WO2022064868A1 - 超音波システムおよび超音波システムの制御方法 - Google Patents

超音波システムおよび超音波システムの制御方法 Download PDF

Info

Publication number
WO2022064868A1
WO2022064868A1 PCT/JP2021/028918 JP2021028918W WO2022064868A1 WO 2022064868 A1 WO2022064868 A1 WO 2022064868A1 JP 2021028918 W JP2021028918 W JP 2021028918W WO 2022064868 A1 WO2022064868 A1 WO 2022064868A1
Authority
WO
WIPO (PCT)
Prior art keywords
straight line
interest
ultrasonic
region
distance
Prior art date
Application number
PCT/JP2021/028918
Other languages
English (en)
French (fr)
Inventor
理子 越野
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022551181A priority Critical patent/JP7465988B2/ja
Publication of WO2022064868A1 publication Critical patent/WO2022064868A1/ja
Priority to US18/177,564 priority patent/US20230200779A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4245Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4245Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
    • A61B8/4254Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient using sensors mounted on the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0825Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the breast, e.g. mammography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4209Details of probe positioning or probe attachment to the patient by using holders, e.g. positioning frames
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B8/468Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means allowing annotation or message recording
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B8/469Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means for selection of a region of interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data

Definitions

  • the present invention relates to an ultrasonic system and a control method of an ultrasonic system having a function of calculating a linear distance from a nipple in an ultrasonic image of a breast to a region of interest of a breast that may be a lesion.
  • Ultrasonography for breast screening and diagnosis is often performed after mammography. For example, if a mammography examination finds a region of interest in the breast, then ultrasonography identifies the region of interest in the breast in the ultrasound image that corresponds to the region of interest in the breast in the mammography image. Whether or not the region of interest of the breast is a lesion, for example, whether it is a cyst or malignant lymphoma, is determined. In the ultrasonic examination, there are cases where only the area of interest of the breast in the ultrasonic image corresponding to the area of interest of the breast in the mammography image is specified and discriminated, and the case where the entire breast is inspected and the ultrasonic image is used. In some cases, all areas of interest in the breast may be identified and discriminated.
  • Patent Document 1 As the prior art document that serves as a reference for the present invention, for example, Patent Document 1 and the like are available.
  • Patent Document 1 describes the position of the region of interest in the breast, the size of the region of interest, and the size of the breast based on the mammography image of the breast of the subject in the examination using both the mammography image and the ultrasonic image. Etc., and the setting conditions in the ultrasonic image diagnosis can be obtained based on the information such as the position of the region of interest, the size of the region of interest, and the size of the breast obtained in the mammography image. Are listed.
  • the characteristic sites of the breast in mammographic images such as nipples, epidermis, pectoralis major muscle or chest wall, the distance from the compression plate and radiation detector during mammography examination to the area of interest of the breast, and the size of the area of interest of the breast (major axis). It is useful to identify the region of interest of the breast on mammography using information such as (and minor axis).
  • BI-RADS Breast Imaging Reporting and Data System
  • the position information of the region of interest of the breast from the position mark indicating the position of the ultrasonic probe on the breast schema diagram, the clock position indicating the position of the ultrasonic probe such as the 3 o'clock direction, and the nipple. Information such as the linear distance to the area of interest of the breast is often used.
  • Patent Document 1 does not describe how to obtain the linear distance from the nipple to the region of interest of the breast, which is important as the position information of the region of interest of the breast in the ultrasonic image.
  • the ultrasonic probe on the nipple By detecting the position and the position of the ultrasonic probe on the epidermis on the area of interest of the breast, it is possible to calculate the linear distance from the nipple to the epidermis on the area of interest of the breast.
  • the magnetic sensor detects the position of the ultrasonic probe in the epidermis, it is possible to calculate the linear distance from the nipple to the epidermis on the region of interest of the breast based on the position of the ultrasonic probe, but the nipple. It is not possible to obtain a straight line distance from to the area of interest of the breast. Therefore, the closer the area of interest of the breast is to the pectoralis major muscle or the chest wall side rather than the epidermis side, the more the difference between the linear distance from the nipple to the area of interest of the breast and the distance from the nipple to the epidermis on the area of interest of the breast. There was a problem that it became large.
  • An object of the present invention is to provide an ultrasonic system and a control method of an ultrasonic system capable of accurately calculating a linear distance from a nipple to a region of interest of a breast in an ultrasonic image.
  • the present invention has been made with an ultrasonic probe.
  • a position sensor that outputs a position detection signal to detect the position of the ultrasonic probe in three-dimensional space, and An image that generates an ultrasonic image including the region of interest and the epidermis from the received signal obtained by transmitting and receiving an ultrasonic beam to the region of interest using an ultrasonic probe in the epidermis on the region of interest of the breast of the subject.
  • the generator and A position acquisition unit that acquires the first position of the ultrasonic probe in the nipple of the subject in the three-dimensional space and the second position of the ultrasonic probe in the epidermis on the region of interest, which are detected based on the position detection signal.
  • the part that identifies the area of interest and the epidermis in the ultrasound image, and the part that identifies the area, A first distance calculation unit that calculates the first straight line distance L1 from the first position to the second position in the three-dimensional space, and A second distance calculation unit that calculates the second linear distance L2 from the region of interest to the epidermis on the region of interest in the ultrasonic image, and Provided is an ultrasonic system including a third distance calculation unit for calculating a third straight line distance L3 from a nipple to a region of interest in an ultrasonic image based on a first straight line distance L1 and a second straight line distance L2.
  • the third distance calculation unit includes a first straight line from the first position to the second position in the three-dimensional space, a second straight line from the region of interest to the epidermis on the region of interest in the ultrasonic image, and an ultrasonic image.
  • a right-angled triangle in which the angle between the first straight line and the second straight line is approximately perpendicular is formed by the third straight line from the nipple to the region of interest in, the first by using the three-square theorem. It is preferable to calculate the third straight line distance L3 based on the straight line distance L1 and the second straight line distance L2.
  • the third distance calculation unit includes a first straight line from the first position to the second position in the three-dimensional space, a second straight line from the region of interest to the epidermis on the region of interest in the ultrasonic image, and an ultrasonic image.
  • the first straight line is formed when the third straight line from the nipple to the region of interest forms a right-angled triangle in which the angle between the second straight line and the third straight line is approximately perpendicular. It is preferable to calculate the third straight line distance L3 based on the distance L1 and the second straight line distance L2.
  • the position sensor outputs an angle detection signal for detecting the angle of the ultrasonic probe with respect to the vertical direction in the epidermis on the region of interest in the three-dimensional space.
  • the position acquisition unit detects the first angle ⁇ 1 with respect to the vertical direction of the ultrasonic probe in the nipple in the three-dimensional space and the second with respect to the vertical direction of the ultrasonic probe in the epidermis on the region of interest, which is detected based on the angle detection signal.
  • the third distance calculation unit is from the first straight line from the first position to the second position in the three-dimensional space, the fourth straight line extending from the nipple toward the inside of the subject at the first angle ⁇ 1, and the epidermis on the region of interest.
  • the fifth straight line extending toward the body of the subject at the second angle ⁇ 2 forms an isosceles triangle with the same distance between the fourth straight line and the fifth straight line, and is perpendicular to the third straight line and the nipple to the fifth straight line.
  • the extending 6th straight line and the 7th straight line from the intersection of the 5th straight line and the 6th straight line to the region of interest form a right-angled triangle in which the angle between the 6th straight line and the 7th straight line is perpendicular.
  • the position sensor is preferably a magnetic sensor, a GPS sensor, or an optical sensor.
  • a display control unit that superimposes the information of the third straight line distance L3 on the ultrasonic image including the region of interest and displays it on the monitor.
  • the display control unit further superimposes the information of the second straight line distance L2 on the ultrasonic image including the region of interest and displays it on the monitor.
  • the site identification part identifies the pectoralis major muscle or chest wall of the subject in the ultrasound image
  • a fourth distance calculation unit for calculating the fourth straight line distance L4 from the region of interest to the pectoralis major muscle or the chest wall in the ultrasonic image is provided. It is preferable that the display control unit further superimposes the information of the fourth straight line distance L4 on the ultrasonic image including the region of interest and displays it on the monitor.
  • the ultrasonic diagnostic apparatus includes an ultrasonic probe, a position sensor, and an image generator. It is preferable that the server includes a third distance calculation unit.
  • the site specifying portion identifies at least one of the region of interest and the epidermis in the ultrasonic image based on the instruction input from the user.
  • the site specifying portion identifies at least one of the region of interest and the epidermis in the ultrasonic image based on the result of the analysis of the ultrasonic image.
  • the site identification part uses the learning ultrasonic image including the area of interest of the subject's breast as teacher data, and has a plurality of relationships between the learning ultrasonic image and the area of interest and the epidermis included in the learning ultrasonic image. It is preferable to have a judgment model learned about the teacher data, and the judgment model preferably uses an ultrasonic image as an input to identify at least one of a region of interest and an epidermis in the ultrasonic image.
  • the present invention outputs a position detection signal for detecting the position of the ultrasonic probe in the three-dimensional space.
  • an ultrasonic image including the region of interest and the epidermis is generated from the received signal obtained by transmitting and receiving an ultrasonic beam to the region of interest using an ultrasonic probe.
  • the first position of the ultrasonic probe in the nipple of the subject and the second position of the ultrasonic probe in the epidermis on the region of interest, which are detected based on the position detection signal, are acquired. Identify areas of interest and epidermis in ultrasound images The first straight line distance L1 from the first position to the second position in the three-dimensional space is calculated.
  • the second linear distance L2 from the region of interest to the epidermis on the region of interest in the ultrasound image was calculated.
  • a control method of an ultrasonic system for calculating a third straight line distance L3 from a nipple to a region of interest in an ultrasonic image based on a first straight line distance L1 and a second straight line distance L2.
  • the first linear distance L1 from the first position of the ultrasonic probe in the nipple in the three-dimensional space to the second position of the ultrasonic probe in the epidermis on the region of interest of the breast and. Accurately calculate the third straight line distance L3 from the nipple to the area of interest of the breast in the ultrasonic image based on the second straight line distance L2 from the region of interest of the breast in the ultrasonic image to the epidermis on the area of interest of the breast. be able to.
  • FIG. 1 is a block diagram of an embodiment showing the configuration of the ultrasonic system of the present invention.
  • the ultrasonic system 10 shown in FIG. 1 includes an ultrasonic diagnostic device 20 and a position detecting device 30.
  • the ultrasonic diagnostic apparatus 20 and the position detecting apparatus 30 are connected to each other, whereby data can be exchanged in both directions.
  • the ultrasonic diagnostic apparatus 20 and the position detecting apparatus 30 may be connected to each other via a network such as a local network in a hospital.
  • FIG. 2 is a block diagram of an embodiment showing the configuration of the ultrasonic diagnostic apparatus 20.
  • the ultrasonic diagnostic apparatus 20 shown in FIG. 2 includes an ultrasonic probe 1 and an apparatus main body 3 connected to the ultrasonic probe 1.
  • the ultrasonic probe 1 scans the subject with an ultrasonic beam and outputs a sound line signal corresponding to the ultrasonic image.
  • the ultrasonic probe 1 includes an oscillator array 11, a transmission / reception circuit 14, and a magnetic sensor 23.
  • the oscillator array 11 and the transmission / reception circuit 14 are bidirectionally connected.
  • a device control unit 36 which will be described later, is connected to the transmission / reception circuit 14 and the magnetic sensor 23.
  • the oscillator array 11 has a plurality of ultrasonic oscillators arranged one-dimensionally or two-dimensionally. Each of these oscillators transmits ultrasonic waves according to the drive signal supplied from the transmission / reception circuit 14, receives the reflected wave from the subject, and outputs an analog reception signal.
  • Each oscillator includes, for example, a piezoelectric ceramic represented by PZT (Lead Zirconate Titanate), a polymer piezoelectric element represented by PVDF (Poly Vinylidene Di Fluoride), and PMN-PT (Piezoelectric element).
  • Lead Magnesium Niobate-Lead Titanate is composed of elements in which electrodes are formed at both ends of a piezoelectric body made of a piezoelectric single crystal or the like represented by lead magnesium niobate-lead titanate.
  • the transmission / reception circuit 14 transmits ultrasonic waves from the oscillator array 11 and performs reception focus processing on the reception signal output from the oscillator array 11 that has received the ultrasonic echo. By doing so, a sound line signal is generated.
  • the transmission / reception circuit 14 includes a pulser 51 connected to the oscillator array 11, an amplification unit 52 sequentially connected in series from the oscillator array 11, an AD (Analog Digital) conversion unit 53, and a beam former. It has 54 and.
  • the pulsar 51 includes, for example, a plurality of pulse generators, and ultrasonic waves transmitted from the plurality of oscillators of the oscillator array 11 emit an ultrasonic beam based on a transmission delay pattern selected by the device control unit 36.
  • Each drive signal is supplied to a plurality of oscillators by adjusting the delay amount so as to form.
  • a pulsed or continuous wave voltage is applied to the electrodes of the vibrator of the vibrator array 11
  • the piezoelectric body expands and contracts, and pulsed or continuous wave ultrasonic waves are generated from each vibrator.
  • An ultrasonic beam is formed from the combined waves of those ultrasonic waves.
  • the transmitted ultrasonic beam is reflected by, for example, a target such as a site of a subject, and propagates toward the oscillator array 11 of the ultrasonic probe 1.
  • Each oscillator constituting the oscillator array 11 expands and contracts by receiving the ultrasonic echo propagating toward the oscillator array 11 in this way to generate a received signal which is an electric signal, and these are received.
  • the signal is output to the amplification unit 52.
