WO2022064547A1 - Rotor and rotating electric machine - Google Patents

Rotor and rotating electric machine Download PDF

Info

Publication number
WO2022064547A1
WO2022064547A1 PCT/JP2020/035683 JP2020035683W WO2022064547A1 WO 2022064547 A1 WO2022064547 A1 WO 2022064547A1 JP 2020035683 W JP2020035683 W JP 2020035683W WO 2022064547 A1 WO2022064547 A1 WO 2022064547A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric machine
rotary electric
rotor
magnetic flux
stator
Prior art date
Application number
PCT/JP2020/035683
Other languages
French (fr)
Japanese (ja)
Inventor
貴裕 水田
一将 伊藤
義浩 深山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/035683 priority Critical patent/WO2022064547A1/en
Publication of WO2022064547A1 publication Critical patent/WO2022064547A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/26Asynchronous induction motors having rotors or stators designed to permit synchronous operation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • H02K19/12Synchronous motors for multi-phase current characterised by the arrangement of exciting windings, e.g. for self-excitation, compounding or pole-changing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/14Synchronous motors having additional short-circuited windings for starting as asynchronous motors

Definitions

  • This application relates to a rotor and a rotary electric machine.
  • Induction motors that are directly driven by a commercial AC power supply are generally used in cooling water circulation pumps in factories, cooling fans for air conditioning equipment, and the like. Due to the growing awareness of energy conservation in recent years, further improvement in efficiency of induction motors is required. Since the induction motor is a rotary electric machine that generates an induced current in the rotor to obtain an induced torque, there is a limit to high efficiency due to the loss of the induced current. As a rotary electric machine that copes with such a problem, a rotor core in which a plurality of salient poles are formed at regular intervals in the circumferential direction, an induction coil and a field coil wound around the plurality of salient poles, respectively, and a circumferential direction. Disclosed is a rotary electric machine provided with a rotor having a commutating pole member made of a magnetic material arranged between adjacent salient poles (see, for example, Patent Document 1).
  • the present application has been made to solve the above-mentioned problems, and an object thereof is to provide a rotary electric machine having a small torque pulsation at the start and a high power factor and efficiency at the time of synchronous rotation.
  • the rotor of the rotary electric machine of the present application has a rotor core having a plurality of salient poles protruding outward in the radial direction, a plurality of induction coils for generating an induced current, and a field for rectifying the induced current generated by the induced coil. It is equipped with a rectifying circuit that outputs a magnetic current, a field coil that generates a field magnetic current with a field current, and a plurality of conductor bars that penetrate the rotor core in the axial direction.
  • the salient pole is composed of a base around which the field coil is wound and a plurality of branch portions branched outward in the radial direction from the base, and the plurality of induction coils are formed in at least two branch portions. Each is rolled.
  • the salient pole is composed of a base around which a field coil is wound and a plurality of branch portions branched outward in the radial direction from this base, and a plurality of induction coils are formed. It is wound around at least two branches, respectively. Therefore, a rotary electric machine having a small torque pulsation at the start and a high power factor and efficiency at the time of synchronous rotation can be obtained.
  • FIG. It is sectional drawing of the rotary electric machine which concerns on Embodiment 1.
  • FIG. It is a vertical sectional view of the rotary electric machine which concerns on Embodiment 1.
  • FIG. It is sectional drawing of the rotary electric machine of the comparative example which concerns on Embodiment 1.
  • FIG. It is a figure which shows the flow of the d-axis magnetic flux and the flow of the q-axis magnetic flux in the rotary electric machine of the comparative example which concerns on Embodiment 1.
  • FIG. It is a figure which shows the flow of the d-axis magnetic flux and the flow of the q-axis magnetic flux in the rotary electric machine which concerns on Embodiment 1.
  • FIG. It is a figure which shows the torque waveform at the time of starting in the rotary electric machine of the comparative example which concerns on Embodiment 1.
  • FIG. It is a figure which shows the torque waveform at the time of starting in the rotary electric machine which concerns on Embodiment 1.
  • FIG. It is a figure which shows the rotation speed at the time of starting in the rotary electric machine which concerns on Embodiment 1.
  • FIG. It is a figure which shows the flow of the magnetic flux of the space harmonic in the rotary electric machine of the comparative example which concerns on Embodiment 1.
  • FIG. It is a figure which shows the flow of the magnetic flux of the space harmonic in the rotary electric machine which concerns on Embodiment 1.
  • FIG. It is a circuit diagram in the rotary electric machine which concerns on Embodiment 1.
  • FIG. It is a figure which showed the winding direction of the induction coil in the rotary electric machine which concerns on Embodiment 1.
  • FIG. It is a circuit diagram in the rotary electric machine which concerns on Embodiment 1.
  • FIG. It is a figure which shows the connection of the conductor bar in the rotary electric machine which concerns on Embodiment 2.
  • FIG. It is a figure which shows the connection of the conductor bar in the rotary electric machine which concerns on Embodiment 2.
  • FIG. It is a figure which shows the connection of the conductor bar in the rotary electric machine which concerns on Embodiment 2.
  • FIG. It is sectional drawing of the rotary electric machine which concerns on Embodiment 3.
  • FIG. It is a figure which showed the winding direction of the induction coil in the rotary electric machine which concerns on Embodiment 1.
  • FIG. It is a circuit diagram in the rotary electric machine which concerns on Embodiment 1.
  • FIG. It is a figure which shows the connection of the conductor bar in the
  • FIG. 1 It is a figure which shows the flow of the d-axis magnetic flux and the flow of the q-axis magnetic flux in the rotary electric machine which concerns on Embodiment 3.
  • FIG. It is a figure which shows the flow of the magnetic flux of the space harmonic in the rotary electric machine which concerns on Embodiment 3.
  • FIG. It is a figure which shows the connection of the conductor bar in the rotary electric machine which concerns on Embodiment 3.
  • FIG. 1 is a cross-sectional view of the rotary electric machine according to the first embodiment.
  • FIG. 1 is a radial cross-sectional view of a rotary electric machine.
  • the rotary electric machine 1 of the present embodiment is composed of a stator 2 and a rotor 3.
  • the stator 2 has a cylindrical shape surrounding the rotor 3 and is arranged with a radial gap with respect to the rotor 3.
  • the rotor 3 has a columnar shape surrounded by the stator 2 and is rotatably supported by the stator 2.
  • the stator 2 has a stator coil 4 and a stator core 5.
  • the stator core 5 is made of a magnetic material on which electromagnetic steel sheets are laminated.
  • the stator core 5 has a cylindrical core back 51 and a plurality of teeth 52 protruding inward in the radial direction from the inner peripheral side of the core back 51.
  • the space between the plurality of teeth 52 of the stator core 5 is a space opened inward in the radial direction, and is referred to as a stator slot 53.
  • the stator coil 4 is wound around the teeth 52 using the space of the stator slot 53.
  • the stator coil 4 is wound around, for example, each of the plurality of teeth 52 in a concentrated winding manner.
  • the rotor 3 has a shaft 6 and a rotor core 7.
  • the rotor core 7 is made of a magnetic material on which electromagnetic steel sheets are laminated.
  • the rotor core 7 is fixed to the shaft 6 by shrink fitting or press fitting.
  • the rotor core 7 has four salient poles 8 protruding outward in the radial direction.
  • Each salient pole 8 is composed of a base 81 and two branch portions 82 branched outward in the radial direction from the base 81. In other words, in the radial cross section, the salient pole 8 has a Y-shape with the base 81 and the two branch portions 82.
  • a field coil 72 to which a field current obtained by rectifying an induced current is energized is wound around each base 81.
  • An induction coil 71 for obtaining an induced current is wound around each branch portion 82.
  • the radial outer end of the branch 82 has a shape that extends in the circumferential direction.
  • a plurality of rotor slots 73 penetrating in the axial direction are provided at the radial outer end of the branch portion 82, and a plurality of conductor bars 74 are inserted into the plurality of rotor slots 73, respectively.
  • the conductor bar 74 is located on the outer peripheral side of the induction coil 71.
  • the material of the conductor bar 74 is preferably a metal such as aluminum or copper.
  • the number of stator slots 53 is 6, the number of rotor slots 73 of the rotor 3 is 40, and the number of poles of the rotor 3 is the number of poles.
  • the number of poles 8 is 4, but it is not limited to this.
  • FIG. 2 is a vertical sectional view of a rotary electric machine according to the present embodiment.
  • FIG. 2 is a sectional view taken along the axis of the rotary electric machine.
  • Short-circuit rings 75 for electrically connecting a plurality of conductor bars 74 are provided at both ends of the rotor core 7 in the axial direction.
  • the short circuit ring 75 may be integrally configured with the conductor bar 74.
  • connection plates 76 are provided at both ends of the induction coil 71 and the field coil 72 in the axial direction, respectively.
  • the connection plate 76 is provided with a rectifying circuit that rectifies the induced current induced by the induction coil 71 and outputs a field current.
  • the field current is applied to the field coil.
  • FIG. 3 is a cross-sectional view of a rotary electric machine of a comparative example.
  • FIG. 3 is a sectional view taken along the radial direction of the rotary electric machine.
  • the salient pole 8 of the rotary electric machine 1 of the comparative example does not have a branch portion branched into two toward the outside in the radial direction.
  • An induction coil 71 for obtaining an induced current and a field coil 72 to which a field current obtained by rectifying the induced current is energized are wound around each salient pole 8.
  • the radial outer end of the salient pole 8 has a shape that extends in the circumferential direction.
  • a plurality of rotor slots 73 are provided at the radial outer end of the salient pole 8, and a plurality of conductor bars 74 are inserted into the plurality of rotor slots 73, respectively.
  • the conductor bar 74 is located on the outer peripheral side of the induction coil 71.
  • the configuration of the stator 2 is the same as the configuration of the stator of the rotary electric machine of the present embodiment shown in FIG.
  • FIG. 4 is a diagram showing a flow of d-axis magnetic flux and a flow of q-axis magnetic flux in a rotary electric machine of a comparative example.
  • the broken line shows the flow of the d-axis magnetic flux
  • the solid line shows the flow of the q-axis magnetic flux.
  • the d-axis magnetic flux flows inside the rotor core 7 having a large magnetic permeability in the rotor. Therefore, the magnetic resistance to the d-axis magnetic flux in the magnetic circuit becomes small, and the d-axis inductance becomes large.
  • the q-axis magnetic flux mainly flows through a portion of air having a small magnetic permeability. Therefore, the magnetic resistance to the q-axis magnetic flux in the magnetic circuit becomes large, and the q-axis inductance becomes small.
  • FIG. 5 is a diagram showing a flow of d-axis magnetic flux and a flow of q-axis magnetic flux in the rotary electric machine of the present embodiment.
  • the broken line shows the flow of the d-axis magnetic flux
  • the solid line shows the flow of the q-axis magnetic flux.
  • the salient pole 8 is branched into two branch portions 82 toward the outside in the radial direction. As shown in FIG. 5, both the d-axis magnetic flux and the q-axis magnetic flux flow inside the rotor core 7 having a large magnetic permeability including the branch portion 82 in the rotor.
  • the difference between the d-axis inductance L d and the q-axis inductance L q is large, so that the reluctance torque Tr becomes large.
  • the reluctance torque Tr is small.
  • the salient pole ratio of the rotary electric machine of the comparative example having no two branch portions is larger than the salient pole ratio of the rotary electric machine of the present embodiment having two branch portions.
  • FIG. 6 is a diagram showing a torque waveform at the start of the rotary electric machine of the comparative example shown in FIG.
  • the horizontal axis is the elapsed time from the start time
  • the vertical axis is the torque.
  • the induced torque 11 obtained from the conductor bar is shown by a broken line
  • the total torque 12 which is the total of the induced torque and the reluctance torque is shown by a solid line
  • the load torque 13 is shown by a dotted line. Since the rotor is stopped at the start time, torque pulsation due to the reluctance torque of one cycle is generated in the total torque 12 while the electric angle advances by one cycle.
  • FIG. 7 is a diagram showing a torque waveform at the time of starting the rotary electric machine of the present embodiment.
  • the horizontal axis is the elapsed time from the start time
  • the vertical axis is the torque.
  • the induced torque 11 obtained from the conductor bar is shown by a broken line
  • the total torque 12 which is the total of the induced torque and the reluctance torque is shown by a solid line
  • the load torque 13 is shown by a dotted line.
  • the torque pulsation of the total torque 12 at the time of starting becomes small.
  • the time zone 14 in which the total torque 12 is lower than the load torque 13 is shorter than in the case of the comparative example.
  • the rotary electric machine of the present embodiment is easy to start and the pulsation of the rotation speed is suppressed.
  • FIG. 8 is a diagram showing the rotation speed at the start of the rotary electric machine according to the present embodiment.
  • the horizontal axis is the elapsed time from the start time
  • the vertical axis is the rotation speed.
  • the solid line shows the rotation speed of the rotary electric machine of the present embodiment
  • the broken line shows the rotation speed of the rotary electric machine of the comparative example shown in FIG. Power is input to the rotary electric machine at zero time. When power is applied to the rotary electric machine, the rotation speed increases toward the synchronous rotation speed.
