてもよい。また、垂直走査部120、168が水平方向にも走査可能に構成されているのであれば、水平走査部142を省略してもよい。 As the horizontal scanning unit 142 and the vertical scanning unit 120 and 168, for example, a resonant scanner, a galvano mirror, a polygon mirror, a rotating mirror, a dowel prism, a double dowel prism, a rotation prism, a MEMS mirror scanner, an acoustic optical element (AOM) and the like are suitable. Used for. In this embodiment, a galvano mirror is used as the vertical scanning unit 168, and a polygon mirror is used as the vertical scanning unit 120. When a two-dimensional optical scanner such as a MEMS mirror scanner is used instead of an optical scanner such as a polygon mirror or a galvano mirror, the incident light can be two-dimensionally angle-scanned by the reflecting element. Therefore, the relay lens device 140 may be eliminated. Further, if the vertical scanning units 120 and 168 are configured to be able to scan in the horizontal direction, the horizontal scanning unit 142 may be omitted.
 垂直走査部120、168及び水平走査部142は、CPU16Aの制御のもと、被検眼12における走査範囲に応じて設定された垂直走査部120、168及び水平走査部142による走査光束の走査角度の範囲で、走査光束によって被検眼12を走査する。CPU16Aは、本開示の技術の「走査部材制御部」の一例である。 The vertical scanning unit 120, 168 and the horizontal scanning unit 142 have the scanning angles of the scanning light beam by the vertical scanning unit 120, 168 and the horizontal scanning unit 142, which are set according to the scanning range in the eye 12 under the control of the CPU 16A. The eye 12 to be inspected is scanned by the scanning light beam in the range. The CPU 16A is an example of the "scanning member control unit" of the technique of the present disclosure.
 対物レンズ130は、水平走査部142側から順に、第1レンズ群132と第2レンズ群134とを備える。第2レンズ群134は超広角による走査光を被検眼12の瞳孔に向けて出力するための機能を有する。そして、第1レンズ群132及び第2レンズ群134は全体として正のパワーを有する正レンズ群である。第1レンズ群132は、本開示の技術の「第1正レンズ群」の一例であり、第2レンズ群134は、本開示の技術の「第2正レンズ群」の一例である。 The objective lens 130 includes a first lens group 132 and a second lens group 134 in order from the horizontal scanning unit 142 side. The second lens group 134 has a function of outputting scanning light having an ultra-wide angle toward the pupil of the eye 12 to be inspected. The first lens group 132 and the second lens group 134 are positive lens groups having positive power as a whole. The first lens group 132 is an example of the "first positive lens group" of the technique of the present disclosure, and the second lens group 134 is an example of the "second positive lens group" of the technique of the present disclosure.
 固視標投影系138からの光束はダイクロイックミラー178での反射を介して対物レンズ130を通過し、被検眼12に向けて平行光束となる。これによって、被検眼12は固視標の像を凝視することができ、固視標の位置を変えることによって、被検眼12の向き変えることができ、被検眼12の後眼部、及び前眼部の必要な領域の撮影が可能となる。本実施形態では、後述するように、後眼部観察時と前眼部観察時とで、対物レンズ130と被検眼12との距離である作動距離WDが変化する。本実施形態では、図2A及び図2Bに示したように、固視標投影系138とダイクロイックミラー178との距離を変化させることにより、作動距離WDの変化に対応している。 The luminous flux from the fixative projection system 138 passes through the objective lens 130 via the reflection by the dichroic mirror 178 and becomes a parallel luminous flux toward the eye to be inspected 12. As a result, the eye 12 to be inspected can stare at the image of the fixative eye, and by changing the position of the fixative eye, the direction of the eye to be inspected 12 can be changed, and the posterior eye portion and the anterior eye of the eye to be inspected 12 can be changed. It is possible to shoot the required area of the part. In the present embodiment, as will be described later, the working distance WD, which is the distance between the objective lens 130 and the eye to be inspected 12, changes between the time of observing the posterior eye and the time of observing the anterior eye. In this embodiment, as shown in FIGS. 2A and 2B, the working distance WD is changed by changing the distance between the fixative projection system 138 and the dichroic mirror 178.
 なお、対物光学系としては、図2A及び図2Bに示したような対物レンズ130のみならず、凹面楕円鏡などの反射鏡を含む光学系で構成してもよい。 The objective optical system may be composed of not only the objective lens 130 as shown in FIGS. 2A and 2B but also an optical system including a reflecting mirror such as a concave elliptical mirror.
 次に、図3A、図3B及び図3Cを参照して、後眼部観察時、前眼部観察時、及び眼球内部観察時における各々の対物レンズ130を中心とした撮影光学系116Aの状態を説明する。図3Aは後眼部観察時、図3Bは前眼部観察時、図3Cは眼球内部観察時の各々における対物レンズ130を中心とした光学系の状態を示す概略光路図である。本実施形態では、フォーカス調整装置150を備える上流光学系によって変化させる像共役位置に応じて対物レンズ130と被検眼12の距離を調整する。この上流光学系は、光源からの光束を走査部に導く導光光学系に対応する。 Next, with reference to FIGS. 3A, 3B and 3C, the state of the photographing optical system 116A centered on each objective lens 130 at the time of observing the posterior eye portion, observing the anterior eye portion, and observing the inside of the eyeball is observed. explain. 3A is a schematic optical path diagram showing the state of the optical system centered on the objective lens 130 at the time of observing the posterior eye portion, FIG. 3B at the time of observing the anterior eye portion, and FIG. 3C at the time of observing the inside of the eyeball. In the present embodiment, the distance between the objective lens 130 and the eye 12 to be inspected is adjusted according to the image conjugate position changed by the upstream optical system provided with the focus adjusting device 150. This upstream optical system corresponds to a light guide optical system that guides a light flux from a light source to a scanning unit.
 図3Aに示した後眼部観察時では、水平走査部142に代表される走査面から供給される平行光束の3つの角度の平行光束が、2つの正レンズ群(第1レンズ群132及び第2レンズ群134)を通して被検眼12の眼底12Aで集光される光線の様子が示されている。これら3つの角度の光束は、垂直走査部120及び168による垂直走査と、水平走査部142とによる2次元走査の一方のみの走査光束の例示として示されている。そして図中の円形矢印は、走査部による走査光の角度走査の方向と、被検眼側での角度走査の方向をそれぞれ示している。以下の図3B及び図3Cでも同様。 When observing the posterior eye portion shown in FIG. 3A, the parallel luminous fluxes at three angles of the parallel luminous flux supplied from the scanning surface represented by the horizontal scanning portion 142 are two positive lens groups (first lens group 132 and first lens group 132). The state of the light beam focused on the fundus 12A of the eye 12 to be inspected 12 through the two lens groups 134) is shown. The luminous fluxes at these three angles are shown as an example of the scanning luminous flux of only one of the vertical scanning by the vertical scanning units 120 and 168 and the two-dimensional scanning by the horizontal scanning unit 142. The circular arrows in the figure indicate the direction of the angular scanning of the scanning light by the scanning unit and the direction of the angular scanning on the side to be inspected. The same applies to FIGS. 3B and 3C below.
 後眼部観察時では、垂直走査部120、168及び水平走査部142は、被検眼12の瞳孔位置Ppに共役となるように、図3Aに示した瞳共役位置180に配置され、垂直走査部120、168及び水平走査部142の共役像が形成される瞳共役位置200は被検眼の瞳孔位置Ppと一致している。また、第1レンズ群132と第2レンズ群134との間の位置210に被検眼12の眼底像が形成され。即ち、被検眼12の眼底と接する面182と位置210の面が幾何光学的に共役になる。図3Aに示した状態では、作動距離WDは、対物レンズ130の第2レンズ群134と瞳共役位置200との距離に略等しい。 When observing the posterior eye portion, the vertical scanning unit 120 and 168 and the horizontal scanning unit 142 are arranged at the pupil coupling position 180 shown in FIG. 3A so as to be coupled to the pupil position Pp of the eye 12 to be inspected, and the vertical scanning unit The pupil conjugate position 200 on which the conjugate image of 120, 168 and the horizontal scanning unit 142 is formed coincides with the pupil position Pp of the eye to be inspected. Further, a fundus image of the eye 12 to be inspected is formed at a position 210 between the first lens group 132 and the second lens group 134. That is, the surface 182 in contact with the fundus of the eye 12 to be inspected and the surface at the position 210 are geometrically conjugated. In the state shown in FIG. 3A, the working distance WD is substantially equal to the distance between the second lens group 134 of the objective lens 130 and the pupil conjugate position 200.
 後眼部観察時は、被検眼のSLO光学系において、垂直走査部120および水平走査部142により走査されるSLOレーザ光は、対物レンズ130を経由して、被検眼12の瞳孔位置Ppを中心として2次元的に角度走査される。その結果、SLOレーザ光の集光点が、眼底12Aにおいて2次元走査される。後眼部観察時は、OCT光学系においても同様に、垂直走査部168および水平走査部142により走査される測定光は、対物レンズ130を経由して、被検眼12の瞳孔位置Ppを中心として2次元的に角度走査される。その結果、測定光の集光点が、眼底12Aにおいて2次元走査される。後眼部観察時では、SLOユニット18により眼底2次元画像が、OCTユニット20により眼底断層画像がそれぞれ取得される。 When observing the posterior eye portion, the SLO laser light scanned by the vertical scanning unit 120 and the horizontal scanning unit 142 in the SLO optical system of the eye to be inspected is centered on the pupil position Pp of the eye to be inspected 12 via the objective lens 130. The angle is scanned two-dimensionally. As a result, the focusing point of the SLO laser beam is two-dimensionally scanned in the fundus 12A. Similarly, when observing the posterior eye portion, the measurement light scanned by the vertical scanning unit 168 and the horizontal scanning unit 142 passes through the objective lens 130 and is centered on the pupil position Pp of the eye to be inspected 12 in the OCT optical system. Two-dimensional angle scanning is performed. As a result, the focusing point of the measurement light is two-dimensionally scanned in the fundus 12A. When observing the posterior eye portion, the SLO unit 18 acquires a two-dimensional image of the fundus, and the OCT unit 20 acquires a tomographic image of the fundus.
 図3Bに示した前眼部観察時では、水平走査部142から供給される同じく3つの角度の光束が2つの正レンズ群(第1レンズ群132及び第2レンズ群134)により、被検眼12の角膜に集光される光線が示されている。 At the time of observing the anterior eye portion shown in FIG. 3B, the luminous flux of the same three angles supplied from the horizontal scanning portion 142 is emitted by the two positive lens groups (first lens group 132 and second lens group 134) to the eye 12 to be inspected. The light beam focused on the cornea is shown.
