WO2022065121A1 - Polyamide core-sheath composite fiber and fabric - Google Patents

Polyamide core-sheath composite fiber and fabric Download PDF

Info

Publication number
WO2022065121A1
WO2022065121A1 PCT/JP2021/033633 JP2021033633W WO2022065121A1 WO 2022065121 A1 WO2022065121 A1 WO 2022065121A1 JP 2021033633 W JP2021033633 W JP 2021033633W WO 2022065121 A1 WO2022065121 A1 WO 2022065121A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
sheath
polyamide
composite fiber
component
Prior art date
Application number
PCT/JP2021/033633
Other languages
French (fr)
Japanese (ja)
Inventor
岸田泰輔
吉岡大輔
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020227046019A priority Critical patent/KR20230073146A/en
Priority to JP2021567982A priority patent/JPWO2022065121A1/ja
Priority to US18/025,298 priority patent/US20230323568A1/en
Priority to CN202180052262.0A priority patent/CN115989344A/en
Priority to EP21872251.0A priority patent/EP4219810A1/en
Publication of WO2022065121A1 publication Critical patent/WO2022065121A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Multicomponent Fibers (AREA)

Abstract

Provided is a polyamide core-sheath composite fiber comprising a sheath polymer formed from polyamide and a core polymer formed from polyether ester amide copolymer, wherein the core-sheath composite fiber has a strength of 3.6 cN/dtex or greater, a cross-sectional uniformity ratio d/R of the core-sheath component in the entire yarn of 0.072 or less, and an electrical specific resistance of 107 to 1010 Ω・cm. The provided polyamide core-sheath composite fiber has a humidity-absorbing property and an antistatic property, and while retaining strength, suppresses generation of fluff and has excellent high-order passability .

Description

ポリアミド芯鞘複合繊維及び布帛Polyamide core-sheath composite fiber and fabric
 本発明は、ポリアミド芯鞘複合繊維及び布帛に関する。さらに詳しくは、吸湿性、制電性に優れるポリアミド芯鞘複合繊維及び布帛に関する。 The present invention relates to a polyamide core-sheath composite fiber and a fabric. More specifically, the present invention relates to a polyamide core-sheath composite fiber and a fabric having excellent hygroscopicity and antistatic properties.
 ポリアミドやポリエステルなどの熱可塑性樹脂から成る合成繊維は、強度、耐薬品性、耐熱性などに優れるために、衣料用途や産業用途など幅広く用いられている。特にポリアミド繊維はその独特な柔らかさ、高い引っ張り強度、染色時の発色性、高い耐熱性等の特性に優れており、インナーウエア、アウターウエア、スポーツウエアなどの一般衣料用途に広く使用されている。 Synthetic fibers made of thermoplastic resins such as polyamide and polyester are widely used in clothing and industrial applications because of their excellent strength, chemical resistance, and heat resistance. In particular, polyamide fiber is excellent in its unique softness, high tensile strength, color development during dyeing, high heat resistance, etc., and is widely used for general clothing applications such as innerwear, outerwear, and sportswear. ..
 近年、アウトドアスポーツの普及に伴い、スポーツ・カジュアル衣料用途の需要が年々増加している。特に、ダウンジャケット基布やウィンドブレーカーに用いる織物では、薄地軽量、ソフト、低通気度が要求され、ポリアミド繊維は、細繊度・単糸細繊度化が進んでいる。ポリアミド繊維は帯電し易い性質があり、低温度・低湿度の冬場環境下においては、静電気を帯びやすい。薄地化の進行に伴い、静電気はより発生しやすく、制電性に優れたポリアミド繊維が要望されている。 In recent years, with the spread of outdoor sports, the demand for sports and casual clothing is increasing year by year. In particular, woven fabrics used for down jacket base fabrics and windbreakers are required to be thin, lightweight, soft, and have low air permeability, and polyamide fibers are becoming finer and finer than single yarn. Polyamide fibers have the property of being easily charged, and are easily charged with static electricity in a low temperature and low humidity winter environment. With the progress of thinning, static electricity is more likely to be generated, and polyamide fibers having excellent antistatic properties are desired.
 制電性に優れるポリアミド繊維は、後加工により繊維や布帛に制電剤を付与する方法、制電性を有するポリマーと複合繊維にする方法など、多く提案されている。その中でも、芯部に吸湿成分を使用した芯鞘複合ポリアミド繊維は、優れた制電性を有しており、ポリアミド繊維は電気抵抗が著しく、静電気を帯びやすいという欠点を解消し、特に冬場の低温度・低湿度下で使用されるアウターウエアなどの用途にて要望が高く、研究・提案が進んでいる。 Polyamide fibers having excellent antistatic properties have been proposed in many ways, such as a method of applying an antistatic agent to fibers and fabrics by post-processing, and a method of forming composite fibers with a polymer having antistatic properties. Among them, the core-sheath composite polyamide fiber that uses a moisture-absorbing component in the core has excellent antistatic properties, and the polyamide fiber has a remarkable electrical resistance and eliminates the drawback of being easily charged with static electricity, especially in winter. There are high demands for applications such as outer wear used under low temperature and low humidity, and research and proposals are progressing.
 例えば、特許文献1には、ポリアミド樹脂を鞘部とし、ポリエーテルエステルアミド共重合物を芯部とした芯鞘複合繊維であり、単糸繊度が3.5dtexである複合繊維が記載されている。特許文献2には、ポリアミド樹脂を鞘部とし、ポリエーテルエステルアミド共重合物を芯部とした複合繊維であり、芯部と鞘部の面積比率が3/1~1/5、単糸繊度が3.25dtexである複合繊維が記載されている。特許文献3には、ポリアミドを芯部とし、ポリエーテルエステルアミド共重合物を芯部とした複合繊維で、制電性に優れることが記載されている。 For example, Patent Document 1 describes a core-sheath composite fiber having a polyamide resin as a sheath and a polyether ester amide copolymer as a core, and a composite fiber having a single yarn fineness of 3.5 dtex. .. Patent Document 2 describes a composite fiber having a polyamide resin as a sheath and a polyether ester amide copolymer as a core, and the area ratio between the core and the sheath is 3/1 to 1/5, and the single yarn fineness. A composite fiber having a value of 3.25 dtex is described. Patent Document 3 describes that it is a composite fiber having a polyamide as a core and a polyether ester amide copolymer as a core, and has excellent antistatic properties.
  