  • the amplification unit 52 amplifies the signal input from each of the oscillators constituting the oscillator array 11, and transmits the amplified signal to the AD conversion unit 53.
  • the AD conversion unit 53 converts the analog signal transmitted from the amplification unit 52 into digital reception data, and outputs these reception data to the beam former 54.
  • the beam former 54 adds a delay to each received data converted by the AD conversion unit 53 according to the sound velocity or the distribution of the sound velocity set based on the reception delay pattern selected by the device control unit 36. By doing so, so-called reception focus processing is performed.
  • reception focus processing each received data converted by the AD conversion unit 53 is phase-adjusted and added, and a sound line signal in which the focus of the ultrasonic echo is narrowed down is generated.
  • the magnetic sensor 23 is for the position detecting device 30 to detect the position (three-dimensional coordinate position) of the ultrasonic probe 1 in the three-dimensional space of the magnetic field by using the magnetism under the control of the device control unit 36. It is a position sensor that outputs a position detection signal. Further, the magnetic sensor 23 outputs an angle detection signal for the position detection device 30 to detect the angle of the ultrasonic probe 1 with respect to the vertical direction in the three-dimensional space by using magnetism.
  • the apparatus main body 3 displays an ultrasonic image based on the sound line signal generated by the ultrasonic probe 1.
  • the apparatus main body 3 inputs an image generation unit 31, an image memory 32, a distance calculation unit 35, a display control unit 33, a device control unit 36, a monitor (display unit) 34, and the like.
  • the device 37 is provided.
  • the display control unit 33 and the monitor 34 are sequentially connected in series to the image generation unit 31. Further, an image memory 32 and a distance calculation unit 35 are connected to the image generation unit 31, respectively, and a display control unit 33 is connected to the image memory 32 and the distance calculation unit 35.
  • the device control unit 36 is connected to the transmission / reception circuit 14, the image generation unit 31, the display control unit 33, and the distance calculation unit 35, and the input device 37 is connected to the device control unit 36.
  • the image generation unit 31 generates an ultrasonic image (ultrasonic image signal) based on the sound wave signal generated by the transmission / reception circuit 14 under the control of the device control unit 36. As shown in FIG. 4, the image generation unit 31 has a configuration in which a signal processing unit 16, a DSC (Digital Scan Converter) 18, and an image processing unit 17 are sequentially connected in series.
  • a signal processing unit 16 a DSC (Digital Scan Converter) 18, and an image processing unit 17 are sequentially connected in series.
  • the signal processing unit 16 generates image information data corresponding to the ultrasonic image based on the sound line signal generated by the transmission / reception circuit 14. More specifically, the signal processing unit 16 processes the sound line signal generated by the beamformer 54 of the transmission / reception circuit 14, for example, attenuation due to the propagation distance according to the depth of the position where the ultrasonic wave is reflected. After the correction of, the envelope detection process is performed to generate image information data representing tomographic image information about the tissue in the subject.
  • the DSC 18 raster-converts the image information data generated by the signal processing unit 16 into an image signal according to a normal television signal scanning method.
  • the image processing unit 17 has various types of image signals input from the DSC 18 such as brightness correction, gradation correction, sharpness correction, image size correction, refresh rate correction, scanning frequency correction, and color correction according to the display format of the monitor 34.
  • image signals input from the DSC 18 such as brightness correction, gradation correction, sharpness correction, image size correction, refresh rate correction, scanning frequency correction, and color correction according to the display format of the monitor 34.
  • the image generation unit 31 uses the ultrasonic probe 1 (more strictly, the vibrator array 11) in the epidermis on the region of interest of the breast of the subject, for example, to the region of interest of the breast of the subject. From the received signal obtained by transmitting and receiving the ultrasonic beam, and further, from the sound line signal generated from the received signal by the transmission / reception circuit 14, an ultrasonic image including the region of interest of the breast and the epidermis is generated. ..
  • the image memory 32 is a memory that holds a series of plurality of frames of ultrasonic images (ultrasonic image signals) generated for each diagnosis by the image generation unit 31.
  • the image memory 32 includes a flash memory, an HDD (Hard Disc Drive), an SSD (Solid State Drive), an FD (Flexible Disc), and an MO disk (Magneto-Optical disc). ), MT (Magnetic Tape: magnetic tape), RAM (Random Access Memory: random access memory), CD (Compact Disc: compact disc), DVD (Digital Versatile Disc: digital versatile disc), SD card (Secure Digital card: secure)
  • a recording medium such as a digital card), a USB memory (Universal Serial Bus memory), a server, or the like can be used.
  • the distance calculation unit 35 calculates the linear distance from the nipple to the region of interest of the breast under the control of the device control unit 36. As shown in FIG. 5, the distance calculation unit 35 includes a position acquisition unit 60, a site identification unit 62, a first distance calculation unit 64, a second distance calculation unit 66, and a third distance calculation unit 68. Have.
  • the first distance calculation unit 64 is connected to the position acquisition unit 60, and the second distance calculation unit 66 is connected to the site identification unit 62. Further, the first distance calculation unit 64 and the second distance calculation unit 66 are connected to the third distance calculation unit 68.
  • the position acquisition unit 60 generates an ultrasonic image (still image) including the first position of the ultrasonic probe 1 in the nipple of the subject in the three-dimensional space and the region of interest of the breast from the position detection device 30.
  • the second angle ⁇ 2 (absolute angle) with respect to the vertical direction of the ultrasonic probe 1 in the epidermis on the region of interest of the breast in space is acquired.
  • the site identification unit 62 identifies the region of interest of the breast, the epidermis on the region of interest of the breast, the pectoralis major muscle, the chest wall, etc. in the ultrasonic image.
  • the site specifying unit 62 can identify at least one of the sites in the ultrasonic image based on the instruction input from the user. Further, an image analysis unit for analyzing the ultrasonic image is provided, and the site identification unit 62 identifies at least one of the sites in the ultrasonic image based on the result of the analysis of the ultrasonic image by the image analysis unit. May be good. Further, a determination model may be provided, and the site identification unit 62 may specify at least one of the sites in the ultrasonic image using the determination model.
  • the determination model uses a learning ultrasonic image including a region of interest, the epidermis, the large chest muscle, or the chest wall of an arbitrary subject as teacher data, and the learning ultrasonic image and this learning super. This is a trained model in which the relationship with each part included in the ultrasonic image is learned for multiple teacher data. Based on the learning result, the determination model inputs the ultrasonic image to be determined and outputs the determination result (prediction result) of each part included in the ultrasonic image. That is, the determination model identifies a portion in the ultrasonic image.
  • the first distance calculation unit 64 is based on the position acquired by the position acquisition unit 60, from the first position of the ultrasonic probe 1 on the nipple in the three-dimensional space, and the ultrasonic wave on the epidermis on the region of interest of the breast.
  • the first linear distance L1 to the second position of the probe 1 is calculated.
  • the second distance calculation unit 66 calculates the second linear distance L2 from the region of interest of the breast in the ultrasonic image to the epidermis on the region of interest of the breast based on the site specified by the site identification unit 62.
  • the position of the epidermis on the region of interest of the breast in the ultrasonic image is the second position of the ultrasonic probe 1 on the epidermis on the region of interest of the breast in the three-dimensional space when this ultrasonic image is generated. Corresponds to.
  • the third distance calculation unit 68 further increases the first straight line distance L1 based on the first straight line distance L1 calculated by the first distance calculation unit 64 and the second straight line distance L2 calculated by the second distance calculation unit 66. And, in addition to the second straight line distance L2, the third straight line distance L3 from the nipple to the region of interest of the breast in the ultrasonic image is calculated based on the first angle ⁇ 1 and the second angle ⁇ 2 acquired by the position acquisition unit 60. ..
  • the ultrasonic probe 1 when the breast of the subject lying on his back is substantially flat, the ultrasonic probe 1 is brought into contact with the breast epithelium in a direction substantially perpendicular to the breast skin, and the ultrasonic probe in a nipple in a three-dimensional space. It is assumed that the angle of 1 to the breast epidermis and the angle of the ultrasonic probe 1 to the breast epidermis at the epidermis on the region of interest of the breast are approximately perpendicular. In this case, as shown in FIG. 11, the first straight line from the first position to the second position in the three-dimensional space, the second straight line from the region of interest of the breast to the epidermis above it in the ultrasonic image, and the ultrasonic wave.
  • the ultrasonic probe 1 when the breast of the subject lying on his back is convex, the ultrasonic probe 1 is similarly brought into contact with the breast epithelium in a direction substantially perpendicular to the breast skin, and is a nipple in a three-dimensional space. It is assumed that the angle of the ultrasonic probe 1 with respect to the breast epidermis and the angle of the ultrasonic probe 1 with respect to the breast epidermis at the epidermis on the region of interest of the breast are substantially perpendicular to each other. In this case, as shown in FIG.
  • the third distance calculation unit 68 can calculate the third straight line distance L3 by the following equation (2) based on the first straight line distance L1 and the second straight line distance L2 by using the three-square theorem.
  • L3 ⁇ (L1 2 -L2 2 )... Equation (2)
  • the ultrasonic probe 1 when the breast of the subject lying on his back is convex, the ultrasonic probe 1 is tilted from a direction substantially perpendicular to the epidermis of the breast and is contacted with the nipple in a three-dimensional space.
  • the angle of the ultrasonic probe 1 with respect to the vertical direction is the first angle ⁇ 1
  • the angle of the ultrasonic probe 1 with respect to the vertical direction in the epidermis on the region of interest of the breast is the second angle ⁇ 2.
  • the fifth straight line extending toward the body forms an isosceles triangle having the same distance between the fourth straight line and the fifth straight line.
  • the 6th straight line and the 6th straight line are formed by the 3rd straight line, the 6th straight line extending vertically from the nipple to the 5th straight line, and the 7th straight line from the intersection of the 5th straight line and the 6th straight line to the region of interest of the breast.
  • 7 A right-angled triangle is formed in which the angle formed by the straight line is a right angle.
  • the third distance calculation unit 68 uses the three-square theorem and is based on the following equation (3) based on the first straight line distance L1, the second straight line distance L2, the first angle ⁇ 1 and the second angle ⁇ 2.
  • the third straight line distance L3 can be calculated.
  • L3 ⁇ ⁇ (r ⁇ sin ⁇ ) 2 + (r-r ⁇ c technicallys ⁇ -L2) 2 ⁇ ... Equation (3)
  • r ⁇ sin ⁇ is the sixth straight line distance L6, and r ⁇ r ⁇ c nowadayss ⁇ ⁇ L2 is the seventh straight line distance L7.
  • is the difference angle between the first angle ⁇ 1 and the second angle ⁇ 2.
  • r is the 4th straight line distance from the nipple to the intersection of the 4th straight line and the 5th straight line, and the 5th straight line distance from the epidermis on the region of interest of the breast to the intersection of the 4th straight line and the 5th straight line.
  • L1 2r ⁇ sin ( ⁇ / 2)... Equation (4)
  • the display control unit 33 displays various information on the monitor 34 under the control of the device control unit 36.
  • the display control unit 33 performs a predetermined process on the ultrasonic image held in the image memory 32, for example, and causes the monitor 34 to display the processed ultrasonic image. Further, the display control unit 33 superimposes the information of the third straight line distance L3 and the like on the ultrasonic image including the region of interest of the breast and displays it on the monitor 34.
  • the device control unit 36 controls each part of the device main body 3 based on a program stored in advance and a user's instruction input from the input device 37. More specifically, the device control unit 36 controls the display control unit 33 so that the ultrasonic image is displayed on the monitor 34. Further, the device control unit 36 controls the distance calculation unit 35 so that the third linear distance L3 or the like from the nipple to the region of interest of the breast is calculated.
  • the terminal side processor 39 is configured by the image generation unit 31, the display control unit 33, the distance calculation unit 35, and the device control unit 36.
  • the monitor 34 displays various information under the control of the display control unit 33.
  • the monitor 34 displays an ultrasonic image, information on a third straight line distance L3 from the nipple to the region of interest of the breast, and the like.
  • Examples of the monitor 34 include an LCD (Liquid Crystal Display) and an organic EL (Electro-Luminescence) display.
  • the input device 37 receives various instructions input from the user, and includes, for example, various buttons and a touch panel in which the user performs a touch operation to input various instructions.
  • the position detecting device 30 detects the position of the ultrasonic probe 1 on the epidermis of the breast, more strictly, the position of the magnetic sensor 23 in the three-dimensional space, and as shown in FIG. It has a magnetic field generator 28 and a magnetic field position detector 29.
  • the magnetic field generator 28 is connected to the magnetic field position detector 29, and the magnetic field position detector 29 is interconnected with the ultrasonic diagnostic apparatus 20.
  • the position detection device 30 is a position detection signal and a position detection signal output from the magnetic sensor 23 of the ultrasonic probe 1 by the magnetic field position detector 29 in the three-dimensional space of the magnetic field generated by the magnetic field generator 28 at the time of ultrasonic inspection. Based on the angle detection signal, the position of the ultrasonic probe 1 on the epidermis of the breast, that is, the position of the magnetic sensor 23 and the angle of the ultrasonic probe 1 with respect to the vertical direction (tilt of the ultrasonic probe 1 with respect to the vertical direction). To detect.
  • the position of the ultrasonic probe 1 can be detected by using a GPS (Global Positioning System) sensor, an optical sensor, or the like as the position sensor, not limited to the magnetic sensor.
  • a GPS sensor Global Positioning System
  • an optical sensor a position detection device that detects the position and angle of the ultrasonic probe 1 by using light is used.
  • Step S1 in a state where the ultrasonic probe 1 is in contact with the epidermis of the breast of the subject, transmission of ultrasonic waves is started by the transmission / reception circuit 14 under the control of the device control unit 36, and a sound line signal is generated ( Step S1).
  • the ultrasonic beam is transmitted from the plurality of oscillators of the oscillator array 11 to the breast according to the drive signal from the pulsar 51.
  • the ultrasonic echo from the breast based on the ultrasonic beam transmitted from the pulsar 51 is received by each oscillator of the oscillator array 11 and is an analog signal from each oscillator of the oscillator array 11 that has received the ultrasonic echo.
  • the received signal is output.
  • the received signal which is an analog signal output from each oscillator of the oscillator array 11, is amplified by the amplification unit 52 and AD-converted by the AD conversion unit 53 to acquire the received data.
  • a sound line signal is generated by performing reception focus processing on the received data by the beam former 54.
