WO2022064569A1 - Air-conditioning system, controller, and blower control method - Google Patents

Air-conditioning system, controller, and blower control method Download PDF

Info

Publication number
WO2022064569A1
WO2022064569A1 PCT/JP2020/035840 JP2020035840W WO2022064569A1 WO 2022064569 A1 WO2022064569 A1 WO 2022064569A1 JP 2020035840 W JP2020035840 W JP 2020035840W WO 2022064569 A1 WO2022064569 A1 WO 2022064569A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
air conditioner
blower
controller
perimeter zone
Prior art date
Application number
PCT/JP2020/035840
Other languages
French (fr)
Japanese (ja)
Inventor
正樹 小松
Original Assignee
三菱電機ビルテクノサービス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機ビルテクノサービス株式会社 filed Critical 三菱電機ビルテクノサービス株式会社
Priority to PCT/JP2020/035840 priority Critical patent/WO2022064569A1/en
Priority to JP2021516701A priority patent/JP6910581B1/en
Priority to CN202080105469.5A priority patent/CN116235006B/en
Publication of WO2022064569A1 publication Critical patent/WO2022064569A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure

Definitions

  • This disclosure relates to an air conditioning system, a controller, and a control method for a blower.
  • the air in the perimeter zone (area near the window or wall) in the room and the air in the interior zone (area in the center of the room) are harmonized by using different air conditioners. ing.
  • the air conditioner for the perimeter zone is heated to warm the perimeter zone, while the air conditioner for the interior zone is cooled to cool the interior zone.
  • the reason for cooling the interior zone in winter is that people, luminaires, and electronic devices raise the temperature of the interior zone.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 56-157747 (Patent Document 1) provides a hanging wall on the ceiling surface.
  • the present disclosure provides a control method for an air conditioning system capable of smoothing the circulation of warm air in a perimeter zone, a controller constituting the air conditioning system, and a blower constituting the air conditioning system.
  • the air conditioning system draws in air from the perimeter zone through a first air control port on the ceiling of the perimeter zone in the interior of the building, and the sucked air is the first air control.
  • the blower for blowing out to the perimeter zone from the second air control port provided on the outer wall side of the building rather than the mouth, and the first air conditioner that harmonizes the air in the perimeter zone are operating for heating and indoors.
  • a controller for driving the blower is provided, provided that the second air conditioner that harmonizes the air in the interior zone is in cooling operation.
  • the controller draws in air from the perimeter zone from a first air control port provided on the ceiling of the perimeter zone in the interior of the building, and the sucked air is taken into the first air control port. It controls the blower for blowing out to the perimeter zone from the second air control port provided on the outer wall side of the building.
  • the controller is provided on the condition that the first air conditioner that harmonizes the air in the perimeter zone is operating for heating and the second air conditioner that harmonizes the air in the interior zone of the room is operating for cooling. Drive the blower.
  • the control method of the blower is such that the first air conditioner that harmonizes the air in the perimeter zone in the building is heated and operates and harmonizes the air in the interior zone of the room.
  • the perimeter is subject to the step of detecting that the second air conditioner is in the cooling operation and the condition that the first air conditioner is in the heating operation and the second air conditioner is in the cooling operation.
  • the air in the perimeter zone is sucked in from the first air-conditioning port provided on the ceiling of the zone, and the sucked air is taken in from the second air-conditioning port provided on the outer wall side of the building from the first air-conditioning port. It is equipped with a step to drive the blower so that it blows into the perimeter zone.
  • FIG. 7 is a cross-sectional view taken along the line VIII-VIII of FIG. 7. It is a figure for demonstrating another modification of an air conditioning system. 9 is a cross-sectional view taken along the line XX of FIG.
  • the warm air in the perimeter zone is circulated in the perimeter zone by a blower.
  • the drive of the blower is performed by the controller.
  • the ceiling of the perimeter zone inside the building is provided with a first air control port (specifically, a suction port (intake port)). Further, on the ceiling of the perimeter zone, a second air control port (specifically, an air outlet (exhaust port)) is provided on the outer wall side of the building with respect to the first air control port.
  • the blower sucks the air in the room from the first air control port and blows the sucked air into the perimeter zone from the second air control port.
  • the controller is provided that the air conditioner that harmonizes the air in the perimeter zone is operating for heating and the air conditioner that harmonizes the air in the interior zone adjacent to the perimeter zone is operating for cooling. , Drive the blower.
  • the circulation of warm air in the perimeter zone is promoted. Therefore, the perimeter zone can be heated uniformly.
  • the second air control port (outlet) is on the outer wall side of the building from the first air control port (suction port)
  • cold draft warm air in the room is cooled by touching the cold window glass. , The phenomenon of descending to the floor surface) can be reduced.
  • FIG. 1 is a cross-sectional view showing a cross section of a building.
  • the building is typically an office building.
  • the interior 940 of the building 900 is conceptually divided into a perimeter zone 941 and an interior zone 942.
  • the perimeter zone 941 and the interior zone 942 are adjacent to each other.
  • the outer wall 901 side (or window 902 side) of the building 900 is the perimeter zone 941 with respect to the virtual line L.
  • the interior zone is on the central side of the building from the virtual line L.
  • the "perimeter zone” is typically an area from the window 902 to the vicinity of 5 m.
  • the distance from the window 902 is not limited to 5 m.
  • An air conditioner 501 that harmonizes the air in the perimeter zone 941 is installed in the perimeter zone 941. That is, the air conditioner 501 for the perimeter zone 941 is installed in the perimeter zone 941.
  • the air conditioner 501 is installed on the floor surface 970 near the window 902 side.
  • the air conditioner 501 (in this example, an indoor unit) sucks in air near the floor surface 970 from the suction port 510 and blows air above the air conditioner 501 from the air outlet 530.
  • the underfloor 980 is formed under the floor surface 970, but the underfloor 980 may not be present.
  • An air conditioner 601 that harmonizes the air in the interior zone 942 is installed in the attic 960. That is, an air conditioner 601 for the interior zone 942 is installed in the attic 960. In the present embodiment, the air conditioner 601 is installed in the space above the interior zone 942 in the attic 960.
  • the attic 960 is a space formed by providing the ceiling 950.
  • the ceiling 950 in the interior zone 942 is provided with a suction port 610, a duct 620, and an outlet 630.
  • the suction port 610 is provided on the window 902 side of the air outlet 630.
  • the air conditioner 601 (in this example, an indoor unit) sucks air from the suction port 610 and blows out air from the outlet 630. Specifically, the air sucked from the suction port 610 passes through the duct 620 and is sucked into the air conditioner 601. Further, the air discharged from the air conditioner 601 passes through the duct 620 and is discharged from the outlet 630 to the interior zone 942.
  • the ceiling 950 in the perimeter zone 941 is provided with a suction port 210, a duct 220, and an outlet 230.
  • the outlet 230 is provided on the window 902 side of the suction port 210.
  • the air conditioning system 1 includes a controller 110, a temperature sensor 120, a temperature sensor 130, an operating device 140, and a blower 150.
  • the controller 110 is communicably connected to the temperature sensor 120, the temperature sensor 130, the operating device 140, and the blower 150.
  • the blower 150 is installed behind the ceiling 960.
  • the blower 150 is installed in the space above the perimeter zone 941 in the attic 960.
  • the blower 150 sucks in air from the suction port 210 and blows out air from the outlet 230. Although the details will be described later, the air sucked from the suction port 210 flows through the duct 220 and then blows out from the outlet 230 toward the perimeter zone 941.
  • the temperature sensor 120 detects (measures) the temperature of the perimeter zone 941.
  • the temperature sensor 120 is installed near the outlet 530 of the air conditioner 501. Therefore, in this example, the temperature sensor 120 detects the temperature in the perimeter zone 941 near the outlet 530 of the air conditioner 501.
  • the reason why the temperature sensor 120 is installed near the outlet 530 of the air conditioner 501 is that the controller 110 can accurately determine whether or not the air conditioner 501 is in heating operation.
  • the installation position of the temperature sensor 120 is not limited to the vicinity of the outlet 530 of the air conditioner 501.
  • the temperature sensor 130 detects the temperature of the interior zone 942.
  • the temperature sensor 130 is installed near the air outlet 630 of the air conditioner 601. Therefore, in this example, the temperature sensor 130 detects the temperature in the interior zone 942 near the air outlet 630 of the air conditioner 601.
  • the reason why the temperature sensor 130 is installed near the outlet 630 of the air conditioner 601 is that the controller 110 can accurately determine whether or not the air conditioner 601 is in cooling operation.
  • the installation position of the temperature sensor 130 is not limited to the vicinity of the outlet 630.
  • the temperature sensors 120 and 130 notify the controller 110 of the detection result. Specifically, the temperature sensors 120 and 130 transmit an electric signal (information indicating the temperature) to the controller 110.
  • the controller 110 is installed behind the ceiling 960.
  • the installation location of the controller 110 is not limited to the attic 960.
  • the controller 110 determines the temperature near the outlet 530 of the air conditioner 501 based on the voltage value of the electric signal received from the temperature sensor 120. The controller 110 determines whether or not the air conditioner 501 is in the heating operation based on the temperature near the outlet 530 of the air conditioner 501. For example, if the temperature near the outlet 530 of the air conditioner 501 is equal to or higher than a predetermined threshold value (for example, 35 degrees), the controller 110 determines that the air conditioner 501 is in heating operation.
  • a predetermined threshold value for example, 35 degrees
  • the controller 110 determines the temperature near the outlet 630 of the air conditioner 601 based on the voltage value of the electric signal received from the temperature sensor 130. The controller 110 determines whether or not the air conditioner 601 is in the cooling operation based on the temperature near the air outlet 630 of the air conditioner 601. For example, if the temperature near the air outlet 630 of the air conditioner 601 is equal to or lower than a predetermined threshold value (for example, 20 degrees), the controller 110 determines that the air conditioner 601 is in cooling operation.
  • a predetermined threshold value for example, 20 degrees
  • the air conditioner 501 for the perimeter zone 941 is in heating operation based on the detection result by the temperature sensor 120 and the detection result by the temperature sensor 130, and the air for the interior zone 942 is operated. It is detected that the air conditioner 601 is in cooling operation.
  • the controller 110 controls the drive of the blower 150.
  • the controller 110 drives the blower 150 on condition that the air conditioner 501 is in the heating operation and the air conditioner 601 for the interior zone is in the cooling operation. Specifically, the controller 110 sends a drive command for driving the blower 150 to the blower 150.
  • the drive of the blower 150 means the drive of a member for blowing air (for example, rotation of wings).
  • the operation device 140 includes a display unit 141 and an operation unit 142.
  • the operating device 140 is used by the user of the air conditioning system 1 to manually control the start and stop of the blower 150. As described above, in the air conditioning system 1, it is possible to automatically control the blower 150 by the controller 110 and manually control the blower 150 by using the operating device 140.
  • the operation unit 142 is typically an operation button.
  • the controller 110 drives (forced operation) the blower 150.
  • the controller 110 stops the blower 150.
  • the display unit 141 displays various information. For example, the display unit 141 displays the operating state of the blower. The display unit 141 displays, for example, that forced operation is being performed.
  • the controller 110 detects that "the air conditioner 501 is in the heating operation and the air conditioner 601 is in the cooling operation” based on the difference in temperature detected by the two temperature sensors 120 and 130. You may. Specifically, when the detection result (temperature) by the temperature sensor 130 is lower than the detection result (temperature) by the temperature sensor 120 by a predetermined threshold value or more, the controller 110 "is operating the air conditioner 501 for heating. Moreover, it may be determined that the air conditioner 601 is in cooling operation. " As the threshold value, for example, a value between 10 degrees and 20 degrees can be used.
  • FIG. 2 is a diagram for explaining the air flow in the room 940 when the blower 150 is being driven.
  • the air that is, warm air
  • the air outlet 530 of the air conditioner 501 proceeds in the direction of the arrow 51.
  • the warm air diffuses and proceeds in the direction of arrow 52 as a whole. Since the blower 150 is driven, warm air is subsequently sucked from the suction port 210 (see arrow 53).
  • the sucked warm air is blown out from the outlet 230 toward the perimeter zone 941 by the blower 150.
  • the outlet 230 is provided in the vicinity of the window 902. Therefore, the warm air blown out from the outlet 230 goes in the direction of the window 902 (see arrow 54).
  • the air conditioner 501 sucks the warm air flowing from the outlet 230 along the window 902 from the suction port 510.
  • the air conditioner 501 sucks not only the warm air blown out from the outlet 230 but also other air near the floor surface 970 (for example, air in which warm air and cold air are mixed) (see arrow 55).
  • the air (that is, cold air) blown out from the air outlet 630 of the air conditioner 601 proceeds in the direction of the arrow 61. After that, the cold air diffuses and travels in the direction of arrow 62 as a whole. As shown by the arrow 63, air is sucked from the suction port 610 and sent to the air conditioner 601.
  • the perimeter zone 941 can be heated uniformly as compared with the case where the blower 150 is not driven. Further, since the air outlet 230 is located on the outer wall 901 side (that is, the window 902 side) of the building 900 with respect to the suction port 210, a large amount of warm air is supplied to the window 902 side. Therefore, cold draft can be reduced.
  • the warm air is sucked from the suction port 210 provided in the ceiling 950 of the perimeter zone 941, it is possible to prevent the warm air from flowing into the interior zone 942. Therefore, it is possible to increase the heating efficiency and the cooling efficiency at the same time. Therefore, according to the air conditioning system 1, the mixing loss of heating and cooling can be significantly reduced.
  • FIG. 3 is a functional block diagram mainly for explaining the functional configuration of the controller 110.
  • the controller 110 includes a temperature information acquisition unit 111, a temperature information acquisition unit 112, a determination unit 113, a command generation unit 114, a communication IF (Interface) unit 115, and a transmission unit 116. Be prepared.
  • the temperature information acquisition unit 111 receives the electric signal transmitted from the temperature sensor 120.
  • the temperature information acquisition unit 111 determines the temperature in the vicinity of the temperature sensor 120 based on the voltage value of the electric signal.
  • the temperature information acquisition unit 112 receives the electric signal transmitted from the temperature sensor 130.
  • the temperature information acquisition unit 112 determines the temperature in the vicinity of the temperature sensor 130 based on the voltage value of the electric signal.
  • the controller 110 acquires the temperature information from the temperature sensor 120 and the temperature information from the temperature sensor 130.
  • the determination unit 113 determines whether or not the air conditioner 501 in the perimeter zone 941 is in heating operation based on the temperature information acquired by the temperature information acquisition unit 111. Further, the determination unit 113 determines whether or not the air conditioner 601 in the interior zone 942 is in heating operation based on the temperature information acquired by the temperature information acquisition unit 112. The determination unit 113 notifies the command generation unit 114 and the communication IF unit 115 of the determination result.
  • the command generation unit 114 can transmit a drive command for driving the blower 150 and a stop command for stopping the driving blower 150 to the blower 150.
  • the command generation unit 114 generates a drive command on the condition that "the air conditioner 501 is in the heating operation and the air conditioner 601 is in the cooling operation", and is generated via the transmission unit 116.
  • the drive command is transmitted to the blower 150.
  • the communication IF unit 115 notifies the operation device 140 of information based on the determination result received from the determination unit 113. For example, the communication IF unit 115 indicates that the blower 150 is in the driving state (during operation) when the air conditioner 501 is in the heating operation and the air conditioner 601 is in the cooling operation. Notify to. In this case, the operating device 140 notifies the display unit 141 that the blower 150 is being driven (operating).