特開平6-136618号公報 国際公開第2014/10709号 特開2017-57513号公報

Japanese Unexamined Patent Publication No. 6-136618 International Publication No. 2014/10709 Japanese Unexamined Patent Publication No. 2017-57513
 しかしながら、特許文献1、特許文献2に記載の芯鞘複合繊維は、吸湿性能、制電性能に優れるものの、細繊度・単糸細繊度化に伴い、原糸強度は低下する。原糸強度を担保すべく延伸を施すと、原糸毛羽が多発し、高次加工工程での工程通過性が悪化するだけでなく、製品品位も悪化することが課題であった。特許文献3に記載の芯鞘複合糸は、制電性能に優れるものの、吸湿性能を担保するポリエーテルエステルアミド共重合物の芯比率が低い。吸湿性能を担保すべく芯比率を上げると、特許文献1や特許文献2と同様、原糸強度が低下、原糸毛羽が多発し、高次通過性、製品品位低下することが課題である。 However, although the core-sheath composite fibers described in Patent Documents 1 and 2 are excellent in hygroscopicity and antistatic performance, the raw yarn strength decreases as the fineness and single yarn fineness increase. When stretching is performed to ensure the strength of the raw yarn, fluffing of the raw yarn occurs frequently, and not only the process passability in the higher-order processing process is deteriorated, but also the product quality is deteriorated. The core-sheath composite yarn described in Patent Document 3 is excellent in antistatic performance, but has a low core ratio of a polyether ester amide copolymer that guarantees moisture absorption performance. If the core ratio is increased to ensure the moisture absorption performance, the problems are that the strength of the raw yarn is lowered, the fluff of the raw yarn is frequently generated, and the high-order passability and the product quality are deteriorated, as in Patent Document 1 and Patent Document 2.
 織物の薄地軽量、ソフト、低通気度の要求に伴い、繊維の細繊度・単糸細繊度化が進んでいることから、吸湿性、制電性を有し、強度を維持しつつ、毛羽の発生を抑え、高次通過性に優れるポリアミド芯鞘複合繊維を提供することが課題である。 Thin fabrics Lightweight, soft, and low air permeability are required, and the fineness of fibers and single yarns are becoming finer. It is an issue to provide a polyamide core-sheath composite fiber that suppresses the generation and has excellent high-order passability.
 本発明は、上記課題を解決するために、下記の構成からなる。
(1)鞘部ポリマーがポリアミド、芯部ポリマーがポリエーテルエステルアミド共重合体からなる芯鞘型複合マルチフィラメントにおいて、強度が3.6cN/dtex以上、繊維横断面における芯鞘成分の断面均等比d/Rが0.072以下、電気比抵抗値が10~1010Ω・cmであるポリアミド芯鞘複合繊維。
d:芯成分の内接円中心と鞘成分の内接円中心との距離
R:鞘成分の内接円の直径
(2)単糸繊度0.8~2.0dtex、繊維横断面における芯部の面積比率が20~40%である(1)に記載のポリアミド芯鞘複合繊維。
(3)(1)または(2)に記載のポリアミド芯鞘複合繊維を少なくとも一部に有する布帛。
The present invention has the following configuration in order to solve the above problems.
(1) In a core-sheath type composite multifilament in which the sheath polymer is a polyamide and the core polymer is a polyether ester amide copolymer, the strength is 3.6 cN / dtex or more, and the cross-sectional uniform ratio of the core-sheath component in the fiber cross section. Polyamide core-sheath composite fiber having a d / R of 0.072 or less and an electric specific resistance value of 10 7 to 10 10 Ω · cm.
d: Distance between the center of the inscribed circle of the core component and the center of the inscribed circle of the sheath component R: Diameter of the inscribed circle of the sheath component (2) Single thread fineness 0.8 to 2.0 dtex, core portion in the fiber cross section The polyamide core-sheath composite fiber according to (1), wherein the area ratio of the fibers is 20 to 40%.
(3) A fabric having at least a part of the polyamide core-sheath composite fiber according to (1) or (2).
 本発明によれば、吸湿性、制電性を有し、強度を維持しつつ、毛羽の発生を抑え、高次通過性に優れるポリアミド芯鞘複合繊維を提供することができる。 According to the present invention, it is possible to provide a polyamide core-sheath composite fiber having hygroscopicity and antistatic properties, maintaining strength, suppressing the generation of fluff, and having excellent high-order passage.
本発明の繊維横断面形状を示す模式図。The schematic diagram which shows the fiber cross-sectional shape of this invention. 本発明に用いる複合紡糸用口金の吐出孔の一例を示す縦断面図。The vertical sectional view which shows an example of the discharge hole of the base for composite spinning used in this invention. 本発明に用いる複合紡糸用口金の下部導入板芯成分導入孔と鞘成分導入孔の配置の一部を示す模式図。The schematic diagram which shows a part of the arrangement of the lower introduction plate core component introduction hole and the sheath component introduction hole of the base for composite spinning used in this invention. 本発明のポリアミド芯鞘複合繊維の製造方法に好ましく用いる直接紡糸延伸法による製造装置の一実施形態を示す図。The figure which shows one Embodiment of the manufacturing apparatus by the direct spinning and drawing method preferably used for the manufacturing method of the polyamide core-sheath composite fiber of this invention.
 本発明のポリアミド芯鞘複合繊維は、鞘部にポリアミド、芯部にポリエーテルエステルアミド共重合体を用いた芯鞘複合繊維である。 The polyamide core-sheath composite fiber of the present invention is a core-sheath composite fiber using a polyamide in the sheath portion and a polyether ester amide copolymer in the core portion.
 本発明のポリアミド芯鞘複合繊維は、図1に例示のとおり、その横断面の断面均等比(d/R)が0.072以下である。ここでいう断面均等比とは、芯成分の内接円中心点(点C)と鞘成分の内接円中心点(点S)との距離(d)、鞘成分の内接円直径(R)を測定し算出する値であり、全単糸を測定した平均値である。数値が0に近づく程同心であり、数値が大きくなる程偏心していることを示している。断面均等比(d/R)をかかる範囲にすることで、単糸毛羽の発生を抑え、高次通過性に優れるものとなる。さらに好ましくは、0.050以下である。断面均等比(d/R)が0.072を超える場合、芯部ポリエーテルエステルアミド共重合体が偏心しており、鞘部ポリアミドにおいて、鞘厚みに偏りができる。そのため、鞘の薄い箇所に外力が加わるとそこから単糸が破断し易くなって単糸毛羽が多発し、高次通過性が悪くなるばかりでなく、製品品位も悪化する傾向にある。 As illustrated in FIG. 1, the polyamide core-sheath composite fiber of the present invention has a cross-sectional uniformity ratio (d / R) of 0.072 or less. The cross-sectional uniformity ratio referred to here is the distance (d) between the center point of the inscribed circle of the core component (point C) and the center point of the inscribed circle of the sheath component (point S), and the diameter of the inscribed circle of the sheath component (R). ) Is measured and calculated, and is the average value obtained by measuring all single yarns. The closer the value is to 0, the more concentric it is, and the larger the value, the more eccentric it is. By setting the cross-sectional uniformity ratio (d / R) to such a range, the generation of single yarn fluff is suppressed and the high-order passability is excellent. More preferably, it is 0.050 or less. When the cross-sectional uniformity ratio (d / R) exceeds 0.072, the core polyether ester amide copolymer is eccentric, and the sheath thickness can be biased in the sheath polyamide. Therefore, when an external force is applied to a portion where the sheath is thin, the single yarn is easily broken from there, and single yarn fluff occurs frequently, which not only deteriorates the higher-order passability but also tends to deteriorate the product quality.
 本発明のポリアミド芯鞘複合繊維は、強度が3.6cN/dtex以上である。かかる範囲とすることにより、高次加工工程での糸切れが減少し高次通過性が良好となる。また、製品耐久性に優れる。3.6cN/dtex未満の場合、高次加工工程での糸切れが増加し高次通過性が悪化する傾向にある。また、主にアウター衣料用途やスポーツ衣料用途である衣料用途において、実使用に耐えないレベルになり易く製品耐久性に劣る場合がある。より好ましい範囲は4.0cN/dtex以上である。 The polyamide core-sheath composite fiber of the present invention has a strength of 3.6 cN / dtex or more. Within such a range, yarn breakage in the higher-order processing step is reduced and higher-order passability is improved. In addition, it has excellent product durability. When it is less than 3.6 cN / dtex, the yarn breakage in the higher-order processing step tends to increase and the higher-order passability tends to deteriorate. In addition, in clothing applications such as outer clothing applications and sports clothing applications, the level tends to be unbearable for actual use, and the product durability may be inferior. A more preferable range is 4.0 cN / dtex or more.
 本発明のポリアミド芯鞘複合繊維は、繊維横断面における芯部の面積比率が20%以上40%以下であることが好ましい。より好ましくは20%以上30%以下、さらに好ましくは25%以上30%以下である。この範囲であると鞘部が空気中の限られた水分を多く吸収しやすくなり、芯部にその吸収した水分を伝達する割合が増加する。また、芯部の面積比率が小さいことで、帯電した静電気が吸水した芯部を素早く伝達するため、優れた吸湿性と制電性を発現する。 The polyamide core-sheath composite fiber of the present invention preferably has a core area ratio of 20% or more and 40% or less in the cross section of the fiber. It is more preferably 20% or more and 30% or less, and further preferably 25% or more and 30% or less. Within this range, the sheath portion easily absorbs a large amount of the limited moisture in the air, and the ratio of transmitting the absorbed moisture to the core portion increases. Further, since the area ratio of the core portion is small, the charged static electricity quickly transmits the absorbed core portion, so that excellent hygroscopicity and antistatic property are exhibited.
 本発明のポリアミド芯鞘複合繊維は、温度20℃、湿度40%RH条件下での電気比抵抗値が10~1010Ω・cmである。かかる範囲とすることにより制電性が得られる。一般のポリアミド繊維の電気比抵抗値は、1014Ω・cmレベルである。そして、静電気は、空気中の水分量に左右され、湿度の高い環境下では静電気は起こりにくく、乾燥した環境下では静電気が発生しやすい。十分な制電性を発揮するために、温度20℃、湿度40%RHの条件下で1010Ω・cm以下の比抵抗値で有れば十分な制電性能を発揮できる。なお、本発明で達成できる電気比抵抗値下限値のレベルは10Ω・cm程度である。 The polyamide core-sheath composite fiber of the present invention has an electrical resistivity value of 107 to 10 10 Ω · cm under the conditions of a temperature of 20 ° C. and a humidity of 40% RH. Antistatic property can be obtained by setting it within such a range. The electrical resistivity value of a general polyamide fiber is 10 14 Ω · cm level. The static electricity depends on the amount of water in the air, and static electricity is unlikely to occur in a humid environment, and static electricity is likely to occur in a dry environment. In order to exhibit sufficient antistatic performance, sufficient antistatic performance can be exhibited if the specific resistance value is 10 10 Ω · cm or less under the conditions of temperature 20 ° C. and humidity 40% RH. The level of the lower limit of the electrical resistivity that can be achieved by the present invention is about 107 Ω · cm.
 本発明のポリアミド芯鞘複合繊維において、ΔMRは5.0%以上が好ましい。かかる範囲とすることにより吸湿性が得られる。着用時に良好な快適性を得るため、衣服内の湿度を調節する機能を有することが要求される。この湿度調整の指標として、軽~中作業あるいは軽~中運動を行った際の30℃×90%RHに代表される衣服内温湿度と、20℃×65%RHに代表される外気温湿度における吸湿率の差で表されるΔMRを用いる。ΔMRは大きければ大きいほど吸湿性能が高く、着用時の快適性が良好であることを示している。ΔMRが5.0%以上で有れば着用時のムレやベタツキを抑制でき、快適性に優れる衣料を提供可能となる。ΔMRの上限値は17.0%程度である。 In the polyamide core-sheath composite fiber of the present invention, ΔMR is preferably 5.0% or more. Hygroscopicity can be obtained by setting it within such a range. In order to obtain good comfort when worn, it is required to have a function of controlling the humidity inside the garment. As an index of this humidity adjustment, the temperature and humidity inside clothes represented by 30 ° C x 90% RH and the outside air temperature humidity represented by 20 ° C x 65% RH when performing light to medium work or light to medium exercise. ΔMR, which is represented by the difference in moisture absorption rate in, is used. The larger the ΔMR, the higher the hygroscopic performance, indicating that the comfort when worn is good. If ΔMR is 5.0% or more, stuffiness and stickiness at the time of wearing can be suppressed, and it becomes possible to provide clothing having excellent comfort. The upper limit of ΔMR is about 17.0%.
 本発明のポリアミド芯鞘複合繊維は、衣料用に適した総繊度であれば任意設定可能であるが、8~155dtexであることが好ましい。また、単糸繊度も製品要求に応じて任意設定可能であるが、織物の薄地軽量、ソフト、低通気度の要求に伴い、繊維の細繊度・単糸細繊度化が進んでいることから、0.8~2.0dtexであることが好ましい。 The polyamide core-sheath composite fiber of the present invention can be arbitrarily set as long as it has a total fineness suitable for clothing, but it is preferably 8 to 155 dtex. In addition, the single yarn fineness can be arbitrarily set according to the product requirements, but the fineness of the fibers and the fineness of the single yarn are increasing in line with the demands for thin, lightweight, soft, and low air permeability of the woven fabric. It is preferably 0.8 to 2.0 dtex.
 本発明のポリアミド芯鞘複合繊維は、伸度が40%以上であることが好ましい。より好ましくは42~65%である。かかる範囲とすることにより、高次加工工程での糸切れが減少し高次通過性が良好となる。 The polyamide core-sheath composite fiber of the present invention preferably has an elongation of 40% or more. More preferably, it is 42 to 65%. Within such a range, yarn breakage in the higher-order processing step is reduced and higher-order passability is improved.
 本発明のポリアミド芯鞘複合繊維は、鞘部にポリアミド、芯部にポリエーテルエステルアミド共重合体を用いる。 The polyamide core-sheath composite fiber of the present invention uses polyamide for the sheath and a polyether ester amide copolymer for the core.
 本発明の芯部に使用するポリエーテルエステルアミド共重合体とは、同一分子鎖内にエーテル結合、エステル結合およびアミド結合を持つブロック共重合体である。より具体的にはラクタム、アミノカルボン酸、ジアミンとジカルボン酸の塩から選ばれた1種もしくは2種以上のポリアミド成分(A)およびジカルボン酸とポリ(アルキレンオキシド)グリコールからなるポリエーテルエステル成分(B)を重縮合反応させて得られるブロック共重合体ポリマーである。 The polyether ester amide copolymer used for the core of the present invention is a block copolymer having an ether bond, an ester bond and an amide bond in the same molecular chain. More specifically, one or more polyamide components (A) selected from lactam, aminocarboxylic acid, diamine and dicarboxylic acid salts, and a polyether ester component consisting of dicarboxylic acid and poly (alkylene oxide) glycol (. It is a block copolymer polymer obtained by subjecting B) to a polycondensation reaction.
 ポリアミド成分(A)としては、ε-カプロラクタム、ドデカノラクタム、ウンデカノラクタム等のラクタム類、アミノカプロン酸,11-アミノウンデカン酸、12-アミノドデカン酸などのω-アミノカルボン酸、ナイロン66、ナイロン610、ナイロン612等の前駆体であるジアミン-ジカルボン酸のナイロン塩類があり、好ましいポリアミド形成性成分はε-カプロラクタムである。 The polyamide component (A) includes lactams such as ε-caprolactam, dodecanolactam, and undecanolactam, ω-aminocarboxylic acids such as aminocaproic acid, 11-aminoundecanoic acid, and 12-aminododecanoic acid, nylon 66, and nylon. There are nylon salts of diamine-dicarboxylic acid which are precursors such as 610 and nylon 612, and a preferable polyamide-forming component is ε-caprolactam.
 ポリエーテルエステル成分(B)としては、炭素数4~20のジカルボン酸とポリ(アルキレンオキシド)グリコールとからなるものである。炭素数4~20のジカルボン酸としてはコハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸、ドデカジ酸等の脂肪族ジカルボン酸、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸等の芳香族ジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸をあげることができ、1種または2種以上混合して用いることができる。好ましいジカルボン酸はアジピン酸、セバシン酸、ドデカジ酸、テレフタル酸、イソフタル酸である。またポリ(アルキレンオキシド)グリコールとしては、ポリエチレングリコール、ポリ(1,2-および1,3-プロピレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール、ポリ(ヘキサメチレンオキシド)グリコール等があげられ、特に良好な吸湿性能を有するポリエチレングリコールが好ましい。 The polyether ester component (B) is composed of a dicarboxylic acid having 4 to 20 carbon atoms and a poly (alkylene oxide) glycol. Examples of the dicarboxylic acid having 4 to 20 carbon atoms include aliphatic dicarboxylic acids such as succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, sebacic acid and dodecadic acid, terephthalic acid, isophthalic acid and 2,6-naphthalenedicarboxylic acid. Examples thereof include aromatic dicarboxylic acids such as, and alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, which can be used alone or in admixture of two or more. Preferred dicarboxylic acids are adipic acid, sebacic acid, dodecadic acid, terephthalic acid and isophthalic acid. Examples of the poly (alkylene oxide) glycol include polyethylene glycol, poly (1,2- and 1,3-propylene oxide) glycol, poly (tetramethylene oxide) glycol, poly (hexamethylene oxide) glycol and the like. Polyethylene glycol having good moisture absorption performance is preferable.
 ポリ(アルキレンオキシド)グリコールの数平均分子量は300~5000が好ましく、より好ましくは500~4000である。分子量が300以上であると、重縮合反応中に系外に飛散しにくく、吸湿性、制電性が安定した繊維となるため好ましい。また、5000以下であると、ポリマー中にポリ(アルキレンオキシド)グリコールが均一に分散し、良好な吸湿性、制電性が得られるため好ましい。 The number average molecular weight of the poly (alkylene oxide) glycol is preferably 300 to 5000, more preferably 500 to 4000. When the molecular weight is 300 or more, the fiber is less likely to be scattered outside the system during the polycondensation reaction, and the fiber has stable hygroscopicity and antistatic properties, which is preferable. Further, when it is 5000 or less, poly (alkylene oxide) glycol is uniformly dispersed in the polymer, and good hygroscopicity and antistatic property can be obtained, which is preferable.
 ポリエーテルエステルアミド共重合体全体の中でのポリエーテルエステル成分(B)の構成比率はモル比にて、20~80%であることが好ましい。20%以上であると、良好な吸湿性、制電性が得られるため好ましい。また、80%以下であると、良好な染色堅牢性や吸湿性と制電性の洗濯耐久性が得られるため好ましい。 The composition ratio of the polyether ester component (B) in the entire polyether ester amide copolymer is preferably 20 to 80% in terms of molar ratio. When it is 20% or more, good hygroscopicity and antistatic property can be obtained, which is preferable. Further, when it is 80% or less, good dyeing fastness, hygroscopicity and antistatic washing durability can be obtained, which is preferable.
 ポリアミドとポリ(アルキレンオキシド)グリコールの構成比率はモル比にて、20%/80%~80%/20%であることが好ましい。ポリ(アルキレンオキシド)グリコールが20%以上であると、良好な吸湿性、制電性が得られるため好ましい。また、ポリ(アルキレンオキシド)グリコールが80%以下であると、良好な染色堅牢性や吸湿性と制電性の洗濯耐久性が得られるため好ましい。 The composition ratio of polyamide and poly (alkylene oxide) glycol is preferably 20% / 80% to 80% / 20% in terms of molar ratio. When the poly (alkylene oxide) glycol is 20% or more, good hygroscopicity and antistatic property can be obtained, which is preferable. Further, when the poly (alkylene oxide) glycol is 80% or less, good dyeing fastness, hygroscopicity and antistatic washing durability can be obtained, which is preferable.
 このようなポリエーテルエステルアミド共重合体として、アルケマ社製“MH1657”や“MV1074”等が市販されている。 As such a polyether ester amide copolymer, "MH1657" and "MV1074" manufactured by Arkema Co., Ltd. are commercially available.
 本発明の芯部に使用するポリエーテルエステルアミド共重合体ポリマーのチップは、オルトクロロフェノール相対粘度にて1.2以上2.0以下であることが好ましい。オルトクロロフェノール相対粘度が1.2以上であると、紡糸時に鞘部に最適な応力が加わり、鞘部のポリアミドの結晶化が進み、高強度化となる。 The chip of the polyether ester amide copolymer polymer used for the core portion of the present invention preferably has an orthochlorophenol relative viscosity of 1.2 or more and 2.0 or less. When the relative viscosity of orthochlorophenol is 1.2 or more, an optimum stress is applied to the sheath portion at the time of spinning, crystallization of the polyamide in the sheath portion proceeds, and the strength is increased.
 ポリ(アルキレンオキシド)グリコールは、熱付与により分子内よりラジカルが発生し、隣接する原子を攻撃することでラジカルが発生するといった連鎖反応が進み、反応熱により200度を超える高温となる。また、ポリ(アルキレンオキシド)グリコールの分子量が小さいほど、分子鎖への熱付与が容易なため、ラジカルが発生し易く、反応熱が発生し易い傾向がある。 Poly (alkylene oxide) glycol undergoes a chain reaction in which radicals are generated from inside the molecule by heat application and radicals are generated by attacking adjacent atoms, and the temperature rises to over 200 degrees due to the heat of reaction. Further, the smaller the molecular weight of the poly (alkylene oxide) glycol is, the easier it is to apply heat to the molecular chain, so that radicals are likely to be generated and reaction heat tends to be generated easily.
 本発明に使用するポリエーテルエステルアミド共重合体に含まれるポリ(アルキレンオキシド)グリコールの数平均分子量は300~5000と比較的小さいため、上記のメカニズムから、ポリエーテルエステルアミド共重合体の熱劣化が進みやすく、原糸の硬化や脆化、吸湿性、制電性の低下等が非常に引き起こされやすい。 Since the number average molecular weight of the poly (alkylene oxide) glycol contained in the polyether ester amide copolymer used in the present invention is relatively small, 300 to 5000, the heat deterioration of the polyether ester amide copolymer is caused by the above mechanism. Is easy to proceed, and it is very easy to cause hardening and brittleness of the raw yarn, deterioration of moisture absorption and antistatic properties, and the like.
 そのため、芯部のポリエーテルエステルアミド共重合体には、ラジカルを補足するヒンダードフェノール系酸化防止剤を添加することが好ましい。より好ましくは、ハーフヒンダードフェノール系酸化防止剤である。添加するヒンダードフェノール系酸化防止剤の量は、芯部のポリエーテルエステルアミド共重合体の重量に対して、1.0重量%以上5.0重量%以下が好ましい。より好ましくは、2.0重量%以上である。 Therefore, it is preferable to add a hindered phenolic antioxidant that captures radicals to the core polyether ester amide copolymer. More preferably, it is a half-hindered phenolic antioxidant. The amount of the hindered phenolic antioxidant to be added is preferably 1.0% by weight or more and 5.0% by weight or less with respect to the weight of the polyether ester amide copolymer in the core portion. More preferably, it is 2.0% by weight or more.
 両ヒンダードフェノール系酸化防止剤は、例えば、ペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート](IR1010)、トリス(4-tert-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)イソシアヌル酸(IR1790)、(1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)ベンゼン(AO-330)、1,3,5-トリス[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン(IR3114)、N,N’-ヘキサメチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロパンアミド](IR1098)が挙げられる。 Both hindered phenolic antioxidants include, for example, pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (IR1010), tris (4-tert-butyl-3-3). Hydroxy-2,6-dimethylbenzyl) isocyanuric acid (IR1790), (1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxyphenyl) benzene (AO) -330), 1,3,5-Tris [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] -1,3,5-triazine-2,4,6 (1H) , 3H, 5H) -trione (IR3114), N, N'-hexamethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propanamide] (IR1098).
 両ヒンダードフェノール系酸化防止剤の場合は、紡糸工程時の熱履歴(ポリマー溶融時に加わる高温や延伸後の熱セット)、高次加工工程時の熱履歴(布帛の染色や熱セット等)によりポリエーテルエステルアミド共重合体の熱劣化が進み、布帛および衣料品の段階で残存するラジカルを補足する酸化防止剤の有効成分量が大幅に低下する。そのため、布帛および衣料品に残存するラジカルを補足する酸化防止剤の有効成分量を低下させないために、ヒンダードアミン(HALS(Hindered Amine Light Stabilizer))系安定剤を併用することで、ヒンダードフェノール系酸化防止剤の熱劣化を抑制することができ、反応熱・熱劣化を抑制でき、原糸の硬化や脆化、吸湿性、制電性の低下を抑制することができる。HALS系安定剤は、例えば、ジブチルアミン1,3,5-トリアジン・N,N-ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミン・N-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物(CHIMASSORB2020FDL)、4,7,N,N’-テトラキス[4,6-ビス[ブチル(1,2,2,6,6-ペンタメチル-4-ピペリジニル)アミノ]-1,3,5-トリアジン-2-イル]-4,7-ジアザデカン-1,10-ジアミン(CHIMASSORB119)、ポリ[{6-(1,1,3.3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4ジイル)((2,2,6,6-テトラメチル-4-ピペリジル)イミノ)ヘキサメチレン((2,2,6,6テトラメチル-4-ピペリジル)イミノ](CHIMASSORB944)が挙げられる。 In the case of both hindered phenolic antioxidants, the heat history during the spinning process (high temperature applied during polymer melting and heat set after stretching) and the heat history during the higher processing process (fabric dyeing, heat set, etc.) The thermal deterioration of the polyether ester amide copolymer progresses, and the amount of the active component of the antioxidant that captures the radicals remaining at the stage of the fabric and clothing is significantly reduced. Therefore, in order not to reduce the amount of the active ingredient of the antioxidant that captures the radicals remaining in the fabric and clothing, a hindered amine (HALS (Hindered Amine Embrittle Stabilizer)) stabilizer is used in combination to oxidize the hindered phenol. Thermal deterioration of the inhibitor can be suppressed, reaction heat and thermal deterioration can be suppressed, and hardening and embrittlement of the raw yarn, and deterioration of hygroscopicity and antistatic properties can be suppressed. HALS-based stabilizers include, for example, dibutylamine 1,3,5-triazine N, N-bis (2,2,6,6-tetramethyl-4-piperidyl-1,6-hexamethylenediamine N- (2,2,6,6-tetramethyl-4-piperidyl-1,6-hexamethylenediamine N-). 2,2,6,6-Tetramethyl-4-piperidyl) Polycondensate of butylamine (CHIMASTORB2020FDL), 4,7,N, N'-tetrakis [4,6-bis [butyl (1,2,2,6) , 6-Pentamethyl-4-piperidinyl) amino] -1,3,5-triazine-2-yl] -4,7-diazadecan-1,10-diamine (CHIMASTORB119), poly [{6- (1,1,1) 3.3-Tetramethylbutyl) Amino-1,3,5-triazin-2,4diyl) ((2,2,6,6-tetramethyl-4-piperidyl) imino) Hexamethylene ((2,2,2) 6,6 Tetramethyl-4-piperidyl) imino] (CHIMASSORB944).
 ハーフヒンダードフェノール系酸化防止剤は、例えば、2,2’-ジメチル-2,2’-(2,4,8,10-テトラオキサスピロ[5.5]ウンデカン-3,9-ジイル)ジプロパン-1,1’-ジイル=ビス[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロパノアート](住友化学社製「スミライザー」(登録商標)AG80、ADEKA社製「アデカスタブ」(登録商標)AO-80)、1,3,5-トリス[[4-(1,1-ジメチルエチル)-3-ヒドロキシ-2,6-ジメチルフェニル]メチル]-1,3,4-トリアジン-2,4,6(1H,3H,5H)-トリオン(ソルベー社製Cyanox1790)が挙げられる。 The half-hindered phenolic antioxidant is, for example, 2,2'-dimethyl-2,2'-(2,4,8,10-tetraoxaspiro [5.5] undecane-3,9-diyl) dipropane. -1,1'-Diyl-bis [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propanoart] (Sumitomo Chemical Co., Ltd. "Sumilyzer" (registered trademark) AG80, ADEKA Co., Ltd. "ADEKA STAB" (Registered Trademark) AO-80), 1,3,5-Tris [[4- (1,1-dimethylethyl) -3-hydroxy-2,6-dimethylphenyl] methyl] -1,3,4-triazine -2,4,6 (1H, 3H, 5H) -trion (Cyanox1790 manufactured by Solvay) can be mentioned.
 ハーフヒンダードフェノール系の酸化防止剤は、両ヒンダードフェノール系の酸化防止剤と比較して、紡糸工程時の熱履歴や、高次加工工程時の熱履歴における酸化防止剤の有効成分量の低下が非常に小さい。そのため、両ヒンダードフェノール系の酸化防止剤のようにHALS系安定剤を併用することなく、ハーフヒンダードフェノール系の酸化防止剤の単独使用で、反応熱・熱劣化を抑制でき、原糸の硬化や脆化、吸湿性、制電性の低下を抑制することができる。また、ハーフヒンダードフェノールの分解物は着色が少ないため、黄変も抑制できる。 Compared with both hindard phenolic antioxidants, the half-hindered phenolic antioxidant has the amount of the active component of the antioxidant in the heat history during the spinning process and the thermal history during the higher processing process. The drop is very small. Therefore, the reaction heat and thermal deterioration can be suppressed by using the half-hindered phenol-based antioxidant alone without using the HALS-based stabilizer in combination as in the case of both hindered phenol-based antioxidants. It is possible to suppress hardening, embrittlement, deterioration of hygroscopicity and antistatic property. In addition, since the decomposition product of half-hindered phenol has little coloring, yellowing can be suppressed.
 芯部のポリエーテルエステルアミド共重合体には、その他のリン系の安定剤を併用することも可能である。また、その他各種の添加剤、たとえば、艶消剤、難燃剤、紫外線吸収剤、赤外線吸収剤、結晶核剤、螢光増白剤、帯電防止剤、吸湿性ポリマー、カーボンなどを、総添加物含有量がポリエーテルエステルアミド共重合体に対し、5重量%以下で必要に応じて共重合または混合していてもよい。 It is also possible to use other phosphorus-based stabilizers in combination with the polyether ester amide copolymer in the core. In addition, various other additives such as matting agents, flame retardants, ultraviolet absorbers, infrared absorbers, crystal nucleating agents, bright whitening agents, antistatic agents, hygroscopic polymers, carbon, etc. are all added. The content may be 5% by weight or less with respect to the polyether ester amide copolymer, and may be copolymerized or mixed as required.
 芯部の比率は、複合繊維全体に対して20重量%~40重量%であることが好ましい。さらに好ましくは、20重量%~30重量%、より好ましくは25重量%~30重量%である。芯部の比率が高くなるほど、吸湿性、制電性は高くなるが強度は低下する。一方、芯部の比率が低くなるほど、強度は高くなるが、吸湿性、制電性が低下する。かかる範囲とすることにより、吸湿性と制電性が発現し、鞘部のポリアミドに適切な延伸を加えることが可能となり高強度化できる。 The ratio of the core portion is preferably 20% by weight to 40% by weight with respect to the entire composite fiber. More preferably, it is 20% by weight to 30% by weight, and more preferably 25% by weight to 30% by weight. The higher the ratio of the core portion, the higher the hygroscopicity and antistatic property, but the lower the strength. On the other hand, the lower the ratio of the core portion, the higher the strength, but the lower the hygroscopicity and the antistatic property. Within such a range, hygroscopicity and antistatic property are exhibited, and appropriate stretching can be applied to the polyamide of the sheath portion, so that the strength can be increased.
 本発明の鞘部に使用するポリアミドには、ナイロン6、ナイロン66、ナイロン46、ナイロン9、ナイロン610、ナイロン11、ナイロン12、ナイロン612等、あるいはそれらとアミド形成官能基を有する化合物、例えばラウロラクタム、セバシン酸、テレフタル酸、イソフタル酸、5-ナトリウムスルホイソフタル酸等の共重合成分を含有する共重合ポリアミドがあげられる。中でも、ナイロン6および、ナイロン11、ナイロン12、ナイロン610、ナイロン612が、ポリエーテルエステルアミド共重合体との融点の差が小さく、溶融紡糸時にポリエーテルエステルアミド共重合体の熱劣化が抑制でき、製糸性の観点から好ましい。特に好ましくは、染色性に富むナイロン6である。 The polyamide used for the sheath portion of the present invention includes nylon 6, nylon 66, nylon 46, nylon 9, nylon 610, nylon 11, nylon 12, nylon 612 and the like, or compounds having amide-forming functional groups thereof, for example, lauro. Examples thereof include copolymerized polyamides containing copolymerizing components such as lactam, sebacic acid, terephthalic acid, isophthalic acid, and 5-sodium sulfoisophthalic acid. Among them, nylon 6 and nylon 11, nylon 12, nylon 610, and nylon 612 have a small difference in melting point from the polyether ester amide copolymer, and can suppress thermal deterioration of the polyether ester amide copolymer during melt spinning. , Preferable from the viewpoint of yarn-making property. Particularly preferred is nylon 6, which is highly dyeable.
 鞘部のポリアミドには、各種の添加剤、たとえば、艶消剤、難燃剤、酸化防止剤、紫外線吸収剤、赤外線吸収剤、結晶核剤、螢光増白剤、帯電防止剤、吸湿性ポリマー、カーボンなどを、総添加物含有量がポリエーテルエステルアミド共重合体に対し、5重量%以下で必要に応じて共重合または混合していてもよい。 Various additives such as matting agents, flame retardants, antioxidants, ultraviolet absorbers, infrared absorbers, crystal nucleating agents, bright whitening agents, antistatic agents, and hygroscopic polymers are used in the polyamide of the sheath. , Carbon and the like may be copolymerized or mixed as necessary with a total additive content of 5% by weight or less with respect to the polyether ester amide copolymer.
 本発明の鞘部に使用するポリアミドチップは、硫酸相対粘度にて2.3以上3.3以下が好ましい。かかる範囲とすることにより、鞘部のポリアミドに適切な延伸を加えることが可能となり高強度化できる。 The polyamide chip used for the sheath portion of the present invention preferably has a sulfuric acid relative viscosity of 2.3 or more and 3.3 or less. Within such a range, appropriate stretching can be applied to the polyamide of the sheath portion, and the strength can be increased.
 本発明に使用するポリエーテルエステルアミド共重合体の溶融粘度は400~600poiseであり、本発明に使用するポリアミドの溶融粘度900~1500poiseより低く、溶融粘度差も大きい。そのため、紡糸温度での溶融粘度比が、3.0以下であるポリエーテルエステルアミド共重合体、ポリアミドの組み合わせを選択することが好ましい。かかる範囲とすることで、紡糸時に口金から吐出された後の、細化・延伸時に糸条長手方向にかかる応力が鞘成分に偏らず、断面均等比(d/R)を小さくすることができる傾向にある。3.0を超えると、細化・延伸時に糸条長手方向にかかる応力が鞘成分に偏り、断面均等比が大きくなる。ここで言う溶融粘度とは、チップ状のポリマーを真空乾燥機によって、水分率200ppm以下とし、キャピラリーレオメーターによって、測定できる溶融粘度を指し、紡糸温度での同せん断速度の際の溶融粘度を意味する。 The melt viscosity of the polyether ester amide copolymer used in the present invention is 400 to 600 poise, which is lower than the melt viscosity of the polyamide used in the present invention of 900 to 1500 poise, and the difference in melt viscosity is also large. Therefore, it is preferable to select a combination of a polyether ester amide copolymer and a polyamide having a melt viscosity ratio of 3.0 or less at the spinning temperature. Within such a range, the stress applied in the longitudinal direction of the yarn during thinning / stretching after being discharged from the mouthpiece at the time of spinning is not biased to the sheath component, and the cross-sectional uniform ratio (d / R) can be reduced. There is a tendency. If it exceeds 3.0, the stress applied in the longitudinal direction of the yarn during thinning / stretching is biased toward the sheath component, and the cross-sectional uniformity ratio becomes large. The melt viscosity referred to here refers to the melt viscosity of a chip-shaped polymer that can be measured by a capillary leometer with a moisture content of 200 ppm or less by a vacuum dryer, and means the melt viscosity at the same shear rate at the spinning temperature. do.
 また、ポリエーテルエステルアミド共重合体の融点はポリアミドの融点よりも低い為、溶融紡糸時にポリエーテルエステルアミド共重合体の熱劣化の抑制、製糸性の観点から、融点差が30℃以下であるポリエーテルエステルアミド共重合体、ポリアミドをそれぞれ選択することが好ましい。 Further, since the melting point of the polyether ester amide copolymer is lower than the melting point of the polyamide, the difference in melting point is 30 ° C. or less from the viewpoint of suppressing the thermal deterioration of the polyether ester amide copolymer during melt spinning and the yarn-making property. It is preferable to select a polyether ester amide copolymer and a polyamide, respectively.
 紡糸工程において、芯部ポリマーの溶融部温度は235℃以上260℃以下とすることが好ましい。芯部ポリマーの溶融部温度が235℃以上であると、芯部のポリエーテルエステルアミド共重合体が溶融紡糸に適した溶融粘度となるため好ましく、260℃以下であると芯部のポリーテルエステルアミド共重合体の温度上昇による熱分解を抑制できるため好ましい。 In the spinning step, the temperature of the molten part of the core polymer is preferably 235 ° C. or higher and 260 ° C. or lower. When the temperature of the melted portion of the core polymer is 235 ° C. or higher, the melt viscosity of the polyether ester amide copolymer in the core portion is suitable for melt spinning, which is preferable. It is preferable because it can suppress thermal decomposition due to an increase in temperature of the amide copolymer.
 鞘部ポリマーの溶融部温度は240℃以上285℃以下が好ましい。鞘部ポリマーの溶融部温度が240℃以上であると、鞘部のポリアミドが溶融紡糸に適した溶融粘度となるため好ましい。285℃以下であると芯部のポリーテルエステルアミド共重合体の温度上昇による熱分解を抑制できるため好ましい。 The temperature of the molten part of the sheath polymer is preferably 240 ° C. or higher and 285 ° C. or lower. When the temperature of the melted portion of the sheathed polymer is 240 ° C. or higher, the polyamide in the sheath portion has a melt viscosity suitable for melt spinning, which is preferable. When the temperature is 285 ° C. or lower, thermal decomposition due to an increase in the temperature of the polyether ester amide copolymer in the core can be suppressed, which is preferable.
 合流部の溶融部温度は235℃以上270℃以下とすることが好ましい。温度が235℃以上であると、ポリアミドおよびポリエーテルエステルアミド共重合体が溶融紡糸に適した溶融粘度となるため好ましい。270℃以下であると、ポリーテルエステルアミド共重合体の熱分解の分解を抑制できるため好ましい。 The temperature of the molten part at the confluence is preferably 235 ° C or higher and 270 ° C or lower. When the temperature is 235 ° C. or higher, the polyamide and the polyether ester amide copolymer have a melt viscosity suitable for melt spinning, which is preferable. When the temperature is 270 ° C. or lower, decomposition of the polyether ester amide copolymer due to thermal decomposition can be suppressed, which is preferable.
 本発明の芯鞘複合繊維の断面均等比(d/R)をかかる範囲に制御するためには、芯成分および鞘成分ポリマーの溶融粘度に応じた、芯鞘成分が合流するまでの口金設計を適正化する必要がある。 In order to control the cross-sectional uniformity ratio (d / R) of the core-sheath composite fiber of the present invention within such a range, it is necessary to design a base until the core-sheath components merge according to the melt viscosities of the core component and the sheath component polymer. It needs to be optimized.
 図2は本発明の芯鞘複合繊維に用いる複合紡糸用口金の吐出孔の一例を示す縦断面図である。図2において、上から上部導入板1、下部導入板2、口金板3の順序で部材が積層されて複合紡糸口金を構成している。以下、図2、図3に例示した複合紡糸口金において、複合紡糸口金の上流から下流へとポリマーの流れに沿って説明する。 FIG. 2 is a vertical sectional view showing an example of a discharge hole of a base for composite spinning used for the core-sheath composite fiber of the present invention. In FIG. 2, the members are laminated in the order of the upper introduction plate 1, the lower introduction plate 2, and the base plate 3 from the top to form a composite spinning base. Hereinafter, in the composite spinneret illustrated in FIGS. 2 and 3, the flow of the polymer from the upstream to the downstream of the composite spinneret will be described.
 芯成分ポリマーは、上部導入板の芯成分導入孔1-1に流入し、下端に穿設された芯成分絞り部1-2によって計量された後、下部導入板の芯成分導入孔2-1に吐出される。同様に、下部導入板の芯成分導入孔2-1に流入した芯成分ポリマーは、下端に穿設された芯成分絞り部2-2によって計量された後、口金板3の合流プール3-1に流入される。 The core component polymer flows into the core component introduction hole 1-1 of the upper introduction plate, is weighed by the core component throttle portion 1-2 drilled at the lower end, and then the core component introduction hole 2-1 of the lower introduction plate. Is discharged to. Similarly, the core component polymer that has flowed into the core component introduction hole 2-1 of the lower introduction plate is weighed by the core component throttle portion 2-2 bored at the lower end, and then the merging pool 3-1 of the base plate 3 is used. Inflow to.
 鞘成分ポリマーは、上部導入板の鞘成分導入孔1-3に流入し、下部導入板の鞘成分プール2-3に吐出される。上部導入板の各鞘成分導入孔から流入したポリマーを溜める下部導入板の鞘成分プール2-3の下面には、ポリマーを下流に流すための鞘成分導入孔2-4が穿設されている。鞘成分プール2-3に流入した鞘成分ポリマーは、下端に穿設された鞘成分絞り部2-5によって計量された後、口金板3の合流プール3-1に流入される。 The sheath component polymer flows into the sheath component introduction holes 1-3 of the upper introduction plate and is discharged to the sheath component pool 2-3 of the lower introduction plate. On the lower surface of the sheath component pool 2-3 of the lower introduction plate for storing the polymer flowing in from each sheath component introduction hole of the upper introduction plate, a sheath component introduction hole 2-4 for flowing the polymer downstream is bored. .. The sheath component polymer that has flowed into the sheath component pool 2-3 is weighed by the sheath component squeezing portion 2-5 formed at the lower end, and then flows into the confluence pool 3-1 of the base plate 3.
 芯部ポリマー、鞘部ポリマーそれぞれが、口金板3の合流プール3-1に流入し、芯鞘複合形態となって吐出孔3-3に流入し、下端に穿設された吐出孔絞り部3-2によって計量された後、吐出される。 Each of the core polymer and the sheath polymer flows into the confluence pool 3-1 of the base plate 3, forms a core-sheath composite form, and flows into the discharge hole 3-3, and the discharge hole throttle portion 3 drilled at the lower end. After being weighed by -2, it is discharged.
 芯成分ポリマーの計量性を保つため、上部導入板1で1回計量し、さらに下部導入板2で計量し、合計2回計量する必要がある。芯成分ポリマーは低粘度であるため、2回ポリマー量を計量することによって、ポリマー流を制御し、芯成分を真中心とすることができる。また、上部導入板1で計量を行うことで、芯成分ポリマーの圧力を高め、上部導入板1と下部導入板2のシール性を向上させポリマー漏れを防ぐ狙いもある。 In order to maintain the measurable property of the core component polymer, it is necessary to weigh once with the upper introduction plate 1 and then with the lower introduction plate 2 for a total of two times. Since the core component polymer has a low viscosity, the polymer flow can be controlled and the core component can be centered by measuring the amount of the polymer twice. Further, by weighing with the upper introduction plate 1, the pressure of the core component polymer is increased, the sealing property between the upper introduction plate 1 and the lower introduction plate 2 is improved, and the polymer leakage is prevented.
 鞘成分ポリマーの計量性を保つため、下部導入板2の鞘成分絞り部2-5の孔長(L)と孔径(D)の関係、L/Dを1.0~2.5とする必要がある。L/Dを1.0以上とすることで、計量性が安定し、断面均等比をかかる範囲とすることができる。孔径が大きく、孔長が小さいと、計量性が低下し、偏心しやすくなり、L/Dが1.0未満の場合、断面均等比(d/R)が7.2を超える場合がある。計量性を高めるため、孔径(D)を小さくしすぎると、ポリマー異物が詰まりやすくなり、断面不良が発生しやすくなる。また、孔長(L)を大きくしすぎると、口金の背面圧が大きくなり、口金の歪みが大きくなるとともに、ポンプがポリマー圧力に耐えきれずポリマー漏れが発生しやすくなる。L/Dを2.5以下とすることで、均一な断面が得られ、安定した製糸が可能となる。さらに好ましくは、1.5~2.5である。 In order to maintain the meterability of the sheath component polymer, it is necessary to set the relationship between the pore length (L) and the pore diameter (D) of the sheath component throttle portion 2-5 of the lower introduction plate 2 and the L / D to 1.0 to 2.5. There is. By setting the L / D to 1.0 or more, the measurable property can be stabilized and the cross-sectional uniformity ratio can be set within such a range. If the hole diameter is large and the hole length is small, the measurable property is lowered and eccentricity is likely to occur. If the L / D is less than 1.0, the cross-sectional uniformity ratio (d / R) may exceed 7.2. If the pore diameter (D) is made too small in order to improve the measurable property, the polymer foreign matter is likely to be clogged, and a cross-sectional defect is likely to occur. Further, if the hole length (L) is made too large, the back pressure of the base becomes large, the distortion of the base becomes large, and the pump cannot withstand the polymer pressure, so that polymer leakage is likely to occur. By setting the L / D to 2.5 or less, a uniform cross section can be obtained and stable silk reeling becomes possible. More preferably, it is 1.5 to 2.5.
 図3に示すように、下部導入板2において、芯成分導入孔2-1とその周りに、鞘成分導入孔2-4を3個穿設する必要がある。穿設個数を3個とすることにより、口金板3の合流プール3-1に均一に鞘ポリマーを充填させることが可能となり、断面均等比をかかる範囲とすることができる。穿設個数が2個以下の場合、合流プール3-1のポリマーの充填に偏りが生じやすくなり、断面均等比(d/R)が7.2を超える場合がある。穿設個数が4個以上の場合、計量性を保つために、孔径(D)を小さく、あるいは、孔長(L)を大きく設計する必要が生じ、詰まりや漏れが発生しやすく製糸安定性が低下し、断面不良も発生しやすくなる。 As shown in FIG. 3, in the lower introduction plate 2, it is necessary to drill three core component introduction holes 2-1 and three sheath component introduction holes 2-4 around them. By setting the number of holes to three, it is possible to uniformly fill the merging pool 3-1 of the base plate 3 with the sheath polymer, and the cross-sectional uniformity ratio can be set within such a range. When the number of holes is 2 or less, the packing of the polymer in the confluence pool 3-1 tends to be biased, and the cross-sectional uniformity ratio (d / R) may exceed 7.2. When the number of holes is 4 or more, it is necessary to design the hole diameter (D) to be small or the hole length (L) to be large in order to maintain the measurable property, and clogging or leakage is likely to occur and the silk reeling stability is improved. It is lowered and a cross-sectional defect is likely to occur.
 また、穿設した3個の鞘成分導入孔2-4は、断面均等比(d/R)をより小さくするために1孔当たりの吐出量を同じにすることが好ましく、そのため孔を点対称点つまり同一軌道上に穿設することが好ましい。 Further, it is preferable that the three sheath component introduction holes 2-4 formed have the same discharge amount per hole in order to make the cross-sectional uniformity ratio (d / R) smaller, and therefore the holes are point-symmetrical. It is preferable to drill at points, that is, on the same orbit.
 図4は本発明のポリアミド芯鞘複合繊維の製造方法に好ましく用いる直接紡糸延伸法による製造装置の1実施形態を示すものである。 FIG. 4 shows one embodiment of a manufacturing apparatus by a direct spinning and drawing method preferably used in the method for manufacturing a polyamide core-sheath composite fiber of the present invention.
 ポリアミド(鞘部)とポリエーテルエステルアミド共重合体(芯部)を別々に溶融し、ギヤポンプにて計量・輸送し、上述した複合紡糸口金4から吐出し、各フィラメントを形成する。このようにして複合紡糸口金4から吐出された各フィラメントを、チムニー等の糸条冷却装置5によって冷却風を吹き当てることにより糸条を室温まで冷却固化する。その後、給油装置6で油剤付与するとともに各フィラメントを集束しマルチフィラメントを形成し、流体交絡ノズル装置7で交絡し、引き取りローラー8、延伸ローラー9を通過し、その際引き取りローラー8と延伸ローラー9の周速度の比に従って延伸する。さらに、糸条を延伸ローラー9の加熱により熱処理し、巻取装置で巻き取る。 Polyamide (sheath part) and polyether ester amide copolymer (core part) are melted separately, weighed and transported by a gear pump, and discharged from the above-mentioned composite spinneret 4 to form each filament. Each filament discharged from the composite spinneret 4 in this way is cooled and solidified to room temperature by blowing cooling air with a yarn cooling device 5 such as a chimney. After that, the oil is applied by the lubrication device 6, and each filament is focused to form a multifilament, entangled by the fluid entanglement nozzle device 7, passes through the take-up roller 8 and the draw roller 9, and at that time, the take-up roller 8 and the draw roller 9 are used. Stretching according to the ratio of peripheral speeds of. Further, the yarn is heat-treated by heating the drawing roller 9 and wound by a winding device.
 本発明のポリアミド芯鞘複合繊維の製造において、冷却装置5は、一定方向から冷却整流風を吹き出す冷却装置、あるいは外周側から中心側に向けて冷却整流風を吹き出す環状冷却装置、あるいは中心側から外周に向けて冷却整流風を吹き出す環状冷却装置など、いずれの方法においても製造可能である。紡糸口金の下面から冷却装置5の冷却風吹出し部の上端部までの鉛直方向距離Ls(以下、冷却開始距離と称す)は、159~219mmの範囲にあることが糸揺れや繊維斑を抑制する点で好ましく、169~189mmがより好ましい。冷却風吹出し面から吹き出される冷却風速に関しては、該冷却吹出し部上端面から下端面までの区間の平均で20.0~40.0(m/分)の範囲にあることが繊度斑および強度の点から好ましい。 In the production of the polyamide core-sheath composite fiber of the present invention, the cooling device 5 is a cooling device that blows cooling rectifying air from a certain direction, an annular cooling device that blows cooling rectifying air from the outer peripheral side toward the center side, or an annular cooling device that blows cooling rectifying air from the center side. It can be manufactured by any method such as an annular cooling device that blows cooling rectified air toward the outer periphery. The vertical distance Ls (hereinafter referred to as the cooling start distance) from the lower surface of the spinneret to the upper end of the cooling air blowing portion of the cooling device 5 is in the range of 159 to 219 mm to suppress yarn sway and fiber spots. It is preferable in terms of points, and 169 to 189 mm is more preferable. Regarding the cooling air velocity blown from the cooling air blowing surface, the fineness spot and strength should be in the range of 20.0 to 40.0 (m / min) on average in the section from the upper end surface to the lower end surface of the cooling blowing portion. It is preferable from the viewpoint of.
 本発明のポリアミド芯鞘複合繊維の製造において、紡糸口金から吐出されたポリマーは、冷却装置によって冷却風を吹き当て糸条を固化し、固化位置から給油位置までの間は、随伴流を伴う紡糸張力により延伸され、その後引き取りローラーと延伸ローラー間で機械延伸する。本発明の芯鞘複合繊維は、鞘部ポリマーの配向結晶化を促進させて強度を高めるために機械延伸し、芯部ポリマーの配向結晶化を抑制させて吸湿性能を高めるためには紡糸張力を小さくすることがポイントになる。従って、給油装置6の位置、すなわち図4における紡糸口金下面から給油装置6の給油ノズル位置までの鉛直方向距離Lg(以下、給油位置Lgと称す)は、単糸繊度および冷却装置からのフィラメントの冷却効率にもよるが、800~1500mmが好ましく、より好ましくは1000~1300mmである。給油位置が800mm未満の場合、フィラメントの冷却が充分に進まず構造が不安定な状態で給油ガイドと接触しダメージを受けるため、フィラメントの単糸強度低下だけでなく、毛羽も増加する傾向にある。特に単糸繊度が細い、芯比率が高い、断面均等比が高いなど、鞘厚みが薄いほどダメージを受けやすく、上記の現象が顕著に現れる場合がある。また給油位置が1500mmを超える場合、紡糸張力が高くなるため芯部ポリマーの配向結晶化が進み吸湿性能が低下するだけでなく、機械延伸倍率が低くなるため強度も低下、毛羽も発生する場合がある。 In the production of the polyamide core-sheath composite fiber of the present invention, the polymer discharged from the spinneret is blown with cooling air by a cooling device to solidify the yarn, and spinning with an accompanying flow from the solidification position to the refueling position. It is stretched by tension and then mechanically stretched between the take-up roller and the stretching roller. The core-sheath composite fiber of the present invention is mechanically stretched to promote the orientation crystallization of the sheath polymer and increase the strength, and the spinning tension is applied to suppress the orientation crystallization of the core polymer and enhance the moisture absorption performance. The point is to make it smaller. Therefore, the position of the refueling device 6, that is, the vertical distance Lg (hereinafter referred to as the refueling position Lg) from the lower surface of the spinneret in FIG. 4 to the refueling nozzle position of the refueling device 6 is the single yarn fineness and the filament from the cooling device. Although it depends on the cooling efficiency, it is preferably 800 to 1500 mm, more preferably 1000 to 1300 mm. When the refueling position is less than 800 mm, the filament does not cool sufficiently and the structure is unstable, and the filament comes into contact with the refueling guide and is damaged. Therefore, not only the single yarn strength of the filament is lowered but also the fluff tends to increase. .. In particular, the thinner the sheath thickness, the more easily the sheath is damaged, such as the fineness of the single yarn being thin, the core ratio being high, and the cross-sectional uniformity ratio being high, and the above phenomenon may appear remarkably. If the refueling position exceeds 1500 mm, the spinning tension becomes high, so that the orientation and crystallization of the core polymer progresses and the hygroscopic performance deteriorates. be.
 本発明のポリアミド芯鞘複合繊維の製造の延伸工程において、引き取りローラーによって引き取られる糸条の速度(紡糸速度)と、引き取りローラーと延伸ローラーの周速度比の値である延伸倍率との積が、3300以上4500以下となるように紡糸条件を設定することが好ましい。さらに好ましくは4000以下である。この数値は口金より吐出されたポリマーが、口金吐出線速度から引き取りローラーの周速度まで、さらに引き取りローラーの周速度から延伸ローラーの周速度まで延伸される総延伸量を表している。かかる範囲とすることにより、鞘部のポリアミドに適切な延伸を加えることが可能となる。3300以上であると鞘部のポリアミドの結晶化が進むため、原糸強度が向上するため好ましい。4500以下であると鞘部のポリアミドの結晶化が適度に進行し、製糸の際に糸切れや毛羽の発生が少なく、好ましい。 In the drawing step of manufacturing the polyamide core-sheath composite fiber of the present invention, the product of the speed of the yarn taken up by the take-up roller (spinning speed) and the draw ratio, which is the value of the peripheral speed ratio between the take-up roller and the draw roller, is It is preferable to set the spinning conditions so as to be 3300 or more and 4500 or less. More preferably, it is 4000 or less. This numerical value represents the total stretching amount of the polymer discharged from the mouthpiece, which is stretched from the mouthpiece discharge line speed to the peripheral speed of the take-up roller, and further from the peripheral speed of the take-up roller to the peripheral speed of the drawing roller. Within such a range, it is possible to add appropriate stretching to the polyamide of the sheath portion. When it is 3300 or more, crystallization of the polyamide in the sheath portion proceeds, and the strength of the yarn is improved, which is preferable. When it is 4500 or less, crystallization of the polyamide in the sheath portion proceeds moderately, and yarn breakage and fluffing are less likely to occur during silk reeling, which is preferable.
 織物の薄地軽量、ソフト、低通気度の要求に伴い、繊維の細繊度化、単糸細繊度化が進み、鞘部にポリアミド、芯部にポリエーテルエステルアミド共重合体からなるポリアミド芯鞘複合繊維の単糸強度は低下する。また、芯部の面積比率が高くなる程、単糸繊度が細くなる程、単糸強度を担う鞘部ポリアミドの鞘厚みが薄くなって単糸強度は低下する。 With the demand for light weight, softness, and low air permeability of woven fabrics, the fineness of fibers and the fineness of single yarns are increasing. The single yarn strength of the fiber is reduced. Further, the higher the area ratio of the core portion and the finer the fineness of the single yarn, the thinner the sheath thickness of the sheathed polyamide, which is responsible for the strength of the single yarn, and the lower the strength of the single yarn.
 一方、ポリアミド単成分繊維においては、単糸強度を担保するため、高次加工に必要な伸度を維持できる範囲内で延伸倍率を適宜調整することが一般的に実施されるが、本発明のポリアミド芯鞘複合繊維においては、鞘厚みが薄くなる程、延伸倍率を高くすることに伴い、鞘部が破裂しやすくなって、単糸毛羽が多発し、高次通過性が悪くなるばかりでなく、製品品位も悪化する。そのため、本発明のポリアミド芯鞘複合繊維は、強度と断面均等比をかかる範囲とすることが必要である。そのためには、鞘部ポリアミドの強度を担保しつつ、鞘厚みを均一化させる製造条件を設定する必要がある。 On the other hand, in the case of a polyamide single component fiber, in order to secure the single yarn strength, it is generally practiced to appropriately adjust the draw ratio within a range in which the elongation required for higher-order processing can be maintained. In the polyamide core-sheath composite fiber, the thinner the sheath, the higher the draw ratio, the easier it is for the sheath to burst, the more single yarn fluff occurs, and the higher the passability deteriorates. , Product quality also deteriorates. Therefore, the polyamide core-sheath composite fiber of the present invention needs to have strength and a cross-sectional uniformity ratio within such a range. For that purpose, it is necessary to set the manufacturing conditions for making the sheath thickness uniform while ensuring the strength of the sheathed polyamide.
 芯鞘複合比率、単糸繊度および冷却装置からのフィラメントの冷却効率にもよるが、給油位置を口金面から800~1500mm、紡糸速度と延伸倍率との積が3300以上4500以下とすることで、紡糸時に鞘部ポリアミドに最適な応力が加わり、適切な延伸を加えることが可能となり、鞘部のポリアミドの結晶化が進み、強度をかかる範囲に制御することができる。 Although it depends on the core-sheath composite ratio, single yarn fineness, and the cooling efficiency of the filament from the cooling device, the lubrication position is 800 to 1500 mm from the base surface, and the product of the spinning speed and the draw ratio is 3300 or more and 4500 or less. Optimal stress is applied to the sheathed polyamide during spinning, and appropriate stretching can be applied, crystallization of the sheathed polyamide progresses, and the strength can be controlled within such a range.
 溶融粘度900~1500poiseのポリアミド、溶融粘度400~600poiseのポリエーテルエステルアミド共重合体の流動バランス(溶融粘度比)、流動バランスに適した複合紡糸口金を採用することで、吐出安定性を確保し、断面均等比をかかる範囲に制御することができる。 Discharge stability is ensured by adopting a polyamide with a melt viscosity of 900 to 1500 poise, a flow balance (melt viscosity ratio) of a polyether ester amide copolymer having a melt viscosity of 400 to 600 poise, and a composite spinneret suitable for the flow balance. , The cross-sectional uniformity ratio can be controlled within such a range.
 このような複合紡糸口金、製糸条件を採用することにより、強度が3.6cN/dtex以上、全フィラメントの芯鞘成分の断面均等比d/Rが0.072以下の吸湿性、制電性に優れた芯鞘複合繊維が得られる。特に、鞘厚みが比較的薄い、単糸繊度2.0dtex以下、芯部の面積比率20%以上の場合には、その効果は顕著に発現する。 By adopting such a composite spinneret and silk reeling conditions, the strength is 3.6 cN / dtex or more, and the uniform cross-sectional ratio d / R of the core-sheath component of all filaments is 0.072 or less. An excellent core-sheath composite fiber can be obtained. In particular, when the sheath thickness is relatively thin, the single yarn fineness is 2.0 dtex or less, and the area ratio of the core portion is 20% or more, the effect is remarkably exhibited.
 本発明の芯鞘複合繊維は、吸湿性、制電性に優れているので衣料品に好ましく用いられることができる。布帛形態としては、織物、編物など目的に応じて選択できる。また、衣料品としては、インナーウエア、スポーツウエアなどの各種衣料用製品とすることができる。 The core-sheath composite fiber of the present invention has excellent hygroscopicity and antistatic properties, and can be preferably used for clothing. As the cloth form, a woven fabric, a knitted fabric, or the like can be selected according to the purpose. Further, as clothing, various clothing products such as innerwear and sportswear can be used.
 以下、実施例を挙げて本発明をさらに具体的に説明する。なお実施例における特性値の測定法等は次のとおりである。 Hereinafter, the present invention will be described in more detail with reference to examples. The method for measuring the characteristic value in the examples is as follows.
 (1)硫酸相対粘度
 チップ試料0.25gを、濃度98wt%の硫酸100mlに対して1gになるように溶解し、オストワルド型粘度計を用いて25℃での流下時間(T1)を測定した。引き続き、濃度98wt%の硫酸の流下時間(T2)を測定した。T2に対するT1の比、すなわちT1/T2を硫酸相対粘度とした。
(1) Relative Sulfuric Acid Viscosity 0.25 g of a chip sample was dissolved in 100 ml of sulfuric acid having a concentration of 98 wt% so as to be 1 g, and the flow time (T1) at 25 ° C. was measured using an Ostwald viscometer. Subsequently, the flow time (T2) of sulfuric acid having a concentration of 98 wt% was measured. The ratio of T1 to T2, that is, T1 / T2, was defined as the relative viscosity of sulfuric acid.
 (2)オルトクロロフェノール相対粘度(OCP相対粘度)
 チップ試料0.5gを、オルトクロロフェノール100mlに対して1gになるように溶解し、オストワルド型粘度計を用いて25℃での流下時間(T1)を測定した。引き続き、オルトクロロフェノールの流下時間(T2)を測定した。T2に対するT1の比、すなわちT1/T2を硫酸相対粘度とした。
(2) Orthochlorophenol relative viscosity (OCP relative viscosity)
0.5 g of the chip sample was dissolved in 100 ml of orthochlorophenol so as to be 1 g, and the flow time (T1) at 25 ° C. was measured using an Ostwald type viscometer. Subsequently, the flow time (T2) of orthochlorophenol was measured. The ratio of T1 to T2, that is, T1 / T2, was defined as the relative viscosity of sulfuric acid.
 (3)溶融粘度
 チップ試料を、真空乾燥機によって、水分率200ppm以下とし、東洋精機製キャピログラフ1Bによって、歪速度を段階的に変更して、溶融粘度を測定した。なお、測定温度は紡糸温度とし、加熱炉にサンプルを投入してから測定開始までを5分とし、窒素雰囲気下で測定を行った。
(3) Melt Viscosity The chip sample was measured with a water content of 200 ppm or less by a vacuum dryer, and the strain rate was changed stepwise by Capillograph 1B manufactured by Toyo Seiki Co., Ltd. to measure the melt viscosity. The measurement temperature was the spinning temperature, and the measurement was performed in a nitrogen atmosphere with 5 minutes from the time the sample was put into the heating furnace to the start of the measurement.
 (4)繊度、単糸繊度
 繊維試料を、1.125m/周の検尺器にセットし、200回転させて、ループ状かせを作成し、熱風乾燥機にて乾燥(105±2℃×60分)した後、天秤にてかせ質量を量り、公定水分率を乗じた値から繊度を算出した。なお、芯鞘複合繊維の公定水分率は、4.5%とした。
(4) Fineness, single yarn fineness Set the fiber sample in a 1.125 m / circumference measuring instrument, rotate it 200 times to make a loop-shaped skein, and dry it with a hot air dryer (105 ± 2 ° C × 60). After minutes), the skein mass was weighed with a balance, and the fineness was calculated from the value multiplied by the official moisture content. The official moisture content of the core-sheath composite fiber was 4.5%.
 (5)強度・伸度
 繊維試料を、オリエンテック(株)製“TENSILON”(登録商標)、UCT-100でJIS L1013(化学繊維フィラメント糸試験方法、2010年)に示される定速伸長条件で測定した。伸度は、引張強さ-伸び曲線における最大強力を示した点の伸びから求めた。また、強度は、最大強力を繊度で除した値を強度とした。測定は10回行い、平均値を強度および伸度とした。
(5) Strength / elongation The fiber sample is subjected to "TENSILON" (registered trademark) manufactured by Orientec Co., Ltd. under the constant speed elongation conditions shown in JIS L1013 (chemical fiber filament yarn test method, 2010) with UCT-100. It was measured. Elongation was determined from the elongation of the point showing the maximum strength in the tensile strength-elongation curve. The strength was defined as the value obtained by dividing the maximum strength by the fineness. The measurement was performed 10 times, and the average value was taken as strength and elongation.
 (6)断面均等比、断面均一性
 A.横断面写真の撮影
 パラフィン、ステアリン酸、エチルセルロースからなる包理剤を溶解し、繊維を導入後室温放置により固化させ、包理剤中の原糸を横断面方向に切断したものを東京電子(株)製のCCDカメラ(CS5270)にて繊維横断面を撮影し、三菱電機製のカラービデオプロセッサー(SCT-CP710)にて1500倍でプリントアウトした。
(6) Cross-section uniformity ratio, cross-section uniformity A. Taking a cross-sectional photograph A packaging agent consisting of paraffin, stearic acid, and ethyl cellulose was dissolved, the fibers were introduced and then solidified by leaving at room temperature, and the raw yarn in the packaging agent was cut in the cross-sectional direction. The cross section of the fiber was photographed with a CCD camera (CS5270) manufactured by Mitsubishi Electric, and printed out at 1500 times with a color video processor (SCT-CP710) manufactured by Mitsubishi Electric.
 B.断面均等比の測定
 図1に例示のとおり、芯成分の内接円中心点(点C)と鞘成分の内接円中心点(点S)との距離(d)、鞘成分の内接円直径(R)を測定し算出する。芯鞘複合糸の全てのフィラメントの断面を、それぞれ測定し、その平均値を断面均等比とした。
B. Measurement of cross-sectional uniformity ratio As shown in FIG. 1, the distance (d) between the center point of the inscribed circle of the core component (point C) and the center point of the inscribed circle of the sheath component (point S), and the inscribed circle of the sheath component. The diameter (R) is measured and calculated. The cross sections of all the filaments of the core-sheath composite yarn were measured, and the average value was taken as the cross-section uniform ratio.
 C.断面均一性
 芯鞘複合糸の全てのフィラメントの断面において、目視で観察し、次の基準で評価した。
A:鞘成分、芯成分の円形状、大きさにバラツキが無く均一な断面である
C:鞘成分、芯成分の円形状、大きさにバラツキがあり断面不良である。
C. Cross-sectional uniformity The cross-sections of all filaments of the core-sheath composite yarn were visually observed and evaluated according to the following criteria.
A: Circular shape of sheath component and core component, uniform cross-section without variation in size C: Circular shape and size of sheath component and core component are uneven and cross-sectional defect is poor.
 (7)毛羽数
 繊維試料を、500m/分の速度で巻き返し、巻き返し中の糸条から2mm離れた箇所にレーザー式毛羽検知機を設置し、検知された欠点総数を10万mあたりの個数に換算して表示した。2個/10万m以下を合格とした。
(7) Number of fluffs The fiber sample is rewound at a speed of 500 m / min, and a laser fluff detector is installed at a location 2 mm away from the rewound yarn to reduce the total number of detected defects to 100,000 m. Converted and displayed. 2 pieces / 100,000 m or less were accepted.
 (8)比抵抗値
 繊維試料を、0.2重量%のアニオン界面活性剤の弱アルカリ水溶液中で十分に精練して油剤などを除いた後、十分にすすぎ、乾燥する。ついで、該試料を、長さ(L)5cm、総繊度(D)2200dtex(2000デニール)の繊維束に引き揃えて、温度20℃、湿度40%RHの各条件下で2日間放置調湿した後、振動容量型微少電位測定装置により、印加電圧500Vで試料の抵抗を測定し、次式によって算出する。
ρ=(R×0.9D)/(9×10×L×d×10
ρ:体積固有抵抗(Ω・cm)、R:抵抗(Ω)、D:繊度(dtex)、L:試料長(cm)、d:試料密度(g/m)。
(8) Specific resistance value The fiber sample is sufficiently scoured in a weak alkaline aqueous solution of 0.2% by weight of an anionic surfactant to remove oils and the like, then rinsed thoroughly and dried. Then, the sample was aligned with a fiber bundle having a length (L) of 5 cm and a total fineness (D) of 2200 dtex (2000 denier), and left for 2 days under the conditions of a temperature of 20 ° C. and a humidity of 40% RH. After that, the resistance of the sample is measured at an applied voltage of 500 V by a vibration capacitance type micropotential measuring device, and calculated by the following equation.
ρ = (R × 0.9D) / (9 × 10 5 × L × d × 10 4 )
ρ: Volume resistivity (Ω · cm), R: Resistance (Ω), D: Fineness (dtex), L: Sample length (cm), d: Sample density (g / m 2 ).
 (9)ΔMR
 繊維試料(又は織物)を、秤量瓶に1~2g程度はかり取り、110℃に2時間保ち乾燥させ重量を測定し(W0)、次に対象物質を20℃、相対湿度65%に24時間保持した後重量を測定する(W65)。そして、これを30℃、相対湿度90%に24時間保持した後重量を測定する(W90)。そして、以下の式にしたがい計算した。
MR65=[(W65-W0)/W0]×100%・・・・・ (1)
MR90=[(W90-W0)/W0]×100%・・・・・ (2)
ΔMR=MR90-MR65   ・・・・・・・・・・・・ (3)。
(9) ΔMR
Weigh 1 to 2 g of the fiber sample (or textile) in a weighing bottle, keep it at 110 ° C for 2 hours, dry it and measure the weight (W0), then keep the target substance at 20 ° C and 65% relative humidity for 24 hours. Then weigh (W65). Then, this is held at 30 ° C. and a relative humidity of 90% for 24 hours, and then the weight is measured (W90). Then, it was calculated according to the following formula.
MR65 = [(W65-W0) / W0] x 100% ... (1)
MR90 = [(W90-W0) / W0] x 100% ... (2)
ΔMR = MR90-MR65 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (3).
 (10)高次通過性
 ウォータージェットルーム織機にて、織機回転数750rpm、緯糸長1620mmで平織物を10疋(1000m/疋)製織した際の織機の糸切れによる停台回数を、次の基準で評価した。
S:2回未満、A:2回以上4回未満、B:4回以上6回未満、C:6回以上
S、A、Bを工程通過性合格とした。
(10) High-order passability The following criteria are used to determine the number of stops due to thread breakage of the loom when weaving a plain woven fabric with 10 loom (1000 m / loom) at a loom rotation speed of 750 rpm and a warp length of 1620 mm on a water jet room loom. Evaluated in.
S: less than 2 times, A: 2 times or more and less than 4 times, B: 4 times or more and less than 6 times, C: 6 times or more S, A, B were regarded as passing the process.
 [実施例1]
 (ポリアミド芯鞘複合繊維の製造)
 ポリエーテルエステルアミド共重合体として、ポリアミド成分がナイロン6、ポリエーテル成分が分子量1500のポリエチレングリコール、ナイロン6とポリエチレングリコールのモル比が24%:76%であるポリエーテルエステルアミド共重合体(アルケマ社製、MH1657、オルトクロロフェノール相対粘度:1.69、融点200℃、溶融粘度450poise(260℃))チップを芯部に用いた。なお、予め二軸押出機にて、ポリエーテルエステルアミド共重合体に高濃度でハーフヒンダードフェノール系酸化防止剤:2,2’-ジメチル-2,2’-(2,4,8,10-テトラオキサスピロ[5.5]ウンデカン-3,9-ジイル)ジプロパン-1,1’-ジイル=ビス[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロパノアート](ADEKA社製、アデカスタブAO-80)を含有させたマスターチップとポリエーテルエステルアミド共重合体チップをブレンドし、芯部の重量に対して3.0重量%となるように調整した。
[Example 1]
(Manufacturing of polyamide core sheath composite fiber)
As a polyether ester amide copolymer, a polyether ester amide copolymer (alchema) having a polyamide component of nylon 6, a polyethylene glycol having a molecular weight of 1500, and a molar ratio of nylon 6 to polyethylene glycol of 24%: 76%. A chip manufactured by MH1657, orthochlorophenol relative viscosity: 1.69, melting point 200 ° C., melt viscosity 450 pose (260 ° C.)) was used for the core. In addition, a half-hindered phenol-based antioxidant: 2,2'-dimethyl-2,2'-(2,4,8,10) was added to the polyether ester amide copolymer at a high concentration in advance using a twin-screw extruder. -Tetraoxaspiro [5.5] undecane-3,9-diyl) dipropane-1,1'-diyl-bis [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propanoate] (ADEKA) A master chip containing Adecastab AO-80) manufactured by Adecaster Co., Ltd. and a polyether ester amide copolymer chip were blended and adjusted so as to be 3.0% by weight based on the weight of the core portion.
 ポリアミドとして、硫酸相対粘度が2.73、融点215℃、溶融粘度1250poiseである酸化チタンを含まないナイロン6チップを鞘部に用いた。 As the polyamide, nylon 6 chips containing no titanium oxide having a relative sulfuric acid viscosity of 2.73, a melting point of 215 ° C., and a melt viscosity of 1250 pose were used for the sheath.
 上記ポリエーテルエステルアミド共重合体を芯部とし、ナイロン6を鞘部とし、芯部溶融部温度240℃、鞘部溶融部温度270℃にて溶融し、紡糸温度265℃、図2、図3に例示する3枚構成、芯計量2回、鞘成分導入孔2-4の穿設数が3個、鞘成分を計量する下部導入板2の鞘成分絞り部2-5の孔長(L)が0.3mm、孔径(D)が0.2mm、口金板3の吐出孔数24、の同心円芯鞘複合用口金から芯/鞘比率(重量%)=30/70になるように吐出した。 The above-mentioned polyether ester amide copolymer is used as a core, nylon 6 is used as a sheath, and the core melts at a temperature of 240 ° C. and a sheath melts at a temperature of 270 ° C. The hole length (L) of the sheath component squeezing portion 2-5 of the lower introduction plate 2 for measuring the sheath component, the number of holes 2-4 for the sheath component introduction holes 2-4 is three, and the core is measured twice. The core / sheath ratio (% by weight) was 30/70 from the concentric core-sheath composite base having a hole diameter (D) of 0.2 mm and a number of discharge holes of 24 in the base plate 3.
 図4に例示する複合紡糸機を用い、冷却開始距離Ls100mm、風温18℃、風速30m/分の冷風で糸条冷却装置を通過させて糸条を室温まで冷却固化する。その後、口金面からの給油位置Lgを1300mmの位置で非含水油剤を付与するとともに各フィラメントを集束しマルチフィラメントを形成し、給油装置により非含水油剤を給油したのち、第1流体交絡ノズル装置で交絡を付与し、第1ロールである引き取りローラーの周速度を3255m/分、第2ロールである延伸ローラーの周速度を4167m/分で延伸、延伸倍率1.28倍、延伸ローラー150℃により熱セットを行い、リラックス率4.0%、巻き取り速度を4000m/分で巻き取り、22dtex12フィラメントの芯鞘複合糸、2糸条を得た。原糸物性は表1の通りである。 Using the composite spinning machine illustrated in FIG. 4, the yarn is cooled and solidified to room temperature by passing it through a yarn cooling device with a cooling start distance Ls 100 mm, an air temperature of 18 ° C., and a wind speed of 30 m / min. After that, the non-hydrous oil agent is applied at the oil supply position Lg from the base surface at a position of 1300 mm, and each filament is focused to form a multifilament. Entanglement is applied, the peripheral speed of the take-up roller, which is the first roll, is 3255 m / min, the peripheral speed of the stretching roller, which is the second roll, is 4167 m / min, the stretching ratio is 1.28 times, and the stretching roller is heated by 150 ° C. The set was performed, and the relaxation rate was 4.0% and the winding speed was 4000 m / min to obtain a core-sheath composite yarn of 22dtex12 filament and two threads. The physical characteristics of the raw yarn are as shown in Table 1.
 (織物の製造)
 該芯鞘複合繊維を経糸、緯糸に用い、経密度188本/2.54cm、緯密度155本/2.54cmに設定し平組織で製織した。
(Manufacturing of textiles)
The core-sheath composite fiber was used for the warp and weft, and the warp density was set to 188 lines / 2.54 cm and the weft density was set to 155 lines / 2.54 cm, and weaving was performed with a plain weave.
 得られた生機地を常法に従って、1リットル当たり2gの苛性ソーダ(NaOH)を含む溶液でオープンソーパーにより精練し、シリンダー乾燥機にて120℃で乾燥し、次いで170℃にてプレセット、液流染色機により、酸性染料(Nylosan Blue-GFL167%(サンドス社製)1.0%owfを用いて98℃×60分染色処理、合成タンニン(ナイロンフィックス501 センカ社製)3g/lを用いて80℃×20分固着処理を施し、乾燥(120℃)、仕上げセット(175℃)した。その後、カレンダー加工(加工条件:シリンダー加工、加熱ロール表面温度180℃ 、加熱ロール加重147kN、布走行速度20m/分)を織物の両面に1回施し、経密度210本/2.54cm、緯密度160本/2.54cmである織物を得た。得られた織物について評価した結果を表1に示す。 The obtained raw material is scoured by an open soaper with a solution containing 2 g of caustic soda (NaOH) per liter according to a conventional method, dried at 120 ° C. in a cylinder dryer, and then preset at 170 ° C., liquid flow. Dyeing treatment with acid dye (Nylosan Blue-GFL 167% (manufactured by Sandos) 1.0% owf at 98 ° C for 60 minutes by dyeing machine, synthetic tannin (nylon fix 501 manufactured by Senka) 3 g / l 80 It was fixed at ° C for 20 minutes, dried (120 ° C), and finished set (175 ° C). After that, calendar processing (processing conditions: cylinder processing, heating roll surface temperature 180 ° C, heating roll load 147 kN, cloth running speed 20 m). / Minute) was applied once on both sides of the woven fabric to obtain a woven fabric having a warp density of 210 lines / 2.54 cm and a weft density of 160 lines / 2.54 cm. The results of evaluation of the obtained woven fabric are shown in Table 1.
 [実施例2~3、比較例1~2]
 鞘成分を計量する下部導入板2の鞘成分絞り部2-5において、L/Dを表1のとおり変更した紡糸口金とした以外は、実施例1と同様に紡糸し、芯鞘複合糸を得、織物を作成した。得られた結果を表1に示す。
[Examples 2 to 3, Comparative Examples 1 to 2]
In the sheath component squeezing portion 2-5 of the lower introduction plate 2 for measuring the sheath component, the core-sheath composite yarn was spun in the same manner as in Example 1 except that the L / D was changed as shown in Table 1. Obtained and made a woven fabric. The results obtained are shown in Table 1.
 [比較例3~4]
 下部導入板2において、芯成分導入孔2-1とその周りに、鞘成分導入孔2-4穿設数を表1のとおり変更した紡糸口金とした以外は、実施例1と同様に紡糸し、芯鞘複合糸を得、織物を作成した。得られた結果を表1に示す。
[Comparative Examples 3 to 4]
In the lower introduction plate 2, spinning is performed in the same manner as in Example 1 except that the core component introduction hole 2-1 and the sheath component introduction hole 2-4 are formed around the spinneret with the number of holes 2-4 changed as shown in Table 1. , A core-sheath composite yarn was obtained, and a woven fabric was prepared. The results obtained are shown in Table 1.
 [比較例5]
 2枚構成、芯計量1回、穿設数が3個、鞘成分を計量する鞘成分絞り部のL/Dを表1のとおり変更した紡糸口金(図示せず)とした以外は、実施例1と同様に紡糸し、芯鞘複合糸を得、織物を作成した。得られた結果を表1に示す。
[Comparative Example 5]
Examples except for a spinneret (not shown) in which the L / D of the sheath component squeezing portion for measuring the sheath component is changed as shown in Table 1, with a two-sheet configuration, one core weighing, and three holes. The yarn was spun in the same manner as in No. 1 to obtain a core-sheath composite yarn, and a woven fabric was prepared. The results obtained are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の実施例1~3において、毛羽の発生を抑え、高次通過性に優れていた。
鞘成分を計量する下部導入板の鞘成分絞り部のL/Dの小さい比較例1と、穿設数の少ない比較例3、芯計量1回の比較例5は、ポリエーテルエステルアミド共重合体ポリマーの計量性が低く、断面均等比が高く偏りが見られ、毛羽、高次通過性に劣っていた。また、L/Dの大きい比較例2と、穿設数の多い比較例4は、断面均一性に欠き、製糸安定性が悪かった。
In Examples 1 to 3 of the present invention, the generation of fluff was suppressed and the high-order passage was excellent.
Comparative Example 1 in which the L / D of the sheath component squeezed portion of the lower introduction plate for measuring the sheath component is small, Comparative Example 3 in which the number of holes is small, and Comparative Example 5 in which the core is measured once are polyether ester amide copolymers. The weighability of the polymer was low, the cross-sectional uniformity ratio was high, and bias was observed, and the fluff and higher passability were inferior. Further, Comparative Example 2 having a large L / D and Comparative Example 4 having a large number of holes were lacking in cross-sectional uniformity, and the yarn-making stability was poor.
 [実施例4~5、比較例6~7]
 給油位置Lgを表2のとおり変更し、紡糸速度、延伸倍率を表2のとおり調整した以外は、実施例1と同様に紡糸し、芯鞘複合糸を得、織物を作成した。得られた結果を表2に示す。
[Examples 4 to 5, Comparative Examples 6 to 7]
The refueling position Lg was changed as shown in Table 2, and the spinning speed and the draw ratio were adjusted as shown in Table 2. The spinning was performed in the same manner as in Example 1 to obtain a core-sheath composite yarn, and a woven fabric was prepared. The results obtained are shown in Table 2.
 [実施例6~8]
 芯比率(重量%)を表2のとおり変更し、紡糸速度、延伸倍率を表2のとおり調整した以外は、実施例1と同様に紡糸し、芯鞘複合糸を得、織物を作成した。得られた結果を表2に示す。
[Examples 6 to 8]
A woven fabric was prepared by spinning in the same manner as in Example 1 except that the core ratio (% by weight) was changed as shown in Table 2 and the spinning speed and the draw ratio were adjusted as shown in Table 2. The results obtained are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明の実施例4~8は、吸湿性、制電性を有し、強度を維持しつつ、毛羽の発生を抑え、高次通過性に優れていた。 Examples 4 to 8 of the present invention had hygroscopicity and antistatic properties, maintained strength, suppressed the generation of fluff, and were excellent in high-order passage.
 給油位置Lgが口金下から長い比較例6は、鞘部ポリアミドに適切な延伸を加えることができず、強度が低下、毛羽も増加し高次通過性に劣る結果となった。また、給油位置Lgが口金下から短い比較例7は、フィラメントの冷却が充分に進まず構造が不安定な状態で給油ガイドと接触しダメージを受けたため、強度はやや低下し、毛羽が増加し高次通過性に劣る結果となった。芯比率の高い実施例8は、実施例1と比較して鞘が薄く、強度がやや低下、毛羽はやや多くなっているものの高次通過性は合格レベルであった。 In Comparative Example 6 in which the lubrication position Lg was long from the bottom of the mouthpiece, appropriate stretching could not be applied to the sheathed polyamide, the strength decreased, the fluff increased, and the high-order passage was inferior. Further, in Comparative Example 7 in which the lubrication position Lg is short from the bottom of the mouthpiece, the filament is not sufficiently cooled and the structure is unstable, and the filament is in contact with the lubrication guide and is damaged. Therefore, the strength is slightly reduced and the fluff is increased. The result was inferior in high-order passage. In Example 8 having a high core ratio, the sheath was thinner, the strength was slightly reduced, and the fluff was slightly increased as compared with Example 1, but the higher passability was at the acceptable level.
 [実施例9~10]
 吐出孔数を変更し、フィラメント数を表3のとおり変更し、紡糸速度、延伸倍率、給油位置を表3のとおり調整した以外は、実施例1と同様に紡糸し、芯鞘複合糸を得、織物を作成した。得られた結果を表3に示す。
[Examples 9 to 10]
Spinning was performed in the same manner as in Example 1 except that the number of discharge holes was changed, the number of filaments was changed as shown in Table 3, and the spinning speed, draw ratio, and lubrication position were adjusted as shown in Table 3, to obtain a core-sheath composite yarn. , Created a woven fabric. The results obtained are shown in Table 3.
 [実施例11]
 ポリアミドとして、硫酸相対粘度が2.63、融点215℃、溶融粘度1000poiseである、酸化チタンを1.8%含むナイロン6チップを鞘部に用い、紡糸速度、延伸倍率を表3のとおり調整した以外は、実施例1と同様に紡糸し、芯鞘複合糸を得、織物を作成した。得られた結果を表3に示す。
[Example 11]
As the polyamide, nylon 6 chips containing 1.8% of titanium oxide having a relative sulfuric acid viscosity of 2.63, a melting point of 215 ° C. and a melt viscosity of 1000 poise were used for the sheath, and the spinning speed and the draw ratio were adjusted as shown in Table 3. Except for the above, the yarn was spun in the same manner as in Example 1 to obtain a core-sheath composite yarn, and a woven fabric was prepared. The results obtained are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
1:上部導入板
1-1:芯成分導入孔
1-2:芯成分絞り部
1-3:鞘成分導入孔
2:下部導入板
2-1:芯成分導入孔
2-2:芯成分絞り部
2-3:鞘成分プール
2-4:鞘成分導入孔
2-5:鞘成分絞り部
3:口金板
3-1:合流プール
3-2:吐出孔絞り部
3-3:吐出孔
4:紡糸口金
5:冷却装置
6:給油装置
7:流体交絡ノズル装置
8:引き取りローラー
9:延伸ローラー
10:巻取装置
Lg:給油位置
Ls:冷却開始距離
 
