WO2022064282A1 - Procédé de lévitation et de production de force dynamique sur la base d'un gradient d'un champ magnétique - Google Patents

Procédé de lévitation et de production de force dynamique sur la base d'un gradient d'un champ magnétique Download PDF

Info

Publication number
WO2022064282A1
WO2022064282A1 PCT/IB2021/053187 IB2021053187W WO2022064282A1 WO 2022064282 A1 WO2022064282 A1 WO 2022064282A1 IB 2021053187 W IB2021053187 W IB 2021053187W WO 2022064282 A1 WO2022064282 A1 WO 2022064282A1
Authority
WO
WIPO (PCT)
Prior art keywords
disk
magnetic field
force
aircraft
gradient
Prior art date
Application number
PCT/IB2021/053187
Other languages
English (en)
Inventor
Denis SAFONOV
Sergey Zhukov
Original Assignee
Safonov Denis
Sergey Zhukov
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safonov Denis, Sergey Zhukov filed Critical Safonov Denis
Publication of WO2022064282A1 publication Critical patent/WO2022064282A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the method is low-cost method of overcoming a gravitation force by aircraft without losing aircraft load.
  • the method efficiency is not less than magnetic levitation (maglev) train efficiency.
  • maglev magnetic levitation
  • the method allows an aircraft to do not be tied with maglev train's guideway as a source of magnetic field and, therefore, makes it movements to be unlimited in a space.
  • MGF Magnetic Gradient Force
  • Magnetic field gradient is a gradient of magnetic field scalar value at different points in space.
  • a force direction towards increasing or reducing of magnetic field scalar value depends on direction of charge movement in the circuit.
  • B(r, ⁇ ) B 1 '+(B 1 -B 1 ')/2+(B 1 -B 1 ')*r*cos ⁇ - function of linear dependence of magnetic field on height and expressed through dependence on r and ⁇ for further integration convenience.
  • dq h*p p *r*dr*
  • the disk may become a ring wherein R1 is about equal R2.
  • Figure 2 illustrates the directions of those forces where F c --- centrifugal force, F L2 - Lorentz force that influences on disk from homogeneous field B 2 , F L1 - Lorentz force that influences on disk from Earth magnetic field at the upper point, F L1 - Lorentz force that influences on disk from Earth magnetic field at the lower point.
  • Electrons of rotating disk under Lorentz force radially aim to disk edge. At the same time central part of the disk is receiving a positive charge. The faster we rotate the disk the more negative charge is on the disk edge and more positive charge is on the disk center.
  • Electro-dynamic principle of a charged disk rotation acceleration is like a charge particles acceleration mechanism in accelerator of electrons. To accelerate the disk till an extremely high angle velocity the oscillating disk electric field measurement sensor is located near by the disk. The sensor is recording the disk rotation frequency and manage (with a certain displacement) the frequency of accelerating electrons.
  • the Lorentz force F L2 Q*V* B 2 , that beside centrifugal forces, influences on positive part of the disk keeps it from the bursting is also influence in opposite direction thus forcing free electrons to leave the disk at certain rotation velocities. Due to the bonds of free electrons with metal atoms are weaker than interatomic bonds we can assume that under a certain rotation velocity all free electrons should leave the disk. Because of that we assume in critical angle velocity calculation that all free conduction electrons are left the disk. We will valuate this assumption below. Therefore, at a first approximation, the disk charge can be calculated as where k e - conduction electrons concentration,
  • each kg of rotating disk will produce levitation force of 45 kg. And each doubling of the radius will increase levitation force in more than 4 times.
  • K - coefficient that represents a part of left disk free electrons equals 1 when all valence electrons left the disk (an ideal case), R 1 - internal disk radius, inactive disk zone where does not exist electrical charge R 2 - external disk radius,
  • the levitation/dynamic force F can be illustrated by two major components:
  • the Invention's method is illustrated by a sample of simple construction that utilizes the method ( Figure 1) and is called as MGF engine.
  • MGF engine construction consists of oppositely charged disks 1 that is rotated in one plane on magnetic suspension 4 into vacuum chamber 2. The disk is accelerated by the variable electrical field of electrodes 5 and is located into secondary external magnet field 3 surrounded by magnetic circuit 6.
  • MGF engine works as follow: rotating metal disks 1 are located within magnetic field of medium in such a way that the extreme points of one disk have as much as possible magnetic field gradient and disk's plane is located vertically athwart to magnetic field force's line. For example, into Earth magnetic field is will be mainly vertical location with disk's plane locating athwart to magnetic poles.