  • the torque pulsation is large because the reluctance torque is large. Therefore, the pulsation of the rotation speed generated from the start time to the arrival of the synchronous rotation speed is large. Further, in the rotary electric machine of the comparative example, pulsation occurs in the rotation speed even after reaching the synchronous rotation speed, and the pulsation of this rotation speed causes noise and vibration.
  • the torque pulsation is small because the reluctance torque is small. Therefore, the pulsation of the rotation speed generated from the start time to the arrival of the synchronous rotation speed is smaller than that of the rotary electric machine of the comparative example. Further, in the rotary electric machine of the present embodiment, the pulsation of the rotational speed after reaching the synchronous rotation speed is also smaller than that of the rotary electric machine of the comparative example.
  • the salient pole of the rotor core has a plurality of branch portions branched outward in the radial direction, and the plurality of induction coils have two branch portions. Since each coil is wound around, the torque pulsation at the time of starting is smaller than that of a rotary electric machine having no branch portion.
  • FIG. 9 is a diagram showing the flow of magnetic flux of spatial harmonics at a certain time in the rotary electric machine of the comparative example shown in FIG.
  • the solid line shows the flow of the magnetic flux of the spatial harmonics.
  • the number of slots of the stator is 6, and the number of poles of the rotor is 4.
  • the space harmonic that is mainly interlinked with the induction coil and becomes the field magnetic flux source is the space harmonic of the 8-pole magnetic flux, that is, the secondary space of the 4-pole magnetic flux that is the fundamental wave. It becomes a harmonic. Therefore, in FIG.
  • the flow of the magnetic flux of the spatial harmonic shown by the solid line shows the flow of the magnetic flux of the secondary spatial harmonic.
  • the magnetic flux of the second spatial harmonic mainly flows through the portion of air having a small magnetic permeability, so that the magnetic resistance becomes large. Therefore, the magnitude of the magnetic flux of the second spatial harmonic is also reduced.
  • the secondary spatial harmonics generated between the adjacent salient poles are at positions where it is difficult to interlink with the induction coil.
  • the induced current induced in the induction coil is also small, so that the field magnetic flux obtained by the field coil is also small, and the power factor and efficiency are small.
  • FIG. 10 is a diagram showing the flow of magnetic flux of spatial harmonics at a certain time in the rotary electric machine of the present embodiment.
  • the solid line shows the flow of the magnetic flux of the spatial harmonics.
  • FIG. 10 shows each induction coil wound around each branch portion by A to H, and also shows the winding direction of each induction coil.
  • the winding direction of the induction coil of each of the four salient poles is the same.
  • the spatial harmonic that is mainly interlinked with the induction coil and becomes the field magnetic flux source is the secondary spatial harmonic of the four-pole magnetic flux that is the fundamental wave. Therefore, in FIG.
  • the flow of the magnetic flux of the spatial harmonic shown by the solid line shows the flow of the magnetic flux of the secondary spatial harmonic.
  • the magnetic flux of the secondary spatial harmonics mainly flows in the rotor core having a large magnetic permeability including the branch portion, so that the magnetic resistance becomes small. Therefore, the magnitude of the magnetic flux of the second spatial harmonic is also larger than that of the rotary electric machine of the comparative example.
  • each induction coil A to H is wound around each branch portion, the induction coils A to H are likely to be interlinked with the second spatial harmonic. Therefore, the induced current induced in the induction coil also increases.
  • the field magnetic flux obtained by the field coil is also larger than that of the rotary electric machine of the comparative example, and the power factor and efficiency are increased.
  • FIG. 11 is a circuit diagram showing the connection of the induction coil, the rectifying circuit, and the field coil in the rotary electric machine of the present embodiment shown in FIG.
  • each induction coil A to H constituting the induction coil 71 is connected in series, and the induction coil 71 is connected to the field coil 72 via the rectifying circuit 77.
  • the rectifier circuit 77 is a single-phase bridge type full-wave rectifier circuit composed of four diodes. Since the induced currents generated in the respective induction coils A to H are in phase with each other, the induced currents generated in the induction coils 71 become large.
  • the induced current generated in the induction coil 71 is rectified by the rectifying circuit 77 to become a field current, and this field current is energized in the field coil 72.
  • a large field magnetic flux can be obtained by the field coil 72.
  • FIG. 12 is a diagram showing the winding direction of the induction coil in another rotary electric machine of the present embodiment.
  • the winding direction of the induction coil of each of the four salient poles is the same.
  • the winding directions of the induction coils of the adjacent salient poles are reversed. Specifically, in the rotary electric machine shown in FIG. 12, the winding directions of the induction coils C, D, G and H are reversed with respect to the rotary electric machine shown in FIG.
  • the phases of the induced currents generated by the induction coils A, B, E and F are in phase, and the phases of the induced currents generated in the induction coils C, D, G and H are the same. It becomes the phase. Further, a phase difference of 180 ° is generated between the phase of the induced current generated by the induction coils A, B, E and F and the phase of the induced current generated by the induction coils C, D, G and H.
  • FIG. 13 is a circuit diagram showing a connection of an induction coil, a rectifying circuit, and a field coil in another rotary electric machine according to the present embodiment shown in FIG.
  • the induction coils A, B, E and F having the same phase of the induced current and one diode are connected in series, and the induction coils C, D, G and the induction coils having the same phase of the induced current are connected.
  • H and one diode are connected in series.
  • the two diodes are connected so that they face each other in the forward direction, and the rectifier circuit 77 is composed of the two diodes.
  • the series-connected induction coils A, B, E, F and one diode, and the series-connected induction coils C, D, G, H and one diode are connected in parallel to the field coil 72. There is.
  • the induced current generated in the induction coil 71 is rectified by the rectifying circuit 77 to become a field current, and this field current is energized in the field coil 72.
  • the number of diodes constituting the rectifier circuit 77 can be halved as compared with the circuit shown in FIG.
  • the salient pole of the rotor core has a plurality of branch portions branched outward in the radial direction, and the plurality of induction coils have two branch portions. Since they are wound around each other, the power factor and efficiency at the time of synchronous rotation are higher than those of a rotary electric machine having no branch portion.
  • FIG. 14 is a diagram showing the connection of conductor bars in the rotary electric machine according to the second embodiment.
  • the structure of the rotary electric machine of the present embodiment is the same as the structure of the rotary electric machine described in the first embodiment.
  • FIG. 14 shows only the rotor core 7 of the rotor 3, the rotor slot 73, and the conductor bar 74.
  • the rotor core 7 is shown by a broken line.
  • the number of rotor slots of the rotor is 40, and the number of poles and the number of salient poles 8 are 4.
  • Each salient pole 8 is composed of a base 81 and a plurality of branch portions 82 branched outward in the radial direction from the base 81.
  • all 40 conductor bars 74 are short-circuited and connected by the short-circuit ring 75.
  • an induced torque is obtained by flowing an induced current from the conductor bar 74 to another conductor bar 74 via the short-circuit ring 75 so as to cancel the four-pole fundamental magnetic flux at the time of starting. Be done. Further, in this rotary electric machine, since the four-pole fundamental magnetic flux is synchronized with the rotor after reaching the synchronous rotation speed, no induced current is generated. However, the magnetic flux of the 8-pole secondary space harmonic that is interlinked with the induction coil and becomes the field magnetic flux source does not synchronize with the rotor even after reaching the synchronous rotation speed. Therefore, an induced current flows through the conductor bar 74 and the short-circuit ring 75 so as to cancel them. This induced current causes a loss.
  • FIG. 15 is a diagram showing the connection of conductor bars in another rotary electric machine according to the present embodiment.
  • the conductor bar 74 is short-circuited by a short-circuit ring 75 at a pitch that picks up only the quadrupole magnetic flux, that is, at every 90 ° mechanical angle.
  • the conductor bars 74 in which 40 conductor bars are arranged in the circumferential direction the four conductor bars 74 sandwiching the nine conductor bars 74 in the circumferential direction are short-circuited and connected to each other.
  • FIG. 16 is a diagram showing the connection of conductor bars in another rotary electric machine according to the present embodiment.
  • this rotary electric machine as shown by a solid line in FIG. 16, five conductor bars 74 provided in each branch portion 82 are short-circuited and connected.
  • the group of the five conductor bars 74 short-circuited and connected to the branch portion 82 is the group of the five conductor bars 74 short-circuited and connected to another branch portion 82 sandwiching one branch portion 82 in the circumferential direction. It is short-circuited by the short-circuit ring 75.
  • FIG. 17 is a cross-sectional view of the rotary electric machine according to the third embodiment.
  • FIG. 17 is a sectional view taken along the radial direction of the rotary electric machine.
  • the rotor core 7 has four salient poles 8 protruding outward in the radial direction.
  • Each salient pole 8 is composed of a base portion 81 and a branch portion 82 branched into three radially outward from the base portion.
  • a field coil 72 to which a field current obtained by rectifying an induced current is energized is wound around each base 81.
  • the induction coil 71 for obtaining an induced current is wound around each of the other two branch portions 82 excluding the central branch portion 82.
  • the radial outer end of the branch 82 has a shape that extends in the circumferential direction.
  • a plurality of rotor slots 73 are provided at the radial outer ends of the branch portion 82, and conductor bars 74 are inserted into the plurality of rotor slots 73, respectively.
  • the conductor bar 74 is located on the outer peripheral side of the induction coil 71.
  • the configuration of the stator 2 of the rotary electric machine of the present embodiment is the same as the configuration of the stator of the rotary electric machine of the first embodiment.
  • FIG. 18 is a diagram showing a flow of d-axis magnetic flux and a flow of q-axis magnetic flux in the rotary electric machine of the present embodiment.
  • the broken line shows the flow of the d-axis magnetic flux
  • the solid line shows the flow of the q-axis magnetic flux.
  • the salient pole 8 is branched into three branch portions 82 toward the outside in the radial direction. As shown in FIG.
  • FIG. 19 is a diagram showing the flow of magnetic flux of spatial harmonics at a certain time in the rotary electric machine of the present embodiment.
  • the solid line shows the flow of the magnetic flux of the spatial harmonics.
  • the winding direction of the induction coil of each of the four salient poles is the same.
  • the spatial harmonic that is mainly interlinked with the induction coil and becomes the field magnetic flux source is the secondary spatial harmonic of the four-pole magnetic flux that is the fundamental wave. Therefore, in FIG. 19, the flow of the magnetic flux of the spatial harmonic shown by the solid line shows the flow of the magnetic flux of the secondary spatial harmonic.
  • the magnetic flux of the secondary spatial harmonic mainly flows inside the rotor core having a large magnetic permeability including the two branch portions, so that the magnetic resistance becomes small. Further, since each induction coil is wound around each of the two branch portions, the induction coil is likely to be interlinked with this second spatial harmonic. Therefore, the induced current induced in the induction coil also increases. As a result, in the rotary electric machine of the present embodiment, the obtained field magnetic flux is also increased, and the power factor and efficiency are increased.
  • the salient pole of the rotor core has three branch portions branched outward in the radial direction, and the plurality of induction coils have at least two branches. Since each portion is wound, the torque pulsation at the time of starting is smaller than that of a rotary electric machine having no branch portion, and the power factor and efficiency at the time of synchronous rotation are high.
  • FIG. 20 is a diagram showing the connection of conductor bars in the rotary electric machine according to the present embodiment.
  • a plurality of conductor bars 74 provided in the respective branch portions 82 are short-circuited and connected.
  • the group of the plurality of conductor bars 74 short-circuited and connected to the branch portion 82 is the group of the plurality of conductor bars 74 short-circuited and connected to another branch portion 82 sandwiching the two branch portions 82 in the circumferential direction. It is short-circuited by the short-circuit ring 75.
  • connection of the conductor bar is not limited to the connection shown in FIG.
  • all the conductor bars may be short-circuited and connected by a short-circuit ring.
  • conductor bars separated by a pitch of picking up only the quadrupole magnetic flux, that is, at every 90 ° of the mechanical angle may be short-circuited and connected by different short-circuit rings.
  • the induction coil 71 is not wound around the central branch portion 82, but the induction coil 71 may be wound around the central branch portion 82 as well.
  • each salient pole has a branch portion branched into three from the base toward the outside in the radial direction.
  • the number of branching portions may be four or more.
  • an induction coil may be wound around at least two of the n branches.
  • a plurality of conductor bars provided in each branch portion are short-circuited, and a group of a plurality of conductor bars short-circuited in the branch portions are connected.
  • a group of a plurality of conductor bars short-circuited and connected to another branch portion having n-1 branch portions sandwiched in the circumferential direction may be short-circuited and connected by a short-circuit ring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Synchronous Machinery (AREA)