  • the communication IF unit 115 receives a signal from the operation device 140 based on the operation of the operation unit 142 of the operation device 140.
  • the communication IF unit 115 notifies the command generation unit 114 of the signal.
  • the command generation unit 114 When the blower 150 is stopped, the command generation unit 114 generates a drive command for driving the blower 150, and transmits the drive command to the blower 150 via the transmission unit 116. As a result, the blower 150 starts driving. Further, when the blower 150 is in the drive state, the command generation unit 114 generates a stop command for stopping the drive, and transmits the stop command to the blower 150 via the transmission unit 116. As a result, the drive of the blower 150 is stopped.
  • FIG. 4 is a flow chart for explaining the processing flow of the controller 110.
  • step S1 the controller 110 acquires temperature information from the temperature sensor 120 installed in the perimeter zone 941.
  • step S2 the controller 110 acquires temperature information from the temperature sensor 130 installed in the interior zone 942. Specifically, the controller 110 periodically acquires these temperature information.
  • the order of steps S1 and S2 may be reversed.
  • step S3 in the controller 110, the air conditioner 501 for the perimeter zone 941 is in heating operation and the air conditioner 601 for the interior zone 942 is cooling based on the temperature information acquired from the temperature sensors 120 and 130. Determine if you are driving.
  • step S3 determines whether or not the blower 150 is in the driving state in step S4.
  • step S4 If a positive judgment is made in step S4 (YES in step S4), the controller 110 advances the process to step S1. If a negative determination is made in step S4 (NO in step S4), the controller 110 drives the blower 150 by transmitting a drive command to the blower 150 in step S5.
  • step S3 determines in step S6 whether or not the blower 150 is in the driving state.
  • step S6 If a positive judgment is made in step S6 (YES in step S6), the controller 110 stops the blower 150 by transmitting a stop command to the blower 150 in step S7. If a negative determination is made in step S6 (NO in step S6), the controller 110 advances the process to step S1.
  • FIG. 5 is a diagram showing a typical example of the hardware configuration of the controller 110.
  • the controller 110 is generated by executing the program by the processor 11 that executes the program, the ROM (Read Only Memory) 12 that stores the data non-volatilely, and the processor 11 as the main components. It includes a RAM (Random Access Memory) 13 that volatilely stores data or data input via an input device, a flash memory 14 that stores data non-volatilely, a communication IF 15, and a clock 16.
  • RAM Random Access Memory
  • Each component is connected to each other by a data bus.
  • the communication IF 15 is an interface for communicating with various other devices.
  • the processing in the controller 110 is realized by the software executed by each hardware and the processor 11.
  • Such software may be stored in the flash memory 14 in advance.
  • the software may be stored in other storage media and distributed as a program product.
  • the software may be provided as a downloadable program product by an information provider connected to the so-called Internet.
  • Such software is read from the storage medium by a reading device, or downloaded via a communication IF 15 or the like, and then temporarily stored in the flash memory 14.
  • the software is read from the flash memory 14 by the processor 11 and stored in the RAM 13 in the form of an executable program.
  • the processor 11 executes the program.
  • Each component constituting the controller 110 shown in the figure is a general one. Therefore, it can be said that an essential part of the present disclosure is RAM 13, flash memory 14, software stored in a storage medium, or software that can be downloaded via a network. Since the operation of each hardware of the controller 110 is well known, detailed description thereof will not be repeated.
  • the air conditioning system 1 includes a blower 150 and a controller 110.
  • the blower 150 sucks the air in the room 940 from the suction port 210 provided in the ceiling 950 of the perimeter zone 941 in the room 940 of the building 900, and the sucked air is provided on the outer wall 901 side of the building 900 with respect to the suction port 210. It is blown out to the perimeter zone 941 from the outlet 230.
  • the controller 110 is provided on the condition that the air conditioner 501 that harmonizes the air in the perimeter zone 941 is operating for heating and the air conditioner 601 that harmonizes the air in the interior zone 942 of the indoor 940 is operating for cooling. Drives the blower 150.
  • the controller 110 acquires the first temperature information indicating the temperature of the perimeter zone 941 and the second temperature information indicating the temperature of the interior zone 942. The controller 110 determines whether the air conditioner 501 is in the heating operation based on the first temperature information. The controller 110 determines whether the air conditioner 601 is in the cooling operation based on the second temperature information.
  • the air conditioning system 1 further includes a temperature sensor 120 that detects the temperature of the perimeter zone 941 and a temperature sensor 130 that detects the temperature of the interior zone 942.
  • the controller 110 acquires the first temperature information from the temperature sensor 120 and acquires the second temperature information from the temperature sensor 130.
  • the air conditioner 501 is in the heating operation and the air conditioner 601 is in the cooling operation. It is determined that the air conditioner is installed.
  • the temperature sensor 120 detects the temperature near the outlet 530 of the air conditioner 501.
  • the temperature sensor 130 detects the temperature in the vicinity of the air outlet 630 of the air conditioner 601.
  • the outlet 230 is provided on the window 902 side.
  • the outlet 230 is also provided in the vicinity of the window 902.
  • the warm air from the outlet 230 is sent in the direction of the window 902.
  • the air conditioning system 1 further includes an operating device 140 for operating the blower 150.
  • the controller 110 receives a predetermined signal from the operating device 140, the controller 110 drives the blower 150 regardless of whether or not the above-mentioned conditions are satisfied.
  • the operation device 140 has an operation unit 142.
  • the operating device 140 transmits the predetermined signal to the controller 110 based on the fact that the operating unit 142 is pressed.
  • FIG. 6 is a diagram for explaining an air conditioning system 1A which is a modification of the air conditioning system 1. Further, FIG. 6 is a diagram for explaining the air flow in the room 940 when the blower 150 is being driven. Also in FIG. 6, it is assumed that the air conditioner 501 is in the heating operation and the air conditioner 601 is in the cooling operation.
  • the air conditioning system 1A includes a controller 110, a temperature sensor 120, a temperature sensor 130, an operating device 140, a blower 150, and a blower 350.
  • the controller 110 is communicably connected to the temperature sensor 120, the temperature sensor 130, the operating device 140, the blower 150, and the blower 350.
  • the air conditioning system 1A differs from the air conditioning system 1 in that the blower 350 is provided.
  • the underfloor 980 in the interior zone 942 is provided with a suction port 410, a duct 420, and an outlet 430.
  • the suction port 410 is provided on the window 902 side of the air outlet 430.
  • the underfloor 980 is a space formed by providing the floor surface 970.
  • the blower 350 is installed under the floor 980.
  • the blower 350 is installed in the space below the interior zone 942 in the underfloor 980.
  • the blower 350 sucks in air from the suction port 410 and blows out air from the outlet 430. Specifically, the air sucked from the suction port 410 flows through the duct 420, and then blows out from the outlet 430 toward the interior zone 942.
  • the suction port 410 is provided on the floor surface 970 near the perimeter zone 941 in the interior zone 942. Specifically, the suction port 410 is provided near the boundary between the perimeter zone 941 and the interior zone 942. However, the position of the suction port 410 is not limited to this. For example, the suction port 410 may be provided on the floor surface 970 of the perimeter zone 941 near the interior zone 942.
  • the controller 110 drives the blower 150 and the blower 350 on condition that the air conditioner 501 is in the heating operation and the air conditioner 601 for the interior zone is in the cooling operation. Specifically, the controller 110 sends a drive command for driving the blower 150 to the blower 150, and also sends a drive command for driving the blower 350 to the blower 350.
  • the air flow generated by the blower 350 is generated together with the air flow described with reference to FIG.
  • the flow generated by the blower 350 will be mainly described. More specifically, the air flow in the interior zone 942 will be described.
  • blower 350 Since the blower 350 is driven, cold air is subsequently sucked from the suction port 410 (see arrow 64). The sucked cold air is blown out from the outlet 430 toward the interior zone 942 by the blower 350 (see arrow 65).
  • the air outlet 430 is provided on the central side of the room 940 (the side opposite to the window 902, the back side). Therefore, the cold air blown out from the outlet 430 is blown out toward the center of the room 940. In the case of this example, cold air is blown from the floor surface 970 near the lower part of the air outlet 630 of the air conditioner 601 toward the interior zone 942.
  • the air conditioning system 1A exhibits the following actions and effects in addition to the above-mentioned actions and effects of the air conditioning system 1.
  • the blower 350 By driving the blower 350, the circulation of cold air in the interior zone 942 is promoted. Therefore, the interior zone 942 can be cooled uniformly as compared with the case where the blower 350 is not driven.
  • the air conditioning system 1 can further increase the heating efficiency and the cooling efficiency at the same time. Therefore, according to the air conditioning system 1A, the mixing loss of heating and cooling can be further reduced as compared with the air conditioning system 1.
  • FIG. 7 is a diagram showing a configuration in which a partition plate (hanging wall) is provided on the ceiling 950 of the room 940.
  • the partition plate 1070 is attached to the ceiling 950 in a hanging state.
  • the partition plate 1070 is provided at the boundary between the perimeter zone 941 and the interior zone 942.
  • the length of the partition plate 1070 in the vertical direction (Z-axis direction) should be long. However, it is better not to be too long from the viewpoint of improving the appearance and reducing the feeling of oppression.
  • FIG. 8 is a cross-sectional view taken along the line VIII-VIII of FIG. With reference to FIG. 8, the partition plate 1070 is installed so as to be parallel to the window 902. The partition plate 1070 is arranged along the illustrated Y-axis direction.
  • the controller 110 drives the blower 150 on the condition that the air conditioner 501 is in the heating operation and the air conditioner 601 for the interior zone is in the cooling operation.
  • the partition plate 1070 since the partition plate 1070 is installed, the warm air near the ceiling 950 of the perimeter zone 941 is reduced from flowing into the interior zone 942 as compared with the case where the partition plate 1070 is not installed. can. Further, since the partition plate 1070 is installed in the vicinity of the suction port 210, the warm air temporarily retained in the partition plate 1070 can be efficiently sucked from the suction port 210.
  • the circulation of warm air in the perimeter zone 941 can be further promoted as compared with the configuration without the partition plate 1070 (for example, the configuration of FIG. 1). Therefore, the perimeter zone 941 can be heated more uniformly as compared with the case where the partition plate 1070 is not installed.
  • FIG. 9 is a diagram for explaining an air conditioning system 1B which is a modification of the air conditioning system 1. Also in FIG. 9, it is assumed that the air conditioner 501 is in the heating operation and the air conditioner 601 is in the cooling operation.
  • the air conditioning system 1B includes a controller 110, a temperature sensor 120, a temperature sensor 130, an operating device 140, a blower 150, a blower 1091, and a blower 1092.
  • the controller 110 is communicably connected to the temperature sensor 120, the temperature sensor 130, the operating device 140, the blower 150, the blower 1091, and the blower 1092.
  • the air conditioning system 1B differs from the air conditioning system 1 in that the blower 1091 and the blower 1092 are provided.
  • Blowers 1091 and 1092 are attached to the ceiling 950 (ceiling surface on the indoor 940 side).
  • the blower 1092, the suction port 210, the blower 1091, and the suction port 610 are arranged in this order from the window 902 side.
  • the blower 1092 is installed in the perimeter zone 941.
  • the blower 1091 is installed at the boundary between the perimeter zone 941 and the interior zone 942.
  • the blower 1091 may be installed near the perimeter zone 941 in the interior zone 942.
  • the controller 110 controls the drive of the blower 150, the blower 1091, and the blower 1092.
  • FIG. 10 is a cross-sectional view taken along the line XX of FIG.
  • the blower 1091 is located on the positive side of the Y-axis (upper side of the figure) and the positive side of the X-axis (right side of the figure, the central portion of the room 940) with respect to the suction port 210. It is installed on the side).
  • the blower 1092 is installed on the negative direction side of the Y axis (lower side in the figure) and the negative direction side of the X axis (left side in the figure, window 902 side) with respect to the suction port 210.
  • the blower 1091 sends the air in the area 948 toward the suction port 210. Specifically, the blower 1091 sends the air on the ceiling 950 side of the area 948 toward the suction port 210.
  • the blower 1092 sends the air in the area 949 toward the suction port 210. Specifically, the blower 1092 sends the air on the ceiling 950 side of the area 949 toward the suction port 210. In this way, the blower 1091 guides the air on the ceiling 950 side of the room 940 toward the suction port 210.
  • Area 948 is about the same distance from the outlet 530 of the air conditioner 501 and the outlet 630 of the air conditioner 601. Therefore, in area 948, warm air and cold air are mixed. Specifically, since the warm air is lighter than the cold air, the air on the ceiling 950 side becomes warm air and the air on the floor surface 970 side becomes cold air in the area 948.
  • the blower 1091 sends the warm air on the ceiling 950 side in the area 948 toward the suction port 210.
  • the blower 1092 sends the warm air on the ceiling 950 side in the area 949 toward the suction port 210. Therefore, the air conditioning system 1B can improve the heating efficiency and the cooling efficiency as compared with the air conditioning system 1. Therefore, according to this modification, the mixing loss of heating and cooling can be further reduced.
  • the controller 110 determines that "the air conditioner 501 is in the heating operation and the air conditioner 601 is in the cooling operation" based on the outputs from the temperature sensors 120 and 130. However, the controller 110 may determine that "the air conditioner 501 is in the heating operation and the air conditioner 601 is in the cooling operation" by another method.
  • the controller 110 determines that "the air conditioner 501 is in the heating operation and the air conditioner 601 is in the cooling operation" by communicating with the air conditioner 501 and the air conditioner 601. good.
  • the controller 110 determines whether or not the air conditioner 501 is in heating operation by acquiring information (operation information) indicating the operation mode of the air conditioner 501 from the air conditioner 501. It is also good. Similarly, the controller 110 may determine whether or not the air conditioner 601 is in cooling operation by acquiring information indicating the operation mode of the air conditioner 601 from the air conditioner 601.
  • the controller 110 indicates the operation mode of the air conditioners 501 and 601 from the management device that manages the operation of the air conditioners 501 and 601. Information may be obtained.
  • the first air conditioner that harmonizes the air in the perimeter zone in the room of the building is operating for heating
  • the second air conditioner that harmonizes the air in the interior zone of the room is operating for cooling. It is provided on the ceiling of the perimeter zone on the condition that the step of detecting that the air conditioner is operating and that the first air conditioner is operating for heating and the second air conditioner is operating for cooling.
  • the air in the perimeter zone is sucked in from the first air control port, and the sucked air is sucked into the perimeter from the second air control port provided on the outer wall side of the building with respect to the first air control port.
  • a computer-readable recording medium for example, a non-temporary recording medium on which the program is recorded, wherein the program is heated by a first air conditioner that harmonizes the air in the perimeter zone in the building.
  • the step of driving the blower and the processor of the controller are executed so as to blow out to the perimeter zone from the second air control port provided on the outer wall side of the building with respect to the air control port of 1.
  • 1,1A, 1B air conditioning system 51-55, 61-65 arrow, 110 controller, 120, 130 temperature sensor, 140 operation device, 141 display unit, 142 operation unit, 150, 350, 1091,1092 blower, 210, 410,510,610 suction port, 220,420,620 duct, 230,430,530,630 air outlet, 501,601 air conditioner, 900 building, 901 outer wall, 902 window, 940 interior, 941 perimeter zone, 942 interior Zone, 948, 949 area, 950 ceiling, 960 ceiling back, 970 floor surface, 980 underfloor, 1070 partition plate, L virtual line.