 前眼部観察時では、後眼部観察時と同様に、垂直走査部120、168及び水平走査部142は、被検眼12の瞳孔位置Ppに共役となるように、図3Bに示した瞳共役位置180に配置される。しかしながら、垂直走査部120、168及び水平走査部142の共役像が形成される瞳共役位置202は被検眼の瞳孔位置Ppと一致せず、被検眼と第2レンズ群134との間に形成される。また、第1レンズ群132と瞳共役位置180との間に被検眼12の前眼部像が形成される像共役位置212が形成され、被検眼12の前端部と接する面に像共役位置184が、形成される。図3Bに示した状態では、作動距離WDは、対物レンズ130の第2レンズ群134と瞳共役位置202との距離よりも拡大している。なお、瞳共役位置180は前述のとおり、走査部120、142及び168との共役位置であり、後眼部観察時に被検眼12の瞳Ppと一致するが、前眼部観察時には図3Bに示す通り、被検眼12の瞳Ppとは一致しない。眼底観察時の光学構成との比較を分かり易くするために、走査部との共役位置を以後も瞳共役位置と説明することがある。 When observing the anterior eye, the vertical scanning unit 120, 168 and the horizontal scanning unit 142 are coupled to the pupil position Pp of the eye 12 to be examined, as in the case of observing the posterior eye. Arranged at position 180. However, the pupil conjugate position 202 on which the conjugate images of the vertical scanning unit 120 and 168 and the horizontal scanning unit 142 are formed does not coincide with the pupil position Pp of the eye to be inspected, and is formed between the eye to be inspected and the second lens group 134. To. Further, an image conjugate position 212 is formed between the first lens group 132 and the pupil conjugate position 180 to form an image of the anterior segment of the eye to be inspected 12, and the image conjugate position 184 is formed on a surface in contact with the front end of the eye to be inspected 12. Is formed. In the state shown in FIG. 3B, the working distance WD is larger than the distance between the second lens group 134 of the objective lens 130 and the pupil conjugate position 202. As described above, the pupil conjugate position 180 is a conjugate position with the scanning portions 120, 142 and 168, and coincides with the pupil Pp of the eye 12 to be inspected when observing the posterior eye portion, but is shown in FIG. 3B when observing the anterior eye portion. As you can see, it does not match the pupil Pp of the eye 12 to be inspected. In order to make it easier to understand the comparison with the optical configuration when observing the fundus, the conjugate position with the scanning unit may be referred to as the pupil conjugate position thereafter.
 前眼部観察時は、被検眼のSLO光学系において、垂直走査部120および水平走査部142により走査されるSLOレーザ光は、対物レンズ130を経由して、瞳共役位置202を中心として2次元的に角度走査される。その結果、SLOレーザ光の集光点が、前眼部において2次元走査される。前眼部観察時は、OCT光学系においても同様に、垂直走査部168および水平走査部142により走査される測定光は、対物レンズ130を経由して、瞳共役位置202を中心として2次元的に角度走査され、OCT測定光の集光点が被検眼12の前眼部において2次元的に走査される。 When observing the anterior segment of the eye, the SLO laser light scanned by the vertical scanning unit 120 and the horizontal scanning unit 142 in the SLO optical system of the eye to be inspected is two-dimensionally centered on the pupil conjugate position 202 via the objective lens 130. The angle is scanned. As a result, the focusing point of the SLO laser beam is two-dimensionally scanned in the anterior segment of the eye. Similarly, when observing the anterior segment of the eye, the measurement light scanned by the vertical scanning unit 168 and the horizontal scanning unit 142 is two-dimensionally centered on the pupil conjugate position 202 via the objective lens 130 in the OCT optical system. The focusing point of the OCT measurement light is scanned two-dimensionally in the anterior segment of the eye to be inspected 12.
 図3Cに示した眼球内部観察時では、水平走査部142から供給される同じく3つの角度の光束が2つの正レンズ群(第1レンズ群132及び第2レンズ群134)を有する対物レンズ130により、例として、被検眼12の水晶体12Lに集光される光線が示されている。 When observing the inside of the eyeball shown in FIG. 3C, the light rays of the same three angles supplied from the horizontal scanning unit 142 are generated by the objective lens 130 having two positive lens groups (first lens group 132 and second lens group 134). As an example, a light beam focused on the crystalline lens 12L of the eye 12 to be inspected is shown.
 眼球内部観察時では、後眼部観察時と同様に、垂直走査部120、168及び水平走査部142は、被検眼12の瞳孔位置Ppに共役となるように、図3Cに示した瞳共役位置180に配置される。しかしながら、垂直走査部120、168及び水平走査部142の共役像が形成される瞳共役位置204は被検眼の瞳孔位置Ppと一致せず、被検眼と第2レンズ群134との間に形成される。また、第1レンズ群132と第2レンズ群134との間に像共役位置214が形成され、被検眼12の水晶体12Lの後端部と接する面に像共役位置186が形成される。図3Cに示した状態では、作動距離WDは、対物レンズ130の第2レンズ群134と瞳共役位置204との距離よりも拡大しているが、図3Bの場合ほどではない。即ち、図3Aに示した後眼部観察状態の作動距離WDと、図3Bの前眼部観察状態の作動距離WDとの間の値である。本実施形態では、図3Aに示した状態から、図3Cに示した状態を経て、図3Bに示した状態に至るまで、作動距離WDを連続的に変化させることが可能である。 When observing the inside of the eyeball, the vertical scanning unit 120, 168 and the horizontal scanning unit 142 are coupled to the pupil position Pp of the eye 12 to be examined, as in the case of observing the posterior eye portion. Arranged at 180. However, the pupil conjugate position 204 on which the conjugate images of the vertical scanning unit 120 and 168 and the horizontal scanning unit 142 are formed does not coincide with the pupil position Pp of the eye to be inspected, and is formed between the eye to be inspected and the second lens group 134. To. Further, the image conjugate position 214 is formed between the first lens group 132 and the second lens group 134, and the image conjugate position 186 is formed on the surface of the eye 12 in contact with the rear end portion of the crystalline lens 12L. In the state shown in FIG. 3C, the working distance WD is larger than the distance between the second lens group 134 of the objective lens 130 and the pupil conjugate position 204, but not as much as in the case of FIG. 3B. That is, it is a value between the operating distance WD in the rear eye observation state shown in FIG. 3A and the operating distance WD in the anterior eye observation state shown in FIG. 3B. In the present embodiment, the working distance WD can be continuously changed from the state shown in FIG. 3A to the state shown in FIG. 3C to the state shown in FIG. 3B.
 眼球内部観察時は、被検眼のSLO光学系において、垂直走査部120および水平走査部142により走査されるSLOレーザ光は、対物レンズ130を経由して、瞳共役位置204を中心として2次元的に角度走査される。その結果、SLOレーザ光の集光点が、被検眼の眼球内部において2次元走査される。そして、眼球内部観察時は、OCT光学系においても同様に、垂直走査部168および水平走査部142により走査される測定光は、対物レンズ130を経由して、瞳共役位置204を中心として2次元的に角度走査され、測定光の集光点が被検眼の眼球内部を走査する。これにより、被検眼の眼底と角膜との間の眼球内部の任意の位置での観察が可能となる。 When observing the inside of the eyeball, the SLO laser light scanned by the vertical scanning unit 120 and the horizontal scanning unit 142 in the SLO optical system of the subject is two-dimensionally centered on the pupil conjugate position 204 via the objective lens 130. The angle is scanned. As a result, the focusing point of the SLO laser beam is two-dimensionally scanned inside the eyeball of the eye to be inspected. When observing the inside of the eyeball, similarly in the OCT optical system, the measurement light scanned by the vertical scanning unit 168 and the horizontal scanning unit 142 is two-dimensionally centered on the pupil conjugate position 204 via the objective lens 130. The angle is scanned, and the condensing point of the measurement light scans the inside of the eyeball of the subject. This makes it possible to observe at an arbitrary position inside the eyeball between the fundus of the eye to be inspected and the cornea.
 図3A、図3B及び図3Cに各々示したように、垂直走査部120、168及び水平走査部142は矢印190の方向に角度走査される。かかる角度走査により、対物レンズ130を通過した光束は矢印192の方向に光路が変化し、瞳共役位置200、202、204を通過して被検眼12の後眼部を矢印194の方向に走査する。本実施形態では、後眼部観察時、前眼部観察時、及び眼球内部観察時のいずれにおいても、垂直走査部120、168及び水平走査部142の走査方向は同じであり、かつ被検眼12をSLOレーザ光、及びOCTの測定光が走査する方向は同じである。その結果、画像処理において、後眼部観察時、前眼部観察時、又は眼球内部観察時の別で、画像反転処理を要しない。このため、被検眼の前眼部、中間部、後願部の全ての観察において、走査方向が不変であり、観察者と走査の結果得られる画像との位置関係は変わることがなく、実用上の混乱がなく操作性が向上する。 As shown in FIGS. 3A, 3B and 3C, respectively, the vertical scanning unit 120 and the horizontal scanning unit 142 are angularly scanned in the direction of the arrow 190. By such angular scanning, the optical path of the luminous flux passing through the objective lens 130 changes in the direction of arrow 192, passes through the pupil conjugate positions 200, 202, and 204, and scans the posterior segment of the eye to be inspected 12 in the direction of arrow 194. .. In the present embodiment, the scanning directions of the vertical scanning unit 120 and 168 and the horizontal scanning unit 142 are the same at the time of observing the posterior eye portion, observing the anterior eye portion, and observing the inside of the eyeball, and the eye to be inspected 12 The SLO laser light and the OCT measurement light scan in the same direction. As a result, in the image processing, the image inversion processing is not required for the time of observing the posterior eye portion, the time of observing the anterior eye portion, or the time of observing the inside of the eyeball. Therefore, in all observations of the anterior eye portion, the intermediate portion, and the posterior application portion of the eye to be inspected, the scanning direction does not change, and the positional relationship between the observer and the image obtained as a result of scanning does not change, which is practical. There is no confusion and operability is improved.
 フォーカス調整装置150の、後眼部観察時から前眼部観察時に至るまでのフォーカス切り替え方法は、以下のとおりである。 The focus switching method of the focus adjusting device 150 from the time of observing the posterior eye to the time of observing the anterior eye is as follows.
(1)フォーカス調整装置150の光学系を、後眼部観察時に対応した光学系と、前眼部観察時に対応した光学系とに交換可能に構成する。