Abstract

Provided is a rotating electric machine having a small torque pulsation during start-up and also having high power factor and efficiency during synchronous rotation. This rotor (3) comprises: a rotor core (7) having a plurality of salient poles (8) projecting outside in the radial direction; a plurality of induction coils (71) for generating induction current; a field coil (72) for generating a field magnetic flux by field current obtained by rectifying the induction current; and a plurality of conductor bars (74) passing through the rotor core in the axial direction. The salient poles are constituted by a base (81) around which the field coil is wound and a plurality of branch portions (82) branching from the base toward the outside in the radial direction. The plurality of induction coils are each wound around at least two branch portions.

Description

回転子および回転電機Rotor and rotating machine
 本願は、回転子および回転電機に関する。 This application relates to a rotor and a rotary electric machine.
 工場における冷却水の循環ポンプ、空調機器の冷却ファンなどにおいて、商用の交流電源で直接駆動される誘導電動機が一般に用いられている。近年の省エネルギー意識の高まりから、誘導電動機に対して更なる高効率化が求められている。誘導電動機は回転子に誘導電流を発生させて誘導トルクを得る回転電機であるため、誘導電流分の損失により高効率化に限界があった。
 このような課題に対応した回転電機として、周方向に一定の間隔で複数の突極が形成された回転子コアと、複数の突極にそれぞれ巻かれた誘導コイルおよび界磁コイルと、周方向に隣り合う突極の間にそれぞれ配置された磁性体からなる補極部材とを有する回転子を備えた回転電機が開示されている(例えば、特許文献1参照)。
Induction motors that are directly driven by a commercial AC power supply are generally used in cooling water circulation pumps in factories, cooling fans for air conditioning equipment, and the like. Due to the growing awareness of energy conservation in recent years, further improvement in efficiency of induction motors is required. Since the induction motor is a rotary electric machine that generates an induced current in the rotor to obtain an induced torque, there is a limit to high efficiency due to the loss of the induced current.
As a rotary electric machine that copes with such a problem, a rotor core in which a plurality of salient poles are formed at regular intervals in the circumferential direction, an induction coil and a field coil wound around the plurality of salient poles, respectively, and a circumferential direction. Disclosed is a rotary electric machine provided with a rotor having a commutating pole member made of a magnetic material arranged between adjacent salient poles (see, for example, Patent Document 1).
特開2017-121108号公報Japanese Unexamined Patent Publication No. 2017-121108
 従来の回転電機においては、突極比が大きいためリラクタンストルクに起因する始動時のトルク脈動が大きく始動が困難になるという問題があった。また、誘導コイルの位置が空間高調波の磁束と効率よく鎖交する位置ではないため小さな界磁磁束しか得られず、同期回転時の力率および効率が低いという問題があった。 In the conventional rotary electric machine, there is a problem that the torque pulsation at the time of starting due to the reluctance torque is large and the starting becomes difficult because the salient pole ratio is large. Further, since the position of the induction coil is not a position where it efficiently interlinks with the magnetic flux of the space harmonic, only a small field magnetic flux can be obtained, and there is a problem that the power factor and efficiency at the time of synchronous rotation are low.
 本願は上述のような課題を解決するためになされたもので、始動時のトルク脈動が小さく、かつ同期回転時の力率および効率が高い回転電機を提供することを目的とする。 The present application has been made to solve the above-mentioned problems, and an object thereof is to provide a rotary electric machine having a small torque pulsation at the start and a high power factor and efficiency at the time of synchronous rotation.
 本願の回転電機の回転子は、径方向の外側に突出する複数の突極を有する回転子コアと、誘導電流を発生する複数の誘導コイルと、誘導コイルで発生した誘導電流を整流して界磁電流を出力する整流回路と、界磁電流で界磁磁束を発生する界磁コイルと、回転子コアを軸方向に貫通する複数の導体バーとを備えている。そして、突極は、界磁コイルが巻かれた基部とこの基部から径方向の外側に向かって分岐した複数の分岐部とで構成されており、複数の誘導コイルは、少なくとも2つの分岐部にそれぞれ巻かれている。 The rotor of the rotary electric machine of the present application has a rotor core having a plurality of salient poles protruding outward in the radial direction, a plurality of induction coils for generating an induced current, and a field for rectifying the induced current generated by the induced coil. It is equipped with a rectifying circuit that outputs a magnetic current, a field coil that generates a field magnetic current with a field current, and a plurality of conductor bars that penetrate the rotor core in the axial direction. The salient pole is composed of a base around which the field coil is wound and a plurality of branch portions branched outward in the radial direction from the base, and the plurality of induction coils are formed in at least two branch portions. Each is rolled.
 本願の回転電機の回転子においては、突極が界磁コイルが巻かれた基部とこの基部から径方向の外側に向かって分岐した複数の分岐部とで構成されており、複数の誘導コイルが少なくとも2つの分岐部にそれぞれ巻かれている。そのため、始動時のトルク脈動が小さく、かつ同期回転時の力率および効率が高い回転電機が得られる。 In the rotor of the rotary electric machine of the present application, the salient pole is composed of a base around which a field coil is wound and a plurality of branch portions branched outward in the radial direction from this base, and a plurality of induction coils are formed. It is wound around at least two branches, respectively. Therefore, a rotary electric machine having a small torque pulsation at the start and a high power factor and efficiency at the time of synchronous rotation can be obtained.
実施の形態1に係る回転電機の横断面図である。It is sectional drawing of the rotary electric machine which concerns on Embodiment 1. FIG. 実施の形態1に係る回転電機の縦断面図である。It is a vertical sectional view of the rotary electric machine which concerns on Embodiment 1. FIG. 実施の形態1に係る比較例の回転電機の横断面図である。It is sectional drawing of the rotary electric machine of the comparative example which concerns on Embodiment 1. FIG. 実施の形態1に係る比較例の回転電機におけるd軸磁束の流れおよびq軸磁束の流れを示す図である。It is a figure which shows the flow of the d-axis magnetic flux and the flow of the q-axis magnetic flux in the rotary electric machine of the comparative example which concerns on Embodiment 1. FIG. 実施の形態1に係る回転電機におけるd軸磁束の流れおよびq軸磁束の流れを示す図である。It is a figure which shows the flow of the d-axis magnetic flux and the flow of the q-axis magnetic flux in the rotary electric machine which concerns on Embodiment 1. FIG. 実施の形態1に係る比較例の回転電機における始動時のトルク波形を示す図である。It is a figure which shows the torque waveform at the time of starting in the rotary electric machine of the comparative example which concerns on Embodiment 1. FIG. 実施の形態1に係る回転電機における始動時のトルク波形を示す図である。It is a figure which shows the torque waveform at the time of starting in the rotary electric machine which concerns on Embodiment 1. FIG. 実施の形態1に係る回転電機における始動時の回転速度を示す図である。It is a figure which shows the rotation speed at the time of starting in the rotary electric machine which concerns on Embodiment 1. FIG. 実施の形態1に係る比較例の回転電機における空間高調波の磁束の流れを示す図である。It is a figure which shows the flow of the magnetic flux of the space harmonic in the rotary electric machine of the comparative example which concerns on Embodiment 1. FIG. 実施の形態1に係る回転電機における空間高調波の磁束の流れを示す図である。It is a figure which shows the flow of the magnetic flux of the space harmonic in the rotary electric machine which concerns on Embodiment 1. FIG. 実施の形態1に係る回転電機における回路図である。It is a circuit diagram in the rotary electric machine which concerns on Embodiment 1. FIG. 実施の形態1に係る回転電機における誘導コイルの巻き方向を示した図である。It is a figure which showed the winding direction of the induction coil in the rotary electric machine which concerns on Embodiment 1. FIG. 実施の形態1に係る回転電機における回路図である。It is a circuit diagram in the rotary electric machine which concerns on Embodiment 1. FIG. 実施の形態2に係る回転電機における導体バーの接続を示す図である。It is a figure which shows the connection of the conductor bar in the rotary electric machine which concerns on Embodiment 2. FIG. 実施の形態2に係る回転電機における導体バーの接続を示す図である。It is a figure which shows the connection of the conductor bar in the rotary electric machine which concerns on Embodiment 2. FIG. 実施の形態2に係る回転電機における導体バーの接続を示す図である。It is a figure which shows the connection of the conductor bar in the rotary electric machine which concerns on Embodiment 2. FIG. 実施の形態3に係る回転電機の横断面図である。It is sectional drawing of the rotary electric machine which concerns on Embodiment 3. FIG. 実施の形態3に係る回転電機におけるd軸磁束の流れおよびq軸磁束の流れを示す図である。It is a figure which shows the flow of the d-axis magnetic flux and the flow of the q-axis magnetic flux in the rotary electric machine which concerns on Embodiment 3. FIG. 実施の形態3に係る回転電機における空間高調波の磁束の流れを示す図である。It is a figure which shows the flow of the magnetic flux of the space harmonic in the rotary electric machine which concerns on Embodiment 3. FIG. 実施の形態3に係る回転電機における導体バーの接続を示す図である。It is a figure which shows the connection of the conductor bar in the rotary electric machine which concerns on Embodiment 3. FIG.
 以下、本願を実施するための実施の形態に係る回転電機について、図面を参照して詳細に説明する。なお、各図において同一符号は同一もしくは相当部分を示している。 Hereinafter, the rotary electric machine according to the embodiment for carrying out the present application will be described in detail with reference to the drawings. In each figure, the same reference numerals indicate the same or corresponding parts.
実施の形態1.
 図1は、実施の形態1に係る回転電機の横断面図である。図1は回転電機の径方向の断面図である。本実施の形態の回転電機1は、固定子2と回転子3とで構成されている。固定子2は回転子3を囲む円筒状の形状を有しており、回転子3に対して径方向に隙間を設けて配置される。回転子3は固定子2に囲まれた円柱状の形状を有しており、固定子2に対して回転可能に支持されている。
Embodiment 1.
FIG. 1 is a cross-sectional view of the rotary electric machine according to the first embodiment. FIG. 1 is a radial cross-sectional view of a rotary electric machine. The rotary electric machine 1 of the present embodiment is composed of a stator 2 and a rotor 3. The stator 2 has a cylindrical shape surrounding the rotor 3 and is arranged with a radial gap with respect to the rotor 3. The rotor 3 has a columnar shape surrounded by the stator 2 and is rotatably supported by the stator 2.
 固定子2は、固定子コイル4と固定子コア5とを有している。固定子コア5は、電磁鋼板が積層された磁性体で構成されている。固定子コア5は、円筒状のコアバック51とこのコアバック51の内周側から径方向の内側に向かって突出する複数のティース52とを有している。固定子コア5の複数のティース52の間の空間は、径方向の内側に向かって開口された空間であり、固定子スロット53と称される。固定子コイル4は、この固定子スロット53の空間を利用してティース52に巻かれている。固定子コイル4は、例えば複数のティース52のそれぞれに対して集中巻きで巻かれている。 The stator 2 has a stator coil 4 and a stator core 5. The stator core 5 is made of a magnetic material on which electromagnetic steel sheets are laminated. The stator core 5 has a cylindrical core back 51 and a plurality of teeth 52 protruding inward in the radial direction from the inner peripheral side of the core back 51. The space between the plurality of teeth 52 of the stator core 5 is a space opened inward in the radial direction, and is referred to as a stator slot 53. The stator coil 4 is wound around the teeth 52 using the space of the stator slot 53. The stator coil 4 is wound around, for example, each of the plurality of teeth 52 in a concentrated winding manner.
 回転子3は、シャフト6と回転子コア7とを有している。回転子コア7は、電磁鋼板が積層された磁性体で構成されている。回転子コア7は、焼き嵌めまたは圧入などでシャフト6に固定されている。回転子コア7は、径方向の外側に突出する4つの突極8を有している。それぞれの突極8は、基部81とこの基部81から径方向の外側に向かって分岐した2つの分岐部82とで構成されている。言い換えると、径方向の断面において、突極8は基部81と2つの分岐部82とでY字型の形状となっている。それぞれの基部81には、誘導電流が整流されて得られる界磁電流が通電される界磁コイル72が巻かれている。それぞれの分岐部82には、誘導電流を得るための誘導コイル71が巻かれている。分岐部82の径方向の外側端部は、周方向に広がった形状を有している。分岐部82の径方向の外側端部には、軸方向に貫通する複数の回転子スロット73が設けられており、この複数の回転子スロット73に複数の導体バー74がそれぞれ挿入されている。導体バー74は、誘導コイル71より外周側に位置する。導体バー74の材質は、例えばアルミニウム、銅などの金属であることが望ましい。 The rotor 3 has a shaft 6 and a rotor core 7. The rotor core 7 is made of a magnetic material on which electromagnetic steel sheets are laminated. The rotor core 7 is fixed to the shaft 6 by shrink fitting or press fitting. The rotor core 7 has four salient poles 8 protruding outward in the radial direction. Each salient pole 8 is composed of a base 81 and two branch portions 82 branched outward in the radial direction from the base 81. In other words, in the radial cross section, the salient pole 8 has a Y-shape with the base 81 and the two branch portions 82. A field coil 72 to which a field current obtained by rectifying an induced current is energized is wound around each base 81. An induction coil 71 for obtaining an induced current is wound around each branch portion 82. The radial outer end of the branch 82 has a shape that extends in the circumferential direction. A plurality of rotor slots 73 penetrating in the axial direction are provided at the radial outer end of the branch portion 82, and a plurality of conductor bars 74 are inserted into the plurality of rotor slots 73, respectively. The conductor bar 74 is located on the outer peripheral side of the induction coil 71. The material of the conductor bar 74 is preferably a metal such as aluminum or copper.
 なお、図1に示すように本実施の形態の回転電機1においては、固定子スロット53の数を6、回転子3の回転子スロット73の数を40、回転子3の極数である突極8の数を4としているが、これに限るものではない。 As shown in FIG. 1, in the rotary electric machine 1 of the present embodiment, the number of stator slots 53 is 6, the number of rotor slots 73 of the rotor 3 is 40, and the number of poles of the rotor 3 is the number of poles. The number of poles 8 is 4, but it is not limited to this.
