WO2022063198A1 - Lung image processing method, apparatus and device - Google Patents

Lung image processing method, apparatus and device Download PDF

Info

Publication number
WO2022063198A1
WO2022063198A1 PCT/CN2021/120099 CN2021120099W WO2022063198A1 WO 2022063198 A1 WO2022063198 A1 WO 2022063198A1 CN 2021120099 W CN2021120099 W CN 2021120099W WO 2022063198 A1 WO2022063198 A1 WO 2022063198A1
Authority
WO
WIPO (PCT)
Prior art keywords
lung
nodule
area
image
pulmonary
Prior art date
Application number
PCT/CN2021/120099
Other languages
French (fr)
Chinese (zh)
Inventor
黄钢
聂生东
段辉宏
Original Assignee
上海健康医学院
上海理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海健康医学院, 上海理工大学 filed Critical 上海健康医学院
Publication of WO2022063198A1 publication Critical patent/WO2022063198A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20021Dividing image into blocks, subimages or windows
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20024Filtering details
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30061Lung
    • G06T2207/30064Lung nodule
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Computational Linguistics (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

The present invention relates to a lung image processing method, apparatus and device, the method comprising: acquiring a lung CT sequence diagram to be processed; segmenting to acquire a binary lung parenchyma mask; carrying out dot product processing on the binary lung parenchyma mask and the lung CT sequence diagram, so as to acquire a lung parenchyma region image, and enhancing a potential vascular region therein to obtain a vascular region of the lung; segmenting a candidate pulmonary nodule region from the lung CT sequence diagram; and determining whether the lung vascular region and the candidate lung nodule region have an intersection, and if so, then segmenting the intersection part of the lung vascular region and the candidate lung nodule region, performing three-dimensional reconstruction display on the segmented lung vascular region and candidate lung nodule region, so as to render the lung vascular region and the candidate lung nodule region by using different colors. Compared with the existing technology, the present invention may solve the problems in which determining the relationship between a lung nodule and surrounding blood vessels in a two-dimensional CT image is highly difficult, misjudgments are likely to occur, and so on.

