WO2022064941A1 - 造形条件の設定方法、積層造形方法、積層造形システム、およびプログラム - Google Patents

造形条件の設定方法、積層造形方法、積層造形システム、およびプログラム Download PDF

Info

Publication number
WO2022064941A1
WO2022064941A1 PCT/JP2021/031260 JP2021031260W WO2022064941A1 WO 2022064941 A1 WO2022064941 A1 WO 2022064941A1 JP 2021031260 W JP2021031260 W JP 2021031260W WO 2022064941 A1 WO2022064941 A1 WO 2022064941A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer edge
modeling
edge portion
laminated
setting
Prior art date
Application number
PCT/JP2021/031260
Other languages
English (en)
French (fr)
Inventor
直樹 迎井
瞬 泉谷
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN202180046260.0A priority Critical patent/CN115996810A/zh
Priority to US18/005,866 priority patent/US20230286050A1/en
Publication of WO2022064941A1 publication Critical patent/WO2022064941A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0953Monitoring or automatic control of welding parameters using computing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/295Heating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/80Plants, production lines or modules
    • B22F12/88Handling of additively manufactured products, e.g. by robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method for setting modeling conditions, a laminated modeling method, a laminated modeling system, and a program.
  • Patent Document 1 as a technique for manufacturing a rotating member such as an impeller or a rotor provided in a fluid machine such as a pump or a compressor, a shaped portion is formed on a base material serving as a hub, and then the formed portion is cut. A method of forming a blade is disclosed.
  • a member having a complicated shape can be decomposed into an element shape having a simple structure.
  • simple element shapes include a cylinder, a solid rectangular column, a solid column, a thin plate, and the like.
  • the workability can be classified according to the position such as the outer edge portion and the inner portion as the configuration.
  • the control content for suppressing the welding defect differs depending on each position. That is, when performing laminated modeling, it is necessary to adjust the modeling conditions when forming them according to the position in the shape of the object to be modeled (corresponding to the position type described later).
  • the present invention has the following configurations.
  • (1) A method of setting modeling conditions for performing laminated modeling of the object using a directional heat source based on the modeling shape data of the object.
  • the adjustment process that adjusts the height so that it is higher than the internal height.
  • the direction of the heat source when forming the portion located at the boundary with the outer edge portion is set so as to be inclined to the outer edge portion at a predetermined angle on the plane perpendicular to the moving direction of the heat source.
  • a laminated modeling method for laminating the object using a directional heat source based on the modeling shape data of the object A setting process for setting a laminated pattern for each of the outer edge portion and the inner portion of the shape indicated by the modeling shape data, and Let's set the formation order when laminating each of the outer edge portion and the inner portion using the laminating pattern set in the setting step, so that the already laminated height of the outer edge portion is newly laminated at the time of modeling.
  • the adjustment process that adjusts the height so that it is higher than the internal height.
  • It has a control step of causing a modeling means to perform laminating modeling of the object based on the laminating pattern set in the setting step and the forming order adjusted in the adjusting step.
  • the direction of the heat source when forming the portion located at the boundary with the outer edge portion is set so as to be inclined to the outer edge portion at a predetermined angle on the plane perpendicular to the moving direction of the heat source.
  • a laminated molding method characterized in that it is characterized by the fact that it is.
  • a laminated modeling system that performs laminated modeling of the object using a directional heat source based on the modeling shape data of the object.
  • a setting means for setting a laminated pattern for each of the outer edge portion and the inner portion of the shape indicated by the modeling shape data, and Let's set the formation order when the outer edge portion and the inner edge are laminated and formed by using the lamination pattern set by the setting means, and the height of the outer edge portion already laminated at the time of modeling is newly laminated.
  • the adjustment means to adjust so that it is higher than the internal height. It has a laminating pattern set by the setting means and a modeling means for performing laminating modeling of the object based on the formation order adjusted by the adjusting means.
  • the direction of the heat source when forming the portion located at the boundary with the outer edge portion is set so as to be inclined to the outer edge portion at a predetermined angle on the plane perpendicular to the moving direction of the heat source.
  • the present invention has the following configuration. (4) On the computer A setting process for setting a stacking pattern for each of the outer edge and the inside of the shape indicated by the modeling shape data of the object, and Let's set the formation order when laminating each of the outer edge portion and the inner portion using the laminating pattern set in the setting step, so that the already laminated height of the outer edge portion is newly laminated at the time of modeling. The adjustment process that adjusts the height so that it is higher than the internal height. To execute, In the laminated pattern, the direction of the heat source when forming the portion located at the boundary with the outer edge portion is set so as to be tilted to the outer edge portion at a predetermined angle on the plane perpendicular to the moving direction of the heat source. A program characterized by that.
  • the schematic diagram which shows the example of the whole structure of the system which concerns on one Embodiment of this invention.
  • the block diagram which shows the example of the functional structure of the modeling control device which concerns on one Embodiment of this invention.
  • the flowchart which shows the whole processing of the modeling control apparatus which concerns on one Embodiment of this invention.
  • the conceptual diagram for demonstrating the decomposition into the element shape which concerns on one Embodiment of this invention.
  • the schematic diagram which shows the structural example of the laminated pattern DB which concerns on one Embodiment of this invention.
  • the schematic diagram for demonstrating the formation path which concerns on one Embodiment of this invention.
  • the schematic diagram for demonstrating the formation path which concerns on one Embodiment of this invention The schematic diagram for demonstrating the formation path which concerns on one Embodiment of this invention.
  • the schematic diagram for demonstrating the formation path which concerns on one Embodiment of this invention The schematic diagram for demonstrating the formation path which concerns on one Embodiment of this invention.
  • the schematic diagram for demonstrating the torch control which concerns on one Embodiment of this invention.
  • the schematic diagram for demonstrating the torch control which concerns on one Embodiment of this invention.
  • the schematic diagram for demonstrating the path height which concerns on one Embodiment of this invention The schematic diagram for demonstrating the flow of determining the formation order which concerns on one Embodiment of this invention.
  • the schematic diagram for demonstrating the flow of determining the formation order which concerns on one Embodiment of this invention The schematic diagram for demonstrating the flow of determining the formation order which concerns on one Embodiment of this invention.
  • the schematic diagram for demonstrating the flow of determining the formation order which concerns on one Embodiment of this invention The schematic diagram for demonstrating the flow of determining the formation order which concerns on one Embodiment of this invention.
  • the schematic diagram for demonstrating the intersection of the paths which concerns on one Embodiment of this invention The schematic diagram for demonstrating the intersection of the paths which concerns on one Embodiment of this invention.
  • the schematic diagram for demonstrating the sharing of the path which concerns on one Embodiment of this invention The schematic diagram for demonstrating the sharing of the path which concerns on one Embodiment of this invention.
  • the schematic diagram for demonstrating the sharing of the path which concerns on one Embodiment of this invention The figure for demonstrating the flow which determines the formation order which concerns on one Embodiment of this invention.
  • FIG. 1 is a schematic view showing an example of the overall configuration of a laminated modeling system to which the laminated modeling method according to the present invention can be applied.
  • the laminated modeling system 1 includes a modeling control device 2, a manipulator 3, a manipulator control device 4, a controller 5, and a heat source control device 6.
  • the manipulator control device 4 controls a filler material supply unit (not shown) that supplies a filler material (hereinafter, also referred to as a wire) to the manipulator 3, the heat source control device 6, and the manipulator 3.
  • the controller 5 is a part for inputting an instruction of the operator of the laminated modeling system 1, and an arbitrary operation can be input to the manipulator control device 4.
  • the manipulator 3 is, for example, an articulated robot, and the torch 8 provided on the tip shaft is supported so that wires can be continuously supplied.
  • the torch 8 holds the wire protruding from the tip.
  • the position and posture of the torch 8 can be arbitrarily set three-dimensionally within the range of the degree of freedom of the robot arm constituting the manipulator 3.
  • the manipulator 3 preferably has a degree of freedom of 6 axes or more, and preferably one that can arbitrarily change the axial direction of the heat source at the tip. In the example of FIG. 1, as shown by an arrow, an example of a manipulator 3 having 6 degrees of freedom is shown.
  • the form of the manipulator 3 may be an articulated robot having four or more axes, or a robot having an angle adjusting mechanism on two or more orthogonal axes.
  • the torch 8 has a shield nozzle (not shown), and shield gas is supplied from the shield nozzle.
  • the shield gas blocks the atmosphere, prevents oxidation and nitriding of the molten metal during welding, and suppresses welding defects.
  • the arc welding method used in this embodiment may be either a consumable electrode type such as shielded metal arc welding or carbon dioxide arc welding, or a non-consumable electrode type such as TIG (Tungsten Inert Gas) welding or plasma arc welding. It is appropriately selected according to the laminated model to be modeled. In this embodiment, gas metal arc welding will be described as an example.
  • the arc welding method when the arc welding method is a consumable electrode type, a contact tip is arranged inside the shield nozzle, and a wire to which a current is supplied is held by the contact tip.
  • the torch 8 generates an arc from the tip of the wire in a shield gas atmosphere while holding the wire.
  • the wire is fed to the torch 8 from a filler metal supply unit (not shown) by a feeding mechanism (not shown) attached to a robot arm or the like. Then, when the wire continuously fed is melted and solidified while the torch 8 is moved, a linear bead which is a melt-solidified body of the wire is formed on the base 7. By laminating the beads, the target laminated model W is modeled.
  • the heat source for melting the wire is not limited to the above-mentioned arc.
  • a heat source by another method such as a heating method using both an arc and a laser, a heating method using plasma, and a heating method using an electron beam or a laser may be adopted.
  • the amount of heating can be controlled more finely, the state of the bead can be maintained more appropriately, and the quality of the laminated structure can be further improved.
  • the material of the wire is not particularly limited, and the type of wire used differs depending on the characteristics of the laminated model W such as mild steel, high-strength steel, aluminum, aluminum alloy, nickel, and nickel-based alloy. You may be.
  • the manipulator control device 4 drives the manipulator 3 and the heat source control device 6 based on a predetermined program group provided from the modeling control device 2, and forms the laminated model W on the base 7. That is, the manipulator 3 moves the torch 8 while melting the wire with an arc in response to a command from the manipulator control device 4.
  • the heat source control device 6 is a welding power source that supplies electric power required for welding by the manipulator 3.
  • the heat source control device 6 can switch the current, voltage, and the like when forming the bead.
  • the base 7 is configured to use a flat surface, but the base 7 is not limited to this.
  • the base 7 may be formed in a columnar shape, and a bead may be formed on the outer periphery of the side surface thereof.
  • the coordinate system in the modeling shape data according to the present embodiment and the coordinate system on the base 7 on which the laminated model W is modeled are associated with each other.
  • a position in three dimensions with an arbitrary position as the origin. 3 axes of the coordinate system may be set so as to specify, and when the base 7 is composed of a cylinder, a cylindrical coordinate system may be set, and in some cases, a spherical coordinate system. May be set.
  • the coordinate component (hereinafter, also referred to as "coordinate axis”) is It may be arbitrarily set depending on the type of coordinate system such as a Cartesian coordinate system, a cylindrical coordinate system, and a spherical coordinate system.
  • the three axes of the Cartesian coordinate system are X as three straight lines orthogonal to each other in space. It is indicated by an axis, a Y axis, and a Z axis.
  • the modeling control device 2 may be, for example, an information processing device such as a PC (Personal Computer). Each function of the modeling control device 2 described later may be realized by the control unit (not shown) reading and executing the program of the function according to the present embodiment stored in the storage device (not shown).
  • the storage device may include a RAM (Random Access Memory) which is a volatile storage area, a ROM (Read Only Memory) which is a non-volatile storage area, an HDD (Hard Disk Drive), and the like.
  • a CPU Central Processing Unit
  • a dedicated circuit, or the like may be used as the control unit.
  • FIG. 2 is a block diagram mainly showing a functional configuration of the modeling control device 2 according to the present embodiment.
  • the modeling control device 2 includes an input unit 10, a storage unit 11, an element shape decomposition unit 15, a stacking pattern setting unit 16, a formation order adjustment unit 17, a program generation unit 18, and an output unit 19.
  • the input unit 10 acquires various information from the outside via, for example, a network (not shown). Examples of the information acquired here include design data (hereinafter referred to as “modeling shape data”) of an object to be laminated and modeled, such as CAD / CAM data. The details of various information used in this embodiment will be described later.
  • the modeling shape data may be input from a communicably connected external device (not shown), or may be created on the modeling control device 2 using a predetermined application (not shown).
  • the storage unit 11 stores various information acquired by the input unit 10.
  • the storage unit 11 holds and manages a database (DB) of element shapes and stacking patterns according to the present embodiment. Details of the element shape and the laminated pattern will be described later.
  • DB database
  • the element shape decomposition unit 15 decomposes the shape of one laminated model into a plurality of element shapes by extracting a predetermined element shape from the shape of the laminated model indicated by the model shape data.
  • the shape of one laminated model is treated as a complicated shape composed of a plurality of element shapes.
  • the laminated pattern setting unit 16 assigns and sets a laminated pattern predetermined in the laminated pattern DB 14 to each of the plurality of element shapes decomposed by the element shape decomposition unit 15. More specifically, the laminated pattern setting unit 16 sets a laminated pattern for modeling the element shape for each bead constituting the element shape.
  • the formation order adjusting unit 17 adjusts the order in which beads are formed (hereinafter, also referred to as “stacking”) for each of the plurality of element shapes based on the stacking pattern set by the stacking pattern setting unit 16.
  • the program generation unit 18 generates a program group for modeling the laminated model W based on the formation order adjusted by the formation order adjustment unit 17. For example, one program may correspond to one bead constituting the laminated model W.
  • the program group generated here is processed and executed by the manipulator control device 4, so that the manipulator 3 and the heat source control device 6 are controlled.
  • the types and specifications of the program group that can be processed by the manipulator control device 4 are not particularly limited, but the specifications of the manipulator 3 and the heat source control device 6 required for generating the program group, the specifications of the wires, and the like are retained in advance. It is assumed that it has been done.
  • the output unit 19 outputs the program group generated by the program generation unit 18 to the manipulator control device 4.
  • the output unit 19 may be further configured to output a processing result for the modeling shape data by using an output device (not shown) such as a display included in the modeling control device 2.
  • FIG. 3 is a flowchart showing the flow of the entire process by the modeling control device according to the present embodiment.
  • This processing may be realized, for example, by reading a program for realizing each part shown in FIG. 2 from a storage device (not shown) by a control unit such as a CPU included in the modeling control device 2.
  • a control unit such as a CPU included in the modeling control device 2.
  • the processing subject will be collectively described as the modeling control device 2.
  • the modeling control device 2 acquires the modeling shape data of the laminated modeled object W to be modeled.
  • the modeling shape data may be acquired from the outside, or may be acquired by using an application (not shown) included in the modeling control device 2.
  • the modeling control device 2 refers to the element shape DB 13 defined in advance and held in the storage unit 11, and decomposes the shape indicated by the modeling shape data acquired in S301 into a plurality of element shapes.
  • the modeling control device 2 derives a laminated pattern for each of the plurality of element shapes extracted in S302 with reference to the laminated pattern DB 14. Further, the modeling control device 2 derives a forming order for modeling a plurality of element shapes. Details of this step will be described later with reference to FIG. 12 and the like.
  • the modeling control device 2 generates a program group used in the manipulator control device 4 based on the stacking pattern and the formation order derived in S303.
  • the modeling control device 2 outputs the program group generated in S304 to the manipulator control device 4. Then, this processing flow is terminated.
  • FIG. 4 is a conceptual diagram for explaining an example of decomposing the shape of the laminated model W shown by the model shape data into a plurality of element shapes.
  • the shape of the laminated model W to be modeled is shown on the base 7. From the shape of this laminated model W, it is possible to decompose it into two solid rectangular columns, two solid columns, and two thin plates. Note that the decomposition here is an example, and decomposition into other shapes may be performed according to a predetermined element shape.