Abstract

La présente invention concerne l'aviation et l'équipement d'espace aérien. L'invention permet de produire une force qui agit contre la gravitation, bien plus importante que la traction gravitationnelle dans la direction opposée ou sous la forme d'une force dynamique d'un aéronef. Le résultat pratique de la présente invention est la possibilité de délivrer une charge utile à une orbite terrestre, à un décollage/atterrissage vertical d'un aéronef et à un maintien en hauteur. L'invention s'applique aussi dans différentes applications où une force anti-gravitationnelle efficace à faible coût est requise au niveau de l'hydrosphère, de l'atmosphère et de l'espace extérieur. Le procédé est une solution à faible coût pour surmonter une force gravitationnelle par un aéronef sans perte de charge d'aéronef. L'efficacité du procédé n'est pas inférieure à l'efficacité du train à lévitation magnétique (maglev). Toutefois, le procédé permet à un aéronef de ne pas être lié à la voie de guidage du train à sustentation magnétique en tant que source de champ magnétique et rend ses mouvements illimité dans un espace.
PCT/IB2021/053187 2020-09-25 2021-04-19 Procédé de lévitation et de production de force dynamique sur la base d'un gradient d'un champ magnétique WO2022064282A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA8616726 2020-09-25
CA8616726 2020-09-25

Publications (1)

Publication Number Publication Date
WO2022064282A1 true WO2022064282A1 (fr) 2022-03-31

Family

ID=77519403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2021/053187 WO2022064282A1 (fr) 2020-09-25 2021-04-19 Procédé de lévitation et de production de force dynamique sur la base d'un gradient d'un champ magnétique

Country Status (1)

Country Link
WO (1) WO2022064282A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053921A2 (fr) * 2010-10-22 2012-04-26 Alexandro Tiago Baptista De Alves Martins Système de propulsion électromagnétique et applications
US20160197543A1 (en) * 2015-01-07 2016-07-07 James Wayne Purvis Electromagnetic segmented-capacitor propulsion system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053921A2 (fr) * 2010-10-22 2012-04-26 Alexandro Tiago Baptista De Alves Martins Système de propulsion électromagnétique et applications
US20160197543A1 (en) * 2015-01-07 2016-07-07 James Wayne Purvis Electromagnetic segmented-capacitor propulsion system

Similar Documents

Publication Publication Date Title
US6404089B1 (en) Electrodynamic field generator
Jayawant Review lecture-electromagnetic suspension and levitation techniques
US4061043A (en) Electrostatic rate gyroscope
US20160197543A1 (en) Electromagnetic segmented-capacitor propulsion system
CN109347284B (zh) 一种电动式磁悬浮双框架动量球装置
EP3482489B1 (fr) Système générateur électrostatique utilisant une répulsion magnétique
US10027257B2 (en) Interacting complex electric fields and static electric fields to effect motion
US3480811A (en) Magnetic accelerator
US20200136464A1 (en) Electrostatic generator electrode-centering and seismic-isolation system for flywheel-based energy storage modules
WO2022064282A1 (fr) Procédé de lévitation et de production de force dynamique sur la base d'un gradient d'un champ magnétique
US10180163B2 (en) Rotation-speed-independent stabilizer for passive magnetic bearing systems
CA3094538A1 (fr) Methode de levitation et production de puissance dynamique en fonction du gradient de champ magnetique terrestre
JP2004510927A (ja) マイクロホイール
CN108539959B (zh) 一种磁体旋转装置、磁体平稳旋转的方法以及磁刹车系统
Dzlieva et al. Direct observation of dynamics of single spinning dust grains in weakly magnetized complex plasma
US3517562A (en) Inertial gyroscope
Kendall et al. Passive levitation of small particles in vacuum: Possible applications to vacuum gauging
CN110460204B (zh) 一种磁流体飞轮及设计方法
Shayak A mechanism for electromagnetic trapping of extended objects
US20080019061A1 (en) Electrostatic 512kV rotator and oscillator propulsion system
US3358514A (en) Gyroscope
Liu et al. Rotation control of a variable-capacitance electrostatic motor for space equivalence principle tests with rotating masses
Zmuda et al. Transient parallel electric fields from electromagnetic induction associated with motion of field‐aligned currents
CN100565108C (zh) 圆形及多环形轴向径向充磁反磁转子电荷驰豫旋转微陀螺
Yabu-Uchi et al. A compact magnetic bearing for gimballed momentum wheel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21762087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21762087

Country of ref document: EP

Kind code of ref document: A1