Description

一种肺部图像处理方法、装置及设备Lung image processing method, device and equipment 技术领域technical field
本发明涉及医学图像处理领域,尤其是涉及一种肺部图像处理方法、装置及设备。The present invention relates to the field of medical image processing, in particular to a lung image processing method, device and equipment.
背景技术Background technique
肺癌是最常见的恶性肿瘤,也是致死率最高的肿瘤。依据GLOBOCAN(Global Cancer Observatory)数据统计,2018年全球新发肺癌人数为210万例,占比11.6%;死亡人数180万,占所有肿瘤死亡病例的18.4%。新发病例与致死病例占比均居世界首位。依据2018中国癌症中心最新数据统计显示,肺癌发病率位居我国首位,每年发病约78.1万,发病率占所有肿瘤的20.55%;每年肺癌死亡病例约62.6万,死亡率占比为48.5%。约70%的肺癌病例均在肿瘤发生转移或发展为晚期时才被确诊,这使得肺癌在我国的五年存活率低至16.1%,在所有恶性肿瘤排名倒数第3位。肺癌早期的影像表现为肺结节,但由于早期肺结节影像特征不明显,往往易造成漏诊或误诊。Lung cancer is the most common malignant tumor and the most lethal tumor. According to GLOBOCAN (Global Cancer Observatory) statistics, the number of new lung cancer cases worldwide in 2018 was 2.1 million, accounting for 11.6%; the number of deaths was 1.8 million, accounting for 18.4% of all tumor deaths. The proportion of new cases and fatal cases ranks first in the world. According to the latest statistics from the China Cancer Center in 2018, the incidence of lung cancer ranks first in my country, with an annual incidence of about 781,000, accounting for 20.55% of all tumors; about 626,000 lung cancer deaths each year, with a mortality rate of 48.5%. About 70% of lung cancer cases are diagnosed when the tumor metastasizes or develops into an advanced stage, which makes the five-year survival rate of lung cancer in my country as low as 16.1%, ranking the third from the bottom of all malignant tumors. The imaging manifestations of early lung cancer are pulmonary nodules, but because the imaging characteristics of early pulmonary nodules are not obvious, it is often easy to cause missed diagnosis or misdiagnosis.
对于传统的肺结节筛查,放射科医生依据临床经验,通过人工查阅CT图像以及肉眼观察的方式,从医学影像中抽象出病灶的特征,对结节进行分析、诊断以及良恶性分类。而是否有血管侵入,周围血管与肺结节的位置关系,是影像科医生判断肺结节良恶性的重要参考。而肺部血管树结构复杂,分枝众多。同时,在临床常规检测诊断肺部疾病所用的CT图像中,血管与肺结节的灰度值相似,甚至部分血管二维切层结构与结节的结节相近,这无疑增加了影像医生的诊断难度。同时,CT图像所呈现的图像为二维切层图像,即使可从横切面、矢状面以及冠状面对病灶进行观察。但在多数病例中,血管与结节在二维切成中会呈现出粘连的假象,而在实际的三维空间中,上述结节与血管不存在粘连,血管只是靠近或从结节周围经过。因为CT图像的成像原理限制,使得上述血管形似与结节粘连,或者穿过血管,从而造成影像科医生的误判。For traditional pulmonary nodule screening, based on clinical experience, radiologists abstract the characteristics of the lesions from medical images by manually reviewing CT images and observing with the naked eye, and analyze, diagnose, and classify the nodules as benign and malignant. Whether there is vascular invasion and the positional relationship between peripheral blood vessels and pulmonary nodules are important references for radiologists to judge whether pulmonary nodules are benign or malignant. The pulmonary vascular tree has a complex structure with numerous branches. At the same time, in CT images used for routine clinical detection and diagnosis of pulmonary diseases, the gray values of blood vessels and pulmonary nodules are similar, and even the two-dimensional slice structure of some blood vessels is similar to that of nodules. Difficulty in diagnosis. At the same time, the image presented by the CT image is a two-dimensional slice image, even though the lesions can be observed from the transverse, sagittal and coronal planes. However, in most cases, the blood vessels and nodules will present the illusion of adhesion in the two-dimensional cutting, while in the actual three-dimensional space, the above-mentioned nodules and blood vessels do not have adhesions, and the blood vessels just approach or pass around the nodules. Due to the limitation of the imaging principle of CT images, the above-mentioned blood vessels appear to be adhered to the nodules or pass through the blood vessels, resulting in misjudgment by the radiologist.
发明内容SUMMARY OF THE INVENTION
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种肺部图像处理方法、装置及设备,能为影像科医生提供可靠参考,提高诊断的准确率,降低因二维图像信息局限而造成的误诊。The purpose of the present invention is to provide a lung image processing method, device and equipment in order to overcome the above-mentioned defects of the prior art, which can provide a reliable reference for radiologists, improve the accuracy of diagnosis, and reduce the limitation of two-dimensional image information. resulting in misdiagnosis.
本发明的目的可以通过以下技术方案来实现:The object of the present invention can be realized through the following technical solutions:
一种肺部图像处理方法,该方法包括以下步骤:A lung image processing method, the method comprises the following steps:
获取待处理的肺部CT序列图;Obtain the CT sequence map of the lung to be processed;
对所述肺部CT序列图进行分割,获取二值肺实质掩膜;segmenting the lung CT sequence map to obtain a binary lung parenchyma mask;
将所述二值肺实质掩膜和肺部CT序列图进行点乘处理,获取肺实质区域图像,并对其中的潜在血管区域进行增强处理,获得肺部血管区域;Perform dot product processing on the binary lung parenchyma mask and the lung CT sequence map to obtain an image of the lung parenchyma area, and perform enhancement processing on the potential blood vessel area therein to obtain the lung blood vessel area;
利用第一3D U-net网络从所述肺部CT序列图中分割出候选肺结节区域;Using the first 3D U-net network to segment candidate lung nodule regions from the lung CT sequence map;
判断所述肺部血管区域和候选肺结节区域是否存在交集,若是,则利用第二3D U-net网络对所述肺部血管区域和候选肺结节区域的交集部分进行分割,对分割后的肺部血管区域和候选肺结节区域进行三维重建显示,若否,则直接进行所述肺部血管区域和候选肺结节区域的三维重建显示,进行所述三维重建显示时,以不同颜色渲染所述肺部血管区域和候选肺结节区域,从而清晰实现对肺部血管与结节位置关系的显示。Determine whether there is an intersection between the pulmonary blood vessel area and the candidate pulmonary nodule area, and if so, use the second 3D U-net network to segment the intersection of the pulmonary blood vessel area and the candidate pulmonary nodule area. 3D reconstruction and display of the pulmonary blood vessel area and candidate pulmonary nodule area, if not, directly perform 3D reconstruction and display of the pulmonary blood vessel area and candidate pulmonary nodule area. The pulmonary blood vessel area and the candidate lung nodule area are rendered, so as to clearly display the positional relationship between the pulmonary blood vessel and the nodule.
进一步地,对所述血管区域进行增强处理具体包括:Further, performing enhancement processing on the blood vessel region specifically includes:
以不同尺度的高斯滤波核对所述肺实质区域图像进行高斯滤波,获得多尺度图像集合;Gaussian filtering is performed on the image of the lung parenchyma area with Gaussian filtering kernels of different scales to obtain a multi-scale image set;
利用Krissian函数分别对所述多尺度图像集合中每个尺度的图像进行增强滤波;The images of each scale in the multi-scale image set are respectively enhanced and filtered by using the Krissian function;
以像素点为计算单位,获取肺实质区域图像中每个像素点在所有尺度下的Krissian滤波结果最大值;Taking the pixel as the calculation unit, obtain the maximum value of the Krissian filtering result of each pixel in the lung parenchyma image at all scales;
对所述Krissian滤波结果最大值进行骨架化处理,获取血管树的初步三维骨架;Perform skeletonization processing on the maximum value of the Krissian filtering result to obtain a preliminary three-dimensional skeleton of the vascular tree;
对所述初步三维骨架进行二值化处理,从而获得增强后的肺部血管区域。Binarization is performed on the preliminary three-dimensional skeleton, thereby obtaining an enhanced pulmonary blood vessel region.
进一步地,所述Krissian函数的公式为:Further, the formula of the Krissian function is:
Figure PCTCN2021120099-appb-000001
Figure PCTCN2021120099-appb-000001
其中,R(x,σ,θ)表示尺度为σ的多尺度图像fσ(x,y)中,像素点x在角度为 θ处的Krissian响应值;(x+θσυ a)表示像素点x的一个边缘点,θ表示当前检测边缘点角度值,且θ=θ+da,υ a表示旋转向量:υ a=cosav 3+cosav 2,其中,v 3、v 2表示像素点x的Hessian矩阵特征值。 Among them, R(x, σ, θ) represents the Krissian response value of the pixel point x at the angle θ in the multi-scale image fσ(x, y) with the scale σ; (x+θσυ a ) represents the pixel point x’s Krissian response value; An edge point, θ represents the angle value of the currently detected edge point, and θ=θ+da, υ a represents the rotation vector: υ a =cosav 3 +cosav 2 , where v 3 and v 2 represent the Hessian matrix feature of the pixel x value.
进一步地,对所述初步三维骨架进行二值化处理具体包括:Further, performing binarization processing on the preliminary three-dimensional skeleton specifically includes:
取最小骨架单元为(x i-1,x i,x i+1),其中x i-1,x i,x i+1为所述初步三维骨架上三个邻接的体素点,分别取三个点在Krissian函数下获取最大响应值的边缘点集合
Figure PCTCN2021120099-appb-000002
Take the minimum skeleton unit as (x i-1 , x i , x i+1 ), where x i-1 , x i , x i+1 are the three adjacent voxel points on the preliminary three-dimensional skeleton, take respectively The set of edge points whose three points obtain the maximum response value under the Krissian function
Figure PCTCN2021120099-appb-000002
获取每个最小骨架单元中每个骨架点与对应边缘点集合中每个边缘点的连线,求取连线上的平均灰度值,以该平均灰度值作为对应骨架点的局部最优阈值;Obtain the connection line between each skeleton point in each minimum skeleton unit and each edge point in the corresponding edge point set, obtain the average gray value on the connection line, and use the average gray value as the local optimum of the corresponding skeleton point threshold;
基于所述局部最优阈值对最小单元骨架及其连线上的点进行阈值化处理,从而完成二值化处理。Thresholding is performed on the minimum unit skeleton and the points on its connecting line based on the local optimal threshold, so as to complete the binarization process.
进一步地,从所述肺部CT序列图中分割出候选肺结节具体包括:Further, segmenting the candidate lung nodules from the lung CT sequence diagram specifically includes:
获取需观测的肺结节中心点集合;Obtain the collection of pulmonary nodules center points to be observed;
依次对以每一个肺结节中心点为中心的区域进行阈值分割,获取初步肺结节区域;Perform threshold segmentation on the area centered on the center point of each lung nodule in turn to obtain the preliminary lung nodule area;
对所述初步肺结节区域进行修剪处理,获得结节图像块集合;trimming the preliminary lung nodule region to obtain a set of nodule image blocks;
采用三维U-Net网络分别对所述结节图像块集合中的每个结节子图像块进行分割,从而获取精细的候选肺结节区域。A three-dimensional U-Net network is used to segment each nodule sub-image block in the nodule image block set, so as to obtain a refined candidate lung nodule region.
本发明还提供一种肺部图像处理装置,包括:The present invention also provides a lung image processing device, comprising:
CT图像获取模块,用于获取待处理的肺部CT序列图;The CT image acquisition module is used to acquire the CT sequence map of the lung to be processed;
第一分割模块,用于对所述肺部CT序列图进行分割,获取二值肺实质掩膜;a first segmentation module, configured to segment the lung CT sequence map to obtain a binary lung parenchyma mask;
增强模块,用于将所述二值肺实质掩膜和肺部CT序列图进行点乘处理,获取肺实质区域图像,并对其中的潜在血管区域进行增强处理,获得肺部血管区域;an enhancement module, configured to perform dot product processing on the binary lung parenchyma mask and the lung CT sequence map to obtain an image of the lung parenchyma area, and perform enhancement processing on the potential blood vessel area therein to obtain the lung blood vessel area;
第二分割模块,用于利用第一3D U-net网络从所述肺部CT序列图中分割出候选肺结节区域;The second segmentation module is used to segment the candidate lung nodule region from the lung CT sequence map by using the first 3D U-net network;
第三分割模块,用于判断所述肺部血管区域和候选肺结节区域是否存在交 集,在判断结果为是时,利用第二3D U-net网络对所述肺部血管区域和候选肺结节区域的交集部分进行分割;The third segmentation module is used for judging whether there is an intersection between the pulmonary blood vessel area and the candidate pulmonary nodule area, and when the judgment result is yes, use the second 3D U-net network to analyze the pulmonary blood vessel area and the candidate pulmonary nodule area. The intersection part of the section area is divided;
显示模块,对获得的肺部血管区域和候选肺结节区域进行三维重建显示,并以以不同颜色渲染所述肺部血管区域和候选肺结节区域。The display module performs three-dimensional reconstruction and display on the obtained pulmonary blood vessel area and the candidate lung nodule area, and renders the pulmonary blood vessel area and the candidate lung nodule area in different colors.
进一步地,所述增强模块包括:Further, the enhancement module includes:
高斯滤波单元,用于以不同尺度的高斯滤波核对所述肺实质区域图像进行高斯滤波,获得多尺度图像集合;a Gaussian filtering unit, configured to perform Gaussian filtering on the image of the lung parenchyma region with Gaussian filtering kernels of different scales to obtain a multi-scale image set;
增强滤波单元,用于利用Krissian函数分别对所述多尺度图像集合中每个尺度的图像进行增强滤波;an enhancement filtering unit, configured to perform enhancement filtering on the images of each scale in the multi-scale image set respectively by using the Krissian function;
最大滤波结果计算单元,用于以像素点为计算单位,获取肺实质区域图像中每个像素点在所有尺度下的Krissian滤波结果最大值;The maximum filtering result calculation unit is used to obtain the maximum value of the Krissian filtering result of each pixel in the image of the lung parenchyma area under all scales by taking the pixel as the calculation unit;
骨架化处理单元,用于对所述Krissian滤波结果最大值进行骨架化处理,获取血管树的初步三维骨架;a skeletonization processing unit, configured to perform skeletonization processing on the maximum value of the Krissian filtering result to obtain a preliminary three-dimensional skeleton of the blood vessel tree;
二值化处理单元,对所述初步三维骨架进行二值化处理,从而获得增强后的肺部血管区域。The binarization processing unit performs binarization processing on the preliminary three-dimensional skeleton, so as to obtain the enhanced pulmonary blood vessel area.
进一步地,对所述初步三维骨架进行二值化处理具体包括:Further, performing binarization processing on the preliminary three-dimensional skeleton specifically includes:
取最小骨架单元为(x i-1,x i,x i+1),其中x i-1,x i,x i+1为所述初步三维骨架上三个邻接的体素点,分别取三个点在Krissian函数下获取最大响应值的边缘点集合
Figure PCTCN2021120099-appb-000003
Take the minimum skeleton unit as (x i-1 , x i , x i+1 ), where x i-1 , x i , x i+1 are the three adjacent voxel points on the preliminary three-dimensional skeleton, take respectively The set of edge points whose three points obtain the maximum response value under the Krissian function
Figure PCTCN2021120099-appb-000003
获取每个最小骨架单元中每个骨架点与对应边缘点集合中每个边缘点的连线,求取连线上的平均灰度值,以该平均灰度值作为对应骨架点的局部最优阈值;Obtain the connection line between each skeleton point in each minimum skeleton unit and each edge point in the corresponding edge point set, obtain the average gray value on the connection line, and use the average gray value as the local optimum of the corresponding skeleton point threshold;
基于所述局部最优阈值对最小单元骨架及其连线上的点进行阈值化处理,从而完成二值化处理。Thresholding is performed on the minimum unit skeleton and the points on its connecting line based on the local optimal threshold, so as to complete the binarization process.
进一步地,所述第二分割模块包括:Further, the second segmentation module includes:
初步阈值分割单元,用于获取需观测的肺结节中心点集合,依次对以每一个肺结节中心点为中心的区域进行阈值分割,获取初步肺结节区域;The preliminary threshold segmentation unit is used to obtain the set of pulmonary nodules center points to be observed, and sequentially performs threshold segmentation on the area centered on the center point of each pulmonary nodule to obtain the preliminary pulmonary nodule area;
修剪单元,用于对所述初步肺结节区域进行修剪处理,获得结节图像块集合;a trimming unit, configured to trim the preliminary lung nodule region to obtain a set of nodule image blocks;
精细分割单元,用于采用三维U-Net网络分别对所述结节图像块集合中的每个结节子图像块进行分割,从而获取精细的候选肺结节区域。The fine segmentation unit is used for segmenting each nodule sub-image block in the nodule image block set by using a three-dimensional U-Net network, so as to obtain a fine candidate lung nodule region.
本发明还提供一种计算机设备,包括:The present invention also provides a computer device, comprising:
处理器;processor;
存储处理器可执行指令的存储器;a memory that stores processor-executable instructions;
其中,所述处理器耦合于所述存储器,用于读取所述存储器存储的程序指令,并作为响应,执行如上所述方法中的步骤。Wherein, the processor is coupled to the memory for reading program instructions stored in the memory, and in response, executing the steps in the method as described above.
与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明分别对肺部CT图像中的肺血管区域和肺结节区域进行分割处理,并对交集部分进行精细分割,能够直观、准确进行肺部血管与结节位置关系的三维显示,为影像科医生提供可靠参考,提高诊断的准确率,降低因二维图像信息局限而造成的误诊,解决了在二维CT影像上判断肺结节与周围血管关系难度大、易产生误判等问题。The invention separately performs segmentation processing on the pulmonary blood vessel area and pulmonary nodule area in the lung CT image, and performs fine segmentation on the intersection part, so that the three-dimensional display of the positional relationship between the pulmonary blood vessel and the nodule can be intuitively and accurately performed, and is suitable for the imaging department. Doctors can provide reliable reference, improve the accuracy of diagnosis, reduce misdiagnosis caused by the limitation of 2D image information, and solve the problem of difficulty in judging the relationship between pulmonary nodules and surrounding blood vessels on 2D CT images and easy to cause misjudgment.
附图说明Description of drawings
图1为本发明的流程示意图;Fig. 1 is the schematic flow chart of the present invention;
图2为本发明实施例中使用的3D U-net网络结构示意图;2 is a schematic diagram of a 3D U-net network structure used in an embodiment of the present invention;
图3为本发明获得的分割结果示意图。FIG. 3 is a schematic diagram of the segmentation result obtained by the present invention.
具体实施方式detailed description
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments. This embodiment is implemented on the premise of the technical solution of the present invention, and provides a detailed implementation manner and a specific operation process, but the protection scope of the present invention is not limited to the following embodiments.
实施例1Example 1
如图1所示,本实施例提供一种肺部图像处理方法,该方法包括:As shown in FIG. 1, this embodiment provides a lung image processing method, the method includes:
步骤1、获取待处理的肺部CT序列图I。肺部CT序列图为DICOM格式。 Step 1, obtain the lung CT sequence diagram I to be processed. The lung CT sequence map is in DICOM format.
步骤2、对所述肺部CT序列图进行分割,获取二值肺实质掩膜mask_lung。Step 2: Segment the lung CT sequence map to obtain a binary lung parenchyma mask mask_lung.
本实施例中,采用文献《Automatic Lung Segmentation for Accurate Quantitation ofVolumetric X-Ray CT Images》中的方法进行该步骤的分割。该方 法使用最佳阈值法自动选择表征每个被试肺实质影像灰度特征的分割阈值,该阈值在同一被试的重复扫描中几乎不变,在不同被试中阈值也不同,具有很强的特异性;并且在肺容积变化方面表现优异。In this embodiment, the method in the document "Automatic Lung Segmentation for Accurate Quantitation of Volumetric X-Ray CT Images" is used to perform the segmentation of this step. This method uses the optimal threshold method to automatically select the segmentation threshold that characterizes the grayscale characteristics of each subject's lung parenchyma image. specificity; and excellent performance in lung volume changes.
步骤3、将所述二值肺实质掩膜和肺部CT序列图进行点乘处理,获取肺实质区域图像,并对其中的潜在血管区域进行增强处理,获得肺部血管区域。Step 3: Perform dot product processing on the binary lung parenchyma mask and the lung CT sequence map to obtain an image of the lung parenchyma area, and perform enhancement processing on the potential blood vessel area therein to obtain the lung blood vessel area.
本实施例中,采用文献《Model-Based Detection of Tubular Structures in 3D Images》中的增强方法对潜在血管区域进行增强。该方法以血管尺度为参考,结合两种增强滤波函数的优点,可同时保证对各尺寸,各对比度的血管都有较好的敏感性以及特异性。In this embodiment, the enhancement method in the document "Model-Based Detection of Tubular Structures in 3D Images" is used to enhance the potential blood vessel area. This method takes the blood vessel scale as a reference and combines the advantages of two enhancement filter functions, which can simultaneously ensure good sensitivity and specificity for blood vessels of various sizes and contrasts.
步骤3-1:将步骤2中获取的二值肺实质掩膜mask_lung,与原始序列图I进行点乘,从而获取肺实质区域图像lung_region。Step 3-1: Do point multiplication of the binary lung parenchyma mask mask_lung obtained in step 2 with the original sequence image I, thereby obtaining the lung parenchyma region image lung_region.
步骤3-2:设置多尺度分析核σ集合:Step 3-2: Set up the multi-scale analysis kernel σ set:
σ i={σ 1,σ 2...σ i},with i=1,2...10 σ i = {σ 1 , σ 2 ... σ i }, with i = 1, 2 ... 10
其中,i表示多尺度分析核大小,σ 1表示半径大小为1个像素点的高斯滤波核。 Among them, i represents the multi-scale analysis kernel size, and σ 1 represents the Gaussian filter kernel with a radius of 1 pixel.
该多尺度分析核σ能够较好地保留图像的高频信息,在后续多尺度图像分析中减少血管边缘模糊。The multi-scale analysis kernel σ can better preserve the high-frequency information of the image and reduce the blur of blood vessel edges in the subsequent multi-scale image analysis.
分别设置滤波核大小为σ i的高斯滤波核,对肺实质区域图像lung_region进行高斯滤波,即多尺度分析,从而获取多尺度图像集合: A Gaussian filter kernel with a filter kernel size of σ i is respectively set, and Gaussian filtering is performed on the lung_region image of the lung parenchyma region, that is, multi-scale analysis, so as to obtain a multi-scale image set:
f σ(x,y)={f 1(x,y),f 2(x,y)...f 10(x,y)} f σ (x, y) = {f 1 (x, y), f 2 (x, y)...f 10 (x, y)}
其中,f 1(x,y)表示高斯滤波核为σ 1,即半径大小为1个像素点的高斯滤波核,所获取的滤波结果。 Wherein, f 1 (x, y) indicates that the Gaussian filter kernel is σ 1 , that is, the Gaussian filter kernel with a radius of 1 pixel, and the obtained filtering result.
步骤3-3:利用Krissian函数,对多尺度图像集合中每个尺度的图像进行增强滤波,Krissian函数的公式为:Step 3-3: Use the Krissian function to perform enhancement filtering on the images of each scale in the multi-scale image set. The formula of the Krissian function is:
Figure PCTCN2021120099-appb-000004
Figure PCTCN2021120099-appb-000004
其中,R(x,σ,θ)表示尺度为σ的多尺度图像f σ(x,y)中,像素点x在角度为θ处的Krissian响应值;(x+θσυ a)表示像素点x的一个边缘点(边界点),它由待检测像素点x坐标与检测半径θσυ a相加得到,θ表示当前检测边缘点角度值,且θ=θ+da,υ a表示旋转向量:υ a=cosav 3+cosav 2,其中,v 3、v 2表示像 素点x的Hessian矩阵特征值,改变a的值可获取一系列边缘点集合P a。上述Krissian函数利用了血管的边界信息,在Hessian矩阵血管增强滤波器的基础上进一步对体素点进行边界度计算,可检测出更多的细小管状结构。 Among them, R(x, σ, θ) represents the Krissian response value of the pixel point x at the angle θ in the multi-scale image f σ (x, y) with the scale σ; (x+θσυ a ) represents the pixel point x An edge point (boundary point) of , which is obtained by adding the x-coordinate of the pixel to be detected and the detection radius θσυ a , θ represents the angle value of the currently detected edge point, and θ=θ+da, υ a represents the rotation vector: υ a =cosav 3 +cosav 2 , where v 3 and v 2 represent the eigenvalues of the Hessian matrix of the pixel point x, and changing the value of a can obtain a series of edge point sets P a . The above Krissian function utilizes the boundary information of the blood vessel, and further calculates the boundary degree of the voxel points on the basis of the Hessian matrix blood vessel enhancement filter, which can detect more small tubular structures.
上述Krissian函数对多尺度图像集合中的图像分别进行滤波,获取结果为:The above Krissian function filters the images in the multi-scale image collection respectively, and the obtained results are:
K σ(x,y)={K 1(x,y),K 2(x,y)...K 10(x,y)} K σ (x, y) = {K 1 (x, y), K 2 (x, y)...K 10 (x, y)}
其中,K 1(x,y)表示尺度为1的图像所获取的Krissian函数滤波结果。 Wherein, K 1 (x, y) represents the Krissian function filtering result obtained from an image whose scale is 1.
之后,以像素点为计算单位,获取lung_region中每个像素点在所有尺度下,Krissian滤波结果的最大值,计算公式如下所示:After that, take the pixel as the calculation unit to obtain the maximum value of the Krissian filtering result of each pixel in the lung_region at all scales. The calculation formula is as follows:
K max(x,y)=max(σK σ(x,y)),withσ=1,2,...,10 K max (x,y)=max( σKσ (x,y)),withσ=1,2,...,10
其中,K max(x,y)表示坐标值为(x,y)的像素点x的最终响应值。K max则表示lung_region图像最终的滤波结果,K max中像素点的像素值,表示该点属于血管区域可能性的大小,值越大,则表示可能性越大。 Among them, K max (x, y) represents the final response value of the pixel point x whose coordinate value is (x, y). K max represents the final filtering result of the lung_region image, and the pixel value of the pixel in K max represents the possibility that the point belongs to the blood vessel region. The larger the value, the greater the possibility.
步骤3-4:对K max结果进行骨架化处理,获取血管树的初步三维骨架。 Step 3-4: skeletonize the K max result to obtain a preliminary three-dimensional skeleton of the vascular tree.
本实施例中,利用文献《Building Skeleton Models via 3-D Medial Surface Axis Thinning Algorithms》中的方法进行骨架化处理,方法可充分保障分割气管的完整性。In this embodiment, the method in the document "Building Skeleton Models via 3-D Medial Surface Axis Thinning Algorithms" is used for skeletonization, and the method can fully guarantee the integrity of the segmented trachea.
步骤3-5:取最小骨架单元为(x i-1,x i,x i+1),其中x i-1,x i,x i+1为三维骨架上三个26邻接的体素点。分别取三个点在Krissian函数下获取最大响应值的边缘点集合
Figure PCTCN2021120099-appb-000005
然后分别连接最小骨架单元x i-1,x i,x i+1与对应的边缘点集合
Figure PCTCN2021120099-appb-000006
从而获取每个最小单元骨架点与对应边缘集合点的所有连线,求取连线上的平均灰度值,从而获取该骨架点的局部最优值,计算公式如下所示:
Step 3-5: Take the minimum skeleton unit as (x i-1 , xi , xi+1 ), where xi-1 , xi , xi+1 are three 26 adjacent voxel points on the three-dimensional skeleton . Take three points respectively and obtain the edge point set with the maximum response value under the Krissian function
Figure PCTCN2021120099-appb-000005
Then connect the minimum skeleton units x i-1 , x i , x i+1 with the corresponding edge point sets respectively
Figure PCTCN2021120099-appb-000006
Thus, all the connecting lines between each minimum unit skeleton point and the corresponding edge set point are obtained, and the average gray value on the connecting line is obtained to obtain the local optimal value of the skeleton point. The calculation formula is as follows:
Figure PCTCN2021120099-appb-000007
Figure PCTCN2021120099-appb-000007
其中,L运算表示,分别连接x i与边界点集合
Figure PCTCN2021120099-appb-000008
并求取其连线上响应值与原始图像灰度值平均值。
Among them, the L operation represents, respectively connecting xi and the set of boundary points
Figure PCTCN2021120099-appb-000008
And calculate the average value of the response value on the connection line and the gray value of the original image.
获取局部最优阈值Th part后,对最小单元骨架及其连线上的点进行阈值化处理,从而获取二值图像。 After obtaining the local optimal threshold Th part , thresholding is performed on the minimum unit skeleton and the points on its connecting line to obtain a binary image.
步骤3-6:对初步三维骨架中所有的最小骨架单元进行步骤3-5的操作,从 而获取最终的肺部血管区域。Step 3-6: Perform the operations of Step 3-5 on all the smallest skeleton units in the preliminary three-dimensional skeleton, so as to obtain the final pulmonary blood vessel area.
步骤4、利用第一3D U-net网络从在输入的原始CT序列图中分割出候选肺结节区域。其中,U-Net架构在不同的医学图像分割应用中展现出非常好的性能,而3D U-net网络更是利用了待分割结节组织的三维连通性,对3D的CT图像在三个方向上进行编码,保证隔层肺结节组织之间的变化连续性,更好的选择出候选结节区域。 Step 4. Use the first 3D U-net network to segment candidate lung nodule regions from the input original CT sequence image. Among them, the U-Net architecture shows very good performance in different medical image segmentation applications, and the 3D U-net network takes advantage of the three-dimensional connectivity of the nodule tissue to be segmented. Encoding is performed on the pulmonary nodule to ensure the continuity of changes between the interstitial lung nodule tissues, and to better select candidate nodule regions.
步骤4-1:通过交互的方式,点击选取需观测的肺结节中心区域,并获取肺结节中心点结合:n i={n 1,n 2,...,n n},with i=1,2,...,n,其中n i代表第i个结节的三维空间坐标点,即n i=(x i,y i,z i)。 Step 4-1: In an interactive way, click to select the central area of the lung nodule to be observed, and obtain the combination of the central point of the lung nodule: n i = {n 1 , n 2 ,..., n n }, with i =1, 2, . . . , n, where ni represents the three-dimensional space coordinate point of the ith nodule, ie, ni =( xi , yi , zi ).
步骤4-2:依次对以n i为中心的区域进行阈值分割,获取初步的肺结节区域。 Step 4-2: Perform threshold segmentation on the area centered on n i in turn to obtain a preliminary lung nodule area.
步骤4-3:对获取的肺结节区域,进行修剪,修剪大小为50*50*Sz的图像块,其中Sz表示结节在Sz轴方向上的切层数。修剪后,获得结节图像块集合node i={node 1,node 2,...,node i},with i=1,2,...,n,其中node i表示第i个结节子图像块。 Step 4-3: Trim the acquired lung nodule area, and trim an image block with a size of 50*50*Sz, where Sz represents the number of slices of the nodule in the direction of the Sz axis. After pruning, a node i = {node 1 , node 2 , ..., node i }, with i = 1, 2, ..., n, where node i represents the i-th node child, is obtained. image block.
步骤4-4:将获取的结节子图像块分别代入第一3D U-net网络(3D-UNET-1网络)进行分割,从而获取精细的结节区域。Step 4-4: Substitute the acquired nodule sub-image blocks into the first 3D U-net network (3D-UNET-1 network) for segmentation, so as to obtain fine nodule regions.
步骤5、判断所述肺部血管区域和候选肺结节区域是否存在交集,以避免将肺部血管误诊为肺结节,增加鲁棒性。若是,则利用第二3D U-net网络(3D-UNET-2网络)对所述肺部血管区域和候选肺结节区域的交集部分进行分割,执行步骤6,若否,则直接执行步骤6。Step 5: Determine whether there is an intersection between the pulmonary blood vessel area and the candidate pulmonary nodule area, so as to avoid misdiagnosing the pulmonary blood vessel as a pulmonary nodule and increase the robustness. If yes, then use the second 3D U-net network (3D-UNET-2 network) to segment the intersection of the pulmonary blood vessel area and the candidate pulmonary nodule area, and perform step 6, if not, directly perform step 6 .
上述3D-UNET-1与3D-UNET-2的网络结构相同,但用于训练网络的数据不同。3D-UNET-2网络更加针对于血管与结节区域的区分,3D-UNET-1更加注重于肺结节与非结节区域的区分。The above-mentioned 3D-UNET-1 and 3D-UNET-2 have the same network structure, but the data used to train the network are different. The 3D-UNET-2 network is more focused on the distinction between blood vessels and nodular areas, and the 3D-UNET-1 network is more focused on the distinction between pulmonary nodules and non-nodular areas.
步骤6、对分割后的肺部血管区域和候选肺结节区域进行三维重建显示,进行所述三维重建显示时,以不同颜色渲染所述肺部血管区域和候选肺结节区域,从而清晰实现对肺部血管与结节位置关系的显示。 Step 6. Perform 3D reconstruction and display on the segmented pulmonary blood vessel area and candidate pulmonary nodule area. When performing the 3D reconstruction and display, the pulmonary blood vessel area and the candidate pulmonary nodule area are rendered in different colors, so as to achieve a clear realization. Display of the relationship between the location of the pulmonary vessels and the nodule.
实施例2Example 2
本实施例提供一种肺部图像处理装置,包括:CT图像获取模块,用于获 取待处理的肺部CT序列图;第一分割模块,用于对所述肺部CT序列图进行分割,获取二值肺实质掩膜;增强模块,用于将所述二值肺实质掩膜和肺部CT序列图进行点乘处理,获取肺实质区域图像,并对其中的潜在血管区域进行增强处理,获得肺部血管区域;第二分割模块,用于利用第一3D U-net网络从所述肺部CT序列图中分割出候选肺结节区域;第三分割模块,用于判断所述肺部血管区域和候选肺结节区域是否存在交集,在判断结果为是时,利用第二3D U-net网络对所述肺部血管区域和候选肺结节区域的交集部分进行分割;显示模块,对获得的肺部血管区域和候选肺结节区域进行三维重建显示,并以以不同颜色渲染所述肺部血管区域和候选肺结节区域。其余同实施例1。This embodiment provides a lung image processing device, including: a CT image acquisition module, configured to acquire a CT sequence diagram of the lung to be processed; a first segmentation module, configured to segment the CT sequence diagram of the lung to acquire A binary lung parenchyma mask; an enhancement module is used to perform dot product processing on the binary lung parenchyma mask and the lung CT sequence map to obtain an image of the lung parenchyma area, and perform enhancement processing on the potential blood vessel area therein to obtain an image of the lung parenchyma area. Pulmonary blood vessel region; a second segmentation module for segmenting candidate lung nodule regions from the lung CT sequence map by using the first 3D U-net network; and a third segmentation module for judging the pulmonary blood vessels Whether there is an intersection between the area and the candidate lung nodule area, when the judgment result is yes, use the second 3D U-net network to segment the intersection part of the pulmonary blood vessel area and the candidate lung nodule area; display module, to obtain The pulmonary vascular region and candidate pulmonary nodule region are displayed by three-dimensional reconstruction, and the pulmonary vascular region and candidate pulmonary nodule region are rendered in different colors. The rest are the same as in Example 1.
实施例3Example 3
本实施例提供一种计算机设备,包括处理器和存储处理器可执行指令的存储器,其中,所述处理器耦合于所述存储器,用于读取所述存储器存储的程序指令,并作为响应,执行如实施例1所述方法中的步骤。This embodiment provides a computer device, including a processor and a memory that stores processor-executable instructions, wherein the processor is coupled to the memory, and is configured to read program instructions stored in the memory, and in response, Perform the steps in the method described in Example 1.
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。The preferred embodiments of the present invention have been described in detail above. It should be understood that those skilled in the art can make many modifications and changes according to the concept of the present invention without creative efforts. Therefore, any technical solutions that can be obtained by those skilled in the art through logical analysis, reasoning or limited experiments on the basis of the prior art according to the concept of the present invention shall fall within the protection scope determined by the claims.

Claims (10)

  1. 一种肺部图像处理方法,其特征在于,该方法包括以下步骤:A lung image processing method, characterized in that the method comprises the following steps:
    获取待处理的肺部CT序列图;Obtain the CT sequence map of the lung to be processed;
    对所述肺部CT序列图进行分割,获取二值肺实质掩膜;segmenting the lung CT sequence map to obtain a binary lung parenchyma mask;
    将所述二值肺实质掩膜和肺部CT序列图进行点乘处理,获取肺实质区域图像,并对其中的潜在血管区域进行增强处理,获得肺部血管区域;Perform dot product processing on the binary lung parenchyma mask and the lung CT sequence map to obtain an image of the lung parenchyma area, and perform enhancement processing on the potential blood vessel area therein to obtain the lung blood vessel area;
    利用第一3D U-net网络从所述肺部CT序列图中分割出候选肺结节区域;Using the first 3D U-net network to segment candidate lung nodule regions from the lung CT sequence map;
    判断所述肺部血管区域和候选肺结节区域是否存在交集,若是,则利用第二3D U-net网络对所述肺部血管区域和候选肺结节区域的交集部分进行分割,对分割后的肺部血管区域和候选肺结节区域进行三维重建显示,若否,则直接进行所述肺部血管区域和候选肺结节区域的三维重建显示,进行所述三维重建显示时,以不同颜色渲染所述肺部血管区域和候选肺结节区域。Determine whether there is an intersection between the pulmonary blood vessel area and the candidate pulmonary nodule area, and if so, use the second 3D U-net network to segment the intersection of the pulmonary blood vessel area and the candidate pulmonary nodule area. 3D reconstruction and display of the pulmonary blood vessel area and candidate pulmonary nodule area, if not, directly perform 3D reconstruction and display of the pulmonary blood vessel area and candidate pulmonary nodule area. The lung vessel regions and candidate lung nodule regions are rendered.
  2. 根据权利要求1所述的肺部图像处理方法,其特征在于,对所述血管区域进行增强处理具体包括:The lung image processing method according to claim 1, wherein the enhancing processing on the blood vessel region specifically comprises:
    以不同尺度的高斯滤波核对所述肺实质区域图像进行高斯滤波,获得多尺度图像集合;Gaussian filtering is performed on the image of the lung parenchyma area with Gaussian filtering kernels of different scales to obtain a multi-scale image set;
    利用Krissian函数分别对所述多尺度图像集合中每个尺度的图像进行增强滤波;The images of each scale in the multi-scale image set are respectively enhanced and filtered by using the Krissian function;
    以像素点为计算单位,获取肺实质区域图像中每个像素点在所有尺度下的Krissian滤波结果最大值;Taking the pixel as the calculation unit, obtain the maximum value of the Krissian filtering result of each pixel in the lung parenchyma image at all scales;
    对所述Krissian滤波结果最大值进行骨架化处理,获取血管树的初步三维骨架;Perform skeletonization processing on the maximum value of the Krissian filtering result to obtain a preliminary three-dimensional skeleton of the vascular tree;
    对所述初步三维骨架进行二值化处理,从而获得增强后的肺部血管区域。Binarization is performed on the preliminary three-dimensional skeleton, thereby obtaining an enhanced pulmonary blood vessel region.
  3. 根据权利要求2所述的肺部图像处理方法,其特征在于,所述Krissian函数的公式为:The lung image processing method according to claim 2, wherein the formula of the Krissian function is:
    Figure PCTCN2021120099-appb-100001
    Figure PCTCN2021120099-appb-100001
    其中,R(x,σ,θ)表示尺度为σ的多尺度图像f σ(x,y)中,像素点x在角度为θ处的Krissian响应值;(x+θσυ a)表示像素点x的一个边缘点,θ表示当前检测 边缘点角度值,且θ=θ+da,υ a表示旋转向量:υ a=cosav 3+cosav 2,其中,v 3、v 2表示像素点x的Hessian矩阵特征值。 Among them, R(x, σ, θ) represents the Krissian response value of the pixel point x at the angle θ in the multi-scale image f σ (x, y) with the scale σ; (x+θσυ a ) represents the pixel point x An edge point of , θ represents the angle value of the currently detected edge point, and θ=θ+da, υ a represents the rotation vector: υ a =cosav 3 +cosav 2 , where v 3 and v 2 represent the Hessian matrix of the pixel point x Eigenvalues.
  4. 根据权利要求2所述的肺部图像处理方法,其特征在于,对所述初步三维骨架进行二值化处理具体包括:The lung image processing method according to claim 2, wherein the binarization processing on the preliminary three-dimensional skeleton specifically comprises:
    取最小骨架单元为(x i-1,x i,x i+1),其中x i-1,x i,x i+1为所述初步三维骨架上三个邻接的体素点,分别取三个点在Krissian函数下获取最大响应值的边缘点集合
    Figure PCTCN2021120099-appb-100002
    Take the minimum skeleton unit as (x i-1 , x i , x i+1 ), where x i-1 , x i , x i+1 are the three adjacent voxel points on the preliminary three-dimensional skeleton, take respectively The set of edge points whose three points obtain the maximum response value under the Krissian function
    Figure PCTCN2021120099-appb-100002
    获取每个最小骨架单元中每个骨架点与对应边缘点集合中每个边缘点的连线,求取连线上的平均灰度值,以该平均灰度值作为对应骨架点的局部最优阈值;Obtain the connection line between each skeleton point in each minimum skeleton unit and each edge point in the corresponding edge point set, obtain the average gray value on the connection line, and use the average gray value as the local optimum of the corresponding skeleton point threshold;
    基于所述局部最优阈值对最小单元骨架及其连线上的点进行阈值化处理,从而完成二值化处理。Thresholding is performed on the minimum unit skeleton and the points on its connecting line based on the local optimal threshold, so as to complete the binarization process.
  5. 根据权利要求1所述的肺部图像处理方法,其特征在于,从所述肺部CT序列图中分割出候选肺结节具体包括:The lung image processing method according to claim 1, wherein segmenting the candidate lung nodules from the lung CT sequence diagram specifically comprises:
    获取需观测的肺结节中心点集合;Obtain the collection of pulmonary nodules center points to be observed;
    依次对以每一个肺结节中心点为中心的区域进行阈值分割,获取初步肺结节区域;Perform threshold segmentation on the area centered on the center point of each lung nodule in turn to obtain the preliminary lung nodule area;
    对所述初步肺结节区域进行修剪处理,获得结节图像块集合;trimming the preliminary lung nodule region to obtain a set of nodule image blocks;
    采用三维U-Net网络分别对所述结节图像块集合中的每个结节子图像块进行分割,从而获取精细的候选肺结节区域。A three-dimensional U-Net network is used to segment each nodule sub-image block in the nodule image block set, so as to obtain a refined candidate lung nodule region.
  6. 一种肺部图像处理装置,其特征在于,包括:A lung image processing device, comprising:
    CT图像获取模块,用于获取待处理的肺部CT序列图;The CT image acquisition module is used to acquire the CT sequence map of the lung to be processed;
    第一分割模块,用于对所述肺部CT序列图进行分割,获取二值肺实质掩膜;a first segmentation module, configured to segment the lung CT sequence map to obtain a binary lung parenchyma mask;
    增强模块,用于将所述二值肺实质掩膜和肺部CT序列图进行点乘处理,获取肺实质区域图像,并对其中的潜在血管区域进行增强处理,获得肺部血管区域;an enhancement module, configured to perform dot product processing on the binary lung parenchyma mask and the lung CT sequence map to obtain an image of the lung parenchyma area, and perform enhancement processing on the potential blood vessel area therein to obtain the lung blood vessel area;
    第二分割模块,用于利用第一3D U-net网络从所述肺部CT序列图中分割出候选肺结节区域;The second segmentation module is used to segment the candidate lung nodule region from the lung CT sequence map by using the first 3D U-net network;
    第三分割模块,用于判断所述肺部血管区域和候选肺结节区域是否存在交集,在判断结果为是时,利用第二3D U-net网络对所述肺部血管区域和候选肺结节区域的交集部分进行分割;The third segmentation module is used for judging whether there is an intersection between the pulmonary blood vessel area and the candidate pulmonary nodule area, and when the judgment result is yes, use the second 3D U-net network to analyze the pulmonary blood vessel area and the candidate pulmonary nodule area. The intersection part of the section area is divided;
    显示模块,对获得的肺部血管区域和候选肺结节区域进行三维重建显示,并以以不同颜色渲染所述肺部血管区域和候选肺结节区域。The display module performs three-dimensional reconstruction and display on the obtained pulmonary blood vessel area and the candidate lung nodule area, and renders the pulmonary blood vessel area and the candidate lung nodule area in different colors.
  7. 根据权利要求6所述的肺部图像处理装置,其特征在于,所述增强模块包括:The lung image processing apparatus according to claim 6, wherein the enhancement module comprises:
    高斯滤波单元,用于以不同尺度的高斯滤波核对所述肺实质区域图像进行高斯滤波,获得多尺度图像集合;a Gaussian filtering unit, configured to perform Gaussian filtering on the image of the lung parenchyma region with Gaussian filtering kernels of different scales to obtain a multi-scale image set;
    增强滤波单元,用于利用Krissian函数分别对所述多尺度图像集合中每个尺度的图像进行增强滤波;an enhancement filtering unit, configured to perform enhancement filtering on the images of each scale in the multi-scale image set respectively by using the Krissian function;
    最大滤波结果计算单元,用于以像素点为计算单位,获取肺实质区域图像中每个像素点在所有尺度下的Krissian滤波结果最大值;The maximum filtering result calculation unit is used to obtain the maximum value of the Krissian filtering result of each pixel in the image of the lung parenchyma area under all scales by taking the pixel as the calculation unit;
    骨架化处理单元,用于对所述Krissian滤波结果最大值进行骨架化处理,获取血管树的初步三维骨架;a skeletonization processing unit, configured to perform skeletonization processing on the maximum value of the Krissian filtering result to obtain a preliminary three-dimensional skeleton of the blood vessel tree;
    二值化处理单元,对所述初步三维骨架进行二值化处理,从而获得增强后的肺部血管区域。The binarization processing unit performs binarization processing on the preliminary three-dimensional skeleton, so as to obtain the enhanced pulmonary blood vessel area.
  8. 根据权利要求7所述的肺部图像处理装置,其特征在于,对所述初步三维骨架进行二值化处理具体包括:The lung image processing device according to claim 7, wherein the binarization processing on the preliminary three-dimensional skeleton specifically comprises:
    取最小骨架单元为(x i-1,x i,x i+1),其中x i-1,x i,x i+1为所述初步三维骨架上三个邻接的体素点,分别取三个点在Krissian函数下获取最大响应值的边缘点集合
    Figure PCTCN2021120099-appb-100003
    Take the minimum skeleton unit as (x i-1 , x i , x i+1 ), where x i-1 , x i , x i+1 are the three adjacent voxel points on the preliminary three-dimensional skeleton, take respectively The set of edge points whose three points obtain the maximum response value under the Krissian function
    Figure PCTCN2021120099-appb-100003
    获取每个最小骨架单元中每个骨架点与对应边缘点集合中每个边缘点的连线,求取连线上的平均灰度值,以该平均灰度值作为对应骨架点的局部最优阈值;Obtain the connection line between each skeleton point in each minimum skeleton unit and each edge point in the corresponding edge point set, obtain the average gray value on the connection line, and use the average gray value as the local optimum of the corresponding skeleton point threshold;
    基于所述局部最优阈值对最小单元骨架及其连线上的点进行阈值化处理,从而完成二值化处理。Thresholding is performed on the minimum unit skeleton and the points on its connecting line based on the local optimal threshold, so as to complete the binarization process.
  9. 根据权利要求6所述的肺部图像处理装置,其特征在于,所述第二分割模块包括:The lung image processing apparatus according to claim 6, wherein the second segmentation module comprises:
    初步阈值分割单元,用于获取需观测的肺结节中心点集合,依次对以每一个肺结节中心点为中心的区域进行阈值分割,获取初步肺结节区域;The preliminary threshold segmentation unit is used to obtain the set of pulmonary nodules center points to be observed, and sequentially performs threshold segmentation on the area centered on the center point of each pulmonary nodule to obtain the preliminary pulmonary nodule area;
    修剪单元,用于对所述初步肺结节区域进行修剪处理,获得结节图像块集合;a trimming unit, configured to trim the preliminary lung nodule region to obtain a set of nodule image blocks;
    精细分割单元,用于采用三维U-Net网络分别对所述结节图像块集合中的每个结节子图像块进行分割,从而获取精细的候选肺结节区域。The fine segmentation unit is used for segmenting each nodule sub-image block in the nodule image block set by using a three-dimensional U-Net network, so as to obtain a fine candidate lung nodule region.
  10. 一种计算机设备,其特征在于,包括:A computer equipment, characterized in that, comprising:
    处理器;processor;
    存储处理器可执行指令的存储器;a memory that stores processor-executable instructions;
    其中,所述处理器耦合于所述存储器,用于读取所述存储器存储的程序指令,并作为响应,执行如权利要求1-5中任一项所述方法中的步骤。Wherein, the processor is coupled to the memory for reading program instructions stored in the memory, and in response, performing the steps in the method according to any one of claims 1-5.
PCT/CN2021/120099 2020-09-24 2021-09-24 Lung image processing method, apparatus and device WO2022063198A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011018504.8A CN112184659B (en) 2020-09-24 2020-09-24 Lung image processing method, device and equipment
CN202011018504.8 2020-09-24

Publications (1)

Publication Number Publication Date
WO2022063198A1 true WO2022063198A1 (en) 2022-03-31

Family

ID=73943429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120099 WO2022063198A1 (en) 2020-09-24 2021-09-24 Lung image processing method, apparatus and device

Country Status (2)

Country Link
CN (1) CN112184659B (en)
WO (1) WO2022063198A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114820571A (en) * 2022-05-21 2022-07-29 东北林业大学 Pneumonia fibrosis quantitative analysis method based on DLPE algorithm
CN115363176A (en) * 2022-07-19 2022-11-22 浙江大学 Soft tissue dyeing method and artificial meat model generation method
CN116051566A (en) * 2023-04-03 2023-05-02 华南师范大学 Automatic blood vessel segmentation method for CT enhanced image
CN116993628A (en) * 2023-09-27 2023-11-03 四川大学华西医院 CT image enhancement system for tumor radio frequency ablation guidance
CN117437236A (en) * 2023-12-21 2024-01-23 中国人民解放军总医院第一医学中心 Gastrointestinal mirror image anomaly detection method and system
CN117557560A (en) * 2024-01-11 2024-02-13 天津医科大学总医院 Method and system for identifying focus of lung nodule based on PET and CT image fusion

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112184659B (en) * 2020-09-24 2023-08-25 上海健康医学院 Lung image processing method, device and equipment
CN113160120A (en) * 2021-02-05 2021-07-23 十堰市太和医院 Liver blood vessel segmentation method and system based on multi-mode fusion and deep learning
CN113506250A (en) * 2021-06-25 2021-10-15 沈阳东软智能医疗科技研究院有限公司 Pulmonary aorta blood vessel extraction method, device, readable storage medium and electronic equipment
CN113706557B (en) * 2021-08-30 2023-06-27 江苏省人民医院(南京医科大学第一附属医院) Method for judging depth in three-dimensional space of pulmonary nodule by symmetrical four-partition of pulmonary parenchyma
CN113674279B (en) * 2021-10-25 2022-03-08 青岛美迪康数字工程有限公司 Coronary artery CTA image processing method and device based on deep learning

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107274399A (en) * 2017-06-19 2017-10-20 太原理工大学 A kind of Lung neoplasm dividing method based on Hession matrixes and 3D shape index
CN107392916A (en) * 2017-05-31 2017-11-24 郭明 A kind of 3D lungs surface projection Lung neoplasm alignment system and method
CN108492300A (en) * 2018-03-16 2018-09-04 上海理工大学 Tubular structure enhances the pulmonary vascular tree dividing method combined with energy function
CN108765369A (en) * 2018-04-20 2018-11-06 平安科技(深圳)有限公司 Detection method, device, computer equipment and the storage medium of Lung neoplasm
CN108986067A (en) * 2018-05-25 2018-12-11 上海交通大学 Pulmonary nodule detection method based on cross-module state
US20190287242A1 (en) * 2018-03-16 2019-09-19 Infervision Computed tomography pulmonary nodule detection method based on deep learning
CN112184659A (en) * 2020-09-24 2021-01-05 上海健康医学院 Lung image processing method, device and equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7499578B2 (en) * 2002-10-18 2009-03-03 Cornell Research Foundation, Inc. System, method and apparatus for small pulmonary nodule computer aided diagnosis from computed tomography scans
JP5142591B2 (en) * 2006-06-08 2013-02-13 国立大学法人神戸大学 Medical image diagnosis support apparatus and medical image diagnosis support program
CN102324109B (en) * 2011-09-26 2014-06-18 上海理工大学 Method for three-dimensionally segmenting insubstantial pulmonary nodule based on fuzzy membership model
CN106780460B (en) * 2016-12-13 2019-11-08 杭州健培科技有限公司 A kind of Lung neoplasm automatic checkout system for chest CT images

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107392916A (en) * 2017-05-31 2017-11-24 郭明 A kind of 3D lungs surface projection Lung neoplasm alignment system and method
CN107274399A (en) * 2017-06-19 2017-10-20 太原理工大学 A kind of Lung neoplasm dividing method based on Hession matrixes and 3D shape index
CN108492300A (en) * 2018-03-16 2018-09-04 上海理工大学 Tubular structure enhances the pulmonary vascular tree dividing method combined with energy function
US20190287242A1 (en) * 2018-03-16 2019-09-19 Infervision Computed tomography pulmonary nodule detection method based on deep learning
CN108765369A (en) * 2018-04-20 2018-11-06 平安科技(深圳)有限公司 Detection method, device, computer equipment and the storage medium of Lung neoplasm
CN108986067A (en) * 2018-05-25 2018-12-11 上海交通大学 Pulmonary nodule detection method based on cross-module state
CN112184659A (en) * 2020-09-24 2021-01-05 上海健康医学院 Lung image processing method, device and equipment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114820571A (en) * 2022-05-21 2022-07-29 东北林业大学 Pneumonia fibrosis quantitative analysis method based on DLPE algorithm
CN115363176A (en) * 2022-07-19 2022-11-22 浙江大学 Soft tissue dyeing method and artificial meat model generation method
CN116051566A (en) * 2023-04-03 2023-05-02 华南师范大学 Automatic blood vessel segmentation method for CT enhanced image
CN116051566B (en) * 2023-04-03 2023-06-23 华南师范大学 Automatic blood vessel segmentation method for CT enhanced image
CN116993628A (en) * 2023-09-27 2023-11-03 四川大学华西医院 CT image enhancement system for tumor radio frequency ablation guidance
CN116993628B (en) * 2023-09-27 2023-12-08 四川大学华西医院 CT image enhancement system for tumor radio frequency ablation guidance
CN117437236A (en) * 2023-12-21 2024-01-23 中国人民解放军总医院第一医学中心 Gastrointestinal mirror image anomaly detection method and system
CN117437236B (en) * 2023-12-21 2024-03-01 中国人民解放军总医院第一医学中心 Gastrointestinal mirror image anomaly detection method and system
CN117557560A (en) * 2024-01-11 2024-02-13 天津医科大学总医院 Method and system for identifying focus of lung nodule based on PET and CT image fusion
CN117557560B (en) * 2024-01-11 2024-03-22 天津医科大学总医院 Method and system for identifying focus of lung nodule based on PET and CT image fusion

Also Published As

Publication number Publication date
CN112184659A (en) 2021-01-05
CN112184659B (en) 2023-08-25

Similar Documents

Publication Publication Date Title
WO2022063198A1 (en) Lung image processing method, apparatus and device
Zebari et al. Improved threshold based and trainable fully automated segmentation for breast cancer boundary and pectoral muscle in mammogram images
CN111127466B (en) Medical image detection method, device, equipment and storage medium
US10580137B2 (en) Systems and methods for detecting an indication of malignancy in a sequence of anatomical images
CN108464840B (en) Automatic detection method and system for breast lumps
CN108133476B (en) Method and system for automatically detecting pulmonary nodules
Jitpakdee et al. A survey on hemorrhage detection in diabetic retinopathy retinal images
WO2021179491A1 (en) Image processing method and apparatus, computer device and storage medium
JP2015528372A (en) System and method for automatically detecting pulmonary nodules in medical images
CN110838114B (en) Pulmonary nodule detection method, device and computer storage medium
US11854195B2 (en) Systems and methods for automated analysis of medical images
US20210142470A1 (en) System and method for identification of pulmonary arteries and veins depicted on chest ct scans
Riaz et al. Impact of visual features on the segmentation of gastroenterology images using normalized cuts
Yue et al. Automatic acetowhite lesion segmentation via specular reflection removal and deep attention network
CN116188485A (en) Image processing method, device, computer equipment and storage medium
Nurmaini et al. An improved semantic segmentation with region proposal network for cardiac defect interpretation
Lee et al. Hybrid airway segmentation using multi-scale tubular structure filters and texture analysis on 3D chest CT scans
Zhi et al. Deep neural network pulmonary nodule segmentation methods for CT images: Literature review and experimental comparisons
CN116452579B (en) Chest radiography image-based pulmonary artery high pressure intelligent assessment method and system
WO2005029410A1 (en) Method and system for ground glass nodule (ggn) segmentation with shape analysis
Devaki et al. Study of computed tomography images of the lungs: A survey
CN110063753B (en) Method and device for measuring head circumference of fetus in ultrasonic image
CN111275722A (en) Lung segment and liver segment segmentation method and system
CN113924046A (en) Computer-based method for classifying organ masses as cysts
CN113409275B (en) Method for determining thickness of transparent layer behind fetal neck based on ultrasonic image and related device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21871567

Country of ref document: EP

Kind code of ref document: A1