1: Upper introduction plate 1-1: Core component introduction hole 1-2: Core component drawing part 1-3: Sheath component introduction hole 2: Lower introduction plate 2-1: Core component introduction hole 2-2: Core component drawing part 2-3: Sheath component pool 2-4: Sheath component introduction hole 2-5: Sheath component throttle part 3: Base plate 3-1: Confluence pool 3-2: Discharge hole throttle part 3-3: Discharge hole 4: Spinning Base 5: Cooling device 6: Refueling device 7: Fluid entanglement nozzle device 8: Take-up roller 9: Stretching roller 10: Winding device Lg: Refueling position Ls: Cooling start distance

Claims (3)

  1. 鞘部ポリマーがポリアミド、芯部ポリマーがポリエーテルエステルアミド共重合体からなる芯鞘型複合マルチフィラメントにおいて、強度が3.6cN/dtex以上、繊維横断面における芯鞘成分の断面均等比d/Rが0.072以下、電気比抵抗値が10~1010Ω・cmであるポリアミド芯鞘複合繊維。
    d:芯成分の内接円中心と鞘成分の内接円中心との距離
    R:鞘成分の内接円の直径
    In a core-sheath type composite multifilament in which the sheath polymer is polyamide and the core polymer is a polyether ester amide copolymer, the strength is 3.6 cN / dtex or more, and the cross-sectional uniform ratio d / R of the core-sheath component in the fiber cross section. Polyamide core-sheath composite fiber having an electric ratio of 0.072 or less and an electric specific resistance value of 10 7 to 10 10 Ω · cm.
    d: Distance between the center of the inscribed circle of the core component and the center of the inscribed circle of the sheath component R: The diameter of the inscribed circle of the sheath component
  2. 単糸繊度0.8~2.0dtex、繊維横断面における芯部の面積比率が20~40%である請求項1に記載のポリアミド芯鞘複合繊維。 The polyamide core-sheath composite fiber according to claim 1, wherein the single yarn fineness is 0.8 to 2.0 dtex, and the area ratio of the core portion in the cross section of the fiber is 20 to 40%.
  3. 請求項1または2に記載のポリアミド芯鞘複合繊維を少なくとも一部に有する布帛。
     
    A fabric having at least a part of the polyamide core-sheath composite fiber according to claim 1 or 2.
PCT/JP2021/033633 2020-09-24 2021-09-14 Polyamide core-sheath composite fiber and fabric WO2022065121A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227046019A KR20230073146A (en) 2020-09-24 2021-09-14 Polyamide core-sheath composite fiber and fabric
JP2021567982A JPWO2022065121A1 (en) 2020-09-24 2021-09-14
US18/025,298 US20230323568A1 (en) 2020-09-24 2021-09-14 Polyamide core-sheath composite fiber and fabric
CN202180052262.0A CN115989344A (en) 2020-09-24 2021-09-14 Polyamide core-sheath composite fiber and fabric
EP21872251.0A EP4219810A1 (en) 2020-09-24 2021-09-14 Polyamide core-sheath composite fiber and fabric

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020159798 2020-09-24
JP2020-159798 2020-09-24

Publications (1)

Publication Number Publication Date
WO2022065121A1 true WO2022065121A1 (en) 2022-03-31

Family

ID=80845299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033633 WO2022065121A1 (en) 2020-09-24 2021-09-14 Polyamide core-sheath composite fiber and fabric

Country Status (7)

Country Link
US (1) US20230323568A1 (en)
EP (1) EP4219810A1 (en)
JP (1) JPWO2022065121A1 (en)
KR (1) KR20230073146A (en)
CN (1) CN115989344A (en)
TW (1) TW202231949A (en)
WO (1) WO2022065121A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190007A (en) * 1987-01-27 1988-08-05 Kuraray Co Ltd Spinneret device for sheath-core type conjugate spinning
JPH06136618A (en) 1992-10-26 1994-05-17 Toray Ind Inc Sheath-core type conjugate fiber excellent in hygroscopicity
WO2014010709A1 (en) 2012-07-12 2014-01-16 Kbセーレン株式会社 Sheath-core bicomponent fibre
JP2017057513A (en) 2015-09-15 2017-03-23 東レ株式会社 Antistatic polyamide sheath-core composite fiber having excellent durability
WO2017082110A1 (en) * 2015-11-10 2017-05-18 東レ株式会社 Core-sheath composite cross-section fiber having excellent moisture absorbency and wrinkle prevention
WO2017098861A1 (en) * 2015-12-08 2017-06-15 東レ株式会社 Moisture-absorbing core-sheath composite yarn, and fabric

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190007A (en) * 1987-01-27 1988-08-05 Kuraray Co Ltd Spinneret device for sheath-core type conjugate spinning
JPH06136618A (en) 1992-10-26 1994-05-17 Toray Ind Inc Sheath-core type conjugate fiber excellent in hygroscopicity
WO2014010709A1 (en) 2012-07-12 2014-01-16 Kbセーレン株式会社 Sheath-core bicomponent fibre
JP2017057513A (en) 2015-09-15 2017-03-23 東レ株式会社 Antistatic polyamide sheath-core composite fiber having excellent durability
WO2017082110A1 (en) * 2015-11-10 2017-05-18 東レ株式会社 Core-sheath composite cross-section fiber having excellent moisture absorbency and wrinkle prevention
WO2017098861A1 (en) * 2015-12-08 2017-06-15 東レ株式会社 Moisture-absorbing core-sheath composite yarn, and fabric

Also Published As

Publication number Publication date
TW202231949A (en) 2022-08-16
KR20230073146A (en) 2023-05-25
EP4219810A1 (en) 2023-08-02
CN115989344A (en) 2023-04-18
JPWO2022065121A1 (en) 2022-03-31
US20230323568A1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
JP2019502036A (en) Core-sheath type composite fiber, false twisted yarn and fiber structure
KR20170095806A (en) Moisture absorbent core sheath composite yarn
JP2016204784A (en) Polyamide core-sheath composite fiber excellent in hygroscopicity and contact cool feeling and fabric using the same
TWI693311B (en) Hygroscopic core-sheath composite yarn and manufacturing method thereof
EP3388562B1 (en) Moisture-absorbing core-sheath composite yarn, and fabric
WO2022065121A1 (en) Polyamide core-sheath composite fiber and fabric
EP3375918B1 (en) Core-sheath composite cross-section fiber having excellent moisture absorbency and wrinkle prevention
US11105019B2 (en) Polyamide fiber capable of high-temperature dyeing
JP6690160B2 (en) Anti-static polyamide core-sheath composite fiber with excellent durability
JP6600969B2 (en) Core-sheath composite cross-section fiber with excellent moisture absorption / release performance
WO2020262511A1 (en) Sheath-core composite yarn and fabric
JP2017214672A (en) Hygroscopic core-sheath composite yarn-wound fiber package
JP2016117979A (en) Hygroscopic sheath-core conjugated yarn excellent in washing durability
JP2016132828A (en) Hygroscopic core-sheath conjugated yarn

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021567982

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021872251

Country of ref document: EP

Effective date: 20230424