  • the image generation unit 31 generates an ultrasonic image (ultrasonic image signal) of the breast based on the sound line signal generated by the beam former 54 of the transmission / reception circuit 14. Is done (step S2).
  • the sound line signal generated by the beam former 54 is subjected to various signal processing by the signal processing unit 16, and image information data representing tomographic image information regarding the tissue in the subject is generated.
  • the image information data generated by the signal processing unit 16 is raster-converted by the DSC 18, and further subjected to various image processing by the image processing unit 17 to generate an ultrasonic image (ultrasonic image signal).
  • the ultrasonic image generated by the image processing unit 17 is held in the image memory 32.
  • the display control unit 33 applies a predetermined process to the ultrasonic image held in the image memory 32 and displays it on the monitor 34 (step S3).
  • the breast of the subject in a standing position is compressed by the compression plate, and the breast compressed by the compression plate from the X-ray source is irradiated with X-rays. Then, the X-rays that have passed through the breast are detected by the X-ray detector, and a mammography image of the breast is generated from the detection signal detected by the X-ray detector. For example, mammography images (R_MLO and R_CC images) of the right breast in the MLO (Mediolateral-Oblique) and CC (Cranio-Caudal) directions are generated. Similarly, mammography images (L_MLO image and L_CC image) of the left breast in the MLO direction and the CC direction are generated.
  • a mammography image is acquired from the mammography apparatus by the apparatus control unit 36 in response to an instruction from the user.
  • the ultrasonic diagnostic apparatus 20 may acquire the mammography image from the server via the network instead of directly acquiring the mammography image from the mammography apparatus.
  • the server is a medical image management system (PACS: Picture Archiving and Communication Systems), a computer or workstation that manages PACS, etc., and stores and manages medical images such as mammography images and ultrasonic images. ..
  • the server provides the requested medical image from the stored medical images to the ultrasonic diagnostic device 20 or the like in response to the request from the ultrasonic diagnostic device 20 or the like.
  • the image generation unit generates, for example, an ultrasonic image (moving image) of the right breast of the subject lying on his back, and the display control unit 33 monitors the mammography image and the ultrasonic image of the right breast side by side, for example. It is displayed at 34.
  • the position detection device 30 detects the first position of the ultrasonic probe 1 in the nipple in the three-dimensional space of the magnetic field based on the position detection signal output from the magnetic sensor 23 of the ultrasonic probe 1. Will be done.
  • the position acquisition unit 60 acquires the first position of the ultrasonic probe 1 on the nipple from the position detection device 30 (step S20).
  • the user moves the ultrasonic probe 1 from the nipple to the position of the epidermis on the region of interest of the right breast with the ultrasonic probe 1 in contact with the epidermis of the right breast substantially perpendicularly.
  • the user looks at the mammography image and the ultrasound image displayed on the monitor 34 and predicts the position of the region of interest of the right breast in the ultrasound image corresponding to the region of interest of the right breast in the mammography image. ..
  • the region of interest of the right breast is specified by moving the ultrasonic probe 1 to the position of the epidermis on the region of interest of the right breast in the ultrasonic image corresponding to the region of interest of the right breast in the mammography image.
  • the user may shift the ultrasound probe vertically from the left side to the right side of the right breast to prevent oversight of the area of interest in the right breast. Repeat multiple times. Subsequently, the region of interest of the right breast can be identified by repeating the movement of the ultrasonic probe from the upper side to the lower side of the right breast a plurality of times by shifting the position in the left-right direction.
  • the image generation unit generates a first ultrasonic image (still image) (step S21). Further, for example, the orientation of the ultrasonic probe 1 is rotated by 90 degrees at the position of the epidermis on the region of interest of the right breast, that is, the orientation orthogonal to the orientation of the ultrasonic probe 1 when the first ultrasonic image is generated. The ultrasonic probe 1 is pointed at and the freeze button is pressed. In response to this, the image generation unit generates a second ultrasonic image (still image) (step S21).
  • the position detection device 30 detects the second position of the ultrasonic probe 1 on the epidermis on the area of interest of the right breast in the three-dimensional space, and the position acquisition unit 60. Acquires the second position of the ultrasonic probe 1 on the epidermis on the region of interest of the right breast from the position detector 30 (step S22). It should be noted that, instead of the freeze button, the ultrasonic probe 1 stops for a few seconds in response to the above-mentioned position detection button for detecting the position of the ultrasonic probe 1 or at the epidermis on the region of interest of the right breast. Depending on what has been done, the second position of the ultrasonic probe 1 on the epidermis on the region of interest of the right breast may be acquired.
  • the region of interest and the epidermis of the right breast in the ultrasonic image are identified by the site identification portion 62 (step S23).
  • the site specifying portion 62 may specify the region of interest, the epidermis, or the like of the right breast using either of the two ultrasonic images.
  • the first distance calculation unit 64 calculates the first position from the first position of the ultrasonic probe 1 in the nipple to the second position of the ultrasonic probe 1 in the epidermis on the region of interest of the breast in the three-dimensional space.
  • the linear distance L1 is calculated (step S24).
  • the second distance calculation unit 66 calculates the second linear distance L2 from the region of interest of the right breast to the epidermis on the region of interest of the right breast in the ultrasonic image (step S25).
  • the third distance calculation unit 68 calculates the third straight line distance L3 from the nipple to the region of interest of the right breast in the ultrasonic image based on the first straight line distance L1 and the second straight line distance L2 (step). S26).
  • the display control unit 33 superimposes the information of the third straight line distance L3 on the ultrasonic image including the region of interest and displays it on the monitor 34 (step S27). Further, the ultrasonic image including the region of interest and on which the information of the third straight line distance L3 is superimposed is captured and transmitted from the ultrasonic diagnostic apparatus 20 to the PACS. The user sees the information of the third straight line distance L3 superimposed on the ultrasonic image on the PACS display device (viewer), and describes the information of the third straight line distance L3 in the diagnostic report of the ultrasonic examination. can do.
  • the information of the third straight line distance L3 is transmitted from the ultrasonic diagnostic apparatus 20 to the PACS, and in the PACS, the information of the third linear distance L3 is superimposed on the ultrasonic image including the region of interest and displayed on the PACS display device. You may let me.
  • the monitor 34 displays the information of the third straight line distance L3 but also the information of the second straight line distance L2 and the information of the fourth straight line distance L4 from the region of interest of the breast to the pectoralis major muscle or the chest wall. May be good.
  • a fourth distance calculation unit is provided, the pectoralis major muscle or the chest wall in the ultrasonic image is specified by the site identification unit 62, and the fourth distance calculation unit performs.
  • the fourth linear distance L4 from the region of interest to the pectoralis major muscle or the chest wall in the ultrasound image is calculated.
  • the display control unit 33 superimposes the information of the fourth straight line distance L4 on the ultrasonic image including the region of interest and displays it on the monitor 34.
  • FIG. 9 is a conceptual diagram of an embodiment showing a display screen of a monitor.
  • An R_MLO image is displayed in the display area on the left side of the display screen of the monitor 34 shown in FIG.
  • Thumbnail images of R_MLO image, L_MLO image, R_CC image and L_CC image are displayed in the upper part of the display area on the left side in order from the left side.
  • the user can display the mammography image corresponding to the selected one thumbnail image in the display area on the left side.
  • two icon images corresponding to the two areas of interest of the right breast in the R_MLO image displayed in the left display area are displayed.
  • the user can display the findings of the region of interest corresponding to the selected one icon image.
  • a schematic diagram of the right breast showing the cross-sectional position of the breast corresponding to the R_MLO image displayed in the left display area and the position of the region of interest of the breast is displayed.
  • an ultrasonic image including the area of interest of the right breast and the epidermis is displayed.
  • an enlarged view of the area of interest of the right breast in the ultrasound image of the right breast displayed in the right display area is displayed in the window area.
  • a schematic view of the right breast showing the cross-sectional position corresponding to the ultrasonic image of the right breast displayed in the right display area and the orientation of the ultrasonic probe 1 is displayed.
  • the ultrasonic image of the right breast displayed in the display area on the right side has a third position from the nipple to the region of interest of the right breast in the ultrasonic image under the control of the display control unit 33.
  • the information of the second straight distance L2 from the region of interest of the right breast to the epidermis on the region of interest of the right breast, and the information of the fourth straight distance L4 from the region of interest of the right breast to the chest wall. Etc. are superimposed on the ultrasonic image including the region of interest of the right breast and displayed on the monitor 34.
  • the information of the third straight line distance L3 is a bidirectional arrow connecting the nipple to the region of interest of the right breast in the ultrasonic image, and the distance from the nipple to the region of interest of the right breast is 25 mm.
  • Information on the second straight line distance L2 and the fourth straight line distance L4 is also displayed.
  • This annotation display can be turned on or off in response to an instruction from the user, for example, so as not to interfere with the interpretation of the ultrasonic image by the user.
  • the straight line distance from the nipple in the ultrasonic image to the intersection of the major axis and the minor axis of the region of interest of the right breast can be used.
  • a linear distance from the nipple to the center point or center of gravity of the region of interest of the right breast, or a linear distance from the nipple to the frame surrounding the region of interest of the right breast may be used.
  • the third straight line distance L3 has been described, the same applies to the second straight line distance L2 and the fourth straight line distance L4.
  • a server may be provided, and the third linear distance L3 from the nipple to the region of interest in the ultrasonic image may be calculated by the server instead of the ultrasonic diagnostic apparatus 20.
  • the server may be, for example, a PACS server.
  • the server may be a separately built computer or workstation connected to the network.
  • the ultrasonic diagnostic apparatus 20 includes components other than the distance calculation unit 35 shown in FIG. 2, such as an ultrasonic probe 1, a magnetic sensor 23, and an image generation unit.
  • the server 5 includes a distance calculation unit 72 and a server control unit 75.
  • the server 5 and the device main body 3 are connected via a network, so that data can be exchanged in both directions.
  • the distance calculation unit 72 is the same as the distance calculation unit 35 included in the device main body 3 of the ultrasonic diagnostic device 20, but operates under the control of the server control unit 75.
  • the server control unit 75 controls each unit of the server 5 based on a program or the like stored in advance. More specifically, the server control unit 75 controls the distance calculation unit 72 so that the third linear distance L3 from the nipple to the region of interest in the ultrasonic image is calculated.
  • the ultrasonic image is received from the ultrasonic diagnostic apparatus 20 under the control of the server control unit 75.
  • the operation of the distance calculation unit 72 is the same as the operation when the distance calculation unit 35 calculates the third straight line distance L3 in the ultrasonic diagnostic apparatus 20.
  • the display control unit 33 superimposes the information of the third linear distance L3 on the ultrasonic image including the region of interest and displays it on the monitor 34.
  • an ultrasonic image including the region of interest and superimposed with the information of the third straight line distance L3 may be transmitted from the server 5 to the PACS built separately from the server and displayed on the PACS display device (viewer). .. Further, even if only the information of the third straight line distance L3 is transmitted from the server 5 to the PACS, and the information of the third straight line distance L3 is superimposed on the ultrasonic image including the region of interest in the PACS, the information is displayed on the PACS display device. good.
  • the server 5 may include at least the third distance calculation unit possessed by the distance calculation unit 72. .. That is, at least one of the position acquisition unit, the first distance calculation unit, the site acquisition unit, and the second distance calculation unit may be provided by the ultrasonic diagnostic apparatus 20 or may be provided by the server 5. In other words, at least one of the acquisition of the first position, the second position and the angle of the ultrasonic probe 1, the identification of the site in the ultrasonic image, and the calculation of the first straight line distance L1 and the second straight line distance L2 is ultrasonic diagnosis. It may be performed on the device 20 side or on the server 5 side.
  • the present invention is not limited to the stationary ultrasonic system, but also a portable ultrasonic system in which the main body of the device is realized by a laptop-type terminal device, and the main body of the device is a smartphone or a tablet PC (Personal Computer:). It can also be applied to a handheld type ultrasonic system realized by a handheld type terminal device such as a personal computer).
  • a processing unit that executes various processes such as a transmission / reception circuit 14, an image generation unit 31, a display control unit 33, a distance calculation unit 35, 72, a device control unit 36, and a server control unit 75.
  • the hardware-like configuration may be dedicated hardware, or various processors or computers that execute programs.
  • the hardware configuration such as the image memory 32 may be dedicated hardware, or a memory such as a semiconductor memory, an HDD (Hard Disk Drive), and an SSD (Solid State Drive). It may be a storage device such as a drive).
  • the circuit configuration can be changed after manufacturing CPU (Central Processing Unit), FPGA (Field Programmable Gate Array), etc., which are general-purpose processors that execute software (programs) and function as various processing units.
  • Programmable Logic Device (PLD), ASIC (Application Specific Integrated Circuit), etc. which is a processor, includes a dedicated electric circuit, which is a processor having a circuit configuration designed exclusively for performing specific processing. ..
  • One processing unit may be composed of one of these various processors, or a combination of two or more processors of the same type or different types, for example, a combination of a plurality of FPGAs, or a combination of an FPGA and a CPU. It may be configured by such as. Further, a plurality of processing units may be configured by one of various processors, or two or more of the plurality of processing units may be collectively configured by using one processor.
  • processors are configured by a combination of one or more CPUs and software, and this processor functions as a plurality of processing units.
  • SoC system on chip
  • a processor that realizes the functions of the entire system including a plurality of processing units with one IC (Integrated Circuit) chip is used.
  • circuitry that combines circuit elements such as semiconductor elements.
  • the method of the present invention can be carried out, for example, by a program for causing a computer to execute each step. It is also possible to provide a computer-readable recording medium on which this program is recorded.