Abstract

An air-conditioning system (1) comprises: a blower (150) for sucking air from a perimeter zone (941) inside a room (940) of a building (900) through a first air control opening (210) provided in the ceiling (950) of the perimeter zone (941), and blowing the sucked air into the perimeter zone (941) through a second air control opening (230) that is provided further toward the exterior wall (901) of the building (900) than the first air control opening (210); and a controller (110) that drives a blower (150) on condition that an air conditioner (501) for conditioning the air in the perimeter zone (941) is operating for heating and an air conditioner (601) for conditioning the air in the interior zone (942) of the room (940) is operating for cooling.

Description

空気調和システム、コントローラ、および送風機の制御方法How to control air conditioning systems, controllers, and blowers
 本開示は、空気調和システム、コントローラ、および送風機の制御方法に関する。 This disclosure relates to an air conditioning system, a controller, and a control method for a blower.
 従来、オフィスビル等の建物では、室内のペリメータゾーン(窓際または壁際のエリア)の空気とインテリアゾーン(室内の中央のエリア)の空気とを、異なる空気調和機を用いて調和することが行われている。 Conventionally, in a building such as an office building, the air in the perimeter zone (area near the window or wall) in the room and the air in the interior zone (area in the center of the room) are harmonized by using different air conditioners. ing.
 たとえば冬期においては、ペリメータゾーン用の空気調和機を暖房運転することによってペリメータゾーンを暖める一方で、インテリアゾーン用の空気調和機を冷房運転することによってインテリアゾーンを冷やすことが行われている。冬期においてインテリアゾーンを冷やす理由は、人、照明器具、および電子機器によってインテリアゾーンの温度が上昇するためである。 For example, in winter, the air conditioner for the perimeter zone is heated to warm the perimeter zone, while the air conditioner for the interior zone is cooled to cool the interior zone. The reason for cooling the interior zone in winter is that people, luminaires, and electronic devices raise the temperature of the interior zone.
 このように室内にて暖房運転と冷房運転とを同時に行うと、暖房負荷と冷房負荷とが共に増加するミキシングロス(冷暖房の混合損失)が発生する。 When the heating operation and the cooling operation are performed simultaneously in the room in this way, a mixing loss (mixing loss of heating and cooling) occurs in which both the heating load and the cooling load increase.
 このようなミキシングロスを低減するため、たとえば特開昭56-157747号公報(特許文献1)では、天井面に垂れ壁を設けている。 In order to reduce such mixing loss, for example, Japanese Patent Application Laid-Open No. 56-157747 (Patent Document 1) provides a hanging wall on the ceiling surface.
特開昭56-157747号公報Japanese Unexamined Patent Publication No. 56-157747
 天井面に垂れ壁を設けた場合、ペリメータゾーン側では垂れ壁の付近で暖気が滞留してしまう。このため、ペリメータゾーンでは、対流による暖気の循環が停滞してしまう。 If a hanging wall is provided on the ceiling surface, warm air will stay near the hanging wall on the perimeter zone side. Therefore, in the perimeter zone, the circulation of warm air due to convection is stagnant.
 このように暖気の循環が停滞すると、ペリメータゾーンの室温が不均一となる。また、「コールドドラフト」と呼ばれる好ましくない現象(室内の暖気が冷たい窓ガラスに触れて冷やされることにより、床面に下降する現象)が発生する。さらに、暖房負荷の低減量が大きくならないため、ミキシングロスを大幅に低減することも難しい。 When the circulation of warm air is stagnant in this way, the room temperature in the perimeter zone becomes non-uniform. In addition, an unfavorable phenomenon called "cold draft" (a phenomenon in which warm air in a room is cooled by touching a cold window glass and descends to the floor surface) occurs. Furthermore, since the amount of reduction in the heating load does not increase, it is difficult to significantly reduce the mixing loss.
 本開示は、ペリメータゾーンにおける暖気の循環をスムーズにすることが可能な空気調和システム、空気調和システムを構成するコントローラ、および空気調和システムを構成する送風機の制御方法を提供する。 The present disclosure provides a control method for an air conditioning system capable of smoothing the circulation of warm air in a perimeter zone, a controller constituting the air conditioning system, and a blower constituting the air conditioning system.
 本開示のある局面に従うと、空気調和システムは、建物の室内のペリメータゾーンの天井に設けられた第1の制気口からペリメータゾーンの空気を吸い込み、かつ吸い込まれた空気を第1の制気口よりも建物の外壁側に設けられた第2の制気口からペリメータゾーンに吹き出すための送風機と、ペリメータゾーンの空気を調和する第1の空気調和機が暖房運転しており、かつ室内のインテリアゾーンの空気を調和する第2の空気調和機が冷房運転していることを条件に、送風機を駆動するコントローラと、を備える。 According to certain aspects of the present disclosure, the air conditioning system draws in air from the perimeter zone through a first air control port on the ceiling of the perimeter zone in the interior of the building, and the sucked air is the first air control. The blower for blowing out to the perimeter zone from the second air control port provided on the outer wall side of the building rather than the mouth, and the first air conditioner that harmonizes the air in the perimeter zone are operating for heating and indoors. A controller for driving the blower is provided, provided that the second air conditioner that harmonizes the air in the interior zone is in cooling operation.
 本開示の他の局面に従うと、コントローラは、建物の室内のペリメータゾーンの天井に設けられた第1の制気口からペリメータゾーンの空気を吸い込み、かつ吸い込まれた空気を第1の制気口よりも建物の外壁側に設けられた第2の制気口からペリメータゾーンに吹き出すための送風機を制御する。コントローラは、ペリメータゾーンの空気を調和する第1の空気調和機が暖房運転しており、かつ室内のインテリアゾーンの空気を調和する第2の空気調和機が冷房運転していることを条件に、送風機を駆動する。 According to another aspect of the present disclosure, the controller draws in air from the perimeter zone from a first air control port provided on the ceiling of the perimeter zone in the interior of the building, and the sucked air is taken into the first air control port. It controls the blower for blowing out to the perimeter zone from the second air control port provided on the outer wall side of the building. The controller is provided on the condition that the first air conditioner that harmonizes the air in the perimeter zone is operating for heating and the second air conditioner that harmonizes the air in the interior zone of the room is operating for cooling. Drive the blower.
 本開示のさらに他の局面に従うと、送風機の制御方法は、建物の室内のペリメータゾーンの空気を調和する第1の空気調和機が暖房運転しており、かつ室内のインテリアゾーンの空気を調和する第2の空気調和機が冷房運転していること検知するステップと、第1の空気調和機が暖房運転しており、かつ第2の空気調和機が冷房運転していることを条件に、ペリメータゾーンの天井に設けられた第1の制気口からペリメータゾーンの空気を吸い込み、かつ吸い込まれた空気を第1の制気口よりも建物の外壁側に設けられた第2の制気口からペリメータゾーンに吹き出すように、送風機を駆動するステップと、を備える。 According to still another aspect of the present disclosure, the control method of the blower is such that the first air conditioner that harmonizes the air in the perimeter zone in the building is heated and operates and harmonizes the air in the interior zone of the room. The perimeter is subject to the step of detecting that the second air conditioner is in the cooling operation and the condition that the first air conditioner is in the heating operation and the second air conditioner is in the cooling operation. The air in the perimeter zone is sucked in from the first air-conditioning port provided on the ceiling of the zone, and the sucked air is taken in from the second air-conditioning port provided on the outer wall side of the building from the first air-conditioning port. It is equipped with a step to drive the blower so that it blows into the perimeter zone.
 本開示によれば、ペリメータゾーンにおける暖気の循環をスムーズにすることが可能となる。 According to the present disclosure, it is possible to smooth the circulation of warm air in the perimeter zone.
建物の断面を表した断面図である。It is sectional drawing which showed the cross section of a building. 送風機が駆動しているときの室内の空気の流れを説明するための図である。It is a figure for demonstrating the flow of the air in a room when a blower is driven. コントローラの機能的構成を説明するための機能ブロック図である。It is a functional block diagram for demonstrating the functional configuration of a controller. コントローラの処理の流れを説明するためのフロー図である。It is a flow diagram for demonstrating the process flow of a controller. コントローラのハードウェア構成の典型例を表した図である。It is a figure which showed the typical example of the hardware configuration of a controller. 空気調和システムの変形例を説明するための図である。It is a figure for demonstrating a modification of an air conditioning system. 室内の天井に仕切板を設けた構成を表した図である。It is the figure which showed the structure which provided the partition plate on the ceiling of a room. 図7のVIII-VIII線矢視断面図である。FIG. 7 is a cross-sectional view taken along the line VIII-VIII of FIG. 7. 空気調和システムの他の変形例を説明するための図である。It is a figure for demonstrating another modification of an air conditioning system. 図9のX-X線矢視断面図である。9 is a cross-sectional view taken along the line XX of FIG.
 以下、図面を参照しつつ、実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。 Hereinafter, embodiments will be described with reference to the drawings. In the following description, the same parts are designated by the same reference numerals. Their names and functions are the same. Therefore, the detailed description of them will not be repeated.
 <A.技術思想の概要>
 本実施の形態では、ペリメータゾーンの暖気を、送風機によってペリメータゾーン内で循環させる。送風機の駆動はコントローラによって実行される。
<A. Outline of technical idea >
In the present embodiment, the warm air in the perimeter zone is circulated in the perimeter zone by a blower. The drive of the blower is performed by the controller.
 詳しくは、建物の室内のペリメータゾーンの天井には、第1の制気口(具体的には、吸込口(吸気口))が設けられている。また、ペリメータゾーンの天井には、第1の制気口よりも建物の外壁側に第2の制気口(具体的には吹出口(排気口))が設けられている。送風機は、第1の制気口から室内の空気を吸い込み、かつ吸い込まれた空気を第2の制気口からペリメータゾーンに吹き出す。 Specifically, the ceiling of the perimeter zone inside the building is provided with a first air control port (specifically, a suction port (intake port)). Further, on the ceiling of the perimeter zone, a second air control port (specifically, an air outlet (exhaust port)) is provided on the outer wall side of the building with respect to the first air control port. The blower sucks the air in the room from the first air control port and blows the sucked air into the perimeter zone from the second air control port.
 より詳しくは、コントローラは、ペリメータゾーンの空気を調和する空気調和機が暖房運転しており、かつペリメータゾーンに隣接するインテリアゾーンの空気を調和する空気調和機が冷房運転していることを条件に、送風機を駆動する。 More specifically, the controller is provided that the air conditioner that harmonizes the air in the perimeter zone is operating for heating and the air conditioner that harmonizes the air in the interior zone adjacent to the perimeter zone is operating for cooling. , Drive the blower.
 このような処理により、ペリメータゾーンの暖気の循環が促進する。それゆえ、ペリメータゾーンを均一に暖めることができる。また、第2の制気口(吹出口)が第1の制気口(吸込口)よりも建物の外壁側にあるため、コールドドラフト(室内の暖気が冷たい窓ガラスに触れて冷やされることにより、床面に下降する現象)を低減できる。 By such processing, the circulation of warm air in the perimeter zone is promoted. Therefore, the perimeter zone can be heated uniformly. In addition, since the second air control port (outlet) is on the outer wall side of the building from the first air control port (suction port), cold draft (warm air in the room is cooled by touching the cold window glass). , The phenomenon of descending to the floor surface) can be reduced.
 さらに、ペリメータゾーンの天井に設けられた第1の制気口(吸込口)から暖気が吸気されるため、暖気がインテリアゾーンに流入することを防ぐことができる。それゆえ、暖房効率および冷房効率を同時に上げることが可能となる。このため、ミキシングロスを大幅に低減可能となる。 Furthermore, since warm air is taken in from the first air control port (suction port) provided on the ceiling of the perimeter zone, it is possible to prevent the warm air from flowing into the interior zone. Therefore, it is possible to increase the heating efficiency and the cooling efficiency at the same time. Therefore, the mixing loss can be significantly reduced.
 以下、このような構成の具体例を図面に基づいて説明する。
 <B.システム構成>
 図1は、建物の断面を表した断面図である。当該建物は、典型的にはオフィスビルである。
Hereinafter, a specific example of such a configuration will be described with reference to the drawings.
<B. System configuration>
FIG. 1 is a cross-sectional view showing a cross section of a building. The building is typically an office building.
 図1を参照して、建物900の室内940は、ペリメータゾーン941と、インテリアゾーン942とに概念上区分される。ペリメータゾーン941と、インテリアゾーン942とは、隣接している。 With reference to FIG. 1, the interior 940 of the building 900 is conceptually divided into a perimeter zone 941 and an interior zone 942. The perimeter zone 941 and the interior zone 942 are adjacent to each other.
 本例では、仮想線Lよりも建物900の外壁901側(または窓902側)がペリメータゾーン941である。仮想線Lよりも建物の中央部側がインテリアゾーンである。なお、「ペリメータゾーン」は、典型的には、窓902から5m付近までのエリアとされている。ただし、ペリメータゾーンは建物900の構造等によって決定するため、窓902からの距離は5mに限定されるものではない。 In this example, the outer wall 901 side (or window 902 side) of the building 900 is the perimeter zone 941 with respect to the virtual line L. The interior zone is on the central side of the building from the virtual line L. The "perimeter zone" is typically an area from the window 902 to the vicinity of 5 m. However, since the perimeter zone is determined by the structure of the building 900 and the like, the distance from the window 902 is not limited to 5 m.
 ペリメータゾーン941には、ペリメータゾーン941の空気を調和する空気調和機501が設置されている。つまり、ペリメータゾーン941には、ペリメータゾーン941用の空気調和機501が設置されている。 An air conditioner 501 that harmonizes the air in the perimeter zone 941 is installed in the perimeter zone 941. That is, the air conditioner 501 for the perimeter zone 941 is installed in the perimeter zone 941.
 具体的には、空気調和機501は、窓902側付近の床面970に設置されている。空気調和機501(本例では室内機)は、床面970付近の空気を吸込口510から吸い込み、吹出口530から空気調和機501の上方に空気を吹き出す。なお、図1の例では床面970の下に床下980が形成されているが、床下980はなくてもよい。 Specifically, the air conditioner 501 is installed on the floor surface 970 near the window 902 side. The air conditioner 501 (in this example, an indoor unit) sucks in air near the floor surface 970 from the suction port 510 and blows air above the air conditioner 501 from the air outlet 530. In the example of FIG. 1, the underfloor 980 is formed under the floor surface 970, but the underfloor 980 may not be present.
 天井裏960には、インテリアゾーン942の空気を調和する空気調和機601が設置されている。つまり、天井裏960には、インテリアゾーン942用の空気調和機601が設置されている。本実施の形態では、天井裏960のうちインテリアゾーン942の上方の空間に空気調和機601が設置されている。なお、天井裏960とは、天井950を設けることによって形成された空間である。 An air conditioner 601 that harmonizes the air in the interior zone 942 is installed in the attic 960. That is, an air conditioner 601 for the interior zone 942 is installed in the attic 960. In the present embodiment, the air conditioner 601 is installed in the space above the interior zone 942 in the attic 960. The attic 960 is a space formed by providing the ceiling 950.
 インテリアゾーン942における天井950には、吸込口610と、ダクト620と、吹出口630とが設けられている。吸込口610は、吹出口630よりも窓902側に設けられている。 The ceiling 950 in the interior zone 942 is provided with a suction port 610, a duct 620, and an outlet 630. The suction port 610 is provided on the window 902 side of the air outlet 630.
 空気調和機601(本例では室内機)は、吸込口610から空気を吸い、かつ吹出口630から空気を吹き出す。詳しくは、吸込口610から吸い込まれた空気はダクト620を通り、空気調和機601に吸い込まれる。また、空気調和機601から排出された空気は、ダクト620を通り、吹出口630からインテリアゾーン942に排出される。 The air conditioner 601 (in this example, an indoor unit) sucks air from the suction port 610 and blows out air from the outlet 630. Specifically, the air sucked from the suction port 610 passes through the duct 620 and is sucked into the air conditioner 601. Further, the air discharged from the air conditioner 601 passes through the duct 620 and is discharged from the outlet 630 to the interior zone 942.
 ペリメータゾーン941における天井950には、吸込口210と、ダクト220と、吹出口230とが設けられている。吹出口230は、吸込口210よりも窓902側に設けられている。 The ceiling 950 in the perimeter zone 941 is provided with a suction port 210, a duct 220, and an outlet 230. The outlet 230 is provided on the window 902 side of the suction port 210.
 本実施の形態に係る空気調和システム1は、コントローラ110と、温度センサ120と、温度センサ130と、操作装置140と、送風機150とを備える。コントローラ110は、温度センサ120と、温度センサ130と、操作装置140と、送風機150とに通信可能に接続されている。 The air conditioning system 1 according to the present embodiment includes a controller 110, a temperature sensor 120, a temperature sensor 130, an operating device 140, and a blower 150. The controller 110 is communicably connected to the temperature sensor 120, the temperature sensor 130, the operating device 140, and the blower 150.