(2)フォーカス調整装置150は、通常時は、後眼部観察時に対応した光学系を有し、前眼部観察時に挿抜可能な光学系を追加することにより前眼部観察時に対応する。又はフォーカス調整装置150は、通常時は、前眼部観察時に対応した光学系を有し、後眼部観察時に挿抜可能な光学系を追加することにより後眼部観察時に対応する。
(3)フォーカス調整装置150の光学系と、垂直走査部168との距離が変更可能なようにフォーカス調整装置150を構成する。
(4)フォーカス調整装置150の光学系の焦点距離が変更可能なようにフォーカス調整装置150の光学系を構成する。例えば、フォーカス調整装置150の光学系をズームレンズ又は液体レンズ等で構成する。
(1) The optical system of the focus adjusting device 150 is configured to be interchangeable with an optical system corresponding to the observation of the posterior eye portion and an optical system corresponding to the observation of the anterior eye portion.
(2) The focus adjusting device 150 normally has an optical system corresponding to the observation of the posterior eye portion, and by adding an optical system that can be inserted and removed during the observation of the anterior eye portion, the focus adjustment device 150 corresponds to the observation of the anterior eye portion. Alternatively, the focus adjusting device 150 normally has an optical system corresponding to the observation of the anterior eye portion, and by adding an optical system that can be inserted and removed during the observation of the posterior eye portion, the focus adjusting device 150 corresponds to the observation of the posterior eye portion.
(3) The focus adjusting device 150 is configured so that the distance between the optical system of the focus adjusting device 150 and the vertical scanning unit 168 can be changed.
(4) The optical system of the focus adjusting device 150 is configured so that the focal length of the optical system of the focus adjusting device 150 can be changed. For example, the optical system of the focus adjusting device 150 is composed of a zoom lens, a liquid lens, or the like.
 図4Aは、前眼部観察時における瞳共役位置180に存在する垂直走査部120、168及び水平走査部142の位置(スキャナ位置)での光線角度算出の説明図である。図4Aにおいて、θAはスキャナ位置での光線角度であり、θA’は対物レンズ130から射出後の光線角度であり、WDPは後眼部スキャン時の作動距離であり、WDAは前眼部スキャン時の作動距離である。 FIG. 4A is an explanatory diagram of light ray angle calculation at the positions (scanner position) of the vertical scanning unit 120 and 168 and the horizontal scanning unit 142 existing at the pupil conjugate position 180 when observing the anterior eye portion. In FIG. 4A, θ A is the ray angle at the scanner position, θ A'is the ray angle after emission from the objective lens 130, WD P is the working distance during the posterior eye scan, and WD A is the anterior. It is the working distance at the time of eye scan.
 また、対物レンズ130の前眼部スキャン時の角度倍率をMAとすると、下記の式(1)の関係が成り立つ。作動距離WDA、WDP、及びMAの各々は、撮影光学系116Aに固有の数値である。
A =θA’/θ…(1)
Further, assuming that the angular magnification of the objective lens 130 at the time of scanning the anterior segment of the eye is MA , the relationship of the following equation (1) holds. Each of the working distances WD A , WD P , and MA is a numerical value peculiar to the photographing optical system 116 A.
MA = θ A'/ θ A ( 1)
 前眼部上でスキャンしたい長さをLAとすると、下記の式(2)が成り立つ。LAは、後述するように、事前に取得していた前眼部の画像を被験者に提示し、当該画面において被検者が指示した走査範囲に基づいて決定する。
A/2=(WDA-WDP) tanθA’ …(2)
Assuming that the length desired to be scanned on the anterior segment of the eye is LA , the following equation (2) holds. As will be described later, LA presents an image of the anterior eye portion acquired in advance to the subject, and determines based on the scanning range instructed by the subject on the screen.
LA / 2 = (WD A -WD P ) tanθ A ' … (2)
 式(1)と式(2)とにより、スキャナ位置での光線角度θAは、下記の式(3)で算出される。本実施形態では、算出した光線角度θAに基づいてOCTでの角度走査が行われる。
θA=arctan {L/2* (WDA-WDP)} / MA   …(3)
From the equations (1) and (2), the ray angle θ A at the scanner position is calculated by the following equation (3). In the present embodiment, the angle scanning by OCT is performed based on the calculated ray angle θ A.
θ A = arctan {LA / 2 * (WD A - WD P )} / MA … (3)
 図4Bは、眼球内部観察時における瞳共役位置180に存在するスキャナ位置での光線角度算出の説明図である。図4Bにおいて、θMはスキャナ位置での光線角度であり、θM‘は対物レンズ130から射出後の光線角度であり、WDPは後眼部スキャン時の作動距離であり、GAは被検眼12の前眼部を単一の薄肉レンズとみなした屈折系であり、WDMは眼球内部スキャン時の作動距離で具体的には対物レンズ130から屈折系GAまでの距離である。そして、屈折系GAの焦点距離をfA、屈折系GAから後眼部側の屈折率をnA’とする。 FIG. 4B is an explanatory diagram for calculating the ray angle at the scanner position existing at the pupil conjugate position 180 when observing the inside of the eyeball. In FIG. 4B, θ M is the light ray angle at the scanner position, θ M'is the light ray angle after emission from the objective lens 130, WD P is the working distance during rear eye scan, and GA is the subject. It is a refraction system in which the anterior segment of the optometry 12 is regarded as a single thin-walled lens, and WDM is the operating distance at the time of scanning the inside of the eyeball, specifically, the distance from the objective lens 130 to the refraction system GA . Then, the focal length of the refraction system G A is f A , and the refractive index on the posterior eye side from the refraction system G A is n A '.
 図4Bは、眼球内部をスキャンするのであるから、実際にスキャンする部分は対物レンズ130からWDM+sの位置となる。 Since FIG. 4B scans the inside of the eyeball, the portion actually scanned is the position of WD M + s from the objective lens 130.
 また、対物レンズ130の眼球内部スキャン時の角度倍率をMMとすると、下記の式(4)が成り立つ。
M =θM’/θM …(4)
Further, assuming that the angular magnification of the objective lens 130 at the time of scanning the inside of the eyeball is MM , the following equation (4) holds.
M M = θ M '/ θ M … (4)
 眼球内部でスキャンしたい長さをLMとすると、下記の式(5)が成り立つ。
M/2=s * tanθM’×(1-s/S’) …(5)
 ただし、S’= nA’/{1/(WDM-WDP)+1/fA} である。
Assuming that the length desired to be scanned inside the eyeball is LM , the following equation (5) holds.
LM / 2 = s * tanθ M '× (1-s / S')… (5)
However, S'= n A '/ {1 / (WD M -WD P ) + 1 / f A }.
 式(4)と式(5)とにより、スキャナ位置での光線角度θMは、下記の式(6)で算出される。
θM=arctan [LM /{2*s*(1-s/S’)}] / MM   …(6)
    (S’= nA’/{1/(WDM-WDP)+1/fA} )
From the equations (4) and (5), the ray angle θ M at the scanner position is calculated by the following equation (6).
θ M = arctan [ LM / {2 * s * (1-s / S')}] / M M … (6)
(S'= n A '/ {1 / (WD M -WD P ) + 1 / f A })
 次に、図5A及び図5Bを参照して、後眼部観察時、及び前眼部観察時における各々の固視標投影系138及び対物レンズ130を中心とした撮影光学系116Aの状態を説明する。図5Aは後眼部観察時、図5Bは前眼部観察時の各状態における固視標投影系138及び対物レンズ130を中心とした光学系の状態を示している。なお、図5A及び図5Bにおいては、説明のために対物レンズ130を中心とした展開光路図としている。図2A及び図2Bに示した固視標投影系138の固視標138Aが図の左端面220に配置され、固視標投影系138の集光レンズ138Bも正レンズ224、226として示されている。固視標が配置される面220は、正レンズ224の焦点位置に対応し、固視標からの光線はほぼ平行光束となり、対物レンズ130により被検眼側へ平行光束として供給される。そして被検眼に入射して被検眼の眼底に集光される。なお、図中の縦の破線は、前述した瞳共役位置を参考として示している。 Next, with reference to FIGS. 5A and 5B, the state of the photographing optical system 116A centering on the fixative target projection system 138 and the objective lens 130 at the time of observing the rear eye portion and the time of observing the anterior eye portion will be described. do. FIG. 5A shows the state of the fixation target projection system 138 and the state of the optical system centered on the objective lens 130 in each state when observing the posterior eye portion and FIG. 5B shows the state of the optical system when observing the anterior eye portion. In FIGS. 5A and 5B, the developed optical path diagram centered on the objective lens 130 is used for explanation. The fixative 138A of the fixative projection system 138 shown in FIGS. 2A and 2B is arranged on the left end surface 220 of the figure, and the condenser lens 138B of the fixative projection system 138 is also shown as a positive lens 224, 226. There is. The surface 220 on which the fixative is placed corresponds to the focal position of the positive lens 224, and the light beam from the fixative is a substantially parallel light flux, which is supplied as a parallel light flux to the eye to be inspected by the objective lens 130. Then, it is incident on the eye to be inspected and is focused on the fundus of the eye to be inspected. The vertical broken line in the figure is shown with reference to the above-mentioned pupil conjugate position.
 図5Aに示した後眼部観察時では、固視標投影系138は眼底との共役位置に相当する面220に配置される。そして、第1レンズ群132と第2レンズ群134との間の眼底共役位置228に固視標138Aの像が形成され、さらに被検眼12の眼底と接する面が共役位置236として形成され、被検眼12により固視標が認識される。 When observing the posterior eye portion shown in FIG. 5A, the fixative projection system 138 is arranged on the surface 220 corresponding to the conjugate position with the fundus. Then, an image of the fixative target 138A is formed at the fundus conjugate position 228 between the first lens group 132 and the second lens group 134, and a surface of the eye 12 in contact with the fundus is formed as the conjugate position 236. The fixative is recognized by the optometry 12.
 固視標投影系では面220として示した位置に固視標が配置され、この固視標からの光が、図5Aに示した光路に沿って被検12に供給されるが、格別の走査部は必要としない。但し、図示したのは、固視標上の軸上の点と軸外の2点との3つの点からの光束を示しており、これら3点にLEDなどの点光源を置いて、独立に切換えて点灯させることによって、被検眼12の向きを変えることが可能となる。この構成によって、被検眼12の周辺部の観察が可能となり、結果として被検眼のより広い範囲の観察が可能となる。 In the fixative projection system, the fixative is placed at the position shown as the surface 220, and the light from the fixative is supplied to the subject 12 along the optical path shown in FIG. 5A, but the scan is exceptional. I don't need a part. However, what is shown in the figure shows the luminous flux from three points, a point on the axis on the fixative and two points off the axis, and a point light source such as an LED is placed at these three points independently. By switching and turning on the light, it is possible to change the direction of the eye 12 to be inspected. With this configuration, it is possible to observe the peripheral portion of the eye to be inspected 12, and as a result, it is possible to observe a wider range of the eye to be inspected.