Abstract

超音波システムおよび超音波システムの制御方法においては、3次元空間における被検体のニップルでの超音波プローブの第1位置および関心領域上の表皮での超音波プローブの第2位置を取得し、超音波画像における関心領域および表皮を特定する。続いて、3次元空間における第1位置から第2位置までの第1直線距離L1を算出し、超音波画像における関心領域から関心領域上の表皮までの第2直線距離L2を算出する。そして、第1直線距離L1および第2直線距離L2に基づいて、超音波画像におけるニップルから関心領域までの第3直線距離L3を算出する。

Description

超音波システムおよび超音波システムの制御方法
 本発明は、乳房の超音波画像におけるニップルから病変部である可能性がある乳房の関心領域までの直線距離を算出する機能を有する超音波システムおよび超音波システムの制御方法に関する。
 乳腺のスクリーニングおよび診断のための超音波検査は、マンモグラフィ検査の後に実施されることが多い。例えば、マンモグラフィ検査により、乳房の関心領域が発見された場合、続いて、超音波検査により、マンモグラフィ画像での乳房の関心領域に対応する、超音波画像での乳房の関心領域を特定して、この乳房の関心領域が病変部なのか否か、例えば嚢胞なのか、悪性リンパ腫なのか等の判別が行われる。なお、超音波検査では、マンモグラフィ画像での乳房の関心領域に対応する、超音波画像での乳房の関心領域のみを特定して判別を行う場合と、乳房全体を検査して、超音波画像での乳房の全ての関心領域を特定して判別を行う場合とがある。
 ここで、本発明の参考となる先行技術文献として、例えば特許文献1等がある。
 特許文献1には、マンモグラフィ画像と超音波画像とを併用する検診において、被検体の乳房を撮像したマンモグラフィ画像に基づいて、乳房における注目領域の位置、注目領域の大きさ、および乳房の大きさ等の情報を記憶しておき、マンモグラフィ画像において求められた、注目領域の位置、注目領域の大きさ、および乳房の大きさ等の情報に基づいて、超音波画像診断における設定条件を求めることが記載されている。
特開2017-86896号公報
 ところで、ニップル、表皮、大胸筋または胸壁等のマンモグラフィ画像での乳房の特徴部位、マンモグラフィ検査時の圧迫板および放射線検出器から乳房の関心領域までの距離、および乳房の関心領域のサイズ(長径および短径)等の情報を用いて超音波画像での乳房の関心領域を特定することが有用である。
 また、超音波検査の診断レポートを作成する場合、BI-RADS(Breast Imaging Reporting and Data System:乳腺画像報告データシステム)等のガイドラインに従って、乳房の関心領域の位置情報等を記載する必要がある。この場合、乳房の関心領域の位置情報として、乳房のシェーマ図上において超音波プローブの位置を表す位置マーク、3時の方向等のように、超音波プローブの位置を表すクロックポジション、およびニップルから乳房の関心領域までの直線距離等の情報が用いられることが多い。
 しかし、特許文献1には、超音波画像における乳房の関心領域の位置情報として重要であるニップルから乳房の関心領域までの直線距離を、どのようにして求めるのかは記載されていない。
 例えば、ニップルから離れた位置に乳房の関心領域があり、乳房の関心領域を含む通常の超音波画像においてニップルが表示されていない場合でも、例えば磁気センサを用いて、ニップルでの超音波プローブの位置および乳房の関心領域上の表皮での超音波プローブの位置を検出することにより、ニップルから乳房の関心領域上の表皮までの直線距離を算出することが可能である。
 しかし、磁気センサは、表皮での超音波プローブの位置を検出するため、超音波プローブの位置に基づいて、ニップルから乳房の関心領域上の表皮までの直線距離を算出することはできるが、ニップルから乳房の関心領域まので直線距離を取得することはできない。そのため、乳房の関心領域が、表皮側ではなく、大胸筋または胸壁側に近くなるほど、ニップルから乳房の関心領域までの直線距離と、ニップルから乳房の関心領域上の表皮までの距離との誤差が大きくなるという問題があった。
 本発明の目的は、超音波画像におけるニップルから乳房の関心領域までの直線距離を正確に算出することができる超音波システムおよび超音波システムの制御方法を提供することにある。
 上記目的を達成するために、本発明は、超音波プローブと、
 3次元空間における超音波プローブの位置を検出するための位置検出信号を出力する位置センサと、
 被検体の乳房の関心領域上の表皮において、超音波プローブを用いて関心領域に超音波ビームの送受信を行うことにより得られた受信信号から、関心領域および表皮を含む超音波画像を生成する画像生成部と、
 位置検出信号に基づいて検出される、3次元空間における被検体のニップルでの超音波プローブの第1位置および関心領域上の表皮での超音波プローブの第2位置を取得する位置取得部と、
 超音波画像における関心領域および表皮を特定する部位特定部と、
 3次元空間における第1位置から第2位置までの第1直線距離L1を算出する第1距離算出部と、
 超音波画像における関心領域から関心領域上の表皮までの第2直線距離L2を算出する第2距離算出部と、
 第1直線距離L1および第2直線距離L2に基づいて、超音波画像におけるニップルから関心領域までの第3直線距離L3を算出する第3距離算出部と、を備える、超音波システムを提供する。
 ここで、第3距離算出部は、3次元空間における第1位置から第2位置までの第1直線と、超音波画像における関心領域から関心領域上の表皮までの第2直線と、超音波画像におけるニップルから関心領域までの第3直線と、によって、第1直線と第2直線とのなす角度が略直角となる直角三角形が形成される場合に、三平方の定理を利用して、第1直線距離L1および第2直線距離L2に基づいて、第3直線距離L3を算出することが好ましい。
 また、第3距離算出部は、3次元空間における第1位置から第2位置までの第1直線と、超音波画像における関心領域から関心領域上の表皮までの第2直線と、超音波画像におけるニップルから関心領域までの第3直線と、によって、第2直線と第3直線とのなす角度が略直角となる直角三角形が形成される場合に、三平方の定理を利用して、第1直線距離L1および第2直線距離L2に基づいて、第3直線距離L3を算出することが好ましい。
 また、位置センサは、3次元空間における関心領域上の表皮での超音波プローブの鉛直方向に対する角度を検出するための角度検出信号を出力し、
 位置取得部は、角度検出信号に基づいて検出される、3次元空間におけるニップルでの超音波プローブの鉛直方向に対する第1角度θ1および関心領域上の表皮での超音波プローブの鉛直方向に対する第2角度θ2を取得し、
 第3距離算出部は、3次元空間における第1位置から第2位置までの第1直線と、ニップルから第1角度θ1で被検体の体内方向へ延びる第4直線と、関心領域上の表皮から第2角度θ2で被検体の体内方向へ延びる第5直線と、によって、第4直線および第5直線の距離が等しい二等辺三角形が形成され、第3直線と、ニップルから第5直線まで垂直に延びる第6直線と、第5直線と第6直線との交点から関心領域までの第7直線と、によって、第6直線と第7直線とのなす角度が直角となる直角三角形が形成される場合に、三平方の定理を利用して、第1直線距離L1、第2直線距離L2、第1角度θおよび第2角度θ2に基づいて、第3直線距離L3を算出することが好ましい。
 また、位置センサは、磁気センサ、GPSセンサ、または光学式センサであることが好ましい。
 また、モニタと、
 第3直線距離L3の情報を、関心領域を含む超音波画像に重畳してモニタに表示させる表示制御部と、を備えることが好ましい。
 表示制御部は、さらに、第2直線距離L2の情報を、関心領域を含む超音波画像に重畳してモニタに表示させることが好ましい。
 また、部位特定部は、超音波画像における被検体の大胸筋または胸壁を特定し、
 超音波画像における、関心領域から大胸筋または胸壁までの第4直線距離L4を算出する第4距離算出部を備え、
 表示制御部は、さらに、第4直線距離L4の情報を、関心領域を含む超音波画像に重畳してモニタに表示させることが好ましい。
 また、超音波診断装置と、サーバと、を備え、
 超音波診断装置が、超音波プローブと、位置センサと、画像生成部と、を備え、
 サーバが、第3距離算出部を備えることが好ましい。
 また、ユーザから入力される指示を受け取る入力装置を備え、
 部位特定部は、ユーザから入力される指示に基づいて、超音波画像における関心領域および表皮の少なくとも一方を特定することが好ましい。
 また、超音波画像を解析する画像解析部を備え、
 部位特定部は、超音波画像の解析の結果に基づいて、超音波画像における関心領域および表皮の少なくとも一方を特定することが好ましい。
 また、部位特定部は、被検体の乳房の関心領域を含む学習用超音波画像を教師データとして、学習用超音波画像と学習用超音波画像に含まれる関心領域および表皮との関係を複数の教師データについて学習した判定モデルを有し、判定モデルは、超音波画像を入力として、超音波画像における関心領域および表皮の少なくとも一方を特定することが好ましい。
 また、第3直線距離L3の情報を医療用画像管理システムへ送信して医療用画像管理システムの表示装置に表示させることが好ましい。
 また、本発明は、3次元空間における超音波プローブの位置を検出するための位置検出信号を出力し、
 被検体の乳房の関心領域上の表皮において、超音波プローブを用いて関心領域に超音波ビームの送受信を行うことにより得られた受信信号から、関心領域および表皮を含む超音波画像を生成し、
 位置検出信号に基づいて検出される、3次元空間における被検体のニップルでの超音波プローブの第1位置および関心領域上の表皮での超音波プローブの第2位置を取得し、
 超音波画像における関心領域および表皮を特定し、
 3次元空間における第1位置から第2位置までの第1直線距離L1を算出し、
 超音波画像における関心領域から関心領域上の表皮までの第2直線距離L2を算出し、
 第1直線距離L1および第2直線距離L2に基づいて、超音波画像におけるニップルから関心領域までの第3直線距離L3を算出する、超音波システムの制御方法を提供する。
 本発明によれば、上記構成により、3次元空間におけるニップルでの超音波プローブの第1位置から乳房の関心領域上の表皮での超音波プローブの第2位置までの第1直線距離L1、および、超音波画像における乳房の関心領域から乳房の関心領域上の表皮までの第2直線距離L2に基づいて、超音波画像におけるニップルから乳房の関心領域までの第3直線距離L3を正確に算出することができる。
本発明の超音波システムの構成を表す一実施形態のブロック図である。 超音波診断装置の構成を表す一実施形態のブロック図である。 送受信回路の構成を表す一実施形態のブロック図である。 画像生成部の構成を表す一実施形態のブロック図である。 距離算出部の構成を表す一実施形態のブロック図である。 位置検出装置の構成を表す一実施形態のブロック図である。 超音波画像を撮像する場合の超音波システムの動作を表す一実施形態のフローチャートである。 超音波画像におけるニップルから乳房の関心領域までの直線距離を算出する場合の超音波システムの動作を表す一実施形態のフローチャートである。 モニタの表示画面を表す一実施形態の概念図である。 サーバの構成を表す一実施形態のブロック図である。 第1直線距離L1、第2直線距離L2および第3直線距離L3の関係を表す一例の概念図である。 第1直線距離L1、第2直線距離L2および第3直線距離L3の関係を表す別の例の概念図である。 第1直線距離L1、第2直線距離L2および第3直線距離L3の関係を表す別の例の概念図である。
 以下に、添付の図面に示す好適実施形態に基づいて、本発明の超音波システムおよび超音波システムの制御方法を詳細に説明する。
 図1は、本発明の超音波システムの構成を表す一実施形態のブロック図である。図1に示す超音波システム10は、超音波診断装置20と、位置検出装置30と、を備えている。超音波診断装置20および位置検出装置30は相互に接続されており、これにより、双方向にデータの受け渡しが可能である。なお、超音波診断装置20および位置検出装置30は、例えば病院内のローカルネットワーク等のネットワークを介して相互に接続されていてもよい。
 図2は、超音波診断装置20の構成を表す一実施形態のブロック図である。図2に示す超音波診断装置20は、超音波プローブ1と、この超音波プローブ1と接続される装置本体3と、を備えている。
 超音波プローブ1は、超音波ビームにより被検体をスキャンして、超音波画像に対応する音線信号を出力する。超音波プローブ1は、図2に示すように、振動子アレイ11と、送受信回路14と、磁気センサ23と、を備えている。振動子アレイ11と送受信回路14とは双方向に接続されている。また、送受信回路14および磁気センサ23には、後述する装置制御部36が接続されている。
 振動子アレイ11は、1次元または2次元に配列された複数の超音波振動子を有している。これらの振動子は、それぞれ送受信回路14から供給される駆動信号に従って超音波を送信し、かつ、被検体からの反射波を受信してアナログの受信信号を出力する。
 各振動子は、例えば、PZT(Lead Zirconate Titanate:チタン酸ジルコン酸鉛)に代表される圧電セラミック、PVDF(Poly Vinylidene Di Fluoride:ポリフッ化ビニリデン)に代表される高分子圧電素子およびPMN-PT(Lead Magnesium Niobate-Lead Titanate:マグネシウムニオブ酸鉛-チタン酸鉛固溶体)に代表される圧電単結晶等からなる圧電体の両端に電極を形成した素子を用いて構成される。
 送受信回路14は、装置制御部36による制御の下で、振動子アレイ11から超音波を送信させ、かつ、超音波エコーを受信した振動子アレイ11から出力される受信信号に受信フォーカス処理を施すことにより音線信号を生成する。送受信回路14は、図3に示すように、振動子アレイ11に接続されるパルサ51と、振動子アレイ11から順次直列に接続される増幅部52、AD(Analog Digital)変換部53およびビームフォーマ54と、を有している。
 パルサ51は、例えば複数のパルス発生器を含んでおり、装置制御部36により選択された送信遅延パターンに基づいて、振動子アレイ11の複数の振動子から送信される超音波が超音波ビームを形成するようにそれぞれの駆動信号を、遅延量を調節して複数の振動子に供給する。このように、振動子アレイ11の振動子の電極にパルス状または連続波状の電圧が印加されると、圧電体が伸縮し、それぞれの振動子からパルス状または連続波状の超音波が発生して、それらの超音波の合成波から、超音波ビームが形成される。
 送信された超音波ビームは、例えば、被検体の部位等の対象において反射され、超音波プローブ1の振動子アレイ11に向かって伝搬する。振動子アレイ11を構成するそれぞれの振動子は、このように振動子アレイ11に向かって伝搬する超音波エコーを受信することにより伸縮して、電気信号である受信信号を発生し、これらの受信信号を増幅部52に出力する。
 増幅部52は、振動子アレイ11を構成するそれぞれの振動子から入力された信号を増幅し、増幅した信号をAD変換部53に送信する。AD変換部53は、増幅部52から送信されたアナログの信号をデジタルの受信データに変換し、これらの受信データをビームフォーマ54に出力する。
 ビームフォーマ54は、装置制御部36により選択された受信遅延パターンに基づいて設定される音速または音速の分布に従い、AD変換部53により変換された各受信データに対してそれぞれの遅延を与えて加算することにより、いわゆる受信フォーカス処理を行う。この受信フォーカス処理により、AD変換部53で変換された各受信データが整相加算され、かつ、超音波エコーの焦点が絞り込まれた音線信号が生成される。
 磁気センサ23は、装置制御部36の制御の下で、位置検出装置30が、磁気を利用して、磁場の3次元空間における超音波プローブ1の位置(3次元座標位置)を検出するための位置検出信号を出力する位置センサである。また、磁気センサ23は、位置検出装置30が、磁気を利用して、3次元空間における超音波プローブ1の鉛直方向に対する角度を検出するための角度検出信号を出力する。
 次に、装置本体3は、超音波プローブ1によって生成された音線信号に基づいて超音波画像を表示する。装置本体3は、図2に示すように、画像生成部31と、画像メモリ32と、距離算出部35と、表示制御部33と、装置制御部36と、モニタ(表示部)34と、入力装置37と、を備えている。
 画像生成部31には、表示制御部33およびモニタ34が順次直列に接続されている。また、画像生成部31には、画像メモリ32および距離算出部35がそれぞれ接続され、画像メモリ32および距離算出部35には、表示制御部33が接続されている。前述の送受信回路14、画像生成部31、表示制御部33および距離算出部35には装置制御部36が接続され、装置制御部36には入力装置37が接続されている。
 画像生成部31は、装置制御部36の制御の下で、送受信回路14により生成された音線信号に基づいて超音波画像(超音波画像信号)を生成する。画像生成部31は、図4に示すように、信号処理部16、DSC(Digital Scan Converter:デジタルスキャンコンバータ)18および画像処理部17が順次直列に接続された構成を有している。
 信号処理部16は、送受信回路14により生成された音線信号に基づいて、超音波画像に対応する画像情報データを生成する。より具体的には、信号処理部16は、送受信回路14のビームフォーマ54により生成された音線信号に対して信号処理、例えば超音波が反射した位置の深度に応じて伝搬距離に起因する減衰の補正を施した後、包絡線検波処理を施して、被検体内の組織に関する断層画像情報を表す画像情報データを生成する。
 DSC18は、信号処理部16により生成された画像情報データを、通常のテレビジョン信号の走査方式に従う画像信号にラスター変換する。
 画像処理部17は、DSC18から入力される画像信号に対して、モニタ34の表示フォーマットに従う明るさ補正、諧調補正、シャープネス補正、画像サイズ補正、リフレッシュレート補正、走査周波数補正および色補正等の各種の画像処理を施すことにより、超音波画像(超音波画像信号)を生成し、生成された超音波画像を表示制御部33および画像メモリ32に出力する。
 本実施形態の場合、画像生成部31は、例えば被検体の乳房の関心領域上の表皮において、超音波プローブ1(より厳密には、振動子アレイ11)を用いて被検体の乳房の関心領域に超音波ビームの送受信を行うことにより得られた受信信号から、さらに言えば、送受信回路14によって受信信号から生成された音線信号から、乳房の関心領域および表皮を含む超音波画像を生成する。
 画像メモリ32は、画像生成部31により診断毎に生成された一連の複数フレームの超音波画像(超音波画像信号)を保持するメモリである。画像メモリ32としては、フラッシュメモリ、HDD(Hard Disc Drive:ハードディスクドライブ)、SSD(Solid State Drive:ソリッドステートドライブ)、FD(Flexible Disc:フレキシブルディスク)、MOディスク(Magneto-Optical disc:光磁気ディスク)、MT(Magnetic Tape:磁気テープ)、RAM(Random Access Memory:ランダムアクセスメモリ)、CD(Compact Disc:コンパクトディスク)、DVD(Digital Versatile Disc:デジタルバーサタイルディスク)、SDカード(Secure Digital card:セキュアデジタルカード)、USBメモリ(Universal Serial Bus memory:ユニバーサルシリアルバスメモリ)等の記録メディア、またはサーバ等を用いることができる。
 距離算出部35は、装置制御部36の制御の下で、ニップルから乳房の関心領域までの直線距離等を算出する。距離算出部35は、図5に示すように、位置取得部60と、部位特定部62と、第1距離算出部64と、第2距離算出部66と、第3距離算出部68と、を有する。
 位置取得部60には第1距離算出部64が接続され、部位特定部62には第2距離算出部66が接続されている。また、第3距離算出部68には、第1距離算出部64および第2距離算出部66が接続されている。
 位置取得部60は、位置検出装置30から、3次元空間における被検体のニップルでの超音波プローブ1の第1位置、乳房の関心領域を含む超音波画像(静止画像)が生成されたときの3次元空間における乳房の関心領域上の表皮での超音波プローブ1の第2位置、3次元空間におけるニップルでの超音波プローブ1の鉛直方向に対する第1角度θ1(絶対角度)、および、3次元空間における乳房の関心領域上の表皮での超音波プローブ1の鉛直方向に対する第2角度θ2(絶対角度)等を取得する。
 部位特定部62は、超音波画像における、乳房の関心領域、乳房の関心領域上の表皮、大胸筋または胸壁等を特定する。
 部位特定部62は、ユーザから入力される指示に基づいて、超音波画像における部位の少なくとも1つを特定することができる。また、超音波画像を解析する画像解析部を設けておき、部位特定部62が、画像解析部による超音波画像の解析の結果に基づいて、超音波画像における部位の少なくとも1つを特定してもよい。さらに、判定モデルを設けておき、部位特定部62が、判定モデルを用いて、超音波画像における部位の少なくとも1つを特定してもよい。
 ここで、判定モデルは、任意の被検体の乳房の関心領域、表皮、大胸筋または胸壁等の部位を含む学習用超音波画像を教師データとして、学習用超音波画像と、この学習用超音波画像に含まれる各部位との関係を複数の教師データについて学習した学習済みモデルである。判定モデルは、その学習結果に基づいて、判定対象となる超音波画像を入力として、この超音波画像に含まれる各部位の判定結果(予測結果)を出力する。つまり、判定モデルにより、超音波画像における部位が特定される。
 第1距離算出部64は、位置取得部60によって取得された位置に基づいて、3次元空間における、ニップルでの超音波プローブ1の第1位置から、乳房の関心領域上の表皮での超音波プローブ1の第2位置までの第1直線距離L1を算出する。
 第2距離算出部66は、部位特定部62によって特定された部位に基づいて、超音波画像における乳房の関心領域から乳房の関心領域上の表皮までの第2直線距離L2を算出する。ここで、超音波画像における乳房の関心領域上の表皮の位置とは、この超音波画像が生成されたときの3次元空間における乳房の関心領域上の表皮での超音波プローブ1の第2位置に相当する。
 第3距離算出部68は、第1距離算出部64によって算出された第1直線距離L1および第2距離算出部66によって算出された第2直線距離L2に基づいて、さらに、第1直線距離L1および第2直線距離L2に加え、位置取得部60によって取得された第1角度θ1および第2角度θ2に基づいて、超音波画像におけるニップルから乳房の関心領域までの第3直線距離L3を算出する。
 図11に示すように、仰向けの被検体の乳房が略平坦である場合に、超音波プローブ1が乳房の表皮に対して略垂直の方向に接触され、3次元空間におけるニップルでの超音波プローブ1の乳房の表皮に対する角度、および、乳房の関心領域上の表皮での超音波プローブ1の乳房の表皮に対する角度が略直角であったとする。この場合、図11に示すように、3次元空間における第1位置から第2位置までの第1直線と、超音波画像における乳房の関心領域からその上の表皮までの第2直線と、超音波画像におけるニップルから乳房の関心領域までの第3直線と、によって、第1直線と第2直線とのなす角度が略直角となる直角三角形が形成される。従って、第3距離算出部68は、三平方の定理を利用して、第1直線距離L1および第2直線距離L2に基づいて、下記式(1)により第3直線距離L3を算出することができる。
 L3=√(L1+L2) … 式(1)