 送風機150は、天井裏960に設置されている。本実施の形態では、送風機150は、天井裏960のうちペリメータゾーン941の上方の空間に設置されている。 The blower 150 is installed behind the ceiling 960. In the present embodiment, the blower 150 is installed in the space above the perimeter zone 941 in the attic 960.
 送風機150は、吸込口210から空気を吸い込み、かつ吹出口230から空気を吹き出す。詳細については後述するが、吸込口210から吸い込まれた空気は、ダクト220の中を流れ、その後、吹出口230からペリメータゾーン941に向かって吹き出す。 The blower 150 sucks in air from the suction port 210 and blows out air from the outlet 230. Although the details will be described later, the air sucked from the suction port 210 flows through the duct 220 and then blows out from the outlet 230 toward the perimeter zone 941.
 温度センサ120は、ペリメータゾーン941の温度を検出(測定)する。本例では、温度センサ120は、空気調和機501の吹出口530付近に設置されている。よって、本例では、温度センサ120は、ペリメータゾーン941のうち、空気調和機501の吹出口530付近の温度を検出する。 The temperature sensor 120 detects (measures) the temperature of the perimeter zone 941. In this example, the temperature sensor 120 is installed near the outlet 530 of the air conditioner 501. Therefore, in this example, the temperature sensor 120 detects the temperature in the perimeter zone 941 near the outlet 530 of the air conditioner 501.
 温度センサ120を空気調和機501の吹出口530付近に設置する理由は、空気調和機501が暖房運転しているか否かをコントローラ110が精度良く判定できるためである。ただし、温度センサ120の設置位置は、空気調和機501の吹出口530付近に限定されるものではない。 The reason why the temperature sensor 120 is installed near the outlet 530 of the air conditioner 501 is that the controller 110 can accurately determine whether or not the air conditioner 501 is in heating operation. However, the installation position of the temperature sensor 120 is not limited to the vicinity of the outlet 530 of the air conditioner 501.
 温度センサ130は、インテリアゾーン942の温度を検出する。本例では、温度センサ130は、空気調和機601の吹出口630付近に設置されている。よって、本例では、温度センサ130は、インテリアゾーン942のうち、空気調和機601の吹出口630付近の温度を検出する。 The temperature sensor 130 detects the temperature of the interior zone 942. In this example, the temperature sensor 130 is installed near the air outlet 630 of the air conditioner 601. Therefore, in this example, the temperature sensor 130 detects the temperature in the interior zone 942 near the air outlet 630 of the air conditioner 601.
 温度センサ130を空気調和機601の吹出口630付近に設置する理由は、空気調和機601が冷房運転しているか否かをコントローラ110が精度良く判定できるためである。ただし、温度センサ130の設置位置は、吹出口630付近に限定されるものではない。 The reason why the temperature sensor 130 is installed near the outlet 630 of the air conditioner 601 is that the controller 110 can accurately determine whether or not the air conditioner 601 is in cooling operation. However, the installation position of the temperature sensor 130 is not limited to the vicinity of the outlet 630.
 温度センサ120,130は、検出結果をコントローラ110に通知する。具体的には、温度センサ120,130は、電気信号(温度を示す情報)をコントローラ110に送信する。 The temperature sensors 120 and 130 notify the controller 110 of the detection result. Specifically, the temperature sensors 120 and 130 transmit an electric signal (information indicating the temperature) to the controller 110.
 コントローラ110は、本例では、天井裏960に設置されている。しかしながら、コントローラ110の設置場所は天井裏960に限定されるものではない。 In this example, the controller 110 is installed behind the ceiling 960. However, the installation location of the controller 110 is not limited to the attic 960.
 コントローラ110は、温度センサ120から受信した電気信号の電圧値に基づき、空気調和機501の吹出口530付近の温度を判断する。コントローラ110は、空気調和機501の吹出口530付近の温度に基づき、空気調和機501が暖房運転をしているか否かを判定する。たとえば、コントローラ110は、空気調和機501の吹出口530付近の温度が所定の閾値(たとえば35度)以上であれば、空気調和機501が暖房運転していると判断する。 The controller 110 determines the temperature near the outlet 530 of the air conditioner 501 based on the voltage value of the electric signal received from the temperature sensor 120. The controller 110 determines whether or not the air conditioner 501 is in the heating operation based on the temperature near the outlet 530 of the air conditioner 501. For example, if the temperature near the outlet 530 of the air conditioner 501 is equal to or higher than a predetermined threshold value (for example, 35 degrees), the controller 110 determines that the air conditioner 501 is in heating operation.
 コントローラ110は、温度センサ130から受信した電気信号の電圧値に基づき、空気調和機601の吹出口630付近の温度を判断する。コントローラ110は、空気調和機601の吹出口630付近の温度に基づき、空気調和機601が冷房運転をしているか否かを判定する。たとえば、コントローラ110は、空気調和機601の吹出口630付近の温度が所定の閾値(たとえば20度)以下であれば、空気調和機601が冷房運転していると判断する。 The controller 110 determines the temperature near the outlet 630 of the air conditioner 601 based on the voltage value of the electric signal received from the temperature sensor 130. The controller 110 determines whether or not the air conditioner 601 is in the cooling operation based on the temperature near the air outlet 630 of the air conditioner 601. For example, if the temperature near the air outlet 630 of the air conditioner 601 is equal to or lower than a predetermined threshold value (for example, 20 degrees), the controller 110 determines that the air conditioner 601 is in cooling operation.
 以上のように、コントローラ110は、温度センサ120による検出結果と、温度センサ130による検出結果とに基づき、ペリメータゾーン941用の空気調和機501が暖房運転しており、かつインテリアゾーン942用の空気調和機601が冷房運転していることを検出する。 As described above, in the controller 110, the air conditioner 501 for the perimeter zone 941 is in heating operation based on the detection result by the temperature sensor 120 and the detection result by the temperature sensor 130, and the air for the interior zone 942 is operated. It is detected that the air conditioner 601 is in cooling operation.
 コントローラ110は、送風機150の駆動を制御する。コントローラ110は、空気調和機501が暖房運転しており、かつインテリアゾーン用の空気調和機601が冷房運転していることを条件に、送風機150を駆動する。具体的には、コントローラ110は、送風機150を駆動するための駆動指令を送風機150に送る。なお、送風機150の駆動とは、送風するための部材の駆動(たとえば、羽の回転)を意味する。 The controller 110 controls the drive of the blower 150. The controller 110 drives the blower 150 on condition that the air conditioner 501 is in the heating operation and the air conditioner 601 for the interior zone is in the cooling operation. Specifically, the controller 110 sends a drive command for driving the blower 150 to the blower 150. The drive of the blower 150 means the drive of a member for blowing air (for example, rotation of wings).
 操作装置140は、表示部141と、操作部142とを備える。操作装置140は、空気調和システム1のユーザーが送風機150の運転および停止を手動で制御するために用いられる。このように、空気調和システム1では、コントローラ110による送風機150の自動制御と、操作装置140を用いた送風機150の手動制御とが可能である。 The operation device 140 includes a display unit 141 and an operation unit 142. The operating device 140 is used by the user of the air conditioning system 1 to manually control the start and stop of the blower 150. As described above, in the air conditioning system 1, it is possible to automatically control the blower 150 by the controller 110 and manually control the blower 150 by using the operating device 140.
 操作部142は、典型的には、操作ボタンである。送風機150が停止中に操作部142がユーザー操作を受付けると、コントローラ110は、送風機150を駆動(強制運転)させる。送風機150が運転中に操作部142がユーザー操作を受付けると、コントローラ110は、送風機150を停止させる。 The operation unit 142 is typically an operation button. When the operation unit 142 receives the user operation while the blower 150 is stopped, the controller 110 drives (forced operation) the blower 150. When the operation unit 142 receives the user operation while the blower 150 is in operation, the controller 110 stops the blower 150.
 表示部141は、各種の情報を表示する。たとえば、表示部141は、送風機の運転状態を表示する。表示部141は、たとえば、強制運転していることを表示する。 The display unit 141 displays various information. For example, the display unit 141 displays the operating state of the blower. The display unit 141 displays, for example, that forced operation is being performed.
 ところで、コントローラ110は、「空気調和機501が暖房運転しており、かつ空気調和機601が冷房運転している」ことを、2つの温度センサ120,130によって検出された温度の差に基づき検出してもよい。具体的には、コントローラ110は、温度センサ130による検出結果(温度)が温度センサ120による検出結果(温度)よりも所定の閾値以上低い場合に、「空気調和機501が暖房運転しており、かつ空気調和機601が冷房運転している」と判断してもよい。当該閾値としては、たとえば、10度から20度の間の値を用いることができる。 By the way, the controller 110 detects that "the air conditioner 501 is in the heating operation and the air conditioner 601 is in the cooling operation" based on the difference in temperature detected by the two temperature sensors 120 and 130. You may. Specifically, when the detection result (temperature) by the temperature sensor 130 is lower than the detection result (temperature) by the temperature sensor 120 by a predetermined threshold value or more, the controller 110 "is operating the air conditioner 501 for heating. Moreover, it may be determined that the air conditioner 601 is in cooling operation. " As the threshold value, for example, a value between 10 degrees and 20 degrees can be used.
 <C.送付機駆動時の空気の流れ>
 以下では、空気調和機501が暖房運転しており、かつ空気調和機601が冷房運転しているものとする。
<C. Air flow when driving the feeder>
In the following, it is assumed that the air conditioner 501 is in the heating operation and the air conditioner 601 is in the cooling operation.
 図2は、送風機150が駆動しているときの室内940の空気の流れを説明するための図である。 FIG. 2 is a diagram for explaining the air flow in the room 940 when the blower 150 is being driven.
 図2を参照して、空気調和機501の吹出口530から吹き出した空気(すなわち暖気)は、矢印51の方向に進む。その後、暖気は、拡散し、かつ全体として矢印52の方向に進む。送風機150が駆動しているため、その後、暖気は吸込口210から吸引される(矢印53参照)。 With reference to FIG. 2, the air (that is, warm air) blown out from the air outlet 530 of the air conditioner 501 proceeds in the direction of the arrow 51. After that, the warm air diffuses and proceeds in the direction of arrow 52 as a whole. Since the blower 150 is driven, warm air is subsequently sucked from the suction port 210 (see arrow 53).
 吸引された暖気は、送風機150によって、吹出口230からペリメータゾーン941に向かって吹き出す。吹出口230は、窓902の近傍に設けられている。そのため、吹出口230から吹き出した暖気は、窓902方向に向かう(矢印54参照)。 The sucked warm air is blown out from the outlet 230 toward the perimeter zone 941 by the blower 150. The outlet 230 is provided in the vicinity of the window 902. Therefore, the warm air blown out from the outlet 230 goes in the direction of the window 902 (see arrow 54).
 空気調和機501は、吹出口230から窓902に沿って流れてくる暖気を、吸込口510から吸い込む。なお、空気調和機501は、吹出口230から吹き出した暖気だけではなく、床面970付近の他の空気(たとえば暖気と冷気とが混合した空気)も吸い込む(矢印55参照)。 The air conditioner 501 sucks the warm air flowing from the outlet 230 along the window 902 from the suction port 510. The air conditioner 501 sucks not only the warm air blown out from the outlet 230 but also other air near the floor surface 970 (for example, air in which warm air and cold air are mixed) (see arrow 55).
 空気調和機601の吹出口630から吹き出した空気(すなわち冷気)は、矢印61の方向に進む。その後、冷気は、拡散し、かつ全体として矢印62の方向に進む。なお、矢印63に示すように吸込口610から空気が吸い込まれ、空気調和機601に送られる。 The air (that is, cold air) blown out from the air outlet 630 of the air conditioner 601 proceeds in the direction of the arrow 61. After that, the cold air diffuses and travels in the direction of arrow 62 as a whole. As shown by the arrow 63, air is sucked from the suction port 610 and sent to the air conditioner 601.
 以上のとおり、送風機150を駆動させることにより、ペリメータゾーン941における暖気の循環が促進する。それゆえ、送風機150を駆動しない場合に比べて、ペリメータゾーン941を均一に暖めることができる。また、吹出口230が吸込口210よりも建物900の外壁901側(すなわち窓902側)にあるため、暖気が窓902側に大量に供給される。それゆえ、コールドドラフトを低減できる。 As described above, by driving the blower 150, the circulation of warm air in the perimeter zone 941 is promoted. Therefore, the perimeter zone 941 can be heated uniformly as compared with the case where the blower 150 is not driven. Further, since the air outlet 230 is located on the outer wall 901 side (that is, the window 902 side) of the building 900 with respect to the suction port 210, a large amount of warm air is supplied to the window 902 side. Therefore, cold draft can be reduced.
 さらに、ペリメータゾーン941の天井950に設けられた吸込口210から暖気が吸い込まれるため、暖気がインテリアゾーン942に流入することを防ぐことができる。それゆえ、暖房効率および冷房効率を同時に上げることが可能となる。このため、空気調和システム1によれば、冷暖房のミキシングロスを大幅に低減可能となる。 Further, since the warm air is sucked from the suction port 210 provided in the ceiling 950 of the perimeter zone 941, it is possible to prevent the warm air from flowing into the interior zone 942. Therefore, it is possible to increase the heating efficiency and the cooling efficiency at the same time. Therefore, according to the air conditioning system 1, the mixing loss of heating and cooling can be significantly reduced.
 <D.機能的構成>
 図3は、主としてコントローラ110の機能的構成を説明するための機能ブロック図である。
<D. Functional configuration>
FIG. 3 is a functional block diagram mainly for explaining the functional configuration of the controller 110.
 図3を参照して、コントローラ110は、温度情報取得部111と、温度情報取得部112と、判定部113と、指令生成部114と、通信IF(Interface)部115と、送信部116とを備える。 With reference to FIG. 3, the controller 110 includes a temperature information acquisition unit 111, a temperature information acquisition unit 112, a determination unit 113, a command generation unit 114, a communication IF (Interface) unit 115, and a transmission unit 116. Be prepared.
 温度情報取得部111は、温度センサ120から送信された電気信号を受信する。温度情報取得部111は、電気信号の電圧値に基づいて、温度センサ120近傍の温度を判断する。 The temperature information acquisition unit 111 receives the electric signal transmitted from the temperature sensor 120. The temperature information acquisition unit 111 determines the temperature in the vicinity of the temperature sensor 120 based on the voltage value of the electric signal.
 温度情報取得部112は、温度センサ130から送信された電気信号を受信する。温度情報取得部112は、電気信号の電圧値に基づいて、温度センサ130近傍の温度を判断する。 The temperature information acquisition unit 112 receives the electric signal transmitted from the temperature sensor 130. The temperature information acquisition unit 112 determines the temperature in the vicinity of the temperature sensor 130 based on the voltage value of the electric signal.
 このように、コントローラ110は、温度センサ120から温度情報を取得し、かつ温度センサ130から温度情報を取得する。 In this way, the controller 110 acquires the temperature information from the temperature sensor 120 and the temperature information from the temperature sensor 130.
 判定部113は、温度情報取得部111によって取得された温度情報に基づき、ペリメータゾーン941の空気調和機501が暖房運転しているか否かを判定する。さらに、判定部113は、温度情報取得部112によって取得された温度情報に基づき、インテリアゾーン942の空気調和機601が暖房運転しているか否かを判定する。判定部113は、判定結果を指令生成部114と通信IF部115とに通知する。 The determination unit 113 determines whether or not the air conditioner 501 in the perimeter zone 941 is in heating operation based on the temperature information acquired by the temperature information acquisition unit 111. Further, the determination unit 113 determines whether or not the air conditioner 601 in the interior zone 942 is in heating operation based on the temperature information acquired by the temperature information acquisition unit 112. The determination unit 113 notifies the command generation unit 114 and the communication IF unit 115 of the determination result.
 指令生成部114は、送風機150を駆動する駆動指令と、駆動している送風機150を停止させる停止指令とを送風機150に送信可能である。指令生成部114は、「空気調和機501が暖房運転しており、かつ空気調和機601が冷房運転している」ことを条件に駆動指令を生成し、かつ、送信部116を介して、生成された駆動指令を送風機150に送信する。 The command generation unit 114 can transmit a drive command for driving the blower 150 and a stop command for stopping the driving blower 150 to the blower 150. The command generation unit 114 generates a drive command on the condition that "the air conditioner 501 is in the heating operation and the air conditioner 601 is in the cooling operation", and is generated via the transmission unit 116. The drive command is transmitted to the blower 150.
 通信IF部115は、判定部113から受信した判定結果に基づき、操作装置140に情報を通知する。たとえば、通信IF部115は、空気調和機501が暖房運転しており、かつ空気調和機601が冷房運転している場合には、送風機150が駆動状態(運転中)であることを操作装置140に通知する。この場合、操作装置140は、表示部141に送風機150が駆動中(運転中)であることを通知する。 The communication IF unit 115 notifies the operation device 140 of information based on the determination result received from the determination unit 113. For example, the communication IF unit 115 indicates that the blower 150 is in the driving state (during operation) when the air conditioner 501 is in the heating operation and the air conditioner 601 is in the cooling operation. Notify to. In this case, the operating device 140 notifies the display unit 141 that the blower 150 is being driven (operating).
 通信IF部115は、操作装置140の操作部142が操作されたことに基づく信号を操作装置140から受信する。通信IF部115は、当該信号を指令生成部114に通知する。 The communication IF unit 115 receives a signal from the operation device 140 based on the operation of the operation unit 142 of the operation device 140. The communication IF unit 115 notifies the command generation unit 114 of the signal.
 指令生成部114は、送風機150が停止状態である場合には、送風機150を駆動させる駆動指令を生成し、かつ、送信部116を介して、駆動指令を送風機150に送信する。これにより、送風機150は駆動を開始する。また、指令生成部114は、送風機150が駆動状態である場合には、駆動を停止させる停止指令を生成し、かつ、送信部116を介して、停止指令を送風機150に送信する。これにより、送風機150の駆動は停止する。 When the blower 150 is stopped, the command generation unit 114 generates a drive command for driving the blower 150, and transmits the drive command to the blower 150 via the transmission unit 116. As a result, the blower 150 starts driving. Further, when the blower 150 is in the drive state, the command generation unit 114 generates a stop command for stopping the drive, and transmits the stop command to the blower 150 via the transmission unit 116. As a result, the drive of the blower 150 is stopped.
 <E.制御構造>
 図4は、コントローラ110の処理の流れを説明するためのフロー図である。
<E. Control structure>
FIG. 4 is a flow chart for explaining the processing flow of the controller 110.
 図4を参照して、ステップS1において、コントローラ110は、ペリメータゾーン941に設置された温度センサ120から温度情報を取得する。ステップS2において、コントローラ110は、インテリアゾーン942に設置された温度センサ130から温度情報を取得する。詳しくは、コントローラ110は、周期的に、これらの温度情報を取得する。なお、ステップS1とステップS2との順番は逆であってもよい。 With reference to FIG. 4, in step S1, the controller 110 acquires temperature information from the temperature sensor 120 installed in the perimeter zone 941. In step S2, the controller 110 acquires temperature information from the temperature sensor 130 installed in the interior zone 942. Specifically, the controller 110 periodically acquires these temperature information. The order of steps S1 and S2 may be reversed.
 ステップS3において、コントローラ110は、温度センサ120,130から取得した温度情報に基づき、ペリメータゾーン941用の空気調和機501が暖房運転しており、かつ、インテリアゾーン942用の空気調和機601が冷房運転しているかを判断する。 In step S3, in the controller 110, the air conditioner 501 for the perimeter zone 941 is in heating operation and the air conditioner 601 for the interior zone 942 is cooling based on the temperature information acquired from the temperature sensors 120 and 130. Determine if you are driving.
 ステップS3において肯定的な判断がなされた場合(ステップS3においてYES)、コントローラ110は、ステップS4において、送風機150が駆動状態にあるか否かを判断する。 When a positive judgment is made in step S3 (YES in step S3), the controller 110 determines whether or not the blower 150 is in the driving state in step S4.
 ステップS4において肯定的な判断がなされた場合(ステップS4においてYES)、コントローラ110は、処理をステップS1に進める。ステップS4において否定的な判断がなされた場合(ステップS4においてNO)、コントローラ110は、ステップS5において、駆動指令を送風機150に送信することにより、送風機150を駆動させる。 If a positive judgment is made in step S4 (YES in step S4), the controller 110 advances the process to step S1. If a negative determination is made in step S4 (NO in step S4), the controller 110 drives the blower 150 by transmitting a drive command to the blower 150 in step S5.
 ステップS3において否定的な判断がなされた場合(ステップS3においてNO)、コントローラ110は、ステップS6において、送風機150が駆動状態にあるか否かを判断する。 If a negative determination is made in step S3 (NO in step S3), the controller 110 determines in step S6 whether or not the blower 150 is in the driving state.
 ステップS6において肯定的な判断がなされた場合(ステップS6においてYES)、コントローラ110は、ステップS7において、停止指令を送風機150に送信することにより、送風機150を停止させる。ステップS6において否定的な判断がなされた場合(ステップS6においてNO)、コントローラ110は、処理をステップS1に進める。 If a positive judgment is made in step S6 (YES in step S6), the controller 110 stops the blower 150 by transmitting a stop command to the blower 150 in step S7. If a negative determination is made in step S6 (NO in step S6), the controller 110 advances the process to step S1.
 <F.ハードウェア構成>
 図5は、コントローラ110のハードウェア構成の典型例を表した図である。
<F. Hardware configuration>
FIG. 5 is a diagram showing a typical example of the hardware configuration of the controller 110.
 図5を参照して、コントローラ110は、主たる構成要素として、プログラムを実行するプロセッサ11と、データを不揮発的に格納するROM(Read Only Memory)12と、プロセッサ11によるプログラムの実行により生成されたデータ、又は入力装置を介して入力されたデータを揮発的に格納するRAM(Random Access Memory)13と、データを不揮発的に格納するフラッシュメモリ14と、通信IF15と、時計16とを備える。 With reference to FIG. 5, the controller 110 is generated by executing the program by the processor 11 that executes the program, the ROM (Read Only Memory) 12 that stores the data non-volatilely, and the processor 11 as the main components. It includes a RAM (Random Access Memory) 13 that volatilely stores data or data input via an input device, a flash memory 14 that stores data non-volatilely, a communication IF 15, and a clock 16.
 各構成要素は、相互にデータバスによって接続されている。なお、通信IF15は、本例では、他の各種機器と間における通信を行なためのインターフェイスである。 Each component is connected to each other by a data bus. In this example, the communication IF 15 is an interface for communicating with various other devices.
 コントローラ110における処理は、各ハードウェアおよびプロセッサ11により実行されるソフトウェアによって実現される。このようなソフトウェアは、フラッシュメモリ14に予め記憶されている場合がある。また、ソフトウェアは、その他の記憶媒体に格納されて、プログラムプロダクトとして流通している場合もある。あるいは、ソフトウェアは、いわゆるインターネットに接続されている情報提供事業者によってダウンロード可能なプログラムプロダクトとして提供される場合もある。このようなソフトウェアは、読取装置によりその記憶媒体から読み取られて、あるいは、通信IF15等を介してダウンロードされた後、フラッシュメモリ14に一旦格納される。そのソフトウェアは、プロセッサ11によってフラッシュメモリ14から読み出され、RAM13に実行可能なプログラムの形式で格納される。プロセッサ11は、そのプログラムを実行する。 The processing in the controller 110 is realized by the software executed by each hardware and the processor 11. Such software may be stored in the flash memory 14 in advance. In addition, the software may be stored in other storage media and distributed as a program product. Alternatively, the software may be provided as a downloadable program product by an information provider connected to the so-called Internet. Such software is read from the storage medium by a reading device, or downloaded via a communication IF 15 or the like, and then temporarily stored in the flash memory 14. The software is read from the flash memory 14 by the processor 11 and stored in the RAM 13 in the form of an executable program. The processor 11 executes the program.
 同図に示されるコントローラ110を構成する各構成要素は、一般的なものである。したがって、本開示の本質的な部分は、RAM13、フラッシュメモリ14、記憶媒体に格納されたソフトウェア、あるいはネットワークを介してダウンロード可能なソフトウェアであるともいえる。なお、コントローラ110の各ハードウェアの動作は周知であるので、詳細な説明は繰り返さない。 Each component constituting the controller 110 shown in the figure is a general one. Therefore, it can be said that an essential part of the present disclosure is RAM 13, flash memory 14, software stored in a storage medium, or software that can be downloaded via a network. Since the operation of each hardware of the controller 110 is well known, detailed description thereof will not be repeated.
 <G.小括>
 空気調和システム1の主たる構成を小括すると、以下のとおりである。
<G. Summary>
The main configurations of the air conditioning system 1 are summarized below.
 (1)空気調和システム1は、送風機150と、コントローラ110とを備える。送風機150は、建物900の室内940のペリメータゾーン941の天井950に設けられた吸込口210から室内940の空気を吸い込み、かつ吸い込まれた空気を吸込口210よりも建物900の外壁901側に設けられた吹出口230からペリメータゾーン941に吹き出す。コントローラ110は、ペリメータゾーン941の空気を調和する空気調和機501が暖房運転しており、かつ室内940のインテリアゾーン942の空気を調和する空気調和機601が冷房運転していることを条件に、送風機150を駆動する。 (1) The air conditioning system 1 includes a blower 150 and a controller 110. The blower 150 sucks the air in the room 940 from the suction port 210 provided in the ceiling 950 of the perimeter zone 941 in the room 940 of the building 900, and the sucked air is provided on the outer wall 901 side of the building 900 with respect to the suction port 210. It is blown out to the perimeter zone 941 from the outlet 230. The controller 110 is provided on the condition that the air conditioner 501 that harmonizes the air in the perimeter zone 941 is operating for heating and the air conditioner 601 that harmonizes the air in the interior zone 942 of the indoor 940 is operating for cooling. Drives the blower 150.
 (2)コントローラ110は、ペリメータゾーン941の温度を示す第1の温度情報と、インテリアゾーン942の温度を示す第2の温度情報とを取得する。コントローラ110は、第1の温度情報に基づき、空気調和機501が暖房運転しているかを判定する。コントローラ110は、第2の温度情報に基づき、空気調和機601が冷房運転しているかを判定する。 (2) The controller 110 acquires the first temperature information indicating the temperature of the perimeter zone 941 and the second temperature information indicating the temperature of the interior zone 942. The controller 110 determines whether the air conditioner 501 is in the heating operation based on the first temperature information. The controller 110 determines whether the air conditioner 601 is in the cooling operation based on the second temperature information.
 (3)空気調和システム1は、ペリメータゾーン941の温度を検出する温度センサ120と、インテリアゾーン942の温度を検出する温度センサ130とをさらに備える。コントローラ110は、温度センサ120から上記第1の温度情報を取得し、かつ温度センサ130から上記第2の温度情報を取得する。 (3) The air conditioning system 1 further includes a temperature sensor 120 that detects the temperature of the perimeter zone 941 and a temperature sensor 130 that detects the temperature of the interior zone 942. The controller 110 acquires the first temperature information from the temperature sensor 120 and acquires the second temperature information from the temperature sensor 130.
 (4)コントローラ110は、ペリメータゾーン941の温度がインテリアゾーン942の温度よりも予め定められた値以上高い場合に、空気調和機501が暖房運転しており、かつ空気調和機601が冷房運転していると判定する。 (4) In the controller 110, when the temperature of the perimeter zone 941 is higher than the temperature of the interior zone 942 by a predetermined value or more, the air conditioner 501 is in the heating operation and the air conditioner 601 is in the cooling operation. It is determined that the air conditioner is installed.
 (5)温度センサ120は、空気調和機501の吹出口530付近の温度を検出する。温度センサ130は、空気調和機601の吹出口630付近の温度を検出する。 (5) The temperature sensor 120 detects the temperature near the outlet 530 of the air conditioner 501. The temperature sensor 130 detects the temperature in the vicinity of the air outlet 630 of the air conditioner 601.
 (6)吹出口230は、窓902側に設けられている。吹出口230は、窓902の付近にも設けられている。吹出口230からの暖気は、窓902方向に送られる。 (6) The outlet 230 is provided on the window 902 side. The outlet 230 is also provided in the vicinity of the window 902. The warm air from the outlet 230 is sent in the direction of the window 902.
 (7)空気調和システム1は、送風機150を操作するための操作装置140をさらに備える。コントローラ110は、操作装置140から予め定められた信号を受信した場合、上述した条件が成立しているか否かに関わらず、送風機150を駆動する。 (7) The air conditioning system 1 further includes an operating device 140 for operating the blower 150. When the controller 110 receives a predetermined signal from the operating device 140, the controller 110 drives the blower 150 regardless of whether or not the above-mentioned conditions are satisfied.
 (8)操作装置140は、操作部142を有する。操作装置140は、操作部142が押下されたことに基づき、上記予め定められた信号をコントローラ110に送信する。 (8) The operation device 140 has an operation unit 142. The operating device 140 transmits the predetermined signal to the controller 110 based on the fact that the operating unit 142 is pressed.
 <H.変形例>
 (h1.第1の変形例)
 図6は、空気調和システム1の変形例である空気調和システム1Aを説明するための図である。また、図6は、送風機150が駆動しているときの室内940の空気の流れを説明するための図である。なお、図6においても、空気調和機501が暖房運転しており、かつ空気調和機601が冷房運転しているものとする。
<H. Modification example>
(H1. First modification)
FIG. 6 is a diagram for explaining an air conditioning system 1A which is a modification of the air conditioning system 1. Further, FIG. 6 is a diagram for explaining the air flow in the room 940 when the blower 150 is being driven. Also in FIG. 6, it is assumed that the air conditioner 501 is in the heating operation and the air conditioner 601 is in the cooling operation.
 図6を参照して、空気調和システム1Aは、コントローラ110と、温度センサ120と、温度センサ130と、操作装置140と、送風機150と、送風機350とを備える。コントローラ110は、温度センサ120と、温度センサ130と、操作装置140と、送風機150と、送風機350とに通信可能に接続されている。このように、空気調和システム1Aは、送風機350を備えている点において、空気調和システム1と異なる。 With reference to FIG. 6, the air conditioning system 1A includes a controller 110, a temperature sensor 120, a temperature sensor 130, an operating device 140, a blower 150, and a blower 350. The controller 110 is communicably connected to the temperature sensor 120, the temperature sensor 130, the operating device 140, the blower 150, and the blower 350. As described above, the air conditioning system 1A differs from the air conditioning system 1 in that the blower 350 is provided.
 インテリアゾーン942における床下980には、吸込口410と、ダクト420と、吹出口430とが設けられている。吸込口410は、吹出口430よりも窓902側に設けられている。なお、床下980とは、床面970を設けることによって形成された空間である。 The underfloor 980 in the interior zone 942 is provided with a suction port 410, a duct 420, and an outlet 430. The suction port 410 is provided on the window 902 side of the air outlet 430. The underfloor 980 is a space formed by providing the floor surface 970.
 送風機350は、床下980に設置されている。本例では、床下980のうちインテリアゾーン942の下方の空間に送風機350が設置されている。 The blower 350 is installed under the floor 980. In this example, the blower 350 is installed in the space below the interior zone 942 in the underfloor 980.
 送風機350は、吸込口410から空気を吸い込み、かつ吹出口430から空気を吹き出す。詳しくは、吸込口410から吸い込まれた空気は、ダクト420の中を流れ、その後、吹出口430からインテリアゾーン942に向かって吹き出す。 The blower 350 sucks in air from the suction port 410 and blows out air from the outlet 430. Specifically, the air sucked from the suction port 410 flows through the duct 420, and then blows out from the outlet 430 toward the interior zone 942.
 吸込口410は、インテリアゾーン942のうち、ペリメータゾーン941寄りの床面970に設けられている。詳しくは、吸込口410は、ペリメータゾーン941とインテリアゾーン942との境界付近に設けられている。しかしながら、吸込口410の位置は、これに限定されるものではない。たとえば、吸込口410は、ペリメータゾーン941のうちインテリアゾーン942寄りの床面970に設けられていてもよい。 The suction port 410 is provided on the floor surface 970 near the perimeter zone 941 in the interior zone 942. Specifically, the suction port 410 is provided near the boundary between the perimeter zone 941 and the interior zone 942. However, the position of the suction port 410 is not limited to this. For example, the suction port 410 may be provided on the floor surface 970 of the perimeter zone 941 near the interior zone 942.
 コントローラ110は、空気調和機501が暖房運転しており、かつインテリアゾーン用の空気調和機601が冷房運転していることを条件に、送風機150と送風機350とを駆動する。具体的には、コントローラ110は、送風機150を駆動するための駆動指令を送風機150に送るとともに、送風機350を駆動するための駆動指令を送風機350に送る。 The controller 110 drives the blower 150 and the blower 350 on condition that the air conditioner 501 is in the heating operation and the air conditioner 601 for the interior zone is in the cooling operation. Specifically, the controller 110 sends a drive command for driving the blower 150 to the blower 150, and also sends a drive command for driving the blower 350 to the blower 350.
 本変形例の場合、図2に基づき説明した空気の流れとともに、送風機350によって生じる空気の流れが生じる。以下では、主として、送風機350によって生じる流れを説明する。詳しくは、インテリアゾーン942における空気の流れを説明する。 In the case of this modification, the air flow generated by the blower 350 is generated together with the air flow described with reference to FIG. In the following, the flow generated by the blower 350 will be mainly described. More specifically, the air flow in the interior zone 942 will be described.
 空気調和機601の吹出口630から吹き出した空気(すなわち冷気)は、上述したように拡散する。その後、拡散した冷気は、全体として矢印62の方向に進む。 The air (that is, cold air) blown out from the air outlet 630 of the air conditioner 601 diffuses as described above. After that, the diffused cold air proceeds in the direction of arrow 62 as a whole.
 送風機350が駆動しているため、その後、冷気は吸込口410から吸引される(矢印64参照)。吸引された冷気は、送風機350によって、吹出口430からインテリアゾーン942に向かって吹き出す(矢印65参照)。 Since the blower 350 is driven, cold air is subsequently sucked from the suction port 410 (see arrow 64). The sucked cold air is blown out from the outlet 430 toward the interior zone 942 by the blower 350 (see arrow 65).