 図5Bに示した前眼部観察時でも、固視標投影系138の固視標138Aは図示した像共役位置222に配置され、正レンズ226からの光束は後眼部観察時と同様にほぼ平行光束になっている。図5Aに示した構成との比較から分かるとおり、固視標の配置される面220と正レンズ224が、一体的に対物レンズ130側に移動した状態となっている。このため、対物レンズ130に対して、縦の破線で示した正レンズ226近傍の共役位置は、被検眼12側では図5Aの位置232より遠い位置234において共役となり、前眼部観察状態(図5B)では、後眼部観察状態(図5A)より大きな作動距離となることに対応している。 Even when observing the anterior eye portion shown in FIG. 5B, the fixative target 138A of the fixative target projection system 138 is arranged at the illustrated image conjugate position 222, and the luminous flux from the positive lens 226 is almost the same as when observing the posterior eye portion. It is a parallel luminous flux. As can be seen from the comparison with the configuration shown in FIG. 5A, the surface 220 on which the fixative is arranged and the positive lens 224 are in a state of being integrally moved to the objective lens 130 side. Therefore, the conjugate position in the vicinity of the positive lens 226 shown by the vertical broken line with respect to the objective lens 130 becomes conjugate at the position 234 farther than the position 232 in FIG. In 5B), the working distance is larger than that in the rear eye observation state (FIG. 5A).
 前眼部観察時に、固視標投影系138から出射された光束は、瞳共役位置にある正レンズ226を経て、第1レンズ群132に入射し、像共役位置230を経て第2レンズ群134から出射する。そして、第2レンズ群134と被検眼12との間に形成される共役位置である位置234を経て、被検眼12に入射する。さらに被検眼12の眼底と接する面が共役位置238として形成され、被検眼12により固視標が認識される。 When observing the anterior segment of the eye, the luminous flux emitted from the fixation target projection system 138 enters the first lens group 132 via the positive lens 226 at the pupil conjugate position, passes through the image conjugate position 230, and passes through the second lens group 134. Emit from. Then, it is incident on the eye to be inspected 12 through the position 234 which is a conjugated position formed between the second lens group 134 and the eye to be inspected 12. Further, the surface of the eye 12 in contact with the fundus is formed as the conjugated position 238, and the fixative is recognized by the eye 12.
 前述のように、前眼部観察時は、後眼部観察時に比して、対物レンズ130の第2レンズ群134と被検眼12との距離が拡大するので、かかる距離の拡大に対応して固視標投影系138と対物レンズ130との距離を変更する。本実施形態では、前眼部観察時には、後眼部観察時に比して、固視標投影系138と対物レンズ130の第1レンズ群132との光学的な距離を短縮することにより、対物レンズ130の第2レンズ群134と被検眼12との距離の拡大に対応する。 As described above, when observing the anterior eye portion, the distance between the second lens group 134 of the objective lens 130 and the eye 12 to be inspected is larger than that when observing the posterior eye portion. The distance between the fixation target projection system 138 and the objective lens 130 is changed. In the present embodiment, when observing the anterior eye portion, the optical distance between the fixation target projection system 138 and the first lens group 132 of the objective lens 130 is shortened as compared with the case of observing the posterior eye portion. Corresponds to the increase in the distance between the second lens group 134 of 130 and the eye 12 to be inspected.
 図6は、本実施形態に係る眼科光学装置110における処理例を示したフローチャートである。図6に示した処理は、例えば、眼科光学装置110のOCTユニット20による被検眼12の撮影に際して開始される。 FIG. 6 is a flowchart showing a processing example in the ophthalmic optical device 110 according to the present embodiment. The process shown in FIG. 6 is started, for example, when the OCT unit 20 of the ophthalmologic optical device 110 takes an image of the eye 12 to be inspected.
 ステップ600では、前眼部観察の指示がなされたか否かを判定する。ステップ600で、前眼部観察の指示がなされた場合は手順をステップ602に移行し、前眼部観察の指示がなされなかった場合は手順をステップ620に移行する。 In step 600, it is determined whether or not an instruction for observing the anterior segment of the eye has been given. In step 600, if the instruction for observing the anterior segment of the eye is given, the procedure shifts to step 602, and if the instruction for observing the anterior segment of the eye is not given, the procedure shifts to step 620.
 ステップ602では、前眼部観察における対物光学系(対物レンズ130)と被検眼12との距離を確保する。具体的には、対物光学系と被検眼の距離が後眼部観察時に対応した作動距離WDPである場合、当該距離を前眼部観察時に対応した作動距離WDAにすべく、対物光学系と被検眼とを前眼部観察時の作動距離WDAと後眼部観察時の作動距離WDPとの差分であるWDA-WDPを拡大する。 In step 602, the distance between the objective optical system (objective lens 130) and the eye to be inspected 12 in observing the anterior eye portion is secured. Specifically, when the distance between the objective optical system and the eye to be inspected is the working distance WD P corresponding to the observation of the posterior eye, the objective optical system is set to the working distance WD A corresponding to the observation of the anterior eye. WD A -WD P , which is the difference between the working distance WD A when observing the anterior eye and the working distance WD P when observing the posterior eye.
 対物光学系と被検眼12との距離の調整方法は、例えば、以下のとおりである。
(1)撮影光学系116Aを移動させて、作動距離WDAを確保する。
(2)眼科光学装置110全体を移動させて、作動距離WDAを確保する。
(3)被験者の顎を保持するチンレスト、又は被験者の頭部を保持するヘッドレストを移動させて、作動距離WDAを確保する。
The method of adjusting the distance between the objective optical system and the eye 12 to be inspected is, for example, as follows.
(1) The photographing optical system 116A is moved to secure the working distance WD A.
(2) The entire ophthalmologic optical device 110 is moved to secure the working distance WD A.
(3) The chin rest that holds the subject's jaw or the headrest that holds the subject's head is moved to secure the working distance WD A.
 撮影光学系116A、眼科光学装置110全体、チンレスト及びヘッドレストの各々の移動は、モータで駆動してもよいし、手動で動かしてもよい。又は、チンレスト及びヘッドレストの各々を後眼部観察時に対応した厚さの物と、前眼部観察時に対応した厚さの物とを予め用意し、状況に応じて入れ替えてもよい。好ましくは、モータで対物光学系を移動させる方法である。 The movement of the photographing optical system 116A, the entire ophthalmologic optical device 110, the chin rest and the head rest may be driven by a motor or may be manually moved. Alternatively, each of the chin rest and the head rest may be prepared in advance with a thickness corresponding to the observation of the posterior eye portion and a thickness corresponding to the observation of the anterior eye portion, and may be replaced depending on the situation. A method of moving the objective optical system by a motor is preferable.
 ステップ604では、固視標投影系138を前眼部スキャンに対応した位置に設定する。具体的には、図5Bに示したように、前眼部観察時には、後眼部観察時に比して、固視標投影系138と対物レンズ130の第1レンズ群132との光学的な距離を縮小することにより、対物レンズ130の第2レンズ群134と被検眼12との距離の拡大に対応する。 In step 604, the fixative projection system 138 is set at a position corresponding to the anterior eye scan. Specifically, as shown in FIG. 5B, when observing the anterior eye portion, the optical distance between the fixation target projection system 138 and the first lens group 132 of the objective lens 130 is higher than that when observing the posterior eye portion. By reducing the size of the lens 130, the distance between the second lens group 134 of the objective lens 130 and the eye 12 to be inspected 12 is increased.
 ステップ606では、フォーカス調整装置150により、前眼部位置にOCTスキャンのフォーカスを切り替える。具体的には、図3Bに示したように、被検眼12の前端部と接する面に像共役位置184が形成されるようにする。 In step 606, the focus adjustment device 150 switches the focus of the OCT scan to the position of the anterior eye portion. Specifically, as shown in FIG. 3B, the image conjugate position 184 is formed on the surface in contact with the front end portion of the eye 12 to be inspected.
 ステップ608では、走査角の設定を行う。具体的には、事前に取得していた前眼部の画像を被検者が確認可能な画面に表示し、被験者にスキャンする範囲を指示して貰う。そして、被験者が指示した範囲と、スキャンパターン(例えば、3Dスキャン又は直線状スキャンの別)に基づいて、前眼部上でスキャンしたい長さLAを算出する。さらに、長さLAと上述の式(3)とによってスキャナ位置での光線角度θAが自動的に算出され、走査角として設定される。 In step 608, the scanning angle is set. Specifically, the image of the anterior eye portion acquired in advance is displayed on a screen that can be confirmed by the subject, and the subject is instructed to scan the range. Then, based on the range instructed by the subject and the scan pattern (for example, 3D scan or linear scan), the length LA to be scanned on the anterior eye portion is calculated. Further, the ray angle θ A at the scanner position is automatically calculated by the length LA and the above equation (3), and is set as the scanning angle.
 ステップ610では、設定した走査角に従ってOCTスキャンを開始する。そして、ステップ612では、前眼部の任意の数点でフォーカスが合う位置を測定し、角膜の形状を計算する。 In step 610, the OCT scan is started according to the set scanning angle. Then, in step 612, the focus positions are measured at arbitrary points of the anterior eye portion, and the shape of the cornea is calculated.
 ステップ614では、角膜形状に合わせてフォーカスを調整しながら指示されたスキャンパターン及びスキャン範囲でOCTスキャンを行う。 In step 614, an OCT scan is performed in the designated scan pattern and scan range while adjusting the focus according to the shape of the cornea.
 ステップ616では、OCTスキャンを終了するか否かを判定する。ステップ616では、設定したスキャンパターンで指示されたスキャン範囲をすべてスキャンした場合に、OCTスキャンを終了すると判定するが、医師が指示されたスキャン範囲のすべてをスキャンすることを要しないと判断した場合も、OCTスキャンを終了すると判定する。ステップ616で、OCTスキャンを終了すると判定した場合は手順をステップ618に移行し、OCTスキャンを終了すると判定しない場合は手順をステップ610に移行する。 In step 616, it is determined whether or not to end the OCT scan. In step 616, when it is determined that the OCT scan is terminated when the entire scan range specified by the set scan pattern is scanned, but the doctor determines that it is not necessary to scan the entire specified scan range. Also determines that the OCT scan is finished. If it is determined in step 616 to end the OCT scan, the procedure proceeds to step 618, and if it is not determined to end the OCT scan, the procedure proceeds to step 610.
 ステップ618では、前眼部用の画像処理を行い、結果を表示して処理を終了する。具体的には、OCTスキャンにより得られた画像データからノイズ除去処理等を行って前眼部のOCT画像データを生成する。 In step 618, image processing for the anterior eye portion is performed, the result is displayed, and the processing is completed. Specifically, noise reduction processing or the like is performed from the image data obtained by the OCT scan to generate the OCT image data of the anterior eye portion.
 前述のステップ600で前眼部観察の指示がなかった場合は、ステップ620で後眼部観察における対物光学系と被検眼12との距離を確保する。具体的には、対物光学系と被検眼との距離を後眼部観察時に対応した作動距離WDPに設定する。 If there is no instruction to observe the anterior eye in step 600 described above, the distance between the objective optical system and the eye 12 to be inspected in the observation of the posterior eye is secured in step 620. Specifically, the distance between the objective optical system and the eye to be inspected is set to the working distance WD P corresponding to the observation of the posterior eye portion.
 対物光学系と被検眼12との距離の調整方法は、前眼部観察時と同様に、以下のとおりである。
(1)撮影光学系116Aを移動させて、作動距離WDPを確保する。
(2)眼科光学装置110全体を移動させて、作動距離WDPを確保する。
(3)被験者の顎を保持するチンレスト、又は被験者の頭部を保持するヘッドレストを移動させて、作動距離WDPを確保する。
The method for adjusting the distance between the objective optical system and the eye 12 to be inspected is as follows, as in the case of observing the anterior segment of the eye.
(1) The photographing optical system 116A is moved to secure the working distance WD P.
(2) The entire ophthalmologic optical device 110 is moved to secure the working distance WD P.
(3) The chin rest that holds the subject's jaw or the headrest that holds the subject's head is moved to secure the working distance WD P.
 撮影光学系116A、眼科光学装置110全体、チンレスト及びヘッドレストの各々の移動は、モータで駆動してもよいし、手動で動かしてもよい。又は、チンレスト及びヘッドレストの各々を後眼部観察時に対応した厚さの物と、前眼部観察時に対応した厚さの物とを予め用意し、状況に応じて入れ替えてもよい。好ましくは、前眼部観察時と同様に、モータで対物光学系を移動させる方法である。 The movement of the photographing optical system 116A, the entire ophthalmologic optical device 110, the chin rest and the head rest may be driven by a motor or may be manually moved. Alternatively, each of the chin rest and the head rest may be prepared in advance with a thickness corresponding to the observation of the posterior eye portion and a thickness corresponding to the observation of the anterior eye portion, and may be replaced depending on the situation. Preferably, it is a method of moving the objective optical system by a motor as in the case of observing the anterior eye portion.
 ステップ622では、固視標投影系138を後眼部スキャンに対応した位置に設定する。具体的には、図5Aに示したように、後眼部観察時には、前眼部観察時に比して、固視標投影系138と対物レンズ130の第1レンズ群132との光学的な距離を拡大することにより、対物レンズ130の第2レンズ群134と被検眼12との距離の縮小に対応する。 In step 622, the fixative projection system 138 is set at a position corresponding to the posterior eye scan. Specifically, as shown in FIG. 5A, when observing the posterior eye, the optical distance between the fixation target projection system 138 and the first lens group 132 of the objective lens 130 is compared with that when observing the anterior eye. Corresponds to the reduction of the distance between the second lens group 134 of the objective lens 130 and the eye 12 to be inspected by enlarging.
 ステップ624では、フォーカス調整装置150により、後眼部位置にOCTスキャンのフォーカスを切り替える。具体的には、図3Aに示したように、被検眼12の後端部と接する面182に像共役位置が形成されるようにする。 In step 624, the focus of the OCT scan is switched to the position of the back eye by the focus adjusting device 150. Specifically, as shown in FIG. 3A, the image conjugate position is formed on the surface 182 in contact with the rear end portion of the eye 12 to be inspected.
 ステップ626では、スキャンパターン及びスキャン範囲を設定する。具体的には、事前に取得していた後眼部の画像を被検者が確認可能な画面に表示し、被験者にスキャンする範囲を指示して貰う。 In step 626, a scan pattern and a scan range are set. Specifically, the image of the posterior eye portion acquired in advance is displayed on a screen that can be confirmed by the subject, and the subject is instructed to scan the range.
 ステップ628では、OCTスキャンを開始する。そして、ステップ630では、後眼部の任意の数点でフォーカスが合う位置を測定し、網膜の形状を計算する。 In step 628, the OCT scan is started. Then, in step 630, the focus positions are measured at arbitrary points of the back eye portion, and the shape of the retina is calculated.
 ステップ632では、網膜形状に合わせてフォーカスを調整しながら指示されたスキャンパターン及びスキャン範囲でOCTスキャンを行う。先述のように、本実施形態では、後眼部観察時、前眼部観察時、及び眼球内部観察時のいずれにおいても、垂直走査部120、168及び水平走査部142の走査方向は同じであり、かつ被検眼12をSLOレーザ光、及びOCTの測定光が走査する方向は同じである。その結果、画像処理において、後眼部観察時、前眼部観察時、又は眼球内部観察時の別で、画像反転処理を要しない。 In step 632, an OCT scan is performed in the designated scan pattern and scan range while adjusting the focus according to the shape of the retina. As described above, in the present embodiment, the scanning directions of the vertical scanning unit 120 and 168 and the horizontal scanning unit 142 are the same at the time of observing the posterior eye portion, observing the anterior eye portion, and observing the inside of the eyeball. In addition, the direction in which the SLO laser beam and the OCT measurement light scan the eye 12 to be inspected is the same. As a result, in the image processing, the image inversion processing is not required for the time of observing the posterior eye portion, the time of observing the anterior eye portion, or the time of observing the inside of the eyeball.
 ステップ634では、OCTスキャンを終了するか否かを判定する。ステップ616では、設定したスキャンパターンで指示されたスキャン範囲をすべてスキャンした場合に、OCTスキャンを終了すると判定するが、医師が指示されたスキャン範囲のすべてをスキャンすることを要しないと判断した場合も、OCTスキャンを終了すると判定する。ステップ634で、OCTスキャンを終了すると判定した場合は手順をステップ636に移行し、OCTスキャンを終了すると判定しない場合は手順をステップ628に移行する。 In step 634, it is determined whether or not to end the OCT scan. In step 616, when it is determined that the OCT scan is terminated when the entire scan range specified by the set scan pattern is scanned, but the doctor determines that it is not necessary to scan the entire specified scan range. Also determines that the OCT scan is finished. If it is determined in step 634 that the OCT scan is to be completed, the procedure is shifted to step 636, and if it is not determined to end the OCT scan, the procedure is shifted to step 628.
 ステップ636では、後眼部用の画像処理を行い、結果を表示して処理を終了する。具体的には、OCTスキャンにより得られた画像データからノイズ除去処理等を行って後眼部のOCT画像データを生成する。 In step 636, image processing for the back eye portion is performed, the result is displayed, and the processing is completed. Specifically, noise reduction processing or the like is performed from the image data obtained by the OCT scan to generate the OCT image data of the posterior eye portion.
 続いて、本実施形態に係る眼科光学装置110における、対物レンズ130と被検眼12との位置関係の調整、すなわちアライメントについて説明する。眼科光学装置110は、観察部位の正確な位置合わせのために、被検眼12と眼科光学装置の対物レンズ130の光軸に対する被検眼の水平および垂直方向での位置の関係、そして対物レンズ130との距離、すなわちフォーカス調整を行う必要がある。 Subsequently, the adjustment, that is, the alignment, of the positional relationship between the objective lens 130 and the eye 12 to be inspected in the ophthalmologic optical device 110 according to the present embodiment will be described. The ophthalmologic optical device 110 relates to the relationship between the horizontal and vertical positions of the eye to be inspected with respect to the optical axis of the eye to be inspected 12 and the objective lens 130 of the ophthalmologic optical device, and the objective lens 130 for accurate alignment of the observation site. It is necessary to adjust the distance, that is, the focus.
 図7Aは、後眼部観察時において眼科光学装置110のアライメントに係る光学系の構成を側方から見た光路図であり、図7Bは、後眼部観察時において眼科光学装置110のアライメントに係る光学系の構成を上方から見た光路図であり、図7Aから視点を上方に90°移した状態を示している。なお、図示した光線は、アライメントのための軸外光束の主光線のみである。 FIG. 7A is an optical path diagram of the configuration of the optical system related to the alignment of the ophthalmic optical device 110 when observing the posterior eye portion, and FIG. 7B shows the alignment of the ophthalmic optical apparatus 110 when observing the posterior eye portion. It is an optical path diagram which looked at the structure of the optical system from above, and shows the state which the viewpoint was moved upward by 90 ° from FIG. 7A. The illustrated light rays are only the main light rays of the off-axis luminous flux for alignment.
 図7A、図7Bに示したように、被検眼12からの光は対物レンズ130の第2レンズ群132と第1レンズ群134とを介してダイクロイックミラー178に到達する。ダイクロイックミラー178に到達した光は、ダイクロイックミラー178で反射され、光軸196を挟んで左右対称に配置された一対の被検眼位置検出光学系240A、240Bの集光レンズ242A、242Bを介して被検眼位置検出光学系240A、240Bの画像センサ244A、244Bに各々入射する。画像センサ244A、244Bは被検眼12の像を形成し、それらの像位置から被検眼12の位置を検出することが可能である。 As shown in FIGS. 7A and 7B, the light from the eye 12 to be inspected reaches the dichroic mirror 178 via the second lens group 132 and the first lens group 134 of the objective lens 130. The light that reaches the dichroic mirror 178 is reflected by the dichroic mirror 178 and is covered by the condenser lenses 242A and 242B of the pair of eye position detection optical systems 240A and 240B arranged symmetrically with the optical axis 196 in between. It is incident on the image sensors 244A and 244B of the eye inspection position detection optical systems 240A and 240B, respectively. The image sensors 244A and 244B can form images of the eye to be inspected 12 and detect the position of the eye to be inspected 12 from the image positions thereof.
 本実施態様のように対物レンズ130を通して被検眼の位置を検出する構成は、言わばスルーザレンズ(TTL:Through the Lems)アライメント系と言える。このように対物レンズ130を通して被検眼の位置検出を行う構成は、広角の眼底像を得るための広画角の対物レンズを用いる場合に作動距離が極めて小さくなってしまう場合に有効であり、特に作動距離が20mm程度となる画角130度を超える超広角の所謂UWF眼底観察装置においては、極めて有用である。そして、このようなTTLアライメント系では、被検眼側の第2レンズ群134により広角による走査光を被検眼12の瞳孔に向けて出力するため、図7Bに示す光路図のとおり、被検眼12の前眼部に対する主光線の角度が大きくなって、アライメントの位置検出精度を向上することが可能である。この構成はUWF対物レンズであるほど有利であることは言うまでもない。 The configuration for detecting the position of the eye to be inspected through the objective lens 130 as in the present embodiment can be said to be a through-the-lens (TTL: Through the Rems) alignment system. Such a configuration in which the position of the eye to be inspected is detected through the objective lens 130 is effective when the working distance becomes extremely small when a wide-angle objective lens for obtaining a wide-angle fundus image is used. It is extremely useful in a so-called UWF fundus observation device having an ultra-wide angle of more than 130 degrees with an operating distance of about 20 mm. In such a TTL alignment system, the second lens group 134 on the side to be inspected outputs scanning light at a wide angle toward the pupil of the eye to be inspected 12, so that the eye to be inspected 12 is as shown in the optical path diagram shown in FIG. 7B. The angle of the main light beam with respect to the anterior segment of the eye is increased, and it is possible to improve the position detection accuracy of alignment. It goes without saying that this configuration is more advantageous than a UWF objective lens.
 本実施形態では、CPU16Aの制御下で、対物レンズ130と被検眼12との光軸196方向の距離は、左右一対の画像センサ244A、244Bによって取得した画像から算出することができる。 In the present embodiment, under the control of the CPU 16A, the distance between the objective lens 130 and the eye 12 to be inspected in the optical axis 196 direction can be calculated from the images acquired by the pair of left and right image sensors 244A and 244B.
 図8Aは、前眼部観察時において眼科光学装置110のアライメントに係る光学系の構成を側方から見た光路図であり、図8Bは、前眼部観察時において眼科光学装置110のアライメントに係る光学系の構成を上方から見た光路図であり、図8Aから視点を上方に90°移した状態を示している。なお、図示した光線は、アライメントのための軸外光束の主光線のみである。 FIG. 8A is an optical path diagram of the configuration of the optical system related to the alignment of the ophthalmic optical device 110 when observing the anterior eye portion, and FIG. 8B shows the alignment of the ophthalmic optical device 110 when observing the anterior eye portion. It is an optical path diagram which looked at the structure of the optical system from above, and shows the state which the viewpoint was moved upward by 90 ° from FIG. 8A. The illustrated light rays are only the main light rays of the off-axis luminous flux for alignment.
 前述のように、前眼部観察時は、後眼部観察時に比して、対物レンズ130の第2レンズ群134と被検眼12との距離が拡大するので、かかる距離の拡大に対応して被検眼位置検出光学系240A、240Bと対物レンズ130との距離を変更する。本実施形態では、前眼部観察時には、後眼部観察時に比して、被検眼位置検出光学系240A、240Bと対物レンズ130の第1レンズ群132との光学的な距離を短縮することにより、対物レンズ130の第2レンズ群134と被検眼12との距離の拡大に対応する。 As described above, when observing the anterior eye portion, the distance between the second lens group 134 of the objective lens 130 and the eye 12 to be inspected is longer than when observing the posterior eye portion. The distance between the eye position detection optical systems 240A and 240B to be inspected and the objective lens 130 is changed. In the present embodiment, when observing the anterior eye portion, the optical distance between the eye position detection optical systems 240A and 240B to be inspected and the first lens group 132 of the objective lens 130 is shortened as compared with the case of observing the posterior eye portion. Corresponds to the increase in the distance between the second lens group 134 of the objective lens 130 and the eye 12 to be inspected.
 図9は、後眼部観察時において眼科光学装置110のアライメントに係る光学系の他の構成を側方から見た光路図である。図9では、被検眼位置検出光学系250A、250Bの各々は対物レンズ130と被検眼12との間に配置される。図9に示したように、被検眼12からの光は対物レンズ130を介さずに、光軸196を挟んで左右対称に配置された一対の被検眼位置検出光学系250A、250Bの集光レンズ252A、252Bを介して被検眼位置検出光学系250A、250Bの画像センサ254A、254Bに各々入射する。画像センサ254A、254Bは被検眼12の像を形成し、それらの像位置から被検眼12の位置を検出することが可能である。被検眼位置検出光学系240A、240B、250A、250Bの各々は、本開示の技術の「被検眼位置検出装置」の一例である。 FIG. 9 is an optical path diagram of another configuration of the optical system related to the alignment of the ophthalmologic optical device 110 when observing the posterior eye portion as viewed from the side. In FIG. 9, each of the eye position detection optical systems 250A and 250B to be inspected is arranged between the objective lens 130 and the eye to be inspected 12. As shown in FIG. 9, the light from the eye to be inspected 12 does not pass through the objective lens 130, but is a condensing lens of a pair of optical systems for detecting the position of the eye to be inspected 250A and 250B arranged symmetrically with the optical axis 196 in between. It is incident on the image sensors 254A and 254B of the eye position detection optical systems 250A and 250B to be inspected via 252A and 252B, respectively. The image sensors 254A and 254B can form images of the eye to be inspected 12 and detect the position of the eye to be inspected 12 from the image positions thereof. Each of the eye position detection optical systems 240A, 240B, 250A, and 250B is an example of the "eye position detection device" of the technique of the present disclosure.
 図10は、前眼部観察時において眼科光学装置110のアライメントに係る光学系の構成を側方から見た光路図である。前述のように、前眼部観察時は、後眼部観察時に比して、対物レンズ130の第2レンズ群134と被検眼12との距離が拡大するので、かかる距離の拡大に対応して被検眼位置検出光学系250A、250Bの光軸196に対する角度を変更して、被検眼12からの光を受光する。 FIG. 10 is an optical path diagram of the configuration of the optical system related to the alignment of the ophthalmologic optical device 110 when observing the anterior eye portion as viewed from the side. As described above, when observing the anterior eye portion, the distance between the second lens group 134 of the objective lens 130 and the eye 12 to be inspected is longer than when observing the posterior eye portion. The angle of the optical system 250A and 250B for detecting the position of the eye to be inspected with respect to the optical axis 196 is changed to receive the light from the eye to be inspected 12.
 本実施形態では、前眼部観察時には、後眼部観察時に比して、被検眼位置検出光学系250A、250Bの各々を矢印260で示した方向に動かすことにより、光軸196に対する角度を変え、対物レンズ130の第2レンズ群134と被検眼12との距離の拡大に対応する。 In the present embodiment, when observing the anterior eye portion, the angle with respect to the optical axis 196 is changed by moving each of the eye position detection optical systems 250A and 250B to be inspected in the directions indicated by the arrows 260 as compared with the case of observing the posterior eye portion. Corresponds to the increase in the distance between the second lens group 134 of the objective lens 130 and the eye 12 to be inspected.
 なお、図7A、図7B、図8A、図8B、図9、図10に各々示した被検眼のアライメント系について、被検眼12への照明は、対物レンズ130の先端部に照明光源を設けることが可能であり、例えば対物レンズ130の光軸196を中心として対称な位置にLED等の光源を配置することや、対物レンズ130の先端部にリング状の光源を設けることも可能である。但し、本実施態様の眼科光学装置110においては無散瞳での眼底観察が可能となるため、装置の設置される室内の照明のみで十分とすることも可能である。 Regarding the alignment system of the eye to be inspected shown in FIGS. 7A, 7B, 8A, 8B, 9 and 10, respectively, the light source for illuminating the eye to be inspected 12 is provided at the tip of the objective lens 130. For example, it is possible to arrange a light source such as an LED at a position symmetrical with respect to the optical axis 196 of the objective lens 130, or to provide a ring-shaped light source at the tip of the objective lens 130. However, in the ophthalmologic optical device 110 of the present embodiment, since the fundus can be observed without mydriasis, it is possible to suffice only with the illumination in the room where the device is installed.
 以上説明したように、本実施形態では、後眼部観察時と前眼部観察時とで、対物レンズ130と被検眼12との作動距離WDを変更することにより、対物レンズ130と被検眼12との間に別途レンズアタッチメントを配置することを要しない。本実施形態では、作動距離WDの変更に対応して、フォーカス調整装置150でOCTの測定光の光束を調節すると共に、固視標投影系138及び被検眼位置検出光学系240A、240B、250A、250Bの各々における光学的な位置を変更する。また、作動距離WDの変更に対応してフォーカス調整装置150でSLOレーザ光、及びOCTの測定光の光束を調節しても、垂直走査部120、168及び水平走査部142の走査方向は同じであり、かつ被検眼12をSLOレーザ光、及びOCTの測定光が走査する方向は同じである。その結果、画像処理において、後眼部観察時、前眼部観察時、又は眼球内部観察時の別で、画像反転処理を要しない。 As described above, in the present embodiment, the objective lens 130 and the eye to be inspected 12 are changed by changing the working distance WD between the objective lens 130 and the eye to be inspected 12 between the observation of the posterior eye portion and the observation of the anterior eye portion. It is not necessary to place a separate lens attachment between and. In the present embodiment, the luminous flux of the measurement light of the OCT is adjusted by the focus adjusting device 150 in response to the change of the working distance WD, and the fixative target projection system 138 and the eye position detection optical system 240A, 240B, 250A, Change the optical position in each of the 250Bs. Further, even if the light beams of the SLO laser light and the measurement light of the OCT are adjusted by the focus adjusting device 150 in response to the change of the working distance WD, the scanning directions of the vertical scanning unit 120 and 168 and the horizontal scanning unit 142 are the same. Yes, and the direction in which the SLO laser light and the OCT measurement light scan the eye 12 to be inspected is the same. As a result, in the image processing, the image inversion processing is not required for the time of observing the posterior eye portion, the time of observing the anterior eye portion, or the time of observing the inside of the eyeball.
 以上説明した本実施形態における装置の構成はあくまでも一例である。従って、主旨を逸脱しない範囲内において不要な構成を削除したり、新たな構成を追加したりしてもよいことは言うまでもない。 The configuration of the device in the present embodiment described above is only an example. Therefore, it goes without saying that unnecessary configurations may be deleted or new configurations may be added within a range that does not deviate from the purpose.

Claims (24)

  1.  光源からの光束で被検眼を走査する走査部材と、
     前記光源からの光束を前記走査部材に導く導光光学系と、
     前記走査部材からの走査光束を前記被検眼に導く対物光学系と、
     を備え、
     前記被検眼の後眼部を撮影する後眼部撮影状態では、前記走査部材と共役な位置が前記被検眼の前眼部に形成され、かつ前記走査部材からの走査光束が前記被検眼の後眼部に集光され、前記被検眼の前眼部を撮影する前眼部撮影状態では、前記被検眼と前記対物光学系との距離である作動距離が前記後眼部撮影状態における作動距離より大きくなり、前記走査部材からの走査光束が前記被検眼の前眼部に集光され、
     前記走査部材による前記走査光束の走査方向が前記後眼部撮影状態と前記前眼部撮影状態とで同一である眼科光学装置。
    A scanning member that scans the eye to be inspected with the luminous flux from the light source,
    A light guide optical system that guides the luminous flux from the light source to the scanning member,
    An objective optical system that guides the scanning luminous flux from the scanning member to the eye to be inspected,
    Equipped with
    In the posterior eye imaging state in which the posterior eye portion of the eye to be inspected is photographed, a position conjugate with the scanning member is formed in the anterior eye portion of the eye to be inspected, and the scanning light beam from the scanning member is after the eye to be inspected. In the anterior segment imaging state in which the light is focused on the eye and the anterior segment of the subject to be imaged is photographed, the operating distance, which is the distance between the subject to be inspected and the objective optical system, is larger than the operating distance in the posterior eye imaging state. As the size increases, the scanning light beam from the scanning member is focused on the anterior segment of the eye to be inspected.
    An ophthalmologic optical device in which the scanning direction of the scanning light flux by the scanning member is the same in the posterior eye imaging state and the anterior eye imaging state.
  2.  前記導光光学系は、前記対物光学系と前記被検眼との作動距離の変化に対応して前記被検眼に対する前記走査光束の集光位置を変化させる光学素子を含む請求項1に記載の眼科光学装置。 The ophthalmology according to claim 1, wherein the light guide optical system includes an optical element that changes the condensing position of the scanning light beam with respect to the eye to be inspected in response to a change in the working distance between the objective optical system and the eye to be inspected. Optical device.
  3.  前記作動距離は、前記対物光学系から前記走査部材の共役像が形成される位置までの距離に等しい状態から、より大きな値となるよう連続的に変更可能な請求項1又は2に記載の眼科光学装置。 The ophthalmology according to claim 1 or 2, wherein the working distance can be continuously changed from a state equal to the distance from the objective optical system to the position where the conjugate image of the scanning member is formed to a larger value. Optical device.
  4.  前記作動距離は、前記被検眼に対して前記眼科光学装置の少なくとも前記対物光学系が移動することによって変更される請求項1から請求項3のいずれか1項に記載の眼科光学装置。 The ophthalmologic optical device according to any one of claims 1 to 3, wherein the working distance is changed by moving at least the objective optical system of the ophthalmologic optical device with respect to the eye to be inspected.
  5.  前記被検眼における走査範囲に応じて、前記走査部材による走査光束の走査角度を設定すると共に、該設定した走査角の範囲で前記走査光束によって前記被検眼を走査するように前記走査部材を制御する走査部材制御部をさらに含む請求項1から請求項4のいずれか1項に記載の眼科光学装置。 The scanning angle of the scanning light beam by the scanning member is set according to the scanning range of the eye to be inspected, and the scanning member is controlled so that the scanning light beam scans the eye to be inspected within the range of the set scanning angle. The ophthalmologic optical device according to any one of claims 1 to 4, further comprising a scanning member control unit.
  6.  前記走査角は、前記作動距離、前記対物光学系の角倍率、及び前記被検眼の前眼部における走査範囲に基づいて設定される請求項5に記載の眼科光学装置。 The ophthalmologic optical device according to claim 5, wherein the scanning angle is set based on the working distance, the angular magnification of the objective optical system, and the scanning range in the anterior eye portion of the eye to be inspected.
  7.  前記対物光学系は、前記走査部材の側の第1正レンズ群と、前記被検眼の側の第2正レンズ群とを有する請求項1から請求項6のいずれか1項に記載の眼科光学装置。 The ophthalmologic optical system according to any one of claims 1 to 6, wherein the objective optical system has a first positive lens group on the side of the scanning member and a second positive lens group on the side of the eye to be inspected. Device.
  8.  前記後眼部撮影状態において、前記第1正レンズ群と前記第2正レンズ群との間に、前記被検眼の眼底像が形成され、前記走査部材が前記被検眼の前眼部と共役に配置される請求項7に記載の眼科光学装置。 In the posterior eye imaging state, an image of the fundus of the eye to be inspected is formed between the first positive lens group and the second positive lens group, and the scanning member is conjugated with the anterior eye portion of the inspected eye. The ophthalmic optical device according to claim 7, which is arranged.
  9.  前記前眼部撮影状態において、前記第1正レンズ群と前記走査部材との間に、前記被検眼の前眼部像が形成され、前記第2正レンズ群と前記被検眼との間に前記走査部材と共役な位置が形成される請求項7に記載の眼科光学装置。 In the anterior segment imaging state, an image of the anterior segment of the eye to be inspected is formed between the first positive lens group and the scanning member, and the anterior segment of the eye to be inspected is formed between the second positive lens group and the inspected eye. The ophthalmologic optical device according to claim 7, wherein a position conjugate with the scanning member is formed.
  10.  前記走査部材は、
     被検眼に対して互いに直交する方向で走査光束を走査するための一対の反射鏡と、
     前記一対の反射鏡を互いに共役に形成するリレーレンズ群と、
     を有し、
     前記導光光学系は、前記リレーレンズ群と前記光源との間に、前記光源からの光束の集光位置を変更可能に構成されたフォーカス切換光学系を有する請求項1から請求項9のいずれか1項に記載の眼科光学装置。
    The scanning member is
    A pair of reflectors for scanning the scanning luminous flux in directions orthogonal to each other with respect to the eye to be inspected.
    A group of relay lenses that form the pair of reflectors conjugate with each other,
    Have,
    Any of claims 1 to 9, wherein the light guide optical system has a focus switching optical system configured so that the condensing position of the light beam from the light source can be changed between the relay lens group and the light source. Or the ophthalmic optical device according to item 1.
  11.  前記後眼部撮影状態では、前記フォーカス切換光学系により、前記光源の集光位置が、前記リレーレンズ群内に形成される請求項10に記載の眼科光学装置。 The ophthalmologic optical device according to claim 10, wherein in the rear eye portion photographing state, the light collecting position of the light source is formed in the relay lens group by the focus switching optical system.
  12.  前記前眼部撮影状態では、前記フォーカス切換光学系により、前記光源のからの光束が、前記リレーレンズ群内で略平行光束となる請求項10に記載の眼科光学装置。 The ophthalmologic optical device according to claim 10, wherein in the anterior eye portion photographing state, the luminous flux from the light source becomes a substantially parallel luminous flux in the relay lens group by the focus switching optical system.
  13.  記被検眼と前記対物光学系との相対的距離を切換えるための被検眼位置設定部を有する請求項1から請求項12のいずれか1項に記載の眼科光学装置。 The ophthalmologic optical device according to any one of claims 1 to 12, which has an eye subject position setting unit for switching the relative distance between the eye to be inspected and the objective optical system.
  14.  前記被検眼位置設定部は、前記光源からの光束が前記対物光学系に入射可能な状態で前記対物光学系と前記走査部材とを一体的に前記対物光学系の光軸に沿って移動可能である請求項13に記載の眼科光学装置。 The eye position setting unit can move the objective optical system and the scanning member integrally along the optical axis of the objective optical system in a state where the light beam from the light source can be incident on the objective optical system. The ophthalmic optical device according to claim 13.
  15.  前記被検眼位置設定部は、前記対物光学系の光軸に沿って前記被検眼の位置が可変である請求項13に記載の眼科光学装置。 The ophthalmologic optical device according to claim 13, wherein the eye to be inspected position setting unit has a variable position of the eye to be inspected along the optical axis of the objective optical system.
  16.  前記被検眼位置設定部は、被検者の下顎を保持する下顎保持部材を前記光軸に沿って移動させる請求項15に記載の眼科光学装置。 The ophthalmologic optical device according to claim 15, wherein the eye-tested position setting unit moves a mandible holding member that holds the mandible of the subject along the optical axis.
  17.  前記被検眼からの光を受光するセンサを備え、前記対物光学系の光軸に対して所定角度をもって配置された一対の被検眼位置検出光学系を有し、前記センサからの光情報に基づいて、前記対物光学系と前記被検眼との位置関係を検出する被検眼位置検出装置をさらに備える請求項1から請求項16のいずれか1項に記載の眼科光学装置。 It has a sensor that receives light from the eye to be inspected, and has a pair of optical systems for detecting the position of the eye to be inspected that are arranged at a predetermined angle with respect to the optical axis of the objective optical system, based on optical information from the sensor. The ophthalmic optical device according to any one of claims 1 to 16, further comprising a device for detecting the position of the eye to be inspected for detecting the positional relationship between the objective optical system and the eye to be inspected.
  18.  前記被検眼位置検出装置は、前記一対の被検眼位置検出光学系が、前記対物光学系と被検眼との間に配置されている請求項17に記載の眼科光学装置。 The ophthalmic optical device according to claim 17, wherein the eye position detecting device to be inspected is a pair of optical systems for detecting the position to be inspected, which are arranged between the objective optical system and the eye to be inspected.
  19.  前記被検眼位置検出装置は、前記作動距離の変化に応じて、前記被検眼位置検出光学系の光軸に対する角度を切り替える傾角可変装置を有する請求項18に記載の眼科光学装置。 The ophthalmic optical device according to claim 18, wherein the eye position detecting device to be inspected has a tilt angle variable device for switching an angle of the eye position detecting optical system to be inspected with respect to an optical axis according to a change in the working distance.
  20.  前記対物光学系は、少なくとも1個の凹面反射部材を有する請求項1又は請求項2に記載の眼科光学装置。 The ophthalmic optical device according to claim 1 or 2, wherein the objective optical system has at least one concave reflection member.
  21.  前記凹面反射部材は凹面楕円鏡である請求項20に記載の眼科光学装置。 The ophthalmologic optical device according to claim 20, wherein the concave reflecting member is a concave elliptical mirror.
  22.  前記作動距離の変化に応じて、前記被検眼の固視のために前記被検眼へ投影する固視標を切り替え可能に構成された固視票光学系をさらに有する請求項1から請求項21のいずれか1項に記載の眼科光学装置。 Claims 1 to 21 further include a fixative optical system configured to be able to switch the fixative to be projected onto the eye to be inspected for fixation of the eye to be inspected according to a change in the working distance. The ophthalmic optical device according to any one of the following items.
  23.  前記固視票光学系は、前記固視標と前記固視標からの光を被検眼眼底に向けて供給する集光レンズとを有し、前記固視標と前記集光レンズとを一体的に前記固視票光学系の光軸に沿って移動する請求項22に記載の眼科光学装置。 The fixative optical system has the fixative and a condenser lens that supplies light from the fixative to the fundus of the eye to be inspected, and the fixative and the condenser lens are integrated. 22. The ophthalmologic optical device according to claim 22, which moves along the optical axis of the fixative optical system.
  24.  前記後眼部撮影状態、及び前記前眼部撮影状態において、前記対物光学系の第1正レンズと第2正レンズとの間に、前記固視標の像が形成される請求項22又は請求項23に記載の眼科光学装置。 22 or claim that an image of the fixative is formed between the first positive lens and the second positive lens of the objective optical system in the posterior eye imaging state and the anterior eye imaging state. Item 23. The ophthalmic optical device according to Item 23.
PCT/JP2021/034426 2020-09-25 2021-09-17 Ophthalmic optical apparatus WO2022065260A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022551969A JPWO2022065260A1 (en) 2020-09-25 2021-09-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020161427 2020-09-25
JP2020-161427 2020-09-25

Publications (1)

Publication Number Publication Date
WO2022065260A1 true WO2022065260A1 (en) 2022-03-31

Family

ID=80845391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034426 WO2022065260A1 (en) 2020-09-25 2021-09-17 Ophthalmic optical apparatus

Country Status (2)

Country Link
JP (1) JPWO2022065260A1 (en)
WO (1) WO2022065260A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013244364A (en) * 2012-05-29 2013-12-09 Nidek Co Ltd Fundus photographing apparatus
JP2016123480A (en) * 2014-12-26 2016-07-11 キヤノン株式会社 Ophthalmologic apparatus and control method of ophthalmologic apparatus
JP2016209577A (en) * 2015-05-01 2016-12-15 株式会社ニデック Ophthalmologic imaging device
JP2017023416A (en) * 2015-07-22 2017-02-02 キヤノン株式会社 Ophthalmology imaging apparatus and control method therefor, and program
WO2019076335A1 (en) * 2017-10-20 2019-04-25 视微影像(河南)科技有限公司 Ophthalmic imaging diagnostic system
JP2020124346A (en) * 2019-02-04 2020-08-20 株式会社ニデック Ophthalmologic apparatus
JP2020168266A (en) * 2019-04-05 2020-10-15 キヤノン株式会社 Ophthalmologic light interference tomographic device and control method of ophthalmologic light interference tomographic device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013244364A (en) * 2012-05-29 2013-12-09 Nidek Co Ltd Fundus photographing apparatus
JP2016123480A (en) * 2014-12-26 2016-07-11 キヤノン株式会社 Ophthalmologic apparatus and control method of ophthalmologic apparatus
JP2016209577A (en) * 2015-05-01 2016-12-15 株式会社ニデック Ophthalmologic imaging device
JP2017023416A (en) * 2015-07-22 2017-02-02 キヤノン株式会社 Ophthalmology imaging apparatus and control method therefor, and program
WO2019076335A1 (en) * 2017-10-20 2019-04-25 视微影像(河南)科技有限公司 Ophthalmic imaging diagnostic system
JP2020124346A (en) * 2019-02-04 2020-08-20 株式会社ニデック Ophthalmologic apparatus
JP2020168266A (en) * 2019-04-05 2020-10-15 キヤノン株式会社 Ophthalmologic light interference tomographic device and control method of ophthalmologic light interference tomographic device

Also Published As

Publication number Publication date
JPWO2022065260A1 (en) 2022-03-31

Similar Documents

Publication Publication Date Title
JP6775302B2 (en) Ophthalmologic imaging equipment
JP6734642B2 (en) Ophthalmic equipment
JP7165474B2 (en) ophthalmic microscope
JP2017148097A (en) Ophthalmology imaging device
JP6421919B2 (en) Ophthalmic imaging equipment
JP2016049368A (en) Ophthalmological photographing apparatus
JP6604020B2 (en) Fundus imaging apparatus and fundus imaging program
JP7124318B2 (en) ophthalmic imaging equipment
JP2017169672A (en) Ophthalmologic photographing apparatus
WO2022065260A1 (en) Ophthalmic optical apparatus
JP6736397B2 (en) Optical tomographic imaging apparatus, method of operating optical tomographic imaging apparatus, and program
JP2016055123A (en) Ophthalmic imaging device, ophthalmic imaging system and ophthalmic imaging program
JP7164328B2 (en) Ophthalmic device and control method for ophthalmic device
JP7443400B2 (en) Ophthalmology equipment and tomographic image generation equipment
JP2018038687A (en) Ophthalmologic apparatus
WO2020241699A1 (en) Optical coherence tomography device and optical module
JP2017143918A (en) Ophthalmologic apparatus
JP2017143919A (en) Ophthalmologic apparatus
JP2020072966A (en) Ophthalmologic apparatus and ophthalmologic examination system
JP2020168266A (en) Ophthalmologic light interference tomographic device and control method of ophthalmologic light interference tomographic device
WO2021066047A1 (en) Ophthalmological device
JP6991272B2 (en) Ophthalmologic photography equipment
JP6431399B2 (en) Ophthalmic imaging equipment
JP7380013B2 (en) Ophthalmological equipment, control method and program for ophthalmological equipment
WO2021066045A1 (en) Ophthalmic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872389

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022551969

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872389

Country of ref document: EP

Kind code of ref document: A1