 また、図12に示すように、仰向けの被検体の乳房が凸状である場合に、同様に超音波プローブ1が乳房の表皮に対して略垂直の方向に接触され、3次元空間におけるニップルでの超音波プローブ1の乳房の表皮に対する角度、および、乳房の関心領域上の表皮での超音波プローブ1の乳房の表皮に対する角度が略直角であったとする。この場合、図12に示すように、第1直線と第2直線と第3直線とによって、第2直線と第3直線とのなす角度が略直角となる直角三角形が形成されると仮定すると、第3距離算出部68は、三平方の定理を利用して、第1直線距離L1および第2直線距離L2に基づいて、下記式(2)により第3直線距離L3を算出することができる。
 L3=√(L1-L2) … 式(2)
 さらに、図13に示すように、仰向けの被検体の乳房が凸状である場合に、超音波プローブ1が乳房の表皮に対して略垂直の方向から傾けて接触され、3次元空間におけるニップルでの超音波プローブ1の鉛直方向に対する角度が第1角度θ1、および、乳房の関心領域上の表皮での超音波プローブ1の鉛直方向に対する角度が第2角度θ2であったとする。この場合、図13に示すように、第1直線と、ニップルから第1角度θ1で被検体の体内方向へ延びる第4直線と、乳房の関心領域上の表皮から第2角度θ2で被検体の体内方向へ延びる第5直線と、によって、第4直線および第5直線の距離が等しい二等辺三角形が形成される。また、第3直線と、ニップルから第5直線まで垂直に延びる第6直線と、第5直線と第6直線との交点から乳房の関心領域までの第7直線と、によって、第6直線と第7直線とのなす角度が直角となる直角三角形が形成される。従って、第3距離算出部68は、三平方の定理を利用して、第1直線距離L1、第2直線距離L2、第1角度θ1および第2角度θ2に基づいて、下記式(3)により第3直線距離L3を算出することができる。
 L3=√{(r・sinθ)+(r-r・cоsθ-L2)} … 式(3)
 ここで、r・sinθは、第6直線距離L6、r-r・cоsθ-L2は、第7直線距離L7である。θは、第1角度θ1と第2角度θ2との差分角度である。rは、ニップルから第4直線と第5直線との交点までの第4直線距離、および、乳房の関心領域上の表皮から第4直線と第5直線との交点までの第5直線距離であり、第1直線距離L1および差分角度θに基づいて、下記式(4)が成り立つ。
 L1=2r・sin(θ/2) … 式(4)
 表示制御部33は、装置制御部36の制御の下で、各種の情報をモニタ34に表示させる。表示制御部33は、例えば画像メモリ32に保持されている超音波画像に対して所定の処理を施して、処理後の超音波画像をモニタ34に表示させる。また、表示制御部33は、第3直線距離L3の情報等を、乳房の関心領域を含む超音波画像に重畳してモニタ34に表示させる。
 装置制御部36は、予め記憶されているプログラムおよび入力装置37から入力されたユーザの指示等に基づいて、装置本体3の各部の制御を行う。より詳しくは、装置制御部36は、超音波画像がモニタ34に表示されるように表示制御部33を制御する。また、装置制御部36は、ニップルから乳房の関心領域までの第3直線距離L3等が算出されるように距離算出部35を制御する。
 画像生成部31、表示制御部33、距離算出部35および装置制御部36によって端末側プロセッサ39が構成されている。
 モニタ34は、表示制御部33の制御により、各種の情報を表示する。モニタ34は、超音波画像、および、ニップルから乳房の関心領域までの第3直線距離L3の情報等を表示する。モニタ34としては、例えばLCD(Liquid Crystal Display:液晶ディスプレイ)および有機EL(Electro-Luminescence:エレクトロルミネッセンス)ディスプレイ等を例示することができる。
 入力装置37は、ユーザから入力される各種の指示を受け取るものであり、例えば各種のボタン、およびユーザがタッチ操作を行って各種の指示を入力するタッチパネル等を含む。
 次に、位置検出装置30は、3次元空間における、乳房の表皮での超音波プローブ1の位置、より厳密には、磁気センサ23の位置を検出するものであり、図6に示すように、磁場発生器28と、磁場位置検出器29と、を有する。磁場発生器28は、磁場位置検出器29に接続され、磁場位置検出器29は、超音波診断装置20と相互に接続されている。
 位置検出装置30は、超音波検査時に、磁場発生器28によって発生された磁場の3次元空間において、磁場位置検出器29により、超音波プローブ1が有する磁気センサ23から出力される位置検出信号および角度検出信号に基づいて、乳房の表皮での超音波プローブ1の位置、つまり、磁気センサ23の位置、および、超音波プローブ1の鉛直方向に対する角度(超音波プローブ1の鉛直方向に対する傾き)を検出する。
 なお、位置センサとして、磁気センサに限らず、GPS(Global Positioning System:グローバル・ポジショニング・システム)センサ、または光学式センサ等を利用して、超音波プローブ1の位置を検出することもできる。位置センサとして、GPSセンサを利用する場合、GPSを利用して超音波プローブ1の位置を検出し、ジャイロセンサを用いて超音波プローブ1の角度を検出する位置検出装置が用いられる。一方、位置センサとして、光学式センサを利用する場合、光を利用して超音波プローブ1の位置および角度を検出する位置検出装置が用いられる。
 次に、図7のフローチャートを参照しながら、超音波画像を撮像する場合の超音波システム10の動作を説明する。
 まず、超音波プローブ1が被検体の乳房の表皮に接触された状態で、装置制御部36の制御の下で、送受信回路14により超音波の送信が開始され、音線信号が生成される(ステップS1)。
 つまり、パルサ51からの駆動信号に従って振動子アレイ11の複数の振動子から乳房に超音波ビームが送信される。
 パルサ51から送信された超音波ビームに基づく乳房からの超音波エコーは、振動子アレイ11の各振動子により受信され、超音波エコーを受信した振動子アレイ11の各振動子からアナログ信号である受信信号が出力される。
 振動子アレイ11の各振動子から出力されるアナログ信号である受信信号は、増幅部52により増幅され、AD変換部53によりAD変換されて受信データが取得される。
 この受信データに対して、ビームフォーマ54により受信フォーカス処理が施されることにより、音線信号が生成される。
 続いて、装置制御部36の制御の下で、画像生成部31により、送受信回路14のビームフォーマ54により生成された音線信号に基づいて、乳房の超音波画像(超音波画像信号)が生成される(ステップS2)。
 つまり、ビームフォーマ54により生成された音線信号は、信号処理部16により各種の信号処理が施され、被検体内の組織に関する断層画像情報を表す画像情報データが生成される。
 信号処理部16により生成された画像情報データは、DSC18によりラスター変換され、さらに画像処理部17により各種の画像処理が施され、超音波画像(超音波画像信号)が生成される。
 画像処理部17により生成された超音波画像は、画像メモリ32に保持される。
 続いて、装置制御部36の制御の下で、表示制御部33により、画像メモリ32に保持された超音波画像に所定の処理が施されて、モニタ34に表示される(ステップS3)。
 次に、図8のフローチャートを参照しながら、超音波画像におけるニップルから乳房の関心領域までの直線距離を算出する場合の超音波システム10の動作を説明する。以下の説明では、超音波検査に先立って、マンモグラフィ検査が行われるものとする。
 まず、マンモグラフィ装置において、例えば立位の状態の被検体の乳房が圧迫板により圧迫され、X線源から圧迫板により圧迫された乳房にX線が照射される。そして、乳房を透過したX線がX線検出器によって検出され、X線検出器によって検出された検出信号から乳房のマンモグラフィ画像が生成される。例えば、右乳房のMLO(Mediolateral-Oblique:内外斜位)方向およびCC(Cranio-Caudal:頭尾)方向のマンモグラフィ画像(R_MLO画像およびR_CC画像)が生成される。同様に、左乳房のMLO方向およびCC方向のマンモグラフィ画像(L_MLO画像およびL_CC画像)が生成される。
 続いて、超音波診断装置20において、ユーザからの指示に応じて、装置制御部36により、マンモグラフィ装置からマンモグラフィ画像が取得される。
 なお、超音波診断装置20は、マンモグラフィ装置からマンモグラフィ画像を直接取得するのではなく、サーバから、ネットワークを介して、マンモグラフィ画像を取得してもよい。サーバは、医療用画像管理システム(PACS:Picture Archiving and Communication Systems)、またはPACSを管理するコンピュータあるいはワークステーション等であって、マンモグラフィ画像および超音波画像等の医療用画像を保存し、かつ管理する。サーバは、超音波診断装置20等からの要求に応じて、保存済みの医療用画像の中から、要求された医療用画像を超音波診断装置20等に提供する。
 続いて、画像生成部により、例えば仰向けの被写体の右乳房の超音波画像(動画像)が生成され、表示制御部33により、マンモグラフィ画像と右乳房の超音波画像とが、例えば左右に並べてモニタ34に表示される。
 続いて、ユーザにより、超音波プローブ1がニップルに対して略垂直に接触された状態で、超音波プローブ1の位置を検出するための位置検出ボタンが押される。これに応じて、位置検出装置30により、超音波プローブ1が有する磁気センサ23から出力される位置検出信号に基づいて、磁場の3次元空間におけるニップルでの超音波プローブ1の第1位置が検出される。そして、位置取得部60により、位置検出装置30から、ニップルでの超音波プローブ1の第1位置が取得される(ステップS20)。
 続いて、ユーザにより、超音波プローブ1が右乳房の表皮に対して略垂直に接触された状態で、ニップルから右乳房の関心領域上の表皮の位置まで超音波プローブ1が移動される。
 この場合、ユーザは、モニタ34に表示されたマンモグラフィ画像および超音波画像を見て、マンモグラフィ画像での右乳房の関心領域に対応する、超音波画像での右乳房の関心領域の位置を予測する。そして、超音波プローブ1をマンモグラフィ画像での右乳房の関心領域に対応する、超音波画像での右乳房の関心領域上の表皮の位置まで移動させることにより、右乳房の関心領域を特定することができる。
 あるいは、ユーザは、右乳房全体を検査する場合、右乳房の関心領域の見落としを防止するために、右乳房の左側から右側へ向かって超音波プローブを移動させることを、上下方向の位置をずらして複数回繰り返す。続いて、右乳房の上側から下側へ向かって超音波プローブを移動させることを、左右方向の位置をずらして複数回繰り返すことにより、右乳房の関心領域を特定することができる。
 続いて、ユーザにより、超音波プローブ1が右乳房の表皮に対して略垂直に接触された状態で、右乳房の関心領域上の表皮の位置でフリーズボタンが押される。これに応じて、画像生成部により、1枚目の超音波画像(静止画像)が生成される(ステップS21)。また、例えば右乳房の関心領域上の表皮の位置で超音波プローブ1の向きが90度回転されて、つまり、1枚目の超音波画像の生成時の超音波プローブ1の向きと直交する向きに超音波プローブ1が向けられてフリーズボタンが押される。これに応じて、画像生成部により、2枚目の超音波画像(静止画像)が生成される(ステップS21)。
 また、フリーズボタンが押されると、これに応じて、位置検出装置30により、3次元空間における右乳房の関心領域上の表皮での超音波プローブ1の第2位置が検出され、位置取得部60により、位置検出装置30から、右乳房の関心領域上の表皮での超音波プローブ1の第2位置が取得される(ステップS22)。
 なお、フリーズボタンではなく、前述の超音波プローブ1の位置を検出するための位置検出ボタンが押されたことに応じて、あるいは超音波プローブ1が右乳房の関心領域上の表皮で数秒間停止されたことに応じて、右乳房の関心領域上の表皮での超音波プローブ1の第2位置を取得してもよい。