 吹出口430は、室内940の中央部側(窓902とは反対側,奥側)に設けられている。それゆえ、吹出口430から吹き出した冷気は、室内940の中央部方向に吹き出す。本例の場合、空気調和機601の吹出口630の下方付近の床面970から、冷気がインテリアゾーン942に向かって吹き出す。 The air outlet 430 is provided on the central side of the room 940 (the side opposite to the window 902, the back side). Therefore, the cold air blown out from the outlet 430 is blown out toward the center of the room 940. In the case of this example, cold air is blown from the floor surface 970 near the lower part of the air outlet 630 of the air conditioner 601 toward the interior zone 942.
 以上の構成により、空気調和システム1Aは、空気調和システム1が奏する上述した作用および効果に加えて、以下の作用および効果を奏する。 With the above configuration, the air conditioning system 1A exhibits the following actions and effects in addition to the above-mentioned actions and effects of the air conditioning system 1.
 送風機350を駆動させることにより、インテリアゾーン942における冷気の循環が促進する。それゆえ、送風機350を駆動しない場合に比べて、インテリアゾーン942を均一に冷やすことができる。 By driving the blower 350, the circulation of cold air in the interior zone 942 is promoted. Therefore, the interior zone 942 can be cooled uniformly as compared with the case where the blower 350 is not driven.
 また、インテリアゾーン942の床面970に設けられた吸込口410から冷気が吸い込まれるため、冷気がペリメータゾーン941に流入することを防ぐことができる。それゆえ、空気調和システム1によりもさらに暖房効率および冷房効率を同時に上げることが可能となる。このため、空気調和システム1Aによれば、冷暖房のミキシングロスを空気調和システム1よりもさらに低減可能となる。 Further, since the cold air is sucked from the suction port 410 provided on the floor surface 970 of the interior zone 942, it is possible to prevent the cold air from flowing into the perimeter zone 941. Therefore, the air conditioning system 1 can further increase the heating efficiency and the cooling efficiency at the same time. Therefore, according to the air conditioning system 1A, the mixing loss of heating and cooling can be further reduced as compared with the air conditioning system 1.
 (h2.第2の変形例)
 図7は、室内940の天井950に仕切板(垂れ壁)を設けた構成を表した図である。
(H2. Second modification)
FIG. 7 is a diagram showing a configuration in which a partition plate (hanging wall) is provided on the ceiling 950 of the room 940.
 図7を参照して、仕切板1070は、垂下した状態で天井950に取り付けている。仕切板1070は、ペリメータゾーン941とインテリアゾーン942との境界に設けられている。仕切板1070の鉛直方向(Z軸方向)の長さは、長い方がよい。ただし、見た目を良くする観点、圧迫感を低減する観点等からは、長すぎない方がよい。 With reference to FIG. 7, the partition plate 1070 is attached to the ceiling 950 in a hanging state. The partition plate 1070 is provided at the boundary between the perimeter zone 941 and the interior zone 942. The length of the partition plate 1070 in the vertical direction (Z-axis direction) should be long. However, it is better not to be too long from the viewpoint of improving the appearance and reducing the feeling of oppression.
 図8は、図7のVIII-VIII線矢視断面図である。
 図8を参照して、仕切板1070は、窓902と平行となるように設置されている。仕切板1070は、図示したY軸方向に沿って配置されている。
FIG. 8 is a cross-sectional view taken along the line VIII-VIII of FIG.
With reference to FIG. 8, the partition plate 1070 is installed so as to be parallel to the window 902. The partition plate 1070 is arranged along the illustrated Y-axis direction.
 本変形例においても、コントローラ110は、空気調和機501が暖房運転しており、かつインテリアゾーン用の空気調和機601が冷房運転していることを条件に、送風機150を駆動する。 Also in this modification, the controller 110 drives the blower 150 on the condition that the air conditioner 501 is in the heating operation and the air conditioner 601 for the interior zone is in the cooling operation.
 本例変形例の場合には、仕切板1070が設置されているため、仕切板1070が設置されていない場合に比べて、ペリメータゾーン941の天井950付近の暖気がインテリアゾーン942に流れ込むことを低減できる。また、仕切板1070は吸込口210の近傍に設置されているため、仕切板1070で一時的に滞留した暖気を吸込口210から効率良く吸い込むことが可能となる。 In the case of the modified example of this example, since the partition plate 1070 is installed, the warm air near the ceiling 950 of the perimeter zone 941 is reduced from flowing into the interior zone 942 as compared with the case where the partition plate 1070 is not installed. can. Further, since the partition plate 1070 is installed in the vicinity of the suction port 210, the warm air temporarily retained in the partition plate 1070 can be efficiently sucked from the suction port 210.
 したがって、本変形例では、仕切板1070を設けていない構成(たとえば、図1の構成)に比べて、ペリメータゾーン941における暖気の循環を一層促進することができる。それゆえ、仕切板1070が設置されていない場合に比べて、ペリメータゾーン941を一層均一に暖めることができる。 Therefore, in this modification, the circulation of warm air in the perimeter zone 941 can be further promoted as compared with the configuration without the partition plate 1070 (for example, the configuration of FIG. 1). Therefore, the perimeter zone 941 can be heated more uniformly as compared with the case where the partition plate 1070 is not installed.
 以上により、仕切板1070を設置されていない場合に比べて、暖房効率および冷房効率を上げることが可能となる。このため、本変形例によれば、冷暖房のミキシングロスをさらに低減可能となる。 From the above, it is possible to improve the heating efficiency and the cooling efficiency as compared with the case where the partition plate 1070 is not installed. Therefore, according to this modification, the mixing loss of heating and cooling can be further reduced.
 (h3.第3の変形例)
 図9は、空気調和システム1の変形例である空気調和システム1Bを説明するための図である。なお、図9においても、空気調和機501が暖房運転しており、かつ空気調和機601が冷房運転しているものとする。
(H3. Third modification)
FIG. 9 is a diagram for explaining an air conditioning system 1B which is a modification of the air conditioning system 1. Also in FIG. 9, it is assumed that the air conditioner 501 is in the heating operation and the air conditioner 601 is in the cooling operation.
 図9を参照して、空気調和システム1Bは、コントローラ110と、温度センサ120と、温度センサ130と、操作装置140と、送風機150と、送風機1091と、送風機1092とを備える。コントローラ110は、温度センサ120と、温度センサ130と、操作装置140と、送風機150と、送風機1091と、送風機1092とに通信可能に接続されている。このように、空気調和システム1Bは、送風機1091と、送風機1092とを備えている点において、空気調和システム1と異なる。 With reference to FIG. 9, the air conditioning system 1B includes a controller 110, a temperature sensor 120, a temperature sensor 130, an operating device 140, a blower 150, a blower 1091, and a blower 1092. The controller 110 is communicably connected to the temperature sensor 120, the temperature sensor 130, the operating device 140, the blower 150, the blower 1091, and the blower 1092. As described above, the air conditioning system 1B differs from the air conditioning system 1 in that the blower 1091 and the blower 1092 are provided.
 送風機1091,1092は、天井950(室内940側の天井面)に取り付けている。本例では、窓902側から、送風機1092と、吸込口210と、送風機1091と、吸込口610とが、この順に配置されている。 Blowers 1091 and 1092 are attached to the ceiling 950 (ceiling surface on the indoor 940 side). In this example, the blower 1092, the suction port 210, the blower 1091, and the suction port 610 are arranged in this order from the window 902 side.
 本例では、送風機1092は、ペリメータゾーン941に設置されている。送風機1091は、ペリメータゾーン941とインテリアゾーン942との境界に設置されている。なお、送風機1091は、インテリアゾーン942のうちペリメータゾーン941寄りに設置されていてもよい。 In this example, the blower 1092 is installed in the perimeter zone 941. The blower 1091 is installed at the boundary between the perimeter zone 941 and the interior zone 942. The blower 1091 may be installed near the perimeter zone 941 in the interior zone 942.
 本変形例では、コントローラ110は、送風機150と、送風機1091と、送風機1092との駆動を制御する。 In this modification, the controller 110 controls the drive of the blower 150, the blower 1091, and the blower 1092.
 図10は、図9のX-X線矢視断面図である。
 図10を参照して、送風機1091は、吸込口210よりも、図示したY軸の正方向側(図の上方側)かつ図示したX軸の正方向側(図の右側,室内940の中央部側)に設置されている。送風機1092は、吸込口210よりも、Y軸の負方向側(図の下方側)かつX軸の負方向側(図の左側,窓902側)に設置されている。
FIG. 10 is a cross-sectional view taken along the line XX of FIG.
With reference to FIG. 10, the blower 1091 is located on the positive side of the Y-axis (upper side of the figure) and the positive side of the X-axis (right side of the figure, the central portion of the room 940) with respect to the suction port 210. It is installed on the side). The blower 1092 is installed on the negative direction side of the Y axis (lower side in the figure) and the negative direction side of the X axis (left side in the figure, window 902 side) with respect to the suction port 210.
 送風機1091は、エリア948の空気を吸込口210方向に送る。詳しくは、送風機1091は、エリア948の天井950側の空気を吸込口210方向に送る。送風機1092は、エリア949の空気を吸込口210方向に送る。詳しくは、送風機1092は、エリア949の天井950側の空気を吸込口210方向に送る。このように、送風機1091は、室内940の天井950側の空気を吸込口210の方へ誘導する。 The blower 1091 sends the air in the area 948 toward the suction port 210. Specifically, the blower 1091 sends the air on the ceiling 950 side of the area 948 toward the suction port 210. The blower 1092 sends the air in the area 949 toward the suction port 210. Specifically, the blower 1092 sends the air on the ceiling 950 side of the area 949 toward the suction port 210. In this way, the blower 1091 guides the air on the ceiling 950 side of the room 940 toward the suction port 210.
 エリア948は、空気調和機501の吹出口530と、空気調和機601の吹出口630とから、同じ程度に離れている。このため、エリア948では、暖気と冷気とが混ざり合う。詳しくは、暖気の方が冷気よりも軽いため、エリア948においては、天井950側の空気は暖気となり、床面970側の空気は冷気となる。 Area 948 is about the same distance from the outlet 530 of the air conditioner 501 and the outlet 630 of the air conditioner 601. Therefore, in area 948, warm air and cold air are mixed. Specifically, since the warm air is lighter than the cold air, the air on the ceiling 950 side becomes warm air and the air on the floor surface 970 side becomes cold air in the area 948.
 したがって、送風機1091は、エリア948における天井950側の暖気を吸込口210方向に送ることになる。同様にして、送風機1092は、エリア949における天井950側の暖気を吸込口210方向に送ることになる。それゆえ、空気調和システム1Bでは、空気調和システム1に比べて、暖房効率および冷房効率を上げることが可能となる。このため、本変形例によれば、冷暖房のミキシングロスをさらに低減可能となる。 Therefore, the blower 1091 sends the warm air on the ceiling 950 side in the area 948 toward the suction port 210. Similarly, the blower 1092 sends the warm air on the ceiling 950 side in the area 949 toward the suction port 210. Therefore, the air conditioning system 1B can improve the heating efficiency and the cooling efficiency as compared with the air conditioning system 1. Therefore, according to this modification, the mixing loss of heating and cooling can be further reduced.
 (h4.第4の変形例)
 上記においては、「空気調和機501が暖房運転しており、かつ空気調和機601が冷房運転している」ことを、温度センサ120,130からの出力に基づきコントローラ110が判断した。しかしながら、コントローラ110は、他の方法によって、「空気調和機501が暖房運転しており、かつ空気調和機601が冷房運転している」ことを判断してもよい。
(H4. Fourth modification)
In the above, the controller 110 determines that "the air conditioner 501 is in the heating operation and the air conditioner 601 is in the cooling operation" based on the outputs from the temperature sensors 120 and 130. However, the controller 110 may determine that "the air conditioner 501 is in the heating operation and the air conditioner 601 is in the cooling operation" by another method.
 たとえば、コントローラ110は、空気調和機501と空気調和機601と通信することにより、「空気調和機501が暖房運転しており、かつ空気調和機601が冷房運転している」こと判断してもよい。 For example, even if the controller 110 determines that "the air conditioner 501 is in the heating operation and the air conditioner 601 is in the cooling operation" by communicating with the air conditioner 501 and the air conditioner 601. good.
 具体的には、コントローラ110は、空気調和機501の運転モードを示す情報(運転情報)を空気調和機501から取得することにより、空気調和機501が暖房運転しているか否かを判断してもよい。同様に、コントローラ110は、空気調和機601の運転モードを示す情報を空気調和機601から取得することにより、空気調和機601が冷房運転しているか否かを判断してもよい。 Specifically, the controller 110 determines whether or not the air conditioner 501 is in heating operation by acquiring information (operation information) indicating the operation mode of the air conditioner 501 from the air conditioner 501. It is also good. Similarly, the controller 110 may determine whether or not the air conditioner 601 is in cooling operation by acquiring information indicating the operation mode of the air conditioner 601 from the air conditioner 601.
 また、空気調和機501,601が個別空調ではなくセントラル空調である場合には、コントローラ110は、空気調和機501,601の動作を管理する管理装置から空気調和機501,601の運転モードを示す情報を取得してもよい。 When the air conditioners 501 and 601 are central air conditioners instead of individual air conditioners, the controller 110 indicates the operation mode of the air conditioners 501 and 601 from the management device that manages the operation of the air conditioners 501 and 601. Information may be obtained.
 上記においては、第1~第4の変形例を説明したが、これらの各変形例を適宜組み合わせることも可能である。 In the above, the first to fourth modification examples have been described, but it is also possible to appropriately combine each of these modification examples.
 <I.付記>
 (1)プログラムは、建物の室内のペリメータゾーンの空気を調和する第1の空気調和機が暖房運転しており、かつ前記室内のインテリアゾーンの空気を調和する第2の空気調和機が冷房運転していること検知するステップと、前記第1の空気調和機が暖房運転しており、かつ前記第2の空気調和機が冷房運転していることを条件に、前記ペリメータゾーンの天井に設けられた第1の制気口から前記ペリメータゾーンの空気を吸い込み、かつ前記吸い込まれた空気を前記第1の制気口よりも前記建物の外壁側に設けられた第2の制気口から前記ペリメータゾーンに吹き出すように、送風機を駆動するステップと、コントローラのプロセッサに実行させる。
<I. Addendum>
(1) In the program, the first air conditioner that harmonizes the air in the perimeter zone in the room of the building is operating for heating, and the second air conditioner that harmonizes the air in the interior zone of the room is operating for cooling. It is provided on the ceiling of the perimeter zone on the condition that the step of detecting that the air conditioner is operating and that the first air conditioner is operating for heating and the second air conditioner is operating for cooling. The air in the perimeter zone is sucked in from the first air control port, and the sucked air is sucked into the perimeter from the second air control port provided on the outer wall side of the building with respect to the first air control port. Let the controller's processor perform the steps that drive the blower so that it blows into the zone.
 (2)プログラムを記録したコンピュータ読み取り可能な記録媒体(たとえば、一時的ではない記録媒体)であって、前記プログラムは、建物の室内のペリメータゾーンの空気を調和する第1の空気調和機が暖房運転しており、かつ前記室内のインテリアゾーンの空気を調和する第2の空気調和機が冷房運転していること検知するステップと、前記第1の空気調和機が暖房運転しており、かつ前記第2の空気調和機が冷房運転していることを条件に、前記ペリメータゾーンの天井に設けられた第1の制気口から前記ペリメータゾーンの空気を吸い込み、かつ前記吸い込まれた空気を前記第1の制気口よりも前記建物の外壁側に設けられた第2の制気口から前記ペリメータゾーンに吹き出すように、送風機を駆動するステップと、コントローラのプロセッサに実行させる。 (2) A computer-readable recording medium (for example, a non-temporary recording medium) on which the program is recorded, wherein the program is heated by a first air conditioner that harmonizes the air in the perimeter zone in the building. The step of detecting that the second air conditioner that is operating and that harmonizes the air in the interior zone of the room is operating in cooling, and the step that the first air conditioner is operating for heating and said that The air in the perimeter zone is sucked from the first air control port provided on the ceiling of the perimeter zone, and the sucked air is sucked into the first air conditioner, provided that the second air conditioner is in cooling operation. The step of driving the blower and the processor of the controller are executed so as to blow out to the perimeter zone from the second air control port provided on the outer wall side of the building with respect to the air control port of 1.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present disclosure is shown by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope of the claims.
 1,1A,1B 空気調和システム、51~55,61~65 矢印、110 コントローラ、120,130 温度センサ、140 操作装置、141 表示部、142 操作部、150,350,1091,1092 送風機、210,410,510,610 吸込口、220,420,620 ダクト、230,430,530,630 吹出口、501,601 空気調和機、900 建物、901 外壁、902 窓、940 室内、941 ペリメータゾーン、942 インテリアゾーン、948,949 エリア、950 天井、960 天井裏、970 床面、980 床下、1070 仕切板、L 仮想線。 1,1A, 1B air conditioning system, 51-55, 61-65 arrow, 110 controller, 120, 130 temperature sensor, 140 operation device, 141 display unit, 142 operation unit, 150, 350, 1091,1092 blower, 210, 410,510,610 suction port, 220,420,620 duct, 230,430,530,630 air outlet, 501,601 air conditioner, 900 building, 901 outer wall, 902 window, 940 interior, 941 perimeter zone, 942 interior Zone, 948, 949 area, 950 ceiling, 960 ceiling back, 970 floor surface, 980 underfloor, 1070 partition plate, L virtual line.

Claims (8)

  1.  建物の室内のペリメータゾーンの天井に設けられた第1の制気口から前記ペリメータゾーンの空気を吸い込み、かつ前記吸い込まれた空気を前記第1の制気口よりも前記建物の外壁側に設けられた第2の制気口から前記ペリメータゾーンに吹き出すための送風機と、
     前記ペリメータゾーンの空気を調和する第1の空気調和機が暖房運転しており、かつ前記室内のインテリアゾーンの空気を調和する第2の空気調和機が冷房運転していることを条件に、前記送風機を駆動するコントローラと、を備える、空気調和システム。
    The air in the perimeter zone is sucked from the first air control port provided on the ceiling of the perimeter zone in the room of the building, and the sucked air is provided on the outer wall side of the building with respect to the first air control port. A blower for blowing out from the second air control port to the perimeter zone, and
    The condition is that the first air conditioner that harmonizes the air in the perimeter zone is operating for heating and the second air conditioner that harmonizes the air in the interior zone of the room is operating for cooling. An air conditioning system with a controller that drives the blower.
  2.  前記コントローラは、
     前記ペリメータゾーンの温度を示す第1の温度情報と、前記インテリアゾーンの温度を示す第2の温度情報とを取得し、
     前記第1の温度情報に基づき、前記第1の空気調和機が暖房運転しているかを判定し、
     前記第2の温度情報に基づき、前記第2の空気調和機が冷房運転しているかを判定する、請求項1に記載の空気調和システム。
    The controller
    The first temperature information indicating the temperature of the perimeter zone and the second temperature information indicating the temperature of the interior zone are acquired.
    Based on the first temperature information, it is determined whether or not the first air conditioner is operating for heating.
    The air conditioning system according to claim 1, wherein it is determined whether or not the second air conditioner is in cooling operation based on the second temperature information.
  3.  前記ペリメータゾーンの温度を検出する第1の温度センサと、
     前記インテリアゾーンの温度を検出する第2の温度センサと、をさらに備え、
     前記コントローラは、前記第1の温度センサから前記第1の温度情報を取得し、かつ前記第2の温度センサから前記第2の温度情報を取得する、請求項2に記載の空気調和システム。
    A first temperature sensor that detects the temperature of the perimeter zone, and
    Further, a second temperature sensor for detecting the temperature of the interior zone is provided.
    The air conditioning system according to claim 2, wherein the controller acquires the first temperature information from the first temperature sensor and the second temperature information from the second temperature sensor.
  4.  前記コントローラは、前記ペリメータゾーンの温度が前記インテリアゾーンの温度よりも予め定められた値以上高い場合に、前記第1の空気調和機が暖房運転しており、かつ前記第2の空気調和機が冷房運転していると判定する、請求項1に記載の空気調和システム。 In the controller, when the temperature of the perimeter zone is higher than the temperature of the interior zone by a predetermined value or more, the first air conditioner is in heating operation and the second air conditioner is operating. The air conditioning system according to claim 1, wherein the air conditioning system is determined to be in cooling operation.
  5.  前記送風機を操作するための操作装置をさらに備え、
     前記コントローラは、前記操作装置から予め定められた信号を受信した場合、前記条件が成立しているか否かに関わらず、前記送風機を駆動する、請求項1から4のいずれか1項に記載の空気調和システム。
    Further equipped with an operating device for operating the blower,
    The one according to any one of claims 1 to 4, wherein when the controller receives a predetermined signal from the operating device, the controller drives the blower regardless of whether or not the condition is satisfied. Air conditioning system.
  6.  前記コントローラは、
     前記第1の空気調和機の運転モードを示す第1のモード情報を前記第1の空気調和機から取得し、かつ前記第2の空気調和機から前記第2の空気調和機の運転モードを示す第2のモード情報を取得し、
     前記第1のモード情報に基づき前記第1の空気調和機が暖房運転をしているかを判定し、かつ前記第2のモード情報に基づき前記第2の空気調和機が冷房運転をしているかを判定する、請求項1に記載の空気調和システム。
    The controller
    The first mode information indicating the operation mode of the first air conditioner is acquired from the first air conditioner, and the operation mode of the second air conditioner is shown from the second air conditioner. Get the second mode information,
    It is determined whether the first air conditioner is in the heating operation based on the first mode information, and whether the second air conditioner is in the cooling operation based on the second mode information. The air conditioning system according to claim 1, wherein the determination is made.
  7.  建物の室内のペリメータゾーンの天井に設けられた第1の制気口から前記ペリメータゾーンの空気を吸い込み、かつ前記吸い込まれた空気を前記第1の制気口よりも前記建物の外壁側に設けられた第2の制気口から前記ペリメータゾーンに吹き出すための送風機を制御するコントローラであって、
     前記ペリメータゾーンの空気を調和する第1の空気調和機が暖房運転しており、かつ前記室内のインテリアゾーンの空気を調和する第2の空気調和機が冷房運転していることを条件に、前記送風機を駆動する、コントローラ。
    The air in the perimeter zone is sucked from the first air control port provided on the ceiling of the perimeter zone in the room of the building, and the sucked air is provided on the outer wall side of the building with respect to the first air control port. A controller that controls a blower for blowing out from the second air control port to the perimeter zone.
    The condition is that the first air conditioner that harmonizes the air in the perimeter zone is operating for heating and the second air conditioner that harmonizes the air in the interior zone of the room is operating for cooling. A controller that drives the blower.
  8.  建物の室内のペリメータゾーンの空気を調和する第1の空気調和機が暖房運転しており、かつ前記室内のインテリアゾーンの空気を調和する第2の空気調和機が冷房運転していること検知するステップと、
     前記第1の空気調和機が暖房運転しており、かつ前記第2の空気調和機が冷房運転していることを条件に、前記ペリメータゾーンの天井に設けられた第1の制気口から前記ペリメータゾーンの空気を吸い込み、かつ前記吸い込まれた空気を前記第1の制気口よりも前記建物の外壁側に設けられた第2の制気口から前記ペリメータゾーンに吹き出すように、送風機を駆動するステップと、を備える、送風機の制御方法。
    It is detected that the first air conditioner that harmonizes the air in the perimeter zone in the room of the building is operating for heating, and the second air conditioner that harmonizes the air in the interior zone of the room is operating for cooling. Steps and
    The first air conditioner provided on the ceiling of the perimeter zone, provided that the first air conditioner is in heating operation and the second air conditioner is in cooling operation. The blower is driven so as to suck in the air in the perimeter zone and blow the sucked air into the perimeter zone from the second air control port provided on the outer wall side of the building with respect to the first air control port. How to control the blower, including the steps to do.
PCT/JP2020/035840 2020-09-23 2020-09-23 Air-conditioning system, controller, and blower control method WO2022064569A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/035840 WO2022064569A1 (en) 2020-09-23 2020-09-23 Air-conditioning system, controller, and blower control method
JP2021516701A JP6910581B1 (en) 2020-09-23 2020-09-23 How to control air conditioning systems, controllers, and blowers
CN202080105469.5A CN116235006B (en) 2020-09-23 2020-09-23 Air conditioning system, controller and control method of blower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/035840 WO2022064569A1 (en) 2020-09-23 2020-09-23 Air-conditioning system, controller, and blower control method

