WO2022063078A1 - 数据处理方法及其装置 - Google Patents

数据处理方法及其装置 Download PDF

Info

Publication number
WO2022063078A1
WO2022063078A1 PCT/CN2021/119307 CN2021119307W WO2022063078A1 WO 2022063078 A1 WO2022063078 A1 WO 2022063078A1 CN 2021119307 W CN2021119307 W CN 2021119307W WO 2022063078 A1 WO2022063078 A1 WO 2022063078A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
round
time
value
minimum
Prior art date
Application number
PCT/CN2021/119307
Other languages
English (en)
French (fr)
Inventor
尹照根
杨进丽
王自强
李继红
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21871448.3A priority Critical patent/EP4210403A4/en
Publication of WO2022063078A1 publication Critical patent/WO2022063078A1/zh
Priority to US18/189,983 priority patent/US20230232347A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0682Clock or time synchronisation in a network by delay compensation, e.g. by compensation of propagation delay or variations thereof, by ranging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • H04L43/0864Round trip delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • H04W56/0065Synchronisation arrangements determining timing error of reception due to propagation delay using measurement of signal travel time

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a data processing method and device thereof.
  • the mainstream spectrum in the 5G era is in the time division duplexing (TDD) mode.
  • TDD time division duplexing
  • the TDD system is a system with strict clock synchronization. If the clock of a base station is out of sync, the downlink of the out-of-sync base station may interfere with the uplink of other synchronous base stations. The downlink of the synchronous base station may also interfere with the uplink of the out-of-sync base station, and the service experience is seriously deteriorated.
  • the base station can detect it and report an alarm to remind the user, and with the improvement of the product, the probability of the failure of the internal clock system has a downward trend.
  • the main method is to compare the sites on the entire network/region.
  • inter-station comparison is through inter-station synchronization deviation measurement.
  • the inter-station deviation measurement technology based on the Xn/X2 interface depends on the transmission network. When the transmission network has burst/congestion delay jitter, the deviation measurement results will be compared. A large error affects the judgment of the synchronization state between stations.
  • An embodiment of the present application provides a data processing method, by obtaining N first round-trip delays in a first cycle, determining a minimum first round-trip delay reference value according to the N first round-trip delays, and then according to the minimum first round-trip delay
  • the round-trip delay reference value determines the synchronization deviation value between stations, which reduces the risk of large errors in the deviation measurement results caused by excessive delay caused by burst or congestion delay jitter.
  • a first aspect of the present application provides a data processing method.
  • the first network device obtains N first round-trip delays in the first cycle, and the first round-trip delay is the time consumed by the first network device and the second network device each transmitting a packet through the Xn/X2 interface, and N is greater than A positive integer of 1, the first network device determines the minimum first round-trip delay reference value according to the N first round-trip delays, the minimum first round-trip delay reference value is the minimum value among the N first round-trip delays, the first The network device determines the inter-station synchronization deviation value of the first cycle according to the minimum first round-trip delay reference value, and the inter-station synchronization deviation value of the first cycle is the difference between the first network device and the second network device transmitting packets through the Xn/X2 interface. Inter-station synchronization deviation value.
  • N first round-trip delays are obtained in the first cycle, and the minimum first round-trip delay reference value is determined according to the N first round-trip delays, and then the minimum first round-trip delay reference value is determined according to the minimum first round-trip delay reference value.
  • the inter-station synchronization deviation value reduces the risk of large deviation measurement results caused by excessive delay caused by burst or congestion delay jitter.
  • acquiring N first round-trip delays by the first network device in the first cycle includes: Step 1: The first network device sends the first round-trip delay to the second network device. A detection packet, the first detection packet carries the first sending time, and the first sending time is the time when the first network device sends the first detection packet to the second network device, step 2: the first network device receives the second network device The second detection packet sent by the device, the second detection packet carries the first reception time and the second transmission time, the first reception time is the time when the second network device receives the first detection packet, and the second transmission time is the first detection packet. 2.
  • step 3 the first network device determines the second reception time
  • the second reception time is the time when the first network device receives the second detection packet
  • step 4 the first network device The device determines the first round-trip delay according to the first sending time, the first receiving time, the second sending time and the second receiving time, and the first network device performs the above steps 1 to 4 N times in the first cycle to obtain N The first round-trip delay.
  • the N first round-trip delays are acquired by means of the first network device and the second network device transmitting packets, which improves the implementability of the solution.
  • the first network device determining the first round-trip delay according to the first sending time, the first receiving time, the second sending time and the second receiving time includes:
  • RTT represents the first round-trip delay
  • t 2 represents the first reception time
  • t 1 represents the first transmission time
  • t 4 represents the second reception time
  • t 3 represents the second transmission time.
  • the first round-trip delay is obtained by calculating a specific formula, which improves the achievability of the solution.
  • the first network device determining the inter-station synchronization deviation value of the first period according to the minimum first round-trip delay reference includes:
  • Offset t 2min -t 1min -RTTmin / 2;
  • offset represents the inter-station synchronization offset value of the first cycle
  • t 2min represents the first receiving time corresponding to the minimum first round-trip delay reference
  • t 1min represents the first sending time corresponding to the minimum first round-trip delay reference
  • RTT min represents the minimum The first round-trip delay benchmark.
  • the first round-trip delay is obtained by calculating a specific formula, which improves the achievability of the solution.
  • the first network device acquires M first round-trip delays in the second period, where M is less than N, the second period is less than the first period, and the first network The device determines the minimum first round-trip delay real-time value according to the M first round-trip delays, and the minimum first round-trip delay real-time value is the minimum value among the M first round-trip delays. If the difference between the minimum first round-trip delay reference values is smaller than the preset threshold, the first network device determines the inter-station synchronization deviation value of the second period according to the real-time value of the minimum first round-trip delay.
  • the real-time performance of the solution is improved.
  • the first network device obtains an air interface deviation measurement value, and the air interface deviation measurement value is a synchronization deviation between the first network device and the second network device transmitting packets through the air interface value, the first network device determines the static error value according to the air interface deviation measurement value and the inter-station synchronization deviation value of the first period, and the static error value is a fixed value of the delay deviation when the first network device and the second network device transmit packets , the first network device saves the static error value.
  • the static error value is calculated by using the air interface deviation measurement value, which improves the implementability of the solution.
  • the first network device determines the static error value according to the air interface deviation measurement value and the inter-station synchronization deviation value of the first period. determines the static error value according to the static error value. value to compensate the inter-station synchronization deviation value in the first cycle to obtain the target inter-station synchronization deviation value.
  • the static error value is used to compensate the inter-station synchronization deviation value in the first period, which improves the accuracy of the inter-station synchronization deviation value.
  • a second aspect of the embodiments of the present application provides a network device.
  • a network device comprising:
  • the obtaining unit is used to obtain N first round-trip delays in the first cycle, where the first round-trip delay is the time consumed by the first network device and the second network device each transmitting a packet through the Xn/X2 interface, and N is a positive integer greater than 1;
  • a determining unit configured to determine the minimum first round-trip delay reference value according to the N first round-trip delays, and the minimum first round-trip delay reference value is the minimum value among the N first round-trip delays;
  • the determining unit is further configured to determine the inter-station synchronization deviation value of the first cycle according to the minimum first round-trip delay reference value, and the inter-station synchronization deviation value of the first cycle is transmitted by the first network device and the second network device through the Xn/X2 interface The inter-station synchronization deviation value of the message.
  • the network device further includes:
  • a sending unit configured to send a first detection packet to the second network device in step 1, where the first detection packet carries a first sending time, and the first sending time is when the first network device sends the first detection to the second network device the time of the message;
  • the receiving unit is configured to receive the second detection packet sent by the second network device in step 2, where the second detection packet carries the first reception time and the second transmission time, and the first reception time is when the second network device receives the first detection packet.
  • the time for detecting the packet, and the second sending time is the time when the second network device sends the second detection packet;
  • Step 3 the determining unit is further configured to determine a second receiving time, where the second receiving time is the time when the first network device receives the second detection packet;
  • Step 4 the determining unit is further configured to determine the first round-trip delay according to the first sending time, the first receiving time, the second sending time and the second receiving time;
  • the network device performs the above steps 1 to 4 N times in the first cycle to obtain N first round-trip delays.
  • the network device further includes:
  • Computational unit used to perform computations in the following ways:
  • RTT represents the first round-trip delay
  • t 2 represents the first reception time
  • t 1 represents the first transmission time
  • t 4 represents the second reception time
  • t 3 represents the second transmission time.
  • the computing unit is also used for computing in the following ways:
  • Offset t 2min -t 1min - RTTmin /2;
  • Offset represents the inter-station synchronization deviation value of the first cycle
  • t 2min represents the first receiving time corresponding to the minimum first round-trip delay reference
  • t 1min represents the first sending time corresponding to the minimum first round-trip delay reference
  • RTT min represents the minimum The first round-trip delay benchmark.
  • the obtaining unit is further configured to obtain M first round-trip delays in the second cycle, where M is less than N, and the second cycle is less than the first cycle;
  • the determining unit is further configured to determine the minimum first round-trip delay real-time value according to the M first round-trip delays, and the minimum first round-trip delay real-time value is the minimum value among the M first round-trip delays;
  • the determining unit is further configured to determine the inter-station synchronization deviation of the second period according to the minimum first round-trip delay real-time value value.
  • the obtaining unit is further configured to obtain the air interface deviation measurement value, and the air interface deviation measurement value is the synchronization deviation value of the packets transmitted by the first network device and the second network device through the air interface;
  • the determining unit is further configured to determine a static error value according to the air interface deviation measurement value and the inter-station synchronization deviation value of the first period, and the static error value is a fixed value of the delay deviation when the first network device and the second network device transmit packets;
  • Network equipment also includes:
  • Storage unit for saving static error values.
  • the network device further includes:
  • the compensation unit is used for compensating the inter-station synchronization deviation value of the first cycle according to the static error value to obtain the target inter-station synchronization deviation value.
  • each unit in the network device provided in the second aspect of the present application is similar to the method in the implementation manner of the foregoing first aspect, and details are not described herein again.
  • a third aspect of the present application provides a network device including a processor and a memory, the processor stores program codes, and the processor executes the program codes to implement the methods in the first aspect of the application and its various implementations.
  • a fourth aspect of the present application provides a computer storage medium, where instructions are stored in the computer storage medium, and when the instructions are executed on a computer, the instructions cause the computer to execute the method according to the embodiment of the first aspect of the present application.
  • the embodiments of the present application have the following advantages:
  • the first network device obtains N first round-trip delays in the first cycle, determines the minimum first round-trip delay reference value according to the N first round-trip delays, and then determines the minimum first round-trip delay reference value according to the minimum first round-trip delay reference.
  • the value determines the synchronization deviation value between stations, which reduces the risk of large error in the deviation measurement result caused by excessive delay caused by burst or congestion delay jitter.
  • FIG. 1 is an architectural diagram of a communication system provided by an embodiment of the present application
  • FIG. 2 is an architectural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a data processing method provided by an embodiment of the present application.
  • FIG. 4 is another schematic flowchart of the data processing method provided by the embodiment of the present application.
  • FIG. 5 is another schematic flowchart of a data processing method provided by an embodiment of the present application.
  • FIG. 6 is an application scenario diagram of the data processing method provided by the embodiment of the present application.
  • FIG. 7 is another schematic flowchart of a data processing method provided by an embodiment of the present application.
  • FIG. 8 is another schematic flowchart of a data processing method provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • FIG. 10 is another schematic structural diagram of a network device provided by an embodiment of the present application.
  • FIG. 11 is another schematic structural diagram of a network device provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • the communication system includes a first network device 101 and a second network device 102.
  • the number and shape of the network devices shown in FIG. 1 are only used as examples and do not constitute limitations to the embodiments of the present application. In practical applications, more than two networks may be included. equipment, which is not specifically limited here.
  • the communication system provided in this embodiment of the present application may further include a server 103, where the server 103 is connected to the first network device 101 and the second network device 102, and is configured to transmit data with the first network device 101 and the second network device 102.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems.
  • 5G 5th generation