 図2は、本実施の形態に係る回転電機の縦断面図である。図2は回転電機の軸方向の断面図である。回転子コア7の軸方向の両端部には、複数の導体バー74同士を電気的に接続する短絡リング75がそれぞれ設けられている。短絡リング75は導体バー74と一体で構成されていてもよい。また、誘導コイル71および界磁コイル72の軸方向の両端部には、結線板76がそれぞれ設けられている。この結線板76には、誘導コイル71で誘起される誘導電流を整流して界磁電流を出力する整流回路が設けられている。界磁電流は界磁コイルに通電される。 FIG. 2 is a vertical sectional view of a rotary electric machine according to the present embodiment. FIG. 2 is a sectional view taken along the axis of the rotary electric machine. Short-circuit rings 75 for electrically connecting a plurality of conductor bars 74 are provided at both ends of the rotor core 7 in the axial direction. The short circuit ring 75 may be integrally configured with the conductor bar 74. Further, connection plates 76 are provided at both ends of the induction coil 71 and the field coil 72 in the axial direction, respectively. The connection plate 76 is provided with a rectifying circuit that rectifies the induced current induced by the induction coil 71 and outputs a field current. The field current is applied to the field coil.
 次に、本実施の形態の回転電機の作用効果を説明する。そのために、比較例として、突極が径方向の外側に向かって分岐した2つの分岐部を有していない回転電機について説明する。
 図3は、比較例の回転電機の横断面図である。図3は回転電機の径方向の断面図である。図3に示すように、比較例の回転電機1の突極8は、径方向の外側に向かって2つに分岐した分岐部を有していない。それぞれの突極8には、誘導電流を得るための誘導コイル71、および誘導電流が整流されて得られる界磁電流が通電される界磁コイル72が巻かれている。突極8の径方向の外側端部は、周方向に広がった形状を有している。突極8の径方向の外側端部には、複数の回転子スロット73が設けられており、この複数の回転子スロット73に複数の導体バー74がそれぞれ挿入されている。導体バー74は、誘導コイル71より外周側に位置する。なお、図3に示す比較例の回転電機1において、固定子2の構成は、図1に示す本実施の形態の回転電機の固定子の構成と同様である。
Next, the operation and effect of the rotary electric machine of the present embodiment will be described. Therefore, as a comparative example, a rotary electric machine having no two branching portions in which the salient poles are branched outward in the radial direction will be described.
FIG. 3 is a cross-sectional view of a rotary electric machine of a comparative example. FIG. 3 is a sectional view taken along the radial direction of the rotary electric machine. As shown in FIG. 3, the salient pole 8 of the rotary electric machine 1 of the comparative example does not have a branch portion branched into two toward the outside in the radial direction. An induction coil 71 for obtaining an induced current and a field coil 72 to which a field current obtained by rectifying the induced current is energized are wound around each salient pole 8. The radial outer end of the salient pole 8 has a shape that extends in the circumferential direction. A plurality of rotor slots 73 are provided at the radial outer end of the salient pole 8, and a plurality of conductor bars 74 are inserted into the plurality of rotor slots 73, respectively. The conductor bar 74 is located on the outer peripheral side of the induction coil 71. In the rotary electric machine 1 of the comparative example shown in FIG. 3, the configuration of the stator 2 is the same as the configuration of the stator of the rotary electric machine of the present embodiment shown in FIG.
 図4は、比較例の回転電機におけるd軸磁束の流れおよびq軸磁束の流れを示す図である。図4において、破線はd軸磁束の流れを示しており、実線はq軸磁束の流れを示している。d軸磁束は、回転子内において透磁率の大きい回転子コア7の内部を流れる。そのため磁気回路におけるd軸磁束に対する磁気抵抗が小さくなり、d軸インダクタンスは大きくなる。一方、q軸磁束は主に透磁率の小さい空気の部分を流れる。そのため磁気回路におけるq軸磁束に対する磁気抵抗は大きくなり、q軸インダクタンスは小さくなる。 FIG. 4 is a diagram showing a flow of d-axis magnetic flux and a flow of q-axis magnetic flux in a rotary electric machine of a comparative example. In FIG. 4, the broken line shows the flow of the d-axis magnetic flux, and the solid line shows the flow of the q-axis magnetic flux. The d-axis magnetic flux flows inside the rotor core 7 having a large magnetic permeability in the rotor. Therefore, the magnetic resistance to the d-axis magnetic flux in the magnetic circuit becomes small, and the d-axis inductance becomes large. On the other hand, the q-axis magnetic flux mainly flows through a portion of air having a small magnetic permeability. Therefore, the magnetic resistance to the q-axis magnetic flux in the magnetic circuit becomes large, and the q-axis inductance becomes small.
 ここでリラクタンストルクをT、極対数をp、d軸インダクタンスをL、q軸インダクタンスをL、d軸電流をI、q軸電流をIとすると、次の(1)式が成り立つ。
   T=p(L-L)I    (1)
 (1)式からわかるように、LとLとの差が大きいほどリラクタンストルクTは大きくなる。なお、ρ=L/Lは突極比と呼ばれ、図4に示すような突極を有する回転電機では通常L>Lであるため、ρ>1となる。そのため、d軸インダクタンスLとq軸インダクタンスLとの差が大きいほど突極比ρは大きくなる。
Here, assuming that the reluctance torque is Tr , the number of pole pairs is p, the d-axis inductance is L d , the q-axis inductance is L q , the d-axis current is I d , and the q-axis current is I q , the following equation (1) is obtained. It holds.
Tr = p (L d −L q ) I d I q (1)
As can be seen from the equation (1), the larger the difference between L d and L q , the larger the reluctance torque Tr . Note that ρ = L d / L q is called a salient pole ratio, and in a rotary electric machine having a salient pole as shown in FIG. 4, L d > L q is usually satisfied, so ρ> 1. Therefore, the larger the difference between the d-axis inductance L d and the q-axis inductance L q , the larger the salient pole ratio ρ.
 図5は、本実施の形態の回転電機におけるd軸磁束の流れおよびq軸磁束の流れを示す図である。図5において、破線はd軸磁束の流れを示しており、実線はq軸磁束の流れを示している。本実施の形態の回転電機においては、突極8が径方向の外側に向かって2つの分岐部82に分岐している。図5に示すようにd軸磁束およびq軸磁束は、ともに回転子内において分岐部82を含む透磁率の大きい回転子コア7の内部を流れる。そのため、磁気回路におけるd軸磁束に対する磁気抵抗とq軸磁束に対する磁気抵抗との差が小さくなる。その結果、d軸インダクタンスLとq軸インダクタンスLとの差は小さくなる。 FIG. 5 is a diagram showing a flow of d-axis magnetic flux and a flow of q-axis magnetic flux in the rotary electric machine of the present embodiment. In FIG. 5, the broken line shows the flow of the d-axis magnetic flux, and the solid line shows the flow of the q-axis magnetic flux. In the rotary electric machine of the present embodiment, the salient pole 8 is branched into two branch portions 82 toward the outside in the radial direction. As shown in FIG. 5, both the d-axis magnetic flux and the q-axis magnetic flux flow inside the rotor core 7 having a large magnetic permeability including the branch portion 82 in the rotor. Therefore, the difference between the magnetic resistance to the d-axis magnetic flux and the magnetic resistance to the q-axis magnetic flux in the magnetic circuit becomes small. As a result, the difference between the d-axis inductance L d and the q-axis inductance L q becomes small.
 上述のように、2つの分岐部を有していない比較例の回転電機においては、d軸インダクタンスLとq軸インダクタンスLとの差が大きいため、リラクタンストルクTは大きくなる。一方、2つの分岐部を有する本実施の形態の回転電機においては、d軸インダクタンスLとq軸インダクタンスLとの差が小さいため、リラクタンストルクTは小さくなる。
 なお、突極比で比較すると、2つの分岐部を有していない比較例の回転電機の突極比は、2つの分岐部を有する本実施の形態の回転電機の突極比よりも大きい。
As described above, in the rotary electric machine of the comparative example which does not have two branch portions, the difference between the d-axis inductance L d and the q-axis inductance L q is large, so that the reluctance torque Tr becomes large. On the other hand, in the rotary electric machine of the present embodiment having two branch portions, since the difference between the d-axis inductance L d and the q-axis inductance L q is small, the reluctance torque Tr is small.
When compared in terms of salient pole ratio, the salient pole ratio of the rotary electric machine of the comparative example having no two branch portions is larger than the salient pole ratio of the rotary electric machine of the present embodiment having two branch portions.
 図6は、図3に示した比較例の回転電機の始動時のトルク波形を示す図である。図6において、横軸は始動開始時刻からの経過時間、縦軸はトルクである。また、図6において、導体バーで得られる誘導トルク11を破線で、誘導トルクとリラクタンストルクとの合計である合算トルク12を実線で、負荷トルク13を点線で示している。始動開始時刻では回転子が停止しているので、合算トルク12には電気角が1周期進む間に1周期のリラクタンストルクに起因するトルク脈動が発生する。合算トルク12が負荷トルク13を上回っているときには停止状態からの始動が可能である。しかしながら、図6に示すように、合算トルク12が負荷トルク13を下回っている時間帯14では回転子は減速されトルク脈動が大きくなる。また、リラクタンストルクおよび負荷トルクの大きさによっては停止状態から加速することができず始動が困難となる場合がある。図3に示す比較例の回転電機においては、リラクタンストルクが大きいため始動時の合算トルク12のトルク脈動が大きく、始動が不可能あるいは始動が可能な場合でも回転速度の脈動が大きくなる。 FIG. 6 is a diagram showing a torque waveform at the start of the rotary electric machine of the comparative example shown in FIG. In FIG. 6, the horizontal axis is the elapsed time from the start time, and the vertical axis is the torque. Further, in FIG. 6, the induced torque 11 obtained from the conductor bar is shown by a broken line, the total torque 12 which is the total of the induced torque and the reluctance torque is shown by a solid line, and the load torque 13 is shown by a dotted line. Since the rotor is stopped at the start time, torque pulsation due to the reluctance torque of one cycle is generated in the total torque 12 while the electric angle advances by one cycle. When the total torque 12 exceeds the load torque 13, it is possible to start from the stopped state. However, as shown in FIG. 6, in the time zone 14 when the total torque 12 is lower than the load torque 13, the rotor is decelerated and the torque pulsation becomes large. Further, depending on the magnitude of the reluctance torque and the load torque, it may not be possible to accelerate from the stopped state and it may be difficult to start. In the rotary electric machine of the comparative example shown in FIG. 3, since the reluctance torque is large, the torque pulsation of the total torque 12 at the time of starting is large, and the pulsation of the rotational speed is large even when the start is impossible or possible.
 図7は、本実施の形態の回転電機の始動時のトルク波形を示す図である。図7において、横軸は始動開始時刻からの経過時間、縦軸はトルクである。また、図7において、導体バーで得られる誘導トルク11を破線で、誘導トルクとリラクタンストルクとの合計である合算トルク12を実線で、負荷トルク13を点線で示している。本実施の形態の回転電機においては、リラクタンストルクが小さいため始動時の合算トルク12のトルク脈動が小さくなる。そのため、合算トルク12が負荷トルク13を下回っている時間帯14が比較例の場合よりも短くなる。その結果、本実施の形態の回転電機は、始動が容易になると共に回転速度の脈動も抑制される。 FIG. 7 is a diagram showing a torque waveform at the time of starting the rotary electric machine of the present embodiment. In FIG. 7, the horizontal axis is the elapsed time from the start time, and the vertical axis is the torque. Further, in FIG. 7, the induced torque 11 obtained from the conductor bar is shown by a broken line, the total torque 12 which is the total of the induced torque and the reluctance torque is shown by a solid line, and the load torque 13 is shown by a dotted line. In the rotary electric machine of the present embodiment, since the reluctance torque is small, the torque pulsation of the total torque 12 at the time of starting becomes small. Therefore, the time zone 14 in which the total torque 12 is lower than the load torque 13 is shorter than in the case of the comparative example. As a result, the rotary electric machine of the present embodiment is easy to start and the pulsation of the rotation speed is suppressed.
 図8は、本実施の形態における回転電機の始動時の回転速度を示す図である。図8において、横軸は始動開始時刻からの経過時間、縦軸は回転速度である。また、図8において、実線は本実施の形態の回転電機の回転速度を示しており、破線は図3に示す比較例の回転電機の回転速度を示している。時間ゼロにおいて回転電機に電力が投入される。回転電機に電力が投入されると、回転速度は同期回転速度に向かって増加していく。 FIG. 8 is a diagram showing the rotation speed at the start of the rotary electric machine according to the present embodiment. In FIG. 8, the horizontal axis is the elapsed time from the start time, and the vertical axis is the rotation speed. Further, in FIG. 8, the solid line shows the rotation speed of the rotary electric machine of the present embodiment, and the broken line shows the rotation speed of the rotary electric machine of the comparative example shown in FIG. Power is input to the rotary electric machine at zero time. When power is applied to the rotary electric machine, the rotation speed increases toward the synchronous rotation speed.
 比較例の回転電機においては、リラクタンストルクが大きいためトルク脈動が大きい。そのため、始動開始時刻から同期回転速度に到達するまでの間に発生する回転速度の脈動が大きい。また、比較例の回転電機においては、同期回転速度に到達後も回転速度に脈動が生じており、この回転速度の脈動は騒音および振動の要因となる。 In the rotary electric machine of the comparative example, the torque pulsation is large because the reluctance torque is large. Therefore, the pulsation of the rotation speed generated from the start time to the arrival of the synchronous rotation speed is large. Further, in the rotary electric machine of the comparative example, pulsation occurs in the rotation speed even after reaching the synchronous rotation speed, and the pulsation of this rotation speed causes noise and vibration.
 一方、本実施の形態の回転電機においては、リラクタンストルクが小さいためトルク脈動が小さい。そのため、始動開始時刻から同期回転速度に到達するまでの間に発生する回転速度の脈動が比較例の回転電機に比べて小さい。また、本実施の形態の回転電機においては、同期回転速度に到達後の回転速度の脈動も比較例の回転電機に比べて小さい。 On the other hand, in the rotary electric machine of the present embodiment, the torque pulsation is small because the reluctance torque is small. Therefore, the pulsation of the rotation speed generated from the start time to the arrival of the synchronous rotation speed is smaller than that of the rotary electric machine of the comparative example. Further, in the rotary electric machine of the present embodiment, the pulsation of the rotational speed after reaching the synchronous rotation speed is also smaller than that of the rotary electric machine of the comparative example.
 上述のように、本実施の形態の回転電機においては、回転子コアの突極が径方向の外側に向かって分岐した複数の分岐部を有しており、複数の誘導コイルが2つの分岐部にそれぞれ巻かれているので、分岐部を有しない回転電機に比べて始動時のトルク脈動が小さくなる。 As described above, in the rotary electric machine of the present embodiment, the salient pole of the rotor core has a plurality of branch portions branched outward in the radial direction, and the plurality of induction coils have two branch portions. Since each coil is wound around, the torque pulsation at the time of starting is smaller than that of a rotary electric machine having no branch portion.