Publications (1)

Publication Number Publication Date
WO2022064569A1 true WO2022064569A1 (en) 2022-03-31

Family

ID=76967664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035840 WO2022064569A1 (en) 2020-09-23 2020-09-23 Air-conditioning system, controller, and blower control method

Country Status (3)

Country Link
JP (1) JP6910581B1 (en)
CN (1) CN116235006B (en)
WO (1) WO2022064569A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742970A (en) * 1993-07-28 1995-02-10 Kajima Corp Mixing loss reducing air conditioner
JPH10253149A (en) * 1997-03-12 1998-09-25 Kajima Corp Air conditioner
JPH10288380A (en) * 1997-04-11 1998-10-27 Toshiba Corp Method and device for air-conditioning control

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03286944A (en) * 1990-04-02 1991-12-17 Toshiba Corp Air-conditioning system and method for operating the air-conditioning system
JP2970272B2 (en) * 1992-11-20 1999-11-02 日立プラント建設株式会社 Air conditioning system
JP3256032B2 (en) * 1993-06-30 2002-02-12 日立冷熱株式会社 Underfloor air conditioning
JP3474477B2 (en) * 1999-02-15 2003-12-08 株式会社山武 Perimeter interior air conditioning control method
JP4434303B2 (en) * 2008-02-05 2010-03-17 ダイキン工業株式会社 Air conditioner
JP5818620B2 (en) * 2011-10-05 2015-11-18 三菱電機株式会社 Air conditioning system
WO2014084145A1 (en) * 2012-11-30 2014-06-05 三菱電機株式会社 Facility equipment operation device, facility equipment operation system, facility equipment operation method, and program
CN207422522U (en) * 2017-09-19 2018-05-29 深圳市业顺电子有限公司 A kind of air heat energy switching equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742970A (en) * 1993-07-28 1995-02-10 Kajima Corp Mixing loss reducing air conditioner
JPH10253149A (en) * 1997-03-12 1998-09-25 Kajima Corp Air conditioner
JPH10288380A (en) * 1997-04-11 1998-10-27 Toshiba Corp Method and device for air-conditioning control

Also Published As

Publication number Publication date
CN116235006A (en) 2023-06-06
CN116235006B (en) 2023-10-24
JPWO2022064569A1 (en) 2022-03-31
JP6910581B1 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
WO2008015932A1 (en) Air conditioning control device and air conditioning control method
JP6596269B2 (en) Air conditioner
JP2016029313A (en) Air conditioner indoor unit
JP5504015B2 (en) Ventilation air conditioning system and building
JP2007271128A (en) Air conditioning equipment
US11674709B2 (en) Air conditioning system
JP2000121132A (en) Air conditioner
WO2022064569A1 (en) Air-conditioning system, controller, and blower control method
EP3764018A1 (en) Air-conditioning system
JPH0979648A (en) Whole building air conditioning control system
CN109477647B (en) Construction method of air conditioning system and design method of air conditioning system
JP5856473B2 (en) Air conditioner
JPH11132490A (en) Air conditioner and air conditioning method for of room
JP4002419B2 (en) elevator
CN110844725A (en) Sightseeing elevator
JP2005061674A (en) Indoor unit for air conditioner
CN105890101A (en) Indoor air conditioner
JP7466759B2 (en) Air Conditioning System
JP2000028162A (en) Air conditioning structure and method
JP4169861B2 (en) Operation control device for ceiling cassette type air conditioner
JP4531201B2 (en) Air conditioning method and air conditioning system
JP4773925B2 (en) Building air conditioning system
JP6929341B2 (en) Building air conditioning system and building air conditioning method
JP2004293850A (en) Indoor air circulation system
JP3939848B2 (en) Air conditioning structure

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021516701

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955163

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955163

Country of ref document: EP

Kind code of ref document: A1