  • the communication system may also be a communication system that supports multiple wireless technologies at the same time, such as a communication system that supports LTE and NR at the same time; or, the communication system may also be a communication system that supports short-range communication, such as a side link ( sidelink, SL) technology communication system, wireless fidelity (wireless fidelity, WiFi) technology communication system and so on.
  • the first network device 101 and the second network device 102 in the embodiments of the present application are entities on the network side for transmitting or receiving signals.
  • the network device 101 may be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, a transmission reception point (transmission reception point, TRP), relay node (relay node, RN), access point (access point, AP), base stations in other future mobile communication systems or access nodes in WiFi systems, etc.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the network device.
  • the first network device 101 may transmit data through the Xn/X2 interface and the second network device 102 to measure the deviation between stations, and may also transmit data through an air interface transmission technology to perform station-to-station offset measurement. measurement of deviation.
  • the server 103 can be deployed on the first network device 101 or the second network device 102 , can also be connected to the first network device 101 and the second network device 102 as a separate server, and can also be deployed on an intermediate transmission network , it can also be deployed on other network devices, which is not limited here.
  • the inter-station deviation measurement may be performed on the first network device 101 or the second network device 102, and may also be performed on the server 103, which is not specifically limited here.
  • the server 103 is not required.
  • the inter-station deviation measurement is performed on the server 103 , the first network device 101 and the second network device 102 send relevant data information to the server 103 .
  • the inter-station offset measurement may also be performed on an intermediate transmission network or other network equipment, which is not specifically limited here.
  • the data processing method provided in the embodiment of the present application may also be used for time delay deviation measurement between terminal devices.
  • data transmission is performed between terminal devices to measure delay deviation.
  • the time delay deviation measurement may be performed between terminal devices, or may be performed on a server, which is not specifically limited here.
  • a server is not required.
  • the terminal device sends the relevant data information to the server.
  • the time delay deviation measurement may also be performed on an intermediate transmission network or other devices, which is not specifically limited here.
  • the terminal device in this embodiment of the present application is an entity on the user side that is used to receive or transmit signals, such as a mobile phone.
  • a terminal device may also be referred to as a terminal (terminal), a user equipment (UE), a mobile station (mobile station, MS), a mobile terminal (mobile terminal, MT), and the like.
  • the terminal device can be a car with a communication function, a smart car, a mobile phone (mobile phone), a wearable device, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, augmented reality (augmented reality, AR) terminal equipment, wireless terminal in industrial control, wireless terminal in self-driving, wireless terminal in remote medical surgery, smart grid wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • FIG. 3 is a schematic flowchart of a data processing method provided by an embodiment of the present application.
  • the first network device is the first base station and the second network device is the second base station as an example for description.
  • the inter-station offset measurement is performed in the first base station and the second base station as an example for description.
  • step 301 the first base station sends a first detection packet to the second base station.
  • the first base station When the first base station needs to measure the inter-station offset, the first base station sends a first detection packet to the second base station.
  • the first base station when the first base station sends the first detection packet to the second base station, the first base station records the time information for sending the first detection packet, that is, the first transmission time, and the first base station carries the first transmission time in the In the first detection packet, the first detection packet is sent to the second base station.
  • the first detection packet is a service packet
  • the base station carries the first sending time in the service packet, and sends it to the second base station.
  • the first sending time may be carried in the header of the service packet, or may be carried in the payload of the service packet, which is not specifically limited here.
  • the first detection packet is a specially constructed detection packet, that is, the first detection packet does not carry other service information, but only carries the first sending time.
  • the first sending time may be carried in the header of the first detection packet, or may be carried in the payload of the first detection packet, which is not specifically limited here.
  • the accuracy of timestamping the first detection packet by the first base station is adjusted to be the highest.
  • the accuracy of the timestamping can be set within 10us, or, in a preferred manner , the precision of the time stamp is set to 1us.
  • interaction period of the detection packets of the first base station and the second base station may be in the order of hundreds of milliseconds or in seconds, which is not limited in this embodiment of the present application.
  • step 302 the second base station sends a second detection packet to the first base station.
  • the second base station After the second base station receives the first detection packet sent by the first base station, the second base station sends a second detection packet to the first base station.
  • the second base station After the second base station receives the first detection packet sent by the first base station, the second base station records time information of receiving the first detection packet, that is, the first reception time.
  • the second base station sends the second detection packet to the second base station, the second base station records the time information for sending the second detection packet, that is, the second transmission time, and the first base station records the second transmission time and the first reception time It is carried in the second detection packet, and the second detection packet is sent to the second base station.
  • the second detection packet is a service packet
  • the second base station carries the second sending time and the first receiving time in the service packet, and sends it to the first base station.
  • the second sending time and the first receiving time may be carried in the header of the service packet, or may be carried in the payload of the service packet, which is not specifically limited here.
  • the second detection packet is a specially constructed detection packet, that is, the second detection packet does not carry other service information, but only carries the second sending time and the first receiving time.
  • the first sending time and the first receiving time may be carried in the header of the second detection packet, or may be carried in the payload of the second detection packet, which is not specifically limited here.
  • the accuracy of timestamping the second detection packet by the second base station is adjusted to be the highest.
  • the accuracy of the timestamping can be set to be within 10us, or, in a preferred manner , the precision of the time stamp is set to 1us.
  • the first base station determines the first round-trip delay according to the first sending time, the first receiving time, the second sending time and the second receiving time.
  • the first base station After receiving the second detection packet sent by the second base station, the first base station records the time of receiving the second detection packet, that is, the second reception time. The second sending time and the second receiving time determine the first round-trip delay.
  • the first base station after receiving the second detection packet, the first base station obtains the second transmission time and the first reception time in the second detection packet, and records the second reception time when the second detection packet is received, Then, according to the first sending time, the first receiving time, the second sending time and the second receiving time, the first round-trip delay is determined, and the first round-trip delay indicates that the first base station and the second base station pass through the Xn/X2 interface
  • the time consumed for transmitting the first detection packet and the second inspection packet represents the time consumed by the first base station and the second base station each transmitting the packets through the Xn/X2 interface.
  • the first base station calculates the first round-trip delay according to the following formula:
  • RTT t 2 -t 1 +t 4 -t 3 .
  • RTT represents the first round-trip delay
  • t 2 represents the first receiving time, that is, the time when the second base station receives the first detection packet
  • t 1 represents the first sending time, that is, the first base station sends the first detection packet
  • time t4 represents the second reception time, that is, the time when the first base station receives the second detection packet
  • t3 represents the second sending time, that is, the time when the second base station sends the second detection packet.
  • t 2 -t 1 represents the time delay from the first base station sending the first detection packet to the second base station receiving the first detection packet
  • t 4 -t 3 representing the second base station sending the second detection packet to the first base station receiving the first detection packet. 2. Detect the delay of the packet.
  • the time required to obtain the first round-trip delay is very short.
  • the first round-trip delay is calculated and obtained multiple times in one cycle to reduce the transmission time between the first base station and the second base station.
  • the first period may be set in units of hours, or may be set in units of days, which is not specifically limited here.
  • the first period is set to a time of 1 day or 1 hour.
  • the first base station will acquire the first round-trip delay thousands of times.
  • the first base station can count the first cycle by starting a timer. When the timer is started, the first cycle starts to count, and when the timer expires, the first cycle ends.
  • step 304 the first base station determines a minimum first round-trip delay reference value according to the N first round-trip delays.
  • the first base station After the first base station calculates the N first round-trip delays, the first base station determines the minimum first round-trip delay reference value according to the N first round-trip delays, and the minimum first round-trip delay reference value represents the N first round-trip delays. Minimum value in round-trip delay.
  • the delay reference value is closer to the inherent delay of the transmission network.
  • RTT Red-Trip Time
  • RTT 1 , RTT 2 , RTT 3 , RTT 4 , ..., RTT N the minimum value of the first round-trip delays
  • RTT min min (RTT 1 , RTT 2 , RTT 3 , RTT 4 , ..., RTT N )
  • RTT min corresponds to the first detection packet and the second communication between the first base station and the second base station.
  • the time information of the second detection packet is RTT min (t 1 , t 2 , t 3 , t 4 ).
  • the first base station determines the inter-station synchronization deviation value of the first period according to the minimum first round-trip delay reference value.
  • the first base station After the first base station obtains the minimum first round-trip delay reference value, the first base station determines the inter-station synchronization deviation value of the first period according to the minimum first round-trip delay reference value, and the inter-station synchronization deviation value of the first period is The inter-station synchronization deviation value of the packets transmitted by the first base station and the second base station through the Xn/X2 interface.
  • the first base station calculates the time information of the first detection packet and the second detection packet exchanged between the first base station and the second base station at the time corresponding to the minimum first round-trip delay reference value. , to obtain the inter-station synchronization deviation value of the first cycle.
  • the time information of the first detection packet and the second detection packet exchanged between the first base station and the second base station corresponding to the minimum first round-trip delay reference value RTT min is RTT min (t 1min , t 2min , t 3min , t 4min ), can be calculated by the following formula.
  • Offset t 2min -t 1min -(t 2min -t 1min +t 4min -t 3min )/2;
  • Offset t 2min -t 1min - RTTmin /2;
  • offset represents the inter-station synchronization deviation value of the first period
  • t 2min represents the first receiving time corresponding to the minimum first round-trip delay reference
  • t 1min represents the first sending time corresponding to the minimum first round-trip delay reference
  • RTT min Indicates the minimum first round-trip delay reference
  • "/" indicates division.
  • the first base station obtains N first round-trip delays in the first cycle, and determines the minimum first round-trip delay reference value according to the N first round-trip delays, and then uses the minimum first round-trip delay
  • the reference value determines the inter-station synchronization deviation value in the first cycle, because multiple first round-trip delays are obtained in the first cycle, and the minimum value among them is obtained as a parameter for calculating the inter-station synchronization deviation value, so that the first round-trip delay It is close to the inherent duration of the transmission network, so it has less influence on the calculation of the inter-station synchronization deviation value.
  • step 306 the first base station acquires M first round-trip delays in the second period.
  • the inter-station synchronization deviation value may also be calculated in real time by starting a second cycle with a shorter time interval in the first cycle.
  • the first base station starts a second period timer, and acquires M first round-trip delays in the second period, where M is a positive integer smaller than N, and the second period is also smaller than the first period.
  • N is an integer multiple of M
  • the first period is also an integer multiple of the second period
  • the granularity of the setting time of the second period may be minute level or 10 minute level.
  • the start time of the timer of the second cycle may be the same as the start time of the timer of the first cycle, or the second cycle may be started after the timer of the first cycle ends, which is not specifically limited here.
  • the first base station can obtain M first round-trip times in the second period according to the detection packets exchanged with the second base station extension.
  • the first base station determines the real-time value of the minimum first round-trip delay according to the M first round-trip delays.
  • the first base station After the first base station acquires the M first round-trip delays in the second cycle, the first base station determines the real-time value of the minimum first round-trip delay according to the M first round-trip delays, and the real-time value of the minimum first round-trip delay is the minimum value among the M first round-trip delays.
  • the steps of the method for obtaining the first round-trip delay in the second cycle are similar to the steps of the method for obtaining the first round-trip delay in the first cycle, and details are not repeated here.
  • step 308 if the difference between the minimum first round-trip delay real-time value and the minimum first round-trip delay reference value is smaller than the preset threshold, then determine the inter-station synchronization deviation of the second period according to the minimum first round-trip delay real-time value value.
  • the first base station determines the real-time value of the minimum first round-trip delay according to the M first round-trip delays, if the difference between the real-time value of the minimum first round-trip delay and the reference value of the minimum first round-trip delay is less than the preset threshold, then The first base station determines the inter-station synchronization deviation value of the second period according to the real-time value of the minimum first round-trip delay. If the difference between the real-time value of the minimum first round-trip delay and the reference value of the minimum first round-trip delay is greater than the preset threshold, it means The second period may be in a period of transmission network delay fluctuation, so the real-time value of the minimum first round-trip delay cannot be used to calculate the inter-station synchronization deviation value of the second period.
  • the first base station when the start time of the timer of the second cycle is the same as the start time of the timer of the first cycle, the first base station has not yet acquired the first round trip when the timer of the second cycle ends.