 図9は、図3に示す比較例の回転電機において、ある時刻における空間高調波の磁束の流れを示す図である。図9において、実線は空間高調波の磁束の流れを示している。比較例の回転電機において、固定子のスロット数は6、回転子の極数は4である。比較例の回転電機において、主に誘導コイルに鎖交して界磁磁束源となる空間高調波は、8極の磁束の空間高調波、つまり基本波である4極の磁束の第二次空間高調波となる。そのため、図9において、実線で示す空間高調波の磁束の流れは、第二次空間高調波の磁束の流れを示している。比較例の回転電機において、第二次空間高調波の磁束は主に透磁率の小さい空気の部分を流れているため、磁気抵抗が大きくなる。そのため、第二次空間高調波の磁束の大きさも小さくなる。また、隣り合う突極の間に発生する第二次空間高調波は、誘導コイルと鎖交し難い位置となる。その結果、比較例の回転電機においては、誘導コイルに誘起される誘導電流も小さくなるため、界磁コイルで得られる界磁磁束も小さくなり力率および効率は小さくなる。 FIG. 9 is a diagram showing the flow of magnetic flux of spatial harmonics at a certain time in the rotary electric machine of the comparative example shown in FIG. In FIG. 9, the solid line shows the flow of the magnetic flux of the spatial harmonics. In the rotary electric machine of the comparative example, the number of slots of the stator is 6, and the number of poles of the rotor is 4. In the rotary electric machine of the comparative example, the space harmonic that is mainly interlinked with the induction coil and becomes the field magnetic flux source is the space harmonic of the 8-pole magnetic flux, that is, the secondary space of the 4-pole magnetic flux that is the fundamental wave. It becomes a harmonic. Therefore, in FIG. 9, the flow of the magnetic flux of the spatial harmonic shown by the solid line shows the flow of the magnetic flux of the secondary spatial harmonic. In the rotary electric machine of the comparative example, the magnetic flux of the second spatial harmonic mainly flows through the portion of air having a small magnetic permeability, so that the magnetic resistance becomes large. Therefore, the magnitude of the magnetic flux of the second spatial harmonic is also reduced. Further, the secondary spatial harmonics generated between the adjacent salient poles are at positions where it is difficult to interlink with the induction coil. As a result, in the rotary electric machine of the comparative example, the induced current induced in the induction coil is also small, so that the field magnetic flux obtained by the field coil is also small, and the power factor and efficiency are small.
 図10は、本実施の形態の回転電機において、ある時刻における空間高調波の磁束の流れを示す図である。図10において、実線は空間高調波の磁束の流れを示している。また、図10は、それぞれの分岐部に巻かれたそれぞれの誘導コイルをA~Hで示すと共に、それぞれの誘導コイルの巻き方向を示している。図10に示す回転電機においては、4つの突極それぞれの誘導コイルの巻き方向は同じとしている。本実施の形態の回転電機において、主に誘導コイルに鎖交して界磁磁束源となる空間高調波は、基本波である4極の磁束の第二次空間高調波となる。そのため、図10において、実線で示す空間高調波の磁束の流れは、第二次空間高調波の磁束の流れを示している。本実施の形態の回転電機において、第二次空間高調波の磁束は主に分岐部を含む透磁率の大きい回転子コア内を流れているため、磁気抵抗が小さくなる。そのため、第二次空間高調波の磁束の大きさも比較例の回転電機に比べて大きくなる。また、それぞれの誘導コイルA~Hはそれぞれの分岐部に巻かれているので、誘導コイルA~Hは第二次空間高調波と鎖交し易い。そのため、誘導コイルに誘起される誘導電流も大きくなる。その結果、本実施の形態の回転電機においては、比較例の回転電機に比べて、界磁コイルで得られる界磁磁束も大きくなり力率および効率が大きくなる。 FIG. 10 is a diagram showing the flow of magnetic flux of spatial harmonics at a certain time in the rotary electric machine of the present embodiment. In FIG. 10, the solid line shows the flow of the magnetic flux of the spatial harmonics. Further, FIG. 10 shows each induction coil wound around each branch portion by A to H, and also shows the winding direction of each induction coil. In the rotary electric machine shown in FIG. 10, the winding direction of the induction coil of each of the four salient poles is the same. In the rotary electric machine of the present embodiment, the spatial harmonic that is mainly interlinked with the induction coil and becomes the field magnetic flux source is the secondary spatial harmonic of the four-pole magnetic flux that is the fundamental wave. Therefore, in FIG. 10, the flow of the magnetic flux of the spatial harmonic shown by the solid line shows the flow of the magnetic flux of the secondary spatial harmonic. In the rotary electric machine of the present embodiment, the magnetic flux of the secondary spatial harmonics mainly flows in the rotor core having a large magnetic permeability including the branch portion, so that the magnetic resistance becomes small. Therefore, the magnitude of the magnetic flux of the second spatial harmonic is also larger than that of the rotary electric machine of the comparative example. Further, since each induction coil A to H is wound around each branch portion, the induction coils A to H are likely to be interlinked with the second spatial harmonic. Therefore, the induced current induced in the induction coil also increases. As a result, in the rotary electric machine of the present embodiment, the field magnetic flux obtained by the field coil is also larger than that of the rotary electric machine of the comparative example, and the power factor and efficiency are increased.
 図11は、図10に示した本実施の形態の回転電機における誘導コイル、整流回路および界磁コイルの接続を示す回路図である。図11に示すように、誘導コイル71を構成するそれぞれの誘導コイルA~Hは直列に接続されており、誘導コイル71は整流回路77を経由して界磁コイル72に接続されている。整流回路77は、4つのダイオードで構成された単相ブリッジ型の全波整流回路である。それぞれの誘導コイルA~Hで発生する誘導電流は同位相であるため、誘導コイル71で発生する誘導電流は大きくなる。誘導コイル71で発生した誘導電流は整流回路77で整流されて界磁電流となり、この界磁電流が界磁コイル72に通電される。その結果、本実施の形態の回転電機においては、界磁コイル72で大きな界磁磁束が得られる。 FIG. 11 is a circuit diagram showing the connection of the induction coil, the rectifying circuit, and the field coil in the rotary electric machine of the present embodiment shown in FIG. As shown in FIG. 11, each induction coil A to H constituting the induction coil 71 is connected in series, and the induction coil 71 is connected to the field coil 72 via the rectifying circuit 77. The rectifier circuit 77 is a single-phase bridge type full-wave rectifier circuit composed of four diodes. Since the induced currents generated in the respective induction coils A to H are in phase with each other, the induced currents generated in the induction coils 71 become large. The induced current generated in the induction coil 71 is rectified by the rectifying circuit 77 to become a field current, and this field current is energized in the field coil 72. As a result, in the rotary electric machine of the present embodiment, a large field magnetic flux can be obtained by the field coil 72.
 図12は、本実施の形態の別の回転電機における誘導コイルの巻き方向を示した図である。図10に示す回転電機においては、4つの突極それぞれの誘導コイルの巻き方向は同じとしていた。これに対して図12に示す回転電機においては、隣り合う突極それぞれの誘導コイルの巻き方向を反転させている。具体的には、図12に示す回転電機において、誘導コイルC、D、GおよびHの巻き方向を図10に示す回転電機に対して反転させている。このように構成された回転電機においては、誘導コイルA、B、EおよびFで発生する誘導電流の位相は同位相となり、誘導コイルC、D、GおよびHで発生する誘導電流の位相は同位相となる。さらに、誘導コイルA、B、EおよびFで発生する誘導電流の位相と、誘導コイルC、D、GおよびHで発生する誘導電流の位相との間に180°の位相差が発生する。 FIG. 12 is a diagram showing the winding direction of the induction coil in another rotary electric machine of the present embodiment. In the rotary electric machine shown in FIG. 10, the winding direction of the induction coil of each of the four salient poles is the same. On the other hand, in the rotary electric machine shown in FIG. 12, the winding directions of the induction coils of the adjacent salient poles are reversed. Specifically, in the rotary electric machine shown in FIG. 12, the winding directions of the induction coils C, D, G and H are reversed with respect to the rotary electric machine shown in FIG. In the rotary electric machine configured in this way, the phases of the induced currents generated by the induction coils A, B, E and F are in phase, and the phases of the induced currents generated in the induction coils C, D, G and H are the same. It becomes the phase. Further, a phase difference of 180 ° is generated between the phase of the induced current generated by the induction coils A, B, E and F and the phase of the induced current generated by the induction coils C, D, G and H.
 図13は、図12に示した本実施の形態の別の回転電機における誘導コイル、整流回路および界磁コイルの接続を示す回路図である。この回転電機においては、誘導電流が同位相となる誘導コイルA、B、EおよびFと1つのダイオードとが直列に接続されており、誘導電流が同位相となる誘導コイルC、D、GおよびHと1つのダイオードとが直列に接続されている。2つのダイオードは、順方向同士が対向するよう接続されており、この2つのダイオードで整流回路77が構成されている。直列接続された誘導コイルA、B、E、Fおよび1つのダイオードと、直列接続された誘導コイルC、D、G、Hおよび1つのダイオードとは、界磁コイル72に対して並列接続されている。誘導コイル71で発生した誘導電流は整流回路77で整流されて界磁電流となり、この界磁電流が界磁コイル72に通電される。その結果、このように構成された回転電機においても、界磁コイル72で大きな界磁磁束が得られる。
 なお、図13に示す回路においては、整流回路77を構成するダイオードの数を図11に示す回路に対して半分にすることができる。
FIG. 13 is a circuit diagram showing a connection of an induction coil, a rectifying circuit, and a field coil in another rotary electric machine according to the present embodiment shown in FIG. In this rotary electric machine, the induction coils A, B, E and F having the same phase of the induced current and one diode are connected in series, and the induction coils C, D, G and the induction coils having the same phase of the induced current are connected. H and one diode are connected in series. The two diodes are connected so that they face each other in the forward direction, and the rectifier circuit 77 is composed of the two diodes. The series-connected induction coils A, B, E, F and one diode, and the series-connected induction coils C, D, G, H and one diode are connected in parallel to the field coil 72. There is. The induced current generated in the induction coil 71 is rectified by the rectifying circuit 77 to become a field current, and this field current is energized in the field coil 72. As a result, even in the rotary electric machine configured as described above, a large field magnetic flux can be obtained by the field coil 72.
In the circuit shown in FIG. 13, the number of diodes constituting the rectifier circuit 77 can be halved as compared with the circuit shown in FIG.
 上述のように、本実施の形態の回転電機においては、回転子コアの突極が径方向の外側に向かって分岐した複数の分岐部を有しており、複数の誘導コイルが2つの分岐部にそれぞれ巻かれているので、分岐部を有しない回転電機に比べて同期回転時の力率および効率が高くなる。 As described above, in the rotary electric machine of the present embodiment, the salient pole of the rotor core has a plurality of branch portions branched outward in the radial direction, and the plurality of induction coils have two branch portions. Since they are wound around each other, the power factor and efficiency at the time of synchronous rotation are higher than those of a rotary electric machine having no branch portion.
実施の形態2.
 図14は、実施の形態2に係る回転電機における導体バーの接続を示す図である。本実施の形態の回転電機の構造は、実施の形態1で説明した回転電機の構造と同様である。図14においては、回転子3の回転子コア7と回転子スロット73と導体バー74のみを示している。なお、図14において、回転子コア7は破線で示している。本実施の形態の回転電機において、回転子の回転子スロットの数は40、極数および突極8の数は4である。それぞれの突極8は、基部81とこの基部81から径方向の外側に向かって分岐した複数の分岐部82とで構成されている。本実施の形態の回転電機においては、図14において実線で示すように、40個の導体バー74の全てが短絡リング75で短絡接続されている。
Embodiment 2.
FIG. 14 is a diagram showing the connection of conductor bars in the rotary electric machine according to the second embodiment. The structure of the rotary electric machine of the present embodiment is the same as the structure of the rotary electric machine described in the first embodiment. FIG. 14 shows only the rotor core 7 of the rotor 3, the rotor slot 73, and the conductor bar 74. In FIG. 14, the rotor core 7 is shown by a broken line. In the rotary electric machine of the present embodiment, the number of rotor slots of the rotor is 40, and the number of poles and the number of salient poles 8 are 4. Each salient pole 8 is composed of a base 81 and a plurality of branch portions 82 branched outward in the radial direction from the base 81. In the rotary electric machine of the present embodiment, as shown by the solid line in FIG. 14, all 40 conductor bars 74 are short-circuited and connected by the short-circuit ring 75.
 このように構成された回転電機においては、始動時に4極の基本波磁束を打ち消すように誘導電流が導体バー74から短絡リング75を経由して他の導体バー74に流れることで誘導トルクが得られる。また、この回転電機においては、同期回転速度に到達後は4極の基本波磁束は回転子と同期するため、誘導電流は発生しない。
 ただし、誘導コイルに鎖交して界磁磁束源となる8極の第二次空間高調波の磁束は、同期回転速度に到達後も回転子と同期しない。そのため導体バー74および短絡リング75にはこれを打ち消すように誘導電流が流れる。この誘導電流は、損失の要因となる。
In the rotary electric machine configured in this way, an induced torque is obtained by flowing an induced current from the conductor bar 74 to another conductor bar 74 via the short-circuit ring 75 so as to cancel the four-pole fundamental magnetic flux at the time of starting. Be done. Further, in this rotary electric machine, since the four-pole fundamental magnetic flux is synchronized with the rotor after reaching the synchronous rotation speed, no induced current is generated.
However, the magnetic flux of the 8-pole secondary space harmonic that is interlinked with the induction coil and becomes the field magnetic flux source does not synchronize with the rotor even after reaching the synchronous rotation speed. Therefore, an induced current flows through the conductor bar 74 and the short-circuit ring 75 so as to cancel them. This induced current causes a loss.
 図15は、本実施の形態に係る別の回転電機における導体バーの接続を示す図である。この回転電機においては、図15において実線で示すように、導体バー74は、4極磁束のみを拾うピッチ、つまり機械角90°毎に短絡リング75で短絡接続されている。言い換えると、周方向に40本並んだ導体バー74において、周方向に9本の導体バー74を間に挟んだ4つの導体バー74同士がそれぞれ短絡接続されている。 FIG. 15 is a diagram showing the connection of conductor bars in another rotary electric machine according to the present embodiment. In this rotary electric machine, as shown by the solid line in FIG. 15, the conductor bar 74 is short-circuited by a short-circuit ring 75 at a pitch that picks up only the quadrupole magnetic flux, that is, at every 90 ° mechanical angle. In other words, in the conductor bars 74 in which 40 conductor bars are arranged in the circumferential direction, the four conductor bars 74 sandwiching the nine conductor bars 74 in the circumferential direction are short-circuited and connected to each other.
 このように構成された回転電機においては、始動時に導体バー74には4極の基本波磁束を打ち消すように誘導電流が流れる。また、8極磁束による鎖交磁束は常に0となるため、同期回転速度に到達後も導体バー74には8極磁束による誘導電流は発生しない。そのため、この回転電機は、図14に示したすべての導体バー74が短絡接続された回転電機よりも高効率となる。
 ただし、電気的に絶縁された10個の短絡リング75が必要となるため、短絡リング75の構成が複雑になると共に短絡リング75が大型になって回転電機全体が大型になる。
In the rotary electric machine configured in this way, an induced current flows through the conductor bar 74 at the time of starting so as to cancel the fundamental wave magnetic flux of four poles. Further, since the interlinkage magnetic flux due to the 8-pole magnetic flux is always 0, no induced current due to the 8-pole magnetic flux is generated in the conductor bar 74 even after reaching the synchronous rotation speed. Therefore, this rotary electric machine has higher efficiency than the rotary electric machine in which all the conductor bars 74 shown in FIG. 14 are short-circuited.