 続いて、部位特定部62により、超音波画像における右乳房の関心領域および表皮等が特定される(ステップS23)。部位特定部62は、2枚の超音波画像のうち、どちらの超音波画像を用いて右乳房の関心領域および表皮等を特定してもよい。
 続いて、第1距離算出部64により、3次元空間における、ニップルでの超音波プローブ1の第1位置から、乳房の関心領域上の表皮での超音波プローブ1の第2位置までの第1直線距離L1が算出される(ステップS24)。
 また、第2距離算出部66により、超音波画像における右乳房の関心領域から右乳房の関心領域上の表皮までの第2直線距離L2が算出される(ステップS25)。
 続いて、第3距離算出部68により、第1直線距離L1および第2直線距離L2に基づいて、超音波画像におけるニップルから右乳房の関心領域までの第3直線距離L3が算出される(ステップS26)。
 そして、表示制御部33により、第3直線距離L3の情報が、関心領域を含む超音波画像に重畳してモニタ34に表示される(ステップS27)。また、関心領域を含み、かつ第3直線距離L3の情報が重畳された超音波画像がキャプチャされて超音波診断装置20からPACSへ送信される。ユーザは、PACSの表示装置(ビューワ)において、超音波画像に重畳して表示された第3直線距離L3の情報を見て、この第3直線距離L3の情報を超音波検査の診断レポートに記載することができる。
 なお、第3直線距離L3の情報のみを超音波診断装置20からPACSへ送信し、PACSにおいて、関心領域を含む超音波画像に第3直線距離L3の情報を重畳してPACSの表示装置に表示させてもよい。
 このように、超音波システム10では、3次元空間におけるニップルでの超音波プローブ1の第1位置から乳房の関心領域上の表皮での超音波プローブ1の第2位置までの第1直線距離L1、および、超音波画像における乳房の関心領域から乳房の関心領域上の表皮までの第2直線距離L2に基づいて、超音波画像におけるニップルから乳房の関心領域までの第3直線距離L3を正確に算出することができる。
 なお、第3直線距離L3の情報だけでなく、第2直線距離L2の情報、さらには、乳房の関心領域から大胸筋または胸壁までの第4直線距離L4の情報をモニタ34に表示させてもよい。
 第4直線距離L4の情報をモニタ34に表示させる場合、第4距離算出部を設けておき、部位特定部62により、超音波画像における大胸筋または胸壁が特定され、第4距離算出部により、超音波画像における、関心領域から大胸筋または胸壁までの第4直線距離L4が算出される。そして、表示制御部33により、第4直線距離L4の情報が、関心領域を含む超音波画像に重畳してモニタ34に表示される。
 図9は、モニタの表示画面を表す一実施形態の概念図である。図9に示すモニタ34の表示画面の左側の表示領域には、R_MLO画像が表示されている。
 左側の表示領域の上部には、左側から順に、R_MLO画像、L_MLO画像、R_CC画像およびL_CC画像のサムネイル画像が表示されている。ユーザは、4つのサムネイル画像のうちの1つを選択することにより、選択された1つのサムネイル画像に対応するマンモグラフィ画像を、左側の表示領域に表示させることができる。
 左側の表示領域の左上部には、左側の表示領域に表示されたR_MLO画像での右乳房の2つの関心領域に対応する2つのアイコン画像が表示されている。ユーザは、2つのアイコン画像のうちの1つを選択することにより、選択された1つのアイコン画像に対応する関心領域の所見を表示させることができる。
 左側の表示領域の左下部には、左側の表示領域に表示されたR_MLO画像に対応する乳房の断面位置および乳房の関心領域の位置を示す右乳房の模式図が表示されている。
 図9に示すモニタ34の表示画面の右側の表示領域には、右乳房の関心領域および表皮を含む超音波画像が表示されている。
 右側の表示領域の左上部には、右側の表示領域に表示された右乳房の超音波画像における右乳房の関心領域の拡大図がウィンドウ領域内に表示されている。
 右側の表示領域の右下部には、右側の表示領域に表示された右乳房の超音波画像に対応する断面位置および超音波プローブ1の向きを示す右乳房の模式図が表示されている。
 また、図9に示すように、右側の表示領域に表示された右乳房の超音波画像には、表示制御部33の制御により、この超音波画像におけるニップルから右乳房の関心領域までの第3直線距離L3の情報に加え、右乳房の関心領域から右乳房の関心領域上の表皮までの第2直線距離L2の情報、および、右乳房の関心領域から胸壁までの第4直線距離L4の情報等が、右乳房の関心領域を含む超音波画像に重畳してモニタ34に表示されている。
 図9に示すように、第3直線距離L3の情報として、超音波画像におけるニップルから右乳房の関心領域までをつなぐ双方向の矢印、および、ニップルから右乳房の関心領域までの距離として、25mmが、モニタ34にアノテーション表示されている。第2直線距離L2および第4直線距離L4の情報も同様に表示されている。このアノテーション表示は、ユーザによる超音波画像の読影の妨げとならないように、例えばユーザからの指示に応じて、オンしたり、オフしたりすることが可能である。
 なお、第3直線距離L3として、超音波画像におけるニップルから右乳房の関心領域の長径と短径との交点までの直線距離を使用することができる。あるいは、ニップルから右乳房の関心領域の中心点または重心までの直線距離、または、ニップルから右乳房の関心領域を囲む枠までの直線距離等を使用してもよい。第3直線距離L3について説明したが、第2直線距離L2および第4直線距離L4についても同様である。
 また、サーバを設けておき、超音波診断装置20ではなく、サーバにおいて、超音波画像におけるニップルから関心領域までの第3直線距離L3を算出してもよい。この場合、サーバは、例えば、PACSのサーバであっても良い。また、別の例として、サーバはネットワークに接続されている別建てのコンピュータあるいはワークステーション等でも良い。
 この場合、超音波診断装置20は、図2に示す距離算出部35以外の各構成要素、例えば超音波プローブ1、磁気センサ23および画像生成部等を備える。
 これに対し、図10に示すように、サーバ5は、距離算出部72と、サーバ制御部75と、を備える。
 サーバ5と装置本体3とは、ネットワークを介して接続されており、これにより、双方向にデータの受け渡しが可能である。
 距離算出部72は、超音波診断装置20の装置本体3が備える距離算出部35と同じものであるが、サーバ制御部75の制御の下で動作する。
 サーバ制御部75は、予め記憶されているプログラム等に基づいて、サーバ5の各部の制御を行う。より詳しくは、サーバ制御部75は、超音波画像におけるニップルから関心領域までの第3直線距離L3が算出されるように距離算出部72を制御する。
 サーバ5において、第3直線距離L3を算出する場合、サーバ制御部75の制御により、超音波診断装置20から超音波画像が受信される。距離算出部72の動作は、超音波診断装置20において、距離算出部35が第3直線距離L3を算出する場合の動作と同様である。サーバ5において、第3直線距離L3が算出されると、第3直線距離L3の情報がサーバ5から超音波診断装置20へ送信される。
 そして、超音波診断装置20において、表示制御部33により、第3直線距離L3の情報が、関心領域を含む超音波画像に重畳してモニタ34に表示される。もしくは、関心領域を含み、かつ第3直線距離L3の情報が重畳された超音波画像をサーバ5からサーバとは別建てのPACSへ送信し、PACSの表示装置(ビューワ)に表示させても良い。また、第3直線距離L3の情報のみをサーバ5からPACSへ送信し、PACSにおいて、関心領域を含む超音波画像に第3直線距離L3の情報を重畳してPACSの表示装置に表示させてもよい。
 なお、サーバ5において、第3直線距離L3を算出する場合、距離算出部72を備えることは必須ではなく、サーバ5は、少なくとも距離算出部72が有する第3距離算出部を備えていればよい。すなわち、位置取得部、第1距離算出部、部位取得部および第2距離算出部の少なくとも1つは、超音波診断装置20が備えていてもよいし、サーバ5が備えていてもよい。言い換えると、超音波プローブ1の第1位置、第2位置および角度の取得、超音波画像における部位の特定、第1直線距離L1および第2直線距離L2の算出の少なくとも1つは、超音波診断装置20側で行ってもよいし、サーバ5側で行ってもよい。
 また、本発明は、据置型の超音波システムに限らず、装置本体がラップトップ型の端末装置によって実現されている携帯型の超音波システム、および、装置本体がスマートフォンまたはタブレットPC(Personal Computer:パーソナルコンピュータ)等のハンドヘルド型の端末装置によって実現されているハンドヘルド型の超音波システムにおいても同様に適用可能である。
 本発明の装置において、送受信回路14、画像生成部31、表示制御部33、距離算出部35,72、装置制御部36およびサーバ制御部75等の各種の処理を実行する処理部(Processing Unit)のハードウェア的な構成は、専用のハードウェアであってもよいし、プログラムを実行する各種のプロセッサまたはコンピュータであってもよい。また、画像メモリ32等のハードウェア的な構成は、専用のハードウェアであってもよいし、あるいは半導体メモリ等のメモリおよびHDD(Hard Disk Drive:ハードディスクドライブ)およびSSD(Solid State Drive:ソリッドステートドライブ)等のストレージデバイスであってもよい。
 各種のプロセッサには、ソフトウェア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、ASIC(Application Specific Integrated Circuit)等の特定の処理をさせるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。
 1つの処理部を、これら各種のプロセッサのうちの1つで構成してもよいし、同種または異種の2つ以上のプロセッサの組み合わせ、例えば、複数のFPGAの組み合わせ、または、FPGAおよびCPUの組み合わせ等によって構成してもよい。また、複数の処理部を、各種のプロセッサのうちの1つで構成してもよいし、複数の処理部のうちの2以上をまとめて1つのプロセッサを用いて構成してもよい。
 例えば、サーバおよびクライアント等のコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。また、システムオンチップ(System on Chip:SoC)等に代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。
 さらに、これらの各種のプロセッサのハードウェア的な構成は、より具体的には、半導体素子などの回路素子を組み合わせた電気回路(Circuitry)である。
 また、本発明の方法は、例えば、その各々のステップをコンピュータに実行させるためのプログラムにより実施することができる。また、このプログラムが記録されたコンピュータ読み取り可能な記録媒体を提供することもできる。
 以上、本発明について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
 1 超音波プローブ、3 装置本体、5 サーバ、10 超音波システム、11 振動子アレイ、14 送受信回路、16 信号処理部、17 画像処理部、18 DSC、20 超音波診断装置、23 磁気センサ、28 磁場発生器、29 磁場位置検出器、30 位置検出装置、32 画像メモリ、33 表示制御部、34 モニタ、35 距離算出部、36 装置制御部、37 入力装置、39 プロセッサ、51 パルサ、52 増幅部、53 AD変換部、54 ビームフォーマ、60 位置取得部、64 第1距離算出部、62 部位特定部、66 第2距離算出部、68 第3距離算出部、72 距離算出部、75 サーバ制御部。

Claims (14)

  1.  超音波プローブと、
     3次元空間における前記超音波プローブの位置を検出するための位置検出信号を出力する位置センサと、
     被検体の乳房の関心領域上の表皮において、前記超音波プローブを用いて前記関心領域に超音波ビームの送受信を行うことにより得られた受信信号から、前記関心領域および前記表皮を含む超音波画像を生成する画像生成部と、
     前記位置検出信号に基づいて検出される、前記3次元空間における前記被検体のニップルでの前記超音波プローブの第1位置および前記関心領域上の表皮での前記超音波プローブの第2位置を取得する位置取得部と、
     前記超音波画像における前記関心領域および前記表皮を特定する部位特定部と、
     前記3次元空間における前記第1位置から前記第2位置までの第1直線距離L1を算出する第1距離算出部と、
     前記超音波画像における前記関心領域から前記関心領域上の前記表皮までの第2直線距離L2を算出する第2距離算出部と、
     前記第1直線距離L1および前記第2直線距離L2に基づいて、前記超音波画像における前記ニップルから前記関心領域までの第3直線距離L3を算出する第3距離算出部と、を備える、超音波システム。
  2.  前記第3距離算出部は、前記3次元空間における前記第1位置から前記第2位置までの第1直線と、前記超音波画像における前記関心領域から前記関心領域上の表皮までの第2直線と、前記超音波画像における前記ニップルから前記関心領域までの第3直線と、によって、前記第1直線と前記第2直線とのなす角度が略直角となる直角三角形が形成される場合に、三平方の定理を利用して、前記第1直線距離L1および前記第2直線距離L2に基づいて、前記第3直線距離L3を算出する、請求項1に記載の超音波システム。
  3.  前記第3距離算出部は、前記3次元空間における前記第1位置から前記第2位置までの第1直線と、前記超音波画像における前記関心領域から前記関心領域上の表皮までの第2直線と、前記超音波画像における前記ニップルから前記関心領域までの第3直線と、によって、前記第2直線と前記第3直線とのなす角度が略直角となる直角三角形が形成される場合に、三平方の定理を利用して、前記第1直線距離L1および前記第2直線距離L2に基づいて、前記第3直線距離L3を算出する、請求項1に記載の超音波システム。
  4.  前記位置センサは、前記3次元空間における前記関心領域上の表皮での前記超音波プローブの鉛直方向に対する角度を検出するための角度検出信号を出力し、
     前記位置取得部は、前記角度検出信号に基づいて検出される、前記3次元空間における前記ニップルでの前記超音波プローブの鉛直方向に対する第1角度θ1および前記関心領域上の表皮での前記超音波プローブの鉛直方向に対する第2角度θ2を取得し、
     前記第3距離算出部は、前記3次元空間における前記第1位置から前記第2位置までの第1直線と、前記ニップルから前記第1角度θ1で前記被検体の体内方向へ延びる第4直線と、前記関心領域上の表皮から前記第2角度θ2で前記被検体の体内方向へ延びる第5直線と、によって、前記第4直線および前記第5直線の距離が等しい二等辺三角形が形成され、前記第3直線と、前記ニップルから前記第5直線まで垂直に延びる第6直線と、前記第5直線と前記第6直線との交点から前記関心領域までの第7直線と、によって、前記第6直線と前記第7直線とのなす角度が直角となる直角三角形が形成される場合に、三平方の定理を利用して、前記第1直線距離L1、前記第2直線距離L2、前記第1角度θおよび前記第2角度θ2に基づいて、前記第3直線距離L3を算出する、請求項1に記載の超音波システム。
  5.  前記位置センサは、磁気センサ、GPSセンサ、または光学式センサである、請求項1ないし4のいずれか一項に記載の超音波システム。
  6.  モニタと、
     前記第3直線距離L3の情報を、前記関心領域を含む前記超音波画像に重畳して前記モニタに表示させる表示制御部と、を備える、請求項1ないし5のいずれか一項に記載の超音波システム。
  7.  前記表示制御部は、さらに、前記第2直線距離L2の情報を、前記関心領域を含む前記超音波画像に重畳して前記モニタに表示させる、請求項6に記載の超音波システム。
  8.  前記部位特定部は、前記超音波画像における前記被検体の大胸筋または胸壁を特定し、
     前記超音波画像における、前記関心領域から前記大胸筋または胸壁までの第4直線距離L4を算出する第4距離算出部を備え、
     前記表示制御部は、さらに、前記第4直線距離L4の情報を、前記関心領域を含む前記超音波画像に重畳して前記モニタに表示させる、請求項6または7に記載の超音波システム。
  9.  超音波診断装置と、サーバと、を備え、
     前記超音波診断装置が、前記超音波プローブと、前記位置センサと、前記画像生成部と、を備え、
     前記サーバが、前記第3距離算出部を備える、請求項1ないし8のいずれか一項に記載の超音波システム。
  10.  ユーザから入力される指示を受け取る入力装置を備え、
     前記部位特定部は、前記ユーザから入力される指示に基づいて、前記超音波画像における前記関心領域および前記表皮の少なくとも一方を特定する、請求項1ないし9のいずれか一項に記載の超音波システム。
  11.  前記超音波画像を解析する画像解析部を備え、
     前記部位特定部は、前記超音波画像の解析の結果に基づいて、前記超音波画像における前記関心領域および前記表皮の少なくとも一方を特定する、請求項1ないし9のいずれか一項に記載の超音波システム。
  12.  前記部位特定部は、被検体の乳房の関心領域を含む学習用超音波画像を教師データとして、前記学習用超音波画像と前記学習用超音波画像に含まれる関心領域および表皮との関係を複数の教師データについて学習した判定モデルを有し、前記判定モデルは、前記超音波画像を入力として、前記超音波画像における前記関心領域および前記表皮の少なくとも一方を特定する、請求項1ないし9のいずれか一項に記載の超音波システム。
  13.  前記第3直線距離L3の情報を医療用画像管理システムへ送信して前記医療用画像管理システムの表示装置に表示させる、請求項1ないし12のいずれか一項に記載の超音波システム。
  14.  3次元空間における超音波プローブの位置を検出するための位置検出信号を出力し、
     被検体の乳房の関心領域上の表皮において、前記超音波プローブを用いて前記関心領域に超音波ビームの送受信を行うことにより得られた受信信号から、前記関心領域および前記表皮を含む超音波画像を生成し、
     前記位置検出信号に基づいて検出される、前記3次元空間における前記被検体のニップルでの前記超音波プローブの第1位置および前記関心領域上の表皮での前記超音波プローブの第2位置を取得し、
     前記超音波画像における前記関心領域および前記表皮を特定し、
     前記3次元空間における前記第1位置から前記第2位置までの第1直線距離L1を算出し、
     前記超音波画像における前記関心領域から前記関心領域上の前記表皮までの第2直線距離L2を算出し、
     前記第1直線距離L1および前記第2直線距離L2に基づいて、前記超音波画像における前記ニップルから前記関心領域までの第3直線距離L3を算出する、超音波システムの制御方法。
PCT/JP2021/028918 2020-09-23 2021-08-04 超音波システムおよび超音波システムの制御方法 WO2022064868A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022551181A JP7465988B2 (ja) 2020-09-23 2021-08-04 超音波システムおよび超音波システムの制御方法
US18/177,564 US20230200779A1 (en) 2020-09-23 2023-03-02 Ultrasound system and control method of ultrasound system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-158399 2020-09-23
JP2020158399 2020-09-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/177,564 Continuation US20230200779A1 (en) 2020-09-23 2023-03-02 Ultrasound system and control method of ultrasound system

Publications (1)

Publication Number Publication Date
WO2022064868A1 true WO2022064868A1 (ja) 2022-03-31

Family

ID=80846390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028918 WO2022064868A1 (ja) 2020-09-23 2021-08-04 超音波システムおよび超音波システムの制御方法

Country Status (3)

Country Link
US (1) US20230200779A1 (ja)
JP (1) JP7465988B2 (ja)
WO (1) WO2022064868A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008154833A (ja) * 2006-12-25 2008-07-10 Aloka Co Ltd 超音波診断装置及びレポート画像作成方法
JP2017086896A (ja) * 2015-11-11 2017-05-25 東芝メディカルシステムズ株式会社 医用画像処理装置及び超音波診断装置
JP2018167127A (ja) * 2018-08-10 2018-11-01 キヤノン株式会社 情報処理装置、情報処理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008154833A (ja) * 2006-12-25 2008-07-10 Aloka Co Ltd 超音波診断装置及びレポート画像作成方法
JP2017086896A (ja) * 2015-11-11 2017-05-25 東芝メディカルシステムズ株式会社 医用画像処理装置及び超音波診断装置
JP2018167127A (ja) * 2018-08-10 2018-11-01 キヤノン株式会社 情報処理装置、情報処理方法

Also Published As

Publication number Publication date
JPWO2022064868A1 (ja) 2022-03-31
JP7465988B2 (ja) 2024-04-11
US20230200779A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
JP6683677B2 (ja) 自家診断及び遠隔診断のための超音波診断装置、並びに超音波診断装置の動作方法
US7949160B2 (en) Imaging apparatus and imaging method
US20150320391A1 (en) Ultrasonic diagnostic device and medical image processing device
JP2006255083A (ja) 超音波画像生成方法および超音波診断装置
KR20110127618A (ko) 초음파 이미지를 디스플레이하는 초음파 진단 장치 및 방법
JP2009082402A (ja) 医用画像診断システム、医用撮像装置、医用画像格納装置、及び、医用画像表示装置
US20120029344A1 (en) Radiological image radiographiing method and apparatus
KR102258800B1 (ko) 초음파 진단장치 및 그에 따른 초음파 진단 방법
CN112386278A (zh) 用于相机辅助超声扫描设置和控制的方法和系统
JP2014113421A (ja) 超音波診断装置及び画像処理プログラム
US20230240655A1 (en) Ultrasound diagnostic apparatus and display method of ultrasound diagnostic apparatus
US11116481B2 (en) Ultrasound diagnostic apparatus and control method of ultrasound diagnostic apparatus
JP6718520B2 (ja) 超音波診断装置及び超音波診断装置の制御方法
WO2022064868A1 (ja) 超音波システムおよび超音波システムの制御方法
JP6883432B2 (ja) 超音波画像表示装置及びその制御プログラム
JP2010233896A (ja) 超音波診断装置
EP4218601A1 (en) Ultrasonic system and method for controlling ultrasonic system
US20230240654A1 (en) Ultrasound diagnostic apparatus and display method of ultrasound diagnostic apparatus
JP7453400B2 (ja) 超音波システムおよび超音波システムの制御方法
WO2022065050A1 (ja) 超音波診断装置および超音波診断装置の制御方法
WO2022230666A1 (ja) 超音波診断装置および超音波診断装置の制御方法
US20240130712A1 (en) Ultrasound diagnostic apparatus and control method of ultrasound diagnostic apparatus
WO2023008155A1 (ja) 超音波診断装置および超音波診断装置の制御方法
JP7411109B2 (ja) 超音波診断装置および超音波診断装置の制御方法
JP7237512B2 (ja) 超音波診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872000

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022551181

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872000

Country of ref document: EP

Kind code of ref document: A1