  • the delay reference value the difference between the minimum first round-trip delay real-time value and the minimum first round-trip delay reference value cannot be calculated, so it is temporarily not applicable to the minimum first round-trip delay real-time value to calculate the inter-station synchronization of the second cycle deviation value, the first base station saves the real-time value of the minimum first round-trip delay in the local storage.
  • the first period may be an integer multiple of the second period, so at the end of the first period, the first base station will acquire and save multiple real-time values of the minimum first round-trip delay.
  • the first base station may calculate a plurality of differences according to the stored real-time values of the minimum first round-trip delay and the reference value of the minimum first round-trip delay, respectively, And according to the magnitude of the multiple difference values, it is determined whether to calculate the corresponding inter-station synchronization deviation value of the second cycle.
  • the first base station does not calculate the inter-station synchronization deviation values of multiple second periods in the first period at the time when the first period ends.
  • the real-time value of the minimum first round-trip delay is calculated for the first time, and the second first cycle and the first cycle continue to be started simultaneously.
  • Two second cycles after the end of the first first cycle, calculate the minimum first round-trip delay reference value for the first time, and start the Qth second cycle, at the end of the Qth second cycle, because The first cycle is an integer multiple of the second cycle, so the end time of the Qth second cycle is also the end time of the second first cycle, so the real-time value of the minimum first round-trip delay of the Qth second cycle can be judged Whether it is less than the minimum first round-trip delay reference value of the first first cycle, if it is less than, update the minimum first round-trip delay reference value.
  • the Qth second period ends and the Qth minimum first round-trip delay real-time value is calculated, delete the first minimum first round-trip delay real-time value stored in the first base station, and use the
  • the minimum first round-trip delay real-time value of the cycle is calculated at the end time of each subsequent second period, the minimum first round-trip delay real-time value stored in the first base station with the earliest time is deleted.
  • the measured value of synchronization deviation between stations can be calculated in a shorter time period, which improves the timeliness of the scheme.
  • step 309 the first base station obtains the air interface deviation measurement value.
  • the transmission path of the first base station and the second base station is asymmetric, or the optical fiber symmetry problem of sending and receiving will introduce millisecond-level delays.
  • Measurement error this part of the measurement error value is fixed, so the measurement error is a static error.
  • the static error can also be reduced as much as possible by means of air interface measurement.
  • the first base station and the second base station acquire the air interface deviation measurement value by means of air interface transmission.
  • the first base station may acquire the air interface deviation measurement value by transmitting a detection signal with the second base station.
  • the first base station sends a first inter-station detection signal to the second base station, and the first inter-station detection signal may be a standard signal such as a synchronization signal block (SSB), CSI-RS, etc., or may be a time domain signal A special signal defined on an idle symbol (such as a GP symbol, etc.) on a resource, which is not specifically limited here.
  • SSB synchronization signal block
  • CSI-RS CSI-RS
  • a special signal defined on an idle symbol such as a GP symbol, etc.
  • the first base station carries the first time information for sending the first inter-station detection signal in the first inter-station detection signal, and after receiving the first inter-station detection signal, the second base station records the time when the first inter-station detection signal is received.
  • second time information and send the second inter-station detection signal to the first base station, and carry the third time information for sending the second inter-station detection signal and the second time information for receiving the first inter-station detection signal, the first base station After receiving the second detection signal, record the fourth time information of the received second detection signal, calculate the first time delay ⁇ T1 according to the first time information and the second time information, and calculate the first time delay ⁇ T1 according to the third time information and the second time information.
  • Four time information calculates the second time delay ⁇ T2. Then calculate the air interface propagation delay of the first base station and the second base station in the following way:
  • Air interface propagation delay ( ⁇ T1+ ⁇ T2)/2.
  • ⁇ T1 represents the first time delay
  • ⁇ T2 represents the second time delay
  • “/” represents division
  • Air interface deviation measurement value ( ⁇ T1- ⁇ T2)/2.
  • ⁇ T1 represents the first time delay
  • ⁇ T2 represents the second time delay
  • “/” represents division
  • the first base station and the second base station may use the handover between the first base station and the second base station for terminal equipment UE or the cell edge between the first base station and the second base station
  • the UE performs the inter-station air interface deviation measurement.
  • the terminal equipment UE performing handover between the first base station and the second base station can assist the first base station and the second base station to collect time difference information by sending a detection signal when the handover service is performed.
  • the UE at the cell edge between the first base station and the second base station sends a detection signal by performing random access to assist the first base station and the second base station in collecting time difference information.
  • the UE sends detection signals, such as random access signals, to the first base station and the second base station respectively.
  • the first base station and the second base station detect at the same time, the time when the first base station receives the detection signal is T1, the time when the second base station receives the detection signal is T2, the propagation delay of the UE sending the detection signal to the first base station is Tp1, and the UE sends the detection signal to the first base station.
  • the first base station determines a static error value according to the air interface deviation measurement value and the inter-station synchronization deviation value of the first period.
  • the first base station After the first base station obtains the air interface deviation measurement value, the first base station determines the static error of the inter-station synchronization deviation value in the first period according to the air interface deviation measurement value and the inter-station synchronization deviation value in the first period.
  • the inter-station synchronization deviation value of the first cycle actual synchronization deviation value+static error value+first dynamic error.
  • Air interface deviation measurement value actual synchronization deviation value + second dynamic error.
  • the first dynamic error value of the inter-station synchronization deviation value of the first period is filtered to be below the preset threshold by obtaining the minimum first round-trip delay in the above steps, so it can be ignored here.
  • the static error the inter-station synchronization deviation value of the first cycle - the air interface deviation measurement value.
  • step 311 the first base station compensates the inter-station synchronization deviation value of the first cycle according to the static error value, and obtains the target inter-station synchronization deviation value.
  • the first base station After acquiring the static error value, the first base station first compensates the inter-station synchronization deviation value of the first cycle according to the static error value, and obtains the target inter-station synchronization deviation value.
  • the synchronization deviation value between target stations can be obtained by calculation in the following manner.
  • Synchronization deviation value between target stations synchronization deviation value between stations in the first cycle-static error.
  • the first base station can adjust the synchronization state of the clock according to the synchronization deviation value between the target stations, and can also adjust the synchronization state of the clock according to the air interface deviation measurement value, or according to the synchronization deviation value between the target stations and the average of the air interface deviation measurement value.
  • the value adjusts the synchronization state of the clock, which is not limited here.
  • the air interface deviation measurement may not be performed at certain times, for example, the air interface signal-to-noise ratio is large, or UEs without handover or edgeless UEs.
  • the first base station can compensate the inter-station synchronization deviation value of the first cycle according to the stored static error value to obtain the target inter-station synchronization deviation value, and then according to The synchronization deviation value between target stations adjusts the synchronization state of the clock. If the static error value is not previously stored in the first base station, the inter-station synchronization deviation value of the first cycle cannot be compensated.
  • the first base station obtains a new static error, averages the new static error and the static error stored by the first base station, and calculates The average static error is updated into the storage of the first base station.
  • the variation of the deviation measurement value can also be obtained by the difference between the inter-station synchronization deviation value of the first cycle and the inter-station synchronization deviation value of the previous first cycle. Further, it is judged whether the clock has a large deviation according to the variation of the deviation measurement value. For example, if the clock corresponding to the last first cycle is normal, and the clock corresponding to the first cycle is deviated this time, the variation of the deviation measurement value will be greater than the preset threshold, and it is determined that the clock has a large deviation.
  • the first base station and the second base station may also be replaced by a transmission node (such as a microwave device) or a time server that supports both air interface transmission and ground transmission and satisfies time synchronization, specifically here Not limited.
  • a transmission node such as a microwave device
  • a time server that supports both air interface transmission and ground transmission and satisfies time synchronization
  • steps 306 to 311 are optional steps.
  • the first base station adjusts the synchronization state of the clock according to the inter-station synchronization deviation value of the first cycle.
  • the first base station obtains N first round-trip delays in the first cycle, determines the minimum first round-trip delay reference value according to the N first round-trip delays, and then determines the minimum first round-trip delay reference value according to the minimum first round-trip delay
  • the reference value determines the synchronization deviation value between stations, which reduces the risk of large deviation measurement results caused by excessive delay caused by burst or congestion delay jitter.
  • FIG. 7 is another schematic flowchart of the data processing method provided by the embodiment of the present application.
  • step 701 the first base station sends a first detection packet to the second base station.
  • step 702 the first base station receives the second detection packet sent by the second base station.
  • the first base station determines the first round-trip delay according to the first sending time, the first receiving time, the second sending time and the second receiving time.
  • step 704 the first base station determines a minimum first round-trip delay reference value according to the N first round-trip delays.
  • step 705 the first base station determines the inter-station synchronization deviation value of the first period according to the minimum first round-trip delay reference value.
  • step 706 the first base station acquires M first round-trip delays in the second period.
  • the first base station determines a real-time value of the minimum first round-trip delay according to the M first round-trip delays.
  • step 708 if the difference between the minimum first round-trip delay real-time value and the minimum first round-trip delay reference value is smaller than the preset threshold, then determine the inter-station synchronization deviation of the second period according to the minimum first round-trip delay real-time value value.
  • steps 701 to 708 are similar to the methods performed in steps 301 to 308 in the aforementioned embodiment shown in FIG. 3 , and details are not described herein again.
  • step 709 the first base station sends the inter-station synchronization deviation value and the air interface propagation delay of the first period to the server.
  • the transmission path of the first base station and the second base station is asymmetric, or the optical fiber symmetry problem of sending and receiving will introduce millisecond-level delays.
  • Measurement error this part of the measurement error value is fixed, so the measurement error is a static error.
  • the static error can also be reduced as much as possible by means of air interface measurement.
  • the first base station and the second base station obtain the air interface propagation delay by means of air interface transmission.
  • the first base station may acquire the air interface propagation delay by transmitting a detection signal between the first base station and the second base station.
  • the first base station sends a first inter-station detection signal to the second base station, and the first inter-station detection signal may be a standard signal such as a synchronization signal block (SSB), CSI-RS, etc., or may be a time domain signal A special signal defined on an idle symbol (such as a GP symbol, etc.) on a resource, which is not specifically limited here.
  • SSB synchronization signal block
  • CSI-RS CSI-RS
  • a special signal defined on an idle symbol such as a GP symbol, etc.
  • the first base station carries the first time information for sending the first inter-station detection signal in the first inter-station detection signal, and after receiving the first inter-station detection signal, the second base station records the time when the first inter-station detection signal is received.
  • second time information and send the second inter-station detection signal to the first base station, and carry the third time information for sending the second inter-station detection signal and the second time information for receiving the first inter-station detection signal, the first base station After receiving the second detection signal, record the fourth time information of the received second detection signal, calculate the first time delay ⁇ T1 according to the first time information and the second time information, and calculate the first time delay ⁇ T1 according to the third time information and the second time information.
  • Four time information calculates the second time delay ⁇ T2. Then calculate the air interface propagation delay of the first base station and the second base station in the following way:
  • Air interface propagation delay ( ⁇ T1+ ⁇ T2)/2.
  • ⁇ T1 represents the first time delay
  • ⁇ T2 represents the second time delay
  • “/” represents division
  • the first base station and the second base station may use the handover between the first base station and the second base station for terminal equipment UE or the cell edge between the first base station and the second base station
  • the UE obtains the air interface propagation delay.
  • the terminal equipment UE performing handover between the first base station and the second base station can assist the first base station and the second base station to collect time difference information by sending a detection signal when the handover service is performed.
  • the UE at the cell edge between the first base station and the second base station sends a detection signal by performing random access to assist the first base station and the second base station in collecting time difference information.
  • the UE sends detection signals, such as random access signals, to the first base station and the second base station respectively.
  • the first base station and the second base station detect at the same time, the time when the first base station receives the detection signal is T1, the time when the second base station receives the detection signal is T2, the propagation delay of the UE sending the detection signal to the first base station is Tp1, and the UE sends the detection signal to the first base station.
  • the first base station After the first base station acquires the air interface propagation delay, the first base station sends the air interface propagation delay and the inter-station synchronization deviation value of the first period to the server.
  • step 710 the server determines an air interface deviation measure.
  • the server After receiving the air interface propagation delay and the inter-station synchronization deviation value of the first cycle sent by the first base station, the server further determines the air interface deviation measurement value according to the air interface propagation delay and the inter-station synchronization deviation value of the first cycle.
  • the calculation method of the air interface deviation measurement value is similar to the calculation method of the aforementioned step 309 in FIG. 3 , and details are not repeated here.
  • a static error value is determined according to the air interface deviation measurement value and the inter-station synchronization deviation value of the first period.
  • step 712 the inter-station synchronization deviation value of the first cycle is compensated according to the static error value to obtain the target inter-station synchronization deviation value.
  • steps 711 to 712 are similar to the methods performed in steps 310 to 311 in the aforementioned embodiment shown in FIG. 3 , and details are not described herein again.
  • the deviation value between target stations is calculated by the server, so the server can serve multiple base stations, and adjust the synchronization state of the clock through unified management.
  • FIG. 8 is another schematic flowchart of the data processing method provided by the embodiment of the present application.
  • the centralized control node may be deployed on a server, may also be deployed on any base station, or may be deployed on a transmission network, which is not specifically limited here.
  • the centralized control node centrally controls the deviation measurement between the whole sites through the whole network detection centralized control module to ensure the consistency and effectiveness of the whole network detection.
  • the centralized control of the whole network detection includes: centralized control node centralized control of the designated air interface detection sequence sending frequency, air interface detection sequence, air interface deviation measurement and Xn/X2 joint detection period, start time and so on.
  • the centralized control node sends commands to the local or network-wide base stations through the ltf1 interface, and the local or network-wide base stations send data to the centralized control node through the ltf2 interface.
  • the multiple deviation joint detection technologies performed by the local/full network base station and the centralized control node are the deviation measurement method based on the Xn/X2 interface and the air interface deviation measurement method based on the air interface transmission mode, wherein the deviation of the Xn/X2 interface
  • the measurement method and the air interface deviation measurement method based on the air interface transmission mode are similar to the deviation measurement method of the Xn/X2 interface performed by the first base station or the server in the aforementioned FIG. 3 or FIG. 7 and the air interface deviation measurement method based on the air interface transmission mode. It is not repeated here.
  • the centralized control node analyzes the deviation data between stations in the whole network centrally and intelligently (for example, some clustering algorithms can be used), and according to the principle that the clocks of most stations are normal, most of the normal stations are identified, and the normal stations can be used as the benchmark to further identify A few stations with large clock deviations are selected (for example, a few stations with large clock deviations have a measured value of synchronization deviation with the reference station that is greater than a preset threshold).
  • the centralized control node After the centralized control node identifies the clock status of the base stations in the entire network, it can conduct a comprehensive analysis with the 1588 topology to further quickly determine the fault point under the 1588 clock source.
  • the clock server transmits the clock signal to the base station through the transmission network, and the 1588 topology information includes: the clock server and the information of the last hop 1588 device connected to the base station. Alternatively, it may also be information of each hop transmission device passed from the clock server to the base station, which is not specifically limited here.
  • the 1588 clock source is faulty, that is, the clock server is faulty.
  • the hop-by-hop device For standard 1588 time synchronization, the hop-by-hop device is required to support the 1588 protocol and perform path asymmetry error compensation. Otherwise, the path asymmetry error will cause a large 1588 time synchronization error.
  • the current path asymmetry compensation method can only be measured and compensated manually by downloading the station-by-station hanging meter, which is costly in manpower and time.
  • the clock failure site and the reference site can be identified, and then the synchronization deviation between stations measured by the Xn/X2 interface or the air interface can be identified.
  • the value automatically compensates for the asymmetry error of the 1588 time synchronization path, thereby reducing the deployment requirements and costs of the 1588 time synchronization, and improving the accuracy of the 1588 loose time synchronization.
  • the sites with large clock deviations in 1588 are identified, and the sites with large clock deviations can be calculated based on the benchmark neighboring sites. Furthermore, the path asymmetry error of the site with large clock deviation of the 1588 can be compensated to ensure the 1588v2 time synchronization accuracy.
  • the 1588 faulty sites and d(d>0) non-faulty reference neighboring sites both measure the out-station synchronization offset Offset, which are Offset 1 , Offset 2 , ..., Offset d respectively, then the 1588 faulty sites
  • the path asymmetry error compensation amount in this cycle can be calculated as follows:
  • ⁇ T Asy represents the path asymmetry error compensation amount in this cycle.
  • the path asymmetry error compensation amount in this cycle is preferably compensated at the base station side. If it is a problem with the transmission equipment, the compensation amount of the path asymmetry error in this period can be compensated on the base station side or on the transmission equipment.
  • the path asymmetry error compensation amount on the transmission equipment can be calculated in the following way:
  • ⁇ T Asy 1/K*( ⁇ T Asy1 + ⁇ T Asy2 +...+ ⁇ T Asyk ).
  • ⁇ T Asy represents the path asymmetry error compensation amount on the transmission equipment.
  • the path asymmetry error compensation amount on the transmission device can also be calculated in other ways, which is not specifically limited here.
  • the clock of the faulty site in this cycle enters the hold state; If there is a problem with the equipment, it is recommended to perform compensation in the transmission equipment. As long as any base station under the transmission equipment can measure the path asymmetry error, it can be compensated in the transmission equipment, unless all base stations under the transmission equipment cannot measure the path asymmetry. error, all 1588 time synchronization base stations under the transmission equipment enter the hold state.
  • FIG. 9 is a schematic structural diagram of an embodiment of the network device provided by the present application.
  • a network device comprising:
  • the obtaining unit 901 is configured to obtain N first round-trip delays in the first cycle, where the first round-trip delay is the time consumed by the first network device and the second network device each transmitting a packet through the Xn/X2 interface, N is a positive integer greater than 1;
  • a determining unit 902 configured to determine a minimum first round-trip delay reference value according to the N first round-trip delays, and the minimum first round-trip delay reference value is the minimum value among the N first round-trip delays;
  • the determining unit 902 is further configured to determine the inter-station synchronization deviation value of the first period according to the minimum first round-trip delay reference value, and the inter-station synchronization deviation value of the first period is the first network device and the second network device through the Xn/X2 interface Inter-station synchronization offset value of the transmitted message.
  • each unit of the network device is similar to those described in the foregoing method performed by the first base station in the embodiment shown in FIG. 3 or FIG. 7 , and details are not repeated here.
  • FIG. 10 is a schematic structural diagram of another embodiment of a network device provided by the present application.
  • a network device comprising:
  • the obtaining unit 1001 is configured to obtain N first round-trip delays in the first cycle, where the first round-trip delay is the time consumed by the first network device and the second network device each transmitting a packet through the Xn/X2 interface, N is a positive integer greater than 1;
  • a determining unit 1002 configured to determine a minimum first round-trip delay reference value according to the N first round-trip delays, and the minimum first round-trip delay reference value is the minimum value among the N first round-trip delays;
  • the determining unit 1002 is further configured to determine the inter-station synchronization deviation value of the first cycle according to the minimum first round-trip delay reference value, and the inter-station synchronization deviation value of the first cycle is the first network device and the second network device through the Xn/X2 interface Inter-station synchronization offset value of the transmitted message.
  • the network device further includes:
  • the sending unit 1003 is configured to send a first detection packet to the second network device in step 1, where the first detection packet carries a first sending time, and the first sending time is when the first network device sends the first detection packet to the second network device. The time to detect the message;
  • the receiving unit 1004 is configured to receive a second detection packet sent by the second network device in step 2, where the second detection packet carries the first reception time and the second transmission time, and the first reception time is received by the second network device The time of the first detection packet, and the second sending time is the time at which the second network device sends the second detection packet;
  • Step 3 the determining unit 1002 is further configured to determine the second receiving time, where the second receiving time is the time when the first network device receives the second detection packet;
  • Step 4 the determining unit 1002 is further configured to determine the first round-trip delay according to the first sending time, the first receiving time, the second sending time and the second receiving time;
  • the network device performs the above steps 1 to 4 N times in the first cycle to obtain N first round-trip delays.
  • the network device further includes:
  • the calculation unit 1005 is used for calculation in the following manner:
  • RTT represents the first round-trip delay
  • t 2 represents the first reception time
  • t 1 represents the first transmission time
  • t 4 represents the second reception time
  • t 3 represents the second transmission time.
  • calculation unit 1005 is further configured to perform calculation in the following manner:
  • Offset t 2min -t 1min - RTTmin /2;
  • Offset represents the inter-station synchronization deviation value of the first cycle
  • t 2min represents the first receiving time corresponding to the minimum first round-trip delay reference
  • t 1min represents the first sending time corresponding to the minimum first round-trip delay reference
  • RTT min represents the minimum The first round-trip delay benchmark.
  • the obtaining unit 1001 is further configured to obtain M first round-trip delays in the second cycle, where M is less than N, and the second cycle is less than the first cycle;
  • the determining unit 1002 is further configured to determine the minimum first round-trip delay real-time value according to the M first round-trip delays, and the minimum first round-trip delay real-time value is the minimum value among the M first round-trip delays;
  • the determining unit 1002 is further configured to determine the inter-station synchronization of the second period according to the real-time value of the minimum first round-trip delay Deviation.
  • the obtaining unit 1002 is further configured to obtain an air interface deviation measurement value, where the air interface deviation measurement value is a synchronization deviation value of the packets transmitted by the first network device and the second network device through the air interface;
  • the determining unit 1002 is further configured to determine a static error value according to the air interface deviation measurement value and the inter-station synchronization deviation value of the first period, where the static error value is a fixed value of the delay deviation when the first network device and the second network device transmit packets ;
  • Network equipment also includes:
  • the saving unit 1006 is used for saving the static error value.
  • the network device further includes:
  • the compensation unit 1007 is configured to compensate the inter-station synchronization deviation value of the first cycle according to the static error value to obtain the target inter-station synchronization deviation value.
  • each unit of the network device is similar to those described in the foregoing method performed by the first base station in the embodiment shown in FIG. 3 or FIG. 7 , and details are not repeated here.
  • FIG. 11 is a schematic structural diagram of another embodiment of a network device provided by the present application.
  • the network device includes a processor 1101, a memory 1102, a bus 1105, an interface and other devices 1104.
  • the processor 1101 is connected to the memory 1102 and the interface 1104.
  • the bus 1105 is respectively connected to the processor 1101, the memory 1102 and the interface 1104.
  • the processor 1101 is a single-core or multi-core central processing unit, or a specific integrated circuit, or one or more integrated circuits configured to implement embodiments of the present invention.
  • the memory 1102 may be a random access memory (Random Access Memory, RAM) or a non-volatile memory (non-volatile memory), such as at least one hard disk memory.
  • Memory 1102 is used to store computer-executable instructions.
  • the program 1103 may be included in the computer-executed instructions.
  • the processor 1101 may perform the operations performed by the network device in the foregoing embodiment shown in FIG. 3 or FIG. 7 , and details are not repeated here.
  • processors mentioned in the above embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general-purpose processors, digital signal processing digital signal processor (DSP), application-specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processing digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • processors in the above embodiments of the present application may be one or multiple, and may be adjusted according to actual application scenarios, which is merely illustrative and not limiting.
  • the number of memories in this embodiment of the present application may be one or multiple, and may be adjusted according to actual application scenarios, which is merely illustrative and not limiting.
  • a network device, terminal device or base station includes a processor (or a processing unit) and a storage unit
  • the processor in this application may be integrated with the storage unit, or may be a processor and a storage unit Connected through the interface, it can be adjusted according to the actual application scenario, and is not limited.
  • the processor in this embodiment of the present application may include a transceiver for implementing the functions of receiving and transmitting.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • Transceiver circuits, interfaces or interface circuits used to implement receiving and transmitting functions may be separate or integrated.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transmission.
  • the embodiments of the present application also provide a computer program or a computer program product including a computer program, when the computer program is executed on a computer, the computer will enable the computer to implement the connection between any of the above method embodiments and the terminal device.
  • Embodiments of the present application further provide a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a computer, implements a method flow related to a network device, terminal device, or base station in any of the above method embodiments.
  • FIGS. 2 to 8 it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center is by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • wire eg, coaxial cable, fiber optic, digital subscriber line (DSL)
  • wireless eg, infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer, or a data storage device such as a server, data center, etc., which includes one or more available media integrated.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), and the like.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种数据处理方法。该方法包括:第一网络设备在第一周期获取N个第一往返时延,第一往返时延为第一网络设备和第二网络设备通过Xn/X2接口各传输一次报文所消耗的时间,N为大于1的正整数,第一网络设备根据N个第一往返时延确定最小第一往返时延基准值,最小第一往返时延基准值为N个第一往返时延中的最小值,第一网络设备根据最小第一往返时延基准值确定第一周期的站间同步偏差值,第一周期的站间同步偏差值为第一网络设备和第二网络设备通过Xn/X2接口传输报文的站间同步偏差值。本申请实施例中,通过最小第一往返时延基准值确定站间同步偏差值,降低了因突发或者拥塞时延抖动引起的时延过高导致的偏差测量结果误差大的风险。

Description

数据处理方法及其装置
本申请要求于2020年9月25日提交中国专利局,申请号为202011027435.7,发明名称为“数据处理方法及其装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,具体涉及一种数据处理方法及其装置。
背景技术
5G时代主流频谱都是时分双工(time division duplexing,TDD)模式,TDD系统是严格时钟同步的系统,如果某个基站时钟失步,失步基站下行就可能会干扰到其它同步基站的上行,同步基站下行也可能会干扰到失步基站上行,业务体验严重恶化。
对于内部时钟系统故障,基站可以检测出来并上报告警提示用户,并且随着产品的改进,内部时钟系统故障的概率有下降趋势。对于外部时钟源故障,尤其是时钟初偏和慢偏的情况,主要是通过选择整网/区域站点进行站间相互比对。
站间相互比对的方式是通过站间同步偏差测量,基于Xn/X2接口的站间偏差测量技术,依赖传输网,传输网存在突发/拥塞时延抖动时,会对偏差测量结果造成较大误差,影响站间同步状态判断。
发明内容
本申请实施例提供了一种数据处理方法,通过在第一周期获取N个第一往返时延,并根据N个第一往返时延确定最小第一往返时延基准值,再根据最小第一往返时延基准值确定站间同步偏差值,降低了因突发或者拥塞时延抖动引起的时延过高导致的偏差测量结果误差大的风险。
本申请第一方面提供了一种数据处理方法。
第一网络设备在第一周期获取N个第一往返时延,第一往返时延为第一网络设备和第二网络设备通过Xn/X2接口各传输一次报文所消耗的时间,N为大于1的正整数,第一网络设备根据N个第一往返时延确定最小第一往返时延基准值,最小第一往返时延基准值为N个第一往返时延中的最小值,第一网络设备根据最小第一往返时延基准值确定第一周期的站间同步偏差值,第一周期的站间同步偏差值为第一网络设备和第二网络设备通过Xn/X2接口传输报文的站间同步偏差值。
本申请实施例中,通过在第一周期获取N个第一往返时延,并根据N个第一往返时延确定最小第一往返时延基准值,再根据最小第一往返时延基准值确定站间同步偏差值,降低了因突发或者拥塞时延抖动引起的时延过高导致的偏差测量结果误差大的风险。
基于第一方面的数据处理方法,在一种可能的实现方式中,第一网络设备在第一周期获取N个第一往返时延包括:步骤一:第一网络设备向第二网络设备发送第一检测报文,第一检测报文携带第一发送时间,第一发送时间为第一网络设备向第二网络设备发送第一 检测报文的时间,步骤二:第一网络设备接收第二网络设备发送的第二检测报文,第二检测报文携带第一接收时间和第二发送时间,第一接收时间为第二网络设备接收到第一检测报文的时间,第二发送时间为第二网络设备发送第二检测报文的时间,步骤三:第一网络设备确定第二接收时间,第二接收时间为第一网络设备接收到第二检测报文的时间,步骤四:第一网络设备根据第一发送时间、第一接收时间、第二发送时间和第二接收时间确定第一往返时延,第一网络设备在第一周期内执行N次上述步骤一至步骤四,以获取N个第一往返时延。
本申请实施例中,通过第一网络设备和第二网络设备传输报文的方式获取N个第一往返时延,提升了方案的可实现性。
基于第一方面的数据处理方法,在一种可能的实现方式中,第一网络设备根据第一发送时间、第一接收时间、第二发送时间和第二接收时间确定第一往返时延包括:
RTT=t 2-t 1+t 4-t 3
RTT表示第一往返时延,t 2表示第一接收时间,t 1表示第一发送时间,t 4表示第二接收时间,t 3表示第二发送时间。
本申请实施例中,通过具体的公式计算得到第一往返时延,提升了方案的可实现性。
基于第一方面的数据处理方法,在一种可能的实现方式中,第一网络设备根据最小第一往返时延基准确定第一周期的站间同步偏差值包括:
Offset=t 2min-t 1min-RTT min/2;
offset表示第一周期的站间同步偏差值,t 2min表示最小第一往返时延基准对应的第一接收时间,t 1min表示最小第一往返时延基准对应的第一发送时间,RTT min表示最小第一往返时延基准。
本申请实施例中,通过具体的公式计算得到第一往返时延,提升了方案的可实现性。
基于第一方面的数据处理方法,在一种可能的实现方式中,第一网络设备在第二周期获取M个第一往返时延,M小于N,第二周期小于第一周期,第一网络设备根据M个第一往返时延确定最小第一往返时延实时值,最小第一往返时延实时值为M个第一往返时延中的最小值,若最小第一往返时延实时值和最小第一往返时延基准值的差值小于预设阈值,则第一网络设备根据最小第一往返时延实时值确定第二周期的站间同步偏差值。
本申请实施例中,通过获取M个第一往返时延,通过最小第一往返时延实时值确定第二周期的站间同步偏差值,提升了方案执行的实时性。
基于第一方面的数据处理方法,在一种可能的实现方式中,第一网络设备获取空口偏差测量值,空口偏差测量值为第一网络设备和第二网络设备通过空口传输报文的同步偏差值,第一网络设备根据空口偏差测量值和第一周期的站间同步偏差值确定静态误差值,静态误差值为第一网络设备和第二网络设备传输报文时的时延偏差的固定值,第一网络设备保存静态误差值。
本申请实施例中,通过空口偏差测量值计算静态误差值,提升了方案的可实现性。
基于第一方面的数据处理方法,在一种可能的实现方式中,第一网络设备根据空口偏差测量值和第一周期的站间同步偏差值确定静态误差值之后,第一网络设备根据静态误差 值对第一周期的站间同步偏差值进行补偿,得到目标站间同步偏差值。
本申请实施例中,通过静态误差值对第一周期的站间同步偏差值进行补偿,提升了站间同步偏差值的准确度。
本申请实施例第二方面提供了一种网路设备。
一种网络设备,包括:
获取单元,用于在第一周期获取N个第一往返时延,第一往返时延为第一网络设备和第二网络设备通过Xn/X2接口各传输一次报文所消耗的时间,N为大于1的正整数;
确定单元,用于根据N个第一往返时延确定最小第一往返时延基准值,最小第一往返时延基准值为N个第一往返时延中的最小值;
确定单元还用于根据最小第一往返时延基准值确定第一周期的站间同步偏差值,第一周期的站间同步偏差值为第一网络设备和第二网络设备通过Xn/X2接口传输报文的站间同步偏差值。
可选的,网络设备还包括:
发送单元,用于在步骤一中向第二网络设备发送第一检测报文,第一检测报文携带第一发送时间,第一发送时间为第一网络设备向第二网络设备发送第一检测报文的时间;
接收单元,用于在步骤二中接收第二网络设备发送的第二检测报文,第二检测报文携带第一接收时间和第二发送时间,第一接收时间为第二网络设备接收到第一检测报文的时间,第二发送时间为第二网络设备发送第二检测报文的时间;
步骤三:确定单元还用于确定第二接收时间,第二接收时间为第一网络设备接收到第二检测报文的时间;
步骤四:确定单元还用于根据第一发送时间、第一接收时间、第二发送时间和第二接收时间确定第一往返时延;
网络设备在第一周期内执行N次上述步骤一至步骤四,以获取N个第一往返时延。
可选的,网络设备还包括:
计算单元,用于通过以下方式进行计算:
RTT=t 2-t 1+t 4-t 3
RTT表示第一往返时延,t 2表示第一接收时间,t 1表示第一发送时间,t 4表示第二接收时间,t 3表示第二发送时间。
可选的,计算单元还用于通过以下方式进行计算:
Offset=t 2min-t 1min-RTT min/2;
Offset表示第一周期的站间同步偏差值,t 2min表示最小第一往返时延基准对应的第一接收时间,t 1min表示最小第一往返时延基准对应的第一发送时间,RTT min表示最小第一往返时延基准。
可选的,获取单元还用于在第二周期获取M个第一往返时延,M小于N,第二周期小于第一周期;
确定单元还用于根据M个第一往返时延确定最小第一往返时延实时值,最小第一往返时延实时值为M个第一往返时延中的最小值;
若最小第一往返时延实时值和最小第一往返时延基准值的差值小于预设阈值,则确定单元还用于根据最小第一往返时延实时值确定第二周期的站间同步偏差值。
可选的,获取单元还用于获取空口偏差测量值,空口偏差测量值为第一网络设备和第二网络设备通过空口传输报文的同步偏差值;
确定单元还用于根据空口偏差测量值和第一周期的站间同步偏差值确定静态误差值,静态误差值为第一网络设备和第二网络设备传输报文时的时延偏差的固定值;
网络设备还包括:
保存单元,用于保存静态误差值。
可选的,网络设备还包括:
补偿单元,用于根据静态误差值对第一周期的站间同步偏差值进行补偿,得到目标站间同步偏差值。
本申请第二方面提供的网络设备中各单元所执行的方法与前述第一方面实施方式的方法类似,具体此处不再赘述。
本申请第三方面提供了一种网络设备括处理器和存储器,处理器存储程序代码,处理器执行程序代码以实现申请第一方面及其各实现方式中的方法。
本申请第四方面提供了一种计算机存储介质,计算机存储介质中存储有指令,指令在计算机上执行时,使得计算机执行如本申请第一方面实施方式的方法。
从以上技术方案可以看出,本申请实施例具有以下优点:
本申请中,第一网络设备通过在第一周期获取N个第一往返时延,并根据N个第一往返时延确定最小第一往返时延基准值,再根据最小第一往返时延基准值确定站间同步偏差值,降低了因突发或者拥塞时延抖动引起的时延过高导致的偏差测量结果误差大的风险。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1为本申请实施例提供的通信系统的一个架构图;
图2为本申请实施例提供的通信系统的一个架构图;
图3为本申请实施例提供的数据处理方法的一个流程示意图;
图4为本申请实施例提供的数据处理方法的另一流程示意图;
图5为本申请实施例提供的数据处理方法的另一流程示意图;
图6为本申请实施例提供的数据处理方法的应用场景图;
图7为本申请实施例提供的数据处理方法的另一流程示意图;
图8为本申请实施例提供的数据处理方法的另一流程示意图;
图9为本申请实施例提供的网络设备的一个架构示意图;
图10为本申请实施例提供的网络设备的另一架构示意图;
图11为本申请实施例提供的网络设备的另一架构示意图。
具体实施方式
为了更好的理解本申请实施例公开的一种数据处理的方法,下面首先对本申请实施例适用的通信系统进行描述。
请参见图1,图1为本申请实施例提供的一种通信系统的架构示意图。该通信系统包括第一网络设备101和第二网络设备102,图1所示的网络设备数量和形态仅用于举例并不构成对本申请实施例的限定,实际应用中可以包两个以上的网络设备,具体此处不做限定。本申请实施例提供的通信系统还可以包括服务器103,该服务器103与第一网络设备101和第二网络设备102连接,用于和第一网络设备101和第二网络设备102传输数据。
本申请实施例的技术方案可以应用于各种通信系统。例如:第五代(5th generation,5G)移动通信系统、5G NR系统,或者其他未来的新型移动通信系统等。该通信系统还可以是同时支持多种无线技术的通信系统,例如同时支持LTE和NR的通信系统;或者,该通信系统还可以是支持近距离通信的通信系统,例如,支持侧行链路(sidelink,SL)技术的通信系统,支持无线保真(wireless fidelity,WiFi)技术的通信系统等等。
本申请实施例中的第一网络设备101和第二网络设备102是网络侧的一种用于发射或接收信号的实体。例如,网络设备101可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、发送接收点(transmission reception point,TRP)、中继节点(relay node,RN)、接入点(access point,AP)、其他未来移动通信系统中的基站或WiFi系统中的接入节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
需要说明的是,本申请实施例中,第一网络设备101可以通过Xn/X2接口和第二网络设备102传输数据,以进行站间偏差测量,还可以通过空口传输技术传输数据,以进行站间偏差测量。
需要说明的是,服务器103可以部署在第一网络设备101或者第二网络设备102上,也可以作为单独的服务器与第一网络设备101和第二网络设备102连接,还可以部署在中间传输网络中,还可以部署在其他网络设备上,具体此处不做限定。
需要说明的是,本申请实施例中,站间偏差测量可以在第一网络设备101或者第二网络设备102上执行,还可以在服务器103上执行,具体此处不做限定。当站间偏差测量在第一网络设备101或者第二网络设备102上执行时,则不需要服务器103。当站间偏差测量在服务器103上执行时,则第一网络设备101和第二网络设备102将相关的数据信息发送给服务器103。可以理解的是,站间偏差测量还可以在中间传输网络或者其它网络设备上执行,具体此处不做限定。
需要说明的是,本申请实施例提供的数据处理方法还可以用于终端设备之间进行时延偏差测量。如图2所示,终端设备之间进行数据传输,以进行时延偏差测量。时延偏差测量可以在终端设备之间执行,也可以在服务器上执行,具体此处不做限定。当时延偏差测量在终端设备上执行时,则不需要服务器。当时延偏差测量在服务器上执行时,则终端设备将相关的数据信息发送给服务器。可以理解的是,时延偏差测量还可以在中间传输网络或者其它设备上执行,具体此处不做限定。
本申请实施例中的终端设备是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
下面结合上述图1和图2的通信系统对本申请实施例提供的数据处理方法及其装置进行详细地描述。
请参阅图3,为本申请实施例提供的数据处理方法一个流程示意图。
本实施例中,以第一网络设备为第一基站,第二网络设备为第二基站为例进行说明。本实施例中,以站间偏差测量在第一基站和第二基站执行为例进行说明。
在步骤301中,第一基站向第二基站发送第一检测报文。
当第一基站需要进行站间偏差测量时,第一基站向第二基站发送第一检测报文。
具体的,第一基站在向第二基站发送第一检测报文时,第一基站记录下发送第一检测报文的时间信息,即第一发送时间,第一基站将第一发送时间携带在第一检测报文中,向第二基站发送该第一检测报文。
在一种可能的实现方式中,该第一检测报文为业务报文,基站将第一发送时间携带在该业务报文中,向第二基站发送。具体的,该第一发送时间可以携带在业务报文的报文头中,也可以携带在业务报文的载荷中,具体此处不做限定。
在一种可能的实现方式中,该第一检测报文为专门构造的检测报文,即该第一检测报文中未携带其他业务信息,只携带了第一发送时间。具体的,该第一发送时间可以携带在第一检测报文的报文头中,也可以携带在第一检测报文的载荷中,具体此处不做限定。
在一种可能的实现方式中,第一基站对第一检测报文打时间戳的精度调整为最高,例如,可以设置该打时间戳的精度在10us以内,或者,在一种优选的方式中,该打时间戳的精度设置在1us。
需要说明的是,第一基站和第二基站的检测报文的交互周期可以为百毫秒级或者秒级,本申请实施例中不做限定。
在步骤302中,第二基站向第一基站发送第二检测报文。
第二基站接收到第一基站发送的第一检测报文之后,第二基站向第一基站发送第二检测报文。
具体的,第二基站在接收到第一基站发送的第一检测报文之后,第二基站记录下接收到第一检测报文的时间信息,即第一接收时间。第二基站在向第二基站发送第二检测报文时,第二基站记录下发送第二检测报文的时间信息,即第二发送时间,第一基站将第二发 送时间和第一接收时间携带在第二检测报文中,向第二基站发送该第二检测报文。
在一种可能的实现方式中,该第二检测报文为业务报文,第二基站将第二发送时间和第一接收时间携带在该业务报文中,向第一基站发送。具体的,该第二发送时间和第一接收时间可以携带在业务报文的报文头中,也可以携带在业务报文的载荷中,具体此处不做限定。
在一种可能的实现方式中,该第二检测报文为专门构造的检测报文,即该第二检测报文中未携带其他业务信息,只携带了第二发送时间和第一接收时间。具体的,该第一发送时间和第一接收时间可以携带在第二检测报文的报文头中,也可以携带在第二检测报文的载荷中,具体此处不做限定。
在一种可能的实现方式中,第二基站对第二检测报文打时间戳的精度调整为最高,例如,可以设置该打时间戳的精度在10us以内,或者,在一种优选的方式中,该打时间戳的精度设置在1us。
在步骤303中,第一基站根据第一发送时间、第一接收时间、第二发送时间和第二接收时间确定第一往返时延。
第一基站在接收到第二基站发送的第二检测报文之后,记录下接收第二检测报文的时间,即第二接收时间,第一基站根据第一发送时间、第一接收时间、第二发送时间和第二接收时间确定第一往返时延。
具体的,第一基站在接收到第二检测报文之后,获取第二检测报文中的第二发送时间和第一接收时间,并记录下接收到第二检测报文的第二接收时间,进而根据第一发送时间、第一接收时间、第二发送时间和第二接收时间进行计算,确定第一往返时延,该第一往返时延表示第一基站和第二基站通过Xn/X2接口传输第一检测报文和第二检查报文所消耗的时间,即表示第一基站和第二基站通过Xn/X2接口各传输一次报文所消耗的时间。
在一种可能的实现方式中,第一基站根据以下公式计算第一往返时延:
RTT=t 2-t 1+t 4-t 3
其中,RTT表示第一往返时延,t 2表示第一接收时间,即第二基站接收第一检测报文的时间,t 1表示第一发送时间,即第一基站发送第一检测报文的时间,t 4表示第二接收时间,即第一基站接收第二检测报文的时间,t 3表示第二发送时间,即第二基站发送第二检测报文的时间。t 2-t 1表示第一基站发送第一检测报文到第二基站接收第一检测报文的时延,t 4-t 3表示第二基站发送第二检测报文到第一基站接收第二检测报文的时延。
在实际应用过程中,计算得到一次第一往返时延的时间是很短的,本申请实施例中通过在一个周期内多次计算得到第一往返时延来降低第一基站和第二基站通过Xn/X2接口时延抖动导致的影响。因此,第一基站会在第一周期内重复N次上述计算第一往返时延的步骤,以获取N个第一往返时延,该N大于1。
需要说明的是,该第一周期可以以小时为单位进行设置,也可以以天为单位进行设置,具体此处不做限定。在一种优选的方式中,该第一周期设置为1天或者1小时的时间。例如,在该第一周期内,第一基站会获取到成千上万次的第一往返时延。第一基站可以通过启动定时器的方式来进行第一周期的计时,定时器启动时,第一周期开始计时,当定时器 结束时,第一周期结束。
在步骤304中,第一基站根据N个第一往返时延确定最小第一往返时延基准值。
第一基站在计算得到N个第一往返时延之后,第一基站根据N个第一往返时延确定最小第一往返时延基准值,该最小第一往返时延基准值表示N个第一往返时延中的最小值。
在第一基站和第二基站进行检测报文的交互过程中,报文的交互频率固定的情况下,第一周期的时间越长,获得的第一往返时延越多,因此,最小往返时延基准值就越接近传输网络固有的时延。
例如,第一周期内有N个第一往返时延(Round-Trip Time,RTT),RTT 1,RTT 2,RTT 3,RTT 4,……,RTT N,这样N个第一往返时延中最小值RTT min=min(RTT 1,RTT 2,RTT 3,RTT 4,……,RTT N),其中,RTT min对应的那一次第一基站和第二基站交互的第一检测报文和第二检测报文的时间信息为RTT min(t 1,t 2,t 3,t 4)。
在步骤305中,第一基站根据最小第一往返时延基准值确定第一周期的站间同步偏差值。
第一基站在获取了最小第一往返时延基准值之后,第一基站根据最小第一往返时延基准值确定第一周期的站间同步偏差值,该第一周期的站间同步偏差值为第一基站和第二基站通过Xn/X2接口传输报文的站间同步偏差值。
在一种可能的实现方式中,第一基站通过最小第一往返时延基准值对应的那一次第一基站和第二基站交互的第一检测报文和第二检测报文的时间信息进行计算,以得到第一周期的站间同步偏差值。
例如,最小第一往返时延基准值RTT min对应的那一次第一基站和第二基站交互的第一检测报文和第二检测报文的时间信息为RTT min(t 1min,t 2min,t 3min,t 4min),则可以通过如下公式进行计算。
Offset=t 2min-t 1min-(t 2min-t 1min+t 4min-t 3min)/2;
Offset=t 2min-t 1min-RTT min/2;
其中,offset表示第一周期的站间同步偏差值,t 2min表示最小第一往返时延基准对应的第一接收时间,t 1min表示最小第一往返时延基准对应的第一发送时间,RTT min表示最小第一往返时延基准,“/”表示相除。
本申请实施例中,第一基站在第一周期获取N个第一往返时延,并通过该N个第一往返时延确定最小第一往返时延基准值,进而通过最小第一往返时延基准值确定第一周期的站间同步偏差值,因为在第一周期中获取多个第一往返时延,并获取其中的最小值作为计算站间同步偏差值的参数,使得第一往返时延接近传输网络固有的时长,因此对站间同步偏差值的计算影响更小。
在步骤306中,第一基站在第二周期获取M个第一往返时延。
在实际应用过程中,为了保证获取第一往返时延更多,第一周期的设置通常是在一个小时或是一天以上,因此,对于计算站间同步偏差值的实时性有影响。因此,本申请实施例中,还可以通过在第一周期中启动一个时间间隔较短的第二周期来实时的进行计算站间同步偏差值。
第一基站启动第二周期定时器,并在第二周期内获取M个第一往返时延,该M是小于N的正整数,该第二周期也是小于第一周期的。
具体的,在一种可能的实现方式中,N是M的整数倍,第一周期也是第二周期的整数倍,第二周期的设置时间的粒度可以是分钟级或者10分钟级。第二周期的定时器的启动时间可以和第一周期的定时器的启动时间相同,也可以在第一周期的定时器结束之后再启动第二周期,具体此处不做限定。
当第二周期的定时器的启动时间和第一周期的定时器的启动时间相同时,第一基站根据和第二基站交互的检测报文可以在第二周期中获取到M个第一往返时延。
在步骤307中,第一基站根据M个第一往返时延确定最小第一往返时延实时值。
第一基站在第二周期中获取了M个第一往返时延之后,第一基站根据该M个第一往返时延确定最小第一往返时延实时值,该最小第一往返时延实时值为M个第一往返时延中的最小值。
本申请实施例中,第二周期获取第一往返时延的方法步骤与第一周期获取第一往返时延的方法步骤类似,具体此处不再赘述。
在步骤308中,若最小第一往返时延实时值和最小第一往返时延基准值的差值小于预设阈值,则根据最小第一往返时延实时值确定第二周期的站间同步偏差值。
当第一基站根据M个第一往返时延确定最小第一往返时延实时值之后,若最小第一往返时延实时值和最小第一往返时延基准值的差值小于预设阈值,则第一基站根据最小第一往返时延实时值确定第二周期的站间同步偏差值,若最小第一往返时延实时值和最小第一往返时延基准值的差值大于预设阈值,表示该第二周期可能处于传输网时延波动时期,因此该最小第一往返时延实时值不能用于计算第二周期的站间同步偏差值。
具体的,当第二周期的定时器的启动时间和第一周期的定时器的启动时间相同时,第一基站在第二周期的定时器结束时刻,第一基站还并未获取到第一往返时延基准值,还无法计算最小第一往返时延实时值和最小第一往返时延基准值的差值,因此暂时不适用该最小第一往返时延实时值计算第二周期的站间同步偏差值,则第一基站将该最小第一往返时延实时值保存在本地存储中。
在实际应用过程中,第一周期可能是第二周期的整数倍,因此在第一周期结束的时刻,第一基站会获取并保存多个最小第一往返时延实时值。在一种可能的实现方式中,第一基站在第一周期结束时刻,可以根据保存的多个最小第一往返时延实时值与最小第一往返时延基准值分别计算出多个差值,并根据这多个差值的大小来确定是否计算对应的第二周期的站间同步偏差值。
在一种可能的实现方式中,第一基站在第一周期结束时刻,不计算第一周期内的多个第二周期的站间同步偏差值。
在一种可能的实现方式中,如图4所示,在第一个第二周期结束之后,第一次计算最小第一往返时延实时值,并继续同时启动第二个第一周期和第二个第二周期,在第一个第一周期结束之后,第一次计算最小第一往返时延基准值,并启动第Q个第二周期,在第Q个第二周期的结束时刻,因为第一周期是第二周期的整数倍,因此第Q个第二周期的结束 时刻也是第二个第一周期的结束时刻,因此可以判断第Q个第二周期的最小第一往返时延实时值是否小于第一个第一周期的最小第一往返时延基准值,若小于,则更新最小第一往返时延基准值。优选的,在第Q个第二周期结束并计算得到第Q个最小第一往返时延实时值之后,删除存储在第一基站中的第一个最小第一往返时延实时值,并以此类推,在后续每个第二周期的结束时刻计算出该周期的最小第一往返时延实时值之后,就删除存储在第一基站中时间最早的最小第一往返时延实时值。
本申请实施例中,通过启动第二周期,并根据第二周期的最小第一往返时延实时值计算得到第二周期的站间同步偏差测量值,相对于时间粒度更长的第一周期,可以在更短的时间段内计算站间同步偏差测量值,提升了方案的时效性。
需要说明的是,当第一基站和第二基站的Xn/X2传播路径发生变化时,则需要清空第一基站中的第一往返时延实时值和第一往返时延基准值,并重新开始计算第一往返时延实时值和第一往返时延基准值。
在步骤309中,第一基站获取空口偏差测量值。
在通过Xn/X2接口对第一基站和第二基站的站间偏差值进行计算时,由于有时第一基站与第二基站的传输路径不对称,或者收发的光纤对称性问题会引入毫秒级的测量误差,这部分测量误差值是固定的,因此该测量误差属于静态误差。本申请实施例中,还可以借助空口测量的方式尽量降低该静态误差。
第一基站和第二基站通过空口传输的方式获取空口偏差测量值。
在一种可能的实现方式中,如图5所示,第一基站可以通过和第二基站之间传输检测信号来获取空口偏差测量值。具体的,第一基站向第二基站发送第一站间检测信号,该第一站间检测信号可以是同步信号快(synchronization signal block,SSB)、CSI-RS等标准信号,还可以是时域资源上的空闲符号(例如GP符号等)上定义的特殊信号,具体此处不做限定。第一基站将发送第一站间检测信号的第一时间信息携带在第一站间检测信号中,第二基站接收到第一站间检测信号之后,记录下接收到第一站间检测信号的第二时间信息,并向第一基站发送第二站间检测信号,并携带发送第二站间检测信号的第三时间信息和接收到第一站间检测信号的第二时间信息,第一基站接收到第二检测信号之后,记录下接收到第二检测信号的第四时间信息,并根据第一时间信息和第二时间信息计算出第一时间时延△T1,根据第三时间信息和第四时间信息计算出第二时间时延△T2。再通过如下方式计算出第一基站和第二基站的空口传播时延:
空口传播时延=(△T1+△T2)/2。
其中,△T1表示第一时间时延,△T2表示第二时间时延,“/”表示相除。
通过如下方式计算第一基站和第二基站的空口偏差测量值:
空口偏差测量值=(△T1-△T2)/2。
其中,△T1表示第一时间时延,△T2表示第二时间时延,“/”表示相除。
在一种可能的实现方式中,如图6所示,第一基站和第二基站可以借助第一基站和第二基站之间的切换终端设备UE或者第一基站和第二基站之间小区边缘的UE来进行站间空口偏差测量。在第一站和第二基站之间的进行切换的终端设备UE,可以通过做切换业务时 发送检测信号,协助第一基站和第二基站收集时间差信息。第一基站和第二基站之间小区边缘的UE通过做随机接入发送检测信号,协助第一基站和第二基站收集时间差信息。
例如,UE向第一基站和第二基站分别发送检测信号,如随机接入信号。第一基站和第二基站同时检测,第一基站接收到检测信号的时刻为T1,第二基站接收到检测信号的时刻为T2,UE向第一基站发送检测信号的传播时延为Tp1,UE到第二基站的传播时延为Tp2,则空口偏差测量值=((T1-T2)-(Tp1-Tp2))/2。
在步骤310中,第一基站根据空口偏差测量值和第一周期的站间同步偏差值确定静态误差值。
第一基站在获取了空口偏差测量值之后,第一基站根据空口偏差测量值和第一周期的站间同步偏差值确定第一周期的站间同步偏差值的静态误差。
具体的,在实际应用过程中,第一周期的站间同步偏差值=实际同步偏差值+静态误差值+第一动态误差。空口偏差测量值=实际同步偏差值+第二动态误差。其中,第一周期的站间同步偏差值的第一动态误差值通过上述步骤中获取最小第一往返时延的方式滤除到预设阈值以下,因此在这里可以忽略。而第二动态误差值因为数值较小,也可以忽略。因此,静态误差=第一周期的站间同步偏差值-空口偏差测量值。对于固定的Xn/X2传播路径,静态误差是固定的,因此,静态误差并不需要实时计算,当Xn/X2传播路径发生变化时,才需要重新计算静态误差。在计算出静态误差值之后,第一基站保存该静态误差值。
在步骤311中,第一基站根据静态误差值对第一周期的站间同步偏差值进行补偿,得到目标站间同步偏差值。
第一基站在获取到静态误差值之后,第一根据静态误差值对第一周期的站间同步偏差值进行补偿,得到目标站间同步偏差值。
具体的,可以通过如下方式计算得到目标站间同步偏差值。
目标站间同步偏差值=第一周期的站间同步偏差值-静态误差。
需要说明的是,第一基站可以通过目标站间同步偏差值调整时钟的同步状态,还可以通过空口偏差测量值调整时钟的同步状态,或者根据目标站间同步偏差值和空口偏差测量值的平均值调整时钟的同步状态,具体此处不做限定。
在实际应用过程中,因为第一基站和第二基站因为空口传输的条件限制,可能在某些时刻无法进行空口偏差测量,例如空口信噪比较大,或者无切换的UE或者无边缘UE。此时,若是第一基站中之前有保存了静态误差值,则第一基站可以根据保存的静态误差值对第一周期的站间同步偏差值进行补偿,得到目标站间同步偏差值,进而根据目标站间同步偏差值调整时钟的同步状态。若第一基站中之前未保存有静态误差值,则无法对第一周期的站间同步偏差值进行补偿。可以理解的是,当第一基站和第二基站的传输路径不变时,第一基站获取到新的静态误差,则将该新的静态误差和第一基站存储的静态误差求平均,并将该平均的静态误差更新到第一基站的存储中。
当无法对第一周期的站间同步偏差值进行补偿时,还可以通过第一周期的站间同步偏差值和上一个第一周期的站间同步偏差值的差值得出偏差测量值变化量,进而通过该偏差测量值变化量判断时钟是否出现大的偏差。例如,上个第一周期对应的时钟是正常的,而 这次的第一周期对应的时钟出现偏差,则偏差测量值变化量会大于预设阈值,则确定时钟出现大的偏差。
需要说明的是,本申请实施例中,第一基站和第二基站也可以替换为同时支持空口传输和地面传输且满足时间同步的传输节点(如微波设备)或者时间服务器等设备,具体此处不做限定。
本申请实施例中,步骤306至步骤311为可选步骤,当步骤306至步骤311不执行时,则第一基站根据第一周期的站间同步偏差值调整时钟的同步状态。
本申请实施例中,第一基站通过在第一周期获取N个第一往返时延,并根据N个第一往返时延确定最小第一往返时延基准值,再根据最小第一往返时延基准值确定站间同步偏差值,降低了因突发或者拥塞时延抖动引起的时延过高导致的偏差测量结果误差大的风险。
请参阅图7,为本申请实施例提供的数据处理方法另一流程示意图。
在步骤701中,第一基站向第二基站发送第一检测报文。
在步骤702中,第一基站接收第二基站发送的第二检测报文。
在步骤703中,第一基站根据第一发送时间、第一接收时间、第二发送时间和第二接收时间确定第一往返时延。
在步骤704中,第一基站根据N个第一往返时延确定最小第一往返时延基准值。
在步骤705中,第一基站根据最小第一往返时延基准值确定第一周期的站间同步偏差值。
在步骤706中,第一基站在第二周期获取M个第一往返时延。
在步骤707中,第一基站根据M个第一往返时延确定最小第一往返时延实时值。
在步骤708中,若最小第一往返时延实时值和最小第一往返时延基准值的差值小于预设阈值,则根据最小第一往返时延实时值确定第二周期的站间同步偏差值。
本实施例中,步骤701至步骤708与前述图3所示实施例中步骤301至步骤308所执行的方法类似,具体此处不再赘述。
在步骤709中,第一基站向服务器发送第一周期的站间同步偏差值和空口传播时延。
在通过Xn/X2接口对第一基站和第二基站的站间偏差值进行计算时,由于有时第一基站与第二基站的传输路径不对称,或者收发的光纤对称性问题会引入毫秒级的测量误差,这部分测量误差值是固定的,因此该测量误差属于静态误差。本申请实施例中,还可以借助空口测量的方式尽量降低该静态误差。
第一基站和第二基站通过空口传输的方式获取空口传播时延。
在一种可能的实现方式中,如图5所示,第一基站可以通过和第二基站之间传输检测信号来获取空口传播时延。具体的,第一基站向第二基站发送第一站间检测信号,该第一站间检测信号可以是同步信号快(synchronization signal block,SSB)、CSI-RS等标准信号,还可以是时域资源上的空闲符号(例如GP符号等)上定义的特殊信号,具体此处不做限定。第一基站将发送第一站间检测信号的第一时间信息携带在第一站间检测信号中,第二基站接收到第一站间检测信号之后,记录下接收到第一站间检测信号的第二时间信息,并向第一基站发送第二站间检测信号,并携带发送第二站间检测信号的第三时间信息和接 收到第一站间检测信号的第二时间信息,第一基站接收到第二检测信号之后,记录下接收到第二检测信号的第四时间信息,并根据第一时间信息和第二时间信息计算出第一时间时延△T1,根据第三时间信息和第四时间信息计算出第二时间时延△T2。再通过如下方式计算出第一基站和第二基站的空口传播时延:
空口传播时延=(△T1+△T2)/2。
其中,△T1表示第一时间时延,△T2表示第二时间时延,“/”表示相除。
在一种可能的实现方式中,如图6所示,第一基站和第二基站可以借助第一基站和第二基站之间的切换终端设备UE或者第一基站和第二基站之间小区边缘的UE来获取空口传播时延。在第一站和第二基站之间的进行切换的终端设备UE,可以通过做切换业务时发送检测信号,协助第一基站和第二基站收集时间差信息。第一基站和第二基站之间小区边缘的UE通过做随机接入发送检测信号,协助第一基站和第二基站收集时间差信息。
例如,UE向第一基站和第二基站分别发送检测信号,如随机接入信号。第一基站和第二基站同时检测,第一基站接收到检测信号的时刻为T1,第二基站接收到检测信号的时刻为T2,UE向第一基站发送检测信号的传播时延为Tp1,UE到第二基站的传播时延为Tp2,则空口传播时延=(Tp1+Tp2)/2。
第一基站在获取了空口传播时延之后,第一基站向服务器发送空口传播时延和第一周期的站间同步偏差值。
在步骤710中,服务器确定空口偏差测量值。
服务器在接收到第一基站发送的空口传播时延和第一周期的站间同步偏差值之后,根据该空口传播时延和第一周期的站间同步偏差值进一步确定空口偏差测量值。该空口偏差测量值的计算方式与前述图3中的步骤309的计算方式类似,具体此处不再赘述。
在步骤711中,根据空口偏差测量值和第一周期的站间同步偏差值确定静态误差值。
在步骤712中,根据静态误差值对第一周期的站间同步偏差值进行补偿,得到目标站间同步偏差值。
本实施例中,步骤711至步骤712与前述图3所示实施例中步骤310至步骤311所执行的方法类似,具体此处不再赘述。
本申请实施例中,通过服务器进行计算目标站间偏差值,因此服务器可以服务于多个基站,并通过统一管理,调整时钟的同步状态。
请参阅图8,为本申请实施例提供的数据处理方法另一流程示意图。
本实施例中,集中控制节点可以部署在服务器上,也可以部署在任意一个基站上,还可以部署在传输网上,具体此处不做限定。
集中控制节点通过全网检测集中控制模块对整网站间偏差测量进行集中控制,保障整网检测的一致性和有效性。其中,全网检测集中控制包括:集中控制节点集中控制指定空口检测序列发送频点,空口的检测顺序,空口偏差测量和Xn/X2联合检测的周期,启动时刻等。
集中控制节点通过ltf1接口向局部或者全网基站发送命令,局部或者全网基站通过ltf2接口向集中控制节点发送数据。
其中,本实施例中局部/全网基站和集中控制节点执行的多种偏差联检技术为基于Xn/X2接口的偏差测量方法和基于空口传输方式的空口偏差测量方法,其中Xn/X2接口的偏差测量方法和基于空口传输方式的空口偏差测量方法与前述图3或图7中第一基站或者服务器所执行的Xn/X2接口的偏差测量方法和基于空口传输方式的空口偏差测量方法类似,具体此处不再赘述。
集中控制节点对全网的站间偏差数据集中智能分析(例如,可以采用一些聚类算法),按照多数站点时钟是正常的原则,识别出绝大多数正常站点,以正常站点为基准可以进一步识别出少数出现时钟偏差大的站点(例如,少数出现时钟偏差大的站点与基准站点的同步偏差测量值大于预设阈值)。
集中控制节点将全网基站的时钟状态识别出来后可以与1588拓扑进行综合分析,进一步快速确定1588时钟源下的故障点。其中,时钟服务器经过传输网络,将时钟信号传输给基站,该1588拓扑信息包括:时钟服务器,和基站连接的上一跳1588设备的信息。或者,还可以是时钟服务器到基站经过的每一跳传输设备的信息,具体此处不做限定。
例如,如果同一1588时钟源下所有基站都失步,则判定1588时钟源故障,即时钟服务器故障。
又例如,如果同一1588传输设备下所有基站都失步,则确定该传输设备故障。
又例如,如果同一1588传输设备下部分基站失步,部分基站不失步,则可能传输设备的某些端口故障或者某些基站故障。
对于标准1588时间同步,要求逐跳设备支持1588协议,并进行路径不对称性误差补偿,否则,路径不对称性误差会造成1588时间同步误差较大。
对于建议的1588时间同步方案(例如,1588ATR、用于FDD切换等对时间同步精度要求较低的宽松1588时间同步),不需要中间传输设备支持1588协议,但是也要求基站到1588时钟服务器双向传播路径对称。
当前的路径不对称性补偿方式只能通过人工逐个站点下站挂表测量,并进行补偿,人力和时间成本高。
本申请实施例中,通过将全网基站的时钟状态识别出来后与1588拓扑进行综合分析,可以识别出时钟故障站点和基准站点,然后再根据Xn/X2接口或者空口测量出的站间同步偏差值对1588时间同步路径不对称性误差进行自动补偿,以此降低1588时间同步的部署要求和成本,并可以提升1588宽松时间同步精度。
具体的,在1588部署阶段,通过将全网基站的时钟状态识别出来后与1588拓扑进行综合分析,识别出1588时钟偏差大的站点,以基准邻站点为基准可以计算该1588时钟偏差大的站点的路径不对称性误差,进一步的,可以对该1588时钟偏差大的站点的路径不对称性误差进行补偿,保障1588v2时间同步精度。
在1588正常运行阶段,如果传输路径发生变化,导致路径发生不对称,则通过全网/局部时钟质量检测也可以及时检测出并自动进行重新补偿。
具体的,在一种可能的实现方式中,在各个周期内,针对1588故障站点可以做如下处理:
如果在某一周期内,1588故障站点与d(d>0)个无故障基准邻站点均测量出站间同步偏差Offset,分别为Offset 1,Offset 2,…,Offset d,则该1588故障站点在本周期的路径不对称性误差补偿量可以通过如下方式进行计算:
△T Asy=1/d*(Offset 1+Offset 2,+…+Offset d),
其中,△T Asy表示本周期的路径不对称性误差补偿量。
通过将全网基站的时钟状态识别出来后与1588拓扑进行综合分析,如果确定是基站问题或者不确定是基站还是传输设备问题,则本周期的路径不对称性误差补偿量优选在基站侧补偿。如果是传输设备问题,则本周期的路径不对称性误差补偿量可以在基站侧补偿,也可以在传输设备上补偿。
如果通过将全网基站的时钟状态识别出来后与1588拓扑进行综合分析,确定传输设备下有K(K>0)个基站测量出了路径不对称性误差分别为△T Asy1,△T Asy2,…,△T Asyk,则在传输设备上的路径不对称性误差补偿量可以通过以下方式进行计算:
△T Asy=1/K*(△T Asy1+△T Asy2+…+△T Asyk)。
其中,△T Asy表示传输设备上的路径不对称性误差补偿量。
可以理解的是,还可以通过其他方式计算传输设备上的路径不对称性误差补偿量,具体此处不做限定。
在一种可能的实现方式中,如果在某一个周期内,故障站点与所有的无故障基准邻站未测量出站点同步偏差,无法计算故障站点的路径不对称性误差,则进一步执行如下判断:
通过将全网基站的时钟状态识别出来后与1588拓扑进行综合分析,如果定界出是基站问题或者不确定基站或者传输设备问题,则本周期故障站点的时钟进入保持状态;如果定界出传输设备问题,则建议在传输设备进行补偿,只要该传输设备下任意一个基站能测量出路径不对称性误差,则可在传输设备进行补偿,除非该传输设备下所有基站均测量不出路径不对称误差,该传输设备下所有1588时间同步基站均进入保持状态。
上面对本申请实施例中的数据处理方法进行了描述,下面对本申请实施例中的网络设备进行描述,请参阅图9,为本申请提供的网络设备的一个实施例的结构示意图。
一种网络设备,包括:
获取单元901,用于在第一周期获取N个第一往返时延,第一往返时延为第一网络设备和第二网络设备通过Xn/X2接口各传输一次报文所消耗的时间,N为大于1的正整数;
确定单元902,用于根据N个第一往返时延确定最小第一往返时延基准值,最小第一往返时延基准值为N个第一往返时延中的最小值;
确定单元902还用于根据最小第一往返时延基准值确定第一周期的站间同步偏差值,第一周期的站间同步偏差值为第一网络设备和第二网络设备通过Xn/X2接口传输报文的站间同步偏差值。
本实施例中,网络设备各单元所执行的操作与前述图3或图7所示实施例中第一基站所执行的方法描述的类似,此处不再赘述。
请参阅图10,为本申请提供的网络设备的另一实施例的结构示意图。
一种网络设备,包括:
获取单元1001,用于在第一周期获取N个第一往返时延,第一往返时延为第一网络设备和第二网络设备通过Xn/X2接口各传输一次报文所消耗的时间,N为大于1的正整数;
确定单元1002,用于根据N个第一往返时延确定最小第一往返时延基准值,最小第一往返时延基准值为N个第一往返时延中的最小值;
确定单元1002还用于根据最小第一往返时延基准值确定第一周期的站间同步偏差值,第一周期的站间同步偏差值为第一网络设备和第二网络设备通过Xn/X2接口传输报文的站间同步偏差值。
可选的,网络设备还包括:
发送单元1003,用于在步骤一中向第二网络设备发送第一检测报文,第一检测报文携带第一发送时间,第一发送时间为第一网络设备向第二网络设备发送第一检测报文的时间;
接收单元1004,用于在步骤二中接收第二网络设备发送的第二检测报文,第二检测报文携带第一接收时间和第二发送时间,第一接收时间为第二网络设备接收到第一检测报文的时间,第二发送时间为第二网络设备发送第二检测报文的时间;
步骤三:确定单元1002还用于确定第二接收时间,第二接收时间为第一网络设备接收到第二检测报文的时间;
步骤四:确定单元1002还用于根据第一发送时间、第一接收时间、第二发送时间和第二接收时间确定第一往返时延;
网络设备在第一周期内执行N次上述步骤一至步骤四,以获取N个第一往返时延。
可选的,网络设备还包括:
计算单元1005,用于通过以下方式进行计算:
RTT=t 2-t 1+t 4-t 3
RTT表示第一往返时延,t 2表示第一接收时间,t 1表示第一发送时间,t 4表示第二接收时间,t 3表示第二发送时间。
可选的,计算单元1005还用于通过以下方式进行计算:
Offset=t 2min-t 1min-RTT min/2;
Offset表示第一周期的站间同步偏差值,t 2min表示最小第一往返时延基准对应的第一接收时间,t 1min表示最小第一往返时延基准对应的第一发送时间,RTT min表示最小第一往返时延基准。
可选的,获取单元1001还用于在第二周期获取M个第一往返时延,M小于N,第二周期小于第一周期;
确定单元1002还用于根据M个第一往返时延确定最小第一往返时延实时值,最小第一往返时延实时值为M个第一往返时延中的最小值;
若最小第一往返时延实时值和最小第一往返时延基准值的差值小于预设阈值,则确定单元1002还用于根据最小第一往返时延实时值确定第二周期的站间同步偏差值。
可选的,获取单元1002还用于获取空口偏差测量值,空口偏差测量值为第一网络设备和第二网络设备通过空口传输报文的同步偏差值;
确定单元1002还用于根据空口偏差测量值和第一周期的站间同步偏差值确定静态误 差值,静态误差值为第一网络设备和第二网络设备传输报文时的时延偏差的固定值;
网络设备还包括:
保存单元1006,用于保存静态误差值。
可选的,网络设备还包括:
补偿单元1007,用于根据静态误差值对第一周期的站间同步偏差值进行补偿,得到目标站间同步偏差值。
本实施例中,网络设备各单元所执行的操作与前述图3或图7所示实施例中第一基站所执行的方法描述的类似,此处不再赘述。
请参阅图11,为本申请提供的网络设备的另一实施例的结构示意图。
网络设备中包括处理器1101、存储器1102、总线1105、接口等设备1104,处理器1101与存储器1102、接口1104相连,总线1105分别连接处理器1101、存储器1102以及接口1104,接口1104用于接收或者发送数据,处理器1101是单核或多核中央处理单元,或者为特定集成电路,或者为被配置成实施本发明实施例的一个或多个集成电路。存储器1102可以为随机存取存储器(Random Access Memory,RAM),也可以为非易失性存储器(non-volatile memory),例如至少一个硬盘存储器。存储器1102用于存储计算机执行指令。具体的,计算机执行指令中可以包括程序1103。
本实施例中,该处理器1101可以执行前述图3或图7所示实施例中网络设备所执行的操作,具体此处不再赘述。
应理解,本申请以上实施例中提及的处理器,或者本申请上述实施例提供的处理器,可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请中以上实施例中的处理器的数量可以是一个,也可以是多个,可以根据实际应用场景调整,此处仅仅是示例性说明,并不作限定。本申请实施例中的存储器的数量可以是一个,也可以是多个,可以根据实际应用场景调整,此处仅仅是示例性说明,并不作限定。
需要说明的是,当网络设备、终端设备或基站包括处理器(或处理单元)与存储单元时,本申请中的处理器可以是与存储单元集成在一起的,也可以是处理器与存储单元通过接口连接,可以根据实际应用场景调整,并不作限定。
本申请实施例中的处理器中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
本申请实施例还提供了一种计算机程序或包括计算机程序的一种计算机程序产品,该计算机程序在某一计算机上执行时,将会使所述计算机实现上述任一方法实施例中与终端 设备/网络设备/基站的方法流程。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例中与网络设备、终端设备或基站相关的方法流程。
在上述图2-图8中各个实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本申请实施例中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,在本申请的描述中,除非另有说明, “/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。
以上所述,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。

Claims (17)

  1. 一种数据处理方法,其特征在于,包括:
    第一网络设备在第一周期获取N个第一往返时延,所述第一往返时延为所述第一网络设备和第二网络设备通过Xn/X2接口各传输一次报文所消耗的时间,所述N为大于1的正整数;
    所述第一网络设备根据所述N个第一往返时延确定最小第一往返时延基准值,所述最小第一往返时延基准值为所述N个第一往返时延中的最小值;
    所述第一网络设备根据所述最小第一往返时延基准值确定所述第一周期的站间同步偏差值,所述第一周期的站间同步偏差值为所述第一网络设备和所述第二网络设备通过Xn/X2接口传输报文的站间同步偏差值。
  2. 根据权利要求1所述的方法,其特征在于,所述第一网络设备在第一周期获取N个第一往返时延包括:
    步骤一:所述第一网络设备向第二网络设备发送第一检测报文,所述第一检测报文携带第一发送时间,所述第一发送时间为所述第一网络设备向第二网络设备发送第一检测报文的时间;
    步骤二:所述第一网络设备接收所述第二网络设备发送的第二检测报文,所述第二检测报文携带第一接收时间和第二发送时间,所述第一接收时间为所述第二网络设备接收到第一检测报文的时间,所述第二发送时间为所述第二网络设备发送所述第二检测报文的时间;
    步骤三:所述第一网络设备确定第二接收时间,所述第二接收时间为所述第一网络设备接收到第二检测报文的时间;
    步骤四:所述第一网络设备根据所述第一发送时间、所述第一接收时间、所述第二发送时间和所述第二接收时间确定第一往返时延;
    所述第一网络设备在第一周期内执行N次上述步骤一至步骤四,以获取N个第一往返时延。
  3. 根据权利要求2所述的方法,其特征在于,所述第一网络设备根据所述第一发送时间、所述第一接收时间、所述第二发送时间和所述第二接收时间确定第一往返时延包括:
    RTT=t 2-t 1+t 4-t 3
    所述RTT表示所述第一往返时延,所述t 2表示所述第一接收时间,所述t 1表示所述第一发送时间,所述t 4表示所述第二接收时间,所述t 3表示所述第二发送时间。
  4. 根据权利要求2或3中任一项所述的方法,其特征在于,所述第一网络设备根据最小第一往返时延基准确定所述第一周期的站间同步偏差值包括:
    Offset=t 2min-t 1min-RTT min/2;
    所述offset表示所述第一周期的站间同步偏差值,所述t 2min表示所述最小第一往返时延基准对应的第一接收时间,所述t 1min表示所述最小第一往返时延基准对应的第一发送时间,所述RTT min表示所述最小第一往返时延基准。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备在第二周期获取M个第一往返时延,所述M小于所述N,所述第二周期小于所述第一周期;
    所述第一网络设备根据所述M个第一往返时延确定最小第一往返时延实时值,所述最小第一往返时延实时值为所述M个第一往返时延中的最小值;
    若所述最小第一往返时延实时值和所述最小第一往返时延基准值的差值小于预设阈值,则所述第一网络设备根据所述最小第一往返时延实时值确定所述第二周期的站间同步偏差值。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备获取空口偏差测量值,所述空口偏差测量值为所述第一网络设备和所述第二网络设备通过空口传输报文的同步偏差值;
    所述第一网络设备根据所述空口偏差测量值和所述第一周期的站间同步偏差值确定静态误差值,所述静态误差值为所述第一网络设备和所述第二网络设备传输报文时的时延偏差的固定值;
    所述第一网络设备保存所述静态误差值。
  7. 根据权利要求6所述的方法,其特征在于,所述第一网络设备根据所述空口偏差测量值和所述第一周期的站间同步偏差值确定静态误差值之后,所述方法还包括:
    所述第一网络设备根据所述静态误差值对所述第一周期的站间同步偏差值进行补偿,得到目标站间同步偏差值。
  8. 一种网络设备,其特征在于,包括:
    获取单元,用于在第一周期获取N个第一往返时延,所述第一往返时延为所述第一网络设备和第二网络设备通过Xn/X2接口各传输一次报文所消耗的时间,所述N为大于1的正整数;
    确定单元,用于根据所述N个第一往返时延确定最小第一往返时延基准值,所述最小第一往返时延基准值为所述N个第一往返时延中的最小值;
    所述确定单元还用于根据所述最小第一往返时延基准值确定所述第一周期的站间同步偏差值,所述第一周期的站间同步偏差值为所述第一网络设备和所述第二网络设备通过Xn/X2接口传输报文的站间同步偏差值。
  9. 根据权利要求8所述的网络设备,其特征在于,所述网络设备还包括:
    发送单元,用于在步骤一中向第二网络设备发送第一检测报文,所述第一检测报文携带第一发送时间,所述第一发送时间为所述第一网络设备向第二网络设备发送第一检测报文的时间;
    接收单元,用于在步骤二中接收所述第二网络设备发送的第二检测报文,所述第二检测报文携带第一接收时间和第二发送时间,所述第一接收时间为所述第二网络设备接收到第一检测报文的时间,所述第二发送时间为所述第二网络设备发送所述第二检测报文的时间;
    步骤三:所述确定单元还用于确定第二接收时间,所述第二接收时间为所述第一网络设备接收到第二检测报文的时间;
    步骤四:所述确定单元还用于根据所述第一发送时间、所述第一接收时间、所述第二发送时间和所述第二接收时间确定第一往返时延;
    所述网络设备在第一周期内执行N次上述步骤一至步骤四,以获取N个第一往返时延。
  10. 根据权利要求9所述的网络设备,其特征在于,所述网络设备还包括:
    计算单元,用于通过以下方式进行计算:
    RTT=t 2-t 1+t 4-t 3
    所述RTT表示所述第一往返时延,所述t 2表示所述第一接收时间,所述t 1表示所述第一发送时间,所述t 4表示所述第二接收时间,所述t 3表示所述第二发送时间。
  11. 根据权利要求9或10中任一项所述的网络设备,其特征在于,所述计算单元还用于通过以下方式进行计算:
    Offset=t 2min-t 1min-RTT min/2;
    所述offset表示所述第一周期的站间同步偏差值,所述t 2min表示所述最小第一往返时延基准对应的第一接收时间,所述t 1min表示所述最小第一往返时延基准对应的第一发送时间,所述RTT min表示所述最小第一往返时延基准。
  12. 根据权利要求8至11中任一项所述的网络设备,其特征在于,所述获取单元还用于在第二周期获取M个第一往返时延,所述M小于所述N,所述第二周期小于所述第一周期;
    所述确定单元还用于根据所述M个第一往返时延确定最小第一往返时延实时值,所述最小第一往返时延实时值为所述M个第一往返时延中的最小值;
    若所述最小第一往返时延实时值和所述最小第一往返时延基准值的差值小于预设阈值,则所述确定单元还用于根据所述最小第一往返时延实时值确定所述第二周期的站间同步偏差值。
  13. 根据权利要求8至12中任一项所述的网络设备,其特征在于,所述获取单元还用于获取空口偏差测量值,所述空口偏差测量值为所述第一网络设备和所述第二网络设备通过空口传输报文的同步偏差值;
    所述确定单元还用于根据所述空口偏差测量值和所述第一周期的站间同步偏差值确定静态误差值,所述静态误差值为所述第一网络设备和所述第二网络设备传输报文时的时延偏差的固定值;
    所述网络设备还包括:
    保存单元,用于保存所述静态误差值。
  14. 根据权利要求13所述的网络设备,其特征在于,所述网络设备还包括:
    补偿单元,用于根据所述静态误差值对所述第一周期的站间同步偏差值进行补偿,得到目标站间同步偏差值。
  15. 一种可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1-7中任一项所述的方法被实现。
  16. 一种计算机程序产品,所述计算机程序产品包括指令,当所述指令被运行时,使得如权利要求1至7任一项所述的方法被执行。
  17. 一种通信装置,其特征在于,包括至少一个处理器和与所述至少一个处理器耦合的存储器,所述至少一个处理器用于执行权利要求1至7任一项所述的方法。
PCT/CN2021/119307 2020-09-25 2021-09-18 数据处理方法及其装置 WO2022063078A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21871448.3A EP4210403A4 (en) 2020-09-25 2021-09-18 DATA PROCESSING METHOD AND DEVICE
US18/189,983 US20230232347A1 (en) 2020-09-25 2023-03-24 Data processing method and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011027435.7 2020-09-25
CN202011027435.7A CN114258126A (zh) 2020-09-25 2020-09-25 数据处理方法及其装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/189,983 Continuation US20230232347A1 (en) 2020-09-25 2023-03-24 Data processing method and apparatus therefor

Publications (1)

Publication Number Publication Date
WO2022063078A1 true WO2022063078A1 (zh) 2022-03-31

Family

ID=80789415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119307 WO2022063078A1 (zh) 2020-09-25 2021-09-18 数据处理方法及其装置

Country Status (4)

Country Link
US (1) US20230232347A1 (zh)
EP (1) EP4210403A4 (zh)
CN (1) CN114258126A (zh)
WO (1) WO2022063078A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115174478A (zh) * 2022-07-27 2022-10-11 深圳星云智联科技有限公司 一种网络拥塞控制方法及相关装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117834511A (zh) * 2022-09-27 2024-04-05 中兴通讯股份有限公司 确定相位差的方法、装置、存储介质及电子装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103889044A (zh) * 2012-12-19 2014-06-25 中国移动通信集团广东有限公司 一种空口同步的方法和装置
US20180152281A1 (en) * 2016-11-28 2018-05-31 Rad Data Communications Ltd. One-way packet delay measurement
CN108616977A (zh) * 2018-06-21 2018-10-02 同济大学 一种基于最小二乘平差的uwb多点时延校正方法
CN109309937A (zh) * 2017-07-26 2019-02-05 华为技术有限公司 切换接入点的方法、控制器、网络设备和存储介质
CN110266420A (zh) * 2019-04-29 2019-09-20 北京达佳互联信息技术有限公司 时钟同步方法、时钟同步装置和计算机可读存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1866814B (zh) * 2005-05-17 2011-02-02 上海华为技术有限公司 锁定时钟的方法及其系统
US9335785B2 (en) * 2011-07-20 2016-05-10 Aviat U.S., Inc. Systems and methods of clock synchronization between devices on a network
US8792380B2 (en) * 2012-08-24 2014-07-29 Accedian Networks Inc. System for establishing and maintaining a clock reference indicating one-way latency in a data network
WO2016181198A1 (en) * 2015-05-14 2016-11-17 Telefonaktiebolaget Lm Ericsson (Publ) Methods and system for synchronizing nodes in a wireless network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103889044A (zh) * 2012-12-19 2014-06-25 中国移动通信集团广东有限公司 一种空口同步的方法和装置
US20180152281A1 (en) * 2016-11-28 2018-05-31 Rad Data Communications Ltd. One-way packet delay measurement
CN109309937A (zh) * 2017-07-26 2019-02-05 华为技术有限公司 切换接入点的方法、控制器、网络设备和存储介质
CN108616977A (zh) * 2018-06-21 2018-10-02 同济大学 一种基于最小二乘平差的uwb多点时延校正方法
CN110266420A (zh) * 2019-04-29 2019-09-20 北京达佳互联信息技术有限公司 时钟同步方法、时钟同步装置和计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4210403A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115174478A (zh) * 2022-07-27 2022-10-11 深圳星云智联科技有限公司 一种网络拥塞控制方法及相关装置

Also Published As

Publication number Publication date
US20230232347A1 (en) 2023-07-20
EP4210403A4 (en) 2024-03-27
EP4210403A1 (en) 2023-07-12
CN114258126A (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
EP4114099B1 (en) Apparatus and method for synchronization using wireless communication network in wireless communication system
WO2022063078A1 (zh) 数据处理方法及其装置
US8923346B2 (en) Time synchronization method, device and system
EP1931084B1 (en) A method for getting the link estimating parameters
WO2017101528A1 (zh) 一种时钟链路切换方法、装置及基站
US9813175B2 (en) Method for detecting timing references affected by a change in path delay asymmetry between nodes in a communication network
US11503560B2 (en) Time synchronization offset adjustment method and apparatus, terminal, and access layer device
US9955447B2 (en) Clock synchronization method, mobile network system, network controller and network switch
JP2013521692A (ja) 通信システムでの通信階層とサブ階層との相互作用を介した通信システムの正確なクロック同期化のための方法及びシステム
WO2001015345A1 (en) Synchronization deviation detection
US20150163154A1 (en) Method and devices for packet selection
US20190007969A1 (en) Wireless communication system, wireless communication device, and communication method
US10334539B2 (en) Metered interface
WO2023231426A1 (zh) 时延测量方法及其装置、存储介质、程序产品
CN111884751A (zh) 一种基于ptp的智能电网时间同步方法和装置
JP2022522984A (ja) リソース周期構成方法およびデバイス、リンク処理および確立方法およびデバイス
KR20100048124A (ko) 근거리 통신망에서의 시간 동기화 방법
JP2019016872A (ja) 同期システム、通信装置、通信方法およびプログラム
JP2008182549A (ja) 通信システムとこれに使用する終端装置及び遅延測定方法
Lin et al. A 5G Synchronous Optical Networking Management System
CN106788949B (zh) 一种同步规划方法及装置
US20190246331A1 (en) Management apparatus, communication system, and method therefor
CN112867132B (zh) 一种基于ptp的多链路时延抖动优化方法及装置
CN114745070A (zh) 非对称性线路时延计算方法与系统
TW202418788A (zh) 使用者設備輔助報告方法與使用者設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871448

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021871448

Country of ref document: EP

Effective date: 20230403

NENP Non-entry into the national phase

Ref country code: DE