However, since ten electrically isolated short-circuit rings 75 are required, the configuration of the short-circuit ring 75 becomes complicated, the short-circuit ring 75 becomes large, and the entire rotary electric machine becomes large.
 図16は、本実施の形態に係る別の回転電機における導体バーの接続を示す図である。この回転電機においては、図16において実線で示すように、それぞれの分岐部82に設けられた5つの導体バー74が短絡接続されている。また、分岐部82の短絡接続された5つの導体バー74の群は、周方向に1つの分岐部82を間に挟んだ別の分岐部82の短絡接続された5つの導体バー74の群と短絡リング75で短絡接続されている。 FIG. 16 is a diagram showing the connection of conductor bars in another rotary electric machine according to the present embodiment. In this rotary electric machine, as shown by a solid line in FIG. 16, five conductor bars 74 provided in each branch portion 82 are short-circuited and connected. Further, the group of the five conductor bars 74 short-circuited and connected to the branch portion 82 is the group of the five conductor bars 74 short-circuited and connected to another branch portion 82 sandwiching one branch portion 82 in the circumferential direction. It is short-circuited by the short-circuit ring 75.
 このように構成された回転電機においては、それぞれの分岐部82の5つの導体バー74が両隣の分岐部82の導体バー74と接続されていないので、8極磁束による鎖交磁束は小さくなる。そのため、同期回転速度に到達後の8極磁束による誘導電流は小さくなる。その結果、この誘導電流による損失が抑制される。また、この回転電機は、電気的に絶縁された2個の短絡リング75で構成することができるので、図15に示した回転電機よりも短絡リング75の構成が簡略になる。 In the rotary electric machine configured in this way, since the five conductor bars 74 of each branch portion 82 are not connected to the conductor bars 74 of the branch portions 82 on both sides, the interlinkage magnetic flux due to the octapole magnetic flux becomes small. Therefore, the induced current due to the octapole magnetic flux after reaching the synchronous rotation speed becomes small. As a result, the loss due to this induced current is suppressed. Further, since this rotary electric machine can be composed of two electrically isolated short-circuit rings 75, the configuration of the short-circuit ring 75 is simplified as compared with the rotary electric machine shown in FIG.
実施の形態3.
 図17は、実施の形態3に係る回転電機の横断面図である。図17は回転電機の径方向の断面図である。本実施の形態の回転電機において、回転子コア7は、径方向の外側に突出する4つの突極8を有している。そして、それぞれの突極8は、基部81とこの基部から径方向の外側に向かって3つに分岐した分岐部82とで構成されている。それぞれの基部81には、誘導電流が整流されて得られる界磁電流が通電される界磁コイル72が巻かれている。3つに分岐した分岐部82の内、中央の分岐部82を除いた他の2つの分岐部82には誘導電流を得るための誘導コイル71がそれぞれ巻かれている。分岐部82の径方向の外側端部は、周方向に広がった形状を有している。分岐部82の径方向の外側端部には、複数の回転子スロット73が設けられており、この複数の回転子スロット73に導体バー74がそれぞれ挿入されている。導体バー74は、誘導コイル71より外周側に位置する。本実施の形態の回転電機の固定子2の構成は、実施の形態1の回転電機の固定子の構成と同様である。
Embodiment 3.
FIG. 17 is a cross-sectional view of the rotary electric machine according to the third embodiment. FIG. 17 is a sectional view taken along the radial direction of the rotary electric machine. In the rotary electric machine of the present embodiment, the rotor core 7 has four salient poles 8 protruding outward in the radial direction. Each salient pole 8 is composed of a base portion 81 and a branch portion 82 branched into three radially outward from the base portion. A field coil 72 to which a field current obtained by rectifying an induced current is energized is wound around each base 81. Of the three branch portions 82, the induction coil 71 for obtaining an induced current is wound around each of the other two branch portions 82 excluding the central branch portion 82. The radial outer end of the branch 82 has a shape that extends in the circumferential direction. A plurality of rotor slots 73 are provided at the radial outer ends of the branch portion 82, and conductor bars 74 are inserted into the plurality of rotor slots 73, respectively. The conductor bar 74 is located on the outer peripheral side of the induction coil 71. The configuration of the stator 2 of the rotary electric machine of the present embodiment is the same as the configuration of the stator of the rotary electric machine of the first embodiment.
 図18は、本実施の形態の回転電機におけるd軸磁束の流れおよびq軸磁束の流れを示す図である。図18において、破線はd軸磁束の流れを示しており、実線はq軸磁束の流れを示している。本実施の形態の回転電機においては、突極8が径方向の外側に向かって3つの分岐部82に分岐している。図18に示すようにd軸磁束およびq軸磁束は、ともに回転子内において分岐部82を含む透磁率の大きい回転子コアの内部を流れるため、磁気回路におけるd軸磁束に対する磁気抵抗とq軸磁束に対する磁気抵抗との差が小さくなる。そのため、d軸インダクタンスLとq軸インダクタンスLとの差は小さくなり、リラクタンストルクTは小さくなる。その結果、本実施の形態の回転電機は、実施の形態1の回転電機と同様に、トルク脈動が抑制され、始動が容易となる。 FIG. 18 is a diagram showing a flow of d-axis magnetic flux and a flow of q-axis magnetic flux in the rotary electric machine of the present embodiment. In FIG. 18, the broken line shows the flow of the d-axis magnetic flux, and the solid line shows the flow of the q-axis magnetic flux. In the rotary electric machine of the present embodiment, the salient pole 8 is branched into three branch portions 82 toward the outside in the radial direction. As shown in FIG. 18, since both the d-axis magnetic flux and the q-axis magnetic flux flow inside the rotor core having a large magnetic permeability including the branch portion 82 in the rotor, the magnetic resistance to the d-axis magnetic flux and the q-axis in the magnetic circuit The difference from the magnetic resistance to the magnetic flux becomes small. Therefore, the difference between the d-axis inductance L d and the q-axis inductance L q becomes small, and the reluctance torque Tr becomes small. As a result, the torque pulsation of the rotary electric machine of the present embodiment is suppressed and the start of the rotary electric machine of the present embodiment becomes easy as in the case of the rotary electric machine of the first embodiment.
 図19は、本実施の形態の回転電機において、ある時刻における空間高調波の磁束の流れを示す図である。図19において、実線は空間高調波の磁束の流れを示している。図19に示す回転電機においては、4つの突極それぞれの誘導コイルの巻き方向は同じとしている。本実施の形態の回転電機において、主に誘導コイルに鎖交して界磁磁束源となる空間高調波は、基本波である4極の磁束の第二次空間高調波となる。そのため、図19において、実線で示す空間高調波の磁束の流れは、第二次空間高調波の磁束の流れを示している。本実施の形態の回転電機において、第二次空間高調波の磁束は主に2つの分岐部を含む透磁率の大きい回転子コアの内部を流れているため、磁気抵抗が小さくなる。また、それぞれの誘導コイルは2つの分岐部にそれぞれ巻かれているため、誘導コイルはこの第二次空間高調波に鎖交し易い。そのため、誘導コイルに誘起される誘導電流も大きくなる。その結果、本実施の形態の回転電機においては、得られる界磁磁束も大きくなり力率および効率が大きくなる。 FIG. 19 is a diagram showing the flow of magnetic flux of spatial harmonics at a certain time in the rotary electric machine of the present embodiment. In FIG. 19, the solid line shows the flow of the magnetic flux of the spatial harmonics. In the rotary electric machine shown in FIG. 19, the winding direction of the induction coil of each of the four salient poles is the same. In the rotary electric machine of the present embodiment, the spatial harmonic that is mainly interlinked with the induction coil and becomes the field magnetic flux source is the secondary spatial harmonic of the four-pole magnetic flux that is the fundamental wave. Therefore, in FIG. 19, the flow of the magnetic flux of the spatial harmonic shown by the solid line shows the flow of the magnetic flux of the secondary spatial harmonic. In the rotary electric machine of the present embodiment, the magnetic flux of the secondary spatial harmonic mainly flows inside the rotor core having a large magnetic permeability including the two branch portions, so that the magnetic resistance becomes small. Further, since each induction coil is wound around each of the two branch portions, the induction coil is likely to be interlinked with this second spatial harmonic. Therefore, the induced current induced in the induction coil also increases. As a result, in the rotary electric machine of the present embodiment, the obtained field magnetic flux is also increased, and the power factor and efficiency are increased.
 上述のように、本実施の形態の回転電機においては、回転子コアの突極が径方向の外側に向かって分岐した3つの分岐部を有しており、複数の誘導コイルが少なくとも2つの分岐部にそれぞれ巻かれているので、分岐部を有しない回転電機に比べて始動時のトルク脈動が小さく、かつ同期回転時の力率および効率が高くなる。 As described above, in the rotary electric machine of the present embodiment, the salient pole of the rotor core has three branch portions branched outward in the radial direction, and the plurality of induction coils have at least two branches. Since each portion is wound, the torque pulsation at the time of starting is smaller than that of a rotary electric machine having no branch portion, and the power factor and efficiency at the time of synchronous rotation are high.
 図20は、本実施の形態に係る回転電機における導体バーの接続を示す図である。本実施の形態の回転電機においては、図20において実線で示すように、それぞれの分岐部82に設けられた複数の導体バー74が短絡接続されている。また、分岐部82の短絡接続された複数の導体バー74の群は、周方向に2つの分岐部82を間に挟んだ別の分岐部82の短絡接続された複数の導体バー74の群と短絡リング75で短絡接続されている。 FIG. 20 is a diagram showing the connection of conductor bars in the rotary electric machine according to the present embodiment. In the rotary electric machine of the present embodiment, as shown by the solid line in FIG. 20, a plurality of conductor bars 74 provided in the respective branch portions 82 are short-circuited and connected. Further, the group of the plurality of conductor bars 74 short-circuited and connected to the branch portion 82 is the group of the plurality of conductor bars 74 short-circuited and connected to another branch portion 82 sandwiching the two branch portions 82 in the circumferential direction. It is short-circuited by the short-circuit ring 75.
 このように構成された回転電機においては、それぞれの分岐部82の複数の導体バー74が両隣の分岐部82の導体バー74とは接続されていないので、8極磁束による鎖交磁束は小さくなる。そのため、同期回転速度に到達後の8極磁束による誘導電流は小さくなる。その結果、この誘導電流による損失が抑制される。 In the rotary electric machine configured in this way, since the plurality of conductor bars 74 of each branch portion 82 are not connected to the conductor bars 74 of the branch portions 82 on both sides, the interlinkage magnetic flux due to the octapole magnetic flux becomes small. .. Therefore, the induced current due to the octapole magnetic flux after reaching the synchronous rotation speed becomes small. As a result, the loss due to this induced current is suppressed.
 なお、本実施の形態の回転電機において、導体バーの接続は図20に示した接続に限るものではない。実施の形態2の図14に示したような、全ての導体バー同士を短絡リングで短絡接続してもよい。あるいは、実施の形態2の図15に示したような、4極磁束のみを拾うピッチ、つまり機械角90°毎に離れた導体バー同士を異なる短絡リングで短絡接続してもよい。
 また、本実施の形態の回転電機において、中央の分岐部82には誘導コイル71が巻かれていないが、中央の分岐部82にも誘導コイル71が巻かれていてもよい。
In the rotary electric machine of the present embodiment, the connection of the conductor bar is not limited to the connection shown in FIG. As shown in FIG. 14 of the second embodiment, all the conductor bars may be short-circuited and connected by a short-circuit ring. Alternatively, as shown in FIG. 15 of the second embodiment, conductor bars separated by a pitch of picking up only the quadrupole magnetic flux, that is, at every 90 ° of the mechanical angle may be short-circuited and connected by different short-circuit rings.
Further, in the rotary electric machine of the present embodiment, the induction coil 71 is not wound around the central branch portion 82, but the induction coil 71 may be wound around the central branch portion 82 as well.
 なお、本実施の形態の回転電機において、それぞれの突極は基部から径方向の外側に向かって3つに分岐した分岐部を有している。分岐部の数は4つ以上でもよい。分岐部の数をn個とした回転電機においては、n個の分岐部の内少なくとも2つの分岐部にそれぞれ誘導コイルが巻かれていればよい。また、分岐部の数をn個とした回転電機においては、それぞれの分岐部に設けられた複数の導体バーが短絡接続されると共に、分岐部の短絡接続された複数の導体バーの群と、周方向にn-1個の分岐部を間に挟んだ別の分岐部の短絡接続された複数の導体バーの群とを短絡リングで短絡接続すればよい。このように導体バーが接続された回転電機においては、同期回転速度に到達後の8極磁束による誘導電流は小さくなるため、この誘導電流による損失が抑制される。 In the rotary electric machine of the present embodiment, each salient pole has a branch portion branched into three from the base toward the outside in the radial direction. The number of branching portions may be four or more. In a rotary electric machine having n branches, an induction coil may be wound around at least two of the n branches. Further, in a rotary electric machine in which the number of branch portions is n, a plurality of conductor bars provided in each branch portion are short-circuited, and a group of a plurality of conductor bars short-circuited in the branch portions are connected. A group of a plurality of conductor bars short-circuited and connected to another branch portion having n-1 branch portions sandwiched in the circumferential direction may be short-circuited and connected by a short-circuit ring. In the rotary electric machine to which the conductor bar is connected in this way, the induced current due to the octapole magnetic flux after reaching the synchronous rotation speed becomes small, so that the loss due to this induced current is suppressed.
 本願は、様々な例示的な実施の形態および実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、および機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 したがって、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Although the present application describes various exemplary embodiments and examples, the various features, embodiments, and functions described in one or more embodiments are applications of a particular embodiment. It is not limited to, but can be applied to embodiments alone or in various combinations.
Therefore, innumerable variations not exemplified are envisioned within the scope of the techniques disclosed herein. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.
 1 回転電機、2 固定子、3 回転子、4 固定子コイル、5 固定子コア、6 シャフト、7 回転子コア、8 突極、11 誘導トルク、12 合算トルク、13 負荷トルク、51 コアバック、52 ティース、53 固定子スロット、71 誘導コイル、72 界磁コイル、73 回転子スロット、74 導体バー、75 短絡リング、76 結線板、77 整流回路、81 基部、82 分岐部。 1 rotor machine, 2 stator, 3 rotor, 4 stator coil, 5 stator core, 6 shaft, 7 rotor core, 8 salient poles, 11 induction torque, 12 total torque, 13 load torque, 51 core back, 52 Teeth, 53 Stator slot, 71 Induction coil, 72 Field coil, 73 Rotor slot, 74 Conductor bar, 75 Short ring, 76 Connection plate, 77 Rectifier circuit, 81 Base, 82 Branch.