  • the decomposition into the element shape may be realized by, for example, the modeling control device 2 performing pattern matching based on the element shape DB 13. Further, the configuration may be such that the operator of the modeling control device 2 specifies and assigns the element shape used at the time of disassembly. Further, the configuration may be such that the operator corrects the disassembly performed by the modeling control device 2.
  • a solid rectangular column or a solid cylinder may be required to support the load when a heavy object is loaded on the upper part of the laminated model W, for example.
  • the thin plate for example, when watertightness is required for cooling by flowing a fluid between the solid rectangular pillar and the thin plate shown in FIG. 4, or when the solid rectangular pillar or the solid cylinder falls sideways. It may be required to function as an auxiliary rib to prevent it. That is, the laminated model W is configured as a complicated shape in which a plurality of element shapes are combined, and the role required for each element shape differs depending on the combination. Therefore, it is required to perform laminated modeling according to each part.
  • the element shape DB 13 and the stacking pattern DB 14 are used as shown in FIG.
  • the element shape DB 13 and the stacking pattern DB 14 are defined in advance and are held and managed by the storage unit 11.
  • the laminated model W to be modeled is treated as being configured by combining a plurality of simple shapes (hereinafter referred to as "element shapes"). Therefore, the element shapes constituting the laminated model W are defined in advance and managed by the element shape DB 13.
  • Examples of the element shape include a solid rectangular column, a thin-walled hollow rectangular column, a thick-walled hollow rectangular column, a solid column, a thin-walled hollow cylinder, a thick-walled hollow column, a thin plate, a solid fan-shaped column, and the like. May be included. Further, even if the shape is the same, more detailed classification may be specified according to the size to be modeled.
  • the size to be modeled includes, for example, height, width, thickness, aspect ratio, and the like.
  • the laminated pattern DB 14 is a database that defines conditions and the like for performing laminated modeling for each of the element shapes defined in the element shape DB 13.
  • FIG. 5 shows a configuration example of the laminated pattern DB 14.
  • the laminated pattern DB 14 includes an element shape, a position type, a path height, a path width, a welding speed, a heat input amount, a heat source angle, formation path information, and the like.
  • the element shape indicates the type of the element shape defined corresponding to the element shape DB 13.
  • the position type indicates the type of the part constituting the element shape.
  • the solid column will be described as being composed of an outer edge portion, an internal filling portion in the vicinity of the outer edge portion, and a portion of the internal filling portion, but the present invention is not limited to this, and a more detailed classification is used. May be good.
  • the vicinity of the outer edge portion may be, for example, one bead adjacent to the outer edge portion, or may indicate a range beyond that, and is not particularly limited.
  • the pass height indicates the height per pass of the bead when forming the corresponding position type.
  • the path width indicates the width per pass of the bead when forming the corresponding position type. It is assumed that one bead is formed by one pass.
  • the welding rate indicates the weight of the wire to be melted per unit time in forming the bead. As the welding speed, for example, the speed of feeding per unit time, that is, the wire feeding speed may be applied.
  • the amount of heat input indicates the amount of heat input by the heat source when forming the bead. Here, the amount of heat input is shown in three stages of large, medium, and small, but other levels or numerical values may be shown.
  • the heat source angle indicates the angle of the heat source when forming the bead.
  • the heat source angle is the incident angle of the directional heat source, and refers to the angle formed by the surface forming the bead and the heat source direction on the surface perpendicular to the moving direction of the heat source.
  • the angle of the heat source can be set arbitrarily and does not necessarily match the incident angle of the torch 8.
  • the heat source angle can be set by using a magnetic generator, and when the laser welding method is used, it can be set by using a mirror.
  • the formation path information includes a pattern of the bead formation path described later, its start point position, end point position, and a movement path to the start point position of the next path.
  • the outer edge portion of the element shape sets a condition of low heat input for shape reproducibility.
  • conditions with a high welding rate are set in consideration of construction efficiency.
  • a condition in which the heat source angle is tilted from downward (90 degrees) to a certain angle in order to sufficiently supply heat to the bead end portion and suppress the occurrence of defects of fusion failure. To set. In the example of FIG. 5, the set value of 5 to 45 degrees is used, but the range of 10 to 35 degrees is more preferable, and the range of 10 to 25 degrees is further preferable.
  • the welding conditions for forming the actual bead can be determined from the specifications of the manipulator 3 and the heat source control device 6, the type of wire, and the like.
  • the welding amount correlates with the wire feed rate, diameter, and the like.
  • the amount of heat input correlates with the current and voltage supplied from the heat source control device 6, the distance between the chip and the base, and the like.
  • the heat source angle correlates with the torch angle, the current and voltage supplied from the heat source control device 6, the distance between the chip and the base, and the like.
  • the heat source angle correlates with the incident angle of the laser, the focal length of the optical system, the relative distance between the target and the focal position, and the like.
  • various conditions for modeling the laminated model W such as a layered pattern and welding conditions, are collectively referred to as modeling conditions.
  • FIGS. 7A to 7C show examples of the movement path (bead formation path) of the torch 8 shown in the formation path information according to the present embodiment.
  • 6A to 6C show examples of formation path information corresponding to rectangular columns.
  • FIG. 6A shows a path 603 in which the outer edge portion 601 is formed in 4 passes and a path 604 in which the inner filling portion 602 is formed in 1 pass (total of 5 passes).
  • FIG. 6B shows a path 603 in which the outer edge portion 601 is formed in 4 passes and paths 611 and 612 in which the inner filling portion 602 is formed in 2 passes (6 passes in total).
  • 6C shows a path 603 in which the outer edge portion 601 is formed in 4 passes, a path 621 in which the inner filling portion in the vicinity of the outer edge portion is formed in 1 pass, and a path 622 in which the inner filling portion is formed in 1 pass. (6 passes in total).
  • FIGS. 7A to 7C show an example of formation path information corresponding to a cylinder.
  • FIG. 7A shows a path 703 in which the outer edge portion 701 is formed clockwise in 4 passes and a path 704 in which the inner filling portion 702 is formed in a clockwise direction in 1 pass (total of 5 passes).
  • FIG. 7B shows a path 703 in which the outer edge portion 701 is formed in a clockwise direction in 4 passes and a path 711 in which the inner filling portion 702 is formed in a counterclockwise direction in 1 pass (total of 5 passes).
  • FIG. 7A shows a path 703 in which the outer edge portion 701 is formed clockwise in 4 passes and a path 704 in which the inner filling portion 702 is formed in a clockwise direction in 1 pass (total of 5 passes).
  • FIG. 7B shows a path 703 in which the outer edge portion 701 is formed in a clockwise direction in 4 passes and a path 711 in which the inner filling portion 702
  • FIG. 7C shows a path 703 in which the outer edge portion 701 is formed clockwise in 4 passes and a path 721 in which the inner filling portion 702 is formed in a straight line in 1 pass (total of 5 passes).
  • the movement route indicated by the formation route information is not limited to this, and other routes may be used.
  • the outer edge portion may be formed in one pass, or the welding conditions may be switched in one pass.
  • the outer edge portion is formed first, and then the inner filling portion is formed.
  • formation route information may be used such that weaving is performed in a timely manner to suppress welding defects.
  • [Torch control] 8A and 8B are diagrams for explaining the control of the orientation of the torch 8 according to the present embodiment.
  • the incident angle (torch angle) of the torch 8 and the heat source angle will be described here as being the same.
  • the torch angle is tilted to a certain angle in order to sufficiently supply heat to the bead end and suppress the occurrence of defects due to poor fusion.
  • FIG. 8A shows an example in which the incident angle of the torch 8 is tilted by about 45 degrees at the corner portion consisting of the outer edge portion 801 and the flat surface portion 802 when the distance between the outer edge portions 801 is equal to or longer than a certain level.
  • FIG. 8B when the distance between the outer edge portions 811 is less than a certain distance (valley portion), instead of moving the torch 8 in parallel along the moving direction, the torch 8 is moved in the moving direction while tilting at a certain angle.
  • An example of weaving is shown. As a result, sufficient heat is controlled to be supplied at the corner portion including the outer edge portion 811 and the flat surface portion 812.
  • FIG. 9 is a diagram for explaining the path height of the laminated model W according to the present embodiment.
  • a solid rectangular column and a thin plate will be taken as an example, and the cross section thereof will be used for explanation.
  • the height direction is the stacking direction.
  • the solid rectangular column can be divided into an outer edge portion and an inner filling portion.
  • the height per pass when forming the bead is defined in advance as the stacking pattern according to the position type.
  • the path height of the internal filling portion of the solid rectangular column is indicated by HI
  • the path height of the outer edge portion is indicated by HB .
  • the pass height per pass is indicated by HT .
  • the following relationships are defined to hold between the path heights.
  • HI ⁇ H B HI ⁇ HT This is to emphasize the efficiency of formation (construction efficiency) in the internal filling portion of the solid rectangular column and to increase the range of formation in one pass.
  • the path height is set lower than that of the internal filling portion in order to emphasize the shape reproducibility and the suppression of the occurrence of welding defects and to improve the formation accuracy.
  • H B : HI: HT 3: 4: 2.
  • the laminated model W is formed by laminating a plurality of beads in the laminating direction.
  • 7 layers are laminated on the outer edge portion and 5 layers are laminated on the inner filling portion in order to form a solid rectangular column.
  • 10 layers are laminated to form a thin plate.
  • the outer edge portion of the solid rectangular column is partially protruded from the target shape of the solid rectangular column as a result of stacking, but this is done by performing a shaving process after modeling. May be processed.
  • the uppermost layer may be configured to use control parameters different from those of other layers so as to have a target shape.
  • FIG. 9 shows an example in which the internal filling portion of the solid rectangular column is formed by the width of 4 passes in the width direction, but the present invention is not limited to this.
  • the thin plate is also formed from the width of one pass in the width direction, but the present invention is not limited to this.
  • a portion having a predetermined thickness (width) or less may be treated as a thin-walled portion (for example, a thin plate), and a portion having a thickness larger than that may be treated as a thick-walled portion.
  • the base 7 (the forming surface of the laminated model W) is horizontal, and each layer is shown as a horizontal state.
  • the configuration is not limited to this, and the stacking direction and the configuration of the layer (layer plane) may be changed according to the shape of the base 7.
  • the stacking direction and the configuration of the layer plane are defined according to the rotating surface (curved surface). May be done.
  • the layer plane (cross-sectional direction) is parallel to the laminated surface of the base 7.
  • FIG. 10 is a schematic diagram for explaining a concept for determining the formation order of each layer for a plurality of element shapes constituting the laminated model W.
  • a laminated model W composed of a thin plate and a solid rectangular column will be described as an example.
  • FIG. 10 shows a cross-sectional view of a portion of the alternate long and short dash line.
  • the outer edge portion and the inner filling portion of the solid rectangular column and the thin plate will be described by taking the same configuration as that shown in FIG. 9 as an example.
  • the coordinate axes are indicated by the X-axis, the Y-axis, and the Z-axis. Further, in the stacking direction indicated by the Z axis, the layers of each element shape are indicated by the variable N in order from the lower layer.
  • the number of layers of the outer edge portion is indicated by NB
  • the number of layers of the inner filling portion is indicated by NI
  • the number of layers of the thin plate is indicated by NT .
  • the unit height HL is used as a reference for determining the bead formation order.
  • the unit height HL shall be defined in advance.
  • HL is set to a value equal to or smaller than the minimum value of the path height of the element shape. That is, in the example of FIG. 10, when the path height H B of the outer edge portion of the solid rectangular column, the path height H I of the inner filling portion, and the path height H T of the thin plate are assumed, H B , HI, H. T ⁇ HL .
  • c is preferably 1 to 5, more preferably 1 to 3.
  • a / b is preferably an integer of 3 or less, and more preferably 1 or 2.
  • it is preferable that a, b, c, BB , and HI are set to be common in a plurality of element shapes constituting the laminated model W.
  • H T H B / d d: Positive integer That is, HT is a fraction of an integer of H B. At this time, d is preferably 3 or less, and 1 is more preferable.
  • the formation order of each element shape is determined for each unit height HL .
  • the layer of the portion where the stacking height has not been reached is extracted as a formation candidate for each element shape.
  • the laminated height here indicates the height formed by a plurality of beads as a result of the beads being laminated. Then, by comparing the stacking heights when the layers of each portion extracted as the formation candidates are formed, it is determined whether or not the formation candidates are suitable as the formation layer.
  • the formation candidate includes a layer having an internal filling portion, and as a result of forming the layer of the internal filling portion, if the height exceeds the formed laminated height of the outer edge portion, the internal filling portion is formed. Withholds the formation of layers.
  • FIGS. 11A to 11D are diagrams for explaining the flow of determining the formation order of each layer. Although the same example as in FIG. 10 will be described, the path delimiters in the width direction (X direction) in each layer are omitted. It is assumed that the processes are performed in the order of FIGS. 11A to 11D. At the start, it is assumed that the formation order has not been determined for the layers of any of the sites.
  • FIG. 11A shows a case where the reference height is HL .
  • the first layer of the internal filling portion of the solid rectangular column is formed, the height of the laminated portion of the first layer of the outer edge portion is exceeded, so that the first layer of the internal filling portion of the solid rectangular column is formed. It is excluded from the formation candidates and the formation is suspended.
  • the formation order of the first layer of the outer edge portion of the solid rectangular column and the first layer of the thin plate may be determined according to a predetermined rule.
  • FIG. 11B shows a case where the reference height is 2HL .
  • the first layer of the internal filling portion of the solid rectangular column is formed, the height of the laminated portion of the first layer of the outer edge portion is exceeded, so that the first layer of the internal filling portion of the solid rectangular column is formed. It is excluded from the formation candidates and the formation is suspended.
  • FIG. 11C shows a case where the reference height is 3HL .
  • the height of the first layer of the outer edge portion will be exceeded, but the height of the second layer of the outer edge portion, which is a candidate for formation, will be exceeded. It will be lower than that.
  • the formation order of the second layer of the outer edge portion of the solid rectangular column and the third layer of the thin plate may be determined according to a predetermined rule.
  • FIG. 11D shows a case where the reference height is 4HL .
  • the second layer of the internal filling portion of the solid rectangular column is formed, the height of the laminated portion of the second layer of the outer edge portion is exceeded, so that the first layer of the internal filling portion of the solid rectangular column is formed. It is excluded from the formation candidates and the formation is suspended. As a result, at this point, the formation order of any of the layers is not determined. By repeating the above process, the formation order of all layers of each element shape is determined.
  • FIG. 12 is a flowchart of the formation order determination process according to the present embodiment, and corresponds to the process executed in the process of S303 in the overall flow shown in FIG.
  • This processing may be realized, for example, by reading a program for realizing each part shown in FIG. 2 from a storage device (not shown) and executing the processing unit such as a CPU or GPU included in the modeling control device 2. ..
  • the processing step and the determination step increase or decrease depending on the combination of the element shapes constituting the laminated model W.
  • the process shown in FIG. 12 is executed by the stacking pattern setting unit 16 and the formation order adjusting unit 17 shown in FIG. 2 with reference to each DB managed by the storage unit 11.
  • the processing subjects are collectively described as the modeling control device 2.
  • the modeling control device 2 acquires a laminated pattern corresponding to each of the plurality of element shapes decomposed in S302 of FIG. 3 with reference to the laminated pattern DB 14.
  • the laminated patterns of the solid rectangular column and the thin plate are acquired.
  • the modeling control device 2 sets the path height corresponding to each part of the extracted shape based on the stacking pattern acquired in S1201. As described with reference to FIG. 9, in this example, in the modeling control device 2, the path height H B of the outer edge portion of the solid rectangular column, the path height HI of the internal filling portion, and the path height of the thin plate are used. Set HT .
  • the modeling control device 2 sets the unit height HL .
  • the unit height HL is a reference unit for determining the bead formation order.
  • the bead formation order is determined for each height (hereinafter referred to as "reference height") that is an integral multiple of the unit height HL . It is assumed that the unit height HL is predetermined and is held by the storage unit 11.
  • a constant value may be used for the unit height HL , or a different value may be used depending on the combination of the element shapes constituting the laminated model W.
  • the modeling control device 2 initializes a variable indicating the number of layers of each extracted shape.
  • the variable N B indicating the number of layers at the outer edge of the solid rectangular column
  • the variable NI indicating the number of layers of the internal filling portion of the solid rectangular column
  • the variable N T indicating the number of layers of the thin plate are used.
  • H (N) indicates the stacking height of the Nth layer
  • the subscript indicates the position of the site.
  • H B ( NB ) indicates the stacking height of the Nth layer at the outer edge portion.
  • P (N) indicates the path of the Nth layer
  • the subscript indicates the position of the site.
  • P B ( NB ) indicates the path of the Nth layer at the outer edge.
  • the modeling control device 2 sets an upper limit of the number of layers of each extracted shape based on the modeling shape data and each path height set in S1202.
  • the upper limit of the number of layers in the outer edge of the solid rectangular column is set to N B_max
  • the upper limit of the number of layers in the internal filling portion of the solid rectangular column is set to NI_max
  • the upper limit of the number of layers of the thin plate is set to NT_max . do.
  • the modeling control device 2 initializes the list of formation candidates.
  • the process of the modeling control device 2 proceeds to S1209.
  • the modeling control device 2 determines whether or not the reference height> BB ( NB ). When the reference height> H B ( NB ) (YES in S1209), the process of the modeling control device 2 proceeds to S1210. On the other hand, when the reference height is not BB ( NB ) (NO in S1209), the processing of the modeling control device 2 proceeds to S1211.
  • the modeling control device 2 sets P B ( NB +1) as a formation candidate.
  • NI NI_max (NO in S1211 )
  • the process of the modeling control device 2 proceeds to S1212.
  • the modeling control device 2 determines whether or not the reference height> HI ( NI ). When the reference height> HI ( NI ) (YES in S1212 ), the processing of the modeling control device 2 proceeds to S1213. On the other hand, when the reference height is not HI ( NI ) (NO in S1212 ), the processing of the modeling control device 2 proceeds to S1214.
  • the modeling control device 2 sets PI ( NI +1) as a formation candidate.
  • the process of the modeling control device 2 proceeds to S1217.
  • the process of the modeling control device 2 proceeds to S1215.
  • the modeling control device 2 determines whether or not the reference height> HT (NT ) .
  • the reference height> HT ( NT ) YES in S1215
  • the process of the modeling control device 2 proceeds to S1216.
  • the reference height is not HT ( NT ) (NO in S1215 )
  • the processing of the modeling control device 2 proceeds to S1217.
  • the modeling control device 2 sets PT ( NT +1) as a formation candidate.
  • the order of the processing of S1208 to S1210 (corresponding to the outer edge portion of the solid rectangular column), the processing of S1211 to S1213 (corresponding to the internal filling portion of the solid rectangular column), and the processing of S1214 to S1216 (corresponding to the thin plate) is The order of these processes is not limited to this, and the order of these processes may be changed.
  • the modeling control device 2 determines whether or not both P B ( NB +1 ) and PI (NI +1) are included in the formation candidates. When both are included (YES in S1217), the process of the modeling control device 2 proceeds to S1220. On the other hand, if any of them is not included (NO in S1217), the process of the modeling control device 2 proceeds to S1218.
  • the modeling control device 2 determines whether or not PI ( NI +1) is included in the formation candidates. When PI (NI +1) is included (YES in S1218 ), the process of the modeling control device 2 proceeds to S1219 . On the other hand, when PI (NI +1) is not included (NO in S1218 ), the processing of the modeling control device 2 proceeds to S1222 .
  • the modeling control device 2 determines whether or not H B ( NB ) ⁇ HI (NI +1). When H B ( NB ) ⁇ HI (NI +1) (YES in S1219 ), the process of the modeling control device 2 proceeds to S1221. On the other hand, when BB ( NB ) ⁇ HI (NI +1) is not satisfied (NO in S1219 ), the processing of the modeling control device 2 proceeds to S1222 .
  • the modeling control device 2 determines whether or not H B ( NB +1 ) ⁇ HI (NI +1). When H B ( NB +1 ) ⁇ HI (NI +1) (YES in S1220), the process of the modeling control device 2 proceeds to S1221. On the other hand, when H B ( NB +1) ⁇ HI (NI +1) is not satisfied (NO in S1220), the processing of the modeling control device 2 proceeds to S1222 .
  • the modeling control device 2 excludes PI ( NI +1) from the formation candidates.
  • the modeling control device 2 determines the formation order of each path included in the formation candidate.
  • the formation order here may be determined according to the priority set for each position type of the element shape, or may be determined based on the order defined according to the combination of the element shapes.
  • the formation candidate includes an internal filling portion, it is preferably formed after the outer edge portion.
  • a program group for controlling the manipulator 3 and the heat source control device 6 will be generated based on the formation order determined by the above processing flow.
  • the control parameters here can be set based on the stacking pattern defined in the stacking pattern DB 14.
  • the laminated height of the outer edge portion and the laminated height of the inner filling portion are compared, and the formation order of each layer is determined so that the laminated height is higher in the outer edge portion.
  • the height difference of the laminated height is within a predetermined range.
  • the predetermined range here is not particularly limited, but may be determined based on the difference in the welding amount between the outer edge portion and the inner filling portion defined in the lamination pattern.
  • the lamination height of the outer edge portion is the height difference of the lamination height of the inner filling portion.
  • a predetermined range for the height difference may be set according to the protrusion length of the wire from the torch 8. For example, assuming that the protruding length of the wire is 12 to 15 mm, the height difference is preferably 20 mm or less. More preferably, the height difference is 15 mm or less, and even more preferably, the height difference is 12 mm. By doing so, it is possible to prevent the outer edge portion from melting and to prevent the torch 8 from interfering with the laminated model W.
  • [Path crossing] 13A and 13B are views for explaining the intersection of paths when forming the element shape according to the present embodiment, and the portions made of the thin plates shown in FIG. 4 are formed along the stacking direction.
  • I saw If the paths are crossed and formed when forming each bead, the meat of the crossed portion becomes thick. For example, the height and width of the intersecting part will be different from the other parts. Therefore, at the position where the paths intersect, the subsequent path temporarily stops the formation of the bead at the portion where the preceding path intersects, and resumes the formation of the bead from the position where the intersection is crossed.
  • FIG. 13A shows an example in which the horizontal path 1301 is set as the leading path and then the vertical paths 1302 and 1303 are set as the trailing paths.
  • FIG. 13B shows an example in which the vertical path 1311 is set as the leading path and then the horizontal paths 1302 and 1303 are set as the trailing paths.
  • the formation path and the formation order are determined based on the above-mentioned conditions for the configuration in which the path intersection occurs.
  • the order of the paths in FIG. 13A and the order of the paths in FIG. 13B are alternately performed for stacking. Note that the alternating here is not limited to each layer, but may be performed for each predetermined number of layers (for example, two layers), and may be adjusted according to other parts and element shapes located in the periphery. May be done.
  • [Path sharing] 14A, 14B, and 14C are diagrams for explaining the sharing of paths when forming the element shape according to the present embodiment, and are the portions composed of the solid rectangular columns shown in FIG. Is shown along the stacking direction.
  • the structure may be such that the path is shared at the connecting portion.
  • two solid rectangular columns are extracted from the shape shown in FIG. 4, they can be decomposed as shown in FIG. 14A.
  • the two solid rectangular columns are connected to each other by the outer edge portions 1401 and 1402.
  • this connecting portion as one outer edge portion, it becomes possible to improve the construction efficiency.
  • one of the paths is used as the outer edge portion in the connection portion, and the other outer edge portion is replaced with the inner filling portion.
  • FIG. 14B shows an example in which the path 1411 is set as the leading path and the path 1412 is set as the trailing path.
  • FIG. 14C shows an example in which the path 1421 is set as the leading path and the paths 1422 and 1423 are set as the trailing path.
  • the stacking efficiency can be improved by reducing the range of the outer edge portion and forming the inner filling portion capable of increasing the welding rate as compared with the outer edge portion.
  • the start / end positions of the path are arranged in the shared portion, but these are not particularly limited and may be non-shared portions.
  • the order of the paths in FIG. 14B and the order of the paths in FIG. 14C are alternately performed for stacking. Note that the alternating here is not limited to each layer, but may be performed for each predetermined number of layers (for example, two layers), and may be adjusted according to other parts and element shapes located in the periphery. May be done.
  • FIG. 15 is a diagram for explaining a concept for determining the formation order of each layer for a plurality of element shapes constituting the laminated model W when path sharing occurs.
  • the outer edge portion on the inner solid rectangular pillar side is replaced with the internal filling portion.
  • Other configurations are the same as those described with reference to FIG.
  • FIG. 16 is a flowchart of the formation order determination process according to the present embodiment, and is a process performed in place of the steps S1217 to S1220 among the processes shown in FIG. 12 in the first embodiment.
  • FIG. 15 an example is shown in which the laminated model W is composed of a solid rectangular column and an element shape of a thin plate. Therefore, the processing step and the determination step increase or decrease depending on the combination of the element shapes constituting the laminated model W.
  • the process shown in FIG. 16 is executed by the stacking pattern setting unit 16 and the formation order adjusting unit 17 shown in FIG. 2 with reference to each DB managed by the storage unit 11.
  • the processing subjects are collectively described as the modeling control device 2.
  • the processing of the modeling control device 2 proceeds to S1601.
  • the modeling control device 2 determines whether or not all of P B ( NB +1 ), PI (NI +1), and PT ( NT +1) are included in the formation candidates. When all are included (YES in S1601), the process of the modeling control device 2 proceeds to S1602. On the other hand, if any of them is not included (NO in S1601), the process of the modeling control device 2 proceeds to S1603.
  • the modeling control device 2 determines whether or not H B ( NB +1) ⁇ HI (NI +1) or HT (NT +1 ) ⁇ HI (NI +1). That is, it is determined whether or not the stacking height of PI (NI +1 ), which is a formation candidate, is higher than the stacking height of other formation candidates. If this condition is satisfied (YES in S1602), the process of the modeling control device 2 proceeds to S1221. On the other hand, when this condition is not satisfied (NO in S1602), the process of the modeling control device 2 proceeds to S1222.
  • the modeling control device 2 determines whether or not PI ( NI +1) is included in the formation candidates. When PI (NI +1) is included (YES in S1603 ), the process of the modeling control device 2 proceeds to S1604. On the other hand, when PI (NI +1) is not included (NO in S1603 ), the process of the modeling control device 2 proceeds to S1222 .
  • the modeling control device 2 determines whether or not P B ( NB +1) is included in the formation candidates. When P B ( NB +1) is included (YES in S1604), the process of the modeling control device 2 proceeds to S1605. On the other hand, when P B ( NB +1) is not included (NO in S1604), the process of the modeling control device 2 proceeds to S1606.
  • the modeling control device 2 determines whether or not H B ( NB +1 ) ⁇ HI (NI +1). When H B ( NB +1 ) ⁇ HI (NI +1) (YES in S1605), the process of the modeling control device 2 proceeds to S1221. On the other hand, if H B ( NB +1 ) ⁇ HI (NI +1) is not satisfied (NO in S1605), the process of the modeling control device 2 proceeds to S1607.
  • the modeling control device 2 determines whether or not H B ( NB ) ⁇ HI ( NI +1). When H B ( NB ) ⁇ HI ( NI +1) (YES in S1606), the process of the modeling control device 2 proceeds to S1221. On the other hand, if H B ( NB ) ⁇ HI ( NI +1) (NO in S1606), the process of the modeling control device 2 proceeds to S1607.
  • the modeling control device 2 determines whether or not PT ( NT +1) is included in the formation candidates. When PT ( NT +1) is included (YES in S1607), the process of the modeling control device 2 proceeds to S1608. On the other hand, when PT ( NT +1) is not included (NO in S1607), the processing of the modeling control device 2 proceeds to S1609.
  • the modeling control device 2 determines whether or not HT (NT +1 ) ⁇ HI (NI +1 ). When HT (NT +1 ) ⁇ HI (NI +1) (YES in S1608 ), the process of the modeling control device 2 proceeds to S1221 . On the other hand, if HT ( NT +1) ⁇ HI (NI +1) is not satisfied (NO in S1608 ), the process of the modeling control device 2 proceeds to S1222 .
  • the modeling control device 2 determines whether or not HT (NT ) ⁇ HI ( NI +1). When HT (NT ) ⁇ HI (NI +1) (YES in S1609 ), the process of the modeling control device 2 proceeds to S1221 . On the other hand, when HT ( NT ) ⁇ HI (NI +1) is not satisfied (NO in S1609 ), the process of the modeling control device 2 proceeds to S1222 .
  • the order of the treatments of S1604 to S1606 (comparison of the laminated heights of the outer edge portion and the inner filling portion) and the treatments of S1607 to S1609 (comparison of the laminated heights of the thin plate and the inner filling portion) is not limited to this. It may be the opposite.
  • FIG. 17 shows an example in which beads are formed alternately when the paths as described above are shared.
  • the broken line indicates the shape of the laminated model W indicated by the model shape data.
  • the fourth layer, the fifth layer, and the ninth layer of the thin plate are set with paths so as to have the pattern A shown in FIG. 17, and the first layer to the third layer and the sixth layer to the eighth layer of the thin plate are set.
  • the path of the layer is set so as to have the pattern B shown in FIG.
  • one or more programs or applications for realizing the functions of the above-mentioned one or more embodiments are supplied to the system or the device using a network or a storage medium, and the system or the device is used in a computer. It can also be realized by the process of reading and executing the program by the processor of.
  • circuit that realizes one or more functions.
  • Examples of the circuit that realizes one or more functions include an ASIC (Application Specific Integrated Circuit) and an FPGA (Field Programmable Gate Array).
  • a method of setting modeling conditions for performing laminated modeling of the object using a directional heat source based on the modeling shape data of the object A setting process for setting a laminated pattern for each of the outer edge portion and the inner portion of the shape indicated by the modeling shape data, and Let's set the formation order when laminating each of the outer edge portion and the inner portion using the laminating pattern set in the setting step, so that the already laminated height of the outer edge portion is newly laminated at the time of modeling.
  • the adjustment process that adjusts the height so that it is higher than the internal height.
  • the direction of the heat source when forming the portion located at the boundary with the outer edge portion is set so as to be inclined to the outer edge portion at a predetermined angle on the plane perpendicular to the moving direction of the heat source.
  • a setting method characterized by the fact that. According to this configuration, it is possible to appropriately set the modeling conditions according to the formation state of the portion constituting the laminated model and its surroundings. In particular, it is possible to suppress welding defects according to the site of the laminated model.
  • the tilt angle can be controlled according to the configuration of the heat source such as the protrusion length of the wire and the size of the device, and it is possible to suppress the interference between the formed model and the device such as the nozzle. ..
  • the device referred to here means, for example, a shield nozzle or the like when a consumable electrode type welding method such as carbon dioxide arc welding is used, and in addition to a torch when a non-consumable electrode type welding method such as TIG welding is used. Indicates a wire feeder, etc. Further, for example, in the case of laser welding, a condensing head, a mirror system for setting a heat source angle, and the like are shown.
  • the height of one bead of the outer edge portion is H B
  • the height of the inner one bead is HI
  • the outer edge portion and the above are described.
  • the unit height used to determine the bead formation order when each of the interiors is laminated and formed is HL .
  • the setting method according to (4) which comprises setting. Defects are likely to occur when the outer edges with low heat input are installed in parallel, but this configuration makes it possible to suppress the occurrence of defects.
  • the setting step is characterized in that, when two element shapes intersect, the target element shapes that do not form the intersecting portion are replaced for each predetermined number of layers in the stacking direction (7).
  • the setting method described in. According to this configuration, it is possible to improve the modeling accuracy of the entire laminated modeled object without concentrating the portions where the thickness abnormality is likely to occur.
  • a laminated modeling method for laminating the object using a directional heat source based on the modeling shape data of the object A setting process for setting a laminated pattern for each of the outer edge portion and the inner portion of the shape indicated by the modeling shape data, and Let's set the formation order when laminating each of the outer edge portion and the inner portion using the laminating pattern set in the setting step, so that the already laminated height of the outer edge portion is newly laminated at the time of modeling.
  • the adjustment process that adjusts the height so that it is higher than the internal height. It has a control step of causing a modeling means to perform laminating modeling of the object based on the laminating pattern set in the setting step and the forming order adjusted in the adjusting step.
  • the direction of the heat source when forming the portion located at the boundary with the outer edge portion is set so as to be inclined to the outer edge portion at a predetermined angle on the plane perpendicular to the moving direction of the heat source.
  • a laminated modeling method characterized by the fact that. According to this configuration, it is possible to appropriately set the modeling conditions according to the formation state of the portion constituting the laminated model and its surroundings.
  • a laminated modeling system that performs laminated modeling of the object using a directional heat source based on the modeling shape data of the object.
  • a setting means for setting a laminated pattern for each of the outer edge portion and the inner portion of the shape indicated by the modeling shape data, and Let's set the formation order when the outer edge portion and the inner edge are laminated and formed by using the lamination pattern set by the setting means, and the height of the outer edge portion already laminated at the time of modeling is newly laminated.
  • the adjustment means to adjust so that it is higher than the internal height. It has a laminating pattern set by the setting means and a modeling means for performing laminating modeling of the object based on the formation order adjusted by the adjusting means.
  • the direction of the heat source when forming the portion located at the boundary with the outer edge portion is set so as to be inclined to the outer edge portion at a predetermined angle on the plane perpendicular to the moving direction of the heat source.

Abstract

造形形状データが示す形状の外縁部と内部それぞれに対して積層パターンを設定する設定工程と、前記積層パターンを用いて前記外縁部と前記内部それぞれを積層して形成する際の形成順を、造形時において前記外縁部のすでに積層されている高さが新たに積層しようとする前記内部の高さと比較して高くなるように調整する調整工程とを有し、前記積層パターンにて、前記外縁部との境界に位置する部位を形成する際の前記熱源の向きは、前記熱源の移動方向に垂直な面にて前記外縁部へ所定の角度に傾けるように設定される。

Description

造形条件の設定方法、積層造形方法、積層造形システム、およびプログラム
 本願発明は、造形条件の設定方法、積層造形方法、積層造形システム、およびプログラムに関する。
 近年、3Dプリンタを用いた造形による部品製造のニーズが高まっており、金属材料を用いた造形の実用化に向けて研究開発が進められている。金属材料を造形する3Dプリンタの多くは、レーザや電子ビーム、アーク等の熱源を用いて金属粉体や金属ワイヤを融解および凝固させて形成する溶接金属を積層させることで積層造形物を造形している。
 例えば、特許文献1では、ポンプや圧縮機などの流体機械に設けられるインペラやロータ等の回転部材を製造する技術として、ハブとなるベース材に造形部を造形し、その後、造形部を切削してブレードを形成する方法が開示されている。
国際公開第2016/149774号明細書
 複雑形状を有する部材は、簡易な構成の要素形状に分解することができる。例えば、簡易な要素形状としては、円筒状、中実矩形柱状、中実円柱状、および薄板などが挙げられる。また、このような簡易な要素形状においても、その構成として外縁部と内部など、位置に応じて施工性を分類することができる。このとき、各位置に応じて溶接欠陥を抑制するための制御内容は異なってくる。つまり、積層造形を行う場合、造形対象となる対象物の形状における位置に応じて(後述する位置種別に相当する)、それらを形成する際の造形条件を調整する必要がある。
 上記課題を鑑み、本願発明は、積層造形物を構成する部位およびその周辺の形成状況に応じた造形条件を適切に設定することを可能とすることを目的とする。
 上記課題を解決するために本願発明は以下の構成を有する。
 (1) 対象物の造形形状データに基づいて、指向性のある熱源を用いて前記対象物の積層造形を行うための造形条件の設定方法であって、
 前記造形形状データが示す形状における外縁部と内部それぞれに対して積層パターンを設定する設定工程と、
 前記設定工程にて設定した積層パターンを用いて前記外縁部と前記内部それぞれを積層して形成する際の形成順を、造形時において前記外縁部のすでに積層されている高さが新たに積層しようとする前記内部の高さと比較して高くなるように調整する調整工程と、
を有し、
 前記積層パターンにおいて、前記外縁部との境界に位置する部位を形成する際の前記熱源の向きは、前記熱源の移動方向に垂直な面において、前記外縁部へ所定の角度に傾けるように設定されることを特徴とする設定方法。
 また、本願発明の別の一形態として、以下の構成を有する。
 (2) 対象物の造形形状データに基づいて、指向性のある熱源を用いて前記対象物の積層造形を行う積層造形方法であって、
 前記造形形状データが示す形状における外縁部と内部それぞれに対して積層パターンを設定する設定工程と、
 前記設定工程にて設定した積層パターンを用いて前記外縁部と前記内部それぞれを積層して形成する際の形成順を、造形時において前記外縁部のすでに積層されている高さが新たに積層しようとする前記内部の高さと比較して高くなるように調整する調整工程と、
 前記設定工程にて設定された積層パターンと、前記調整工程にて調整された形成順とに基づき、造形手段に前記対象物の積層造形を行わせる制御工程とを有し、
 前記積層パターンにおいて、前記外縁部との境界に位置する部位を形成する際の前記熱源の向きは、前記熱源の移動方向に垂直な面において、前記外縁部へ所定の角度に傾けるように設定されることを特徴とすることを特徴とする積層造形方法。
 また、本願発明の別の一形態として、以下の構成を有する。
 (3) 対象物の造形形状データに基づいて、指向性のある熱源を用いて前記対象物の積層造形を行う積層造形システムであって、
 前記造形形状データが示す形状における外縁部と内部それぞれに対して積層パターンを設定する設定手段と、
 前記設定手段にて設定した積層パターンを用いて前記外縁部と前記内部それぞれを積層して形成する際の形成順を、造形時において前記外縁部のすでに積層されている高さが新たに積層しようとする前記内部の高さと比較して高くなるように調整する調整手段と、
 前記設定手段にて設定された積層パターンと、前記調整手段にて調整された形成順とに基づき、前記対象物の積層造形を行う造形手段とを有し、
 前記積層パターンにおいて、前記外縁部との境界に位置する部位を形成する際の前記熱源の向きは、前記熱源の移動方向に垂直な面において、前記外縁部へ所定の角度に傾けるように設定されることを特徴とすることを特徴とする積層造形システム。
 また、本願発明の別の一形態として、以下の構成を有する。
 (4) コンピュータに、
 対象物の造形形状データが示す形状における外縁部と内部それぞれに対して積層パターンを設定する設定工程と、
 前記設定工程にて設定した積層パターンを用いて前記外縁部と前記内部それぞれを積層して形成する際の形成順を、造形時において前記外縁部のすでに積層されている高さが新たに積層しようとする前記内部の高さと比較して高くなるように調整する調整工程と、
を実行させ、
 前記積層パターンにおいて、前記外縁部との境界に位置する部位を形成する際の熱源の向きは、前記熱源の移動方向に垂直な面において、前記外縁部へ所定の角度に傾けるように設定されることを特徴とするプログラム。
 本願発明により、積層造形物を構成する部位およびその周辺の形成状況に応じた造形条件を適切に設定することが可能となる。
本願発明の一実施形態に係るシステムの全体構成の例を示す概略図。 本願発明の一実施形態に係る造形制御装置の機能構成の例を示すブロック図。 本願発明の一実施形態に係る造形制御装置の処理全体を示すフローチャート。 本願発明の一実施形態に係る要素形状への分解を説明するための概念図。 本願発明の一実施形態に係る積層パターンDBの構成例を示す概略図。 本願発明の一実施形態に係る形成経路を説明するための概略図。 本願発明の一実施形態に係る形成経路を説明するための概略図。 本願発明の一実施形態に係る形成経路を説明するための概略図。 本願発明の一実施形態に係る形成経路を説明するための概略図。 本願発明の一実施形態に係る形成経路を説明するための概略図。 本願発明の一実施形態に係る形成経路を説明するための概略図。 本願発明の一実施形態に係るトーチ制御を説明するための概略図。 本願発明の一実施形態に係るトーチ制御を説明するための概略図。 本願発明の一実施形態に係るパス高さを説明するための概略図。 本願発明の一実施形態に係る形成順を決定する流れを説明するための概略図。 本願発明の一実施形態に係る形成順を決定する流れを説明するための概略図。 本願発明の一実施形態に係る形成順を決定する流れを説明するための概略図。 本願発明の一実施形態に係る形成順を決定する流れを説明するための概略図。 本願発明の一実施形態に係る形成順を決定する流れを説明するための概略図。 本願発明の一実施形態に係る形成順決定処理のフローチャート。 本願発明の一実施形態に係るパスの交差を説明するための概略図。 本願発明の一実施形態に係るパスの交差を説明するための概略図。 本願発明の一実施形態に係るパスの共有を説明するための概略図。 本願発明の一実施形態に係るパスの共有を説明するための概略図。 本願発明の一実施形態に係るパスの共有を説明するための概略図。 本願発明の一実施形態に係る形成順を決定する流れを説明するための図。 第2の実施形態に係る形成順決定処理のフローチャート。 第2の実施形態に係る形成順の決定の流れを説明するための図。
 以下、本願発明を実施するための形態について図面などを参照して説明する。なお、以下に説明する実施形態は、本願発明を説明するための一実施形態であり、本願発明を限定して解釈されることを意図するものではなく、また、各実施形態で説明されている全ての構成が本願発明の課題を解決するために必須の構成であるとは限らない。また、各図面において、同じ構成要素については、同じ参照番号を付すことにより対応関係を示す。
 <第1の実施形態>
 以下、本願発明の第1の実施形態について説明を行う。
 [システム構成]
 以下、本願発明の一実施形態について、図面を参照して詳細に説明する。図1は、本願発明に係る積層造形方法を適用可能な積層造形システムの全体構成の例を示す概略図である。
 本実施形態に係る積層造形システム1は、造形制御装置2、マニピュレータ3、マニピュレータ制御装置4、コントローラ5、および熱源制御装置6を含んで構成される。
 マニピュレータ制御装置4は、マニピュレータ3や熱源制御装置6、マニピュレータ3に対して溶加材(以降、ワイヤとも称する)を供給する不図示の溶加材供給部を制御する。コントローラ5は、積層造形システム1の操作者の指示を入力するための部位であり、マニピュレータ制御装置4に対して、任意の操作を入力可能である。
 マニピュレータ3は、例えば多関節ロボットであり、先端軸に設けたトーチ8には、ワイヤが連続供給可能に支持される。トーチ8は、ワイヤを先端から突出した状態に保持する。トーチ8の位置や姿勢は、マニピュレータ3を構成するロボットアームの自由度の範囲で3次元的に任意に設定可能となっている。マニピュレータ3は、6軸以上の自由度を有するものが好ましく、先端の熱源の軸方向を任意に変化させられるものが好ましい。図1の例では、矢印にて示すように、6軸の自由度を有するマニピュレータ3の例を示している。マニピュレータ3の形態は、4軸以上の多関節ロボットの他、2軸以上の直交軸に角度調整機構を備えたロボットであってもよい。
 トーチ8は、不図示のシールドノズルを有し、シールドノズルからシールドガスが供給される。シールドガスは、大気を遮断し、溶接中の溶融金属の酸化、窒化などを防いで溶接不良を抑制する。本実施形態で用いられるアーク溶接法としては、被覆アーク溶接や炭酸ガスアーク溶接等の消耗電極式、TIG(Tungsten Inert Gas)溶接やプラズマアーク溶接等の非消耗電極式のいずれであってもよく、造形する積層造形物に応じて適宜選定される。本実施形態では、ガスメタルアーク溶接を例に挙げて説明する。
 マニピュレータ3において、アーク溶接法が消耗電極式の場合、シールドノズルの内部にはコンタクトチップが配置され、電流が給電されるワイヤがコンタクトチップに保持される。トーチ8は、ワイヤを保持しつつ、シールドガス雰囲気でワイヤの先端からアークを発生する。ワイヤは、ロボットアーム等に取り付けた不図示の繰り出し機構により、不図示の溶加材供給部からトーチ8に送給される。そして、トーチ8を移動させつつ、連続送給されるワイヤを溶融及び凝固させると、ワイヤの溶融凝固体である線状のビードがベース7上に形成される。ビードが積層されることで、目的とする積層造形物Wが造形される。
 なお、ワイヤを溶融させる熱源としては、上記したアークに限らない。例えば、アークとレーザとを併用した加熱方式、プラズマを用いる加熱方式、電子ビームやレーザを用いる加熱方式等、他の方式による熱源を採用してもよい。電子ビームやレーザにより加熱する場合、加熱量を更に細かく制御でき、ビードの状態をより適正に維持して、積層構造物の更なる品質向上に寄与できる。また、ワイヤの材質についても特に限定するものではなく、例えば、軟鋼、高張力鋼、アルミ、アルミ合金、ニッケル、ニッケル基合金など、積層造形物Wの特性に応じて、用いるワイヤの種類が異なっていてよい。
 マニピュレータ制御装置4は、造形制御装置2から提供される所定のプログラム群に基づいてマニピュレータ3や熱源制御装置6を駆動させ、ベース7上に積層造形物Wを造形させる。つまり、マニピュレータ3は、マニピュレータ制御装置4からの指令により、ワイヤをアークで溶融させながらトーチ8を移動させる。熱源制御装置6は、マニピュレータ3による溶接に要する電力を供給する溶接電源である。熱源制御装置6は、ビードを形成する際に電流や電圧などを切り替えることが可能である。本実施形態においてベース7は平面状のものを用いる構成を示しているが、これに限定するものではない。例えば、ベース7が円柱状にて構成され、その側面外周にビードが形成されるような構成であってもよい。また、本実施形態に係る造形形状データにおける座標系と、積層造形物Wが造形されるベース7上での座標系は対応付けられており、例えば、任意の位置を原点として、3次元における位置が規定されるように座標系の3軸が設定されていてもよく、ベース7が円柱状にて構成される場合には、円筒座標系が設定されていてもよく、場合によっては球面座標系が設定されていてもよい。なお、座標成分(以降、「座標軸」とも称する)は、
直交座標系、円筒座標系、球座標系等の座標系の種類によって任意で設定してもよく、例えば、直交座標系の3軸は、空間内で互いに直交する3本の直線として、各々X軸、Y軸、Z軸で示す。
 造形制御装置2は、例えば、PC(Personal Computer)などの情報処理装置などであってよい。後述する造形制御装置2の各機能は、不図示の制御部が、不図示の記憶装置に記憶された本実施形態に係る機能のプログラムを読み出して実行することで実現されてよい。記憶装置としては、揮発性の記憶領域であるRAM(Random Access Memory)や、不揮発性の記憶領域であるROM(Read Only Memory)やHDD(Hard Disk Drive)などが含まれてよい。また、制御部としては、CPU(Central Processing Unit)や専用回路などが用いられてよい。
 [機能構成]
 図2は、本実施形態に係る造形制御装置2の機能構成を主として示すブロック図である。造形制御装置2は、入力部10、記憶部11、要素形状分解部15、積層パターン設定部16、形成順調整部17、プログラム生成部18、および出力部19を含んで構成される。入力部10は、例えば、不図示のネットワークを介して外部から各種情報を取得する。ここで取得される情報としては、例えば、CAD/CAMデータなどの積層造形を行う対象物の設計データ(以下、「造形形状データ」と称する)が挙げられる。なお、本実施形態に用いる各種情報の詳細については後述する。造形形状データは、通信可能に接続された不図示の外部装置から入力されてもよいし、造形制御装置2上にて所定の不図示のアプリケーションを用いて作成されてもよい。
 記憶部11は、入力部10にて取得された各種情報を記憶する。また、記憶部11は、本実施形態に係る要素形状および積層パターンのデータベース(DB)を保持、管理する。要素形状および積層パターンの詳細については後述する。
 要素形状分解部15は、造形形状データが示す積層造形物の形状から、予め規定された要素形状を抽出することで、1の積層造形物の形状を複数の要素形状に分解する。言い換えると、本実施形態では1の積層造形物の形状を、複数の要素形状から構成された複雑形状として扱う。
 積層パターン設定部16は、要素形状分解部15にて分解された複数の要素形状それぞれに対して、積層パターンDB14にて予め規定されている積層パターンを割り当てて設定する。より具体的には、積層パターン設定部16は、要素形状を造形するための積層パターンを、当該要素形状を構成するビードごとに設定する。
 形成順調整部17は、積層パターン設定部16にて設定された積層パターンに基づき、複数の要素形状それぞれに対して、ビードを形成する(以降、「積層する」とも称する)順番を調整する。
 プログラム生成部18は、形成順調整部17にて調整された形成順に基づき、積層造形物Wを造形するためのプログラム群を生成する。例えば、1のプログラムが、積層造形物Wを構成する1のビードに対応してよい。ここで生成されるプログラム群は、マニピュレータ制御装置4にて処理、実行されることで、マニピュレータ3や熱源制御装置6の制御が行われる。なお、マニピュレータ制御装置4にて処理可能なプログラム群の種類や仕様は特に限定するものではないが、プログラム群の生成に要するマニピュレータ3や熱源制御装置6の仕様、およびワイヤの仕様などは予め保持されているものとする。
 出力部19は、プログラム生成部18にて生成されたプログラム群をマニピュレータ制御装置4に出力する。なお、出力部19は更に、造形制御装置2が備えるディスプレイなどの不図示の出力装置を用いて、造形形状データに対する処理結果を出力するような構成であってもよい。
 [全体処理]
 図3は、本実施形態に係る造形制御装置による処理全体の流れを示すフローチャートである。本処理は、例えば、造形制御装置2が備えるCPUなどの制御部が図2に示した各部位を実現するためのプログラムを不図示の記憶装置から読み出して実行することにより実現されてよい。ここでは説明を簡単にするため、処理主体を造形制御装置2としてまとめて説明する。
 S301にて、造形制御装置2は、造形する積層造形物Wの造形形状データを取得する。上述したように、造形形状データは外部から取得されてもよいし、造形制御装置2が備える不図示のアプリケーションを用いて作成されたものが取得されてもよい。
 S302にて、造形制御装置2は、予め規定されて記憶部11に保持されている要素形状DB13を参照して、S301にて取得した造形形状データが示す形状を複数の要素形状に分解する。
 S303にて、造形制御装置2は、S302にて抽出した複数の要素形状それぞれに対して、積層パターンDB14を参照して積層パターンを導出する。更に、造形制御装置2は、複数の要素形状を造形するための形成順を導出する。本工程の詳細については、図12等を用いて後述する。
 S304にて、造形制御装置2は、S303にて導出した積層パターンおよび形成順に基づいてマニピュレータ制御装置4にて用いられるプログラム群を生成する。
 S305にて、造形制御装置2は、S304にて生成したプログラム群をマニピュレータ制御装置4へ出力する。そして、本処理フローを終了する。
 [要素形状への分解]
 図4は、造形形状データが示す積層造形物Wの形状を複数の要素形状に分解する例を説明するための概念図である。ベース7上に造形対象となる積層造形物Wの形状を示している。この積層造形物Wの形状から、2つの中実矩形柱、2つの中実円柱、および2つの薄板に分解することが可能である。なお、ここでの分解は一例であり、予め規定された要素形状に応じて、他の形状への分解が行われてよい。
 要素形状への分解は、例えば、要素形状DB13に基づいて造形制御装置2がパターンマッチングを行うことで実現されてよい。また、造形制御装置2の操作者が分解の際に用いられる要素形状の指定や割り当てを行うような構成であってもよい。また、造形制御装置2が行った分解に対して、操作者が補正を行うような構成であってもよい。
 中実矩形柱や中実円柱は、例えば、積層造形物Wの上部に重量物を積載した際の荷重を支えるために必要となる場合がある。また、薄板は、例えば、図4に示す中実矩形柱と薄板との間に流体を流して冷却を行うための水密性を求められる場合や、中実矩形柱や中実円柱の横倒れを防止する補助的なリブとしての機能を求められる場合がある。つまり、積層造形物Wは、複数の要素形状を組み合わせた複雑形状として構成され、各要素形状に求められる役割が組み合わせに応じて異なることとなる。そのため、各部位に応じた積層造形を行うことが求められる。
 [データベース]
 本実施形態においては、図2に示したように要素形状DB13と積層パターンDB14を用いる。要素形状DB13と積層パターンDB14は、予め規定され、記憶部11にて保持、管理される。本実施形態では、造形対象となる積層造形物Wが、複数の単純な形状(以降、「要素形状」と称する)を組み合わせて構成されているものとして扱う。そのため、積層造形物Wを構成する要素形状を予め定義し、要素形状DB13にて管理する。要素形状としては、中実矩形柱、薄肉中空矩形柱、厚肉中空矩形柱、中実円柱、薄肉中空円柱、厚肉中空円柱、薄板、中実扇形柱などが挙げられるが、他の形状が含まれてもよい。また、同じ形状であっても、造形するサイズに応じてより詳細な分類が規定されていてもよい。なお、造形するサイズは、例えば、高さ、幅、厚み、縦横比などが挙げられる。
 積層パターンDB14は、要素形状DB13に規定された要素形状それぞれに対して積層造形を行う際の条件等を定義したデータベースである。図5は、積層パターンDB14の構成例を示す。積層パターンDB14は、要素形状、位置種別、パス高さ、パス幅、溶着速度、入熱量、熱源角度、形成経路情報などが含まれる。要素形状は、要素形状DB13に対応して規定された要素形状の種類を示す。位置種別は、要素形状を構成する部位の種別を示す。一例として、中実柱は、外縁部、外縁部近傍の内部充填部、および内部充填部の部位から構成されるものとして説明するが、これに限定するものではなく、更に詳細な分類を用いてもよい。また、外縁部近傍とは、例えば、外縁部に隣接する1ビードであってもよいし、それ以上の範囲を示してもよく、特に限定するものはない。
 パス高さは、対応する位置種別を形成する際のビードの1パス当たりの高さを示す。パス幅は、対応する位置種別を形成する際のビードの1パス当たりの幅を示す。なお、1つのパスにより、1つのビードが形成されるものとする。溶着速度は、ビードを形成する際の単位時間当たりの溶融するワイヤの重量を示す。なお、溶着速度は、例えば、単位時間あたりに送給される速度、すなわちワイヤ送給速度を適用してもよい。入熱量は、ビードを形成する際の熱源による入熱量を示す。ここでは、大、中、小の3段階にて入熱量を示しているが、これ以外の水準数や数値にて示してもよい。熱源角度は、ビードを形成する際の熱源の角度を示す。なお、本実施形態において熱源角度とは指向性熱源の入射角度であり、熱源の移動方向に垂直な面において、ビードを形成する面と熱源方向とがなす角を指す。熱源の角度は任意に設定することも可能であり、トーチ8の入射角度とは必ずしも一致しない。熱源角度の設定方法は、例えばアーク溶接法を用いる場合には、磁気発生装置を用いて設定可能であり、レーザ溶接法を用いる場合にはミラーを用いて設定可能である。形成経路情報は、後述するビードの形成経路のパターンおよびその始点位置、終点位置、さらに、次のパスの始点位置への移動経路を含む。
 積層パターンDB14に定義される各種データにおいて、要素形状の外縁部は、形状再現性のために低入熱量の条件を設定する。一方、内部充填部においては、施工能率を考慮し、溶着速度が高い条件を設定する。また、外縁部近傍の内部充填部においては、ビード端部に熱を十分に供給し、融合不良の欠陥の発生を抑止するために熱源角度を下向き(90度)から一定の角度に傾けた条件を設定する。図5の例では、5~45度の設定値を用いているが、10~35度の範囲がより好ましく、10~25度の範囲が更に好ましい。
 積層パターンが設定されると、マニピュレータ3や熱源制御装置6の仕様や、ワイヤの種類などから、実際のビードを形成するための溶着条件を決定することができる。例えば、アークによる積層方式においては、溶着量は、ワイヤの送り速度や径などと相関がある。入熱量は、熱源制御装置6から供給される電流や電圧、チップ-ベース間の距離などと相関がある。熱源角度は、トーチ角度や熱源制御装置6から供給される電流や電圧、チップ-ベース間の距離などと相関がある。また、レーザによる積層方式においては、熱源角度は、レーザの入射角度、光学系の焦点距離、対象と焦点位置の相対距離などと相関がある。なお、積層パターンや溶着条件など、積層造形物Wを造形するための各種条件をまとめて造形条件とも称する。
 [形成経路情報]
 図6A~図6C、図7A~図7Cは、本実施形態に係る形成経路情報にて示されるトーチ8の移動経路(ビードの形成経路)の例を示す。図6A~図6Cは、矩形柱に対応する形成経路情報の例を示す。図6Aは、外縁部601を4パスにて形成する経路603と、内部充填部602を1パスにて形成する経路604を示す(計5パス)。図6Bは、外縁部601を4パスにて形成する経路603と、内部充填部602を2パスにて形成する経路611、612を示す(計6パス)。図6Cは、外縁部601を4パスにて形成する経路603と、外縁部近傍の内部充填部を1パスにて形成する経路621と、内部充填部を1パスにて形成する経路622を示す(計6パス)。
 図7A~図7Cは、円柱に対応する形成経路情報の例を示す。図7Aは、外縁部701を4パスにて時計回りに形成する経路703と、内部充填部702を1パスにて時計回りに形成する経路704を示す(計5パス)。図7Bは、外縁部701を4パスにて時計回りに形成する経路703と、内部充填部702を1パスにて反時計回りに形成する経路711を示す(計5パス)。図7Cは、外縁部701を4パスにて時計回りに形成する経路703と、内部充填部702を1パスにて直線にて形成する経路721を示す(計5パス)。なお、形成経路情報にて示される移動経路はこれに限定するものではなく、他の経路を用いてもよい。例えば、外縁部を1パスにて形成するような構成であってもよいし、1パスの中で溶着条件を切り替えるような構成であってもよい。
 なお、本実施形態では、中実柱においては、外縁部が先に形成され、その後、内部充填部が形成されるものとする。また、図6A~図6C、図7A~図7Cには示していないが、ビードを形成する際に、適時ウィービングを行って溶接欠陥を抑制するような形成経路情報が用いられてもよい。
 [トーチ制御]
 図8Aおよび図8Bは、本実施形態に係るトーチ8の向きの制御について説明するための図である。なお、説明を簡単にするため、ここでは、トーチ8の入射角度(トーチ角度)と熱源角度とは同じであるものとして説明する。要素形状の外縁部近傍の内部充填部に相当するビードを形成する場合を考える。このとき、ビード端部に熱を十分に供給し、融合不良の欠陥の発生を抑止するために、一定の角度にトーチ角度を傾ける。図8Aは外縁部801間の距離が一定以上である場合に、外縁部801と平面部802からなる角の部分において、トーチ8の入射角度を45度程度傾けた例を示す。図8Bは、外縁部811間の距離が一定以下である場合(谷部)において、トーチ8を移動方向に沿って平行移動させる代わりに、トーチ8を一定の角度に傾けながら移動方向に移動させるウィービングを行う例を示す。これにより、外縁部811と平面部812からなる角の部分において十分な熱を供給するように制御する。
 [パス高さ]
 図9は、本実施形態に係る積層造形物Wのパス高さを説明するための図である。ここでは、中実矩形柱と薄板を例に挙げて、その断面を用いて説明する。ここでは、高さ方向が積層方向であるものとして説明する。
 中実矩形柱は、外縁部と内部充填部に分けることができる。このとき、図5にて示したように積層パターンとして位置種別に応じて、ビードを形成する際の1パス当たりの高さが予め定義されている。本実施形態では、中実矩形柱の内部充填部のパス高さをHにて示し、外縁部のパス高さをHにて示す。同様に、薄板も1パス当たりのパス高さをHにて示す。
 本実施形態においては、パス高さ間において以下の関係が成り立つように定義される。
 H≧H
 H≧H
 これは、中実矩形柱の内部充填部においては、形成の効率(施工能率)を重視し、1パスで形成する範囲を大きくさせるためである。一方、中実矩形柱の外縁部や薄板は、形状再現性や溶着欠陥の発生の抑制を重視し、形成の精度を向上させるために、内部充填部よりも低いパス高さが設定される。一例として、H:H:H=3:4:2の関係となるように設定することができる。
 このような条件下において複数のビードが積層方向に積層されることで、積層造形物Wが造形される。図9の例の場合、中実矩形柱を造形するために外縁部は7層が積層され、内部充填部は5層が積層される。同様に、薄板を造形するために10層が積層される。なお、図9の例において、中実矩形柱の外縁部は、積層した結果、一部が目的とする中実矩形柱の形状からはみ出すこととなるが、これは造形後に削り工程を行うことで処理されてよい。また、最上位の層については、目標とする形状となるように他の層とは異なる制御パラメータを用いるような構成であってもよい。
 また、図9の例では、中実矩形柱の内部充填部が幅方向において4パス分の幅により形成される例を示しているがこれに限定するものではない。また、薄板も幅方向において1パス分の幅から形成される例を示しているがこれに限定するものではない。例えば、所定の厚さ(幅)以下の部位を薄肉部(例えば、薄板)として扱い、それよりも厚さが大きい部位を厚肉部として扱ってよい。
 また、図9の例では、ベース7(積層造形物Wの形成面)が水平な場合を想定し、各層は水平な状態として示している。しかし、この構成に限定するものではなく、ベース7の形状に合わせて積層方向や層(層平面)の構成を変更してよい。例えば、上述したように、ベース7が円柱状であり、ベース7を回転させながら積層造形物Wを造形する場合には、その回転面(曲面)に合わせて積層方向や層平面の構成が規定されてよい。この場合、ベース7の積層面に対して層平面(断面方向)が平行になるような構成となる。
 [形成順決定]
 図10は、積層造形物Wを構成する複数の要素形状に対し、各層の形成順を決定する際の概念を説明するための概略図である。ここでは、薄板と中実矩形柱から構成される積層造形物Wを例に挙げて説明する。図10において、一点鎖線の部分の断面図を示す。ここでは、中実矩形柱の外縁部および内部充填部と、薄板は図9にて示した構成と同じ構成を例に挙げて説明する。以降の図において、3次元空間とそれを示す3軸はそれぞれ対応しているものとする。なお、座標軸はX軸、Y軸、Z軸で示す。また、Z軸で示される積層方向において、各要素形状の層を下層から順に変数Nにて示す。外縁部の層数をNにて示し、内部充填部の層数をNにて示し、薄板の層数をNにて示す。
 本実施形態では、ビードの形成順を決定する際の基準として、単位高さHを用いる。単位高さHは、予め定義されているものとする。また、Hは、要素形状のパス高さの最小値と同じか、いずれよりも小さい値が設定される。つまり、図10の例では、中実矩形柱の外縁部のパス高さHおよび内部充填部のパス高さH、薄板のパス高さHとした場合、H、H、H≧Hとなる。
 例えば、各高さの関係は以下のように定義することができる。
 aH=bH=cH
 a≠c、かつ、b≠c、かつ、a>c、かつ、b>c、かつ、a≧b
 a,b,c:正の整数
 このとき、cは1~5が好ましく、1~3がより好ましい。また、a/bは3以下の整数が好ましく、1または2がより好ましい。また、積層造形物Wを構成する複数の要素形状において、a、b、c、H、Hは共通となるように設定されることが好ましい。
 また、各高さの関係は以下のように定義することが好ましい。
 H=H/d
 d:正の整数
 つまり、Hは、Hの整数分の1となる。このとき、dは3以下であることが好ましく、1がより好ましい。
 本実施形態では、単位高さHごとに各要素形状の形成順を判断する。着目している単位高さHを基準として、要素形状ごとに積層高さが達していない部位の層を形成候補として抽出する。ここでの積層高さとは、ビードが積層された結果として複数のビードにより形成された高さを示す。そして、形成候補として抽出された各部位の層を形成した場合の積層高さを比較することで、その形成候補が形成する層として適切か否かを判断する。本実施形態では、形成候補に内部充填部のある層が含まれている場合、その内部充填部の層を形成した結果、外縁部の形成済みの積層高さを上回る場合は、その内部充填部の層の形成を保留する。
 図11A~図11Dは、各層の形成順を決定する流れを説明するための図である。図10と同じ例を用いて説明するが、各層における幅方向(X方向)のパスの区切りは省略して示している。図11Aから図11Dの順に処理が行われるものとする。開始時点では、いずれの部位の層に対して形成順が決定していないものとする。
 図11Aは、目安高さがHの場合を示す。この時点において、まず、中実矩形柱の外縁部の第1層(N=1)、中実矩形柱の内部充填部の第1層(N=1)、および薄板の第1層(N=1)が形成候補として抽出される。このとき、中実矩形柱の内部充填部の第1層が形成された場合、外縁部の第1層の積層高さを超えてしまうため、中実矩形柱の内部充填部の第1層は形成候補から除外され、形成が保留される。その結果、中実矩形柱の外縁部の第1層(N=1)、および薄板の第1層(N=1)が形成されるものとして決定され、それらの形成順が決定される。ここでの中実矩形柱の外縁部の第1層と薄板の第1層の形成順は予め規定された規則に従って決定されてよい。
 図11Bは、目安高さが2Hの場合を示す。この時点において、まず、中実矩形柱の内部充填部の第1層(N=1)、および薄板の第2層(N=2)が形成候補として抽出される。このとき、中実矩形柱の内部充填部の第1層が形成された場合、外縁部の第1層の積層高さを超えてしまうため、中実矩形柱の内部充填部の第1層は形成候補から除外され、形成が保留される。その結果、薄板の第2層(N=2)が形成されるものとして決定され、図11Aにて決定された形成順に続く。
 図11Cは、目安高さが3Hの場合を示す。この時点において、まず、中実矩形柱の外縁部の第2層(N=2)、中実矩形柱の内部充填部の第1層(N=1)、および薄板の第3層(N=3)が形成候補として抽出される。このとき、中実矩形柱の内部充填部の第1層が形成された場合、外縁部の第1層の積層高さを超えてしまうが、形成候補である外縁部の第2層の積層高さよりも低くなる。そのため、中実矩形柱の内部充填部の第1層は形成候補から除外されず、中実矩形柱の外縁部の第2層(N=2)、中実矩形柱の内部充填部の第1層(N=1)、および薄板の第3層(N=3)が形成されるものとして決定される。このとき、内実矩形柱の内部充填部の第1層は、形成候補である外縁部の第2層の形成よりも後の形成順となるように決定される。ここでの中実矩形柱の外縁部の第2層と薄板の第3層の形成順は予め規定された規則に従って決定されてよい。
 図11Dは、目安高さが4Hの場合を示す。この時点において、まず、中実矩形柱の内部充填部の第2層(N=2)が形成候補として抽出される。このとき、中実矩形柱の内部充填部の第2層が形成された場合、外縁部の第2層の積層高さを超えてしまうため、中実矩形柱の内部充填部の第1層は形成候補から除外され、形成が保留される。その結果、この時点では、いずれの層の形成順も決定されないこととなる。上記の処理を繰り返すことで、各要素形状の全ての層の形成順が決定される。
 [形成順決定処理]
 図12は、本実施形態に係る形成順決定処理のフローチャートであり、図3に示した全体フローのうちのS303の工程の中で実行される処理に対応する。本処理は、例えば、造形制御装置2が備えるCPUやGPUなどの処理部が図2に示した各部位を実現するためのプログラムを不図示の記憶装置から読み出して実行することにより実現されてよい。
 ここでは、図10に示すように、積層造形物Wが、中実矩形柱と、薄板の要素形状から構成される例を示す。したがって、積層造形物Wを構成する要素形状の組み合わせに応じて、処理工程や判定工程は増減する。図12に示す処理は、図2に示した積層パターン設定部16や形成順調整部17が、記憶部11にて管理された各DBを参照して実行される。ここでは説明を簡単にするために、処理主体を造形制御装置2としてまとめて記載する。
 S1201にて、造形制御装置2は、図3のS302にて分解された複数の要素形状それぞれに対応する積層パターンを、積層パターンDB14を参照して取得する。本例では、中実矩形柱と薄板それぞれの積層パターンが取得される。
 S1202にて、造形制御装置2は、S1201にて取得した積層パターンに基づき、抽出形状の各部位に対応するパス高さを設定する。図9を用いて説明したように、本例では、造形制御装置2は、中実矩形柱の外縁部のパス高さHおよび内部充填部のパス高さHと、薄板のパス高さHを設定する。
 S1203にて、造形制御装置2は、単位高さHを設定する。上述したように、単位高さHは、ビードの形成順を決定する際の基準となる単位である。単位高さHの整数倍の高さ(以下、「目安高さ」と称する)ごとにビードの形成順を判定する。単位高さHは予め規定され、記憶部11にて保持されているものとする。なお、単位高さHは、一定の値が用いられてもよいし、積層造形物Wを構成する要素形状の組み合わせに応じて異なる値が用いられてもよい。
 S1204にて、造形制御装置2は、変数nを0にて初期化し、目安高さ(=n×H)を設定する。
 S1205にて、造形制御装置2は、各抽出形状の層数を示す変数を初期化する。本例では、中実矩形柱の外縁部の層数を示す変数N、中実矩形柱の内部充填部の層数を示す変数N、および、薄板の層数を示す変数Nをそれぞれ0にて初期化する。以下の説明において、H(N)は、第N層の積層高さを示し、添え字は部位の位置を示す。例えば、H(N)は、外縁部における第N層の積層高さを示す。また、P(N)は、第N層のパスを示し、添え字は部位の位置を示す。例えば、P(N)は、外縁部における第N層のパスを示す。
 S1206にて、造形制御装置2は、造形形状データおよびS1202にて設定した各パス高さに基づき、各抽出形状の層数の上限値を設定する。本例では、中実矩形柱の外縁部の層数の上限値NB_max、中実矩形柱の内部充填部の層数の上限値NI_max、および、薄板の層数の上限値NT_maxを設定する。図10の例の場合、NB_max=7、NI_max=5、NT_max=10となる。
 S1207にて、造形制御装置2は、形成候補のリストを初期化する。
 S1208にて、造形制御装置2は、N=NB_maxか否かを判定する。N=NB_maxである場合(S1208にてYES)、造形制御装置2の処理はS1211へ進む。一方、N=NB_maxでない場合(S1208にてNO)、造形制御装置2の処理はS1209へ進む。
 S1209にて、造形制御装置2は、目安高さ>H(N)か否かを判定する。目安高さ>H(N)である場合(S1209にてYES)、造形制御装置2の処理はS1210へ進む。一方、目安高さ>H(N)でない場合(S1209にてNO)、造形制御装置2の処理はS1211へ進む。
 S1210にて、造形制御装置2は、P(N+1)を形成候補に設定する。
 S1211にて、造形制御装置2は、N=NI_maxか否かを判定する。N=NI_maxである場合(S1211にてYES)、造形制御装置2の処理はS1214へ進む。一方、N=NI_maxでない場合(S1211にてNO)、造形制御装置2の処理はS1212へ進む。
 S1212にて、造形制御装置2は、目安高さ>H(N)か否かを判定する。目安高さ>H(N)である場合(S1212にてYES)、造形制御装置2の処理はS1213へ進む。一方、目安高さ>H(N)でない場合(S1212にてNO)、造形制御装置2の処理はS1214へ進む。
 S1213にて、造形制御装置2は、P(N+1)を形成候補に設定する。
 S1214にて、造形制御装置2は、N=NT_maxか否かを判定する。N=NT_maxである場合(S1214にてYES)、造形制御装置2の処理はS1217へ進む。一方、N=NT_maxでない場合(S1214にてNO)、造形制御装置2の処理はS1215へ進む。
 S1215にて、造形制御装置2は、目安高さ>H(N)か否かを判定する。目安高さ>H(N)である場合(S1215にてYES)、造形制御装置2の処理はS1216へ進む。一方、目安高さ>H(N)でない場合(S1215にてNO)、造形制御装置2の処理はS1217へ進む。
 S1216にて、造形制御装置2は、P(N+1)を形成候補に設定する。なお、S1208~S1210の処理(中実矩形柱の外縁部に対応)、S1211~S1213の処理(中実矩形柱の内部充填部に対応)、S1214~S1216の処理(薄板に対応)の順序はこれに限定するものではなく、これらの処理の順序が入れ替わってよい。
 S1217にて、造形制御装置2は、形成候補にP(N+1)とP(N+1)の両方が含まれるか否かを判定する。両方が含まれる場合(S1217にてYES)、造形制御装置2の処理はS1220へ進む。一方、いずれかが含まれない場合は(S1217にてNO)、造形制御装置2の処理はS1218へ進む。
 S1218にて、造形制御装置2は、形成候補にP(N+1)が含まれるか否かを判定する。P(N+1)が含まれている場合(S1218にてYES)、造形制御装置2の処理はS1219へ進む。一方、P(N+1)が含まれていない場合(S1218にてNO)、造形制御装置2の処理はS1222へ進む。
 S1219にて、造形制御装置2は、H(N)<H(N+1)か否かを判定する。H(N)<H(N+1)である場合(S1219にてYES)、造形制御装置2の処理はS1221へ進む。一方、H(N)<H(N+1)でない場合(S1219にてNO)、造形制御装置2の処理はS1222へ進む。
 S1220にて、造形制御装置2は、H(N+1)<H(N+1)か否かを判定する。H(N+1)<H(N+1)である場合(S1220にてYES)、造形制御装置2の処理はS1221へ進む。一方、H(N+1)<H(N+1)でない場合(S1220にてNO)、造形制御装置2の処理はS1222へ進む。
 S1221にて、造形制御装置2は、P(N+1)を形成候補から除外する。
 S1222にて、造形制御装置2は、形成候補に含まれる各パスの形成順を決定する。ここでの形成順は、要素形状の位置種別ごとに設定された優先度に応じて決定されてもよいし、要素形状の組み合わせに応じて規定された順序に基づいて決定されてもよい。このとき、形成候補に内部充填部が含まれる場合には、外縁部よりも後に形成されることが好ましい。
 S1223にて、造形制御装置2は、形成候補に含まれる層数の値を1インクリメントする。具体的には、形成候補にP(3)が含まれていた場合、Nの値は2(=3-1)であるため、Nの値に1を加えて3に更新する。つまり、外縁部の第3層まで形成順が決定したことを意味する。
 S1224にて、造形制御装置2は、各抽出形状に対する全層の形成順が決定したか否かを判定する。本例の場合、N=NB_max、N=NI_max、N=NT_maxとなったか否かを判定する。全層の形成順が決定した場合(S1224にてYES)、本処理フローを終了する。一方、形成順が決定していない層がある場合(S1224にてNO)、造形制御装置2の処理はS1225へ進む。
 S1225にて、造形制御装置2は、nの値を1インクリメントし、目安高さ(=n×H)を更新する。そして、造形制御装置2の処理は、S1207へ戻り、以降の処理を繰り返す。
 上記の処理フローによって決定した形成順に基づいて、マニピュレータ3や熱源制御装置6を制御するためのプログラム群が生成されることとなる。ここでの制御パラメータは、積層パターンDB14に規定された積層パターンに基づいて設定することができる。
 以上、本実施形態により、積層造形物を造形する際に、力学的特性が求められる部位の溶接欠陥の発生を抑制しつつ、積層造形物全体の施工能率を向上させることが可能となる。
 なお、上記では、外縁部の積層高さと内部充填部の積層高さとを比較し、外縁部の方が積層高さが高くなるように各層の形成順を決定していた。このとき積層高さの高低差が所定の範囲内であることがより好ましい。ここでの所定の範囲は、特に限定するものでは無いが、積層パターンに規定された外縁部と内部充填部それぞれの溶着量の差異に基づいて決定してよい。または、積層パターンに規定された外縁部と内部充填部それぞれの溶着量に基づいて単位高さHの値を調整することで外縁部の積層高さが内部充填部の積層高さの高低差が所定の範囲以上とならないように制御してもよい。また、トーチ8からのワイヤの突き出し長さに応じて、高低差に対する所定の範囲を設定してもよい。例えば、ワイヤの突き出し長さが12~15mmであることを想定した場合、高低差が20mm以下であることが好ましい。より好ましくは高低差が15mm以下であり、更に好ましくは高低差が12mmである。このようにすることで、外縁部の溶落を防止したり、トーチ8の積層造形物Wへの干渉を防止したりすることが可能となる。
 <第2の実施形態>
 本願発明の第2の実施形態として、積層造形物において、要素形状が外縁部を共有する場合やパスが交差する場合について説明する。なお、第1の実施形態と重複する箇所については説明を省略し、差分に着目して説明を行う。
 [パス交差]
 図13A、図13Bは、本実施形態に係る要素形状を形成する際のパスの交差を説明するための図であり、図4にて示した薄板にて構成される部位を積層方向に沿って見た例を示している。各ビードを形成する際にパスを交差して形成させると、交差した部分の肉が厚くなってしまう。例えば、交差した部分の高さや幅がそれ以外の部分と異なってしまう。そのため、パスが交差する位置において、後行のパスは、先行のパスとの交差する部分にて一旦ビードの形成を停止し、交差部分を横断した位置からビードの形成を再開する。図13Aは、横方向のパス1301が先行パスとして設定され、その後、縦方向のパス1302、1303が後行パスとして設定された例を示している。一方、図13Bは縦方向のパス1311が先行パスとして設定され、その後、横方向のパス1302、1303が後行パスとして設定された例を示している。本実施形態では、パス交差が生じる構成に対しては、上記のような条件に基づいて形成経路や形成順を決定する。
 このようなパスの交差が発生する場合、造形後の形状を安定させるために、ビードを形成するパスの先行/後行は交互に行うことが好ましい。つまり、図13Aのパスの順番と図13Bのパスの順序は交互に行って積層することが好ましい。なお、ここでの交互とは、一層ごとに限定するものではなく、所定の層数(例えば、2層)ごとに行ってもよいし、周辺に位置する他の部位や要素形状に応じて調整されてもよい。
 [パス共有]
 図14A、図14B、図14Cは、本実施形態に係る要素形状を形成する際のパスの共有を説明するための図であり、図4にて示した中実矩形柱にて構成される部位を積層方向に沿って見た例を示している。1の積層造形物を複数の要素形状に分解した場合、その接続部分においてパスが共有するような構成となり得る。例えば、図4に示す形状から2つの中実矩形柱を抽出した場合、図14Aのように分解することができる。このとき、2つの中実矩形柱は互いの外縁部1401、1402にて接続されていることとなる。この接続部分を1つの外縁部として共有することで、施工効率を向上させることが可能になる。具体的には、図14Bと図14Cに示すように、接続部においていずれかのパスを外縁部としつつ、もう一方の外縁部を内部充填部に置き換える。
 図14Bでは、パス1411を先行パスとし、パス1412を後行パスとして設定する例を示す。一方、図14Cは、パス1421を先行パスとし、パス1422、1423を後行パスとして設定する例を示す。これにより、外縁部の範囲を削減して、外縁部よりも溶着速度を上昇することが可能な内部充填部を形成することにより、積層効率を向上させることができる。図14Cではパスの始終端位置を共有部に配置しているが、これらは特に限定されるものではなく、非共有部であってもよい。
 また、このようなパスの共有が発生する場合、造形後の形状を安定させるために、ビードを形成するパスの先行/後行は交互に行うことが好ましい。つまり、図14Bのパスの順番と図14Cのパスの順序は交互に行って積層することが好ましい。なお、ここでの交互とは、一層ごとに限定するものではなく、所定の層数(例えば、2層)ごとに行ってもよいし、周辺に位置する他の部位や要素形状に応じて調整されてもよい。
 図15は、パス共有が発生する場合において、積層造形物Wを構成する複数の要素形状に対し、各層の形成順を決定する際の概念を説明するための図である。第1の実施形態において図10を用いて説明した構成との差分として、内実矩形柱と薄板の接続部分において、内実矩形柱側の外縁部が内部充填部に置き換わっている。それ以外の構成は、図10を用いて説明したものと同様である。
 [処理フロー]
 (形成順決定処理)
 図16は、本実施形態に係る形成順決定処理のフローチャートであり、第1の実施形態にて図12に示した処理のうち、S1217~S1220の工程に代えて行われる処理である。図15に示すように、積層造形物Wが、中実矩形柱と薄板の要素形状から構成される例を示す。したがって、積層造形物Wを構成する要素形状の組み合わせに応じて、処理工程や判定工程は増減する。図16に示す処理は、図2に示した積層パターン設定部16や形成順調整部17が、記憶部11にて管理された各DBを参照して実行される。ここでは説明を簡単にするために、処理主体を造形制御装置2としてまとめて記載する。
 S1216の処理の後、造形制御装置2の処理はS1601へ進む。S1601にて、造形制御装置2は、形成候補にP(N+1)、P(N+1)、およびP(N+1)の全てが含まれるか否かを判定する。全てが含まれる場合(S1601にてYES)、造形制御装置2の処理はS1602へ進む。一方、いずれかが含まれない場合は(S1601にてNO)、造形制御装置2の処理はS1603へ進む。
 S1602にて、造形制御装置2は、H(N+1)<H(N+1)、または、H(N+1)<H(N+1)か否かを判定する。つまり、形成候補であるP(N+1)の積層高さが、他の形成候補の積層高さよりも高いか否かが判定される。本条件を満たす場合(S1602にてYES)、造形制御装置2の処理はS1221へ進む。一方、本条件を満たさない場合(S1602にてNO)、造形制御装置2の処理はS1222へ進む。
 S1603にて、造形制御装置2は、形成候補にP(N+1)が含まれるか否かを判定する。P(N+1)が含まれている場合(S1603にてYES)、造形制御装置2の処理はS1604へ進む。一方、P(N+1)が含まれていない場合(S1603にてNO)、造形制御装置2の処理はS1222へ進む。
 S1604にて、造形制御装置2は、形成候補にP(N+1)が含まれるか否かを判定する。P(N+1)が含まれている場合(S1604にてYES)、造形制御装置2の処理はS1605へ進む。一方、P(N+1)が含まれていない場合(S1604にてNO)、造形制御装置2の処理はS1606へ進む。
 S1605にて、造形制御装置2は、H(N+1)<H(N+1)か否かを判定する。H(N+1)<H(N+1)である場合(S1605にてYES)、造形制御装置2の処理はS1221へ進む。一方、H(N+1)<H(N+1)でない場合(S1605にてNO)、造形制御装置2の処理はS1607へ進む。
 S1606にて、造形制御装置2は、H(N)<H(N+1)か否かを判定する。H(N)<H(N+1)である場合(S1606にてYES)、造形制御装置2の処理はS1221へ進む。一方、H(N)<H(N+1)でない場合(S1606にてNO)、造形制御装置2の処理はS1607へ進む。
 S1607にて、造形制御装置2は、形成候補にP(N+1)が含まれるか否かを判定する。P(N+1)が含まれている場合(S1607にてYES)、造形制御装置2の処理はS1608へ進む。一方、P(N+1)が含まれていない場合(S1607にてNO)、造形制御装置2の処理はS1609へ進む。
 S1608にて、造形制御装置2は、H(N+1)<H(N+1)か否かを判定する。H(N+1)<H(N+1)である場合(S1608にてYES)、造形制御装置2の処理はS1221へ進む。一方、H(N+1)<H(N+1)でない場合(S1608にてNO)、造形制御装置2の処理はS1222へ進む。
 S1609にて、造形制御装置2は、H(N)<H(N+1)か否かを判定する。H(N)<H(N+1)である場合(S1609にてYES)、造形制御装置2の処理はS1221へ進む。一方、H(N)<H(N+1)でない場合(S1609にてNO)、造形制御装置2の処理はS1222へ進む。なお、S1604~S1606の処理(外縁部と内部充填部の積層高さの比較)と、S1607~S1609の処理(薄板と内部充填部の積層高さの比較)の順序はこれに限定するものではなく、逆であってもよい。
 [パス共有の変形例]
 上述したようなパスが共有される場合において、ビードの形成を交互に行う場合の例を図17に示す。ここでは、一例として各パス高さが、H:H:H=4:3:2の関係となるように設定されたものとして説明する。図17に示すように、部位のパス高さに応じて、積層する際のパターン(形成経路)を入れ替えることが可能である。なお、破線は、造形形状データが示す積層造形物Wの形状を示す。本例では、薄板の第4層、第5層、第9層は、図17に示すパターンAとなるようにパスが設定され、薄板の第1層~第3層、第6層~第8層は、図17に示すパターンBとなるようにパスが設定される。
 なお、図17に示すように、外縁部と薄板の幅方向(X軸方向)においてサイズが異なるような場合には、その部分に対する削り処理が可能か否かに応じてパターンを入れ替えるか否かを決定してよい。また、薄板の第5層(N=5)と第6層(N=6)のように、サイズがより大きい層を上層側に形成する場合には、上層の形成時にビードの垂れ落ちといった溶接不良が生じないことを条件としてパターンを入れ替えるか否かを決定してよい。
 以上、本実施形態により、第1の実施形態の効果に加え、パス共有がなされる積層造形物において、より施工能率を向上させることが可能となる。
 <その他の実施形態>
 また、本願発明において、上述した1以上の実施形態の機能を実現するためのプログラムやアプリケーションを、ネットワーク又は記憶媒体等を用いてシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し実行する処理でも実現可能である。
 また、1以上の機能を実現する回路によって実現してもよい。なお、1以上の機能を実現する回路としては、例えば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)が挙げられる。
 以上の通り、本明細書には次の事項が開示されている。
 (1) 対象物の造形形状データに基づいて、指向性のある熱源を用いて前記対象物の積層造形を行うための造形条件の設定方法であって、
 前記造形形状データが示す形状における外縁部と内部それぞれに対して積層パターンを設定する設定工程と、
 前記設定工程にて設定した積層パターンを用いて前記外縁部と前記内部それぞれを積層して形成する際の形成順を、造形時において前記外縁部のすでに積層されている高さが新たに積層しようとする前記内部の高さと比較して高くなるように調整する調整工程と、
を有し、
 前記積層パターンにおいて、前記外縁部との境界に位置する部位を形成する際の前記熱源の向きは、前記熱源の移動方向に垂直な面において、前記外縁部へ所定の角度に傾けるように設定されることを特徴とする設定方法。
 この構成によれば、積層造形物を構成する部位およびその周辺の形成状況に応じた造形条件を適切に設定することが可能となる。特に、積層造形物の部位に応じた溶接欠陥の抑制が可能となる。
 (2) 前記所定の角度は、前記熱源の構成に応じて設定されることを特徴とする(1)に記載の設定方法。
 この構成によれば、ワイヤの突き出し長さや装置の大きさなどの熱源の構成に応じて傾き角度を制御でき、形成済みの造形物とノズル等の装置との干渉を抑制することが可能となる。ここでいう装置とは、例えば、炭酸ガスアーク溶接等の消耗電極式溶接法を用いる場合には、シールドノズル等を示し、TIG溶接等の非消耗電極式溶接法を用いる場合にはトーチに加えてワイヤ送給装置等を示す。さらに、例えばレーザ溶接の場合には集光ヘッドや熱源角度設定用のミラーシステム等を示す。
 (3) 前記設定工程は、前記外縁部と前記内部それぞれに対する積層パターンにおいて、前記外縁部の1ビードの高さをH、前記内部の1ビードの高さをH、前記外縁部と前記内部それぞれを積層して形成する際のビードの形成順を決定するために用いる単位高さをHとした場合に、
 aH=bH=cH
 a≠c、かつ、b≠c、かつ、a>c、かつ、b>c、かつ、a≧b
 a、b、cは、正の整数
が成り立つように設定することを特徴とする(1)または(2)に記載の設定方法。
 この構成によれば、各部位のサイズ間の関係が明確になり、形成順を容易に調整可能となる。
 (4) 前記造形形状データが示す形状を、予め規定されている要素形状にて複数の要素形状に分解する分解工程を更に有し、
 前記設定工程は、前記分解工程にて分解された複数の要素形状それぞれの外縁部と内部に対して積層パターンを設定することを特徴とする請求項(1)~(3)のいずれかに記載の設定方法。
 この構成によれば、複雑形状を有する対象であっても、簡易な形状の要素に分解して容易に処理を行うことが可能となる。
 (5) 前記設定工程は、2つの要素形状が隣接する際に、一方の要素形状の外縁部を共有し、他方の要素形状の外縁部を内部に置き換えて当該2つの要素形状の積層パターンを設定することを特徴とする(4)に記載の設定方法。
 低入熱の外縁部を平行して施工させる場合に欠陥が生じ易いが、この構成によれば、欠陥発生を抑制することが可能となる。
 (6) 前記設定工程は、2つの要素形状が隣接する場合、積層方向における所定の層数ごとに、外縁部を内部に置き換える対象となる要素形状を入れ替えることを特徴とする(5)に記載の設定方法。
 この構成によれば、溶接欠陥が発生しやすい部位を集中させることなく、積層造形物全体の造形精度を向上させることが可能となる。
 (7) 前記設定工程は、2つの要素形状が交差する場合、一方の要素形状の形成を行った後、他方の要素形状の形成を行う際に交差部分の形成が行われないように、前記2つの要素形状の形成経路を設定することを特徴とする(4)に記載の設定方法。
 この構成によれば、複雑形状を有する対象において、交差部の肉厚過剰が発生することを抑制することが可能となる。
 (8) 前記設定工程は、2つの要素形状が交差する場合、積層方向における所定の層数ごとに、前記交差部分の形成を行わない対象となる要素形状を入れ替えることを特徴とする(7)に記載の設定方法。
 この構成によれば、肉厚異常が発生しやすい部位を集中させることなく、積層造形物全体の造形精度を向上させることが可能となる。
 (9) 対象物の造形形状データに基づいて、指向性のある熱源を用いて前記対象物の積層造形を行う積層造形方法であって、
 前記造形形状データが示す形状における外縁部と内部それぞれに対して積層パターンを設定する設定工程と、
 前記設定工程にて設定した積層パターンを用いて前記外縁部と前記内部それぞれを積層して形成する際の形成順を、造形時において前記外縁部のすでに積層されている高さが新たに積層しようとする前記内部の高さと比較して高くなるように調整する調整工程と、
 前記設定工程にて設定された積層パターンと、前記調整工程にて調整された形成順とに基づき、造形手段に前記対象物の積層造形を行わせる制御工程とを有し、
 前記積層パターンにおいて、前記外縁部との境界に位置する部位を形成する際の前記熱源の向きは、前記熱源の移動方向に垂直な面において、前記外縁部へ所定の角度に傾けるように設定されることを特徴とする積層造形方法。
 この構成によれば、積層造形物を構成する部位およびその周辺の形成状況に応じた造形条件を適切に設定することが可能となる。
 (10) 対象物の造形形状データに基づいて、指向性のある熱源を用いて前記対象物の積層造形を行う積層造形システムであって、
 前記造形形状データが示す形状における外縁部と内部それぞれに対して積層パターンを設定する設定手段と、
 前記設定手段にて設定した積層パターンを用いて前記外縁部と前記内部それぞれを積層して形成する際の形成順を、造形時において前記外縁部のすでに積層されている高さが新たに積層しようとする前記内部の高さと比較して高くなるように調整する調整手段と、
 前記設定手段にて設定された積層パターンと、前記調整手段にて調整された形成順とに基づき、前記対象物の積層造形を行う造形手段とを有し、
 前記積層パターンにおいて、前記外縁部との境界に位置する部位を形成する際の前記熱源の向きは、前記熱源の移動方向に垂直な面において、前記外縁部へ所定の角度に傾けるように設定されることを特徴とする積層造形システム。
 この構成によれば、積層造形物を構成する部位およびその周辺の形成状況に応じた造形条件を適切に設定することが可能となる。
 (11) コンピュータに、
 対象物の造形形状データが示す形状における外縁部と内部それぞれに対して積層パターンを設定する設定工程と、
 前記設定工程にて設定した積層パターンを用いて前記外縁部と前記内部それぞれを積層して形成する際の形成順を、造形時において前記外縁部のすでに積層されている高さが新たに積層しようとする前記内部の高さと比較して高くなるように調整する調整工程と、
を実行させ、
 前記積層パターンにおいて、前記外縁部との境界に位置する部位を形成する際の熱源の向きは、前記熱源の移動方向に垂直な面において、前記外縁部へ所定の角度に傾けるように設定されることを特徴とするプログラム。
 この構成によれば、積層造形物を構成する部位およびその周辺の形成状況に応じた造形条件を適切に設定することが可能となる。
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2020年9月25日出願の日本特許出願(特願2020-161260)に基づくものであり、その内容は本出願の中に参照として援用される。
1…積層造形システム
2…造形制御装置
3…マニピュレータ
4…マニピュレータ制御装置
5…コントローラ
6…熱源制御装置
7…ベース
8…トーチ
10…入力部
11…記憶部
12…造形形状データ
13…要素形状DB(データベース)
14…積層パターンDB(データベース)
15…要素形状分解部
16…積層パターン設定部
17…形成順調整部
18…プログラム生成部
19…出力部
W…積層造形物

Claims (16)

  1.  対象物の造形形状データに基づいて、指向性のある熱源を用いて前記対象物の積層造形を行うための造形条件の設定方法であって、
     前記造形形状データが示す形状における外縁部と内部それぞれに対して積層パターンを設定する設定工程と、
     前記設定工程にて設定した積層パターンを用いて前記外縁部と前記内部それぞれを積層して形成する際の形成順を、造形時において前記外縁部のすでに積層されている高さが新たに積層しようとする前記内部の高さと比較して高くなるように調整する調整工程と、
    を有し、
     前記積層パターンにおいて、前記外縁部との境界に位置する部位を形成する際の前記熱源の向きは、前記熱源の移動方向に垂直な面において、前記外縁部へ所定の角度に傾けるように設定されることを特徴とする設定方法。
  2.  前記所定の角度は、前記熱源の構成に応じて設定されることを特徴とする請求項1に記載の設定方法。
  3.  前記設定工程は、前記外縁部と前記内部それぞれに対する積層パターンにおいて、前記外縁部の1ビードの高さをH、前記内部の1ビードの高さをH、前記外縁部と前記内部それぞれを積層して形成する際のビードの形成順を決定するために用いる単位高さをHとした場合に、
     aH=bH=cH
     a≠c、かつ、b≠c、かつ、a>c、かつ、b>c、かつ、a≧b
     a、b、cは、正の整数
    が成り立つように設定することを特徴とする請求項1または2に記載の設定方法。
  4.  前記造形形状データが示す形状を、予め規定されている要素形状にて複数の要素形状に分解する分解工程を更に有し、
     前記設定工程は、前記分解工程にて分解された複数の要素形状それぞれの外縁部と内部に対して積層パターンを設定することを特徴とする請求項1または2に記載の設定方法。
  5.  前記造形形状データが示す形状を、予め規定されている要素形状にて複数の要素形状に分解する分解工程を更に有し、
     前記設定工程は、前記分解工程にて分解された複数の要素形状それぞれの外縁部と内部に対して積層パターンを設定することを特徴とする請求項3に記載の設定方法。
  6.  前記設定工程は、2つの要素形状が隣接する際に、一方の要素形状の外縁部を共有し、他方の要素形状の外縁部を内部に置き換えて当該2つの要素形状の積層パターンを設定することを特徴とする請求項4に記載の設定方法。
  7.  前記設定工程は、2つの要素形状が隣接する際に、一方の要素形状の外縁部を共有し、他方の要素形状の外縁部を内部に置き換えて当該2つの要素形状の積層パターンを設定することを特徴とする請求項5に記載の設定方法。
  8.  前記設定工程は、2つの要素形状が隣接する場合、積層方向における所定の層数ごとに、外縁部を内部に置き換える対象となる要素形状を入れ替えることを特徴とする請求項6に記載の設定方法。
  9.  前記設定工程は、2つの要素形状が隣接する場合、積層方向における所定の層数ごとに、外縁部を内部に置き換える対象となる要素形状を入れ替えることを特徴とする請求項7に記載の設定方法。
  10.  前記設定工程は、2つの要素形状が交差する場合、一方の要素形状の形成を行った後、他方の要素形状の形成を行う際に交差部分の形成が行われないように、前記2つの要素形状の形成経路を設定することを特徴とする請求項4に記載の設定方法。
  11.  前記設定工程は、2つの要素形状が交差する場合、一方の要素形状の形成を行った後、他方の要素形状の形成を行う際に交差部分の形成が行われないように、前記2つの要素形状の形成経路を設定することを特徴とする請求項5に記載の設定方法。
  12.  前記設定工程は、2つの要素形状が交差する場合、積層方向における所定の層数ごとに、前記交差部分の形成を行わない対象となる要素形状を入れ替えることを特徴とする請求項10に記載の設定方法。
  13.  前記設定工程は、2つの要素形状が交差する場合、積層方向における所定の層数ごとに、前記交差部分の形成を行わない対象となる要素形状を入れ替えることを特徴とする請求項11に記載の設定方法。
  14.  対象物の造形形状データに基づいて、指向性のある熱源を用いて前記対象物の積層造形を行う積層造形方法であって、
     前記造形形状データが示す形状における外縁部と内部それぞれに対して積層パターンを設定する設定工程と、
     前記設定工程にて設定した積層パターンを用いて前記外縁部と前記内部それぞれを積層して形成する際の形成順を、造形時において前記外縁部のすでに積層されている高さが新たに積層しようとする前記内部の高さと比較して高くなるように調整する調整工程と、
     前記設定工程にて設定された積層パターンと、前記調整工程にて調整された形成順とに基づき、造形手段に前記対象物の積層造形を行わせる制御工程とを有し、
     前記積層パターンにおいて、前記外縁部との境界に位置する部位を形成する際の前記熱源の向きは、前記熱源の移動方向に垂直な面において、前記外縁部へ所定の角度に傾けるように設定されることを特徴とする積層造形方法。
  15.  対象物の造形形状データに基づいて、指向性のある熱源を用いて前記対象物の積層造形を行う積層造形システムであって、
     前記造形形状データが示す形状における外縁部と内部それぞれに対して積層パターンを設定する設定手段と、
     前記設定手段にて設定した積層パターンを用いて前記外縁部と前記内部それぞれを積層して形成する際の形成順を、造形時において前記外縁部のすでに積層されている高さが新たに積層しようとする前記内部の高さと比較して高くなるように調整する調整手段と、
     前記設定手段にて設定された積層パターンと、前記調整手段にて調整された形成順とに基づき、前記対象物の積層造形を行う造形手段とを有し、
     前記積層パターンにおいて、前記外縁部との境界に位置する部位を形成する際の前記熱源の向きは、前記熱源の移動方向に垂直な面において、前記外縁部へ所定の角度に傾けるように設定されることを特徴とする積層造形システム。
  16.  コンピュータに、
     対象物の造形形状データが示す形状における外縁部と内部それぞれに対して積層パターンを設定する設定工程と、
     前記設定工程にて設定した積層パターンを用いて前記外縁部と前記内部それぞれを積層して形成する際の形成順を、造形時において前記外縁部のすでに積層されている高さが新たに積層しようとする前記内部の高さと比較して高くなるように調整する調整工程と、
    を実行させ、
     前記積層パターンにおいて、前記外縁部との境界に位置する部位を形成する際の熱源の向きは、前記熱源の移動方向に垂直な面において、前記外縁部へ所定の角度に傾けるように設定されることを特徴とするプログラム。
PCT/JP2021/031260 2020-09-25 2021-08-25 造形条件の設定方法、積層造形方法、積層造形システム、およびプログラム WO2022064941A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180046260.0A CN115996810A (zh) 2020-09-25 2021-08-25 造型条件的设定方法、层叠造型方法、层叠造型系统以及程序
US18/005,866 US20230286050A1 (en) 2020-09-25 2021-08-25 Method of setting modeling condition, additive manufacturing method, additive manufacturing system, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020161260A JP7410002B2 (ja) 2020-09-25 2020-09-25 造形条件の設定方法、積層造形方法、積層造形システム、およびプログラム
JP2020-161260 2020-09-25

Publications (1)

Publication Number Publication Date
WO2022064941A1 true WO2022064941A1 (ja) 2022-03-31

Family

ID=80845117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031260 WO2022064941A1 (ja) 2020-09-25 2021-08-25 造形条件の設定方法、積層造形方法、積層造形システム、およびプログラム

Country Status (4)

Country Link
US (1) US20230286050A1 (ja)
JP (1) JP7410002B2 (ja)
CN (1) CN115996810A (ja)
WO (1) WO2022064941A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023204113A1 (ja) * 2022-04-22 2023-10-26 株式会社神戸製鋼所 制御情報生成装置、積層造形システム及びプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213970A (ja) * 1985-03-19 1986-09-22 Toshiba Mach Co Ltd Cadシステムにおける形状モデリングシステム
JP2016137663A (ja) * 2015-01-28 2016-08-04 富士通株式会社 造形データ作成プログラム、造形データ作成方法、および情報処理装置
WO2017038985A1 (ja) * 2015-09-04 2017-03-09 Jsr株式会社 立体造形物の製造方法及びこれに用いられるノズル移動経路のデータ作成方法、並びに立体造形物の製造装置及びこれに用いられるノズル移動経路のデータ作成プログラム
US20170151714A1 (en) * 2015-11-26 2017-06-01 Mike McGee Method of manufacturing extruded objects to increase production speed
JP2019181752A (ja) * 2018-04-05 2019-10-24 富士ゼロックス株式会社 三次元形状データの編集装置、三次元造形装置、三次元造形システム、及び三次元形状データの編集プログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10573516B2 (en) 2017-12-06 2020-02-25 QROMIS, Inc. Methods for integrated devices on an engineered substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213970A (ja) * 1985-03-19 1986-09-22 Toshiba Mach Co Ltd Cadシステムにおける形状モデリングシステム
JP2016137663A (ja) * 2015-01-28 2016-08-04 富士通株式会社 造形データ作成プログラム、造形データ作成方法、および情報処理装置
WO2017038985A1 (ja) * 2015-09-04 2017-03-09 Jsr株式会社 立体造形物の製造方法及びこれに用いられるノズル移動経路のデータ作成方法、並びに立体造形物の製造装置及びこれに用いられるノズル移動経路のデータ作成プログラム
US20170151714A1 (en) * 2015-11-26 2017-06-01 Mike McGee Method of manufacturing extruded objects to increase production speed
JP2019181752A (ja) * 2018-04-05 2019-10-24 富士ゼロックス株式会社 三次元形状データの編集装置、三次元造形装置、三次元造形システム、及び三次元形状データの編集プログラム

Also Published As

Publication number Publication date
US20230286050A1 (en) 2023-09-14
JP2022054204A (ja) 2022-04-06
JP7410002B2 (ja) 2024-01-09
CN115996810A (zh) 2023-04-21

Similar Documents

Publication Publication Date Title
US11772194B2 (en) Method for designing laminate molded article, production method, production device, and program
US10994370B2 (en) Lamination control device, and lamination control method and program
JP7120774B2 (ja) 積層造形物の造形手順設計方法、積層造形物の造形方法及び製造装置、並びにプログラム
JP6797324B1 (ja) 積層造形方法
US11415962B2 (en) Additively-manufactured object by forming beads along a formation projected line of beads
WO2022064941A1 (ja) 造形条件の設定方法、積層造形方法、積層造形システム、およびプログラム
WO2022019013A1 (ja) 機械学習装置、積層造形システム、溶接条件の機械学習方法、溶接条件の決定方法、およびプログラム
Kapil et al. Elimination of support mechanism in additive manufacturing through substrate tilting
WO2022064942A1 (ja) 造形条件の設定方法、積層造形方法、積層造形システム、およびプログラム
JP7428621B2 (ja) 造形条件の設定方法、積層造形方法、積層造形システム、およびプログラム
JP6997044B2 (ja) 積層造形物の積層造形計画設計方法、製造方法、及び製造装置、並びにプログラム
WO2024053281A1 (ja) 制御情報生成装置、制御情報生成方法及びプログラム
WO2023204113A1 (ja) 制御情報生成装置、積層造形システム及びプログラム
JP2023178726A (ja) 造形計画支援装置およびプログラム
JP2024013527A (ja) 軌道計画支援装置、軌道計画支援方法及びプログラム
JP2024025180A (ja) 制御情報生成装置、制御情報生成方法、プログラム及び積層造形方法
JP2024067526A (ja) 制御情報生成装置、制御情報生成方法、プログラム、並びに溶接装置及び溶接方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872073

Country of ref document: EP

Kind code of ref document: A1