Claims (8)

  1.  径方向の外側に突出する複数の突極を有する回転子コアと、
     誘導電流を発生する複数の誘導コイルと、
     前記誘導コイルで発生した前記誘導電流を整流して界磁電流を出力する整流回路と、
     前記界磁電流で界磁磁束を発生する界磁コイルと、
     前記回転子コアを軸方向に貫通する複数の導体バーとを備えた回転子であって、
     前記突極は、前記界磁コイルが巻かれた基部とこの基部から径方向の外側に向かって分岐した複数の分岐部とで構成されており、複数の前記誘導コイルは、少なくとも2つの前記分岐部にそれぞれ巻かれていることを特徴とする回転子。
    A rotor core with multiple salient poles protruding outward in the radial direction,
    With multiple induction coils that generate induced currents,
    A rectifier circuit that rectifies the induced current generated by the induction coil and outputs a field current,
    A field coil that generates a field magnetic flux with the field current,
    A rotor provided with a plurality of conductor bars penetrating the rotor core in the axial direction.
    The salient pole is composed of a base around which the field coil is wound and a plurality of branch portions branched outward in the radial direction from the base, and the plurality of induction coils are formed by at least two of the branches. A rotor characterized by being wound around each part.
  2.  複数の前記誘導コイルは、前記整流回路に対して直列に接続されていることを特徴とする請求項1に記載の回転子。 The rotor according to claim 1, wherein the plurality of induction coils are connected in series with the rectifier circuit.
  3.  複数の前記導体バーは、前記誘導コイルよりも径方向の外側の前記分岐部に設けられていることを特徴とする請求項1または2に記載の回転子。 The rotor according to claim 1 or 2, wherein the plurality of conductor bars are provided at the branch portion radially outside the induction coil.
  4.  それぞれの前記分岐部に設けられた複数の前記導体バーは短絡接続されており、前記分岐部の数がn個の場合、前記分岐部の短絡接続された複数の前記導体バーの群は、周方向にn-1個の前記分岐部を間に挟んだ別の前記分岐部の短絡接続された複数の前記導体バーの群と短絡接続されていることを特徴とする請求項3に記載の回転子。 A plurality of the conductor bars provided in each of the branch portions are short-circuited, and when the number of the branch portions is n, the group of the plurality of conductor bars short-circuited in the branch portion is peripheral. The rotation according to claim 3, wherein the conductor bar is short-circuited and connected to a group of the plurality of conductor bars short-circuited to another branch portion sandwiching the n-1 branch portion in the direction. Child.
  5.  前記分岐部の数が2個または3個であることを特徴とする請求項1から4のいずれか1項に記載の回転子。 The rotor according to any one of claims 1 to 4, wherein the number of branch portions is two or three.
  6.  請求項1から5のいずれか1項に記載の回転子と、前記回転子の径方向の外側に隙間を設けて配置された固定子とを備えたことを特徴とする回転電機。 A rotary electric machine comprising the rotor according to any one of claims 1 to 5 and a stator arranged with a gap provided on the outer side in the radial direction of the rotor.
  7.  前記固定子は、円筒状のコアバックおよびこのコアバックの内周側から径方向の内側に突出した複数のティースを有する固定子コアと、前記ティースに巻かれた固定子コイルとを備え、前記固定子コアの複数の前記ティースの間には径方向の内側に向かって解放された空間である固定子スロットが形成されており、前記固定子コイルは、前記固定子スロットの空間を利用して前記ティースに集中巻きで巻かれていることを特徴とする請求項6に記載の回転電機。 The stator comprises a cylindrical core back, a stator core having a plurality of teeth protruding radially inward from the inner peripheral side of the core back, and a stator coil wound around the teeth. A stator slot, which is a space opened inward in the radial direction, is formed between the plurality of teeth of the stator core, and the stator coil utilizes the space of the stator slot. The rotary electric machine according to claim 6, wherein the teeth are wound in a concentrated winding manner.
  8.  前記突極の数が4、前記固定子スロットの数が6であることを特徴とする請求項7に記載の回転電機。 The rotary electric machine according to claim 7, wherein the number of salient poles is 4 and the number of stator slots is 6.
PCT/JP2020/035683 2020-09-23 2020-09-23 Rotor and rotating electric machine WO2022064547A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/035683 WO2022064547A1 (en) 2020-09-23 2020-09-23 Rotor and rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/035683 WO2022064547A1 (en) 2020-09-23 2020-09-23 Rotor and rotating electric machine

Publications (1)

Publication Number Publication Date
WO2022064547A1 true WO2022064547A1 (en) 2022-03-31

Family

ID=80844553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035683 WO2022064547A1 (en) 2020-09-23 2020-09-23 Rotor and rotating electric machine

Country Status (1)

Country Link
WO (1) WO2022064547A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013005487A (en) * 2011-06-13 2013-01-07 Toyota Motor Corp Electromagnetic rotary electric machine
JP2013070527A (en) * 2011-09-22 2013-04-18 Toyota Motor Corp Rotary electric machine control system
JP2016059099A (en) * 2014-09-05 2016-04-21 スズキ株式会社 Rotary electric machine
JP2017184532A (en) * 2016-03-31 2017-10-05 スズキ株式会社 Rotary electric machine
JP6755435B1 (en) * 2019-11-06 2020-09-16 三菱電機株式会社 Rotor and rotating electric machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013005487A (en) * 2011-06-13 2013-01-07 Toyota Motor Corp Electromagnetic rotary electric machine
JP2013070527A (en) * 2011-09-22 2013-04-18 Toyota Motor Corp Rotary electric machine control system
JP2016059099A (en) * 2014-09-05 2016-04-21 スズキ株式会社 Rotary electric machine
JP2017184532A (en) * 2016-03-31 2017-10-05 スズキ株式会社 Rotary electric machine
JP6755435B1 (en) * 2019-11-06 2020-09-16 三菱電機株式会社 Rotor and rotating electric machine

Similar Documents

Publication Publication Date Title
JP4926107B2 (en) Rotating electric machine
Bianchi et al. Design considerations for fractional-slot winding configurations of synchronous machines
US6879079B2 (en) Permanent magnet rotor electrical synchronous machine with different alternatively arranged tooth pitch widths
US6819026B2 (en) Induction motor
US3319100A (en) Dynamoelectric machines
US20130270955A1 (en) Electromagnetic machine
Kusko et al. Speed control of a single-frame cascade induction motor with slip-power pump back
JP3466591B2 (en) Rotating electric machine
CN105284033A (en) Electric machine
Dajaku et al. An improved fractional slot concentrated winding for low-poles induction machines
KR101685283B1 (en) Brushless Synchronous Motor and Operating Method thereof
US6891301B1 (en) Simplified hybrid-secondary uncluttered machine and method
Fu et al. A unified theory of flux-modulated electric machines
JP6755435B1 (en) Rotor and rotating electric machine
JP6424729B2 (en) Electric rotating machine
EP3011662B1 (en) Rotor for a rotating electrical machine
JP6561693B2 (en) Rotating electric machine
WO2022064547A1 (en) Rotor and rotating electric machine
EP3514922B1 (en) Fractional slot multi winding set electrical machine
US7508107B2 (en) High current rotating exciter
WO2015195800A1 (en) High speed induction machine with fractional-slot tooth-coil winding
CN211405627U (en) Stator and rotor double-armature winding multiple electromagnetic torque single air gap reluctance motor structure
US10931183B2 (en) Asynchronous machine
Kumar et al. Design and finite element analysis of brushless doubly fed reluctance machine for variable speed applications
JP2014176137A (en) Double stator type switched reluctance rotating machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP