WO2022062736A1 - 可调光分插复用器 - Google Patents

可调光分插复用器 Download PDF

Info

Publication number
WO2022062736A1
WO2022062736A1 PCT/CN2021/111571 CN2021111571W WO2022062736A1 WO 2022062736 A1 WO2022062736 A1 WO 2022062736A1 CN 2021111571 W CN2021111571 W CN 2021111571W WO 2022062736 A1 WO2022062736 A1 WO 2022062736A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light beam
optical filter
incident
reflected
Prior art date
Application number
PCT/CN2021/111571
Other languages
English (en)
French (fr)
Inventor
欧阳奎
李腾浩
韩荦
董晓诗
孙丰沛
常志武
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21871113.3A priority Critical patent/EP4206767A4/en
Publication of WO2022062736A1 publication Critical patent/WO2022062736A1/zh
Priority to US18/125,930 priority patent/US20230231642A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29395Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device configurable, e.g. tunable or reconfigurable
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • G02B6/3518Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror the reflective optical element being an intrinsic part of a MEMS device, i.e. fabricated together with the MEMS device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0205Select and combine arrangements, e.g. with an optical combiner at the output after adding or dropping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0283WDM ring architectures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD

Definitions

  • the present application relates to the field of optical communications, and more particularly, to tunable optical add-drop multiplexers.
  • optical communication network With the development of optical communication network, one of the goals of future optical communication network is to realize intelligent all-optical network to reduce or avoid the conversion of photoelectric to light.
  • the intelligent all-optical network can reduce the delay to achieve ultra-large bandwidth on the one hand, and reduce the cost on the other hand, and can realize intelligent control of the entire optical communication network and optimize the optical communication network resources.
  • Optical communication networks contain many passive devices, such as optical crossbars, wavelength selective switches, multiplexers, demultiplexers, and so on.
  • an optical add-drop multiplexer (OADM) based on wavelength division multiplexing (WDM) technology is a device that implements add-drop and multiplexing of branch signals in the optical domain.
  • OADM equipment has important applications in long-distance trunk lines and metropolitan area networks, and can realize the direct cross networking function of transmission signals at the optical layer.
  • the existing OADM mainly has two kinds of fixed type and reconfigurable type.
  • the fixed OADM can only realize the up and down of one or more fixed wavelength signals, which has good reliability but poor flexibility. In order to meet the up and down of different wavelength signals, it is necessary to manufacture various types of devices.
  • Reconfigurable OADM also known as tunable OADM (tunable OADM, T-OADM)
  • T-OADM tunable OADM
  • T-OADM can dynamically adjust the wavelength of the up and down signals, support wavelength-level service switching, flexible network structure, simple operation and maintenance, and realize intelligent Control is an important development direction of OADM.
  • dynamic adjustment of the central wavelength of the optical filter can be achieved by dynamically changing the incident angle of the incident beam to the optical filter, and then the wavelength of the upper and lower signals can be dynamically adjusted.
  • how to implement a flexible and controllable T-OADM is an urgent problem to be solved.
  • the present application provides a tunable optical add-drop multiplexer, which can change the incident angle of the incident beam to the optical filter through the beam adjustment device, and couple the transmitted beam or the reflected beam to the corresponding port through the beam adjustment device, thereby realizing a Flexible and controllable T-OADM device.
  • a tunable optical add-drop multiplexer T-OADM comprising: a first port, a first beam adjustment device, a first optical filter, a second beam adjustment device, a second port, a third port, where,
  • the first port for inputting an input light beam containing at least two wavelengths
  • the first beam adjusting device is configured to adjust the transmission direction of the input beam according to the first signal downloaded (or uploaded) by the T-OADM, so that the input beam hits the first beam at a first incident angle an optical filter, wherein the first incident angle corresponds to the wavelength of the first signal;
  • the first optical filter is used for receiving a light beam incident at the first incident angle, and dividing the incident light beam into a first transmitted light beam and a first reflected light beam, wherein one of the first transmitted light beams is the wavelength of the included light beam is different from the wavelength of the included light beam in the first reflected light beam;
  • the second beam adjusting device is used to adjust the transmission direction of the first transmitted beam according to the first incident angle
  • the second port for outputting the first transmitted light beam
  • the first beam adjusting device is further configured to adjust the transmission direction of the first reflected beam according to the first incident angle;
  • the third port is used for outputting the first reflected light beam.
  • the beam adjusting device adjusts the first incident angle of the incident beam to the optical filter according to the first signal that the T-OADM needs to download (or upload), and the optical filter divides the incident beam into transmitted beams After and the reflected beam, the transmission direction of the transmitted beam emitted from the optical filter is further adjusted by the beam adjustment device according to the first incident angle, and the transmission direction of the reflected beam emitted from the optical filter is adjusted according to the first incident angle, so that the transmission direction is The beam and the reflected beam are output to the corresponding ports, thereby realizing a more flexible and controllable T-OADM device.
  • the transmission direction of the incident light beam can be adjusted by the first beam adjusting device.
  • the first beam adjusting device also needs to further adjust the transmission direction of the reflected beam according to the adjustment of the incident beam
  • the second beam adjusting device needs to adjust the transmission direction of the reflected beam according to the adjustment of the incident beam. The adjustment of the incident beam further adjusts the transmission direction of the transmitted beam accordingly.
  • the first port can also be connected to a polarization beam splitter, which is used to split the light beam into two light beams with the same polarization
  • the third port and the second port can also be connected to The polarization beam combiner is used to combine two beams with the same polarization into one beam.
  • the first beam adjusting device and the second beam adjusting device may be implemented by a MEMS micromirror or an LCOS, which is not limited in this embodiment of the present application.
  • the first optical filter may be a bandpass optical filter or a bandstop optical filter, and the filtering wavelength of the first optical filter is related to the first incident angle.
  • the first optical filter When the first optical filter is a band-pass optical filter, the first optical filter can divide the incident light beam into a first transmitted light beam containing the first wavelength and a first reflected light beam containing at least one wavelength.
  • a wavelength is the wavelength of the light beam selected by the first optical filter when it strikes the first optical filter at the first incident angle.
  • the signal output by the second port is the signal downloaded by the T-OADM device, and the signal output by the third port is the signal transparently transmitted by the T-OADM device.
  • the first optical filter can divide the incident light beam into a first reflected light beam containing the first wavelength and a first transmitted light beam containing at least one wavelength.
  • the wavelength is the wavelength of the light beam selected by the first optical filter when it strikes the first optical filter at the first incident angle.
  • the signal output by the third port is the signal downloaded by the T-OADM device, and the signal output by the second port is the signal transparently transmitted by the T-OADM device.
  • outputting the transmitted light beam may include outputting all or part of the transmitted light beam, which is not limited.
  • the outputting reflected light beams may include outputting all or part of the reflected light beams, which is not limited.
  • a control unit is further included, and the control unit is configured to:
  • the instruction is used to indicate the wavelength of the first signal downloaded (or uploaded) by the T-OADM;
  • the first deflection angle of the first beam adjustment device to the input beam the second deflection angle of the second beam adjustment device to the first transmitted beam, and the a third deflection angle of the first beam adjusting device to the first reflected beam;
  • controlling the first beam adjusting device to adjust the transmission direction of the input beam according to the first deflection angle
  • the first beam adjusting device is controlled to adjust the transmission direction of the first reflected beam.
  • the control unit can receive the wavelength of the first signal that the T-OADM device needs to download (or upload), and according to the wavelength of the first signal, control the deflection angle of the beam by each beam adjusting device , so that the wavelength of the signal downloaded or uploaded by the T-OADM device can be flexibly controlled according to actual needs, and a more flexible and controllable T-OADM device can be realized.
  • control unit may be pre-configured to store multiple wavelengths of the signal that the T-OADM device can download or upload, and the beam adjustment device corresponding to each wavelength for the incident beam, the transmitted beam, and the reflected beam. deflection angle.
  • control unit acquires the wavelength of the signal to be downloaded or uploaded by the T-OADM device, it can determine the deflection angle of the incident beam, transmitted beam and reflected beam by the beam adjustment device corresponding to the wavelength according to the pre-configuration.
  • control unit may pre-store the correspondence between the wavelengths of the signals that can be downloaded or uploaded by the T-OADM device and the deflection angles of the incident beam, transmitted beam, and reflected beam by the beam adjustment device.
  • control unit acquires the wavelength of the signal to be downloaded or uploaded by the T-OADM device, it can determine the deflection angle of the incident beam, transmitted beam and reflected beam by the beam adjustment device corresponding to the wavelength according to the corresponding relationship.
  • the first beam adjustment device includes an incident beam adjustment device and a reflected beam adjustment device, wherein the incident beam adjustment device is used to adjust the intensity of the input beam Transmission direction; the reflected beam adjustment device is used to adjust the transmission direction of the first reflected beam.
  • the transmission direction of the input beam can be adjusted by the incident beam adjustment device, and the transmission direction of the first reflected beam can be adjusted by the reflected beam adjustment device, so that the optical path can be set more flexibly.
  • the incident beam adjustment device and the reflected beam adjustment device may be a MEMS micromirror or an LCOS, respectively, which is not limited in this embodiment of the present application.
  • the control unit may be pre-configured to store a signal that the T-OADM device can download or upload. and the deflection angles of the above-mentioned three MEMS micromirrors corresponding to each wavelength (for example, the wavelengths and the deflection angles of the respective mirrors corresponding to each wavelength can be stored in the form of a table). That is to say, by setting the three MEMS micromirrors to a specific angle by the control unit, the T-OADM device can be controlled to download or upload a signal of a specific wavelength.
  • the control unit may be pre-configured to store a number of signals that the T-OADM device can download or upload. wavelengths, and the voltage values applied by the above three LCOS corresponding to each wavelength. That is, by applying a specific voltage to the three LCOS settings by the control unit, the T-OADM device can be controlled to download or upload a signal of a specific wavelength.
  • the first beam adjusting device may include a double-reflection surface MEMS micromirror, and one of the double-reflection surface MEMS micromirrors is used to adjust the transmission direction of the input beam, so that the input beam is The above-mentioned first incident angle strikes the first optical filter, and the other reflective surface micromirror in the double reflective surface MEMS micromirror is used to adjust the transmission direction of the first reflected light beam, so that the reflected light beam is coupled to the corresponding port.
  • the control unit may be pre-configured to store a signal that the T-OADM device can download or upload.
  • a first optical device is further included, wherein the incident beam adjustment device, the first optical device, the first optical filter and the first optical filter The two beam adjusting devices are respectively located on the first optical axis in sequence.
  • the first optical device is used for converging the light beam emitted from the incident light beam adjusting device to the second light beam adjusting device, wherein the light beam emitted from the incident light beam adjusting device is in relation to the first optical axis.
  • the included angle corresponds one-to-one with the included angle between the light beam emitted from the first optical device and the first optical axis.
  • the incident beam adjusting device can be used to control the size of the first incident angle of the input beam incident on the first optical filter, so that the signal downloaded or uploaded by the T-OADM can be controlled. wavelength.
  • the first optical device to condense the light beams emitted from the incident light beam adjusting device, the structure of the T-OADM can be made more compact, and the volume of the T-OADM device can be reduced.
  • the included angles between the light beams emitted from the incident light beam adjusting device and the first optical axis are also different.
  • the first optical device may be specifically configured to converge the light beam emitted from the incident beam adjusting device to the intersection of the first optical axis and the second beam adjusting device, which is not limited in this application.
  • the first optical device includes a first optical 4f system
  • the incident beam adjustment means is located at the front focus of the front lens of the first optical 4f system, and the second beam adjustment means is located at the rear lens of the first optical 4f system transmitted through the first optical filter
  • the reflected beam adjusting device is located at the back focus of the optical path reflected by the first optical filter of the back lens of the first optical 4f system. In this way, the light beams emitted from the incident light beam adjusting device can be converged.
  • the angle between the light beam emitted from the incident beam adjusting device and the first optical axis is the same as the angle between the light beam emitted from the first optical device and the first optical axis.
  • the angle between the beam and the first optical axis is equal.
  • the angle between the light beam emitted from the incident beam adjusting device and the first optical axis is the same as the angle between the light beam emitted from the first optical device and the first optical axis.
  • the corresponding relationship between the included angle of the light beam and the first optical axis is determined according to the focal lengths of the two lenses in the first optical 4f system.
  • the first optical device includes a first lens
  • the incident beam adjusting device is located at twice the focal length of the first side of the first lens
  • the second beam adjusting device is located on the second side of the first lens at twice the focal length of the optical path transmitted through the first optical filter
  • the reflected beam adjusting device is located on the second side of the first lens through the first optical filter.
  • the included angle between the light beam emitted from the incident beam adjusting device and the first optical axis is equal to the included angle between the light beam emitted from the first optical device and the first optical axis.
  • a spherical mirror is further included, for converging the light beam emitted from the incident light beam adjusting device to the second light beam adjusting device, wherein the The included angle between the light beam emitted from the incident light beam adjusting device and the optical axis corresponds to the included angle between the light beam emitted from the spherical mirror and the optical axis.
  • the incident beam adjustment device may be arranged at twice the focal length of the first side of the spherical mirror, and the second beam adjustment device may be arranged at the second side of the spherical mirror and transmitted through the first optical filter.
  • the reflected beam adjusting device is arranged at twice the focal length of the optical path reflected by the first optical filter of the spherical mirror. In this way, the beams emitted from the incident beam adjusting device can be converged.
  • the included angle between the light beam emitted from the incident beam adjusting device and the optical axis is equal to the included angle between the light beam emitted from the spherical mirror and the optical axis.
  • the spherical reflector is specifically used to converge the light beam emitted by the incident light beam adjusting device to the intersection of the optical axis and the second light beam adjusting device, which is not limited in this application.
  • a second optical device and a third optical device are further included,
  • the input beam adjustment device, the first optical filter, the second optical device and the second beam adjustment device are respectively arranged on the second optical axis in sequence, wherein the method of the first optical filter
  • the angle between the line and the second optical axis is ⁇ ;
  • the second optical device is used for converging the first transmission light beam emitted from the first optical filter to the second beam adjustment device, wherein the light beam emitted from the incident beam adjustment device is the same as the second beam adjustment device.
  • the included angle of the optical axis is in one-to-one correspondence with the included angle between the light beam emitted from the second optical device and the second optical axis;
  • the first optical filter, the third optical device and the reflected beam adjusting device are respectively arranged on the third optical axis, and the angle between the second optical axis and the third optical axis is 2 ⁇ ;
  • the third optical device is used for converging the first reflected light beam emitted from the first optical filter onto the reflected light beam adjusting device, wherein the light beam emitted from the incident light beam adjusting device is the same as the second light beam.
  • the included angle of the optical axis corresponds one-to-one with the included angle between the light beam emitted from the third optical device and the third optical axis.
  • the incident beam adjusting device can be used to control the size of the first incident angle of the input beam incident on the first optical filter, so that the T-OADM can be controlled The wavelength of the downloaded or uploaded signal.
  • the second optical device and the third optical device are used to condense the light beams emitted from the incident beam adjusting device, which can make the structure of the T-OADM more compact, which is beneficial to reduce the volume of the T-OADM device.
  • the angle between the first transmitted beam and the second optical axis is also different, and the angle between the first reflected beam and the third optical axis is also different.
  • the second optical device may be specifically configured to converge the first transmission beam emitted from the first optical filter to the intersection of the third optical axis and the second beam adjusting device
  • the third optical device may be specifically configured to converge the first reflected light beam emitted from the first optical filter to the intersection of the fourth optical axis and the reflected light beam adjustment device, which is not limited in this application.
  • the second optical device includes a second optical 4f system, and the incident beam adjusting device is located at a front focus of a front lens of the second optical 4f system , the second beam adjustment device is located at the rear focus of the rear lens of the second optical 4f system; or the second optical device includes a second lens, and the incident beam adjustment device is located at the second lens of the second lens.
  • the second beam shaping device is located at twice the focal length of the second side of the second lens. In this way, the transmitted light beams emitted from the first optical filter can be converged by the second optical device.
  • the angle between the beam emitted from the incident beam adjustment device and the second optical axis is the difference between the angle between the beam emitted from the second optical device and the second optical axis
  • the relevant description in the first optical device and details are not repeated here.
  • the third optical device includes a third optical 4f system, and the incident beam adjusting device is located at the passage of the front lens of the third optical 4f system through the At the front focus of the light path reflected by the first optical filter, the reflected beam adjustment device is located at the rear focus of the rear lens of the third optical 4f system; or the third optical device includes a third lens, the incident A beam adjusting device is located at twice the focal length of the light path reflected by the first optical filter on the first side of the third lens, and the reflected beam adjusting device is located at twice the focal length on the second side of the third lens place. In this way, the reflected light beam emitted from the first optical filter can be converged by the third optical device.
  • the angle between the beam emitted from the incident beam adjustment device and the third optical axis is the difference between the angle between the beam emitted from the third optical device and the third optical axis
  • a fourth optical device, a fifth optical device, and a sixth optical device are further included, wherein the incident beam adjustment device, the fourth optical device, the The first optical filter, the fifth optical device and the second beam adjustment device are respectively arranged on the fourth optical axis in sequence, wherein the normal of the first optical filter and the fourth optical axis The included angle between is ⁇ ;
  • the first optical filter, the sixth optical device and the reflected beam adjustment device are respectively arranged on the fifth optical axis in sequence, and the angle between the fifth optical axis and the fourth optical axis is 2 ⁇ ;
  • the fourth optical device is used for converging the light beam emitted from the incident beam adjusting device onto the first optical filter, wherein the included angle between the light beam emitted from the incident beam adjusting device and the fourth optical axis One-to-one correspondence with the included angle between the light beam emitted from the fourth optical device and the fourth optical axis;
  • the fifth optical device is used for converging the first transmission light beam emitted from the first optical filter to the second beam adjusting device, wherein the first transmission light beam emitted from the first optical filter
  • the included angle between the first transmitted light beam and the fourth optical axis corresponds one-to-one with the included angle between the light beam emitted from the fifth optical device and the fourth optical axis;
  • the sixth optical device is used for converging the first reflected light beam emitted from the first optical filter onto the reflected light beam adjusting device, wherein the first reflected light beam emitted from the first optical filter
  • the included angle between a reflected light beam and the fifth optical axis corresponds one-to-one with the included angle between the light beam emitted from the sixth optical device and the fifth optical axis.
  • the incident beam adjusting device can be used to control the size of the first incident angle of the input beam incident on the first optical filter, thereby Ability to control the wavelength of the signal downloaded or uploaded by the T-OADM.
  • the fourth optical device is used to condense the light beam emitted from the incident light beam adjusting device onto the first optical filter, which can help to reduce the area of the light spot where the input light beam is incident on the first optical filter, which in turn can help reduce the The area of the first optical filter.
  • the angle between the beam emitted from the incident beam adjusting device and the fourth optical axis is different, and the angle between the first transmitted beam and the fourth optical axis is also different.
  • the angle between the first reflected light beam and the fifth optical axis is also different.
  • the fourth optical device may be specifically configured to converge the light beam emitted from the incident beam adjusting device to the intersection with the fourth optical axis and the first optical filter
  • the fifth optical device It can be specifically used for converging the first transmission light beam emitted from the first optical filter to the intersection of the fourth optical axis and the second light beam adjusting device
  • the sixth optical device can be specifically used to The first reflected light beam emitted by an optical filter converges on the intersection of the fifth optical axis and the reflected light beam adjusting device, which is not limited in this application.
  • the fourth optical device includes a fourth optical 4f system, and the incident beam adjusting device is located at a front focus of a front lens of the fourth optical 4f system , the first optical filter is located at the rear focus of the rear lens of the fourth optical 4f system; or the fourth optical device includes a fourth lens, and the incident beam adjustment device is located at the fourth lens of the fourth lens.
  • the first optical filter is located at twice the focal length of the second side of the fourth lens. In this way, the light beams emitted from the incident light beam adjusting device can be converged by the fourth light beam adjusting device.
  • the angle between the beam emitted from the incident beam adjustment device and the fourth optical axis is the difference between the angle between the beam emitted from the fourth optical device and the fourth optical axis.
  • the fifth optical device includes a fifth optical 4f system, and the first optical filter is located at a front focus of a front lens of the fifth optical 4f system , the second beam adjustment device is located at the rear focus of the rear lens of the fifth optical 4f system; or the fifth optical device includes a fifth lens, and the first optical filter is located at the fifth lens At twice the focal length of the first side of the fifth lens, the second beam adjusting means is located at twice the focal length of the second side of the fifth lens. In this way, the transmission light beam emitted from the first optical filter can be converged by the fifth beam adjusting device.
  • the fifth optical device includes the fifth optical 4f system or the fifth lens
  • the included angle between the transmitted light beam emitted from the first optical filter and the fourth optical axis and the included angle between the light beam emitted from the fifth optical device and the fourth optical axis For the corresponding relationship between the angles, reference may be made to the relevant description in the first optical device, and details are not repeated here.
  • the sixth optical device includes a sixth 4f system, and the first optical filter is located at a front focus of a front lens of the sixth optical 4f system , the reflected beam adjustment device is located at the rear focus of the rear lens of the sixth optical 4f system; or the sixth optical device includes a sixth lens, and the first optical filter is located at the sixth lens of the sixth lens.
  • the reflected beam adjusting means is located at twice the focal length of the second side of the sixth lens. In this way, the sixth beam adjusting device can realize the convergence of the reflected beam emitted from the first optical filter.
  • the sixth optical device includes the sixth optical 4f system or the sixth lens
  • the included angle between the reflected beam emitted from the first optical filter and the fifth optical axis and the included angle between the beam emitted from the sixth optical device and the fifth optical axis For the corresponding relationship between the angles, reference may be made to the relevant description in the first optical device, and details are not repeated here.
  • the first beam adjusting device includes a double-reflection MEMS micromirror, wherein one MEMS micromirror in the double-reflection MEMS micromirror is used to The beam is reflected, and another MEMS micromirror is used to reflect the reflected beam.
  • the T-OADM also includes a spherical mirror for converging the light beam emitted from the double-reflection surface MEMS micromirror to the second beam adjustment device, wherein the light beam emitted from the first beam adjustment device is the same as the light beam emitted from the first beam adjustment device.
  • the included angle of the axis corresponds one-to-one with the included angle between the light beam emitted from the spherical mirror and the optical axis.
  • the first beam adjusting device can be arranged at twice the focal length of the first side of the spherical reflector, and at the same time the first beam adjusting device is also in the optical path of the spherical reflector reflected by the first optical filter.
  • the second beam-adjusting device is positioned at twice the focal length of the light path transmitted by the first optical filter on the second side of the spherical mirror. In this way, the input beam emitted from the first beam adjusting device can be converged.
  • the included angle between the light beam emitted from the incident beam adjusting device and the optical axis is equal to the included angle between the light beam emitted from the spherical mirror and the optical axis.
  • the spherical reflector is specifically used to converge the light beams emitted by the dual-reflection surface MEMS micromirrors to the intersection of the optical axis and the second light beam adjusting device, which is not limited in this application.
  • a reflector is further included for adjusting the transmission direction of the reflected light beam emitted from the spherical reflector, so that the reflected light beam is output to the third port .
  • the optical path of the reflected light beam can be folded, so that the structure of the T-OADM can be made more compact, and the volume of the T-OADM device can be reduced.
  • the first beam adjustment device specifically uses The transmission direction of the first reflected light beam is adjusted so that the first reflected light beam is output to the third port; the third port is used for outputting the first reflected light beam. In this way, the T-OADM can realize the downloading of the beam of the first wavelength.
  • the first optical filter is a band-pass optical filter
  • the third port outputs part of the first reflected beam as an example.
  • the T-OADM also includes a second optical filter, a third beam adjustment device, a fourth beam adjustment device, and a fourth port,
  • the first beam adjusting device is configured to adjust the transmission direction of the first reflected beam according to the second signal downloaded (or uploaded) by the T-OADM, so that the first reflected beam hits the the second optical filter, wherein the second incident angle corresponds to the wavelength of the second signal;
  • the second optical filter is used for receiving the light beam incident at the second incident angle, and dividing the light beam incident on the second optical filter into a second transmitted light beam and a first reflected light beam, wherein the The wavelength of the light beam contained in the second transmitted light beam is different from the wavelength of the light beam contained in the second reflected light beam;
  • the third beam adjusting device is used to adjust the transmission direction of the second transmission beam according to the second incident angle
  • the fourth port for outputting the second transmitted light beam
  • the fourth beam adjusting device is used to adjust the transmission direction of the second reflected beam according to the second incident angle
  • the third port is used for outputting the second reflected light beam.
  • the beam adjusting device adjusts the transmission direction of the first reflected beam emitted from the first optical filter according to the wavelength of the second signal to be downloaded (or uploaded) by the T-OADM, so that the first reflected beam is The second incident angle is incident on the second optical filter, and the transmission direction of the transmitted beam and the reflected beam emitted from the second optical filter can be adjusted by the beam adjusting device according to the second incident angle, so that the transmitted beam emitted from the optical filter
  • the light beam and the reflected light beam are output to the corresponding ports, so that the T-OADM device can download (or upload) signals of two wavelengths at the same time. upload) the signal of the second wavelength.
  • the second optical filter when the first optical filter is a bandpass optical filter, the second optical filter is also a bandpass optical filter; when the first optical filter is a bandstop optical filter, The second optical filter is also a band-stop optical filter, which is not limited in this embodiment of the present application.
  • the second port is further configured to input the input beam of the first wavelength, The input light beam is transmitted through the first optical filter and output to the first port; the first port is also used for outputting the light beam transmitted through the first optical filter. In this way, the uploading of the signal of the first wavelength can be realized.
  • the third port is also used to input the light beam output from the fifth port, so The light beam is reflected by the first optical filter and output to the first port; the first port is also used for outputting the light beam reflected by the first optical filter. In this way, transparent transmission of the signal can be achieved.
  • the first port may also be referred to as an input/output port
  • the second port may also be referred to as a first transmissive input/output port
  • the third port may also be referred to as a first reflective input/output port
  • the fourth port may also be referred to as a first reflective input/output port.
  • the port may also be referred to as a second transmission input/output port
  • the fifth port may also be referred to as a second reflection input/output port, which is not limited in this embodiment of the present application.
  • the first optical filter includes at least two regions, and the at least two regions have different filter bandwidths
  • the device further includes a driving component connected to the first optical filter for driving the first optical filter to move so that the input light beam is incident on a first region of the at least two regions, wherein , the filter wavelength of the first region is the same as the wavelength of the first signal.
  • the first optical filter by setting the first optical filter to include at least two regions with different filter bandwidths, and by adjusting the position where the light beam is incident on the first optical filter, the first optical filter can be dynamically adjusted.
  • the central wavelength is filtered, so that the T-OADM device can dynamically adjust the wavelength of the downloaded (or uploaded) signal.
  • a tunable optical add-drop multiplexer comprising: a first port, a rotating part, an optical filter, a mirror, a transmission port and a reflecting port, wherein the rotating part is respectively connected to the optical
  • the filter is connected to the reflector, the optical filter is connected to the reflector, and there is a fixed angle between the optical filter and the reflective surface of the reflector;
  • the first port for inputting an input light beam containing at least two wavelengths
  • the rotating part is used for rotating to adjust the inclination angle of the optical filter and the reflection mirror, so that the input light beam hits the optical filter at a first incident angle;
  • the optical filter is used for receiving a light beam incident at the first incident angle, and dividing the incident light beam into a transmitted light beam and a reflected light beam, wherein the transmitted light beam includes the wavelength of the light beam and the reflected light beam The wavelengths of the beams contained in the beams are different;
  • the reflecting mirror for reflecting the reflected light beam, so that the reflected light beam is output to the reflection port;
  • the transmission port for outputting the transmission light beam
  • the reflection port is used for outputting the reflected light beam.
  • the optical filter and the reflector are arranged to be connected to the rotating member, and a fixed angle is maintained between the optical filter and the rotating member, and the inclination angle of the optical filter is changed by the rotation of the rotating member to change the incident incident.
  • the wavelength of the optical signal downloaded (or uploaded) by the T-OADM needs to be adjusted, that is, the filter center wavelength of the optical filter (or the wavelength of the first transmitted beam) needs to be adjusted, it can be achieved by controlling the rotation of the rotating part.
  • the optical filter and the reflection mirror can continue to maintain the set fixed angle, it is possible to realize the coupling of the transmitted light beam and the reflected light beam into the corresponding ports.
  • a control unit may also be included for controlling the rotation of the rotating member, so as to adjust the first incident angle of the light beam incident on the first optical filter, so as to realize the need for downloading (or uploading) to the T-OADM device.
  • the wavelength of the signal is adjusted.
  • the rotating component may be a motor or a MEMS rotating component, which is not limited in this embodiment of the present application.
  • the optical filter may be a band-pass optical filter or a band-stop optical filter, and the filtering wavelength of the optical filter is related to the first incident angle.
  • the optical filter When the optical filter is a band-pass optical filter, the optical filter can divide the incident light beam into a transmitted light beam containing a first wavelength and a reflected light beam containing at least one wavelength, wherein the first wavelength is based on the first wavelength described above.
  • the incident angle is the wavelength of the light beam selected by the optical filter when it strikes the optical filter.
  • the signal output by the transmission port is the signal downloaded by the T-OADM device, and the signal output by the reflection port is the signal transparently transmitted by the T-OADM device.
  • the optical filter When the optical filter is a band-stop optical filter, the optical filter can divide the incident light beam into a reflected light beam containing a first wavelength and a transmitted light beam containing at least one wavelength, and the first wavelength is the first wavelength with the first wavelength.
  • the incident angle is the wavelength of the light beam selected by the optical filter when it strikes the optical filter.
  • the signal output by the reflection port is the signal downloaded by the T-OADM device
  • the signal output by the transmission port is the signal transparently transmitted by the T-OADM device.
  • the angle between the optical filter and the reflective surface of the mirror may be set in the range of 40° to 120°, which is not limited in the present application.
  • the optical path length between the position of the light spot formed by the light beam on the optical filter and the position of the light beam formed by the light beam on the reflective surface of the mirror can be controlled within 80 mm, which is not limited in this application.
  • the reflective surface of the mirror is arranged perpendicular to the optical filter. At this time, the input light beam incident on the optical filter is parallel to the reflected light beam exiting from the reflecting mirror, so that the volume of the T-OADM device can be reduced.
  • a dual-fiber collimator and a first prism are further included, wherein the dual-fiber collimator and the first prism are located at the first port and the between the optical filters and between the reflection port and the reflection mirror;
  • the input beam is incident on the optical filter through the dual-fiber collimator and the first prism in sequence, and the reflected beam emitted from the reflector sequentially passes through the first prism and the dual-fiber collimator Incident to the reflection port, wherein the input light beam incident on the optical filter is parallel to the reflected light beam exiting the mirror.
  • the first port and the reflection input/output port can be connected through a dual-fiber collimator, thereby further reducing the volume of the T-OADM device.
  • the first prism may be a roof prism, which is not limited in this application.
  • a second prism and a third prism are further included,
  • the second prism is located between the optical filter and the transmission port, and is used for reducing the displacement distance of the transmission light beam, so as to reduce the influence of the displacement on coupling the transmission light beam to the corresponding port.
  • the third prism is located between the reflection mirror and the reflection port, and is used for reducing the displacement distance of the reflected light beam, so as to reduce the influence of the displacement on coupling the reflected light beam to the corresponding port.
  • the transmission port is further configured to input the input beam of the first wavelength, and the input The light beam is transmitted through the optical filter and output to the first port; the first port is also used for outputting the light beam transmitted through the optical filter. In this way, the uploading of the signal of the first wavelength can be realized.
  • transmissive ports may also be referred to as transmissive input/output ports.
  • the reflection port is also used to input the light beam output from the fifth port, and the light beam is The optical filter reflects and outputs to the first port; the first port is also used for outputting the light beam reflected by the optical filter. In this way, transparent transmission of the signal can be achieved.
  • reflective ports may also be referred to as reflective input/output ports.
  • the optical filter includes at least two regions, and the at least two regions have different filter bandwidths
  • the device further includes a driving part connected to the optical filter for driving the optical filter to move so that the input light beam is incident on a first region of the at least two regions;
  • the optical filter is specifically configured to receive the incident light beam through the first region.
  • the filter center wavelength of the optical filter can be dynamically adjusted to achieve T -
  • the OADM device dynamically adjusts the wavelength of the downloaded (or uploaded) signal.
  • a tunable optical add-drop multiplexer comprising: a first port, a first beam adjustment device, an optical filter, a second beam adjustment device, a third beam adjustment device, a transmission port, and a reflection port ,in,
  • the first port for inputting an input light beam containing at least two wavelengths
  • the first beam adjusting device is configured to adjust the transmission direction of the input beam according to the first signal downloaded by the T-OADM, so that the input beam hits the optical filter at a first incident angle, wherein, the first incident angle corresponds to the wavelength of the first signal;
  • the optical filter is used to receive a light beam incident at the first incident angle, and divide the incident light beam into a transmitted light beam and a reflected light beam, wherein the transmitted light beam contains a wavelength of the light beam that is the same as the wavelength of the light beam.
  • the wavelengths of the beams contained in the reflected beam are different;
  • the second beam adjustment device is used to adjust the transmission direction of the transmission beam, so that the transmission beam is output to the transmission port through the optical filter and the first beam adjustment device;
  • the transmission port for outputting the transmission light beam
  • the third beam adjustment device is further configured to adjust the transmission direction of the reflected beam, so that the reflected beam is output to the reflection port through the optical filter and the first beam adjustment device;
  • the reflection port is used for outputting the reflected light beam.
  • the incident angle of the incident light beam to the optical filter is changed by the first beam adjusting device, and after the optical filter divides the incident light beam into the transmitted light beam and the reflected light beam, the second light beam adjusting device further uses the second light beam adjusting device from The transmitted light beam emitted from the optical filter is reflected to the optical filter, and further output to the transmission port through the first beam adjustment device, and the reflected beam emitted from the optical filter is reflected to the optical filter through the third beam adjustment device, and It is further output to the reflection port through the first beam adjusting device.
  • a control unit may also be included for controlling the deflection direction and deflection angle of the incident light beam by the first beam adjusting device, so as to adjust the first incident angle of the light beam incident on the first optical filter, so as to realize Adjust the wavelength of the signal that the T-OADM device needs to download (or upload).
  • the optical filter may be a band-pass optical filter or a band-stop optical filter, and the filtering wavelength of the optical filter is related to the first incident angle.
  • the optical filter When the optical filter is a band-pass optical filter, the optical filter can divide the incident light beam into a transmitted light beam containing a first wavelength and a reflected light beam containing at least one wavelength, wherein the first wavelength is based on the first wavelength described above.
  • the incident angle is the wavelength of the light beam selected by the optical filter when it strikes the optical filter.
  • the signal output by the transmission port is the signal downloaded by the T-OADM device, and the signal output by the reflection port is the signal transparently transmitted by the T-OADM device.
  • the optical filter When the optical filter is a band-pass optical filter, the optical filter can divide the incident light beam into a reflected light beam containing a first wavelength and a transmitted light beam containing at least one wavelength, the first wavelength is the first wavelength with the first wavelength
  • the incident angle is the wavelength of the light beam selected by the optical filter when it strikes the optical filter.
  • the signal output by the reflection port is the signal length downloaded by the T-OADM device
  • the signal output by the transmission port is the signal transparently transmitted by the T-OADM device.
  • the second beam adjusting device includes a seventh lens and a first reflecting mirror, wherein the seventh lens is disposed in the first space rectangular coordinate system xyz yz plane, wherein the direction of the x-axis in the first space rectangular coordinate system xyz is the direction of the optical axis of the first lens, and the direction of the z-axis in the first space rectangular coordinate system xyz is the direction of the the direction of the transmission port relative to the first port,
  • the first optical filter is located on the first side of the seventh lens, the first mirror is located at the focal point of the second side of the seventh lens, and the first optical filter is parallel to the z-axis and to yz
  • the plane has an included angle, and the first mirror is parallel to the y-axis in the first space rectangular coordinate system xyz and has an included angle ⁇ 1 with the yz plane;
  • the seventh lens is used for collimating the transmitted light beam emitted from the optical filter, so that the transmitted light beam is incident on the first reflecting mirror along the x-axis direction;
  • the first reflecting mirror is used to make the transmitted light beam pass through the seventh lens, the optical filter and the first beam adjusting device, and be reflected to the light beam with a first lateral offset h1 along the z-axis direction. the transmission port.
  • the first mirror by setting the first mirror to be parallel to the y-axis in the spatial Cartesian coordinate system xyz and to have an included angle ⁇ 1 with the yz plane, further by setting the distance between the transmission port and the first port along the z-axis direction as h 1. It can output the transmitted beam to the transmission port and realize the download of the signal.
  • the optical filter is located at the focal point of the first side of the seventh lens.
  • the optical filter is located between the first beam adjustment device and the seventh lens, and the first beam adjustment device is disposed on the first beam adjustment device. At the focal point of the first side of the seven lenses.
  • the third beam adjusting device includes an eighth lens and a second mirror, wherein the eighth lens is arranged in the second spatial Cartesian coordinate system x' The y'z' plane of y'z', wherein the direction of the x' axis in the second spatial Cartesian coordinate system x'y'z' is the optical axis direction of the eighth lens, and the second spatial The direction of the z' axis in the Cartesian coordinate system x'y'z' is the direction of the reflection port relative to the first port,
  • the optical filter is located on the first side of the eighth lens, the second mirror is located at the focal point of the second side of the eighth lens, and the optical filter is parallel to the z' axis and to the y' axis
  • the z' plane has an included angle
  • the second mirror is parallel to the y' axis in the second space Cartesian coordinate system x'y'z' and has an included angle ⁇ 2 with the y'z'plane;
  • the eighth lens is used for collimating the reflected light beam emitted from the optical filter, so that the reflected light beam is incident on the second reflecting mirror along the x-axis direction;
  • the second reflecting mirror is used to make the reflected beam pass through the eighth lens, the optical filter and the first beam adjusting device, and reflect to the beam with a second lateral offset h 2 along the z-axis direction. the reflection port.
  • the second mirror by arranging the second mirror to be parallel to the y' axis in the spatial Cartesian coordinate system x'y'z and to have an included angle ⁇ 2 with the y'z' plane, further by arranging between the reflection port and the first port The distance along the z' axis direction is h 2 , which can realize the output of the reflected light beam to the reflection port and realize the transparent transmission of the light beam.
  • the optical filter is located at the focal point of the first side of the eighth lens.
  • the optical filter is located between the first beam adjustment device and the eighth lens, and the first beam adjustment device is disposed on the first beam adjustment device. At the focal point of the folded optical path reflected by the optical filter on the first side of the eight-lens.
  • a beam adjusting device (such as a lens and a mirror disposed at the focal point of the lens) can be used to reflect the beam transmitted by the optical filter, so that the beam is output to the optical filter with a certain lateral offset.
  • the transmission port is used to reflect the beam reflected by the optical filter, so that it is output to the reflection port through the optical filter with a certain lateral offset, so as to realize the coupling of the transmitted beam and the reflected beam to the corresponding port, and then realize the T-OADM Dynamic adjustment of the wavelength of the signal downloaded or uploaded by the device.
  • the embodiments of the present application can dynamically adjust the wavelengths of the upper and lower signals of the T-OADM device, support wavelength-level service switching, have flexible network structure, simple operation and maintenance, and are more conducive to intelligent control of optical networks.
  • the transmission port is further configured to input the input beam of the first wavelength, and the input The light beam is transmitted through the optical filter and output to the first port; the first port is also used for outputting the light beam transmitted through the optical filter. In this way, the upload of the signal of the first wavelength can be realized.
  • transmissive ports may also be referred to as transmissive input/output ports.
  • the reflection port is also used to input a light beam, and the light beam is reflected by the optical filter and output to the first port; the first port is also used to output the light beam reflected by the optical filter.
  • transparent transmission of the signal can be realized.
  • reflective ports may also be referred to as reflective input/output ports.
  • a tunable optical add-drop multiplexer comprising: a first port, a rotating part, an optical filter, a beam adjustment device, a transmission port and a reflection port,
  • a first port for inputting an input beam comprising at least two wavelengths
  • a rotating part connected with the optical filter, for rotating to adjust the inclination angle of the optical filter, so that the input light beam hits the optical filter at a first incident angle;
  • the optical filter is used for receiving a light beam incident at the first incident angle, and dividing the incident light beam into a transmitted light beam and a reflected light beam, wherein the transmitted light beam includes the wavelength of the light beam and the reflected light beam The wavelengths of the beams contained in the beams are different;
  • the light beam adjusting device configured to adjust the transmission direction of the reflected light beam, so that the reflected light beam is output to the reflection port through the optical filter
  • the transmission port for outputting the transmission light beam
  • the reflection port is used for outputting the reflected light beam.
  • the inclination angle of the optical filter is changed by the rotation of the rotating member, so as to change the incident angle of the incident light beam to the optical filter, and after the optical filter divides the incident light beam into the transmitted light beam and the reflected light beam, further The outgoing reflected light beam is reflected by the beam adjusting device and transmitted to the reflection port through the optical filter.
  • a control unit may also be included for controlling the rotation of the rotating member, so as to adjust the first incident angle of the light beam incident on the first optical filter, so as to realize the need for downloading (or uploading) to the T-OADM device.
  • the wavelength of the signal is adjusted.
  • the optical filter may be a bandpass optical filter or a bandstop optical filter, and the filtering wavelength of the optical filter is related to the first incident angle.
  • the optical filter When the optical filter is a band-pass optical filter, the optical filter can divide the incident light beam into a transmitted light beam containing a first wavelength and a reflected light beam containing at least one wavelength, wherein the first wavelength is based on the first wavelength described above.
  • the incident angle is the wavelength of the light beam selected by the optical filter when it strikes the optical filter.
  • the signal output by the transmission port is the signal downloaded by the T-OADM device, and the signal output by the reflection port is the signal transparently transmitted by the T-OADM device.
  • the optical filter When the optical filter is a band-stop optical filter, the optical filter can divide the incident light beam into a reflected light beam containing a first wavelength and a transmitted light beam containing at least one wavelength, and the first wavelength is the first wavelength with the first wavelength.
  • the incident angle is the wavelength of the light beam selected by the optical filter when it strikes the optical filter.
  • the signal output by the reflection port is the signal length downloaded by the T-OADM device
  • the signal output by the transmission port is the signal transparently transmitted by the T-OADM device.
  • both the first port and the reflection port are connected to a circulator
  • the beam adjusting device is used to make the reflected beam pass through the optical filter to be reflected back to the circulator;
  • the circulator is used to transmit the reflected light beam to the reflection port.
  • the optical filter divides the incident light beam into the transmitted light beam and the reflected light beam
  • the light beam reflected by the optical filter is reflected, so that it is transmitted to the circulator through the optical filter, and then transmitted through the circulator.
  • the transmitted light beam and the reflected light beam are coupled to the corresponding port, thereby realizing the dynamic adjustment of the wavelength of the signal downloaded or uploaded by the T-OADM device.
  • the embodiments of the present application can dynamically adjust the wavelengths of the upper and lower signals of the T-OADM device, support wavelength-level service switching, have flexible network structure, simple operation and maintenance, and are more conducive to intelligent control of optical networks.
  • the light beam adjusting device is a microelectromechanical system MEMS micromirror or a liquid crystal-on-silicon LCOS.
  • the beam adjusting device includes a first lens and a second mirror, wherein the optical filter is located at a focal point of the first side of the first lens , the second reflector is located at the focal point of the second side of the first lens, and the plane where the second reflector is located is perpendicular to the optical axis of the first lens;
  • the first lens is used for collimating the reflected light beam emitted from the optical filter, so that the reflected light beam is vertically incident on the second reflecting mirror;
  • the second reflecting mirror is used to make the reflected light beam pass through the first lens, the optical filter, and reflect to the circulator along the z-axis direction.
  • the light beam adjusting device includes a second lens and a third mirror, wherein the second lens is arranged in a space rectangular coordinate system x'y'z' y'z' plane, wherein the direction of the x' axis in the space rectangular coordinate system x'y'z' is the optical axis direction of the second lens, and the space rectangular coordinate system x'y'z' The direction of the z' axis in ' is the direction of the reflection port relative to the first port,
  • the optical filter is located at the focal point of the first side of the second lens, the third mirror is located at the focal point of the second side of the second lens, the optical filter is parallel to the z' axis and has an included angle with the y'z' plane, the third mirror is parallel to the y' axis in the space rectangular coordinate system x'y'z' and has an included angle with the y'z' plane;
  • the second lens is used for collimating the reflected light beam emitted from the optical filter, so that the reflected light beam is incident on the third reflecting mirror along the x-axis direction;
  • the third reflecting mirror is used to make the reflected beam pass through the second lens, the optical filter, and reflect to the reflecting port with a first lateral offset along the z' axis direction.
  • the third reflecting mirror to be parallel to the y' axis in the space Cartesian coordinate system x'y'z and to have an included angle ⁇ 3 with the y'z' plane, further through the reflection port and the first port along the The distance in the direction of the z' axis is h 3 , which can realize the output of the reflected light beam to the reflection port and realize the transparent transmission of the light beam.
  • the inclination angle of the optical filter is changed by the rotation of the rotating member, so as to change the incident angle of the incident light beam to the optical filter, and after the optical filter divides the incident light beam into the transmitted light beam and the reflected light beam, the The light beam reflected by the optical filter is reflected, so that it is output to the reflection port through the optical filter with a certain lateral offset, so as to realize the coupling of the transmitted light beam and the reflected light beam to the corresponding port, and then realize the download or upload of the T-OADM device.
  • Dynamic adjustment of the wavelength of the signal can dynamically adjust the wavelengths of signals up and down the T-OADM device, support wavelength-level service switching, have flexible network structure, simple operation and maintenance, and are more conducive to intelligent control of optical networks.
  • the transmission port is further configured to input the input beam of the first wavelength, and the input The light beam is transmitted through the optical filter and output to the first port; the first port is also used for outputting the light beam transmitted through the optical filter. In this way, the upload of the signal of the first wavelength can be realized.
  • transmissive ports may also be referred to as transmissive input/output ports.
  • the reflection port is also used to input a light beam, and the light beam is reflected by the optical filter and output to the first port; the first port is also used to output the light beam reflected by the optical filter.
  • transparent transmission of the signal can be realized.
  • reflective ports may also be referred to as reflective input/output ports.
  • the optical filter includes at least two regions, and the at least two regions have different filter bandwidths
  • the device further includes a driving part connected to the optical filter for driving the optical filter to move so that the input light beam is incident on a first region of the at least two regions;
  • the optical filter is specifically configured to receive the incident light beam through the first region.
  • the filter center wavelength of the optical filter can be dynamically adjusted to achieve T -
  • the OADM device dynamically adjusts the wavelength of the downloaded (or uploaded) signal.
  • a tunable optical add-drop multiplexer comprising: an input port, a driving component, an optical filter, a transmission output port and a reflection output port,
  • an input port for inputting an input beam containing at least two wavelengths
  • a driving component connected to the optical filter, for driving the optical filter such that the input light beam is incident on a first region of at least two regions of the optical filter, wherein the at least two regions Different regions in the region have different filter bandwidths;
  • the optical filter is used for receiving an incident light beam through the first region, and dividing the incident light beam into a transmitted light beam and a reflected light beam, wherein the transmitted light beam includes the wavelength of the light beam and the reflected light beam The wavelengths of the beams contained in them are different;
  • the transmission output port for outputting the transmission light beam
  • the reflection output port is used for outputting the reflection light beam.
  • the filter center wavelength of the optical filter can be dynamically adjusted to achieve T -
  • the OADM device dynamically adjusts the wavelength of the downloaded (or uploaded) signal.
  • a control unit may also be included for controlling the movement of the driving component, so as to realize the incidence of the light beam into different regions of the first optical filter, so as to realize the wavelength of the signal that needs to be downloaded (or uploaded) to the T-OADM device make adjustments.
  • the optical filter may be a bandpass optical filter or a bandstop optical filter.
  • the first region of the optical filter can divide the incident light beam into a transmitted light beam containing a first wavelength and a reflected light beam containing at least one wavelength, wherein the first wavelength is The wavelength of the light beam selected by the optical filter when it strikes the optical filter at the first incident angle.
  • the signal output by the transmission output port is the signal downloaded by the T-OADM device
  • the signal output by the reflection output port is the signal transparently transmitted by the T-OADM device.
  • the first region of the optical filter can divide the incident light beam into a reflected light beam containing a first wavelength and a transmitted light beam containing at least one wavelength, where the first wavelength is The wavelength of the light beam selected by the optical filter when the first incident angle hits the optical filter.
  • the signal output by the reflection output port is the signal downloaded by the T-OADM device
  • the signal output by the transmission output port is the signal transparently transmitted by the T-OADM device.
  • a sixth aspect provides a control method, the method is applied to a tunable optical add-drop multiplexer T-OADM, the T-OADM includes a first port, a first beam adjustment device, a first optical filter, second beam adjusting device, second port, third port,
  • the first port for inputting an input light beam containing at least two wavelengths
  • the first optical filter is used for receiving a light beam incident at the first incident angle, and dividing the incident light beam into a first transmitted light beam and a first reflected light beam, wherein one of the first transmitted light beams is the wavelength of the included light beam is different from the wavelength of the included light beam in the first reflected light beam;
  • the second port for outputting the first transmitted light beam
  • the third port is used for outputting the first reflected light beam.
  • the method includes:
  • the first deflection angle of the first beam adjustment device to the input beam the second deflection angle of the second beam adjustment device to the first transmitted beam, and the a third deflection angle of the first beam adjusting device to the first reflected beam;
  • the first beam adjustment device is controlled to adjust the transmission direction of the input beam, so that the input beam hits the first optical filter at a first incident angle, wherein the the first incident angle corresponds to the wavelength of the first signal;
  • Controlling the second beam adjusting device to adjust the transmission direction of the first transmission beam according to the second deflection angle, so that the first transmission beam is output to the second port;
  • the first beam adjusting device is controlled to adjust the transmission direction of the first reflected beam, so that the first reflected beam is output to the third port.
  • the embodiment of the present application can receive the wavelength of the first signal that the T-OADM device needs to download (or upload), and control the deflection angle of the beam by each beam adjusting device according to the wavelength of the first signal, so as to be able to
  • the wavelength of the signal downloaded or uploaded by the T-OADM device can be flexibly controlled according to actual needs, so as to realize a more flexible and controllable T-OADM device.
  • control method may be performed by a control unit provided in the T-OADM apparatus.
  • control unit may send control signals to the first beam adjustment device and the second beam adjustment device, respectively, so that the first beam adjustment device and the second beam adjustment device can adjust the transmission direction of the light beams according to the control signals, respectively.
  • multiple wavelengths of the signal that the T-OADM device can download or upload can be pre-configured, and the deflection angles of the beam adjusting device corresponding to each wavelength for the incident beam, the transmitted beam, and the reflected beam.
  • the deflection angle of the beam adjustment device corresponding to the wavelength for the incident beam, the transmitted beam and the reflected beam can be determined according to the pre-configuration.
  • the correspondence between the wavelengths of the signals that can be downloaded or uploaded by the T-OADM device and the deflection angles of the incident beam, the transmitted beam, and the reflected beam by the beam adjustment device can be stored in advance.
  • the deflection angle of the beam adjustment device corresponding to the wavelength for the incident beam, the transmitted beam and the reflected beam can be determined according to the corresponding relationship.
  • Fig. 1 is two schematic diagrams of MEMS micromirror deflecting light beam
  • Fig. 2 is a schematic diagram of the principle of LCOS beam deflection
  • Fig. 3 is a schematic diagram of beam polarization splitting and polarization beam combining optical paths
  • Fig. 4 is a schematic diagram of the mapping relationship between the filtering center wavelength and the incident angle
  • Fig. 5 is a schematic diagram of WDM ring network
  • FIG. 6 is a schematic structural diagram of a T-OADM device provided by an embodiment of the application.
  • FIG. 7A is a specific example of a T-OADM device provided by an embodiment of the present application.
  • FIG. 7B is an example in which the light beam is incident on the first optical filter along the optical axis 1 direction;
  • 7C is an example of adjusting the incident angle of the light beam incident on the first optical filter
  • FIG. 8 is a specific example of another T-OADM device provided by an embodiment of the present application.
  • FIG. 9 is a specific example of another T-OADM device provided by an embodiment of the present application.
  • FIG. 10 is a specific example of another T-OADM device provided in this embodiment.
  • FIG. 11 is a specific example of another T-OADM device provided by an embodiment of the present application.
  • FIG. 12 is a specific example of another T-OADM device provided by an embodiment of the present application.
  • FIG. 13 is a specific example of another T-OADM device provided by an embodiment of the present application.
  • FIG. 14 is a specific example of another T-OADM device provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of another T-OADM device provided by an embodiment of the present application.
  • FIG. 16 is a specific example of another T-OADM device provided by an embodiment of the present application.
  • FIG. 17 is a specific example of another T-OADM device provided by an embodiment of the present application.
  • FIG. 18 is a specific example of another T-OADM device provided by an embodiment of the present application.
  • Fig. 19 is a schematic diagram of an existing T-OADM device
  • FIG. 20 is a schematic structural diagram of another T-OADM device provided by an embodiment of the present application.
  • FIG. 21 is a specific example of another T-OADM device provided by an embodiment of the present application.
  • Figure 22 is an example of optical filter and mirror positions
  • FIG. 23 is a specific example of another T-OADM device provided by an embodiment of the present application.
  • Figure 24 is an example of the displacement of the beam compressed by the prism
  • Figure 25 is an example of an optical filter
  • FIG. 26 is a schematic structural diagram of another T-OADM device provided by an embodiment of the present application.
  • 27A is a top view of another T-OADM device provided by an embodiment of the present application.
  • 27B is a side view of another T-OADM device provided by an embodiment of the present application.
  • T-OADM device 28A is a top view of another T-OADM device provided by an embodiment of the present application.
  • T-OADM device 28B is a side view of another T-OADM device provided by an embodiment of the present application.
  • T-OADM 29 is a schematic structural diagram of another T-OADM device provided by an embodiment of the present application.
  • FIG. 30A is a top view of another T-OADM device provided by an embodiment of the present application.
  • FIG. 30B is a side view of another T-OADM device provided by an embodiment of the present application.
  • FIG. 31 is a specific example of another T-OADM device provided in this embodiment.
  • FIG. 32 is a specific example of another T-OADM device provided by this embodiment.
  • FIG. 33 is a schematic flowchart of a control method provided by an embodiment of the present application.
  • Wavelength division multiplexing two or more optical carrier signals of different wavelengths (carrying various information) are combined at the transmitting end through a multiplexer, and coupled to the same optical line. technology for transmission in the root fiber.
  • Micro-electromechanical System A complex mechanical structure can be built in a small space, and the size of the system is measured in microns. It has been used in airbag sensors (accelerometers), pressure sensors, displays, adaptive optics, scanners, printers, and data storage. A typical MEMS device is composed of electronic circuits and mechanical devices.
  • MEMS micro-mirror an optical device that integrates the micro-optical mirror and the MEMS driver using MEMS technology.
  • the deflection direction of the micro-optical mirror can be changed through the MEMS driver, thereby changing the exit of the light beam incident on the micro-optical mirror. angle.
  • Figure 1 shows two examples of the MEMS micro-mirror deflecting the light beam, wherein the MEMS driver can accurately control the outgoing direction of the outgoing light beam by controlling the deflection of the micro-optical mirror.
  • MEMS micromirrors can be used as a beam adjustment device (or device).
  • LCOS Liquid crystal on silicon
  • CMOS complementary metal oxide semiconductor
  • LCOS can be used as a beam adjustment device (or device).
  • FIG. 2 shows a schematic diagram of the LCOS beam deflection principle.
  • the bottom of the LCOS is the CMOS drive electrode, each electrode represents a pixel.
  • the electrode controls the deflection of the liquid crystal molecules by voltage, and changes the refractive index of the liquid crystal molecules.
  • the driving voltage of each pixel can be individually controlled, the refractive index of the liquid crystal molecules can be changed, and the phase of the light beam emitted from each pixel after the light beam passes through the liquid crystal molecules can be changed. Therefore, by applying a corresponding voltage to the electrodes, the exit angle of the light beam can be changed, thereby realizing the deflection of the light beam at different angles. In Figure 2, the deflection of the beam by the angle theta is achieved.
  • Beam polarization beam splitting (beam combining) device including polarization beam splitting (beam combining) crystal and half-wave plate respectively.
  • the polarizing beam splitting (beam combining) crystal is, for example, a neodymium-doped yttrium vanadate (YVO4) crystal, or a polarizing beam splitting prism such as a PBS crystal, which is not limited.
  • FIG. 3 shows an example of the optical path of polarization beam splitting and polarization beam combining, in which the polarization beam splitting (beam combining) crystal is taken as an example of YVO4 for description.
  • the beam when a beam of light is incident on the polarization beam splitting device, the beam is split into two beams with vertical polarization through the YVO4 crystal, and one beam passes through a half-wave plate to become a beam with the same polarization as the other beam. After passing through the optical path system, the light beam reaches the polarization beam combining device. Among them, a beam of light changes its polarization state through a half-wave plate and becomes a beam whose polarization is perpendicular to that of the other beam. The two beams with vertical polarization are combined into one beam through the YVO4 crystal again, so as to realize the process of beam polarization and beam synthesis.
  • Optical filter Band-pass type or band-stop type can be used, which has a strong transmission (or reflection) effect on light in a certain wavelength range, while light in other wavelength ranges outside the specific wavelength range has reflection. (or transmission) function, has filtering characteristics, and can be used as a filter element to realize a T-OADM device.
  • the dielectric film filter can be formed by stacking dielectric films with different refractive indices and different thicknesses according to the design combination.
  • the filtering center wavelength of the optical filter is related to the incident angle ⁇ of the light beam incident on the optical filter, which satisfies the following formula (1):
  • ⁇ 0 is the filtering center wavelength of the optical filter when the light beam is vertically incident
  • is the filtering center wavelength of the optical filter when the incident angle is ⁇
  • a is a fixed value parameter.
  • the filter center wavelength is the center wavelength of the transmitted beam.
  • FIG. 4 shows an example of the mapping relationship between the filter center wavelength and the incident angle obtained according to formula (1).
  • ⁇ 0 1570 nm
  • the optical filter optically filters incident light of a specific wavelength range, and a specific polarization state. Therefore, before the beam is filtered by the optical filter, a beam of light can be polarized and split by the beam polarization beam splitter to obtain a specific polarized beam. After the beam is filtered by the optical filter, the beam can be combined by the beam polarization The device performs polarization beam combining of the light beams.
  • the incidence angle needs to be dynamically changed.
  • the change of the incident angle can be achieved in two ways. One is to fix the filter to dynamically change the angle of the incident beam, thereby changing the filter center wavelength. The other is that the incident beam remains unchanged, and the optical filter is deflected by a rotating component to change the incident angle of the incident light, thereby changing the filtering center wavelength of the optical filter.
  • OADM A device that implements the add-drop and multiplexing of tributary signals in the optical domain. Its function is to download the optical signals that need to be downloaded to the local in the optical channel, and at the same time upload the local optical signals for sending to another node user. Signal.
  • the device enables the optical network to have superior functions such as flexibility, selectivity and transparency, and at the same time, it can improve the reliability of the network, reduce the node cost and improve the network operation efficiency.
  • T-OADM can dynamically change the wavelength of the downloaded or uploaded signal as needed.
  • OADM is mainly used in WDM network system.
  • Figure 5 shows a schematic diagram of the WDM ring network, which includes 4 OADMs, the main function of which is to realize the upper and lower signal in the WDM network node, that is, the signal of one or more wavelengths in the multiple wavelength signals in the WDM ring network Download to the local, or insert the local signal of one or more wavelengths into the optical network and transmit it to another network node.
  • Using the OADM device in the optical network can make the wavelength application and distribution of the optical network more flexible.
  • An optical filter can be set in the T-OADM device, and by dynamically changing the incident angle of the incident beam to the optical filter, the center wavelength of the optical filter can be dynamically adjusted, and then the upper and lower signals of the T-OADM device can be dynamically adjusted. wavelength.
  • the optical filter can be fixed, and the beam adjustment device (or the beam adjustment device combined with other devices or devices) can be used to change the incident angle of the incident light beam to the optical filter, so as to realize dynamic adjustment of the output through the optical filter the wavelength of the transmitted beam and the reflected beam.
  • the beam adjustment device or the beam adjustment device combined with other devices or devices
  • the transmitted beam and the reflected beam can be respectively reflected by a universal retro-reflector device and reflected back to the corresponding port through the thin film filter, which makes this type of The OADM device has a complex structure.
  • an embodiment of the present application provides an OADM device, in which the beam adjusting device can change the incident angle of the incident beam to the optical filter, and the optical filter divides the incident beam into a transmitted beam and a After the light beam is reflected, the transmission direction of the transmitted light beam emitted from the optical filter can be further adjusted by the beam adjustment device, and the transmission direction of the reflected light beam output from the optical filter can be adjusted, so that the transmitted light beam and the reflected light beam are output to the corresponding ports.
  • the optical filter is taken as an example of a band-pass optical filter for description. It can be understood that, each filter in the following embodiments may also be a band-stop optical filter, which is not limited in this embodiment of the present application.
  • FIG. 6 shows a schematic structural diagram of a T-OADM apparatus 600 provided by an embodiment of the present application.
  • the T-OADM device 600 includes a first port 610 , a first beam adjustment device 620 , a first optical filter 630 , a second beam adjustment device 640 , a second port 650 , and a third port 660 .
  • the first port 610 is used for inputting an input light beam containing at least two wavelengths.
  • the first beam adjusting device 620 is configured to adjust the transmission direction of the input beam according to the first signal downloaded (or uploaded) by the T-OADM, so that the input beam hits the first optical filter 630 at a first incident angle, wherein the The first angle of incidence corresponds to the wavelength of the first signal.
  • the first beam adjusting device 620 can dynamically adjust the transmission direction of the input beam according to the wavelength of the signal to be downloaded (or uploaded) by the T-OADM device 600 to adjust the size of the first incident angle.
  • the wavelength and the first incident angle of the download (or upload) signal need to satisfy the above formula (1).
  • the first optical filter 630 is configured to receive a light beam incident at the first incident angle, and divide the incident light beam into a first transmitted light beam including a first wavelength and a first reflected light beam including at least one wavelength.
  • the first wavelength is the wavelength of the light beam selected by the first optical filter 630 when it strikes the first optical filter 630 at the first incident angle.
  • the first wavelength is the wavelength corresponding to the signal that the T-OAMD device 600 needs to download (or upload).
  • the first optical filter 620 can be fixedly set, and the first incident angle can be dynamically adjusted by the first beam adjusting device 620, so that the T-OADM device 600 downloads (or uploads) the signal of the first wavelength.
  • the second beam adjusting device 640 is configured to adjust the transmission direction of the first transmitted beam according to the first incident angle.
  • the second port 650 is used for outputting the first transmitted light beam.
  • the first beam adjusting device 620 is further configured to adjust the transmission direction of the first reflected beam according to the first incident angle.
  • the third port 660 is used for outputting the first reflected light beam.
  • outputting the transmitted light beam may include outputting all or part of the transmitted light beam, which is not limited.
  • the outputting reflected light beams may include outputting all or part of the reflected light beams, which is not limited.
  • the first beam adjusting device 620 may be specifically configured to adjust the transmission direction of the first reflected beam, so that the first reflected beam is output to the third port 660 .
  • the third port 660 is specifically used to output the first reflected light beam.
  • the first beam adjusting device 620 can also be used to adjust the transmission direction of the first reflected beam, so that the first reflected beam is output to the second optical filter.
  • the second optical filter can further perform optical filtering on the first reflected beam, and correspondingly, the third port 660 is used to output part of the first reflected beam.
  • the beam adjusting device adjusts the first incident angle of the incident beam to the optical filter according to the first signal that the T-OADM needs to download (or upload), and the optical filter divides the incident beam into transmitted beams After and the reflected beam, the beam adjusting device further adjusts the transmission direction of the transmitted beam emitted from the optical filter according to the first incident angle, and adjusts the transmission direction of the reflected beam emitted from the optical filter according to the first incident angle, so that the transmission direction is The light beam and the reflected light beam are output to the corresponding ports, so that a flexible and controllable T-OADM device can be realized.
  • the T-OADM apparatus 600 may further include a control unit, and the control unit may be used for:
  • the control unit may also be used to determine, according to the first wavelength, the first deflection angle of the first beam adjustment device to the input beam, the second deflection angle of the second beam adjustment device to the first transmitted beam, and the first beam adjustment device to The third deflection angle of the first reflected beam.
  • control unit may be configured to control the first beam adjustment device to adjust the transmission direction of the input beam according to the first deflection angle, and to control the second beam adjustment device to adjust the transmission direction of the first transmitted beam according to the second deflection angle , and control the first beam adjusting device to adjust the transmission direction of the first reflected beam according to the third deflection angle.
  • the control unit can receive the wavelength of the first signal that the T-OADM device needs to download (or upload), and according to the wavelength of the first signal, control the deflection angle of the beam by each beam adjusting device , so that the wavelength of the signal downloaded or uploaded by the T-OADM device can be flexibly controlled according to actual needs, and a more flexible and controllable T-OADM device can be realized.
  • control unit may be pre-configured to store multiple wavelengths of the signal that the T-OADM device can download or upload, and the beam adjustment device corresponding to each wavelength for the incident beam, the transmitted beam, and the reflected beam. deflection angle.
  • control unit acquires the wavelength of the signal to be downloaded or uploaded by the T-OADM device, it can determine the deflection angle of the incident beam, transmitted beam and reflected beam by the beam adjustment device corresponding to the wavelength according to the pre-configuration.
  • control unit may pre-store the correspondence between the wavelengths of the signals that can be downloaded or uploaded by the T-OADM device and the deflection angles of the incident beam, transmitted beam, and reflected beam by the beam adjustment device.
  • control unit acquires the wavelength of the signal to be downloaded or uploaded by the T-OADM device, it can determine the deflection angle of the incident beam, transmitted beam and reflected beam by the beam adjustment device corresponding to the wavelength according to the corresponding relationship.
  • the first beam conditioning means 620 may include an incident beam conditioning means and a reflected beam conditioning means.
  • the incident beam adjustment device is used to adjust the transmission direction of the input beam, so that the input beam hits the first optical filter 630 at the first incident angle, and the reflected beam adjustment device is used to adjust the transmission direction of the first reflected beam. In this way, the optical path can be set more flexibly.
  • the incident beam adjustment device and the reflected beam adjustment device may be a MEMS micromirror or an LCOS, respectively, which is not limited in this embodiment of the present application.
  • the first beam adjusting device 620 may include a double-reflection surface MEMS micromirror, and one of the double-reflection surface MEMS micromirrors is used to adjust the transmission direction of the input beam, so that the input beam
  • the first optical filter 630 is incident at the above-mentioned first incident angle, and the other reflective surface micromirror in the double reflective surface MEMS micromirror is used to adjust the transmission direction of the first reflected light beam, so that the reflected light beam is coupled to the corresponding port.
  • the deflection directions of the two reflective surface micromirrors in the above-mentioned dual reflective surface MEMS micromirrors are the same.
  • the deflection directions of the two reflective surface micromirrors can be controlled by a MEMS driver.
  • the second beam adjusting device 640 may be implemented by a MEMS micromirror or an LCOS, which is not limited in this embodiment of the present application.
  • the first port 610 may also be connected to a fiber collimator, for collimating the light beam exiting from the first port 610, but the embodiments of the present application are not limited thereto.
  • the second port 650 is also used to input the input light beam of the first wavelength, the input light beam is transmitted through the first optical filter 630 and output to the first port 610 .
  • the first port 610 is also used to output the light beam transmitted through the first optical filter 630 .
  • the third port 660 is also used to input a light beam output from another port, and the light beam is reflected by the first optical filter 630 and output to the first port 610 .
  • the first port 610 is also used to output the light beam reflected by the first optical filter 630 .
  • the first port 610 can be used as both an input port and an output port, so it can be referred to as an input/output port 610 .
  • the second port 650 can be used as both an input port and an output port, so it can also be referred to as a first transmissive input/output port 650 .
  • the third port 660 can be used as both an input port and an output port, so it can also be referred to as a first reflection input and output port 660, which is not limited in this application.
  • the T-OADM device will be described below by taking the first port 610 as the input/output port 610, the second port 650 as the first transmissive input/output port 650, and the third port as the first reflective input/output port as an example.
  • the input light beam of the first wavelength can be input through the first transmission input/output port 650, and the input light beam passes through the second beam adjusting device 630 to be emitted to the first light beam.
  • An optical filter 630 is incident on the first beam adjustment device 620 through the first optical filter 630, and is further reflected to the input/output port 610 through the first beam adjustment device, so as to realize the signal of the first wavelength upload.
  • the above-mentioned other port may be a reflection input/output port of another OADM device, that is, another reflection input/output port.
  • another reflection input/output port For the beam output from the reflection input/output port, it should be transparently transmitted without being affected.
  • the light beam output from the other reflection input/output port may be input to the first reflection input/output port 660, and the light beam input to the first reflection input/output port 660 may pass through the first reflection input/output port 660.
  • the beam adjustment device 620 is incident on the first optical filter 630, and is further reflected to the first beam adjustment device 620 through the first optical filter 630, and further reflected to the input/output port through the first beam adjustment device 620, thereby realizing Transparent transmission of the light beam output from the above-mentioned other reflection input/output port.
  • the light beam output from the first reflection input/output port 660 can also be input to another reflection input/output port, so as to realize transparent transmission of the light beam output from the first reflection input/output port 660 .
  • FIG. 7 includes FIG. 7A , FIG. 7B and FIG. 7C .
  • 7A shows a specific example of the structure of the T-OADM device
  • FIG. 7B and FIG. 7C respectively show examples of adjusting the incident angle of the T-OADM device in FIG. 7A .
  • the T-OADM device shown in FIG. 7 to FIG. 14 further includes a polarization beam splitting device and a polarization beam combining device (or may also be referred to as a polarization multiplexing device).
  • a polarization beam splitting device and a polarization beam combining device or may also be referred to as a polarization multiplexing device.
  • this embodiment of the present application does not limit this.
  • the optical filter can optically filter the light beams with two different polarization states. .
  • the first beam adjustment device 620 includes an incident beam adjustment device and a reflected beam adjustment device.
  • the incident beam adjustment device is the first MEMS micromirror (referred to as MEMS1 micromirror) 621
  • the second beam adjustment device 640 is the second MEMS micromirror (referred to as MEMS2 micromirror) 640
  • the reflected beam adjustment device is the third
  • MEMS micromirror (referred to as MEMS3 micromirror) 622 is described as an example, but the embodiments of the present application are not limited to this, for example, each beam adjusting device may also be implemented by other optical devices such as LCOS.
  • the T-OADM device may further include a first optical device.
  • the MEMS1 micromirror 621 , the first optical device, the first optical filter 630 and the MEMS2 micromirror 640 are respectively arranged on the first optical axis (eg optical axis 1 ) in sequence.
  • the included angle between the normal line of the first optical filter and the optical axis 1 is ⁇ , ⁇ [0, ⁇ /2].
  • the first optical device can be used to guide the light beam emitted from the incident beam adjusting device to the first optical filter, for example, the light beam emitted from the MEMS1 micromirror 621 (for example, at a different angle from the optical axis 1 )
  • the light beam converges on the MEMS2 micromirror 640 (for example, the intersection of the optical axis 1 and the MEMS2 micromirror 640), wherein the angle between the light beam emitted from the MEMS1 micromirror 321 and the optical axis 1 is the same as the angle between the light beam emitted from the first optical device.
  • There is a correspondence between the angle between the light beam and the optical axis 1 When the light beam emitted from the MEMS1 micromirror 621 is along the optical axis direction, the first optical device may not adjust the direction of the light beam.
  • the intersection of the optical axis and the device or device includes both a position where the optical axis and the device or device accurately intersect, and the position centered on the exact intersection.
  • a position that is, a position slightly deviated from the intersection point by a certain distance, which is not limited in this application.
  • FIG. 7A shows a specific example of a T-OADM device provided by an embodiment of the present application.
  • the T-OADM device includes an input/output port 610, a polarization beam splitting device 681, a MEMS1 micromirror 621, a first optical device 671, a first filter 630, a MEMS2 micromirror 640, a MEMS3 micromirror 622, Polarization beam combining devices 682 and 683 , first transmissive input/output port 650 and second transmissive input/output port 660 .
  • the first optical device 671 is an optical 4f system including lens 1 (denoted as f1) and lens 2 (denoted as f2).
  • lens 1 is an example of a front lens of an optical 4f system
  • lens 2 is an example of a rear lens of an optical 4f system.
  • the centers of the MEMS1 micromirror 621 , the lens 1 , the lens 2 , and the MEMS2 micromirror 640 are all set on the optical axis 1 .
  • the MEMS1 micromirror 621 can be arranged at the front focus of the lens 1
  • the MEMS2 micromirror 640 can be arranged at the back focus of the lens 2 transmitted through the first optical filter 630 (that is, the back focus of the lens 2)
  • the micromirror 622 may be disposed at the back focus (different from the back focus of the lens 2 ) of the optical path of the lens 2 reflected by the first optical filter 630 .
  • arranging a device or device at the focal point of a certain lens includes both the device or device being accurately located at the focal point of the lens, and the device or device being located at the focal point of the lens. It is set near the focal point of the lens, that is, at a position slightly deviated from the focal point by a certain distance, which is not limited in this application.
  • setting the center of the device or device on the optical axis includes both the device or device being positioned exactly on the optical axis, and the device or device being positioned near the optical axis, i.e. slightly deviating from the optical axis The position at a certain distance from the optical axis is not limited in this application.
  • the focal length of lens 1 in FIG. 7A may be the same as the focal length of lens 2 .
  • the included angle between the light beam emitted from the MEMS1 micromirror 621 and the optical axis 1 is the same as the included angle between the light beam emitted from the lens 2 and the optical axis 1 .
  • the focal length of lens 1 in FIG. 7A is different from the focal length of lens 2 .
  • the angle between the beam emitted from the MEMS1 micromirror 621 and the optical axis 1 is different from the angle between the beam emitted from the lens 2 and the optical axis 1, and the two have a mapping relationship.
  • the mapping relationship may be determined by the focal lengths of lens 1 and lens 2 .
  • the input light beams input to the T-OADM device are channels of multiple wavelengths included in the WDM system.
  • a light beam may include a plurality of channels, and each channel may include a light beam of one wavelength.
  • the input light beam exits from the input/output port 610, and passes through the polarization beam splitting device 681, and becomes two light signals with the same polarization (for example, they can be arranged perpendicular to the paper surface).
  • the two beams of optical signals with the same polarization strike the MEMS1 micromirror 621, and the MEMS1 micromirror 621 can adjust the input beams (that is, the two beams of optical signals with the same polarization) to a desired angle.
  • the outgoing light beam (which is still referred to as the input light beam at this time) is projected onto the first filter 630 through the optical 4f system composed of the lens 1 and the lens 2 .
  • the channel (beam) of a specific wavelength (eg, the first wavelength) in the input light beam will be filtered by the first optical filter.
  • the sheet 630 is transmitted to the MEMS2 micromirror 640, and the channels (beams) of the input beam other than this particular wavelength are reflected by the first optical filter 630 to the MEMS3 micromirror 622.
  • the channel of the first wavelength transmitted from the first optical filter 630 (that is, the light beam incident on the MEMS2 micromirror 640 ) may be referred to as the first transmitted light beam, and the channel reflected from the first optical filter 630 except for the light beam
  • the channel other than the signal of the first wavelength ie, the light beam incident on the MEMS3 micromirror 622
  • the first reflected light beam can be referred to as the first reflected light beam.
  • the MEMS2 micromirror 640 After the first transmitted light hits the MEMS2 micromirror 640, the MEMS2 micromirror 640 adjusts the angle of the first transmitted light (that is, adjusts the transmission direction of the first transmitted light), so that the first transmitted light passes through the polarization beam combining device 683 Polarization recovery is achieved, coupled to the first transmissive input/output port 650 .
  • the first transmission input/output port 650 outputs the first transmission light to realize the downloading of signals.
  • the MEMS3 micromirror 622 After the first reflected light hits the MEMS3 micromirror 622 , the MEMS3 micromirror 622 adjusts the angle of the first reflected light (that is, adjusts the transmission direction of the first transmitted light), so that the first reflected light passes through the polarization beam combining device 682 Polarization recovery is achieved, after which the first reflected light is coupled to the first reflected input/output port 660 .
  • the first reflection input/output port 660 outputs the first reflection light to realize transparent transmission of signals.
  • the transparent transmission signal output from the reflection input/output port can be input from the first reflection input/output port 660 , and the upload signal to be uploaded can be coupled into the first transmission input/output 650 for input.
  • the transparent transmission signal can be reflected to the first optical filter 630 through the MEMS3 micromirror 622, then reflected to the first optical device 671 through the first optical filter 630, and then coupled to the input/output port 610 through the MEMS1 micromirror 621 to realize Upload the transparent transmission signal to the WDM network.
  • the uploaded signal can be reflected to the first optical filter 630 through the MEMS2 micromirror 640, transmitted to the first optical device 671 through the first optical filter 630, and then coupled to the input/output port 610 through the MEMS2 micromirror 621 to realize the The signal is uploaded to the WDM network.
  • the filter center wavelength of the first optical filter 630 needs to be adjusted (ie, the wavelength of the first transmitted light beam)
  • it can be achieved by adjusting the deflection of the MEMS1 micromirror 621 .
  • the MEMS2 micromirror 640 and the MEMS3 micromirror 622 also need to be deflected accordingly.
  • the T-OADM device may further include a control unit for controlling the deflection direction and deflection angle of the MEMS1 micromirror 621 , the MEMS2 micromirror 640 and the MEMS3 micromirror 622 .
  • the control unit may be pre-configured to store multiple wavelengths of signals that the T-OADM device can download or upload, and the above-mentioned MEMS1 micromirror 621 , MEMS2 micromirror 640 and MEMS3 micromirror corresponding to each wavelength Deflection angle of mirror 622.
  • the wavelength and the deflection angle of each MEMS micromirror corresponding to each wavelength can be stored in the form of a table.
  • the control unit can look up the table to obtain the deflection angle required for each MEMS micromirror.
  • control unit may pre-store the mapping relationship between the wavelength and the adjustment angle of each MEMS micromirror.
  • control unit receives an instruction to adjust the wavelength of the signal downloaded or uploaded by the T-OADM device, it can determine the required deflection angle of each MEMS micromirror according to the wavelength of the signal to be downloaded or uploaded and the saved mapping relationship .
  • control unit After obtaining the deflection angle of each MEMS micromirror, the control unit can set the mirrors of the three MEMS micromirrors to a specific angle, and can control the T-OADM device to download or upload signals of a specific wavelength.
  • the control unit may send a control signal to the driver of each MEMS micromirror.
  • the driver of the MEMS micromirror can adjust the corresponding angle of the MEMS micromirror according to the control information.
  • a specific example of the adjustment manner of each MEMS micromirror is described below.
  • the angle between the optical axis 1 and the normal of the first optical filter 630 is ⁇ .
  • the optical axis 2 is the direction in which the reflected light beam of the light beam emitted from the first optical filter 630 is located when the light beam along the direction of the optical axis 1 is incident on the first optical filter 630 . It can be seen from this that the angle between the optical axis 2 and the optical axis 1 is 2 ⁇ .
  • FIG. 7B shows an example in which the light beam is incident on the first optical filter 630 along the optical axis 1 direction.
  • the angle ⁇ between the incident light beam and the normal of the first optical filter 630 is an angle ⁇ .
  • the included angle with the normal is ⁇ .
  • the wavelength of the transmitted beam of the beam emitted from the first optical filter 630 is ⁇ 1
  • the included angle between the transmitted beam and the optical axis 1 is 0°.
  • the transmission beam is coupled to the first transmission input/output port 650 .
  • the reflected beam of the beam emitted from the first optical filter 630 is incident on the MEMS3 micromirror 622 along the optical axis 2, and the included angle between the reflected beam and the optical axis 2 is 0°.
  • the reflected beam is coupled to the first reflection input/output port 660.
  • the wavelength of the signal to be downloaded or uploaded by the T-OADM device is adjusted from wavelength ⁇ 1 to wavelength ⁇ 2, that is, when the filter center wavelength of the first optical filter 630 needs to be adjusted from wavelength ⁇ 1 to wavelength ⁇ 2, it can be deduced (for example, according to the above Formula (1) or Fig. 4 to derive) the incident angle of the input beam incident on the first optical filter 630 needs to be adjusted from ⁇ to ( ⁇ + ⁇ ), where ⁇ >0.
  • FIG. 7C shows an example of adjusting the incident angle of the light beam incident on the first optical filter 630 .
  • the deflection method of the MEMS1 micromirror 621 is performed. describe.
  • the angle between the light beam emitted from the MEME1 micromirror 621 and the optical axis 1 is the same as the angle between the light beam emitted from the lens 2 and the optical axis 1 .
  • the transmission direction of the light beam emitted from the MEMS1 micromirror 621 needs to be rotated counterclockwise by the angle ⁇ (the angle of the MEMS1 micromirror 621 in the figure is The dotted line is the schematic diagram before rotation, the solid line is the schematic diagram after rotation), at this time, it can be realized by rotating the MEMS1 micromirror 621 counterclockwise by ⁇ /2, that is, the filter center wavelength of the first optical filter 630 needs to be wavelength ⁇ 1
  • the MEMS1 micromirror 621 is rotated counterclockwise by ⁇ /2, so that the angle between the input beam and the normal of the MEMS1 micromirror 621 is ( ⁇ + ⁇ /2).
  • the angle between the light beam emitted from the MEMS1 micromirror 621 and the optical axis 1 is ⁇ .
  • the input light beam passes through the lens 1 and the lens 2, and the incident angle to the first optical filter 630 is ( ⁇ + ⁇ ).
  • the wavelength of the light beam transmitted from the first optical filter 630 is ⁇ 2, and the adjustment of the filter center wavelength of the first optical filter 630 can be realized.
  • the angle between the transmitted beam emitted from the first optical filter 630 and the optical axis 1 is ⁇ .
  • the deflection angle of the MEMS2 micromirror 640 can be further adjusted, that is, between the original input beam and the MEMS2 micromirror 640
  • the MEMS2 micromirror 640 is rotated clockwise by ⁇ /2 (the dotted line of the MEMS2 micromirror 640 in the figure is the schematic diagram before rotation, and the solid line is the schematic diagram after rotation), so that The angle between the normal of the MEMS2 micromirror 640 and the optical axis 1 is ( ⁇ + ⁇ /2), so that the transmission light beam is coupled to the first transmission input/output port 650 .
  • the angle between the reflected beam emitted from the first optical filter 630 and the optical axis 2 is ⁇ .
  • the deflection angle of the MEMS3 micromirror 622 can be further adjusted, that is, between the original input beam and the normal of the MEMS3 micromirror 622
  • the MEMS2 micromirror 622 is rotated counterclockwise by ⁇ /2 (the dotted line of the MEMS3 micromirror 622 in the figure is the schematic diagram before the rotation, and the solid line is the schematic diagram after the rotation), so that the MEMS3 micromirror 622 has a
  • the included angle between the normal line and the optical axis 2 is ( ⁇ + ⁇ /2), so that the reflected light beam is coupled to the first reflection input/output port 660 .
  • the angle ⁇ ' that the transmission direction of the light beam emitted from the MEMS1 micromirror 621 needs to be rotated counterclockwise needs to be determined according to the size of the lens 1 and the focal length of the lens.
  • the incident angle of the input light beam entering the first optical filter 630 can be adjusted from ⁇ to ( ⁇ + ⁇ ) by rotating the MEMS1 micromirror 621 counterclockwise by ⁇ '/2.
  • the above-mentioned adjustment method of the MEMS micromirror is described for the optical structure in FIG. 7A .
  • the adjustment method of the MEMS micromirror may also change. Appropriate adjustments are made according to differences in specific optical paths, which all fall within the protection scope of the embodiments of the present application.
  • the beam adjustment device in the T-OADM device is LCOS
  • LCOS1 adjusts the transmission direction of the incident beam
  • LCOS2 adjusts the transmission direction of the transmitted beam
  • LCOS3 adjusts the transmission direction of the reflected beam.
  • the control unit can be pre-configured to store multiple wavelengths of the signal that the T-OADM device can download or upload, and the voltage values applied to LCOS1, LCOS2, and LCOS3 corresponding to each wavelength (for example, in a table format), or store There is a mapping relationship between the signal wavelengths that can be downloaded or uploaded by the T-OADM device and the voltage values applied by LCOS1, LCOS2 and LCOS3. In this way, after obtaining the voltage value applied by each LCOS, the control unit can apply the specific voltage value to the three LCOSs, so as to control the T-OADM device to download or upload a signal of a specific wavelength.
  • FIG. 8 shows a specific example of another T-OADM apparatus provided by an embodiment of the present application.
  • the T-OADM device includes an input/output port 610, a polarization beam splitting device 681, a MEMS1 micromirror 621, a first optical device 672, a first filter 630, a MEMS2 micromirror 640, a MEMS3 micromirror 622, Polarization beam combining devices 682 and 683 , first transmissive input/output port 650 and second transmissive input/output port 660 .
  • the first optical device 672 includes lens 1 (denoted as f1). At this time, the included angle between the light beam emitted from the MEMS1 micromirror 621 and the optical axis 1 is the same as the included angle between the light beam emitted from the lens 1 and the optical axis 1 .
  • the centers of the MEMS1 micromirror 621 , the lens 1 , and the MEMS2 micromirror 640 are all set on the optical axis 1 . Further, the MEMS1 micromirror 621 is located at twice the focal length of the first side (front side) of the lens 1, and the MEMS2 micromirror 640 is located on the second side (rear side) of the lens 1 and is transmitted through the first optical filter 630 At twice the focal length of the lens 1 (that is, twice the focal length of the rear side of the lens 1), the MEMS3 micromirror 622 is located at twice the focal length of the optical path of the lens 1 reflected by the first optical filter 630 (the optical path is a folded optical path) .
  • arranging a device or device at twice the focal length of a lens includes both the device or device being accurately located at the twice focal length of the lens, and the The device or device is arranged in the vicinity of the double focal length of the lens, that is, a position slightly deviated from the double focal length by a certain distance, which is not limited in this application.
  • the process from the input light beam exiting from the input/output port 610 to exiting from the MEMS1 micromirror 621 can be referred to the description in FIG. 7A , which will not be repeated here.
  • the light beam emitted from the MEMS1 micromirror 621 (which is still referred to as the input light beam at this time) is incident on the first optical filter 630 through the lens 1 in FIG. 8 .
  • FIG. 8 the process from the input light beam exiting from the input/output port 610 to exiting from the MEMS1 micromirror 621 can be referred to the description in FIG. 7A , which will not be repeated here.
  • the light beam emitted from the MEMS1 micromirror 621 (which is still referred to as the input light beam at this time) is incident on the first optical filter 630 through the lens 1 in FIG. 8 .
  • FIG. 8 the process from the input light beam exiting from the input/output port 610 to exiting from the MEMS1 micromirror
  • the first optical filter 630 may divide the incident light beam into a first transmitted light beam and a first reflected light beam.
  • the first transmission light beam is adjusted by the MEMS2 micromirror 640 and coupled to the first transmission input/output port 650 to realize the download of the signal.
  • the first reflected light beam is adjusted by the MEMS3 micromirror 622 and coupled to the first reflected input/output port 660 to realize transparent transmission of the signal.
  • the input beam is filtered by the first optical filter, the first transmission beam is coupled to the first transmission input/output port, and the process of coupling the first reflected beam to the first reflection input/output port can be referred to FIG. 7A The description in , will not be repeated here.
  • the first optical device ( 671 or 672 ) can converge the light beams emitted from the MEMS1 micromirror 621 along different angles from the optical axis 1 to a certain beam on the optical axis 1
  • a point such as the intersection of the optical axis 1 and the MEMS2 micromirror 640
  • the angle between the beam emitted from the MEMS1 micromirror 621 and the optical axis 1 is mapped to the angle between the beam emitted from the first optical device and the optical axis 1
  • This is beneficial to control the size of the first incident angle of the input beam incident on the first optical filter by adjusting the deflection of the MEMS1 micromirror 621, so as to control the wavelength of the signal downloaded or uploaded by the T-OADM device.
  • the structure of the T-OADM device can be made more compact, and the volume of the T-OADM device can be reduced.
  • the T-OADM device may further include a second optical device and a third optical device.
  • the MEMS1 micromirror 621 , the first optical filter 630 , the second optical device and the MEMS2 micromirror 640 are respectively arranged on the second optical axis (eg, optical axis 1 ) in sequence.
  • the first optical filter 630 , the third optical device and the MEMS2 micromirror 622 are respectively arranged on the third optical axis (eg, optical axis 2 ) in sequence.
  • the included angle between the normal line of the first optical filter 630 and the optical axis 1 is ⁇
  • the included angle between the optical axis 1 and the optical axis 2 is 2 ⁇ .
  • the second optical device is used to guide the first transmitted light beam emitted from the first optical filter 630 to the MEMS2 micromirror 640
  • the third optical device is used to output from the first optical filter 630
  • the first reflected beam is directed to the MEMS3 micromirror 622.
  • the second optical device converges the first transmitted light beam emitted from the first optical filter 630 (for example, having a different angle with the optical axis 1) to the optical axis 1 and the MEMS2 micromirror 640 (for example, the optical axis 1 and the On the intersection of the MEMS2 micromirror 640), wherein, the angle between the beam emitted from the first optical filter 630 and the optical axis 1 corresponds to the angle between the beam emitted from the second optical device and the optical axis 1 one-to-one ;
  • the third optical device converges the first reflected light beam emitted from the first optical filter 630 (for example, having a different angle with the optical axis 2) to the MEMS3 micromirror 622 (for example, the MEMS3 micromirror 622 and the optical axis 2) intersection), wherein the angle between the light beam emitted from the first optical filter 630 and the optical axis 2 corresponds to the angle between the light beam emitted from the third optical
  • FIG. 9 shows a specific example of another T-OADM apparatus provided by an embodiment of the present application.
  • the T-OADM device includes an input/output port 610, a polarization beam splitting device 681, a MEMS1 micromirror 621, a first optical filter 630, a second optical device 673, a MEMS2 micromirror 640, and a second optical device 674 , MEMS3 micromirror 622 , polarization beam combining devices 682 and 683 , first transmissive input/output port 650 and second transmissive input/output port 660 .
  • a polarization beam splitting device 681 includes an input/output port 610, a polarization beam splitting device 681, a MEMS1 micromirror 621, a first optical filter 630, a second optical device 673, a MEMS2 micromirror 640, and a second optical device 674 , MEMS3 micromirror 622 , polarization beam combining devices
  • the second optical device 673 is an optical 4f system, including lens 1 (denoted as f1) and lens 2 (denoted as f2)
  • the third optical device 674 is also an optical 4f system, including lens 3 (denoted as f3) ) and lens 4 (denoted as f4).
  • lens 1 is an example of a front lens of an optical 4f system
  • lens 2 is an example of a rear lens of an optical 4f system
  • lens 3 is an example of a front lens of an optical 4f system
  • lens 4 is an example of a rear lens of an optical 4f system an example of .
  • the third optical device 674 may further include a mirror 6741 for folding the optical path to reduce the size of the device.
  • the centers of the MEMS1 micromirror 621, the first optical filter 630, the lens 1, the lens 2, and the MEMS2 micromirror 640 are all set on the optical axis 1, and the MEMS1 micromirror 621, the first optical filter 630, the lens 3.
  • the centers of the lens 4 and the MEMS3 micromirror 622 are all set on the optical axis 2 (including the folded optical axis of the optical axis 2 reflected by the first optical filter 630 and the folded optical axis of the optical axis 2 reflected by the mirror 6741) .
  • the MEMS1 micromirror 621 is located at the front focus of the lens 1
  • the MEMS2 micromirror 640 can be located at the back focus of the lens 2
  • the MEMS1 micromirror 621 is located in the optical path of the lens 3 reflected by the first optical filter 630 (ie, folded).
  • the MEMS3 micromirror 622 is located at the back focus of the lens 4 .
  • the focal length of lens 1 in FIG. 9 may be the same as the focal length of lens 2 .
  • the included angle between the light beam emitted from the MEMS1 micromirror 621 and the optical axis 1 is the same as the included angle between the light beam emitted from the lens 2 and the optical axis 1 .
  • the focal length of lens 1 in FIG. 9 is different from the focal length of lens 2 .
  • the angle between the beam emitted from the MEMS1 micromirror 621 and the optical axis 1 is different from the angle between the beam emitted from the lens 2 and the optical axis 1, and the two have a mapping relationship.
  • the mapping relationship can be determined by the focal lengths of lens 1 and lens 2 .
  • the focal length of lens 3 in FIG. 9 may be the same as the focal length of lens 4 .
  • the included angle between the light beam emitted from the MEMS1 micromirror 621 and the optical axis 1 is the same as the included angle between the light beam emitted from the lens 4 and the optical axis 1 .
  • the focal length of the lens 3 in FIG. 9 is different from the focal length of the lens 4 .
  • the angle between the beam emitted from the MEMS1 micromirror 621 and the optical axis 1 is different from the angle between the beam emitted from the lens 4 and the optical axis 1, and the two have a mapping relationship.
  • the mapping relationship can be determined by the focal lengths of the lens 3 and the lens 4 .
  • the process from the input light beam exiting from the input/output port 610 to exiting from the MEMS1 micromirror 621 can be referred to the description in FIG. 7A , which will not be repeated here.
  • the light beam emitted from the MEMS1 micromirror 621 (which is still referred to as the input light beam at this time) strikes the first optical filter 630, and the first optical filter 630 can divide the incident light beam into a first transmitted light beam and a first reflected light beam .
  • the first transmitted beam is projected onto the MEMS2 micromirror 640 through the lens 1 and the lens 2.
  • the MEMS2 micromirror 640 performs beam adjustment on the first transmitted beam, and is coupled to the first transmission input/output port 650 to realize signal download.
  • the first reflected beam passes through lens 3, (optionally through mirror 6741), and lens 4 to the MEMS3 micromirror 622, and the MEMS3 micromirror 622 performs beam adjustment on the first reflected beam and couples it to the first reflection input /Output port 660 to realize transparent transmission of signals.
  • FIG. 10 shows a specific example of another T-OADM device provided by an embodiment of the present application.
  • the T-OADM device includes an input/output port 610, a polarization beam splitting device 681, a MEMS1 micromirror 621, a first optical filter 630, a second optical device 675, a MEMS2 micromirror 640, and a third optical device 676 , MEMS3 micromirror 622 , polarization beam combining devices 682 and 683 , first transmissive input/output port 650 and second transmissive input/output port 660 .
  • the second optical device 675 includes a lens 1 (denoted as f1 )
  • the third optical device 676 includes a lens 2 (denoted as f2 ).
  • the centers of the MEMS1 micromirror 621 , the first optical filter 630 , the lens 1 , and the MEMS2 micromirror 640 are all set on the optical axis 1 , the MEMS1 micromirror 621 , the first optical filter 630 , the lens 2 , and the MEMS3
  • the centers of the micromirrors 622 are all disposed on the optical axis 2 (including the folded optical axis of the optical axis 2 reflected by the first optical filter 630 ).
  • the MEMS1 micromirror 621 is located at twice the focal length of the first side (front side) of the lens 1, the MEMS2 micromirror 640 can be located at the second side (rear side) of the lens 1 at twice the focal length, and the MEMS1 micromirror 621 is located at the lens 1.
  • the MEMS3 micromirror 622 is located at the back side of the lens 2 at twice the focal length.
  • the angle between the beam emitted from the MEMS1 micromirror 621 and the optical axis 1 is the same as the angle between the beam emitted from the lens 1 and the optical axis 1
  • the angle between the beam emitted from the MEMS1 micromirror 621 and the optical axis 1 is the same as the angle between the beam emitted from the MEMS1 micromirror 621 and the optical axis 1
  • the angle between the beam emitted by the lens 2 and the optical axis 2 is the same.
  • the first optical filter 630 may divide the incident light beam into a first transmitted light beam and a first reflected light beam.
  • the first transmitted light beam is projected onto the MEMS2 micromirror 640 through the lens 1, the first transmitted light beam is adjusted by the MEMS2 micromirror 640, and coupled to the first transmission input/output port 650 to realize signal download.
  • the first reflected beam is emitted to the MEMS3 micromirror 622 through the lens 2, and the first reflected beam is adjusted by the MEMS3 micromirror 622 and coupled to the first reflection input/output port 660 to realize the transparent transmission of the signal.
  • the second optical device 673 and the third optical device 674 both include an optical 4f system as an example for description
  • both the second optical device 675 and the third optical device 676 include an optical 4f system.
  • a lens is taken as an example for description, but the embodiments of the present application are not limited thereto.
  • the second optical device 673 may include a lens (in this case, the MEMS1 micromirror 621 may be arranged at twice the focal length of the front side of the lens, and the MEMS2 micromirror 640 may be arranged at the rear side of the lens. at twice the focal length), the third optical device 674 comprises an optical 4f system.
  • FIG. 9 the second optical device 673 and the third optical device 674 both include an optical 4f system as an example for description
  • the second optical device 675 and the third optical device 676 include an optical 4f system.
  • a lens is taken as an example for description, but the embodiments of the present application are not limited thereto.
  • the second optical device 673 may include a lens (in
  • the second optical device 673 may include an optical 4f system
  • the fourth optical device 674 may include a lens
  • the MEMS1 micromirror 621 may set the refraction of the lens reflected by the first optical filter 630
  • the MEMS3 micromirror 622 may be positioned at twice the focal length of the refracted optical path reflected by the mirror 622 of the lens).
  • the T-OADM device in FIG. 10 can be transformed similarly to the T-OADM device in FIG. 9 , and details are not repeated here.
  • the second optical device may exit the first optical filter 630 (eg, exit along a different angle from the optical axis 1 )
  • a transmitted beam converges on the MEMS2 micromirror 640 (eg, the intersection with the optical axis 1), and the angle between the transmitted beam emitted from the first optical filter 630 and the optical axis 1 and the beam emitted from the second optical device and the optical axis
  • the included angle of 1 has a mapping relationship.
  • the third optical device ( 674 or 676 ) can converge the first reflected light beams emitted from the first optical filter 630 along different angles from the optical axis 2 to the MEMS3 micromirror 622 (eg, the intersection with the optical axis 2 ) and the included angle between the reflected light beam emitted from the first optical filter 630 and the optical axis 2 has a mapping relationship with the included angle between the light beam emitted from the third optical device and the optical axis 2 .
  • the second optical device and the third optical device are used to converge the light beams in different directions emitted from the MEMS1 micromirror 621, which can make the structure of the T-OADM device more compact, which is beneficial to reduce the volume of the T-OADM device.
  • the T-OADM device may further include a fourth optical device, a fifth optical device, and a sixth optical device.
  • the MEMS1 micromirror 621 , the fourth optical device, the first optical filter 630 , the fifth optical device and the MEMS2 micromirror 622 are respectively disposed on the fourth optical axis (eg, optical axis 1 ) at one time.
  • the first optical filter 630 , the sixth optical device and the MEMS3 micromirror 622 are respectively disposed on the fifth optical axis (eg, optical axis 2 ) in sequence.
  • the included angle between the normal line of the first optical filter 630 and the optical axis 1 is ⁇
  • the included angle between the optical axis 1 and the optical axis 2 is 2 ⁇ .
  • the fourth optical device is used to guide the light beam emitted from the MEMS1 micromirror 621 to the first optical filter 630
  • the fifth optical device is used for the first transmission emitted from the first optical filter 630
  • the light beam is directed to the MEMS2 micromirror 640
  • the sixth optical device is used to direct the first reflected light beam emerging from the first optical filter 630 to the MEMS3 micromirror 622 .
  • the fourth optical device converges the light beam emitted from the MEMS1 micromirror 621 (for example, with a different angle from the optical axis 1) onto the first optical filter 630 (for example, the intersection with the optical axis 1), wherein the The angle between the beam emitted by the MEMS1 micromirror 621 and the optical axis 1 corresponds to the angle between the beam emitted from the fourth optical device and the optical axis 1; the fifth optical device will emit from the first optical filter 630.
  • the first transmitted light beam (for example, at a different angle from the optical axis 1) converges on the MEMS2 micromirror 640 (for example, the intersection with the optical axis 1), wherein the light beam emitted from the first optical filter 630 is related to the optical axis 1
  • the included angle of ⁇ corresponds to the included angle between the light beam emitted from the fifth optical device and the optical axis 1 one-to-one;
  • the first reflected light beam converges on the MEMS3 micromirror 622 (for example, the intersection with the optical axis 2), wherein the angle between the light beam emitted from the first optical filter 630 and the optical axis 2 is the same as the angle from the sixth optical device
  • the outgoing beam corresponds to the included angle of the optical axis 2 one-to-one.
  • the fourth optical device or the fifth optical device or the sixth optical device may not adjust the light beam.
  • FIG. 11 shows a specific example of another T-OADM apparatus provided by an embodiment of the present application.
  • the T-OADM device includes an input/output port 610, a polarization beam splitting device 681, a MEMS1 micromirror 621, a fourth optical device 677, a first optical filter 630, a fifth optical device 678, and a MEMS2 micromirror 640 , sixth optical device 679 , MEMS3 micromirror 622 , polarization beam combining devices 682 and 683 , first transmissive input/output port 650 and second transmissive input/output port 660 .
  • FIG. 11 shows a specific example of another T-OADM apparatus provided by an embodiment of the present application.
  • the T-OADM device includes an input/output port 610, a polarization beam splitting device 681, a MEMS1 micromirror 621, a fourth optical device 677, a first optical filter 630, a fifth optical device 678, and a
  • the fourth optical device 677 is an optical 4f system, including lens 1 (denoted as f1) and lens 2 (denoted as f2)
  • the fifth optical device 678 is also an optical 4f system, including lens 3 (denoted as f3) ) and lens 4 (denoted as f4)
  • the sixth optical device 679 is also an optical 4f system, including lens 5 (denoted as f5) and lens 6 (denoted as f6).
  • lens 1 is an example of a front lens of an optical 4f system
  • lens 2 is an example of a rear lens of an optical 4f system
  • lens 3 is an example of a front lens of an optical 4f system
  • lens 4 is an example of a rear lens of an optical 4f system
  • lens 5 is an example of a front lens of an optical 4f system
  • lens 6 is an example of a rear lens of an optical 4f system.
  • the sixth optical device 679 may further include a reflector 6791 for folding the optical path to reduce the size of the device.
  • the centers of the MEMS1 micromirror 621 , the lens 1 , the lens 2 , the first optical filter 630 , the lens 3 , the lens 4 , and the MEMS2 micromirror 640 are all set on the optical axis 1
  • first optical filter 630, lens 3, lens 4 and MEMS3 micromirror 622 are all set on optical axis 2 (including the folded optical axis of optical axis 2 reflected by the first optical filter 630, and the optical axis 2 on the folded optical axis reflected by mirror 6791).
  • the MEMS1 micromirror 621 is located at the front focus of the lens 1
  • the first optical filter 630 is located at the back focus of the lens 2 and is located at the front focus of the lens 2
  • the MEMS2 micromirror 640 can be located at the back focus of the lens 4
  • An optical filter 630 is located at the front focus of lens 5
  • the MEMS3 micromirror 622 is located at the back focus of lens 6 .
  • the focal length of lens 1 in FIG. 11 may be the same or different from the focal length of lens 2
  • the focal length of lens 3 may be the same or different from that of lens 4
  • the focal length of lens 5 may be the same as the focal length of lens 6 or different, which is not limited in this application.
  • the input light beam exits from the input/output port 610 to the MEMS1 micromirror 621 , and is adjusted by the MEMS1 micromirror 621 to exit to the fourth optical device 677 .
  • the light beam emitted from the fourth optical device 677 (which is still referred to as the input light beam at this time) strikes the first optical filter 630, and the first optical filter 630 can divide the incident light beam into a first transmitted light beam and a first reflected light beam beam.
  • the first transmitted light beam is incident on the MEMS2 micromirror 640 through the fifth optical device 678, and the first transmitted light beam is adjusted by the MEMS2 micromirror 640 and coupled to the first transmission input/output port 650 to realize signal download.
  • the first reflected beam is emitted to the MEMS3 micromirror 622 through the sixth optical device 679, and the first reflected beam is adjusted by the MEMS3 micromirror 622 and coupled to the first reflection input/output port 660 to realize signal transmission.
  • FIG. 12 shows a specific example of another T-OADM apparatus provided by an embodiment of the present application.
  • the T-OADM device includes an input/output port 610, a polarization beam splitting device 681, a MEMS1 micromirror 621, a fourth optical device 691, a first optical filter 630, a fifth optical device 692, and a MEMS2 micromirror 640 , the sixth optical device 693 , the MEMS3 micromirror 622 , the polarization beam combining devices 682 and 683 , the first transmissive input/output port 650 and the second transmissive input/output port 660 .
  • the fourth optical device 691 includes lens 1 (denoted as f1)
  • the fifth optical device 692 includes lens 2 (denoted as f2)
  • the sixth optical device 693 includes lens 3 (denoted as f3).
  • the centers of the MEMS1 micromirror 621, the lens 1, the first optical filter 630, the lens 2, and the MEMS2 micromirror 640 are all set on the optical axis 1
  • the MEMS1 micromirror 621, the lens 1, the first optical filter 630 , the center of the lens 3 , and the MEMS3 micromirror 622 are all set on the optical axis 2 (including the folded optical axis of the optical axis 2 reflected by the first optical filter 630 ).
  • the MEMS1 micromirror 621 is located on the first side (front side) of the lens 1 at twice the focal length
  • the first optical filter 630 is located on the second side (rear side) of the lens 1 twice the focal length and is located on the first side of the lens 2.
  • the MEMS2 micromirror 640 can be located at twice the focal length of the second side (rear side) of the lens 2
  • the first optical filter 630 is located on the first side (front side) of the lens 3.
  • the MEMS3 micromirror 622 is located behind the lens 2 at twice the focal length.
  • the angle between the beam incident on the lens 1 and the optical axis 1 is the same as the angle between the beam exiting from the lens 1 and the optical axis 1
  • the angle between the beam entering the lens 2 and the optical axis 1 is the same as the angle between the beam entering the lens 2 and the optical axis 1.
  • the angle between the light beam and the optical axis 1 is the same
  • the angle between the light beam entering the lens 3 and the optical axis 1 is the same as the angle between the light beam exiting the lens 3 and the optical axis 1 .
  • the input light beam exits from the input/output port 610 to the MEMS1 micromirror 621 , and is adjusted by the MEMS1 micromirror 621 to exit to the fourth optical device 691 .
  • the light beam emitted from the fourth optical device 691 (which is still referred to as the input light beam at this time) strikes the first optical filter 630, and the first optical filter 630 can divide the incident light beam into a first transmitted light beam and a first reflected light beam beam.
  • the first transmitted light beam is projected onto the MEMS2 micromirror 640 through the fifth optical device 692, the first transmitted light beam is adjusted by the MEMS2 micromirror 640, and coupled to the first transmission input/output port 650 to realize signal download.
  • the first reflected beam is emitted to the MEMS3 micromirror 622 through the sixth optical device 693, and the first reflected beam is adjusted by the MEMS3 micromirror 622 and coupled to the first reflection input/output port 660 to realize signal transmission.
  • the fourth optical device 677 , the fifth optical device 678 , and the sixth optical device 679 all include the optical 4f system as an example for description
  • the optical device 692 and the sixth optical device 693 both include one lens for description as an example, but the embodiment of the present application is not limited thereto.
  • one or both of the fourth optical device 677, the fifth optical device 678, and the sixth optical device 679 may include a lens.
  • the T-OADM device in FIG. 12 can be transformed similarly to the T-OADM device in FIG. 11 , and details are not repeated here.
  • the fourth optical device (677 or 691) can converge the light beams emitted from the MEMS1 621 along different angles from the optical axis 1 to a certain point on the optical axis 1 (for example, the intersection of the optical axis 1 and the first optical filter 630), and the angle between the beam emitted from the MEMS1 micromirror 621 and the optical axis 1 and the angle between the beam emitted from the fourth optical device and the optical axis 1 are equal to The mapping relationship, the fifth optical device ( 678 or 692 ) can converge the first transmitted light beam emitted from the first optical filter 630 along a different angle from the optical axis 1 to a certain point on the optical axis 1 (for example, the optical axis 1 and the intersection of the MEMS2 micromirror 640), and the angle between the transmitted beam emitted from the first optical filter 630 and the optical axis 1 has a mapping relationship with the angle between the beam e
  • the light beams emitted from the MEMS1 621 at different angles along the optical axis 1 are converged on the intersection of the optical axis 1 and the first optical filter 630, which can help reduce the incidence of the input light beam to the first optical filter.
  • the area of the light spot on the filter 630 can further help reduce the area of the first optical filter 630 .
  • FIG. 13 shows a specific example of another T-OADM apparatus provided by an embodiment of the present application.
  • the T-OADM device may further include a spherical mirror 1310 for guiding the light beam (ie, the input light beam) emitted from the MEMS1 micromirror 621 to the first optical filter 630 , for example, for guiding the MEMS1 micromirror 621 to output
  • the beams with different included angles from the optical axis converge on the intersection of the optical axis and the MEMS2 micromirror 640, wherein the angle between the beam emitted from the MEMS1 micromirror 621 and the optical axis is the same as the beam emitted from the spherical mirror 1310.
  • One-to-one correspondence with the included angle of the optical axis for example, the same.
  • the T-OADM device includes an input/output port 610, a polarization multiplexer 1340, a MEMS1 micromirror 621, a spherical mirror 1310, a first optical filter 630, a MEMS2 micromirror 640, a MEMS3 micromirror 622, A first transmissive input/output port 650 and a second transmissive input/output port 660 .
  • the T-OADM device may further include mirrors 1320 and 1330, wherein the functions of the mirrors 1320 and 1330 are to fold the optical path, which can make the structure of the T-OADM device more compact and help reduce the volume of the device. .
  • the MEMS1 micromirror 621 is disposed on the first side (eg, the front side) of the spherical mirror 1310 at twice the focal length (eg, twice the focal length of the folded optical path reflected by the mirror 1320 ), and the MEMS2 micromirror 640 is located on the spherical surface
  • the MEMS3 micromirror 622 is located on the second side of the spherical mirror 4310. At twice the focal length of the optical path reflected by a filter 630 (ie, the folded optical path).
  • the spherical mirror 1310 can further reflect the input light beam, so that the input light beam hits the first optical filter 630 .
  • the first optical filter 630 may divide the incident light beam into a first transmitted light beam and a first reflected light beam.
  • the first transmitted light beam hits the MEMS2 micromirror 640, and the MEMS2 micromirror 640 performs beam adjustment on the first transmitted light beam, and is coupled to the first transmission input/output port 650 to realize signal download.
  • the first reflected beam hits the MEMS3 micromirror 622, and the MEMS3 micromirror 622 performs beam adjustment on the first reflected beam, and couples (optionally, the beam emitted from the MEMS3 micromirror 622 can be reflected and coupled by the mirror 1330) to the first reflected beam.
  • a reflective input/output port 660 realizes transparent transmission of signals.
  • the MEMS1 micromirror can be adjusted by adjusting the wavelength of the signal. 621 deflection to achieve.
  • the MEMS2 micromirror 640 and the MEMS3 micromirror 622 also need to be deflected accordingly.
  • a control unit may be further included to control the deflection direction and deflection angle of the MEMS1 micromirror 621 , the MEMS2 micromirror 640 and the MEMS3 micromirror 622 .
  • a control unit may be further included to control the deflection direction and deflection angle of the MEMS1 micromirror 621 , the MEMS2 micromirror 640 and the MEMS3 micromirror 622 .
  • FIG. 14 shows a specific example of another T-OADM apparatus provided by an embodiment of the present application.
  • the first beam adjusting device 620 can realize two MEMS micromirrors (for example, the MEMS1 micromirror 621 and the MEMS3 micromirror 622 in FIG. 13 ) by one double-reflecting surface MEMS micromirror 620 . function. That is to say, the input light beam emitted from one reflective surface of the double-reflection surface MEMS micromirror is reflected by the reflector 1320 and the spherical reflector 1310 into the first optical filter 630 in turn, and the light emitted from the first optical filter 630 is reflected. The first reflected light beam will enter another reflecting surface of the double-reflecting surface MEMS micromirror, and will be reflected to the first reflecting input/output port 660 through the reflecting surface, so as to realize the transparent transmission of the signal.
  • two MEMS micromirrors for example, the MEMS1 micromirror 621 and
  • the dual-reflecting surface MEMS micromirror can include two reflecting surfaces and a MEMS actuator that can control the two reflecting surfaces to perform the same deflection simultaneously.
  • the dual-reflection surface MEMS micromirror can be adjusted by adjusting the wavelength of the signal. 620 deflection to achieve. Due to the use of dual reflective surface MEMS micromirrors 620, the reflected light beam can also be coupled to the corresponding port when it is polarized. Further, in order to couple the transmitted light beam to the corresponding port, the MEMS2 micromirror 640 needs to be deflected accordingly.
  • control unit to control the deflection direction and deflection angle of the MEMS1 micromirror 621 , the MEMS2 micromirror 640 and the MEMS3 micromirror 622 .
  • control unit to control the deflection direction and deflection angle of the MEMS1 micromirror 621 , the MEMS2 micromirror 640 and the MEMS3 micromirror 622 .
  • the structure of the T-OADM device can be made more compact, and the volume of the T-OADM device can be reduced.
  • a beam adjustment device eg, a MEMS micromirror or LCOS
  • the incident angle of the first optical filter can be changed to change the filtering center wavelength of the first optical filter, and the light beam transmitted and reflected by the first optical filter can be adjusted by using a beam adjustment device (such as a MEMS micromirror or LCOS), so that it is coupled to the corresponding light beam. port to achieve dynamic adjustment of the wavelength of the signal downloaded or uploaded by the T-OADM device.
  • the embodiments of the present application can dynamically adjust the wavelengths of the upper and lower signals of the T-OADM device, support wavelength-level service switching, have flexible network structure, simple operation and maintenance, and are more conducive to intelligent control of optical networks.
  • the coupling degree of the light beam to the transmission input/output port can also be adjusted by a beam adjustment device (such as a MEMS micromirror or LCOS), and then the intensity of the outgoing transmission beam can be adjusted, that is, the download signal of the T-OADM device can be adjusted.
  • a beam adjustment device such as a MEMS micromirror or LCOS
  • the T-OADM device includes an optical filter and a transmission input/output port, which can realize downloading or uploading of a beam of a wavelength, and by using a beam adjustment device, The size of the wavelength can be adjusted dynamically.
  • one or more optical filters can be additionally cascaded in the T-OADM device, each optical filter The filter enables download or upload of a wavelength.
  • this type of T-OADM device will be described in detail with reference to FIGS. 15 to 18 .
  • FIG. 15 shows a schematic structural diagram of a T-OADM device 1500 provided by an embodiment of the present application.
  • the T-OADM device 1500 includes an input/output port 610 , a first beam adjustment device 620 , a An optical filter 630, a second beam adjustment device 640, a first transmission input/output port 650, a first reflection input/output port 660, a second optical filter 1510, a third beam adjustment device 1520, a fourth beam adjustment device 1530 , the second transmissive input/output port 1540 .
  • the same reference numerals in FIG. 15 as in FIG. 6 denote the same or similar meanings.
  • the second transmissive input/output port 1540 may also be referred to as the fourth port 1540, which is not limited in this application.
  • the input/output port 610, the first beam adjustment device 620, the first optical filter 630, the second beam adjustment device 640, the first transmission input/output port 650, and the first reflection input/output port 660 can refer to FIG. 6 The description in , will not be repeated here.
  • the first beam adjusting device 620 is specifically configured to adjust the transmission direction of the first reflected beam, so that the first reflected beam strikes the second optical filter 1510 at the second incident angle.
  • the reflected beam adjustment device adjusts the transmission direction of the first reflected beam.
  • the first beam adjusting device 620 can dynamically adjust the size of the second incident angle according to the wavelength of the second signal that the T-OADM device 1500 needs to download (or upload).
  • the wavelength and the second incident angle of the download (or upload) signal need to satisfy the above formula (1).
  • the second optical filter 1510 is used for receiving the light beam incident at the second incident angle, and dividing the light beam incident on the second optical filter 1510 into a second transmitted light beam including a second wavelength and a light beam including at least one wavelength.
  • the second wavelength is the wavelength of the light beam passing through the second optical filter 1510 when it is incident on the second optical filter 1510 at the second incident angle.
  • the second reflected light can be regarded as a partial light beam in the above-mentioned first reflected light.
  • the second optical filter 1510 can be fixedly set, and at this time, the size of the second incident angle can be dynamically adjusted by the first beam adjusting device 620, so that the T-OADM device 1500 is downloading (or uploading) the signal of the first wavelength.
  • the signal of the second wavelength can also be downloaded (or uploaded).
  • the third beam adjusting device 1520 is configured to adjust the transmission direction of the second transmission beam, so that the second transmission beam is output to the second transmission input/output port 1540 .
  • the second transmission input/output port 1540 is used to output the above-mentioned second transmission light beam.
  • the fourth beam adjusting device 1530 is used to adjust the transmission direction of the second reflected beam.
  • the first reflection input/output port 660 is used for outputting the above-mentioned second reflection light beam.
  • the fourth beam adjusting device 1530 may be specifically configured to adjust the transmission direction of the second reflected beam, so that the second reflected beam is output to the first reflection input/output port 660 .
  • the first reflection input/output port 660 is specifically used for outputting the second reflection light beam.
  • the fourth beam adjusting device 1530 can also be used to adjust the transmission direction of the second reflected beam, so that the second reflected beam is output to the third beam optical filter.
  • the third optical filter can further perform optical filtering on the second reflected light beam, and correspondingly, the first reflected input/output port 660 is used to output part of the second reflected light beam.
  • the transmission direction of the first reflected light beam emitted from the first optical filter is changed by the beam adjusting device, so that the first reflected light beam is incident on the second optical filter, and further can be changed by the light beam adjusting device
  • the incident angle of the light beam incident on the second optical filter, and adjusting the transmission direction of the transmitted light beam and the reflected light beam of the second wavelength from the second optical filter, so that the transmitted light beam and the reflected light beam from the optical filter are output to the corresponding port, so that the T-OADM device can also download (or upload) the signal of the second wavelength under the condition of downloading (or uploading) the signal of the first wavelength.
  • the third beam adjusting device 1520 and the fourth beam adjusting device 1530 may be MEMS micromirrors or LCOS, respectively, which are not limited in this embodiment of the present application.
  • the second transmission input/output port 1540 is also used for inputting the input light beam of the second wavelength mentioned above, the input light beam is transmitted through the second optical filter 1510 and output to the input/output port 610 . At this time, the input/output port 610 is also used to output the light beam transmitted through the second optical filter 1510 . Therefore, the embodiment of the present application can realize the uploading of the signal of the second wavelength.
  • FIGS. 16 to 18 Three specific T-OADM devices provided by the embodiments of the present application are described with reference to FIGS. 16 to 18 .
  • the same reference numerals in FIGS. 15 to 18 represent the same or similar meanings, and are not repeated for brevity.
  • the T-OADM device shown in FIG. 16 to FIG. 18 further includes a polarization beam splitting device and a polarization beam combining device (or may also be referred to as a polarization multiplexing device).
  • the third beam adjustment device 1520 is the fourth MEMS micromirror (referred to as MEMS4 micromirror) 1520
  • the fourth beam adjustment device 1530 is the fifth MEMS micromirror ( It is described as MEMS5 micromirror) 1530 as an example, but the embodiment of the present application is not limited to this.
  • FIG. 16 shows a specific example of another T-OADM device provided by an embodiment of the present application.
  • the T-OADM device in FIG. 16 is based on the T-OADM device in FIG. 7A , and further adds a second optical filter 1510 , a MEMS4 micromirror 1520 , a MEMS5 micromirror 1530 and a second transmission input/output port 1540 .
  • FIG. 16 may further include a MEMS micromirror 1610 , an optical device 1620 and a polarization beam combining device 6831 .
  • the MEMS micromirror 1610 can be used to further adjust the transmission direction of the first reflected light beam emitted from the MEMS3 micromirror 622 , so that it strikes the optical device 1620 .
  • the MEMS micromirror 1610 can also be used to fold the optical path, which can make the structure of the T-OADM device more compact and help reduce the volume of the device.
  • Optical device 1620 is used to direct the first reflected beam to second optical filter 1510. Specifically, for the optical device 1620, reference may be made to the description of the optical device 671, and details are not repeated here.
  • the MEMS3 micromirror 622 the MEMS micromirror 1610 , the optical device 1620 , the MEMS4 micromirror 1520 and the MEMS5 micromirror 1530 .
  • the MEMS1 micromirror the first optical device 671 , the MEMS2 micromirror 640 and the MEMS3 micromirror above. The description of 622 will not be repeated here.
  • the optical device 1620 is an optical 4f system as an example, that is, it includes a lens 3 (denoted as f3 ) and a lens 4 (denoted as f4 ) as an example for description.
  • the optical device 1620 may further include a lens, and the positions of the lens, the second optical filter 1510 , the MEMS4 micromirror 1520 and the MEMS5 micromirror 1530 may refer to the above-mentioned lens, the first optical filter And the description of the related MEMS micromirrors will not be repeated here.
  • FIG. 17 shows a specific example of another T-OADM apparatus provided by an embodiment of the present application. Different from FIG. 16 , in FIG. 17 , the MEMS micromirror 1610 is not used, so that the first reflected light beam emitted from the MEMS3 micromirror 622 can be incident on the optical device 1620 .
  • a mirror 1710 can be arranged between the optical device 1620 and the MEMS3 micromirror 622 for folding the optical path, which can make the structure of the T-OADM device more compact and help reduce the volume of the device.
  • a reflector 1621 can also be arranged between the lens 3 and the lens 4 in the optical device 1620 to fold the optical path, which can make the structure of the T-OADM device more compact, which is conducive to reducing the size of the T-OADM device. device volume.
  • FIG. 18 shows a specific example of another T-OADM device provided by an embodiment of the present application.
  • the T-OADM device in FIG. 18 is based on the T-OADM device in FIG. 9 , and further adds a second optical filter 1510 , a MEMS4 micromirror 1520 , a MEMS5 micromirror 1530 and a second transmission input/output port 1540 .
  • FIG. 18 may further include an optical device 1820 , an optical device 1830 and a polarization beam combining device 6831 .
  • the MEMS3 micromirror 622 adjusts the transmission direction of the first reflected light beam so that it hits the second optical filter 1510, and the second transmitted light beam from the second optical filter 1510 hits the optical device 1820, where the optical device 1820 sends
  • the second transmission light beam is guided to the MEMS4 micromirror 1520, and then coupled to the second transmission input/output port to realize the downloading of the signal of the second wavelength.
  • the second reflected light beam emitted from the second optical filter 1510 is directed to the optical device 1830, and the second reflected light beam is guided to the MEMS5 micromirror 1530 by the optical device 1830, and then coupled to the first reflected input/output port to realize the signal transmission.
  • Penetrate Specifically, for the optical device 1820, reference may be made to the description of the optical device 673, and for the optical device 1830, reference may be made to the description of the optical device 674, and details are not repeated here.
  • the optical devices 1820 and 1830 may both be optical 4f systems, wherein the optical device 1820 may include lens 5 (denoted as f5) and lens 6 (denoted as f6), and the optical device 1830 may include lens 7 (denoted as f6). is f7) and lens 8 (denoted as f8).
  • the T-OADM device in FIG. 18 may also include a reflector 1810, which may be located between the lens 4 and the MEMS3 micromirror 622 for folding the optical path, which can make the structure of the T-OADM device more compact, which is conducive to reducing the size of the T-OADM device. Small device size.
  • a reflector 1810 which may be located between the lens 4 and the MEMS3 micromirror 622 for folding the optical path, which can make the structure of the T-OADM device more compact, which is conducive to reducing the size of the T-OADM device. Small device size.
  • the positions of the MEMS3 micromirror 622, the second optical filter 1510, the optical device 1820, the MEMS4 micromirror 1520, the optical device 1830, and the MEMS5 micromirror 1530 please refer to the MEMS1 micromirror, the first optical filter 630, the first optical filter 630, and the MEMS5 micromirror.
  • the description of an optical device 671 , the MEMS2 micromirror 640 , the second optical device 674 and the MEMS3 micromirror 622 will not be repeated here.
  • the optical devices 1820 and 1830 are described as an example of an optical 4f system.
  • the optical device 1820 or 1830 may further include a lens, and the positions of the lens in the optical device 1820 or 1830, the second optical filter 1510, the MEMS4 micromirror 1520 and the MEMS5 micromirror 1530 can be referred to above.
  • the description of the lens, the first optical filter and the related MEMS micromirrors will not be repeated here.
  • the T-OADM device simultaneously implements downloading (or uploading) of signals of two wavelengths as an example for description.
  • the T-OADM device can simultaneously download (or upload) signals with more wavelengths by adding more optical filters and beam adjustment devices, which are all within the protection scope of the embodiments of the present application within.
  • a beam adjustment device such as a MEMS micromirror or LCOS
  • a beam adjustment device can be used to dynamically change the incident beam of the input beam to the optical filter.
  • the incident angle of the first optical filter and/or the second optical filter to change the filtering center wavelength of the first optical filter and/or the second optical filter, and using a beam adjustment device (eg MEMS micromirror or LCOS) Adjust the light beam transmitted by the first optical filter and the light beam transmitted and reflected by the second optical filter so that they are coupled to the corresponding ports, and adjust the light beam reflected by the first optical filter so that it hits the second optical filter.
  • the optical filter On the optical filter, signals of different wavelengths that can be downloaded or uploaded to the T-OADM device are realized, and the different wavelengths can be adjusted dynamically respectively.
  • the embodiments of the present application can dynamically adjust the wavelengths of the upper and lower signals of the T-OADM device, support wavelength-level service switching, have flexible network structure, simple operation and maintenance, and are more conducive to intelligent control of optical networks.
  • the coupling degree of different transmission beams to the corresponding transmission input/output ports can be adjusted respectively through a beam adjustment device (such as a MEMS micromirror or LCOS), so that the intensity of each transmission beam can be kept consistent, thereby It can realize the consistency of the intensity of multiple different wavelength signals downloaded by the T-OADM device, which helps to ensure the flatness of the intensity of the optical signals of each wavelength downloaded to the local.
  • a beam adjustment device such as a MEMS micromirror or LCOS
  • the input beam ie, the beam incident on the optical filter
  • dynamic adjustment can be achieved by dynamically changing the deflection angle of the optical filter to change the incident angle of the incident beam hitting the optical filter.
  • the wavelength of the transmitted light beam and the reflected light beam emitted by the optical filter can be adjusted dynamically to adjust the wavelength of the light beam downloaded or uploaded by the T-OADM device.
  • FIG. 19 shows an existing T-OADM device, including a dielectric thin film filter and a reflector attached to the squeeze pad 1 , and a compensation sheet attached to the squeeze pad 2 .
  • the incident beam is kept unchanged, by adjusting the deflection of the squeeze pad 1, the incident angle between the dielectric thin film filter and the incident beam can be changed, and then the filter center wavelength of the filter can be changed, so as to achieve dynamic Adjustable OADM function.
  • the squeeze pad 2 will deflect the corresponding angle in the opposite direction according to the deflection of the squeeze pad 1 to compensate for the displacement of the transmitted beam and the reflected beam caused by the deflection of the squeeze pad 1, making the beam more effective.
  • the device In order to reduce the beam displacement problem caused by the deflection filter, the device adds a corresponding compensation device, so that the device as a whole has many devices and a complex structure.
  • an embodiment of the present application provides a T-OADM device, in which the optical filter can maintain a fixed angle with the mirror, and the optical filter can be deflected by a rotating component to change the incident beam Depending on the angle of incidence to the optical filter, the corresponding mirror is deflected as the optical filter deflects, coupling the reflected beam emerging from the optical filter into the reflective input/output port.
  • FIG. 20 shows a schematic structural diagram of a T-OADM apparatus 2000 provided by an embodiment of the present application.
  • the T-OADM device 2000 includes: an input/output port 2010 , a rotating member 2020 , an optical filter 2030 , a mirror 2040 , a transmissive input/output port 2050 and a reflective input/output port 2060 .
  • the input/output port 2010 may also be referred to as the first port 2010,
  • the transmissive input/output port 2050 may also be referred to as the transmissive port 2050, and the reflective input/output port 2060 may also be referred to as the reflective port 2060, which is not limited in this application .
  • the rotating part 2020 is respectively connected with the optical filter 2030 and the reflection mirror 2040, the optical filter 2030 is connected with the reflection mirror 2040, and the optical filter 2030 is connected with the reflection mirror 2040 There is a fixed angle between the reflective surfaces.
  • the input/output port 2050 is used for inputting an input beam containing at least two wavelengths.
  • the rotating part 2020 is used for rotating to adjust the inclination angle of the optical filter 2030 and the mirror 2040, so that the input light beam hits the optical filter 2030 at the first incident angle.
  • the rotating part 2020 can dynamically adjust the deflection (ie, the tilt angle) of the optical filter 2030 according to the wavelength of the signal to be downloaded (or uploaded) by the T-OADM device 2000 to adjust the size of the first incident angle.
  • the wavelength and the first incident angle of the download (or upload) signal need to satisfy the above formula (1).
  • An optical filter 2030 configured to receive a light beam incident at the first incident angle, and divide the incident light beam into a transmitted light beam containing a first wavelength and a reflected light beam containing at least one wavelength, wherein the first The wavelength is the wavelength of the light beam passing through the optical filter 2030 when it is incident on the optical filter 2030 at the first incident angle.
  • the first wavelength is the wavelength corresponding to the signal that the T-OAMD device 2000 needs to download (or upload).
  • the mirror 2040 is used to reflect the reflected light beam, so that the reflected light beam is output to the reflection input/output port.
  • Transmissive input/output port 2050 for outputting the transmitted light beam.
  • the first reflection input/output port 2060 is used to output the reflected light beam.
  • the optical filter and the mirror are arranged to be connected to the rotating member, and a fixed angle is maintained between the optical filter and the rotating member, and the inclination angle of the optical filter is changed by the rotation of the rotating member to change the incident incident.
  • input/output port Since the embodiment of the present application can couple the reflected light beam to the reflection input/output port through the mirror by setting the optical filter and the reflector to a fixed angle, the embodiment of the present application can reduce the complexity of the T-OADM device.
  • the T-OADM device may further include a control unit for controlling the rotation of the rotating member according to the wavelength of the signal to be downloaded (or uploaded) by the T-OADM device 2000, so as to realize the incidence of the light beam into the first optical beam. Adjustment of the filtered first incident angle, so as to realize the adjustment of the wavelength of the signal to be downloaded (or uploaded) by the T-OADM device.
  • control unit may be configured to receive an instruction for instructing the wavelength of the first signal downloaded (or uploaded) by the T-OADM.
  • the control unit may also determine the rotation angle of the rotating member according to the first wavelength, and control the rotation of the rotating member according to the rotation angle.
  • control unit may be pre-configured to store multiple wavelengths of the signal that the T-OADM device can download or upload, and the rotation angle of the rotating component corresponding to each wavelength.
  • control unit acquires the wavelength of the signal to be downloaded or uploaded by the T-OADM device, it can determine the rotation angle of the rotating component corresponding to the wavelength according to the pre-configuration.
  • control unit may send a control signal to the driver of the rotating part, so as to control the rotation of the rotating part.
  • the rotating component may be a motor or a MEMS rotating component, which is not limited in this embodiment of the present application.
  • the transmissive input/output port 2050 is also used to input an input beam of the first wavelength, which is transmitted through the optical filter 2030 and output to the input/output port 2010 .
  • the input/output port 2010 is also used to output the light beam transmitted through the optical filter 2030 . In this way, the upload of the signal of the first wavelength can be realized.
  • the reflective input/output port 2060 is also used to input the light beam output from the second reflective input/output port, the light beam is reflected by the mirror 2040 and the optical filter 2030 and output to the input/output port 2010 .
  • the input/output port 2010 is also used to output the light beam reflected by the optical filter 2030 .
  • the second reflection input/output port may be a reflection input/output port of another OADM device. Same as above.
  • the light beam output from the second reflection input/output port it should be transparently transmitted without being affected.
  • the light beam output from the second reflective input/output port can be input to the reflective input/output port 2060, and the light beam input to the reflective input/output port 2060 can be filtered by the mirror 2040 and optically filtered
  • the sheet 2030 is reflected to the input/output port, thereby realizing transparent transmission of the light beam output from the second reflection input/output port.
  • the light beam output from the reflection input/output port 2060 can also be input to another reflection input/output port (for example, the third reflection input/output port), so as to realize the light beam output from the reflection input/output port 2060 Perform transparent transmission.
  • another reflection input/output port for example, the third reflection input/output port
  • FIG. 21 to FIG. 24 two specific T-OADM devices provided by the embodiments of the present application will be described with reference to FIG. 21 to FIG. 24 .
  • the same reference numerals in FIG. 21 to FIG. 24 represent the same or similar meanings, and are not repeated for brevity.
  • the description is given by taking the optical filter optically filtering incident light of a specific polarization state as an example.
  • the T-OADM device shown in FIG. 21 to FIG. 24 also includes a polarization beam splitting device and a polarization beam combiner device (or may also be called a polarization multiplexing device), but the embodiments of the present application are not limited to this. .
  • FIG. 21 shows a specific example of a T-OADM device provided by an embodiment of the present application.
  • the T-OADM device includes an input/output port 2010 , a polarization beam splitter device 2110 , a rotating part 2020 , an optical filter 2030 , a mirror 2040 , polarization beam combiner devices 2120 and 2130 , and a transmission input/output port 2050 and reflective input/output port 2060.
  • the size of the angle between the optical filter 2030 and the reflection surface of the mirror 2040 is not limited.
  • the input light beam input to the T-OADM device is a channel of a plurality of wavelengths included in the WDM system.
  • the input light beam exits from the input/output port 2010, and passes through the polarization beam splitting device 2110, and becomes two light signals with the same polarization (for example, they can be arranged perpendicular to the paper surface).
  • the two optical signals with the same polarization (which are still referred to as input beams at this time) strike the filter 2030 .
  • the channel (light beam) of a specific wavelength (eg, the first wavelength) in the input light beam will be transmitted by the optical filter 2030, and the input light beam will be transmitted by the optical filter 2030.
  • Channels (light beams) other than the specific wavelength in the ⁇ are reflected by the optical filter 2030 to the mirror 2040 .
  • the transmitted light beam emitted from the optical filter 2030 is subjected to polarization recovery through the polarization beam combining device 2120, and is coupled to the transmission input/output port 2050 to realize signal download.
  • the reflected light beam emitted from the first optical filter 630 is reflected by the mirror 2040 to the polarization beam combining device 2130 to realize polarization recovery, and then coupled to the reflection input/output port 2060 to realize the transparent transmission of the signal.
  • FIG. 22 shows an example of optical filter 2030 and mirror 2040 positions.
  • the angle ⁇ between the optical filter 2030 and the reflection surface of the mirror 2040 may be set in the range of 40° to 120°, which is not limited in this application.
  • the optical path length L between the position A of the light spot formed by the light beam on the optical filter 2030 and the position B of the light spot formed by the light beam on the reflective surface of the mirror 2040 can be controlled within 80mm. Not limited.
  • FIG. 23 shows a specific example of a T-OADM device provided by an embodiment of the present application.
  • the T-OADM device includes an input/output port 2010, a dual fiber collimator 2310, a first prism 2320, a polarization multiplexer 2330, a rotating part 2020, an optical filter 2030, a mirror 2040, a polarization combiner Beam device 2120, transmissive input/output port 2050, and reflective input/output port 2060.
  • the optical filter 2030 and the reflecting surface of the reflecting mirror 2040 are vertically arranged, that is, the angle between the optical filter 2030 and the reflecting surface of the reflecting mirror 2040 is 90′.
  • the optical filter 2030 and the reflective surface of the mirror 2040 are vertically arranged, which includes strictly vertical between the two, that is, the angle between the two is accurately set to 90°, It also includes that the two are close to vertical, that is, the angle between them is set to be close to 90° or slightly larger than 90°, which is not limited in this application.
  • the input light beam exits from the input/output port 2010 to one fiber in the dual fiber collimator 2310 for collimation, and the collimated light beam is incident on the polarization multiplexing device 2330 through the first prism 2320 and becomes two optical fibers.
  • Beam polarization of the same optical signal for example, can be aligned perpendicular to the paper.
  • the two optical signals with the same polarization (which are still referred to as input beams at this time) strike the filter 2030 .
  • the transmitted light beam emitted from the optical filter 2030 is subjected to polarization recovery through the polarization beam combining device 2120, and is coupled to the transmission input/output port 2050 to realize signal download.
  • the reflected light beam emitted from the optical filter 2030 is incident to the polarization multiplexing device 2330 through the mirror 2040 to realize polarization recovery, and then coupled to the first prism 2320 .
  • the reflected light beam is emitted from the first prism and then enters the dual-fiber collimator 2310, and then is coupled to the reflection input/output port 2060 to realize the transparent transmission of the signal.
  • the first prism 2320 may be a roof prism, which is not limited in this application.
  • the optical filter 2030 is perpendicular to the reflecting surface of the mirror 2040, the light beam incident on the filter 2030 and the reflected light beam exiting from the mirror 2040 are parallel with a space between the two beams.
  • using the first prism 2320 can refract the input beam exiting from the dual-fiber collimator 2310 to the polarization multiplexing device 2330, and refract the reflected beam from the polarization multiplexer 2330 to the dual-fiber collimator 2310, so that The reflected light beam is coupled to the reflected input/output port 2060 .
  • the filtering center wavelength of the optical filter 2030 ie, adjust the wavelength of the first transmitted light beam
  • the reflection surfaces of the optical filter 2030 and the reflection mirror 2040 can continue to maintain the set fixed angle, it is possible to couple the transmitted light beam and the reflected light beam into the corresponding ports.
  • a second prism can be positioned between the optical filter 2030 and the transmissive input/output port. Since the transmitted beam will have a certain displacement when the optical filter is deflected, the use of the second prism can reduce the displacement distance of the transmitted beam and reduce the influence of the displacement on coupling the transmitted beam to the corresponding port.
  • a third prism may be provided between the mirror 2040 and the reflective input/output port.
  • the reflected beam will have a certain displacement.
  • the use of the third prism can reduce the displacement distance of the reflected beam and reduce the impact of the displacement on coupling the reflected beam to the corresponding port.
  • Figure 24 shows an example of a prism compressing the displacement of the beam. As shown in Figure 24, the displacement of the beam before passing through the prism is a. After passing through the prism, the displacement of the beam is reduced to b.
  • Embodiments of the present application also provide a T-OADM device, including an input/output port, a driving component, an optical filter, a transmission input/output port and a reflection input/output port, wherein the optical filter includes at least two Regions of different filter bandwidths.
  • the driving component is connected with the optical filter, and is used for driving the optical filter to move, so that the input light beam is incident on the first region of the at least two regions of the optical filter, so that the optical filter receives the incident light through the first region
  • the incident light beam is divided into a transmitted light beam including a signal of the first wavelength and a reflected light beam including at least one wavelength through the first region.
  • the first wavelength is the wavelength of the light beam passing through the optical filter when it is incident on the first region at the first incident angle.
  • a control unit may also be included for controlling the movement of the driving component, so as to realize the incidence of the light beam into different regions of the first optical filter, so as to realize the wavelength of the signal that needs to be downloaded (or uploaded) to the T-OADM device make adjustments.
  • FIG. 25 shows an example of an optical filter.
  • different regions of the optical filter can be designed and processed into filters with different filter bandwidths, so that the optical filter includes multiple regions with different filter bandwidths, for example, the optical filter in the figure goes from top to bottom
  • the bandwidth of the lower filter is ⁇ 1, ⁇ 2, ⁇ 3... ⁇ n in sequence.
  • a driving component such as a driver
  • the T-OADM device can dynamically adjust the download (or upload) the wavelength of the signal.
  • the optical filter in each of the foregoing embodiments may also be replaced by the optical filter that includes regions with different filter bandwidths, and the corresponding above-mentioned embodiments may also include the same optical filter as the optical filter.
  • the driving component connected to the chip is used to change the position of the light beam incident on the optical filter through the driving component, so as to realize the dynamic adjustment of the filtering center wavelength of the optical filter.
  • the T-OADM device 2600 includes an input/output port 2610 , a first beam adjustment device 2620 , an optical filter 2630 , and a second beam adjustment device 2640 , transmission input/output port 2650, third beam adjusting device 2660, reflection input/output port/2670.
  • the input/output port 2610 may also be called the first port 2610
  • the reflection input/output port 2670 may also be called the reflection port 2670
  • the transmission input/output port 2650 may also be called the transmission port 2650, which is not limited in this application .
  • the first beam adjusting device 2620 is configured to adjust the transmission direction of the input beam, so that the input beam hits the optical filter 2630 at a first incident angle.
  • An optical filter 2630 configured to receive a light beam incident at the first incident angle, and divide the incident light beam into a transmitted light beam containing a first wavelength and a reflected light beam containing at least one wavelength, wherein the first The wavelength is the wavelength of the light beam passing through the optical filter 2630 when it hits the optical filter 2630 at the first incident angle.
  • the second beam adjusting device 2640 is configured to adjust the transmission direction of the transmitted light beam, so that the transmitted light beam is output to the transmission input/output port 2650 through the optical filter 2630 and the first beam adjusting device 2620;
  • a transmissive input/output port 2650 for outputting the transmissive beam
  • the third beam adjusting device 2660 is configured to adjust the transmission direction of the reflected light beam, so that the reflected light beam is output to the reflection input/output port 2670 through the optical filter 2630 and the first beam adjusting device 2620 .
  • Reflection input/output port 2670 for outputting the reflected beam.
  • first beam adjusting device 2620 reference may be made to the description of the incident beam adjusting device above, and for the optical filter 2630, reference may be made to the description of the first optical filter in FIG. 6, which will not be repeated here.
  • the incident angle of the incident light beam to the optical filter is changed by the first beam adjusting device, and after the optical filter divides the incident light beam into the transmitted light beam and the reflected light beam, the second light beam adjusting device further uses the second light beam adjusting device from The transmitted light beam emitted from the optical filter is reflected to the optical filter, and further output to the transmission input/output port through the first beam adjustment device, and the reflected beam emitted from the optical filter is reflected to the optical filter through the third beam adjustment device and output to the reflection input/output port through the first beam adjusting device.
  • the T-OADM device may further include a control unit to control the deflection direction and deflection angle of the incident light beam by the first beam adjusting device, so as to realize the control of the first incident angle of the light beam incident on the first optical filter. adjustment, so as to adjust the wavelength of the signal that the T-OADM device needs to download (or upload).
  • control unit controls the first light beam adjusting device.
  • the transmissive input/output port 2650 is also used to input an input beam of the first wavelength, which is transmitted through the optical filter 2630 and output to the input/output port 2610 .
  • the input/output port 2610 is also used to output the light beam transmitted through the optical filter, so as to realize the uploading of the signal of the first wavelength.
  • the reflective input/output port 2670 is also used to input light beams that are reflected by the optical filter 2630 and output to the input/output port 2610.
  • the input/output port 2610 is also used to output the light beam reflected by the optical filter 2630, so as to realize the transparent transmission of the signal.
  • FIG. 27 includes Fig. 27A and Fig. 27B, wherein Fig. 27A shows a top view of a T-OADM device provided by the embodiment of the present application, and Fig. 27B shows the T-OADM device in Fig. 27A side view.
  • Fig. 28 includes Fig. 28A and Fig. 28B, wherein Fig. 28A shows a top view of a T-OADM device provided by an embodiment of the present application, and Fig. 28B shows a side view of the T-OADM device in Fig. 28A.
  • the description is made by taking the optical filter optically filtering incident light of a specific polarization state as an example.
  • the T-OADM device shown in FIG. 27 to FIG. 28 further includes a polarization beam splitting device and a polarization beam combining device (or may also be referred to as a polarization multiplexing device). It can be understood that this embodiment of the present application does not limit this.
  • the first beam adjusting device is a MEMS micromirror (referred to as a MEMS micromirror) 2620 as an example for description, but the embodiments of the present application are not limited to this.
  • a beam adjusting device 2620 can also be implemented by other optical devices such as LCOS.
  • FIG. 27A shows a top view of a T-OADM device provided by an embodiment of the present application.
  • the T-OADM device includes an input/output port 2610, a polarization beam splitting device 2710, a MEMS micromirror 2620, an optical 4f system composed of lens 1 (denoted as f1) and lens 2 (denoted as f2).
  • Filter 2630 lens 3 (denoted as f3 ), mirror 2641 , lens 4 (denoted as f4 ), and mirror 2661 .
  • the unit composed of the lens 3 and the mirror 2641 can be used as an example of the second beam adjustment device 2640
  • the unit composed of the lens 4 and the mirror 2661 can be used as an example of the third beam adjustment device 2660 .
  • the centers of the MEMS micromirror 2620 , the lens 1 , the lens 2 , the optical filter 2630 , and the mirror 2641 of the lens 3 are all set on the optical axis 1 .
  • the MEMS micromirror 2620 may be arranged at the front focus of the lens 1
  • the optical filter 2630 may be arranged at the back focus of the lens 2
  • the optical filter 2630 may be arranged at the front focus of the lens 3
  • the reflector 2641 may be arranged at the front focus of the lens 3. at the back focus of lens 3.
  • the centers of the optical filter 2630 , the lens 4 , and the mirror 2661 are all set on the optical axis 2 .
  • the optical filter 2630 may be disposed at the front focus of the lens 4
  • the reflector 2661 may be disposed at the back focus of the lens 4 .
  • the included angle between the normal line of the optical filter 2630 and the optical axis 1 is ⁇ , and the included angle between the optical axis 1 and the optical axis 2 is 2 ⁇ .
  • a spatial Cartesian coordinate system xyz is shown.
  • the direction of the x-axis is the direction of the optical axis 1
  • the direction of the z-axis is the direction of the first transmission input/output port relative to the input/output port.
  • a space rectangular coordinate system x'y'z' can also be set, wherein the direction of the x' axis is the direction of the optical axis 2, and the direction of the z' axis is the direction of the reflection input/output port relative to the input/output port. direction.
  • the z-axis of the Cartesian coordinate system xyz is the same as the z-axis of x'y'z', and the two can be replaced.
  • the lens 3 is arranged on the yz plane of the space rectangular coordinate system xyz, the optical filter 2630 is parallel to the z axis and has an included angle with the yz plane, and the mirror 2641 is parallel to the y axis in the space rectangular coordinate system xyz and has an included angle with the yz plane. a 1 .
  • the lens 4 is arranged on the y'z' plane of the space rectangular coordinate system x'y'z', the optical filter 2630 is parallel to the z' axis and has an included angle with the y'z' plane, and the mirror 2661 is parallel to the space rectangular coordinate system x
  • the y' axis in 'y'z is parallel and has an angle ⁇ 2 with the y'z' plane.
  • the lens 3 is used for collimating the transmitted light beam emitted from the optical filter 2630 , so that the transmitted light beam is incident on the reflecting mirror 2641 along the optical axis 1 (ie, the x-axis direction).
  • the mirror 2641 is used to cause the transmitted beam to pass through the lens 3, the optical filter 2630 and the MEMS micromirror 2620 and be reflected to the transmissive input/output port 2650 with a first lateral offset h1 along the z-axis direction.
  • f 1 represents the focal length of the lens 3 .
  • the lens 4 is used for collimating the reflected light beam emitted from the optical filter 2630 , so that the reflected light beam is incident on the second reflecting mirror 2661 along the optical axis 2 (ie, along the x′ direction).
  • the mirror 2661 is used to make the reflected light beam pass through the lens 4, the optical filter 2630 and the MEMS micromirror 2620 and be reflected to the reflection input/output port with a second lateral offset h2 along the z-axis direction.
  • f 2 represents the focal length of the lens 4 .
  • the focal lengths of the lens 3 and the lens 4 may be the same or different, which is not limited in this application.
  • the mirror 2661 By setting the mirror 2661 parallel to the y' axis in the spatial Cartesian coordinate system x'y'z and having an included angle ⁇ 2 with the y'z' plane, further by connecting the reflection input/output port 2670 with the input/output port
  • the distance between the 2610s along the z-axis direction is h 2 , which can realize the output of the reflected light beam to the reflection input/output port, and realize the transparent transmission of the light beam.
  • the transmissive input/output port 2650 and the reflective input/output port 2670 may be arranged in two directions of the input/output port 2610, or along one direction, but the values of h1 and h2 are different.
  • the optical 4f system is used to converge the input light beams at different angles along the optical axis 1 from the MEMS micromirror 2620 to the optical filter 2630, and the light beams from the MEMS micromirror 2620 are different from those of the optical axis 1.
  • the included angle has a mapping relationship with the included angle between the beam emitted from the optical 4f system and the optical axis 1, which is beneficial to control the incident angle of the input beam incident on the optical filter 2630 by adjusting the deflection of the MEMS micromirror 2620, thereby Ability to control the wavelength of the signal downloaded or uploaded by the T-OADM device.
  • the structure of the T-OADM device can be made more compact, and the volume of the T-OADM device can be reduced.
  • the optical 4f system in FIG. 27 can also be replaced with a lens, in which case the MEMS micromirror 2620 and the optical filter 2630 can be located at twice the focal length of the lens before and after, so as to realize the transition from the MEMS micromirror 2620 to the optical filter 2630
  • the input light beams at different angles along the optical axis 1 emitted from the mirror 2620 are converged on the optical filter 2630 .
  • the filter center wavelength of the optical filter 2630 needs to be adjusted, it can be realized by adjusting the deflection of the MEMS micromirror 2620 .
  • the method of adjusting the MEMS micromirror 2620 reference may be made to the description in FIG. 7A above, which will not be repeated here.
  • FIG. 28A shows a top view of a T-OADM device provided by an embodiment of the present application
  • FIG. 28B shows a side view of the T-OADM device.
  • the unit composed of lens 1 (denoted as f1) and mirror 2642 is used as an example of the second beam adjusting device
  • the unit composed of lens 2 (denoted as f2) and mirror 2662 As an example of the third beam adjusting device.
  • the MEMS micromirror 2620 is disposed at the front focus of the lens 1
  • the optical filter 2630 is located between the MEMS micromirror 2620 and the lens 1 .
  • the MEMS micromirror 2620 is disposed at the focal point of the folded optical path of the lens 2 reflected by the optical filter 2630 .
  • the focal lengths of lens 1 and lens 2 may be the same or different, which is not limited in this application.
  • a beam adjusting device (such as a lens and a mirror disposed at the focal point of the lens) can be used to reflect the beam transmitted by the optical filter, so that the beam is output to the optical filter with a certain lateral offset.
  • the transmission input/output port reflects the light beam reflected by the optical filter, so that it is output to the reflection input/output port with a certain lateral offset through the optical filter, so as to realize the coupling of the transmitted light beam and the reflected light beam to the corresponding port, Further, the dynamic adjustment of the wavelength of the signal downloaded or uploaded by the T-OADM device is realized.
  • the embodiments of the present application can dynamically adjust the wavelengths of the upper and lower signals of the T-OADM device, support wavelength-level service switching, have flexible network structure, simple operation and maintenance, and are more conducive to intelligent control of optical networks.
  • the optical filter in the T-OADM device in FIG. 27 or FIG. 28 can also be replaced with the optical filter shown in FIG. 25 including regions with different filter bandwidths, corresponding to FIG. 27
  • FIG. 28 may further include a driving component connected to the optical filter, and the driving component may change the position of the light beam incident on the optical filter, so as to dynamically adjust the filtering center wavelength of the optical filter.
  • the T-OADM device 2900 includes an input/output port 2910, a rotating part 2920, an optical filter 2930, a beam adjustment device 2950, a transmission input/output port port 2940 and reflection input/output port 2960.
  • the input/output port 2910 may also be called the first port 2910
  • the reflection input/output port 2960 may also be called the reflection port 2960
  • the transmission input/output port 2940 may also be called the transmission port 2940, which is not limited in this application .
  • the input/output port 2910 is used for inputting an input beam containing at least two wavelengths.
  • the rotating part 2920 is connected with the optical filter 2930, and is used for rotating to adjust the inclination angle of the optical filter 2930, so that the input light beam hits the optical filter 2930 at the first incident angle;
  • An optical filter 2930 configured to receive a light beam incident at the first incident angle, and divide the incident light beam into a transmitted light beam containing a first wavelength and a reflected light beam containing at least one wavelength, wherein the first The wavelength is the wavelength of the light beam passing through the optical filter 2930 when it is incident on the optical filter 2930 at the first incident angle.
  • the rotating part 2920 can dynamically adjust the deflection (ie, the tilt angle) of the optical filter 2930 according to the wavelength of the signal to be downloaded (or uploaded) by the T-OADM device 2900 to adjust the size of the first incident angle.
  • the wavelength and the first incident angle of the download (or upload) signal need to satisfy the above formula (1).
  • the beam adjustment device 2950 is used to adjust the transmission direction of the reflected beam, so that the reflected beam is output to the reflection input/output port through the optical filter 2930 .
  • Transmissive input/output port 2940 for outputting the transmitted light beam.
  • Reflection input/output port 2960 for outputting the reflected beam.
  • the inclination angle of the optical filter is changed by the rotation of the rotating member, so as to change the incident angle of the incident light beam to the optical filter, and after the optical filter divides the incident light beam into the transmitted light beam and the reflected light beam, further The outgoing reflected beam is reflected by the beam adjusting device and transmitted to the reflection input/output port through the optical filter 2930.
  • the T-OADM device may further include a control unit to control the rotation of the rotating member, so as to adjust the first incident angle of the light beam incident on the first optical filter, so as to realize the need for downloading the T-OADM device. (or upload) the wavelength of the signal is adjusted.
  • control unit controls the rotation of the rotating member.
  • the transmissive input/output port 2940 is also used to input an input beam of the first wavelength, which is transmitted through the optical filter 2930 and output to the input/output port 2610 .
  • the input/output port 2910 is also used to output the light beam transmitted through the optical filter, so as to realize the uploading of the signal of the first wavelength.
  • the reflective input/output port 2960 is also used to input a light beam that is reflected by the optical filter 2930 and output to the input/output port 2910.
  • the input/output port 2910 is also used to output the light beam reflected by the optical filter, so as to realize the transparent transmission of the signal.
  • Fig. 30 includes Fig. 30A and Fig. 30B, wherein Fig. 30A shows a top view of a T-OADM device provided by an embodiment of the present application, and Fig. 30B shows the T-OADM device in Fig. 30A side view.
  • the T-OADM device shown in FIG. 30 to FIG. 32 further includes a polarization beam splitting device and a polarization beam combiner device (or may also be referred to as a polarization multiplexing device). It can be understood that this embodiment of the present application does not limit this.
  • the rotating parts are not shown. It can be understood that, the optical filters are all angularly deflected under the rotation of the rotating member. When the filter center wavelength of the optical filter 2930 needs to be adjusted, it can be realized by adjusting the rotation of the rotating part to deflect the optical filter 2930 .
  • FIG. 30A shows a specific example of a top view of a T-OADM device provided by an embodiment of the present application.
  • the T-OADM device includes an input/output port 2910, a polarization beam splitting device 3010, an optical filter 2930, a rotating part (not shown) connected to the optical filter 2930, and a lens 1 (marked as f1) , mirror 2951, polarization beam combiner device 3020, transmission input/output port 2940.
  • the unit composed of the lens 1 and the mirror 2951 can be used as an example of the beam adjusting device 2950 .
  • the optical filter 2930 may be provided at the front focus of the lens 1 and the mirror 2951 may be provided at the back focus of the lens 1 .
  • the transmitted light beam emitted from the optical filter 2930 can continue to propagate along the incident direction of the light beam to the optical filter 2930 , output to the polarization beam combining device 3020 , realize the polarization beam combining, and then output to the transmission output port 2940 , to realize the download of the signal.
  • FIG. 30B shows a specific example of a side view of the T-OADM device in FIG. 30A.
  • Figure 30B shows the reflective input/output ports and the transmissive input and output ports of the T-OADM device in order from top to bottom.
  • FIG. 30A also shows the spatial Cartesian coordinate system xyz.
  • the direction of the x-axis is the direction in which the input beam enters the optical filter 2930
  • the direction of the z-axis is the direction of the reflection input/output port relative to the input/output port.
  • a space rectangular coordinate system x'y'z' can also be set, wherein the direction of the x' axis is the direction of the optical axis 2, and the direction of the z' axis is the direction of the reflection input/output port relative to the input/output port. direction.
  • the z-axis of the Cartesian coordinate system xyz is in the same direction as the z-axis of x'y'z', and the two can be replaced.
  • the lens 1 is arranged on the y'z' plane of the space rectangular coordinate system x'y'z', the optical filter 2930 is parallel to the z' axis and has an included angle with the y'z' plane, and the mirror 2951 is parallel to the space rectangular coordinate system x.
  • the y' axis in 'y'z is parallel and has an angle ⁇ 3 with the y'z' plane.
  • the lens 1 is used for collimating the reflected light beam exiting from the optical filter 2930, so that the reflected light beam is incident on the second reflecting mirror 2951 along the optical axis 2 (ie, along the x' direction).
  • the mirror 2951 is used to make the reflected beam pass through the lens 1, the optical filter 2930, and reflect to the reflection input/output port with a third lateral offset h3 along the z-axis direction.
  • f 3 represents the focal length of the lens 1 .
  • the input/output port 2960 is further connected to the input through the reflection input/output port 2960.
  • the distance between the /output ports 2910 along the z-axis direction is h 3 , which can realize the output of the reflected light beam to the reflected input/output port and realize the transparent transmission of the light beam.
  • the inclination angle of the optical filter is changed by the rotation of the rotating member, so as to change the incident angle of the incident light beam to the optical filter, and after the optical filter divides the incident light beam into the transmitted light beam and the reflected light beam, the The light beam reflected by the optical filter is reflected, so that it is output to the reflection input/output port through the optical filter with a certain lateral offset, so as to realize the coupling of the transmitted light beam and the reflected light beam to the corresponding ports, and then realize the T-OADM device.
  • Dynamic adjustment of the wavelength of the downloaded or uploaded signal can dynamically adjust the wavelengths of signals up and down the T-OADM device, support wavelength-level service switching, have flexible network structure, simple operation and maintenance, and are more conducive to intelligent control of optical networks.
  • FIG. 31 shows a specific example of a T-OADM device provided by an embodiment of the present application.
  • the T-OADM device includes an input/output port 2910, a polarization beam splitting device 3010, an optical filter 2930, a rotating part (not shown) connected to the optical filter 2930, and a lens 1 (marked as f1) , mirror 2951, polarization beam combiner device 3020, transmission input/output port 2940, circulator 3110, reflection input/output port 2960.
  • the unit composed of the lens 1 and the mirror 2951 can be used as an example of the beam adjusting device 2950 .
  • the optical filter 2930 may be arranged at the front focus of the lens 1
  • the mirror 2951 may be arranged at the back focus of the lens 1
  • the plane where the mirror 2951 is located is perpendicular to the optical axis of the lens 1 .
  • the lens 1 is used to collimate the reflected light beam exiting from the optical filter 2930 so that the reflected light beam is vertically incident on the mirror 2951 .
  • the mirror 2951 is used to further reflect the incident reflected light beam, so that the reflected light beam passes through the lens 1 and the optical filter 2930, and is reflected to the polarization beam combiner 3020 along the z-axis direction, and further incident to the circulator 3110.
  • the circulator is used to transmit the incident reflected light beam to the reflection input/output port 2960 to realize the transparent transmission of the signal.
  • the transmitted light beam emitted from the optical filter 2930 can continue to propagate along the incident direction of the light beam to the optical filter 2930, output to the polarization beam combining device 3020 to realize polarization beam combining, and then output to the transmission output port 2940 to realize the signal download.
  • FIG. 32 shows a specific example of a T-OADM device provided by an embodiment of the present application.
  • the beam adjusting device 2650 can be realized by a MEMS micromirror 2952 .
  • the deflection of the MEMS micromirror 2952 can be adjusted so that the reflected beam returns along the original path, that is, the reflected beam is reflected to the optical filter 2930 and further reflected by the optical filter 2930,
  • the reflected light beams are incident on the polarization beam combining device 3010 and the circulator 3110 in sequence, and finally output to the reflection input/output port to realize the transparent transmission of the signal.
  • the MEMS micromirror 2952 may also be replaced with an LCOS, which is not limited in this embodiment of the present application.
  • the optical filters in the T-OADM devices shown in FIGS. 30 to 32 can also be replaced with the optical filters shown in FIG. 25 including regions with different filter bandwidths, corresponding to FIG. 30 FIG. 32 may also include a driving component connected to the optical filter, and the driving component changes the position of the light beam incident on the optical filter, so as to dynamically adjust the filtering center wavelength of the optical filter.
  • the inclination angle of the optical filter is changed by the rotation of the rotating member, so as to change the incident angle of the incident light beam to the optical filter, and after the optical filter divides the incident light beam into the transmitted light beam and the reflected light beam, the The light beam reflected by the optical filter is reflected, so that it is transmitted to the circulator through the optical filter, and then transmitted to the reflection input/output port through the circulator, so as to realize the coupling of the transmitted light beam and the reflected light beam to the corresponding ports, and then realize the Dynamic adjustment of the wavelength of the signal downloaded or uploaded by the T-OADM device.
  • the embodiments of the present application can dynamically adjust the wavelengths of the upper and lower signals of the T-OADM device, support wavelength-level service switching, have flexible network structure, simple operation and maintenance, and are more conducive to intelligent control of optical networks.
  • the optical filter is an example of a band-pass optical filter for description. It can be understood that, in the embodiment of the present application, a band-stop optical filter may also be used to select the wavelength of the signal to be downloaded or uploaded by the T-OADM device.
  • the optical filter When the optical filter is a band-pass optical filter, the optical filter can divide the incident light beam into a transmitted light beam containing a first wavelength and a reflected light beam containing at least one wavelength, wherein the first wavelength is based on the first wavelength described above.
  • the incident angle is the wavelength of the light beam selected by the optical filter when it strikes the optical filter.
  • the signal output by the transmission input/output port is the signal downloaded by the T-OADM device
  • the signal output by the reflection input/output port is the signal transparently transmitted by the T-OADM device.
  • the optical filter When the optical filter is a band-stop optical filter, the optical filter can divide the incident light beam into a reflected light beam containing a first wavelength and a transmitted light beam containing at least one wavelength, and the first wavelength is the first wavelength with the first wavelength.
  • the incident angle is the wavelength of the light beam selected by the optical filter when it strikes the optical filter.
  • the signal output by the reflection input/output port is the signal downloaded by the T-OADM device
  • the signal output by the transmission input/output port is the signal transparently transmitted by the T-OADM device.
  • FIGS. 7 to 32 show specific structural block diagrams of the T-OADM apparatus, but these structures or components are only examples, and do not limit the T-OADM apparatus of the embodiments of the present application.
  • FIG. 33 shows a schematic flowchart of a control method 3300 provided by an embodiment of the present application.
  • the method 3300 can be applied to a tunable optical add-drop multiplexer T-OADM.
  • the T-OADM includes an input/output port, a first beam adjustment device, a first optical filter, a second beam adjustment device, a second port, a third port, and a control unit.
  • the input/output port is used for inputting an input light beam containing at least two wavelengths.
  • the first optical filter is used for receiving a light beam incident at the first incident angle, and dividing the incident light beam into a first transmitted light beam and a first reflected light beam, wherein one of the first transmitted light beams is The wavelength of the included light beam is different from the wavelength of the included light beam in the first reflected light beam.
  • the second port is used for outputting the first transmitted light beam.
  • the third port is used for outputting the first reflected light beam.
  • the T-OADM device may be any one of the T-OADM devices described above in FIG. 6 to FIG. 14 , which is not limited in this embodiment of the present application.
  • the method 3300 is performed by the control unit and includes:
  • 3320 Determine, according to the wavelength of the first signal, a first deflection angle of the first beam adjustment device to the input beam, and a second deflection angle of the second beam adjustment device to the first transmitted beam, and a third deflection angle of the first beam adjusting device to the first reflected beam.
  • Control the first beam adjusting device to adjust the transmission direction of the input beam according to the first deflection angle, so that the input beam hits the first optical filter at a first angle of incidence, wherein , the first incident angle corresponds to the wavelength of the first signal.
  • Control the second beam adjusting device to adjust the transmission direction of the first transmission beam according to the second deflection angle, so that the first transmission beam is output to the second port.
  • Control the first beam adjusting device to adjust the transmission direction of the first reflected beam according to the third deflection angle, so that the first reflected beam is output to the third port.
  • the embodiment of the present application can receive the wavelength of the first signal that the T-OADM device needs to download (or upload), and control the deflection angle of the beam by each beam adjusting device according to the wavelength of the first signal, so as to be able to
  • the wavelength of the signal downloaded or uploaded by the T-OADM device can be flexibly controlled according to actual needs, so as to realize a more flexible and controllable T-OADM device.
  • control unit may send control signals to the first beam adjustment device and the second beam adjustment device, respectively, so that the first beam adjustment device and the second beam adjustment device can adjust the transmission direction of the light beams according to the control signals, respectively.
  • multiple wavelengths of the signal that the T-OADM device can download or upload can be pre-configured, and the deflection angles of the beam adjusting device corresponding to each wavelength for the incident beam, the transmitted beam, and the reflected beam.
  • the deflection angle of the beam adjustment device corresponding to the wavelength for the incident beam, the transmitted beam and the reflected beam can be determined according to the pre-configuration.
  • the correspondence between the wavelengths of the signals that can be downloaded or uploaded by the T-OADM device and the deflection angles of the incident beam, the transmitted beam, and the reflected beam by the beam adjustment device can be stored in advance.
  • the deflection angle of the beam adjustment device corresponding to the wavelength for the incident beam, the transmitted beam and the reflected beam can be determined according to the corresponding relationship.
  • the first, second, third and various numeral numbers are only used to distinguish for convenience of description, and are not used to limit the scope of the embodiments of the present application.
  • different beam conditioning devices, different ports, different wavelengths, etc. are distinguished.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be implemented in the present application.
  • the implementation of the examples constitutes no limitation.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

本申请提供了可调光分插复用器T-OADM,通过光束调整装置改变入射光束射到光学滤波片的入射角,并且在光学滤波片将入射光束分为透射光束和反射光束之后,进一步通过光束调整装置来调整从光学滤波片出射的透射光束的传输方向,以及调整从光学滤波片出射的反射光束的传输方向,使得透射光束和反射光束输出至相应的端口,从而实现一种灵活可控的T-OADM装置。本申请可应用于光通信领域,例如可以用于实现长途干线、城域网等领域的光域中支路信号的分插和复用。

Description

可调光分插复用器
本申请要求于2020年9月25日提交中国国家知识产权局、申请号为202011027812.7、申请名称为“可调光分插复用器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信领域,并且更具体的,涉及可调光分插复用器。
背景技术
随着光通信网络的发展,未来光通信网络的目标之一是实现智能化全光网络,以减少或避免光电光的转换。智能化全光网络一方面可以降低时延实现超大带宽,另一方面可以降低成本,并且能够对整个光通信网络实现智能化控制,优化光通信网络资源。
光通信网络包含很多无源器件,例如光交叉、波长选择开关、复用器、解复用器等。其中基于波分复用(wavelength division multiplexing,WDM)技术的光分插复用器(optical add-drop multiplexer,OADM)是在光域实现支路信号分插和复用的一种设备。OADM设备在长途干线和城域网中都有重要的应用,可以实现传输信号在光层的直接交叉组网功能。现有的OADM主要有固定型和可重构型两种。固定型OADM只能实现某一个或者多个固定波长信号的上下,可靠性较好,但是灵活度差。为满足不同波长信号的上下,需要制造多种型号的器件,为实现多个波长信号的上下,需要多种型号器件的组合,且需要手动安装更换设备,难以实现智能化运维。可重构型OADM,也可以称为可调OADM(tunable OADM,T-OADM),可以动态的调整需要上下信号的波长,支持波长级业务的切换,网络结构灵活,运维简单,实现智能化控制,是OADM的重要发展方向。
在一些T-OADM结构中,可以通过动态改变入射光束射到光学滤波片的入射角,实现光学滤波片滤波中心波长的动态可调,进而来实现动态调整需要上下信号的波长。在这类T-OADM结构中,如何将实现灵活可控的T-OADM是亟待解决的问题。
发明内容
本申请提供可调光分插复用器,能够通过光束调整装置改变入射光束射到光学滤波片的入射角,以及通过光束调整装置将透射光束或反射光束耦合到相应的端口,从而实现一种灵活可控的T-OADM装置。
第一方面,提供了一种可调光分插复用器T-OADM,包括:第一端口、第一光束调整装置、第一光学滤波片、第二光束调整装置、第二端口,第三端口,其中,
所述第一端口,用于输入包含至少两个波长的输入光束;
所述第一光束调整装置,用于根据所述T-OADM下载(或上传)的第一信号调整所述输入光束的传输方向,使得所述输入光束以第一入射角射到所述第一光学滤波片,其中,所述 第一入射角与所述第一信号的波长对应;
所述第一光学滤波片,用于接收以所述第一入射角入射的光束,并将所述入射的光束分为第一透射光束和第一反射光束,其中,所述第一透射光束中包含光束的波长与所述第一反射光束中包含光束的波长不同;
所述第二光束调整装置用于根据所述第一入射角调整所述第一透射光束的传输方向;
所述第二端口,用于输出所述第一透射光束;
所述第一光束调整装置还用于根据所述第一入射角调整所述第一反射光束的传输方向;
所述第三端口,用于输出所述第一反射光束。
因此,本申请实施例通过光束调整装置根据T-OADM需要下载(或上传)的第一信号调整入射光束射到光学滤波片的第一入射角,并且在光学滤波片将入射光束分为透射光束和反射光束之后,进一步通过光束调整装置根据第一入射角来调整从光学滤波片出射的透射光束的传输方向,以及根据第一入射角调整从光学滤波片出射的反射光束的传输方向,使得透射光束和反射光束输出至相应的端口,从而实现更加灵活可控的T-OADM装置。
当需要调整T-OADM下载(或上传)的光信号的波长,即需要调整第一光学滤波片的滤波中心波长(或调整第一透射光束的波长)时,由于第一光学滤波片是固定设置的,此时可以通过第一光束调整装置对入射光束的传输方向进行调整来实现。相应的,为了将透射光束和反射光束耦合到相应的端口,第一光束调整装置也需要通过根据对入射光束的调整进一步对反射光束的传输方向进行相应的调整,以及第二光束调整装置通过根据对入射光束的调整进一步对透射光束的传输方向进行相应的调整。
在一些可选的实施例中,在T-OADM中,例如第一端口还可以连接偏振分束器,用于将光束分为两束偏振相同的光束,第三端口、第二端口还可以连接偏振合束器,用于将两束偏振相同的光束合为一个光束。
示例性的,第一光束调整装置和第二光束调整装置可以由MEMS微镜,或LCOS实现,本申请实施例对此不作限定。
示例性的,第一光学滤波片可以为带通式光学滤波片或带阻式光学滤波片,第一光学滤波片的滤波波长与所述第一入射角相关。
当第一光学滤波片为带通式光学滤波片时,第一光学滤波片可以将入射的光束分为包含第一波长的第一透射光束和包含至少一个波长的第一反射光束,此时第一波长为以上述第一入射角射到所述第一光学滤波片时所述第一光学滤波片选择的光束的波长。相应的,第二端口输出的信号为T-OADM装置下载的信号,第三端口输出的信号为T-OADM装置透传的信号。
当第一滤波片为带阻式光学滤波片时,第一光学滤波片可以将入射的光束分为包含第一波长的第一反射光束和包含至少一个波长的第一透射光束,此时第一波长为以所述第一入射角射到所述第一光学滤波片时所述第一光学滤波片选择的光束的波长。相应的,第三端口输出的信号为T-OADM装置下载的信号,第二端口输出的信号为T-OADM装置透传的信号。
示例性的,本申请中输出透射光束,可以包括输出透射光束中的全部光束,或部分光束,不作限定。输出反射光束,可以包括输出反射光束中的全部光束,或部分光束,不作限定。
结合第一方面,在第一方面的某些实现方式中,还包括控制单元,所述控制单元用于:
接收指令,所述指令用于指示所述T-OADM下载(或上传)的第一信号的波长;
根据所述第一信号的波长,确定所述第一光束调整装置对所述输入光束的第一偏转角度,所述第二光束调整装置对所述第一透射光束的第二偏转角度,以及所述第一光束调整装置对所述第一反射光束的第三偏转角度;
根据所述第一偏转角度,控制所述第一光束调整装置对所述输入光束的传输方向进行调整;
根据所述第二偏转角度,控制所述第二光束调整装置对所述第一透射光束的传输方向进行调整;
根据所述第三偏转角度,控制所述第一光束调整装置对所述第一反射光束的传输方向进行调整。
因此,本申请实施例能够通过控制单元来接收T-OADM装置需要下载(或上传)的第一信号的波长,并根据该第一信号的波长,对各个光束调整装置对光束的偏转角度进行控制,从而能够根据实际需要灵活的控制T-OADM装置下载或上传的信号的波长,实现更加灵活可控的T-OADM装置。
作为一种可能的实现方式,控制单元可以预先配置为存储有T-OADM装置能够下载或上传的信号的多个波长,以及每个波长对应的光束调整装置对入射光束、透射光束以及反射光束的偏转角度。当控制单元获取T-OADM装置需要下载或上传的信号的波长时,即可根据该预先配置,确定该波长对应的光束调整装置对入射光束、透射光束以及反射光束的偏转角度。
作为另一种可能的实现方式,控制单元可以预先保存T-OADM装置能够下载或上传的信号的波长与光束调整装置对入射光束、透射光束以及反射光束的偏转角度的对应关系。当控制单元获取T-OADM装置需要下载或上传的信号的波长时,即可根据该对应关系,确定该波长对应的光束调整装置对入射光束、透射光束以及反射光束的偏转角度。
结合第一方面,在第一方面的某些实现方式中,所述第一光束调装置包括入射光束调整装置和反射光束调整装置,其中,所述入射光束调整装置用于调整所述输入光束的传输方向;所述反射光束调整装置用于调整所述第一反射光束的传输方向。
因此,本申请实施例能够分别通过入射光束调整装置对输入光束的传输方向进行调整,通过反射光束调整装置对第一反射光束的传输方向进行调整,能够更加灵活地对光路进行设置。
示例性的,入射光束调整装置和反射光束调整装置分别可以为MEMS微镜,或LCOS,本申请实施例对此不作限定。
在一些可能的实现方式中,当入射光束调整装置和反射光束调整装置,以及第二光束调整装置分别为MEMS微镜时,控制单元可以预先配置为存储有T-OADM装置能够下载或上传的信号的多个波长,以及每个波长对应的上述三个MEMS微镜的偏转角度(例如可以以表格的形式保存波长以及每个波长对应的各个反射镜的偏转角度)。也就是说,通过控制单元将该三个MEMS微镜设置为特定角度,即可控制T-OADM装置下载或上传特定波长的信号。
在一些可能的实现方式中,当入射束调整装置和反射光束调整装置,以及第二光束调整装置分别为LCOS时,控制单元可以预先配置为存储有T-OADM装置能够下载或上传的信号的多个波长,以及每个波长对应的上述三个LCOS所施加的电压值。也就是说,通过控制单 元对该三个LCOS设置施加特定的电压,即可控制T-OADM装置下载或上传特定波长的信号。
在另一些实施例中,第一光束调整装置可以包括一个双反射面MEMS微镜,该双反射面MEMS微镜中的其中一个反射面微镜用于调整输入光束的传输方向,使得输入光束以上述第一入射角射到第一光学滤波片,该双反射面MEMS微镜中的另一个反射面微镜用于调整第一反射光束的传输方向,使得反射光束耦合到相应的端口。
在一些可能的实现方式中,当第一光束调整装置包括一个双反射面MEMS微镜,第二光束调整装置为MEMS时,控制单元可以预先配置为存储有T-OADM装置能够下载或上传的信号的多个波长,以及每个波长对应的双反射面MEMS微镜的偏转角度,以及MEMS微镜的偏转角度,其中,双反射面MEMS微镜的两个反射面可以基于一套控制装置进行相同的偏转。也就是说,通过控制单元将该双反射面MEMS微镜,以及MEMS微镜设置为特定角度,即可获得对应的下载或上传的信号的波长。
结合第一方面,在第一方面的某些实现方式中,还包括第一光学装置,其中,所述入射光束调整装置、所述第一光学装置、所述第一光学滤波片和所述第二光束调整装置分别依次位于第一光轴上。
所述第一光学装置用于将从所述入射光束调整装置出射的光束汇聚到所述第二光束调整装置上,其中,从所述入射光束调整装置出射的光束与所述第一光轴的夹角与从所述第一光学装置出射的光束与所述第一光轴的夹角一一对应。
因此,本申请实施例通过第一光学装置,能够有利于通过入射光束调整装置来控制输入光束入射到第一光学滤波片上的第一入射角的大小,从而能够控制T-OADM下载或上传的信号的波长。另外,通过第一光学装置对从入射光束调整装置出射光束进行汇聚,能够使得T-OADM的结构更加紧凑,有利于减小T-OADM装置的体积。
需要说明的是,当第一入射角不同时,从入射光束调整装置出射的光束与第一光轴的夹角也不相同。
在一些可能的实现方式中,第一光学装置可以具体用于将从入射光束调整装置出射的光束汇聚到第一光轴与第二光束调整装置的交点上,本申请对此不作限定。
结合第一方面,在第一方面的某些实现方式中,所述第一光学装置包括第一光学4f系统,
所述入射光束调整装置位于所述第一光学4f系统的前透镜的前焦点处,所述第二光束调整装置位于所述第一光学4f系统的后透镜的经所述第一光学滤波片透射的光路的后焦点处,所述反射光束调整装置位于所述第一光学4f系统的后透镜的经所述第一光学滤波片反射的光路的后焦点处。这样,能够实现对从入射光束调整装置出射的光束进行汇聚。
在一些可选的实施例中,当第一光学4f系统中的前透镜与后透镜的焦距相同时,从入射光束调整装置出射的光束与第一光轴的夹角与从第一光学装置出射的光束与第一光轴的夹角相等。
在一些可选的实施例中,当第一光学4f系统中的前透镜与后透镜的焦距不同时,从入射光束调整装置出射的光束与第一光轴的夹角与从第一光学装置出射的光束与第一光轴的夹角之间的对应关系是根据该第一光学4f系统中的该两个透镜的焦距来确定的。
结合第一方面,在第一方面的某些实现方式中,所述第一光学装置包括第一透镜,所述入射光束调整装置位于所述第一透镜的第一侧的两倍焦距处,所述第二光束调整装置位于所 述第一透镜的第二侧的经所述第一光学滤波片透射的光路的两倍焦距处,所述反射光束调整装置位于所述第一透镜的经所述第一光学滤波片反射的光路的两倍焦距处。这样,能够实现对从入射光束调整装置出射光束进行汇聚。并且此时,从入射光束调整装置出射的光束与第一光轴的夹角与从第一光学装置出射的光束与第一光轴的夹角相等。
结合第一方面,在第一方面的某些实现方式中,还包括球面反射镜,用于将所述入射光束调整装置出射的光束汇聚到所述第二光束调整装置上,其中,从所述入射光束调整装置出射的光束与光轴的夹角与从所述球面反射镜出射的光束与光轴的夹角一一对应。
示例性的,可以将入射光束调整装置设置在该球面反射镜的第一侧两倍焦距处,将第二光束调整装置设置在该球面反射镜的第二侧的经第一光学滤波片透射的光路的两倍焦距处,将反射光束调整装置设置在该球面反射镜的经第一光学滤波片反射的光路的两倍焦距处。这样,能够实现对从入射光束调整装置出射光束进行汇聚。并且此时,从入射光束调整装置出射的光束与光轴的夹角与从球面反射镜出射的光束与光轴的夹角相等。
在一些可能的实现方式中,球面反射镜具体用于将所述入射光束调整装置出射的光束汇聚到光轴与所述第二光束调整装置的交点上,本申请对此不作限定。
结合第一方面,在第一方面的某些实现方式中,还包括第二光学装置和第三光学装置,
所述输入光束调整装置、所述第一光学滤波片、所述第二光学装置和所述第二光束调整装置分别依次设置在第二光轴上,其中,所述第一光学滤波片的法线与所述第二光轴之间的夹角为α;
所述第二光学装置用于将从所述第一光学滤波片出射第一透射光束汇聚到所述第二光束调整装置上,其中,从所述入射光束调整装置出射的光束与所述第二光轴的夹角与从所述第二光学装置出射的光束与所述第二光轴的夹角一一对应;
所述第一光学滤波片、所述第三光学装置和所述反射光束调整装置分别设置在第三光轴上,所述第二光轴与所述第三光轴的角度为2α;
所述第三光学装置用于将从所述第一光学滤波片出射的第一反射光束汇聚到所述反射光束调整装置上,其中,从所述入射光束调整装置出射的光束与所述第二光轴的夹角与从所述第三光学装置出射的光束与所述第三光轴的夹角一一对应。
因此,本申请实施例通过第二光学装置和第三光学装置,能够有利于通过入射光束调整装置来控制输入光束入射到第一光学滤波片上的第一入射角的大小,从而能够控制T-OADM下载或上传的信号的波长。另外,通过第二光学装置和第三光学装置对从入射光束调整装置出射光束进行汇聚,能够使得T-OADM的结构更加紧凑,有利于减小T-OADM装置的体积。
需要说明的是,当第一入射角不同时,第一透射光束与第二光轴的夹角也不相同,第一反射光束与第三光轴的夹角也不相同。
在一些可能的实现方式中,第二光学装置可以具体用于将从所述第一光学滤波片出射第一透射光束汇聚到所述第三光轴与所述第二光束调整装置的交点上,第三光学装置可以具体用于将从所述第一光学滤波片出射的第一反射光束汇聚到第四光轴与所述反射光束调整装置的交点上,本申请对此不作限定。
结合第一方面,在第一方面的某些实现方式中,所述第二光学装置包括第二光学4f系统,所述入射光束调整装置位于所述第二光学4f系统的前透镜的前焦点处,所述第二光束调整装 置位于所述第二光学4f系统的后透镜的后焦点处;或者所述第二光学装置包括第二透镜,所述入射光束调整装置位于所述第二透镜的第一侧的两倍焦距处,所述第二光束调整装置位于所述第二透镜的第二侧的两倍焦距处。这样,能够实现通过第二光学装置对从第一光学滤波片出射透射光束进行汇聚。
第二光学装置包括第二光学4f系统或第二透镜时,从入射光束调整装置出射的光束与第二光轴的夹角与从第二光学装置出射的光束与第二光轴的夹角之间的映射关系可以参见第一光学装置中的相关描述,不再赘述。
结合第一方面,在第一方面的某些实现方式中,所述第三光学装置包括第三光学4f系统,所述入射光束调整装置位于所述第三光学4f系统的前透镜的经所述第一光学滤波片反射的光路的前焦点处,所述反射光束调整装置位于所述第三光学4f系统的后透镜的后焦点处;或者所述第三光学装置包括第三透镜,所述入射光束调整装置位于所述第三透镜第一侧的经所述第一光学滤波片反射的光路的两倍焦距处,所述反射光束调整装置位于所述第三透镜的第二侧的两倍焦距处。这样,能够实现通过第三光学装置对从第一光学滤波片出射的反射光束进行汇聚。
第三光学装置包括第三光学4f系统或第三透镜时,从入射光束调整装置出射的光束与第三光轴的夹角与从第三光学装置出射的光束与第三光轴的夹角之间的对应关系可以参见第一光学装置中的相关描述,不再赘述。
结合第一方面,在第一方面的某些实现方式中,还包括第四光学装置、第五光学装置和第六光学装置,其中,所述入射光束调整装置、所述第四光学装置、所述第一光学滤波片、所述第五光学装置和所述第二光束调整装置分别依次设置在第四光轴上,其中,所述第一光学滤波片的法线与所述第四光轴之间的夹角为α;
所述第一光学滤波片、所述第六光学装置和所述反射光束调整装置分别依次设置在第五光轴上,所述第五光轴与所述第四光轴的角度为2α;
所述第四光学装置用于将所述入射光束调整装置出射的光束汇聚到所述第一光学滤波片上,其中,从所述入射光束调整装置出射的光束与所述第四光轴的夹角与从所述第四光学装置出射的光束与所述第四光轴的夹角一一对应;
所述第五光学装置用于将从所述第一光学滤波片出射的所述第一透射光束汇聚到所述第二光束调整装置上,其中,从所述第一光学滤波片出射的所述第一透射光束与所述第四光轴的夹角与从所述第五光学装置出射的光束与所述第四光轴的夹角一一对应;
所述第六光学装置用于将从所述第一光学滤波片出射的所述第一反射光束汇聚到所述反射光束调整装置上,其中,从所述第一光学滤波片出射的所述第一反射光束之与所述第五光轴的夹角与从所述第六光学装置出射的光束与所述第五光轴的夹角一一对应。
因此,本申请实施例通过第四光学装置、第五光学装置和第六光学装置,能够有利于通过入射光束调整装置来控制输入光束入射到第一光学滤波片上的第一入射角的大小,从而能够控制T-OADM下载或上传的信号的波长。另外,通过第四光学装置将从入射光束调整装置出射的光束汇聚到第一光学滤波片上,能够有利于减小输入光束入射到第一光学滤波片上的光斑的面积,进而可以有助于减小第一光学滤波片的面积。
需要说明的是,当第一入射角不同时,从所述入射光束调整装置出射的光束与第四光轴 的夹角不相同,第一透射光束与第四光轴的夹角也不相同,第一反射光束与第五光轴的夹角也不相同。
在一些可能的实现方式中,第四光学装置可以具体用于将从所述入射光束调整装置出射的光束汇聚到与第四光轴与所述第一光学滤波片的交点上,第五光学装置可以具体用于将从所述第一光学滤波片出射的第一透射光束汇聚到第四光轴与所述第二光束调整装置的交点上,第六光学装置可以具体用于将从所述第一光学滤波片出射的第一反射光束汇聚到第五光轴与所述反射光束调整装置的交点上,本申请对此不作限定。
结合第一方面,在第一方面的某些实现方式中,所述第四光学装置包括第四光学4f系统,所述入射光束调整装置位于所述第四光学4f系统的前透镜的前焦点处,所述第一光学滤波片位于所述第四光学4f系统的后透镜的后焦点处;或者所述第四光学装置包括第四透镜,所述入射光束调整装置位于所述第四透镜的第一侧的两倍焦距处,所述第一光学滤波片位于所述第四透镜的第二侧的两倍焦距处。这样,能够通过该第四光束调整装置实现对从入射光束调整装置出射的光束进行汇聚。
第四光学装置包括第四光学4f系统或第四透镜时,从入射光束调整装置出射的光束与第四光轴的夹角与从第四光学装置出射的光束与第四光轴的夹角之间的对应关系可以参见第一光学装置中的相关描述,不再赘述。
结合第一方面,在第一方面的某些实现方式中,所述第五光学装置包括第五光学4f系统,所述第一光学滤波片位于所述第五光学4f系统的前透镜的前焦点处,所述第二光束调整装置位于所述第五光学4f系统的后透镜的后焦点处;或者所述第五光学装置包括第五透镜,所述第一光学滤波片位于所述第五透镜的第一侧的两倍焦距处,所述第二光束调整装置位于所述第五透镜的第二侧的两倍焦距处。这样,能够通过该第五光束调整装置实现对从第一光学滤波片出射的透射光束进行汇聚。
第五光学装置包括第五光学4f系统或第五透镜时,从第一光学滤波片出射的透射光束与第四光轴的夹角与从第五光学装置出射的光束与第四光轴的夹角之间的对应关系可以参见第一光学装置中的相关描述,不再赘述。
结合第一方面,在第一方面的某些实现方式中,所述第六光学装置包括第六4f系统,所述第一光学滤波片位于所述第六光学4f系统的前透镜的前焦点处,所述反射光束调整装置位于所述第六光学4f系统的后透镜的后焦点处;或者所述第六光学装置包括第六透镜,所述第一光学滤波片位于所述第六透镜的第一侧的两倍焦距处,所述反射光束调整装置位于所述第六透镜的第二侧的两倍焦距处。这样,能够通过该第六光束调整装置实现对从第一光学滤波片出射反射光束进行汇聚。
第六光学装置包括第六光学4f系统或第六透镜时,从第一光学滤波片出射的反射光束与第五光轴的夹角与从第六光学装置出射的光束与第五光轴的夹角之间的对应关系可以参见第一光学装置中的相关描述,不再赘述。
结合第一方面,在第一方面的某些实现方式中,所述第一光束调整装置包括双反射面MEMS微镜,其中,该双反射面MEMS微镜中的一个MEMS微镜用于对入射光束进行反射,另一个MEMS微镜用于对反射光束进行反射。
所述T-OADM还包括球面反射镜,用于将双反射面MEMS微镜出射光束汇聚到所述第 二光束调整装置上,其中,从所述第一光束调整装置出射的光束与所述光轴的夹角与从所述球面反射镜出射的光束与所述光轴的夹角一一对应。
示例性的,可以将第一光束调整装置设置在该球面反射镜的第一侧两倍焦距处,同时该第一光束调整装置还在该球面反射镜的经第一光学滤波片反射的光路的两倍焦距处,将第二光束调整装置设置在该球面反射镜的第二侧的经第一光学滤波片透射的光路的两倍焦距处。这样,能够实现对从第一光束调整装置出射的输入光束进行汇聚。并且此时,从入射光束调整装置出射的光束与光轴的夹角与从球面反射镜出射的光束与光轴的夹角相等。
在一些可能的实现方式中,球面反射镜具体用于将双反射面MEMS微镜出射的光束汇聚到光轴与所述第二光束调整装置的交点上,本申请对此不作限定。
结合第一方面,在第一方面的某些实现方式中,还包括反射镜,用于调整从所述球面反射镜出射的反射光束的传输方向,使得所述反射光束输出至所述第三端口。这样,可以对反射光束的光路进行折叠,进而能够使得T-OADM的结构更加紧凑,有利于减小T-OADM装置的体积。
结合第一方面,在第一方面的某些实现方式中,以第一光学滤波片为带通式光学滤波片,第三端口输出第一反射光束为例,所述第一光束调整装置具体用于调整所述第一反射光束的传输方向,使得所述第一反射光束输出至所述第三端口;所述第三端口,用于输出所述第一反射光束。这样,T-OADM能够实现对第一波长的波束的下载。
结合第一方面,在第一方面的某些实现方式中,以第一光学滤波片为带通式光学滤波片,第三端口输出第一反射光束中的部分光束为例,此时T-OADM还包括第二光学滤波片、第三光束调整装置、第四光束调整装置、第四端口,
所述第一光束调整装置用于根据所述T-OADM下载(或上传)的第二信号调整所述第一反射光束的传输方向,使得所述第一反射光束以第二入射角射到所述第二光学滤波片,其中,所述第二入射角与所述第二信号的波长对应;
所述第二光学滤波片,用于接收以所述第二入射角入射的光束,并将入射到所述第二光学滤波片的光束分为第二透射光束和第一反射光束,其中,所述第二透射光束中包含光束的波长与所述第二反射光束中包含光束的波长不同;
所述第三光束调整装置用于根据所述第二入射角调整所述第二透射光束的传输方向;
所述第四端口,用于输出所述第二透射光束;
所述第四光束调整装置用于根据所述第二入射角调整所述第二反射光束的传输方向;
所述第三端口,用于输出所述第二反射光束。
因此,本申请实施例通过光束调整装置根据T-OADM需要下载(或上传)的第二信号的波长调整从第一光学滤波片出射的第一反射光束的传输方向,使得该第一反射光束以第二入射角入射到第二光学滤波片,并进一步可以通过光束调整装置根据第二入射角调整从第二光学滤波片出射的透射光束和反射光束的传输方向,使得从光学滤波片出射的透射光束和反射光束输出至相应的端口,从而实现T-OADM装置在同时下载(或上传)两个波长的信号,例如在下载(或上传)第一波长的信号的情况下,还能够下载(或上传)第二波长的信号。
在一些实施例中,当第一光学滤波片为带通式光学滤波片时,第二光学滤波片也为带通式光学滤波片;当第一光学滤波片为带阻式光学滤波片时,第二光学滤波片也为带阻式光学 滤波片,本申请实施例对此不作限定。
结合第一方面,在第一方面的某些实现方式中,以第一光学滤波片为带通式光学滤波片为例,所述第二端口还用于输入所述第一波长的输入光束,所述输入光束经所述第一光学滤波片透射,并输出至所述第一端口;所述第一端口还用于输出经所述第一光学滤波片透射的光束。这样,能够实现对该第一波长的信号的上传。
结合第一方面,在第一方面的某些实现方式中,以第一光学滤波片为带通式光学滤波片为例,所述第三端口还用于输入来自第五端口输出的光束,所述光束经所述第一光学滤波片反射并输出至所述第一端口;所述第一端口还用于输出经所述第一光学滤波片反射的光束。这样,能够实现对信号进行透传。
在一些实施例中,第一端口还可以称为输入/输出端口,第二端口还可以称为第一透射输入/输出端口,第三端口还可以称为第一反射输入/输出端口,第四端口还可以称为第二透射输入输出端口,第五端口还可以称为第二反射输入/输出端口,本申请实施例对此不作限定。
结合第一方面,在第一方面的某些实现方式中,所述第一光学滤波片上包括至少两个区域,所述至少两个区域具有不同滤波带宽;
所述装置还包括驱动部件,与所述第一光学滤波片连接,用于驱动所述第一光学滤波片移动,使得所述输入光束入射到所述至少两个区域中的第一区域,其中,所述第一区域的滤波波长与所述第一信号的波长相同。
因此,本申请实施例通过将第一光学滤波片设置为包括具有不同滤波带宽的至少两个区域,通过调整光束入射到该第一光学滤波片的位置,即可动态调整第一光学滤波片的滤波中心波长,实现T-OADM装置动态调整下载(或上传)的信号的波长。
第二方面,提供了一种可调光分插复用器,包括:第一端口、转动部件、光学滤波片、反射镜、透射端口和反射端口,其中,所述转动部件分别与所述光学滤波片和所述反射镜连接,所述光学滤波片与所述反射镜连接,且所述光学滤波片与所述反射镜的反射面之间具有固定夹角;
所述第一端口,用于输入包含至少两个波长的输入光束;
所述转动部件,用于转动以调整所述光学滤波片和所述反射镜的倾斜角度,使得所述输入光束以第一入射角射到所述光学滤波片;
所述光学滤波片,用于接收以所述第一入射角入射的光束,并将所述入射的光束分为透射光束和反射光束,其中,所述透射光束中包含光束的波长与所述反射光束中包含光束的波长不同;
所述反射镜,用于对所述反射光束的进行反射,使得所述反射光束输出至所述反射端口;
所述透射端口,用于输出所述透射光束;
所述反射端口,用于输出所述反射光束。
因此,本申请实施例通过将光学滤波片和反射镜设置为与转动部件连接,且光学滤波片和转动部件之间保持固定角度,通过转动部件的转动改变光学滤波片的倾斜角度,以改变入射光束射到光学滤波片的入射角,并且在光学滤波片将入射光束分为透射光束和反射光束之后,进一步通过与光学滤波片之间具有固定角度的该反射镜将出射的反射光束反射至反射端口。由于本申请实施例通过将光学滤波片和反射将设置为固定角度,能够通过该反射镜将反 射光束耦合到反射端口,因此本申请实施例能够降低T-OADM装置的复杂度。
当需要调整T-OADM下载(或上传)的光信号的波长,即需要调整光学滤波片的滤波中心波长(或第一透射光束的波长)时,可以通过控制转动部件转动来实现。此时由于光学滤波片和反射镜能够继续保持设置的固定的角度,因此能够实现将透射光束和反射光束耦合进相应的端口。
在一些实现方式中,还可以包括控制单元,用于控制转动部件转动,以实现对光束入射到第一光学滤波的第一入射角的调整,从而实现对T-OADM装置需要下载(或上传)的信号的波长进行调整。
示例性的,转动部件可以为电机,或MEMS转动部件,本申请实施例对此不作限定。
示例性的,光学滤波片可以为带通式光学滤波片或带阻式光学滤波片,所述光学滤波片的滤波波长与所述第一入射角相关。
当光学滤波片为带通式光学滤波片时,该光学滤波片可以将入射的光束分为包含第一波长的透射光束和包含至少一个波长的反射光束,其中,第一波长为以上述第一入射角射到所述光学滤波片时所述光学滤波片选择的光束的波长。相应的,透射端口输出的信号为T-OADM装置下载的信号,反射端口输出的信号为T-OADM装置透传的信号。
当光学滤波片为带阻式光学滤波片时,光学滤波片可以将入射的光束分为包含第一波长的反射光束和包含至少一个波长的透射光束,所述第一波长为以所述第一入射角射到所述光学滤波片时所述光学滤波片选择的光束的波长。相应的,反射端口输出的信号为T-OADM装置下载的信号,透射端口输出的信号为T-OADM装置透传的信号。
作为一个示例,光学滤波片和反射镜的反射面之间的角度可以设置在40°至120°的范围内,本申请对此不作限定。
作为一个示例,光束在光学滤波片上形成的光斑的位置与光束在反射镜的反射面上形成的光斑的位置之间的光路长度可以控制在80mm以内,本申请对此不作限定。
结合第二方面,在第二方面的某些实现方式中,所述反射镜的反射面与所述光学滤波片垂直设置。此时,入射到该光学滤波片的输入光束与从该反射镜出射的反射光束平行,从而可以减小T-OADM装置的体积。
结合第二方面,在第二方面的某些实现方式中,还包括双光纤准直器和第一棱镜,所述双光纤准直器和所述第一棱镜,位于所述第一端口和所述光学滤波片之间,且位于所述反射端口和所述反射镜之间;
所述输入光束依次经所述双光纤准直器和所述第一棱镜入射到所述光学滤波片,所述反射镜出射的反射光束依次经所述第一棱镜和所述双光纤准直器入射到所述反射端口,其中,入射到所述光学滤波片的输入光束与从所述反射镜出射的反射光束平行。
这样,本申请实施例能够通过双光纤准直器连接第一端口和反射输入/输出端口,进一步减小T-OADM装置的体积。
作为示例,第一棱镜可以为屋脊棱镜,本申请对此不作限定。
结合第二方面,在第二方面的某些实现方式中,还包括第二棱镜和第三棱镜,
所述第二棱镜位于所述光学滤波片与所述透射端口之间,用于减小所述透射光束的位移距离,从而能够降低位移对将透射光束耦合至相应端口带来的影响。
所述第三棱镜位于所述反射镜与所述反射端口之间,用于减小所述反射光束的位移距离,从而能够降低位移对将反射光束耦合至相应端口带来的影响。
结合第二方面,在第二方面的某些实现方式中,以光学滤波片为带通式光学滤波片为例,所述透射端口还用于输入所述第一波长的输入光束,所述输入光束经所述光学滤波片透射,并输出至所述第一端口;所述第一端口还用于输出经所述光学滤波片透射的光束。这样,能够实现对该第一波长的信号的上传。在一些实施例中,透射端口还可以称为透射输入/输出端口。
结合第二方面,在第二方面的某些实现方式中,以光学滤波片为带通式光学滤波片为例,所述反射端口还用于输入来自第五端口输出的光束,所述光束经所述光学滤波片反射并输出至所述第一端口;所述第一端口还用于输出经所述光学滤波片反射的光束。这样,能够实现对信号进行透传。在一些实施例中,反射端口还可以称为反射输入/输出端口。
结合第二方面,在第二方面的某些实现方式中,所述光学滤波片上包括至少两个区域,所述至少两个区域具有不同滤波带宽;
所述装置还包括驱动部件,与所述光学滤波片连接,用于驱动所述光学滤波片移动,使得所述输入光束入射到所述至少两个区域中的第一区域;
所述光学滤光片具体用于通过所述第一区域接收入射的光束。
因此,本申请实施例通过将光学滤波片设置为包括具有不同滤波带宽的至少两个区域,通过调整光束入射到该光学滤波片的位置,即可动态调整光学滤波片的滤波中心波长,实现T-OADM装置动态调整下载(或上传)的信号的波长。
第三方面,提供了一种可调光分插复用器,包括:第一端口、第一光束调整装置、光学滤波片、第二光束调整装置、第三光束调整装置、透射端口,反射端口,其中,
所述第一端口,用于输入包含至少两个波长的输入光束;
所述第一光束调整装置,用于根据所述T-OADM下载的第一信号调整所述输入光束的传输方向,使得所述输入光束以第一入射角射到所述光学滤波片,其中,所述第一入射角与所述第一信号的波长对应;
所述光学滤波片,用于接收以所述第一入射角入射的光束,并将所述入射的光束分为包含透射光束和反射光束,其中,所述透射光束中包含光束的波长与所述反射光束中包含光束的波长不同;
所述第二光束调整装置用于调整所述透射光束的传输方向,使得所述透射光束经所述光学滤波片、所述第一光束调整装置输出至所述透射端口;
所述透射端口,用于输出所述透射光束;
所述第三光束调整装置还用于调整所述反射光束的传输方向,使得所述反射光束经所述光学滤波片、所述第一光束调整装置输出至所述反射端口;
所述反射端口,用于输出所述反射光束。
因此,本申请实施例通过第一光束调整装置改变入射光束射到光学滤波片的入射角,并且在光学滤波片将入射光束分为透射光束和反射光束之后,进一步通过第二光束调整装置将从光学滤波片出射的透射光束的反射到光学滤波片,并进一步经第一光束调整装置输出至透射端口,以及通过第三光束调整装置将从光学滤波片出射的反射光束反射到光学滤波片,并 进一步经第一光束调整装置输出至反射端口。
在一些实现方式中,还可以包括控制单元,用于控制第一光束调整装置对入射光束的偏转方向和偏转角度,以实现对光束入射到第一光学滤波的第一入射角的调整,从而实现对T-OADM装置需要下载(或上传)的信号的波长进行调整。
示例性的,光学滤波片可以为带通式光学滤波片或带阻式光学滤波片,所述光学滤波片的滤波波长与所述第一入射角相关。
当光学滤波片为带通式光学滤波片时,该光学滤波片可以将入射的光束分为包含第一波长的透射光束和包含至少一个波长的反射光束,其中,第一波长为以上述第一入射角射到所述光学滤波片时所述光学滤波片选择的光束的波长。相应的,透射端口输出的信号为T-OADM装置下载的信号,反射端口输出的信号为T-OADM装置透传的信号。
当光学滤波片为带通式光学滤波片时,光学滤波片可以将入射的光束分为包含第一波长的反射光束和包含至少一个波长的透射光束,所述第一波长为以所述第一入射角射到所述光学滤波片时所述光学滤波片选择的光束的波长。相应的,反射端口输出的信号为T-OADM装置下载的信号长,透射端口输出的信号为T-OADM装置透传的信号。
结合第三方面,在第三方面的某些实现方式中,所述第二光束调整装置包括第七透镜和第一反射镜,其中,所述第七透镜设置在第一空间直角坐标系xyz的yz平面,其中,所述第一空间直角坐标系xyz中的x轴所在的方向为所述第一透镜的光轴方向,所述第一空间直角坐标系xyz中的z轴所在方向为所述透射端口相对所述第一端口的方向,
第一光学滤波片位于所述第七透镜的第一侧,所述第一反射镜位于所述第七透镜的第二侧的焦点处,所述第一光学滤波片与z轴平行且与yz平面具有夹角,所述第一反射镜与所述第一空间直角坐标系xyz中的y轴平行且与yz平面具有夹角α 1
所述第七透镜用于对从所述光学滤波片出射的透射光束准直,使得所述透射光束沿所述x轴方向入射到所述第一反射镜;
所述第一反射镜用于使得所述透射光束经所述第七透镜、所述光学滤波片和所述第一光束调整装置,并以沿z轴方向的第一横向偏移h 1反射到所述透射端口。
因此,通过将第一反射镜设置为与空间直角坐标系xyz中的y轴平行且与yz平面具有夹角α 1,进一步通过将透射端口与第一端口之间沿z轴方向的距离为h 1,能够实现将透射光束输出至透射端口,实现信号的下载。
结合第三方面,在第三方面的某些实现方式中,所述光学滤波片位于所述第七透镜的第一侧的焦点处。
结合第三方面,在第三方面的某些实现方式中,所述光学滤波片位于所述第一光束调整装置和所述第七透镜之间,所述第一光束调整装置设置在所述第七透镜的第一侧的焦点处。
结合第三方面,在第三方面的某些实现方式中,所述第三光束调整装置包括第八透镜和第二反射镜,其中,所述第八透镜设置在第二空间直角坐标系x’y’z’的y’z’平面,其中,所述第二空间直角坐标系x’y’z’中的x’轴所在方向为所述第八透镜的光轴方向,所述第二空间直角坐标系x’y’z’中的z’轴所在方向为所述反射端口相对所述第一端口的方向,
所述光学滤波片位于所述第八透镜的第一侧,所述第二反射镜位于所述第八透镜的第二侧的焦点处,所述光学滤波片与z’轴平行且与y’z’平面具有夹角,所述第二反射镜与所述第 二空间直角坐标系x’y’z’中的y’轴平行且与y’z’平面具有夹角α 2
所述第八透镜用于对从所述光学滤波片出射的反射光束准直,使得所述反射光束沿所述x轴方向入射到所述第二反射镜;
所述第二反射镜用于使得所述反射光束经所述第八透镜、所述光学滤波片和所述第一光束调整装置,并以沿z轴方向的第二横向偏移h 2反射到所述反射端口。
因此,通过将第二反射镜设置为与空间直角坐标系x’y’z中的y’轴平行且与y’z’平面具有夹角α 2,进一步通过将反射端口与第一端口之间沿z’轴方向的距离为h 2,能够实现将反射光束输出至反射端口,实现光束的透传。
结合第三方面,在第三方面的某些实现方式中,所述光学滤波片位于所述第八透镜的第一侧的焦点处。
结合第三方面,在第三方面的某些实现方式中,所述光学滤波片位于所述第一光束调整装置和所述第八透镜之间,所述第一光束调整装置设置在所述第八透镜第一侧的经所述光学滤波片反射的折叠光路的焦点处。
因此,本申请实施例可以利用光束调整装置(例如透镜和设置在该透镜焦点处的反射镜)对该光学滤波片透射的光束进行反射,使其经光学滤波片并以一定横向偏移输出到透射端口,对该光学滤波片反射的光束进行反射,使其经光学滤波片并以一定横向偏移输出到反射端口,实现将透射光束和反射光束耦合到相应的端口,进而实现对T-OADM装置下载或上传的信号的波长的动态调整。本申请实施例能够动态调整T-OADM装置上下信号的波长,支持波长级的业务切换,并且网络结构灵活,运维简单,更有利于光网络的智能化控制。
结合第三方面,在第三方面的某些实现方式中,以光学滤波片为带通式光学滤波片为例,所述透射端口还用于输入所述第一波长的输入光束,所述输入光束经所述光学滤波片透射,并输出至所述第一端口;所述第一端口还用于输出经所述光学滤波片透射的光束。这样,能够实现对该第一波长的信号的上传。在一些实施例中,透射端口还可以称为透射输入/输出端口。
结合第三方面,在第三方面的某些实现方式中,以光学滤波片为带通式光学滤波片为例,所述反射端口还用于输入光束,所述光束经所述光学滤波片反射并输出至所述第一端口;所述第一端口还用于输出经所述光学滤波片反射的光束。这样,能够实现对信号的透传。在一些实施例中,反射端口还可以称为反射输入/输出端口。
第四方面,提供了一种可调光分插复用器,包括:第一端口、转动部件、光学滤波片、光束调整装置、透射端口和反射端口,
第一端口,用于输入包含至少两个波长的输入光束;
转动部件,与所述光学滤波片连接,用于转动以调整所述光学滤波片的倾斜角度,使得所述输入光束以第一入射角射到所述光学滤波片;
所述光学滤波片,用于接收以所述第一入射角入射的光束,并将所述入射的光束分为透射光束和反射光束,其中,所述透射光束中包含光束的波长与所述反射光束中包含光束的波长不同;
所述光束调整装置,用于调整所述反射光束的传输方向,使得所述反射光束经所述光学滤波片输出至所述反射端口;
所述透射端口,用于输出所述透射光束;
所述反射端口,用于输出所述反射光束。
因此,本申请实施例通过转动部件的转动改变光学滤波片的倾斜角度,以改变入射光束射到光学滤波片的入射角,并且在光学滤波片将入射光束分为透射光束和反射光束之后,进一步通过与光束调整装置将出射的反射光束反射并经所述光学滤波片传输至反射端口。
在一些实现方式中,还可以包括控制单元,用于控制转动部件转动,以实现对光束入射到第一光学滤波的第一入射角的调整,从而实现对T-OADM装置需要下载(或上传)的信号的波长进行调整。
示例性的,光学滤波片可以为带通式光学滤波片或带阻式光学滤波片,所述光学滤波片的滤波波长与所述第一入射角相关。
当光学滤波片为带通式光学滤波片时,该光学滤波片可以将入射的光束分为包含第一波长的透射光束和包含至少一个波长的反射光束,其中,第一波长为以上述第一入射角射到所述光学滤波片时所述光学滤波片选择的光束的波长。相应的,透射端口输出的信号为T-OADM装置下载的信号,反射端口输出的信号为T-OADM装置透传的信号。
当光学滤波片为带阻式光学滤波片时,光学滤波片可以将入射的光束分为包含第一波长的反射光束和包含至少一个波长的透射光束,所述第一波长为以所述第一入射角射到所述光学滤波片时所述光学滤波片选择的光束的波长。相应的,反射端口输出的信号为T-OADM装置下载的信号长,透射端口输出的信号为T-OADM装置透传的信号。
结合第四方面,在第四方面的某些实现方式中,所述第一端口和所述反射端口均与环形器连接,
所述光束调整装置用于使得所述反射光束经所述光学滤波片,反射回所述环形器;
所述环形器用于将所述反射光束传输至所述反射端口。
因此,本申请实施例在光学滤波片将入射光束分为透射光束和反射光束之后,对该光学滤波片反射的光束进行反射,使其经光学滤波片传输到环形器,进而通过环形器的传输到反射端口,实现将透射光束和反射光束耦合到相应的端口,进而实现对T-OADM装置下载或上传的信号的波长的动态调整。本申请实施例能够动态调整T-OADM装置上下信号的波长,支持波长级的业务切换,并且网络结构灵活,运维简单,更有利于光网络的智能化控制。
结合第四方面,在第四方面的某些实现方式中,所述光束调整装置为微机电系统MEMS微镜或液晶附硅LCOS。
结合第四方面,在第四方面的某些实现方式中,所述光束调整装置包括第一透镜和第二反射镜,其中,所述光学滤波片位于所述第一透镜的第一侧的焦点处,所述第二反射镜位于所述第一透镜的第二侧的焦点处,所述第二反射镜所在的平面与所述第一透镜的光轴垂直;
所述第一透镜用于对从所述光学滤波片出射的反射光束准直,使得所述反射光束垂直入射到所述第二反射镜;
所述第二反射镜用于使得所述反射光束经所述第一透镜、所述光学滤波片,并沿z轴方向反射到所述环形器。
结合第四方面,在第四方面的某些实现方式中,所述光束调整装置包括第二透镜和第三反射镜,其中,所述第二透镜设置在空间直角坐标系x’y’z’的y’z’平面,其中,所述空间直角 坐标系x’y’z’中的x’轴所在方向为所述第二透镜的光轴方向,所述空间直角坐标系x’y’z’中的z’轴所在方向为所述反射端口相对所述第一端口的方向,
所述光学滤波片位于所述第二透镜的第一侧的焦点处,所述第三反射镜位于所述第二透镜的第二侧的焦点处,所述光学滤波片与z’轴平行且与y’z’平面具有夹角,所述第三反射镜与所述空间直角坐标系x’y’z’中的y’轴平行且与y’z’平面具有夹角;
所述第二透镜用于对从所述光学滤波片出射的反射光束准直,使得所述反射光束沿x轴方向入射到所述第三反射镜;
所述第三反射镜用于使得所述反射光束经所述第二透镜、所述光学滤波片,并以沿z’轴方向的第一横向偏移反射到所述反射端口。
这样,通过将第三反射镜设置为与空间直角坐标系x’y’z中的y’轴平行且与y’z’平面具有夹角α 3,进一步通过反射端口与第一端口之间沿z’轴方向的距离为h 3,能够实现将反射光束输出至反射端口,实现光束的透传。
因此,本申请实施例通过转动部件的转动改变光学滤波片的倾斜角度,以改变入射光束射到光学滤波片的入射角,并且在光学滤波片将入射光束分为透射光束和反射光束之后,对该光学滤波片反射的光束进行反射,使其经光学滤波片并以一定横向偏移输出到反射端口,实现将透射光束和反射光束耦合到相应的端口,进而实现对T-OADM装置下载或上传的信号的波长的动态调整。本申请实施例能够动态调整T-OADM装置上下信号的波长,支持波长级的业务切换,并且网络结构灵活,运维简单,更有利于光网络的智能化控制。
结合第四方面,在第四方面的某些实现方式中,以光学滤波片为带通式光学滤波片为例,所述透射端口还用于输入所述第一波长的输入光束,所述输入光束经所述光学滤波片透射,并输出至所述第一端口;所述第一端口还用于输出经所述光学滤波片透射的光束。这样,能够实现对该第一波长的信号的上传。在一些实施例中,透射端口还可以称为透射输入/输出端口。
结合第四方面,在第四方面的某些实现方式中,以光学滤波片为带通式光学滤波片为例,所述反射端口还用于输入光束,所述光束经所述光学滤波片反射并输出至所述第一端口;所述第一端口还用于输出经所述光学滤波片反射的光束。这样,能够实现对信号的透传。在一些实施例中,反射端口还可以称为反射输入/输出端口。
结合第四方面,在第四方面的某些实现方式中,所述光学滤波片上包括至少两个区域,所述至少两个区域具有不同滤波带宽;
所述装置还包括驱动部件,与所述光学滤波片连接,用于驱动所光学滤波片移动,使得所述输入光束入射到所述至少两个区域中的第一区域;
所述光学滤光片具体用于通过所述第一区域接收入射的光束。
因此,本申请实施例通过将光学滤波片设置为包括具有不同滤波带宽的至少两个区域,通过调整光束入射到该光学滤波片的位置,即可动态调整光学滤波片的滤波中心波长,实现T-OADM装置动态调整下载(或上传)的信号的波长。
第五方面,提供了一种可调光分插复用器,包括:输入端口、驱动部件、光学滤波片、透射输出端口和反射输出端口,
输入端口,用于输入包含至少两个波长的输入光束;
驱动部件,与所述光学滤波片连接,用于驱动所述光学滤波片,使得所述输入光束入射到所述光学滤波片的至少两个区域中的第一区域,其中,所述至少两个区域中的不同区域具有不同的滤波带宽;
所述光学滤波片,用于通过所述第一区域接收入射的光束,并将所述入射的光束分为透射光束和反射光束,其中,所述透射光束中包含光束的波长与所述反射光束中包含光束的波长不同;
所述透射输出端口,用于输出所述透射光束;
所述反射输出端口,用于输出所述反射光束。
因此,本申请实施例通过将光学滤波片设置为包括具有不同滤波带宽的至少两个区域,通过调整光束入射到该光学滤波片的位置,即可动态调整光学滤波片的滤波中心波长,实现T-OADM装置动态调整下载(或上传)的信号的波长。
在一些实现方式中,还可以包括控制单元,用于控制驱动部件移动,以实现对光束入射到第一光学滤波的不同区域,从而实现对T-OADM装置需要下载(或上传)的信号的波长进行调整。
示例性的,光学滤波片可以为带通式光学滤波片或带阻式光学滤波片。
当光学滤波片为带通式光学滤波片时,该光学滤波片的第一区域可以将入射的光束分为包含第一波长的透射光束和包含至少一个波长的反射光束,其中,第一波长为以上述第一入射角射到所述光学滤波片时所述光学滤波片选择的光束的波长。相应的,透射输出端口输出的信号为T-OADM装置下载的信号,反射输出端口输出的信号为T-OADM装置透传的信号。
当光学滤波片为带阻式光学滤波片时,光学滤波片的第一区域可以将入射的光束分为包含第一波长的反射光束和包含至少一个波长的透射光束,所述第一波长为以所述第一入射角射到所述光学滤波片时所述光学滤波片选择的光束的波长。相应的,反射输出端口输出的信号为T-OADM装置下载的信号,透射输出端口输出的信号为T-OADM装置透传的信号。
第六方面,提供了一种控制方法,所述方法应用于可调光分插复用器T-OADM,所述T-OADM包括第一端口、第一光束调整装置、第一光学滤波片、第二光束调整装置、第二端口,第三端口,
所述第一端口,用于输入包含至少两个波长的输入光束;
所述第一光学滤波片,用于接收以所述第一入射角入射的光束,并将所述入射的光束分为第一透射光束和第一反射光束,其中,所述第一透射光束中包含光束的波长与所述第一反射光束中包含光束的波长不同;
所述第二端口,用于输出所述第一透射光束;
所述第三端口,用于输出所述第一反射光束。
所述方法包括:
接收指令,所述指令用于指示所述T-OADM下载的第一信号的波长;
根据所述第一信号的波长,确定所述第一光束调整装置对所述输入光束的第一偏转角度,所述第二光束调整装置对所述第一透射光束的第二偏转角度,以及所述第一光束调整装置对所述第一反射光束的第三偏转角度;
根据所述第一偏转角度,控制所述第一光束调整装置对所述输入光束的传输方向进行调 整,使得所述输入光束以第一入射角射到所述第一光学滤波片,其中,所述第一入射角与所述第一信号的波长对应;
根据所述第二偏转角度,控制所述第二光束调整装置对所述第一透射光束的传输方向进行调整,使得所述第一透射光束输出至所述第二端口;
根据所述第三偏转角度,控制所述第一光束调整装置对所述第一反射光束的传输方向进行调整,使得所述第一反射光束输出至所述第三端口。
因此,本申请实施例能够通过接收T-OADM装置需要下载(或上传)的第一信号的波长,并根据该第一信号的波长,对各个光束调整装置对光束的偏转角度进行控制,从而能够根据实际需要灵活的控制T-OADM装置下载或上传的信号的波长,实现更加灵活可控的T-OADM装置。
作为示例,该控制方法可以由设置于T-OADM装置中的控制单元执行。
作为示例,控制单元可以向第一光束调整装置和第二光束调整装置分别发送控制信号,使得第一光束调整装置和第二光束调整装置可以分别根据控制信号来对光束的传输方向进行调整。
作为一种可能的实现方式,可以预先配置T-OADM装置能够下载或上传的信号的多个波长,以及每个波长对应的光束调整装置对入射光束、透射光束以及反射光束的偏转角度。当获取T-OADM装置需要下载或上传的信号的波长的指令时,即可根据该预先配置,确定该波长对应的光束调整装置对入射光束、透射光束以及反射光束的偏转角度。
作为另一种可能的实现方式,可以预先保存T-OADM装置能够下载或上传的信号的波长与光束调整装置对入射光束、透射光束以及反射光束的偏转角度的对应关系。当获取T-OADM装置需要下载或上传的信号的波长的指令时,可以根据该对应关系,确定该波长对应的光束调整装置对入射光束、透射光束以及反射光束的偏转角度。
应理解,第一方面中的其他可实现方式,均可应用于第六方面中。
附图说明
图1是MEMS微镜对光束进行偏转的两个示意图;
图2是LCOS光束偏转原理的一个示意图;
图3是光束偏振分束与偏振合束光路的一个示意图;
图4是滤波中心波长与入射角之间的映射关系的一个示意图;
图5是WDM环网的一个示意图;
图6是申请实施例提供的一种T-OADM装置的示意性结构图;
图7A是本申请实施例提供的一种T-OADM装置的具体示例;
图7B是光束沿光轴1方向入射到第一光学滤波片的一个示例;
图7C是对入射到第一光学滤波片的光束的入射角进行调整的一个示例;
图8是本申请实施例提供的另一种T-OADM装置的具体的示例;
图9是本申请实施例提供的另一种T-OADM装置的具体的示例;
图10是本请实施例提供的另一种T-OADM装置的具体的示例;
图11是本申请实施例提供的另一种T-OADM装置的具体的示例;
图12是本申请实施例提供的另一种T-OADM装置的具体的示例;
图13是本申请实施例提供的另一种T-OADM装置的具体的示例;
图14是本申请实施例提供的另一种T-OADM装置的具体的示例;
图15是本申请实施例提供的另一种T-OADM装置的示意性结构图;
图16是本申请实施例提供的另一种T-OADM装置的具体的示例;
图17是本申请实施例提供的另一种T-OADM装置的具体的示例;
图18是本申请实施例提供的另一种T-OADM装置的具体的示例;
图19是现有的一种T-OADM装置的示意图;
图20是本申请实施例提供的另一种T-OADM装置的示意性结构图;
图21是本申请实施例提供的另一种T-OADM装置的具体的示例;
图22是光学滤波片和反射镜位置的一个示例;
图23是本申请实施例提供的另一种T-OADM装置的具体的示例;
图24是棱镜对光束的位移进行压缩的一个示例;
图25是光学滤波片的一个示例;
图26是本申请实施例提供的另一种T-OADM装置的示意性结构图;
图27A是本申请实施例提供的另一种T-OADM装置的俯视图;
图27B是本申请实施例提供的另一种T-OADM装置的侧视图;
图28A是本申请实施例提供的另一种T-OADM装置的俯视图;
图28B是本申请实施例提供的另一种T-OADM装置的侧视图;
图29是本申请实施例提供的另一种T-OADM装置的示意性结构图;
图30A是本申请实施例提供的另一种T-OADM装置的俯视图;
图30B是本申请实施例提供的另一种T-OADM装置的侧视图;
图31是本请实施例提供的另一种T-OADM装置的具体的示例;
图32是本请实施例提供的另一种T-OADM装置的具体的示例;
图33是本申请实施例提供的一种控制方法的示意性流程图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
首先,对本申请实施例中涉及的相关概念和技术作简单介绍。
1、波分复用(wavelength division multiplexing,WDM):将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术。
2、微机电系统(micro-electromechanical System,MEMS):可以在一个很小的空间内构建复杂的机械结构,系统的尺寸用微米来度量。目前已经应用于安全气囊传感器(加速计)、压力传感器、显示器、自适应光器件、扫描仪、打印机以及数据存储器等。典型的MEMS设备是由电子电路和机械器件构成的。
3、MEMS微镜:采用MEMS技术,将微光反射镜与MEMS驱动器集成在一起的光学器件,可通过MEMS驱动器改变微光反射镜的偏转方向,进而改变入射到微光反射镜的光束的 出射角度。图1示出了MEMS微镜对光束进行偏转的两个示例,其中MEMS驱动器通过控制微光反射镜的偏转,可以准确的控制出射光束的出射方向。MEMS微镜可以作为一种光束调整装置(或器件)。
4、液晶附硅(liquid crystal on silicon,LCOS):是一种基于反射模式,尺寸非常小的矩阵液晶显示装置。这种矩阵采用互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)技术在硅芯片上加工制作而成。LCOS可以作为一种光束调整装置(或器件)。
图2示出了LCOS光束偏转原理的一个示意图。LCOS底部为COMS驱动电极,每个电极代表一个像素。图2所示的LCOS中包括4个电极,每个电极的宽度为σ,那么n(图2中n=4)个电极的宽度为d=n*σ,n为正整数。其中,电极通过电压控制液晶分子的偏转,改变液晶分子的折射率。偏振光束垂直入射到LCOS的表面时,可以单独控制每个像素的驱动电压,改变液晶分子的折射率,进而改变光束经过液晶分子后由每个像素出射的光束的相位。因此,通过对电极加载相应的电压,能够实现光束的出射角度的改变,进而实现不同角度的光束偏转。在图2中,实现了对光束的θ角度的偏转。
5、光束偏振分束(合束)器件:分别包括偏振分束(合束)晶体和半波片。其中,偏振分束(合束)晶体例如为掺钕钒酸钇(YVO4)晶体,或PBS晶体等偏振分光棱镜,不作限定。图3示出了光束偏振分束与偏振合束光路的一个示例,其中以偏振分束(合束)晶体为YVO4为例进行描述。如图3所示,当一束光入射到偏振分束器件时,光束经YVO4晶体分成两束偏振垂直的光束,其中一束经过一个半波片变成与另一束光束偏振相同的光束。光束经过光路系统后,到达偏振合束器件。其中,一束光经过半波片改变偏振状态,变成与另一束光束偏振垂直的光束。两束偏振垂直的光束再次经过YVO4晶体合成一束光,从而实现光束偏振与光束合成过程。
6、光学滤波片:可以采用带通式或带阻式,对某一特定波长范围的光有很强的透射(或反射)作用,而该特定波长范围之外的其他波长范围的光具有反射(或透射)作用,具有滤波特性,可以作为滤波器件,来实现T-OADM装置。介质薄膜滤波片作为一种具体的光学滤波片器件,可由不同折射率、不同厚度的介质薄膜按照设计组合叠加起来构成。
以带通式为例,光学滤波片的滤波中心波长与光束入射到光学滤波片上的入射角θ有关,满足如下公式(1):
Figure PCTCN2021111571-appb-000001
其中,λ 0为光束垂直入射时光学滤波片的滤波中心波长,λ为入射角为θ时光学滤波片的滤波中心波长,a为定值参数。这里,滤波中心波长即为透射光束的中心波长。
图4示出了根据公式(1)得到的滤波中心波长与入射角之间的映射关系的一个示例。其中,图4中以λ 0=1570nm,a=0.38787为例进行说明。由图4可知,随着入射角的变化,滤波中心波长也会随之变化。
在一些实施例中,光学滤波片对特定波长范围,以及特定偏振状态的入射光进行光学滤波。因此,在通过光学滤波片对光束进行滤波之前,可以通过光束偏振分束器件对一束光束进行偏振分束以获得特定偏振光束,在光学滤波片对光束进行滤波之后,可以通过光束偏振合束器件对光束进行偏振合束。
根据上述滤波中心波长与入射角之间的关系,可知为实现光学滤波片的滤波中心波长的动态可调,需要动态改变入射角。可以通过两种方式实现入射角的变化,一种是固定滤波片,动态改变入射光束的角度,进而改变滤波中心波长。另一种是入射光束不变,采用转动部件对光学滤波片进行偏转以改变入射光的入射角,从而改变光学滤波片的滤波中心波长。
7、OADM:在光域实现支路信号的分插和复用的一种设备,其作用是下载光通道中需要下载到本地的光信号,同时上传本地用于发往另一节点用户的光信号。该设备使光网络具有灵活性、选择性和透明性等优越功能,同时还能提高网络的可靠性,降低节点成本,提高网络运行效率。其中,T-OADM能够根据需要动态改变下载或上传的信号的波长。
OADM主要用在WDM网络系统中。图5示出了WDM环网的一个示意图,其中包括4个OADM,其主要作用是在WDM网络节点中实现信号的上下,即将WDM环网中多个波长信号中的一个或多个波长的信号下载到本地,或者将本地的一个或多个波长的信号插入到光网络中传输到另外的网络节点。在光网络中运用OADM装置,能够使光网络的波长应用和分配更加灵活。
T-OADM装置中可以设置光学滤波片,通过动态改变入射光束射到该光学滤波片的入射角,实现光学滤波片滤波中心波长的动态可调,进而来实现动态调整T-OADM装置需要上下信号的波长。
在一些实施例中,可以固定光学滤波片,并采用光束调整装置(或光束调整装置结合其他装置或器件)改变入射光束射到光学滤波片的入射角,进而可以实现动态调整通过光学滤波片出射的透射光束以及反射光束的波长。现有的一种将透射光束和反射光束耦合进相应端口的方案中,透射光束和反射光束分别可通过一个通用回复反射器装置反射,经该薄膜滤波片反射回相应端口,这使得该类型的OADM装置结构复杂。
基于此,本申请实施例提供了一种OADM装置,在该OADM装置中,可以通过光束调整装置改变入射光束射到光学滤波片的入射角,并且在光学滤波片将入射光束分为透射光束和反射光束之后,可以进一步通过光束调整装置来调整从光学滤波片出射的透射光束的传输方向,以及调整从光学滤波片出射的反射光束的传输方向,使得透射光束和反射光束输出至相应的端口。
在以下实施例中,以光学滤波片为带通式光学滤波片为例进行描述。可以理解的是,以下实施例中的各个滤波片还可以为带阻式光学滤波片,本申请实施例对此不作限定。
图6示出了本申请实施例提供的一种T-OADM装置600的示意性结构图。如图6所示,T-OADM装置600包括第一端口610、第一光束调整装置620、第一光学滤波片630、第二光束调整装置640、第二端口650,第三端口660。
第一端口610,用于输入包含至少两个波长的输入光束。
第一光束调整装置620,用于根据T-OADM下载(或上传)的第一信号调整输入光束的传输方向,使得输入光束以第一入射角射到第一光学滤波片630,其中,所述第一入射角与所述第一信号的波长对应。
这里,第一光束调整装置620可以根据T-OADM装置600需要下载(或上传)的信号的波长来动态调整输入光束的传输方向,以调整该第一入射角的大小。作为示例,需要下载(或上传)信号的波长与第一入射角满足上述公式(1)。
第一光学滤波片630,用于接收以所述第一入射角入射的光束,并将该入射的光束分为包含第一波长的第一透射光束和包含至少一个波长的第一反射光束。其中,该第一波长为以第一入射角射到第一光学滤波片630时该第一光学滤波片630选择的光束的波长。相应的,该第一波长为T-OAMD装置600需要下载(或上传)的信号对应的波长。
这里,第一光学滤波片620可以固定设置,此时可以通过第一光束调整装置620来动态调整第一入射角的大小,使得T-OADM装置600下载(或上传)第一波长的信号。
第二光束调整装置640用于根据所述第一入射角调整第一透射光束的传输方向。
第二端口650,用于输出所述第一透射光束。
第一光束调整装置620还用于根据所述第一入射角调整第一反射光束的传输方向。
第三端口660,用于输出第一反射光束。
示例性的,本申请中输出透射光束,可以包括输出透射光束中的全部光束,或部分光束,不作限定。输出反射光束,可以包括输出反射光束中的全部光束,或部分光束,不作限定。
在一些实施例中,第一光束调整装置620可以具体用于调整该第一反射光束的传输方向,使得第一反射光束输出至第三端口660。此时,该第三端口660,具体用于输出该第一反射光束。
在另一些实施例中,当OADM装置600还包括第二光学滤波片时,第一光束调整装置620还可以用于调整该第一反射光束的传输方向,使得第一反射光束输出至该第二光学滤波片。此时,第二光学滤波片可以进一步对该第一反射光束进行光学滤波,相应的,该第三端口660则用于输出第一反射光束中的部分光束。
因此,本申请实施例通过光束调整装置根据T-OADM需要下载(或上传)的第一信号调整入射光束射到光学滤波片的第一入射角,并且在光学滤波片将入射光束分为透射光束和反射光束之后,进一步通过光束调整装置根据第一入射角来调整从光学滤波片出射的透射光束的传输方向,以及根据第一入射角调整从光学滤波片出射的反射光束的传输方向,使得透射光束和反射光束输出至相应的端口,从而能够实现一种灵活可控的T-OADM装置。
在一些可选的实施例中,T-OADM装置600还可以包括控制单元,该控制单元可以用于:
接收指令,该指令用于指示T-OADM装置需要下载(或上传)的第一信号的波长。控制单元还可以用于根据该第一波长,确定第一光束调整装置对输入光束的第一偏转角度,第二光束调整装置对第一透射光束的第二偏转角度,以及第一光束调整装置对第一反射光束的第三偏转角度。
然后,控制单元可以用于根据第一偏转角度,控制第一光束调整装置对输入光束的传输方向进行调整,根据第二偏转角度,控制第二光束调整装置对第一透射光束的传输方向进行调整,以及根据第三偏转角度,控制第一光束调整装置对第一反射光束的传输方向进行调整。
因此,本申请实施例能够通过控制单元来接收T-OADM装置需要下载(或上传)的第一信号的波长,并根据该第一信号的波长,对各个光束调整装置对光束的偏转角度进行控制,从而能够根据实际需要灵活的控制T-OADM装置下载或上传的信号的波长,实现更加灵活可控的T-OADM装置。
作为一种可能的实现方式,控制单元可以预先配置为存储有T-OADM装置能够下载或上传的信号的多个波长,以及每个波长对应的光束调整装置对入射光束、透射光束以及反射光 束的偏转角度。当控制单元获取T-OADM装置需要下载或上传的信号的波长时,即可根据该预先配置,确定该波长对应的光束调整装置对入射光束、透射光束以及反射光束的偏转角度。
作为另一种可能的实现方式,控制单元可以预先保存T-OADM装置能够下载或上传的信号的波长与光束调整装置对入射光束、透射光束以及反射光束的偏转角度的对应关系。当控制单元获取T-OADM装置需要下载或上传的信号的波长时,即可根据该对应关系,确定该波长对应的光束调整装置对入射光束、透射光束以及反射光束的偏转角度。
在一些实施例中,第一光束调装置620可以包括入射光束调整装置和反射光束调整装置。其中,该入射光束调整装置用于调整输入光束的传输方向,使得输入光束以上述第一入射角射到第一光学滤波片630,该反射光束调整装置用于调整第一反射光束的传输方向。这样,能够更加灵活地对光路进行设置。
示例性的,入射光束调整装置和反射光束调整装置分别可以为MEMS微镜,或LCOS,本申请实施例对此不作限定。
在另一些实施例中,第一光束调整装置620可以包括一个双反射面MEMS微镜,该双反射面MEMS微镜中的其中一个反射面微镜用于调整输入光束的传输方向,使得输入光束以上述第一入射角射到第一光学滤波片630,该双反射面MEMS微镜中的另一个反射面微镜用于调整第一反射光束的传输方向,使得反射光束耦合到相应的端口。
作为一种可能的实现方式,上述双反射面MEMS微镜中的两个反射面微镜的偏转方向相同。此时通过一个MEMS驱动器,即可实现对该两个反射面微镜的偏转方向的控制。
在一些实施例中,第二光束调整装置640可以由MEMS微镜,或LCOS实现,本申请实施例对此不作限定。
在一些实施例中,第一端口610还可以连接光纤准直器,用于对第一端口610出射的光束进行准直,但本申请实施例不限于此。
在一些实施例中,第二端口650还用于输入上述第一波长的输入光束,该输入光束经第一光学滤波片630透射,并输出至第一端口610。此时,第一端口610还用于输出经该第一光学滤波片630透射的光束。
在一些实施例中,所述第三端口660还用于输入来自另一个端口输出的光束,该光束经所述第一光学滤波片630反射并输出至第一端口610。此时,第一端口610还用于输出经该第一光学滤波片630反射的光束。
在本申请实施例中,第一端口610既可以作为输入端口,也可以作为输出端口,因此可以称为输入/输出端口610。第二端口650既可以作为输入端口,也可以作为输出端口,因此还可以称为第一透射输入/输出端口650。第三端口660既可以作为输入端口,也可以作为输出端口,因此还可以称为第一反射输入输出端口660,本申请对此不作限定。下面将以第一端口610为输入/输出端口610,第二端口650为第一透射输入/输出端口650,第三端口为第一反射输入/输出端口为例对T-OADM装置进行描述。
示例性的,当OADM装置600与上传第一波长的信号时,可以将该第一波长的输入光束由第一透射输入/输出端口650输入,该输入光束经第二光束调整装置630射到第一光学滤波片630,并经第一光学滤波片630的透射入射到第一光束调整装置620,进一步经该第一光束调整装置反射至输入/输出端口610,从而实现对该第一波长的信号的上传。
其中,上述另一个端口,可以为另一个OADM装置的反射输入/输出端口,即另一个反射输入/输出端口。对于从反射输入/输出端口输出的光束,应当不受影响的进行透传。作为一种可能的实现方式,可以将该另一个反射输入/输出端口输出的光束,输入至该第一反射输入/输出端口660,输入到该第一反射输入/输出端口660的光束经第一光束调整装置620射入带第一光学滤波片630,并经第一光学滤波片630进一步反射到第一光束调整装置620,进一步经该第一光束调整装置620反射至输入/输出端口,从而实现对从上述另一个反射输入/输出端口输出的光束进行透传。
相应的,从第一反射输入/输出端口660输出的光束,也可以输入至另一个反射输入/输出端口,从而实现对从该第一反射输入/输出端口660输出的光束进行透传。
下面,结合图7至图14,描述本申请实施例提供的八种具体的T-OADM装置。其中,图6至图14中相同的附图标记表示相同或相似的含义,为了简洁,不再赘述。需要说明的是,本申请实施例中图7包括图7A、图7B和图7C。其中,图7A示出了T-OADM装置的结构的具体示例,图7B和图7C分别示出了对图7A中的T-OADM装置的入射角进行调整的示例。
需要说明的是,在图7至图14中,以光学滤波片对特定偏振状态的入射光进行光学滤波为例进行描述。相应的,在图7至图14所示的T-OADM装置中还包括偏振分束器件,以及偏振合束器件(或者也可以称为偏振复用器件)。可以理解的是,本申请实施例对此并不限定。例如,当入射光束以较小的入射角入射到光学滤波片时,可以不设置偏振分束器件,以及偏振合束器件,此时光学滤波片可以对两种不同偏振状态的光束均进行光学滤波。
其中,在图7至图13的T-OADM装置中,第一光束调装置620包括入射光束调整装置和反射光束调整装置。其中,以入射光束调整装置为第一MEMS微镜(记为MEMS1微镜)621、第二光束调整装置640为第二MEMS微镜(记为MEMS2微镜)640、反射光束调整装置为第三MEMS微镜(记为MEMS3微镜)622为例进行描述,但是本申请实施例并不限于此,例如各个光束调整装置还可以由LCOS等其他光学器件实现。
在图7至图8中,T-OADM装置还可以包括第一光学装置。其中,MEMS1微镜621、第一光学装置、第一光学滤波片630和MEMS2微镜640分别依次设置在第一光轴(例如光轴1)上。其中,第一光学滤波片的法线与所述光轴1之间的夹角为α,α∈[0,π/2]。该第一光学装置可以用于将所述入射光束调整装置出射的光束引导至所述第一光学滤波片,例如将从MEMS1微镜621出射的(例如与所述光轴1不同夹角的)光束汇聚到MEMS2微镜640(例如光轴1与MEMS2微镜640的交点)上,其中,从所MEMS1微镜321出射的光束与光轴1的夹角与从所述第一光学装置出射的光束与光轴1的夹角之间具有对应关系。当从MEMS1微镜621出射的光束沿光轴方向时,第一光学装置可以不对该光束的方向进行调整。
需要说明的是,在实际的T-OADM装置中,光轴与器件或装置的交点,既包括光轴与该器件或装置准确的相交的一个位置,也包括以该准确相交的该位置为中心的一个范围内,即稍微偏离该交点一定距离的位置,本申请对此不作限定。
图7A示出了本申请实施例提供的一种T-OADM装置的具体示例。如图7A所示,T-OADM装置包括输入/输出端口610、偏振分束器件681、MEMS1微镜621、第一光学装置671、第一滤波片630、MEMS2微镜640、MEMS3微镜622、偏振合束器件682和683、第一透射输入/输出端口650和第二透射输入/输出端口660。在图7A中,第一光学装置671为光学4f系 统,包括透镜1(记为f1)和透镜2(记为f2)。这里透镜1为光学4f系统的前透镜的一个示例,透镜2为光学4f系统的后透镜的一个示例。
在图7A中,MEMS1微镜621、透镜1、透镜2、MEMS2微镜640的中心均设置在光轴1上。进一步的,MEMS1微镜621可以设置在透镜1的前焦点处,MEMS2微镜640可以设置在透镜2的经第一光学滤波片630透射的后焦点(即该透镜2的后焦点)处,MEMS3微镜622可以设置在透镜2的经第一光学滤波片630反射的光路的后焦点(与透镜2的后焦点不同)处。
需要说明的是,在实际的T-OADM装置中,将器件或装置设置在某一透镜焦点处,既包括将该器件或装置准确的位于该透镜的该焦点处,也包括将该器件或装置设置在该透镜的该焦点附近,即稍微偏离该焦点一定距离的位置,本申请对此不作限定。以及,将器件或装置的中心设置在光轴上,既包括将该器件或装置的中心准确的位于该光轴上,也包括将该器件或装置的中心设置在该光轴附近,即稍微偏离该光轴一定距离的位置,本申请对此不作限定。
在一些可能的实现方式中,图7A中透镜1的焦距可以与透镜2的焦距相同。此时,从MEMS1微镜621出射的光束与光轴1的夹角与从透镜2出射的光束与光轴1的夹角相同。
在另一些可能的实现方式中,图7A中透镜1的焦距与透镜2的焦距不同。此时,从MEMS1微镜621出射的光束与光轴1的夹角与从透镜2出射的光束与光轴1的夹角是不同的,二者具有映射关系。具体的,该映射关系可以由透镜1和透镜2的焦距来决定。
参考图7A,输入到T-OADM装置的输入光束为WDM系统中包含的多个波长的信道。示例性的,一个光束中可以包括多个信道,每个信道可以包括一个波长的光束。输入光束从输入/输出端口610出射,经偏振分束器件681,变成两束偏振相同的光信号(例如可以垂直纸面排列)。这两束偏振相同的光信号(此时依然称为是输入光束)射到MEMS1微镜621上,MEMS1微镜621可以调整输入光束(即该两束偏振相同的光信号)以所需的角度出射,该出射的光束(此时依然称为是输入光束)经透镜1与透镜2组成的光学4f系统射到第一滤波片630上。根据第一光学滤波片630的滤波中心波长与光束入射到该第一光学滤波片630的入射角的关系,输入光束中特定波长(例如第一波长)的信道(光束)会被第一光学滤波片630透射到MEMS2微镜640,输入光束中除该特定波长之外的信道(光束)会被第一光学滤波片630反射到MEMS3微镜622。此时,从第一光学滤波片630透射的该第一波长的信道(即射入到该MEMS2微镜640的光束)可以称为第一透射光束,从第一光学滤波片630反射的除该第一波长的信号之外的信道(即射入到该MEMS3微镜622的光束)可以称为第一反射光束。
第一透射光射到MEMS2微镜640之后,MEMS2微镜640对该第一透射光进行角度调整(即调整该第一透射光的传输方向),使得该第一透射光经过偏振合束器件683实现偏振恢复,耦合至第一透射输入/输出端口650。该第一透射输入/输出端口650输出该第一透射光,实现信号的下载。
第一反射光射到MEMS3微镜622之后,MEMS3微镜622对该第一反射光进行角度调整(即调整该第一透射光的传输方向),使得该第一反射光经过偏振合束器件682实现偏振恢复,之后该第一反射光耦合至第一反射输入/输出端口660。该第一反射输入/输出端口660输出该第一反射光,实现信号的透传。
相应的,为了实现信号的上传,可以将从反射输入/输出端口出射的透传信号从第一反射输入/输出端口660输入,将需要上传的上传信号耦合进第一透射输入/输出650输入。该透传信号能够经MEMS3微镜622反射到第一光学滤波片630,再经第一光学滤波片630反射到第一光学装置671,之后经MEMS1微镜621耦合至输入/输出端口610,实现将透传信号上传至WDM网络中。该上传信号能够经MEMS2微镜640反射到第一光学滤波片630,再经第一光学滤波片630透射到第一光学装置671,之后经MEMS2微镜621耦合至输入/输出端口610,实现将信号上传到WDM网络中。
在图7A所示的T-OADM装置中,当需要调整第一光学滤波片630的滤波中心波长(即调整第一透射光束的波长)时,可以通过调整MEMS1微镜621的偏转来实现。相应的,为了将透射光束和反射光束耦合到相应的端口,也需要对MEMS2微镜640和MEMS3微镜622进行相应的偏转。
在一些实施例中,T-OADM装置还可以包括控制单元,用于控制MEMS1微镜621、MEMS2微镜640以及MEMS3微镜622的偏转方向以及偏转角度。
作为一种可能的实现方式,控制单元可以预先配置为存储有T-OADM装置能够下载或上传的信号的多个波长,以及每个波长对应的上述MEMS1微镜621、MEMS2微镜640以及MEMS3微镜622的偏转角度。例如可以以表格的形式保存波长以及每个波长对应的各个MEMS微镜的偏转角度。控制单元在接收到调整T-OADM装置下载或上传的信号的波长的指令时,可以查表获得需要对每个MEMS微镜的偏转角度。
作为另一种可能的实现方式,控制单元可以预先存储波长和每个MEMS微镜的调整角度之间的映射关系。控制单元在接收到调整T-OADM装置下载或上传的信号的波长的指令时,可以根据该需要下载或上传的信号的波长,以及保存的映射关系,确定需要对每个MEMS微镜的偏转角度。
在获得每个MEMS微镜的偏转角度之后,控制单元可以将该三个MEMS微镜的反射镜设置为特定角度,即可控制T-OADM装置下载或上传特定波长的信号。
示例性的,控制单元在确定每个MEMS微镜的调整方式(例如偏转角度)之后,可以向每个MEMS微镜的驱动器发送控制信号。MEMS微镜的驱动器可以根据该控制信息,对MEMS微镜进行相应角度的调整。下面描述各个MEMS微镜的调整方式的一个具体例子。
继续参见图7A,其中光轴1与第一光学滤波片630的法线的夹角为α。光轴2为沿着光轴1的方向的光束入射至第一光学滤波片630时,从该第一光学滤波片630出射的该光束的反射光束所在的方向。由此可知,光轴2与光轴1的夹角为2α。
图7B示出了光束沿光轴1方向入射到第一光学滤波片630的一个示例。如图7B所示,沿着光轴1的方向的光束入射至第一光学滤波片630时,该入射光束与第一光学滤波片630的法线的为夹角α。对应的,光束入射到MEMS1微镜621时与法线的夹角为θ。相应的从第一光学滤波片630出射的该光束的透射光束的波长为λ1,该透射光束与光轴1的夹角为0°。此时,通过调整MEMS2微镜640的偏转角度,使得透射光束与MEMS2微镜640的法线的夹角为γ,实现透射光束耦合至第一透射输入/输出端口650。从第一光学滤波片630出射的该光束的反射光束沿光轴2射到MEMS3微镜622,该反射光束与光轴2的夹角为0°。此时,通过调整MEMS3微镜622的偏转角度,使得反射光束与MEMS3微镜622的法线的夹角为 β,实现反射光束耦合至第一反射输入/输出端口660。
当T-OADM装置需要下载或上传的信号的波长从波长λ1调整为波长λ2,即第一光学滤波片630的滤波中心波长需要从波长λ1调整为波长λ2时,可以推导出(例如根据上文中的公式(1)或图4进行推导)输入光束入射到第一光学滤波片630的入射角需要由α调整为(α+Δα),其中Δα>0。
图7C示出了对入射到第一光学滤波片630的光束的入射角进行调整的一个示例。在图7C中,以光学4f系统中透镜1和透镜2的焦距相同为例,在第一光学滤波片630的滤波中心波长需要从波长λ1调整为波长λ2时,MEMS1微镜621的偏转方式进行描述。此时,从MEME1微镜621出射的光束与光轴1的夹角与从透镜2出射的光束与光轴1的夹角相同。为了实现输入光束入射到第一光学滤波片630的入射角由α调整为(α+Δα),从MEMS1微镜621出射的光束的传输方向需要逆时针旋转角度Δα(图中MEMS1微镜621的虚线为旋转之前的示意图,实线为旋转之后的示意图),此时可以通过将MEMS1微镜621逆时针旋转Δα/2来实现,即在第一光学滤波片630的滤波中心波长需为波长λ1时,输入光束与MEMS1微镜621的法线的夹角为θ的基础上,MEMS1微镜621再沿逆时针方向旋转Δα/2,使得输入光束与MEMS1微镜621的法线的夹角为(θ+Δα/2)。
也就是说,在将MEMS1微镜621再逆时针旋转Δα/2之后,从MEMS1微镜621出射的光束与光轴1的夹角为Δα。输入光束经过透镜1和透镜2,入射到第一光学滤波片630的入射角为(α+Δα)。此时,从第一光学滤波片630透射的光束的波长为λ2,即可实现对第一光学滤波片630的滤波中心波长的调整。
继续参见图7C,从第一光学滤波片630出射的透射光束与光轴1的夹角为Δα,此时可以进一步调整MEMS2微镜640的偏转角度,即在原来的输入光束与MEMS2微镜640的法线的夹角为γ的基础上,MEMS2微镜640再沿顺时针方向旋转Δα/2(图中MEMS2微镜640的虚线为旋转之前的示意图,实线为旋转之后的示意图),使得MEMS2微镜640的法线与光轴1的夹角为(γ+Δα/2),实现透射光束耦合至第一透射输入/输出端口650。
从第一光学滤波片630出射的反射光束与光轴2的夹角为Δα,此时可以进一步调整MEMS3微镜622的偏转角度,即在原来的输入光束与MEMS3微镜622的法线的夹角为β的基础上,MEMS2微镜622再沿逆时针方向旋转Δα/2(图中MEMS3微镜622的虚线为旋转之前的示意图,实线为旋转之后的示意图),使得MEMS3微镜622的法线与光轴2的夹角为(β+Δα/2),实现反射光束耦合至第一反射输入/输出端口660。
需要说明的是,在图7A中光学4f系统中透镜1与透镜2的焦距不同的情况下,为了实现输入光束入射到第一光学滤波片630的入射角由α调整为(α+Δα)时,从MEMS1微镜621出射的光束的传输方向需要逆时针旋转的角度Δα’的大小需要根据透镜1和透镜的焦距的大小来确定,具体可以参见现有技术,这里不再赘述。此时,可以通过将MEMS1微镜621逆时针旋转Δα’/2来实现输入光束入射到第一光学滤波片630的入射角由α调整为(α+Δα)。
还需要说明的是,上述对MEMS微镜的调整方式是针对图7A中的光学结构进行描述的,当对图7A中的光学结构进行适当的变形时,对MEMS微镜的调整方式还可能会根据具体光路的不同进行适当的调整,这都在本申请实施例的保护范围之内。
可以理解的是,当T-OADM装置中的光束调整装置为LCOS,例如LCOS1对入射光束 的传输方向进行调整、LCOS2对透射光束的传输方向进行调整、LCOS3对反射光束的传输方向进行调整时,控制单元可以预先配置为存储有T-OADM装置能够下载或上传的信号的多个波长,以及每个波长对应的LCOS1、LCOS2以及LCOS3所施加的电压值(例如以表格的形式保存),或者存储有T-OADM装置能够下载或上传的信号波长与LCOS1、LCOS2以及LCOS3所施加的电压值的映射关系。这样,在获得每个LCOS施加的电压值之后,控制单元可以对该三个LCOS施加该特定的电压值,即可控制T-OADM装置下载或上传特定波长的信号。
图8示出了本申请实施例提供的另一种T-OADM装置的具体的示例。如图8所示,T-OADM装置包括输入/输出端口610、偏振分束器件681、MEMS1微镜621、第一光学装置672、第一滤波片630、MEMS2微镜640、MEMS3微镜622、偏振合束器件682和683、第一透射输入/输出端口650和第二透射输入/输出端口660。在图8中。第一光学装置672包括透镜1(记为f1)。此时,从MEMS1微镜621出射的光束与光轴1的夹角与从透镜1出射的光束与光轴1的夹角相同。
其中,MEMS1微镜621、透镜1、MEMS2微镜640的中心均设置在光轴1上。进一步的,MEMS1微镜621位于该透镜1的第一侧(前侧)的两倍焦距处,MEMS2微镜640位于该透镜1的第二侧(后侧)的经第一光学滤波片630透射的两倍焦距(即该透镜1的后侧的两倍焦距)处,MEMS3微镜622位于该透镜1的经第一光学滤波片630反射的光路(该光路为折叠光路)的两倍焦距处。
需要说明的是,在实际的T-OADM装置中,将器件或装置设置在某一透镜的两倍焦距处,既包括将该器件或装置准确的位于该透镜的该两倍焦距处,也包括将该器件或装置设置在该透镜的该两倍焦距处的附近,即稍微偏离该两倍焦距处一定距离的位置,本申请对此不作限定。
参考图8,输入光束从输入/输出端口610出射,至从MEMS1微镜621出射的过程可以参见图7A中的描述,这里不再赘述。从MEMS1微镜621出射的光束(此时依然称为是输入光束)经图8中的透镜1射到第一光学滤波片630上。在图8中,由于MEMS1微镜621和MEMS微镜2分别设置在透镜1两侧的两倍焦距处,因此从MEMS1微镜621出射的光束与光轴1的夹角与从透镜1出射的光束与光轴1的夹角相同。第一光学滤波片630可将入射的光束分为第一透射光束和第一反射光束。第一透射光束经MEMS2微镜640进行光束调整,耦合至第一透射输入/输出端口650,实现信号的下载。第一反射光束经MEMS3微镜622进行光束调整,耦合至第一反射输入/输出端口660,实现信号的透传。
具体的,输入光束经第一光学滤波片进行滤波,以及将第一透射光束耦合至第一透射输入/输出端口,将第一反射光束耦合至第一反射输入/输出端口的过程可以参见图7A中的描述,这里不再赘述。
在图7或图8所示的T-OADM装置中,第一光学装置(671或672)可以将从MEMS1微镜621沿与光轴1不同夹角出射的光束汇聚到光轴1上的某一点(比如光轴1与MEMS2微镜640的交点)上,并且从MEMS1微镜621出射的光束与光轴1的夹角与从第一光学装置出射的光束与光轴1的夹角有映射关系,这样有利于通过调整MEMS1微镜621的偏转来控制输入光束入射到第一光学滤波片上的第一入射角的大小,从而能够控制T-OADM装置下 载或上传的信号的波长。另外,通过第一光学装置671对从MEMS1微镜621出射的不同方向的光束进行汇聚,能够使得T-OADM装置的结构更加紧凑,有利于减小T-OADM装置的体积。
在图9和图10中,T-OADM装置还可以包括第二光学装置和第三光学装置。其中,MEMS1微镜621、第一光学滤波片630、第二光学装置和MEMS2微镜640分别依次设置在第二光轴(例如光轴1)上。第一光学滤波片630、第三光学装置和所述MEMS2微镜622分别依次设置在第三光轴(例如光轴2)上。第一光学滤波片630的法线与光轴1之间的夹角为α,光轴1与光轴2的夹角为2α。
在图9和图10中,第二光学装置用于将从第一光学滤波630片出射的第一透射光束引导至MEMS2微镜640,第三光学装置用于将从第一光学滤波片630出射的第一反射光束引导至MEMS3微镜622。例如,第二光学装置将从第一光学滤波片630出射的(例如与所述光轴1具有不同夹角)的第一透射光束汇聚到光轴1与MEMS2微镜640(例如光轴1与MEMS2微镜640的交点)上,其中,从所第一光学滤波片630出射的光束与光轴1的夹角与从所述第二光学装置出射的光束与光轴1的夹角一一对应;第三光学装置将从第一光学滤波片630出射的(例如与所述光轴2具有不同夹角的)第一反射光束汇聚到MEMS3微镜622(例如MEMS3微镜622与光轴2的交点)上,其中,从所第一光学滤波片630出射的光束与光轴2的夹角与从所述第三光学装置出射的光束与光轴2的夹角之间一一对应。当光束沿光轴方向入射到第二光学装置或第三光学装置时,第二光学装置或第三光学装置可以不对光束进行调整。
图9示出了本申请实施例提供的另一种T-OADM装置的具体示例。如图9所示,T-OADM装置包括输入/输出端口610、偏振分束器件681、MEMS1微镜621、第一光学滤波片630、第二光学装置673、MEMS2微镜640、第二光学装置674、MEMS3微镜622、偏振合束器件682和683、第一透射输入/输出端口650和第二透射输入/输出端口660。在图9中,第二光学装置673为光学4f系统,包括透镜1(记为f1)和透镜2(记为f2),第三光学装置674也为光学4f系统,包括透镜3(记为f3)和透镜4(记为f4)。这里,透镜1为光学4f系统的前透镜的一个示例,透镜2为光学4f系统的后透镜的一个示例,透镜3为光学4f系统的前透镜的一个示例,透镜4为光学4f系统的后透镜的一个示例。
可选的,如图9所示,第三光学装置674中还可以包括反射镜6741,用于对光路进行折叠,以减小器件尺寸。
在图9中,MEMS1微镜621、第一光学滤波片630、透镜1、透镜2、MEMS2微镜640的中心均设置在光轴1上,MEMS1微镜621、第一光学滤波片630、透镜3、透镜4、MEMS3微镜622的中心均设置在光轴2(包括光轴2经第一光学滤波片630反射的折叠光轴,以及光轴2经反射镜6741反射的折叠光轴)上。
进一步的,MEMS1微镜621设置透镜1的前焦点处,MEMS2微镜640可以位于透镜2的后焦点处,同时MEMS1微镜621位于透镜3的经第一光学滤波片630反射的光路(即折叠光路)的前焦点处,所述MEMS3微镜622位于所述透镜4的后焦点处。
在一些可能的实现方式中,图9中透镜1的焦距可以与透镜2的焦距相同。此时,从MEMS1微镜621出射的光束与光轴1的夹角与从透镜2出射的光束与光轴1的夹角相同。
在另一些可能的实现方式中,图9中透镜1的焦距与透镜2的焦距不同。此时,从MEMS1微镜621出射的光束与光轴1的夹角与从透镜2出射的光束与光轴1的夹角是不同的,二者具有映射关系。具体的,该映射关系可以由透镜1和透镜2的焦距来决定。
在一些可能的实现方式中,图9中透镜3的焦距可以与透镜4的焦距相同。此时,从MEMS1微镜621出射的光束与光轴1的夹角与从透镜4出射的光束与光轴1的夹角相同。
在另一些可能的实现方式中,图9中透镜3的焦距与透镜4的焦距不同。此时,从MEMS1微镜621出射的光束与光轴1的夹角与从透镜4出射的光束与光轴1的夹角是不同的,二者具有映射关系。具体的,该映射关系可以由透镜3和透镜4的焦距来决定。
参考图9,输入光束从输入/输出端口610出射,至从MEMS1微镜621出射的过程可以参见图7A中的描述,这里不再赘述。从MEMS1微镜621出射的光束(此时依然称为是输入光束)射到第一光学滤波片630上,第一光学滤波片630可将入射的光束分为第一透射光束和第一反射光束。第一透射光束经透镜1、透镜2射到MEMS2微镜640上,由MEMS2微镜640对该第一透射光束进行光束调整,耦合至第一透射输入/输出端口650,实现信号的下载。第一反射光束经透镜3、(可选的还可经反射镜6741)、透镜4射到MEMS3微镜622,由MEMS3微镜622对该第一反射光束进行光束调整,耦合至第一反射输入/输出端口660,实现信号的透传。
图10示出了本申请实施例提供的另一种T-OADM装置的具体示例。如图10所示,T-OADM装置包括输入/输出端口610、偏振分束器件681、MEMS1微镜621、第一光学滤波片630、第二光学装置675、MEMS2微镜640、第三光学装置676、MEMS3微镜622、偏振合束器件682和683、第一透射输入/输出端口650和第二透射输入/输出端口660。在图10中,第二光学装置675,包括透镜1(记为f1),第三光学装置676包括透镜2(记为f2)。
在图10中,MEMS1微镜621、第一光学滤波片630、透镜1、MEMS2微镜640的中心均设置在光轴1上,MEMS1微镜621、第一光学滤波片630、透镜2、MEMS3微镜622的中心均设置在光轴2(包括光轴2经第一光学滤波片630反射的折叠光轴)上。
进一步的,MEMS1微镜621设置透镜1的第一侧(前侧)两倍焦距处,MEMS2微镜640可以位于透镜1的第二侧(后侧)两倍焦距处,MEMS1微镜621位于透镜2的经第一光学滤波片630反射的折叠光路的两倍焦点处,MEMS3微镜622位于所述透镜2的后侧两倍焦距处。这样,从MEMS1微镜621出射的光束与光轴1的夹角与从透镜1出射的光束与光轴1的夹角相同,从MEMS1微镜621出射的光束与光轴1的夹角与从透镜2出射的光束与光轴2的夹角是相同的。
参考图10,输入光束从输入/输出端口610出射,至射到第一光学滤波片630上过程可以参见图9中的描述,这里不再赘述。第一光学滤波片630可将入射的光束分为第一透射光束和第一反射光束。第一透射光束经透镜1射到MEMS2微镜640上,由MEMS2微镜640对该第一透射光束进行光束调整,耦合至第一透射输入/输出端口650,实现信号的下载。第一反射光束经透镜2射到MEMS3微镜622,由MEMS3微镜622对该第一反射光束进行光束调整,耦合至第一反射输入/输出端口660,实现信号的透传。
需要说明的是,在图9中以第二光学装置673和第三光学装置674均包括光学4f系统为例进行描述,在图10中以第二光学装置675和第三光学装置676均包括一个透镜为例进行描 述,但是本申请实施例并不限于此。例如,在图9中,第二光学装置673可以包括一个透镜(此时MEMS1微镜621可以设置在该透镜的前侧的两倍焦距处,MEMS2微镜640可以设置在该透镜的后侧的两倍焦距处),第三光学装置674包括光学4f系统。又例如,在图9中,第二光学装置673可以包括光学4f系统,第四光学装置674包括一个透镜(此时MEMS1微镜621可以设置该该透镜的经第一光学滤波片630反射的折射光路的两倍焦距处,MEMS3微镜622可以设置在该透镜的经反射镜622反射的折射光路的两倍焦距处)。图10中的T-OADM装置可以与图9中的T-OADM装置进行相似的变换,不再赘述。
在图9或图10所示的T-OADM装置中,第二光学装置(673或675)可以将从第一光学滤波片630出射的(例如沿与光轴1具有不同夹角出射的)第一透射光束汇聚MEMS2微镜640(例如与光轴1的交点)上,并且从第一光学滤波片630出射的透射光束与光轴1的夹角与从第二光学装置出射的光束与光轴1的夹角有映射关系。第三光学装置(674或676)可以将从第一光学滤波片630出射的沿与光轴2具有不同夹角出射的第一反射光束汇聚到MEMS3微镜622(例如与光轴2的交点)上,并且从第一光学滤波片630出射的反射光束与光轴2的夹角与从第三光学装置出射的光束与光轴2的夹角有映射关系。
这样有利于通过调整MEMS1微镜621的偏转来控制输入光束入射到第一光学滤波片上的第一入射角的大小,从而能够控制T-OADM装置下载或上传的信号的波长。另外,通过第二光学装置和第三光学装置对从MEMS1微镜621出射的不同方向的光束进行汇聚,能够使得T-OADM装置的结构更加紧凑,有利于减小T-OADM装置的体积。
在图11和图12中,T-OADM装置还可以包括第四光学装置、第五光学装置和第六光学装置。其中,MEMS1微镜621、第四光学装置、第一光学滤波630、第五光学装置和MEMS2微镜622分别一次设置在第四光轴(例如光轴1)上。第一光学滤波片630、第六光学装置和MEMS3微镜622分别依次设置在第五光轴(例如光轴2)上。第一光学滤波片630的法线与光轴1之间的夹角为α,光轴1与光轴2的夹角为2α。
在图11和图12中,第四光学装置用于将MEMS1微镜621出射的光束引导至第一光学滤波片630,第五光学装置用于将从第一光学滤波片630出射的第一透射光束引导至MEMS2微镜640,第六光学装置用于将从第一光学滤波片630出射的第一反射光束引导至MEMS3微镜622。例如,第四光学装置将从MEMS1微镜621出射的(例如与所述光轴1不同夹角的)光束汇聚到第一光学滤波片630(例如与光轴1的交点)上,其中,从MEMS1微镜621出射的光束与光轴1的夹角与从所述第四光学装置出射的光束与光轴1的夹角一一对应;第五光学装置将从第一光学滤波片630出射的(例如与所述光轴1不同夹角的)第一透射光束汇聚到MEMS2微镜640(例如与光轴1的交点)上,其中,从第一光学滤波片630出射的光束与光轴1的夹角与从所述第五光学装置出射的光束与光轴1的夹角一一对应;第六光学装置将从第一光学滤波片630出射的(例如与所述光轴1不同夹角的)第一反射光束汇聚到MEMS3微镜622(例如与光轴2的交点)上,其中,从第一光学滤波片630出射的光束与光轴2的夹角与从所述第六光学装置出射的光束与光轴2的夹角一一对应。当光束沿光轴方向入射到第四光学装置或第五光学装置或第六光学装置时,第四光学装置或第五光学装置或第六光学装置可以不对光束进行调整。
图11示出了本申请实施例提供的另一种T-OADM装置的具体示例。如图11所示, T-OADM装置包括输入/输出端口610、偏振分束器件681、MEMS1微镜621、第四光学装置677、第一光学滤波片630、第五光学装置678、MEMS2微镜640、第六光学装置679、MEMS3微镜622、偏振合束器件682和683、第一透射输入/输出端口650和第二透射输入/输出端口660。在图11中,第四光学装置677为光学4f系统,包括透镜1(记为f1)和透镜2(记为f2),第五光学装置678也为光学4f系统,包括透镜3(记为f3)和透镜4(记为f4),第六光学装置679也为光学4f系统,包括透镜5(记为f5)和透镜6(记为f6)。这里,透镜1为光学4f系统的前透镜的一个示例,透镜2为光学4f系统的后透镜的一个示例,透镜3为光学4f系统的前透镜的一个示例,透镜4为光学4f系统的后透镜的一个示例,透镜5为光学4f系统的前透镜的一个示例,透镜6为光学4f系统的后透镜的一个示例。
可选的,如图11所示,第六光学装置679中还可以包括反射镜6791,用于对光路进行折叠,以减小器件尺寸。
在图11中,MEMS1微镜621、透镜1、透镜2、第一光学滤波片630、透镜3、透镜4、MEMS2微镜640的中心均设置在光轴1上,MEMS1微镜621、透镜1、透镜2、第一光学滤波片630、透镜3、透镜4、MEMS3微镜622的中心均设置在光轴2(包括光轴2经第一光学滤波片630反射的折叠光轴,以及光轴2经反射镜6791反射的折叠光轴)上。
进一步的,MEMS1微镜621设置透镜1的前焦点处,第一光学滤波片630位于透镜2的后焦点且位于透镜2的前焦点处,MEMS2微镜640可以位于透镜4的后焦点处,第一光学滤波片630位于透镜5的前焦点处,所述MEMS3微镜622位于透镜6的后焦点处。
在一些可能的实现方式中,图11中透镜1的焦距可以与透镜2的焦距相同或不同,透镜3的焦距可以与透镜4的焦距相同或不同,透镜5的焦距可以与透镜6的焦距相同或不同,本申请对此不作限定。
参考图11,输入光束从输入/输出端口610出射至MEMS1微镜621,经MEMS1微镜621调整出射至第四光学装置677。从第四光学装置677出射的光束(此时依然称为是输入光束)射到第一光学滤波片630上,第一光学滤波片630可将入射的光束分为第一透射光束和第一反射光束。第一透射光束经第五光学装置678射到MEMS2微镜640上,由MEMS2微镜640对该第一透射光束进行光束调整,耦合至第一透射输入/输出端口650,实现信号的下载。第一反射光束经第六光学装置679射到MEMS3微镜622,由MEMS3微镜622对该第一反射光束进行光束调整,耦合至第一反射输入/输出端口660,实现信号的透传。
图12示出了本申请实施例提供的另一种T-OADM装置的具体示例。如图12所示,T-OADM装置包括输入/输出端口610、偏振分束器件681、MEMS1微镜621、第四光学装置691、第一光学滤波片630、第五光学装置692、MEMS2微镜640、第六光学装置693、MEMS3微镜622、偏振合束器件682和683、第一透射输入/输出端口650和第二透射输入/输出端口660。在图10中,第四光学装置691,包括透镜1(记为f1),第五光学装置692,包括透镜2(记为f2),第六光学装置693包括透镜3(记为f3)。
在图12中,MEMS1微镜621、透镜1、第一光学滤波片630、透镜2、MEMS2微镜640的中心均设置在光轴1上,MEMS1微镜621、透镜1、第一光学滤波片630、透镜3、MEMS3微镜622的中心均设置在光轴2(包括光轴2经第一光学滤波片630反射的折叠光轴)上。
进一步的,MEMS1微镜621位于透镜1的第一侧(前侧)两倍焦距处,第一光学滤波 片630位于透镜1的第二侧(后侧)两倍焦距且位于透镜2的第一侧(前侧)的两倍焦距处,MEMS2微镜640可以位于透镜2的第二侧(后侧)两倍焦距处,第一光学滤波片630位于透镜3的第一侧(前侧)两倍焦距处,MEMS3微镜622位于所述透镜2的后侧两倍焦距处。这样,入射到透镜1的光束与光轴1的夹角与从透镜1出射的光束与光轴1的夹角相同,入射到透镜2的光束与光轴1的夹角与从透镜2出射的光束与光轴1的夹角相同,入射到透镜3的光束与光轴1的夹角与从透镜3出射的光束与光轴1的夹角相同。
参考图12,输入光束从输入/输出端口610出射至MEMS1微镜621,经MEMS1微镜621调整出射至第四光学装置691。从第四光学装置691出射的光束(此时依然称为是输入光束)射到第一光学滤波片630上,第一光学滤波片630可将入射的光束分为第一透射光束和第一反射光束。第一透射光束经第五光学装置692射到MEMS2微镜640上,由MEMS2微镜640对该第一透射光束进行光束调整,耦合至第一透射输入/输出端口650,实现信号的下载。第一反射光束经第六光学装置693射到MEMS3微镜622,由MEMS3微镜622对该第一反射光束进行光束调整,耦合至第一反射输入/输出端口660,实现信号的透传。
需要说明的是,在图11中以第四光学装置677、第五光学装置678、第六光学装置679均包括光学4f系统为例进行描述,在图12中以第四光学装置691、第五光学装置692、第六光学装置693均包括一个透镜为例进行描述,但是本申请实施例并不限于此。例如,在图11中,第四光学装置677、第五光学装置678和第六光学装置679中的一个或两个个可以包括一个透镜。图12中的T-OADM装置可以与图11中的T-OADM装置进行相似的变换,不再赘述。
在图11或12所示的T-OADM装置中,第四光学装置(677或691)可以将从MEMS1 621出射的沿与光轴1不同夹角出射的光束汇聚到光轴1上的某一点(比如光轴1与第一光学滤波片630的交点)上,并且从MEMS1微镜621出射的光束与光轴1的夹角与从第四光学装置出射的光束与光轴1的夹角有映射关系,第五光学装置(678或692)可以将从第一光学滤波片630出射的沿与光轴1不同夹角出射的第一透射光束汇聚到光轴1上的某一点(比如光轴1与MEMS2微镜640的交点)上,并且从第一光学滤波片630出射的透射光束与光轴1的夹角与从第五光学装置出射的光束与光轴1的夹角有映射关系,第六光学装置(679或693)可以将从第一光学滤波片630出射的沿与光轴2不同夹角出射的第一反射光束汇聚到光轴2上的某一点(比如光轴2与MEMS2微镜640的交点)上,并且从第一光学滤波片630出射的反射光束与光轴2的夹角与从第六光学装置出射的光束与光轴2的夹角有映射关系,这样有利于通过调整MEMS1微镜621的偏转来控制输入光束入射到第一光学滤波片上的第一入射角的大小,从而能够控制T-OADM装置下载或上传的信号的波长。另外,通过第四光学装置将从MEMS1 621出射的沿光轴1不同夹角的光束汇聚到光轴1与第一光学滤波片630的交点上,能够有利于减小输入光束入射到第一光学滤波片630上的光斑的面积,进而可以有助于减小第一光学滤波片630的面积。
图13示出了本申请实施例提供的另一种T-OADM装置的具体示例。在图13中,T-OADM装置还可以包括球面反射镜1310,用于将MEMS1微镜621出射的光束(即输入光束)引导至第一光学滤波片630,例如用于将MEMS1微镜621出射的与光轴具有不同夹角的光束汇聚到光轴与MEMS2微镜640的交点上,其中,从所述MEMS1微镜621出射的光束与光轴 的夹角与从球面反射镜1310出射的光束与光轴的夹角一一对应,例如相同。
如图13所示,T-OADM装置包括输入/输出端口610、偏振复用器1340、MEMS1微镜621、球面反射镜1310、第一光学滤波片630、MEMS2微镜640、MEMS3微镜622、第一透射输入/输出端口650和第二透射输入/输出端口660。可选的,在图13中,T-OADM装置还可以包括反射镜1320和1330,其中反射镜1320和1330的作用是折叠光路,能够使得T-OADM装置的结构更加紧凑,有利于减少装置体积。
在图13中,MEMS1微镜621设置在球面反射镜1310的第一侧(例如前侧)两倍焦距(例如经反射镜1320反射的折叠光路的两倍焦距)处,MEMS2微镜640位于球面反射镜1310的第二侧(后侧)的经第一光学滤波片630透射的光路的两倍焦距(即第二侧的两倍焦距)处,MEMS3微镜622位于球面反射镜4310的经第一滤波片630反射的光路(即折叠光路)的两倍焦距处。
参考图13,输入光束从输入/输出端口610出射至MEMS1微镜621,经MEMS1微镜621进行调整出射至球面反射镜1310(可选的可以经反射镜1320反射到达球面反射镜1310)。球面反射镜1310可以对输入光束进一步反射,使得输入光束射到第一光学滤波片630。第一光学滤波片630可将入射的光束分为第一透射光束和第一反射光束。第一透射光束射到MEMS2微镜640上,由MEMS2微镜640对该第一透射光束进行光束调整,耦合至第一透射输入/输出端口650,实现信号的下载。第一反射光束射到MEMS3微镜622,由MEMS3微镜622对该第一反射光束进行光束调整,耦合(可选的,从MEMS3微镜622出射的光束可以经反射镜1330反射耦合)至第一反射输入/输出端口660,实现信号的透传。
与图7A中类似,在图8至图13中,当需要调整T-OADM需要下载或上传的信号的波长(即调整第一光学滤波片630的滤波中心波长)时,可以通过调整MEMS1微镜621的偏转来实现。相应的,为了将透射光束和反射光束耦合到相应的端口,也需要对MEMS2微镜640和MEMS3微镜622进行相应的偏转。相应的,在图8至图13的T-OADM装置中,还可以包括控制单元,来控制MEMS1微镜621、MEMS2微镜640和MEMS3微镜622的偏转方向和偏转角度。具体的,可以参见图7A、图7B和图7C中的描述,这里不再赘述。
图14示出了本申请实施例提供的另一种T-OADM装置的具体示例。与图13不同的是,在图14中,第一光束调整装置620可以由一个双反射面MEMS微镜620实现两个MEMS微镜(例如图13中的MEMS1微镜621和MEMS3微镜622)的功能。也就是说,从双反射面MEMS微镜的一个反射面出射的输入光束,依次经反射镜1320、球面反射镜1310射入第一光学滤波片630的反射,从第一光学滤波片630出射的第一反射光束将射入双反射面MEMS微镜的另一个反射面,并经该反射面反射至第一反射输入/输出端口660,实现信号的透传。
双反射面MEMS微镜可以包括两个反射面和一个MEMS驱动器,该MEMS驱动器可以控制这两个反射面同时进行相同的偏转。
与图7A中类似,在图14中,当需要调整T-OADM需要下载或上传的信号的波长(即调整第一光学滤波片630的滤波中心波长)时,可以通过调整双反射面MEMS微镜620的偏转来实现。由于使用了双反射面MEMS微镜620,在其进行偏振时,反射光束也能够耦合到相应的端口。进一步的,为了将透射光束耦合到相应的端口,还需要对MEMS2微镜640进行相应的偏转。相应的,在图14的T-OADM装置中,还可以包括控制单元,来控制MEMS1 微镜621、MEMS2微镜640和MEMS3微镜622的偏转方向和偏转角度。具体的,可以参见图7A、图7B和图7C中的描述,这里不再赘述。
在图13和图14中,由于球面反射镜1310能够起到折叠光路的作用,因此能够使得T-OADM装置的结构更加紧凑,有助于减小T-OADM装置的体积。
因此,本申请实施例在保持第一光学滤波片的偏转角度固定不变的情况下,可以通过光束调整装置(例如MEMS微镜或LCOS)来动态改变输入光束入射到该第一光学滤波片的入射角,来改变第一光学滤波片的滤波中心波长,并利用光束调整装置(例如MEMS微镜或LCOS)对该第一光学滤波片透射的光束和反射的光束进行调整,使其耦合到相应的端口,实现对T-OADM装置下载或上传的信号的波长的动态调整。本申请实施例能够动态调整T-OADM装置上下信号的波长,支持波长级的业务切换,并且网络结构灵活,运维简单,更有利于光网络的智能化控制。
另外,本申请实施例还可以通过光束调整装置(例如MEMS微镜或LCOS)调整光束到透射输入/输出端口的耦合度,进而能够调整出射的透射光束的强度,即调整T-OADM装置下载信号的强度。
在图6至图14所示的T-OADM装置中,T-OADM装置中包括一个光学滤波片和一个透射输入/输出端口,可以实现下载或上传一个波长的光束,并且通过使用波束调整装置,使得该波长大小动态可调。为了实现T-OADM装置能够同时下载或上传两个或以上波长的信号(且每个波长大小动态可调),可以在T-OADM装置中额外级联一个或多个光学滤波片,每个光学滤波片可以实现对一个波长的下载或上传。下面,结合图15至图18详细描述该类型的T-OADM装置。
图15示出了本申请实施例提供的一种T-OADM装置1500的示意性结构图,如图15所示,T-OADM装置1500包括输入/输出端口610、第一光束调整装置620、第一光学滤波片630、第二光束调整装置640、第一透射输入/输出端口650,第一反射输入/输出端口660、第二光学滤波片1510、第三光束调整装置1520、第四光束调整装置1530、第二透射输入/输出端口1540。图15中与图6中相同的附图标记表示相同或相似的含义。这里,第二透射输入/输出端口1540也可以称为第四端口1540,本申请对此不作限定。
其中,输入/输出端口610、第一光束调整装置620、第一光学滤波片630、第二光束调整装置640、第一透射输入/输出端口650,第一反射输入/输出端口660可以参见图6中的描述,不再赘述。
在图15中,第一光束调整装置620具体用于调整第一反射光束的传输方向,使得该第一反射光束以第二入射角射到第二光学滤波片1510。
在一些实施例中,当第一光束调整装置620包括入射光束调整装置和反射光束调整装置时,由该反射光束调整装置来调整该第一反射光束的传输方向。
这里,第一光束调整装置620可以根据T-OADM装置1500需要下载(或上传)的第二个信号的波长来动态调整该第二入射角的大小。作为示例,需要下载(或上传)信号的波长与第二入射角满足上述公式(1)。
第二光学滤波片1510,用于接收以上述第二入射角入射的光束,并将入射到该第二光学滤波片1510的光束分为包含第二波长的第二透射光束和包含至少一个波长的第二反射光束。 其中,第二波长为以第二入射角射到第二光学滤波片1510时透过该第二光学滤波片1510的光束的波长。这里,该第二反射光可以认为是上述第一反射光中的部分光束。
这里,第二光学滤波片1510可以固定设置,此时可以通过第一光束调整装置620来动态调整第二入射角的大小,使得T-OADM装置1500在下载(或上传)第一波长的信号的情况下,还能够下载(或上传)第二波长的信号。
第三光束调整装置1520用于调整所述第二透射光束的传输方向,使得该第二透射光束输出至第二透射输入/输出端口1540。
第二透射输入/输出端口1540,用于输出上述第二透射光束。
第四光束调整装置1530用于调整上述第二反射光束的传输方向。
第一反射输入/输出端口660,用于输出上述第二反射光束。
在一些实施例中,第四光束调整装置1530可以具体用于调整该第二反射光束的传输方向,使得第二反射光束输出至第一反射输入/输出端口660。此时,该第一反射输入/输出端口660,具体用于输出该第二反射光束。
在另一些实施例中,当OADM装置600还包括第三光学滤波片时,第四光束调整装置1530还可以用于调整该第二反射光束的传输方向,使得第二反射光束输出至该第三光学滤波片。此时,第三光学滤波片可以进一步对该第二反射光束进行光学滤波,相应的,该第一反射输入/输出端口660则用于输出第二反射光束中的部分光束。
因此,本申请实施例通过光束调整装置改变从第一光学滤波片出射的第一反射光束的传输方向,使得该第一反射光束入射到第二光学滤波片,并进一步可以通过光束调整装置来改变光束入射到第二光学滤波片的入射角,以及调整从第二光学滤波片出射的第二波长的透射光束和反射光束的传输方向,使得从光学滤波片出射的透射光束和反射光束输出至相应的端口,从而实现T-OADM装置在下载(或上传)第一波长的信号的情况下,还能够下载(或上传)第二波长的信号。
示例性的,第三光束调整装置1520和第四光束调整装置1530分别可以为MEMS微镜,或LCOS,本申请实施例对此不作限定。
在一些实施例中,第二透射输入/输出端口1540还用于输入上述第二波长的输入光束,该输入光束经第二光学滤波片1510透射,并输出至输入/输出端口610。此时,输入/输出端口610还用于输出经该第二光学滤波片1510透射的光束。因此,本申请实施例能够实现对该第二波长的信号的上传。
下面,结合图16至图18,描述本申请实施例提供的三种具体的T-OADM装置。其中,图15至图18相同的附图标记表示相同或相似的含义,为了简洁,不再赘述。
需要说明的是,在图16至图18中,以光学滤波片对特定偏振状态的入射光进行光学滤波为例进行描述。相应的,在图16至图18所示的T-OADM装置中还包括偏振分束器件,以及偏振合束器件(或者也可以称为偏振复用器件)。
其中,在图16至图18的T-OADM装置中,以第三光束调整装置1520为第四MEMS微镜(记为MEMS4微镜)1520、第四光束调整装置1530为第五MEMS微镜(记为MEMS5微镜)1530为例进行描述,但是本申请实施例并不限于此。
图16示出了本申请实施例提供的另一种T-OADM装置的具体示例。其中,图16的 T-OADM装置在图7A中的T-OADM装置的基础上,进一步增加了第二光学滤波片1510、MEMS4微镜1520、MEMS5微镜1530和第二透射输入/输出端口1540。可选的,图16中还可以包括MEMS微镜1610、光学装置1620和偏振合束器件6831。其中,MEMS微镜1610可以用于进一步对从MEMS3微镜622出射的第一反射光束的传输方向进行调整,使其射到光学装置1620。另外,MEMS微镜1610还可以用于折叠光路,能够使得T-OADM装置的结构更加紧凑,有助于减小器件体积。光学装置1620用于将该第一反射光束引导至第二光学滤波片1510。具体的,光学装置1620可以参见光学装置671的描述,这里不再赘述。
具体的,MEMS3微镜622、MEMS微镜1610、光学装置1620、MEMS4微镜1520和MEMS5微镜1530的位置可以参见上文中MEMS1微镜、第一光学装置671、MEMS2微镜640和MEMS3微镜622的描述,这里不再赘述。
应理解,在图16中,以光学装置1620为光学4f系统为例,即包括透镜3(记为f3)和透镜4(记为f4)为例进行描述。在另外一些实施例中,光学装置1620还可以包括一个透镜,此时该透镜、第二光学滤波片1510、MEMS4微镜1520和MEMS5微镜1530的位置可以参见上文透镜、第一光学滤波片以及相关MEMS微镜的描述,这里不再赘述。
图17示出了本申请实施例提供的另一种T-OADM装置的具体示例。与图16不同的是,在图17中没有使用MEMS微镜1610,这样从MEMS3微镜622出射的第一反射光束可以入射到光学装置1620上。
可选的,如图17所示,可以在光学装置1620与MEMS3微镜622之间设置反射镜1710,用于折叠光路,能够使得T-OADM装置的结构更加紧凑,有利于减小器件体积。
可选的,如图17所示,还可以在光学装置1620中的透镜3和透镜4之间设置反射镜1621,用于折叠光路,能够使得T-OADM装置的结构更加紧凑,有利于减小器件体积。
图18示出了本申请实施例提供的另一种T-OADM装置的具体示例。其中,图18的T-OADM装置在图9中的T-OADM装置的基础上,进一步增加了第二光学滤波片1510、MEMS4微镜1520、MEMS5微镜1530和第二透射输入/输出端口1540。可选的,图18中还可以包括光学装置1820和光学装置1830和偏振合束器件6831。MEMS3微镜622将第一反射光束的传输方向进行调整,使其射到第二光学滤波片1510,从第二光学滤波片1510出射的第二透射光束射到光学装置1820,由光学装置1820将该第二透射光束引导至MEMS4微镜1520,进而耦合到第二透射输入/输出端口,实现第二波长的信号的下载。从第二光学滤波片1510出射的第二反射光束射到光学装置1830,由光学装置1830将该第二反射光束引导至MEMS5微镜1530,进而耦合到第一反射输入/输出端口,实现信号的透传。具体的,光学装置1820可以参见光学装置673的描述,光学装置1830可以参见光学装置674的描述,不再赘述。
示例性的,光学装置1820和1830可以均为光学4f系统,其中,光学装置1820中可以包括透镜5(记为f5)和透镜6(记为f6),光学装置1830中可以包括透镜7(记为f7)和透镜8(记为f8).
可选的,图18中T-OADM装置中还可以包括反射镜1810,可以位于透镜4和MEMS3微镜622之间,用于折叠光路,能够使得T-OADM装置的结构更加紧凑,有利于减小器件体积。
具体的,MEMS3微镜622、第二光学滤波片1510、光学装置1820、MEMS4微镜1520、光学装置1830、MEMS5微镜1530的位置可以参见上文中MEMS1微镜、第一光学滤波片630、第一光学装置671、MEMS2微镜640、第二光学装置674和MEMS3微镜622的描述,这里不再赘述。
应理解,在图18中,以光学装置1820和1830为光学4f系统为例进行描述。在另外一些实施例中,光学装置1820或1830还可以包括一个透镜,此时光学装置1820或1830中的透镜、第二光学滤波片1510、MEMS4微镜1520和MEMS5微镜1530的位置可以参见上文透镜、第一光学滤波片以及相关MEMS微镜的描述,这里不再赘述。
与图7A中类似,在图16至图18中,当需要调整T-OADM装置需要下载或上传的第二波长的信号的波长(即调整第二光学滤波片1510的滤波中心波长)时,可以通过调整MEMS3微镜622的偏转来实现。相应的,为了将透射光束和反射光束耦合到相应的端口,也需要对MEMS4微镜1520和MEMS5微镜1530进行相应的偏转。具体的,可以参考图7A中的描述,可能还需要对图7A中的调整方式进行适当的调整,都在本申请实施例的保护范围之内。
需要说明的是,在图16至图18中,以T-OADM装置同时实现两种波长的信号的下载(或上传)为例进行描述。根据上面的实施例,还可以通过增加更多数量的光学滤波片和光束调整装置使得T-OADM装置同时实现更多波长的信号的下载(或上传),这都在本申请实施例的保护范围之内。
因此,本申请实施例在保持第一光学滤波片、第二光学滤波片的偏转角度固定不变的情况下,可以通过光束调整装置(例如MEMS微镜或LCOS)来动态改变输入光束入射到该第一光学滤波片和/或第二光学滤波片的入射角,来改变第一光学滤波片和/或第二光学滤波片的滤波中心波长,并利用光束调整装置(例如MEMS微镜或LCOS)对该第一光学滤波片透射的光束、第二光学滤波片透射和反射的光束进行调整,使其耦合到相应的端口,对第一光学滤波片反射的光束进行调整,使其射到第二光学滤波片上,实现对T-OADM装置能够下载或上传的不同波长的信号,并且该不同波长分别可以动态调整。本申请实施例能够动态调整T-OADM装置上下信号的波长,支持波长级的业务切换,并且网络结构灵活,运维简单,更有利于光网络的智能化控制。
另外,本申请实施例还可以通过光束调整装置(例如MEMS微镜或LCOS)分别调整不同透射光束到相应的透射输入/输出端口的耦合度,进而能够使得每个透射光束的强度保持一致,从而能够实现T-OADM装置下载的多个不同波长信号的强度的一致性,有助于保证下载到本地的各个波长的光信号的强度的平坦度。
在一些实施例中,可以保持输入光束(即入射到光学滤波片的光束)不变,通过动态改变光学滤波片的偏转角度,改变入射光束射到光学滤波片的入射角,从而可以实现动态调整通过光学滤波片出射的透射光束以及反射光束的波长,进而实现动态调整T-OADM装置下载或上传的光束的波长。
图19示出了现有的一种T-OADM装置,包括贴附于挤压垫1上的介质薄膜滤波片和反射镜,以及贴附于挤压垫2上补偿片。如图19所示,当保持入射光束不变时,通过调整挤压垫1的偏转,能够改变介质薄膜滤波片与入射光束之间的入射角,进而改变滤波片的滤波中心波长,从而实现动态可调的OADM功能。同时,挤压垫2会根据挤压垫1的偏转,朝反方 向偏转相应的角度,用以补偿因挤压垫1的偏转带来的透射光束与反射光束的位移问题,使得光束更加有效的耦合进相应的端口,实现信号的下载(或上传)与透传。该装置为了降低偏转滤波片带来的光束位移的问题,增加了相应的补偿器件,使得装置整体器件较多,结构复杂。
基于此,本申请实施例提供了一种T-OADM装置,在该T-OADM装置中,光学滤波片可以与反射镜保持固定的夹角,通过转动部件带动光学滤波片的偏转以改变入射光束射到光学滤波片的入射角,相应的反射镜随着光学滤波片的偏转而偏转,将从光学滤波片出射的反射光束耦合到反射输入/输出端口中。
图20示出了本申请实施例提供的一种T-OADM装置2000的示意性结构图。如图20所示,T-OADM装置2000包括:输入/输出端口2010、转动部件2020、光学滤波片2030、反射镜2040、透射输入/输出端口2050和反射输入/输出端口2060。这里,输入/输出端口2010也可以称为第一端口2010,透射输入/输出端口2050也可以称为透射端口2050,反射输入/输出端口2060也可以称为反射端口2060,本申请对此不作限定。
其中,所述转动部件2020分别与所述光学滤波片2030和所述反射镜2040连接,所述光学滤波片2030与所述反射镜2040连接,且所述光学滤波片2030与所述反射镜2040的反射面之间具有固定夹角。
输入/输出端口2050,用于输入包含至少两个波长的输入光束。
转动部件2020,用于转动以调整所述光学滤波片2030和反射镜2040的倾斜角度,使得所述输入光束以第一入射角射到光学滤波片2030。
这里,转动部件2020可以根据T-OADM装置2000需要下载(或上传)的信号的波长来动态调整光学滤波片2030的偏转(即倾斜角度),以调整该第一入射角的大小。作为示例,需要下载(或上传)信号的波长与第一入射角满足上述公式(1)。
光学滤波片2030,用于接收以所述第一入射角入射的光束,并将所述入射的光束分为包含第一波长的透射光束和包含至少一个波长的反射光束,其中,所述第一波长为以所述第一入射角射到所述光学滤波片2030时,透过该光学滤波片2030的光束的波长。这里,该第一波长为T-OAMD装置2000需要下载(或上传)的信号对应的波长。
反射镜2040用于对所述反射光束的进行反射,使得所述反射光束输出至所述反射输入/输出端口。
透射输入/输出端口2050,用于输出所述透射光束。
第一反射输入/输出端口2060,用于输出所述反射光束。
因此,本申请实施例通过将光学滤波片和反射镜设置为与转动部件连接,且光学滤波片和转动部件之间保持固定角度,通过转动部件的转动改变光学滤波片的倾斜角度,以改变入射光束射到光学滤波片的入射角,并且在光学滤波片将入射光束分为透射光束和反射光束之后,进一步通过与光学滤波片之间具有固定角度的该反射镜将出射的反射光束反射至反射输入/输出端口。由于本申请实施例通过将光学滤波片和反射将设置为固定角度,能够通过该反射镜将反射光束耦合到反射输入/输出端口,因此本申请实施例能够降低T-OADM装置的复杂度。
在一些实施例中,T-OADM装置中还可以包括控制单元,用于根据T-OADM装置2000 需要下载(或上传)的信号的波长来控制转动部件转动,以实现对光束入射到第一光学滤波的第一入射角的调整,从而实现对T-OADM装置需要下载(或上传)的信号的波长进行调整。
示例性的,控制单元可以用于接收指令,所述指令用于指示T-OADM下载(或上传)的第一信号的波长。
控制单元还可以根据所述第一波长,确定转动部件的转动角度,并根据该转动角度,控制转动部件转动。
作为一种可能的实现方式,控制单元可以预先配置为存储有T-OADM装置能够下载或上传的信号的多个波长,以及每个波长对应的转动部件的转动角度。当控制单元获取T-OADM装置需要下载或上传的信号的波长时,即可根据该预先配置,确定该波长对应的转动部件的转动角度。
作为一种可能的实现方式,控制单元可以向转动部件的驱动器发送控制信号,以实现控制转动部件转动。
示例性的,转动部件可以为电机,或MEMS转动部件,本申请实施例对此不作限定。
在一些实施例中,透射输入/输出端口2050还用于输入第一波长的输入光束,该输入光束经光学滤波片2030透射,并输出至输入/输出端口2010。此时,输入/输出端口2010还用于输出经该光学滤波片2030透射的光束。这样,能够实现对该第一波长的信号的上传。
在一些实施例中,所述反射输入/输出端口2060还用于输入来自第二反射输入/输出端口输出的光束,该光束经反射镜2040以及光学滤波片2030反射并输出至输入/输出端口2010。此时,输入/输出端口2010还用于输出经该光学滤波片2030反射的光束。
这里,该第二反射输入/输出端口,可以为另一个OADM装置的反射输入/输出端口。同上对于从第二反射输入/输出端口输出的光束,应当不受影响的进行透传。作为一种可能的实现方式,可以将该第二反射输入/输出端口输出的光束,输入至该反射输入/输出端口2060,该输入到反射输入/输出端口2060的光束经反射镜2040和光学滤波片2030反射至输入/输出端口,从而实现对从第二反射输入/输出端口输出的光束进行透传。
相应的,从反射输入/输出端口2060输出的光束,也可以输入至另一个反射输入/输出端口(例如第三反射输入/输出端口),从而实现对从该反射输入/输出端口2060输出的光束进行透传。
下面,结合图21至图24,描述本申请实施例提供的两种具体的T-OADM装置。其中,图21至图24中相同的附图标记表示相同或相似的含义,为了简洁,不再赘述。
需要说明的是,在图21至图24中,以光学滤波片对特定偏振状态的入射光进行光学滤波为例进行描述。相应的,在图21至图24所示的T-OADM装置中还包括偏振分束器件,以及偏振合束器件(或者也可以称为偏振复用器件),但是本申请实施例并不限于此。
图21示出了本申请实施例提供的一种T-OADM装置的具体示例。如图21所示,T-OADM装置包括输入/输出端口2010、偏振分束器件2110、转动部件2020、光学滤波片2030、反射镜2040、偏振合束器件2120和2130、透射输入/输出端口2050和反射输入/输出端口2060。在图21中,对光学滤波片2030与反射镜2040的反射面之间的角度大小不作限定。
参考图21,输入到T-OADM装置的输入光束为WDM系统中包含的多个波长的信道。输入光束从输入/输出端口2010出射,经偏振分束器件2110,变成两束偏振相同的光信号(例 如可以垂直纸面排列)。这两束偏振相同的光信号(此时依然称为是输入光束)射到滤波片2030上。根据光学滤波片2030的滤波中心波长与光束入射到该光学滤波片2030的入射角的关系,输入光束中特定波长(例如第一波长)的信道(光束)会被光学滤波片2030透射,输入光束中除该特定波长之外的信道(光束)会被光学滤波片2030反射到反射镜2040。从光学滤波片2030出射的透射光束经偏振合束器件2120实现偏振恢复,耦合至透射输入/输出端口2050实现信号的下载。从第一光学滤波片630出射的反射光束经反射镜2040反射至偏振合束器件2130,实现偏振恢复,进而耦合至反射输入/输出端口2060,实现信号的透传。
图22示出了光学滤波片2030和反射镜2040位置的一个示例。其中,光学滤波片2030和反射镜2040的反射面之间的角度Φ可以设置在40°至120°的范围内,本申请对此不作限定。
继续参见图22,光束在光学滤波片2030上形成的光斑的位置A与光束在反射镜2040的反射面上形成的光斑的位置B之间的光路长度L可以控制在80mm以内,本申请对此不作限定。
图23示出了本申请实施例提供的一种T-OADM装置的具体示例。如图23所示,T-OADM装置包括输入/输出端口2010、双光纤准直器2310、第一棱镜2320、偏振复用器2330、转动部件2020、光学滤波片2030、反射镜2040、偏振合束器件2120、透射输入/输出端口2050和反射输入/输出端口2060。在图23中,光学滤波片2030与反射镜2040的反射面垂直设置,即光学滤波片2030与反射镜2040的反射面之间的角度为90,。
需要说明的是,在实际的T-OADM装置中,光学滤波片2030与反射镜2040的反射面垂直设置,既包括将二者之间严格垂直,即之间的角度准确的设置为90°,也包括将二者接近垂直,即之间的角度设置为接近90°或稍大于90°,本申请对此不作限定。
参考图23,输入光束从输入/输出端口2010出射至双光纤准直器2310中的一个光纤中进行准直,准直后的光束经第一棱镜2320入射到偏振复用器件2330,变成两束偏振相同的光信号(例如可以垂直纸面排列)。这两束偏振相同的光信号(此时依然称为是输入光束)射到滤波片2030上。从光学滤波片2030出射的透射光束经偏振合束器件2120实现偏振恢复,耦合至透射输入/输出端口2050实现信号的下载。从光学滤波片2030出射的反射光束经反射镜2040射到偏振复用器件2330,实现偏振恢复,然后耦合至第一棱镜2320。反射光束从第一棱镜出射后射入双光纤准直器2310,进而耦合至反射输入/输出端口2060,实现信号的透传。
作为示例,第一棱镜2320可以为屋脊棱镜,本申请对此不作限定。
与图21中的T-OADM装置不同的是,在图23中,由于光学滤波片2030与反射镜2040的反射面垂直设置,入射到滤波片2030的光束和从反射镜2040出射的反射光束是平行的,并且两个光束之间具有间隔。此时,使用第一棱镜2320能够将从双光纤准直器2310出射的输入光束折射到偏振复用器件2330,并将经偏振复用器2330的反射光束折射到双光纤准直器2310,使得反射光束耦合至反射输入/输出端口2060。
在图21或图22所示的T-OADM装置中,当需要调整光学滤波片2030的滤波中心波长(即调整第一透射光束的波长)时,可以通过控制转动部件2020转动来实现。此时由于光学滤波片2030和反射镜2040的反射面能够继续保持设置的固定的角度,因此能够实现将透射光束和反射光束耦合进相应的端口。
在一些实施例中,可以在光学滤波片2030和透射输入/输出端口之间设置第二棱镜。由于光学滤波片在偏转时,透射光束会有一定位移,此时采用该第二棱镜可以减小透射光束的位移距离,降低位移对将透射光束耦合至相应端口带来的影响。
在一些实施例中,可以在反射镜2040和反射输入/输出端口之间设置第三棱镜。由于光学滤波片和反射镜在偏转时,反射光束会有一定位移,此时采用该第三棱镜可以减小反射光束的位移距离,降低位移对将反射光束耦合至相应端口带来的影响。
图24示出了棱镜对光束的位移进行压缩的一个示例。如图24所示,光束经过棱镜前的位移为a。经过棱镜后,光束的位移减小到b。
本申请实施例还提供了一种T-OADM装置,包括输入/输出端口、驱动部件、光学滤波片、透射输入/输出端口和反射输入/输出端口,其中,该光学滤波片包括至少两个具有不同滤波带宽的区域。该驱动部件与光学滤波片连接,用于驱动该光学滤波片移动,使得输入光束入射到光学滤波片的上述至少两个区域中的第一区域,进而使得光学滤波片通过该第一区域接收入射的光束,并通过该第一区域将入射的光束分为包含第一波长的信号的透射光束和包括至少一个波长的反射光束。其中,该第一波长为以第一入射角射到所述第一区域时透过该光学滤波片的光束的波长。
在一些实现方式中,还可以包括控制单元,用于控制驱动部件移动,以实现对光束入射到第一光学滤波的不同区域,从而实现对T-OADM装置需要下载(或上传)的信号的波长进行调整。
图25示出了光学滤波片的一个示例。如图25所示,可以将该光学滤波片的不同区域设计加工为不同滤波带宽的滤波片,使得该光学滤波片包括具有不同滤波带宽的多个区域,例如图中的光学滤波片从上到下滤波片带宽依次为Δλ1、Δλ2、Δλ3…Δλn。当需要不同滤波带宽的时候,可以利用驱动部件(例如驱动器)改变光束入射到光学滤波片的位置,从而可以动态调整光学滤波片的滤波中心波长,实现T-OADM装置动态调整下载(或上传)的信号的波长。
在一些可选的实施例中,上文中的各个实施例中的光学滤波片也可以替换为该包含不同滤波带宽的区域的光学滤波片,对应的上述各个实施例中还可以包括与该光学滤波片连接的驱动部件,通过该驱动部件改变光束入射到光学滤波片的位置,实现动态调整光学滤波片的滤波中心波长。
本申请实施例还提供了一种T-OADM装置,如图26所示,T-OADM装置2600包括输入/输出端口2610、第一光束调整装置2620、光学滤波片2630、第二光束调整装置2640、透射输入/输出端口2650、第三光束调整装置2660、反射输入/输出端/2670。这里,输入/输出端口2610也可以称为第一端口2610,反射输入/输出端口2670也可以称为反射端口2670,透射输入/输出端口2650也可以称为透射端口2650,本申请对此不作限定。
输入/输出端口2610,用于输入包含至少两个波长的输入光束。
第一光束调整装置2620,用于调整所述输入光束的传输方向,使得所述输入光束以第一入射角射到所述光学滤波片2630。
光学滤波片2630,用于接收以所述第一入射角入射的光束,并将所述入射的光束分为包含第一波长的透射光束和包含至少一个波长的反射光束,其中,所述第一波长为以第一入射 角射到所述光学滤波片2630时透过该光学滤波片2630的光束的波长。
第二光束调整装置2640,用于调整所述透射光束的传输方向,使得所述透射光束经光学滤波片2630、第一光束调整装置2620输出至所述透射输入/输出端口2650;
透射输入/输出端口2650,用于输出所述透射光束;
第三光束调整装置2660,用于调整所述反射光束的传输方向,使得所述反射光束经所述光学滤波片2630、第一光束调整装置2620输出至反射输入/输出端口2670。
反射输入/输出端口2670,用于输出所述反射光束。
示例性的,第一光束调整装置2620可以参见上文中的入射光束调整装置的描述,光学滤波片2630可以参见图6中第一光学滤波片的描述,这里不再赘述。
因此,本申请实施例通过第一光束调整装置改变入射光束射到光学滤波片的入射角,并且在光学滤波片将入射光束分为透射光束和反射光束之后,进一步通过第二光束调整装置将从光学滤波片出射的透射光束的反射到光学滤波片,并进一步经第一光束调整装置输出至透射输入/输出端口,以及通过第三光束调整装置将从光学滤波片出射的反射光束反射到光学滤波片,并进一步经第一光束调整装置输出至反射输入/输出端口。
在一些实施例中,T-OADM装置中还可以包括控制单元,来控制第一光束调整装置对入射光束的偏转方向和偏转角度,以实现对光束入射到第一光学滤波的第一入射角的调整,从而实现对T-OADM装置需要下载(或上传)的信号的波长进行调整。
具体的,控制单元控制第一光束调整装置的方式可以参见上文中的相关描述,这里不再赘述。
在一些实施例中,透射输入/输出端口2650还用于输入所述第一波长的输入光束,所述输入光束经所述光学滤波片2630透射,并输出至所述输入/输出端口2610。输入/输出端口2610还用于输出经所述光学滤波片透射的光束,从而实现对该第一波长的信号的上传。
在一些实施例中,反射输入/输出端口2670还用于输入光束,所述光束经所述光学滤波片2630反射并输出至所述输入/输出端口2610。输入/输出端口2610还用于输出经所述光学滤波2630片反射的光束,从而实现对信号进行透传。
下面,结合图27和图28,描述本申请实施例提供两种具体的T-OADM装置。其中,图26至图28中相同的附图标记表示相同或相似的含义,为了简洁,不再赘述。本申请实施例中,图27包括图27A和图27B,其中,图27A示出了本申请实施例提供的一种T-OADM装置的俯视图,图27B示出了图27A中的T-OADM装置的侧视图。图28包括图28A和图28B,其中,图28A示出了本申请实施例提供的一种T-OADM装置的俯视图,图28B示出了图28A中的T-OADM装置的侧视图。
需要说明的是,在图27和图28中,以光学滤波片对特定偏振状态的入射光进行光学滤波为例进行描述。相应的,在图27至图28所示的T-OADM装置中还包括偏振分束器件,以及偏振合束器件(或者也可以称为偏振复用器件)。可以理解的是,本申请实施例对此并不限定。
其中,在图27至图28的T-OADM装置中,以第一光束调整装置为MEMS微镜(记为MEMS微镜)2620为例进行描述,但是本申请实施例并不限于此,例如第一光束调整装置2620还可以由LCOS等其他光学器件实现。
图27A示出了本申请实施例提供的一种T-OADM装置的俯视图。如图27A所示,T-OADM装置包括输入/输出端口2610、偏振分束器件2710、MEMS微镜2620、透镜1(记为f1)和透镜2(记为f2)组成的光学4f系统、光学滤波片2630、透镜3(记为f3)、反射镜2641、透镜4(记为f4)、反射镜2661。其中,透镜3和反射镜2641组成的单元可以作为第二光束调整装置2640的一个示例,透镜4和反射镜2661组成的单元可以作为第三光束调整装置2660的一个示例。
在图27A中,MEMS微镜2620、透镜1、透镜2、光学滤波片2630、透镜3反射镜2641的中心均设置在光轴1上。进一步的,MEMS微镜2620可以设置在透镜1的前焦点处,光学滤波片2630可以设置在透镜2的后焦点处,光学滤波片2630可以设置在透镜3的前焦点处,反射镜2641设置在透镜3的后焦点处。光学滤波片2630、透镜4、反射镜2661的中心均设置在光轴2上。进一步的,光学滤波片2630可以设置在透镜4的前焦点处,反射镜2661设置在透镜4的后焦点处。其中,光学滤波片2630的法线与光轴1之间的夹角为α,光轴1与光轴2的之间的夹角为2α。
继续参见图27A,示出了空间直角坐标系xyz。在直角坐标系xyz中,x轴所在的方向为光轴1的方向,z轴所在方向为所述第一透射输入/输出端口相对所述输入/输出端口的方向。另外,还可以设置空间直角坐标系x’y’z’,其中,x’轴所在方向为光轴2方向,z’轴所在方向为所述反射输入/输出端口相对所述输入/输出端口的方向。直角坐标系xyz的z轴与x’y’z’的z轴方向是相同的,二者可以替换。
透镜3设置在空间直角坐标系xyz的yz平面,光学滤波片2630与z轴平行且与yz平面具有夹角,反射镜2641与空间直角坐标系xyz中的y轴平行且与yz平面具有夹角α 1
透镜4设置在空间直角坐标系x’y’z’的y’z’平面,光学滤波片2630与z’轴平行且与y’z’平面具有夹角,反射镜2661与空间直角坐标系x’y’z中的y’轴平行且与y’z’平面具有夹角α 2
其中,透镜3用于对从光学滤波片2630出射的透射光束准直,使得该透射光束沿光轴1(即x轴方向)入射到所述反射镜2641。反射镜2641用于使得该透射光束经透镜3、光学滤波片2630和MEMS微镜2620,并以沿z轴方向的第一横向偏移h 1反射到透射输入/输出端口2650。其中,
Figure PCTCN2021111571-appb-000002
f 1表示所述透镜3的焦距。
透镜4用于对从光学滤波片2630出射的反射光束准直,使得该反射光束沿光轴2(即沿x’方向)入射到所述第二反射镜2661。反射镜2661用于使得反射光束经透镜4、光学滤波片2630和MEMS微镜2620,并以沿z轴方向的第二横向偏移h 2反射到所述反射输入/输出端口。其中,
Figure PCTCN2021111571-appb-000003
f 2表示所述透镜4的焦距。
示例性的,在图27A中,透镜3与透镜4的焦距可以相同,或者不同,本申请对此不作限定。
参见图27B,通过将反射镜2641设置为与空间直角坐标系xyz中的y轴平行且与yz平面具有夹角α 1,进一步通过将透射输入/输出端口2650与输入/输出端口2610之间沿z轴方向的距离为h 1,能够实现将透射光束输出至透射输入/输出端口,实现信号的下载。通过将反射镜2661设置为与空间直角坐标系x’y’z中的y’轴平行且与y’z’平面具有夹角α 2,进一步通过将反射输入/输出端口2670与输入/输出端口2610之间沿z轴方向的距离为h 2,能够实现将反射光束输出至反射输入/输出端口,实现光束的透传。示例性的,透射输入/输出端口2650与反射输入输出端口2670可以设置在输入/输出端口2610的两个方向,或者沿一个方向设置, 但是h 1与h 2的值不同。
在图27A中,光学4f系统用于将从MEMS微镜2620出射的沿光轴1不同夹角的输入光束汇聚到光学滤波片2630上,并且从MEMS微镜2620出射的光束与光轴1的夹角与从光学4f系统出射的光束与光轴1的夹角有映射关系,这样有利于通过调整MEMS微镜2620的偏转来控制输入光束入射到光学滤波片2630上的入射角的大小,从而能够控制T-OADM装置下载或上传的信号的波长。另外,通过该光学4f系统对输入光束进行汇聚,能够使得T-OADM装置的结构更加紧凑,有利于减小T-OADM装置的体积。
在另一些实施例中,图27中的光学4f系统还可以替换为透镜,此时可以将MEMS微镜2620和光学滤波片2630分别位于该透镜的前后两倍焦距处,以实现将从MEMS微镜2620出射的沿光轴1不同夹角的输入光束汇聚到光学滤波片2630上。
在图27A和图27B所示的T-OADM装置中,当需要调整光学滤波片2630的滤波中心波长时,可以通过调整MEMS微镜2620的偏转来实现。具体的,调整MEMS微镜2620的方式可以参考上文图7A中的描述,这里不再赘述。
图28A示出了本申请实施例提供的一种T-OADM装置的俯视图,图28B示出了该T-OADM装置的侧视图。与图27A不同的是,在图28A中,透镜1(记为f1)和反射镜2642组成的单元作为第二光束调整装置的一个示例,透镜2(记为f2)和反射镜2662组成的单元作为第三光束调整装置的一个示例。其中MEMS微镜2620设置在透镜1的前焦点处,光学滤波片2630位于MEMS微镜2620与透镜1之间。同时,MEMS微镜2620设置在透镜2的经光学滤波片2630反射的折叠光路的焦点处。
示例性的,在图28A中,透镜1与透镜2的焦距可以相同,或者不同,本申请对此不作限定。
因此,本申请实施例可以利用光束调整装置(例如透镜和设置在该透镜焦点处的反射镜)对该光学滤波片透射的光束进行反射,使其经光学滤波片并以一定横向偏移输出到透射输入/输出端口,对该光学滤波片反射的光束进行反射,使其经光学滤波片并以一定横向偏移输出到反射输入/输出端口,实现将透射光束和反射光束耦合到相应的端口,进而实现对T-OADM装置下载或上传的信号的波长的动态调整。本申请实施例能够动态调整T-OADM装置上下信号的波长,支持波长级的业务切换,并且网络结构灵活,运维简单,更有利于光网络的智能化控制。
在一些可选的实施例中,图27或图28中的T-OADM装置中的光学滤波片还可以替换为图25中所示的包含不同滤波带宽的区域的光学滤波片,对应的图27或图28中还可以包括与该光学滤波片连接的驱动部件,通过该驱动部件改变光束入射到光学滤波片的位置,实现动态调整光学滤波片的滤波中心波长。
本申请实施例还提供了一种T-OADM装置,如图29所示,T-OADM装置2900包括输入/输出端口2910、转动部件2920、光学滤波片2930、光束调整装置2950、透射输入/输出端口2940和反射输入/输出端口2960。这里,输入/输出端口2910也可以称为第一端口2910,反射输入/输出端口2960也可以称为反射端口2960,透射输入/输出端口2940也可以称为透射端口2940,本申请对此不作限定。
输入/输出端口2910,用于输入包含至少两个波长的输入光束。
转动部件2920,与光学滤波片2930连接,用于转动以调整所述光学滤波片2930的倾斜 角度,使得所述输入光束以第一入射角射到所述光学滤波片2930;
光学滤波片2930,用于接收以所述第一入射角入射的光束,并将所述入射的光束分为包含第一波长的透射光束和包含至少一个波长的反射光束,其中,所述第一波长为以第一入射角射到所述光学滤波片2930时,透过该光学滤波片2930的光束的波长。
这里,转动部件2920可以根据T-OADM装置2900需要下载(或上传)的信号的波长来动态调整光学滤波片2930的偏转(即倾斜角度),以调整该第一入射角的大小。作为示例,需要下载(或上传)信号的波长与第一入射角满足上述公式(1)。
光束调整装置2950,用于调整反射光束的传输方向,使得该反射光束经所述光学滤波片2930输出至所述反射输入/输出端口。
透射输入/输出端口2940,用于输出所述透射光束。
反射输入/输出端口2960,用于输出所述反射光束。
因此,本申请实施例通过转动部件的转动改变光学滤波片的倾斜角度,以改变入射光束射到光学滤波片的入射角,并且在光学滤波片将入射光束分为透射光束和反射光束之后,进一步通过与光束调整装置将出射的反射光束反射并经所述光学滤波片2930传输至反射输入/输出端口。
在一些实施例中,T-OADM装置中还可以包括控制单元,来控制转动部件转动,以实现对光束入射到第一光学滤波的第一入射角的调整,从而实现对T-OADM装置需要下载(或上传)的信号的波长进行调整。
具体的,控制单元控制转动部件转动的方式可以参见上文中的相关描述,这里不再赘述。
在一些实施例中,透射输入/输出端口2940还用于输入所述第一波长的输入光束,所述输入光束经所述光学滤波片2930透射,并输出至所述输入/输出端口2610。输入/输出端口2910还用于输出经所述光学滤波片透射的光束,从而实现对该第一波长的信号的上传。
在一些实施例中,反射输入/输出端口2960还用于输入光束,该光束经所述光学滤波片2930反射并输出至输入/输出端口2910。输入/输出端口2910还用于输出经所述光学滤波片反射的光束,从而实现对信号进行透传。
下面,结合图30和图32,描述本申请实施例提供三种具体的T-OADM装置。其中,图29至图32中相同的附图标记表示相同或相似的含义,为了简洁,不再赘述。本申请实施例中,图30包括图30A和图30B,其中,图30A示出了本申请实施例提供的一种T-OADM装置的俯视图,图30B示出了图30A中的T-OADM装置的侧视图。
需要说明的是,在图30和图32中,以光学滤波片对特定偏振状态的入射光进行光学滤波为例进行描述。相应的,在图30至图32所示的T-OADM装置中还包括偏振分束器件,以及偏振合束器件(或者也可以称为偏振复用器件)。可以理解的是,本申请实施例对此并不限定。
其中,在图30至图32的T-OADM装置中,并未示出转动部件。可以理解的是,其中的光学滤波片均是在转动部件的转动下实现角度的偏转。当需要调整光学滤波片2930的滤波中心波长时,可以通过调整转动部件转动,以使得光学滤波片2930偏转来实现。
图30A示出了本申请实施例提供的一种T-OADM装置的俯视图的一个具体示例。如图30A所示,T-OADM装置包括输入/输出端口2910、偏振分束器件3010、光学滤波片2930、 与光学滤波片2930连接的转动部件(未示出)、透镜1(记为f1)、反射镜2951、偏振合束器件3020、透射输入/输出端口2940。其中,透镜1和反射镜2951组成的单元可以作为光束调整装置2950的一个示例。
在图30A中,光学滤波片2930可以设置在透镜1的前焦点处,反射镜2951设置在透镜1的后焦点处。
参见图30A,从光学滤波片2930出射的透射光束可以沿光束的入射到光学滤波片2930的入射的方向继续传播,输出至偏振合束器件3020,实现偏振合束,然后输出至透射输出端口2940,实现信号的下载。
图30B示出了图30A中的该T-OADM装置的侧视图的一个具体示例。图30B中由上到下依次示出了该T-OADM装置的反射输入/输出端口和透射输入输出端口。
图30A还示出了空间直角坐标系xyz。在直角坐标系xyz中,x轴所在的方向为输入光束入射到光学滤波片2930的方向,z轴所在方向为所述反射输入/输出端口相对所述输入/输出端口的方向。另外,还可以设置空间直角坐标系x’y’z’,其中,x’轴所在方向为光轴2方向,z’轴所在方向为所述反射输入/输出端口相对所述输入/输出端口的方向。直角坐标系xyz的z轴与x’y’z’的z轴方向是相同的,二者可以替换。
透镜1设置在空间直角坐标系x’y’z’的y’z’平面,光学滤波片2930与z’轴平行且与y’z’平面具有夹角,反射镜2951与空间直角坐标系x’y’z中的y’轴平行且与y’z’平面具有夹角α 3
透镜1用于对从光学滤波片2930出射的反射光束准直,使得该反射光束沿光轴2(即沿x’方向)入射到所述第二反射镜2951。反射镜2951用于使得反射光束经透镜1、光学滤波片2930,并以沿z轴方向的第三横向偏移h 3反射到所述反射输入/输出端口。其中,
Figure PCTCN2021111571-appb-000004
f 3表示所述透镜1的焦距。
参见图30B,通过将反射镜2951设置为与空间直角坐标系x’y’z中的y’轴平行且与y’z’平面具有夹角α 3,进一步通过反射输入/输出端口2960与输入/输出端口2910之间沿z轴方向的距离为h 3,能够实现将反射光束输出至反射输入/输出端口,实现光束的透传。
因此,本申请实施例通过转动部件的转动改变光学滤波片的倾斜角度,以改变入射光束射到光学滤波片的入射角,并且在光学滤波片将入射光束分为透射光束和反射光束之后,对该光学滤波片反射的光束进行反射,使其经光学滤波片并以一定横向偏移输出到反射输入/输出端口,实现将透射光束和反射光束耦合到相应的端口,进而实现对T-OADM装置下载或上传的信号的波长的动态调整。本申请实施例能够动态调整T-OADM装置上下信号的波长,支持波长级的业务切换,并且网络结构灵活,运维简单,更有利于光网络的智能化控制。
图31示出了本申请实施例提供的一种T-OADM装置的一个具体示例。如图31所示,T-OADM装置包括输入/输出端口2910、偏振分束器件3010、光学滤波片2930、与光学滤波片2930连接的转动部件(未示出)、透镜1(记为f1)、反射镜2951、偏振合束器件3020、透射输入/输出端口2940、环形器3110、反射输入/输出端口2960。其中,透镜1和反射镜2951组成的单元可以作为光束调整装置2950的一个示例。
在图31中,光学滤波片2930可以设置在透镜1的前焦点处,反射镜2951设置在透镜1的后焦点处,并且所述反射镜2951所在的平面与透镜1的光轴垂直。透镜1用于对从光学滤波片2930出射的反射光束准直,使得该反射光束垂直入射到反射镜2951。反射镜2951用于 对入射的反射光束进一步反射,使得该反射光束经所述透镜1、光学滤波片2930,并沿z轴方向反射到偏振合束器件3020,进一步入射到环形器3110。该环形器用于将入射的反射光束传输至反射输入/输出端口2960,实现信号的透传。
从光学滤波片2930出射的透射光束可以沿光束的入射到光学滤波片2930的入射的方向继续传播,输出至偏振合束器件3020,实现偏振合束,然后输出至透射输出端口2940,实现信号的下载。
图32示出了本申请实施例提供的一种T-OADM装置的一个具体示例。与图31中的T-OADM装置不同的是,在图32中,可以由MEMS微镜2952实现光束调整装置2650。当反射光束入射到MEMS微镜2952时,可以通过调整MEMS微镜2952的偏转,使得反射光束沿原路返回,即将反射光束反射至该光学滤波片2930,并进一步通过光学滤波片2930的反射,使得反射光束依次入射到偏振合束器件3010、环形器3110,最终输出至反射输入/输出端口,实现信号的透传。
在一些可选的实施例中,MEMS微镜2952还可以替换为LCOS,本申请实施例对此不作限定。
在一些可选的实施例中,图30至图32中的T-OADM装置中的光学滤波片还可以替换为图25中所示的包含不同滤波带宽的区域的光学滤波片,对应的图30至图32中还可以包括与该光学滤波片连接的驱动部件,通过该驱动部件改变光束入射到光学滤波片的位置,实现动态调整光学滤波片的滤波中心波长。
因此,本申请实施例通过转动部件的转动改变光学滤波片的倾斜角度,以改变入射光束射到光学滤波片的入射角,并且在光学滤波片将入射光束分为透射光束和反射光束之后,对该光学滤波片反射的光束进行反射,使其经光学滤波片传输到环形器,进而通过环形器的传输至反射输入/输出端口,实现将透射光束和反射光束耦合到相应的端口,进而实现对T-OADM装置下载或上传的信号的波长的动态调整。本申请实施例能够动态调整T-OADM装置上下信号的波长,支持波长级的业务切换,并且网络结构灵活,运维简单,更有利于光网络的智能化控制。
需要说明的是,在上面所示的T-OADM装置中,均以光学滤波片为带通式光学滤波片为例进行描述。可以理解的是,本申请实施例中也可以采用带阻式光学滤波片对T-OADM装置需要下载或上传的信号的波长进行选择。
当光学滤波片为带通式光学滤波片时,该光学滤波片可以将入射的光束分为包含第一波长的透射光束和包含至少一个波长的反射光束,其中,第一波长为以上述第一入射角射到所述光学滤波片时所述光学滤波片选择的光束的波长。相应的,透射输入/输出端口输出的信号为T-OADM装置下载的信号,反射输入/输出端口输出的信号为T-OADM装置透传的信号。
当光学滤波片为带阻式光学滤波片时,光学滤波片可以将入射的光束分为包含第一波长的反射光束和包含至少一个波长的透射光束,所述第一波长为以所述第一入射角射到所述光学滤波片时所述光学滤波片选择的光束的波长。相应的,反射输入/输出端口输出的信号为T-OADM装置下载的信号,透射输入/输出端口输出的信号为T-OADM装置透传的信号。
应理解,图7至图32示出了T-OADM装置的具体结构框图,但这些结构或部件仅是示例,并不对本申请实施例的T-OADM装置构成限定。
图33示出了本申请实施例提供了一种控制方法3300的示意性流程图。方法3300可以应用于可调光分插复用器T-OADM。其中,所述T-OADM包括输入/输出端口、第一光束调整装置、第一光学滤波片、第二光束调整装置、第二端口,第三端口、控制单元。
所述输入/输出端口,用于输入包含至少两个波长的输入光束。
所述第一光学滤波片,用于接收以所述第一入射角入射的光束,并将所述入射的光束分为第一透射光束和第一反射光束,其中,所述第一透射光束中包含光束的波长与所述第一反射光束中包含光束的波长不同。
所述第二端口,用于输出所述第一透射光束。
所述第三端口,用于输出所述第一反射光束。
作为示例,该T-OADM装置可以为上文中图6至图14中所述的任意一种T-OADM装置,本申请实施例对此不作限定。
所述方法3300由控制单元执行,包括:
3310,接收指令,所述指令用于指示所述T-OADM下载的第一信号的波长。
3320,根据所述第一信号的波长,确定所述第一光束调整装置对所述输入光束的第一偏转角度,所述第二光束调整装置对所述第一透射光束的第二偏转角度,及所述第一光束调整装置对所述第一反射光束的第三偏转角度。
3330,根据所述第一偏转角度,控制所述第一光束调整装置对所述输入光束的传输方向进行调整,使得所述输入光束以第一入射角射到所述第一光学滤波片,其中,所述第一入射角与所述第一信号的波长对应。
3340,根据所述第二偏转角度,控制所述第二光束调整装置对所述第一透射光束的传输方向进行调整,使得所述第一透射光束输出至所述第二端口。
3350,根据所述第三偏转角度,控制所述第一光束调整装置对所述第一反射光束的传输方向进行调整,使得所述第一反射光束输出至所述第三端口。
因此,本申请实施例能够通过接收T-OADM装置需要下载(或上传)的第一信号的波长,并根据该第一信号的波长,对各个光束调整装置对光束的偏转角度进行控制,从而能够根据实际需要灵活的控制T-OADM装置下载或上传的信号的波长,实现更加灵活可控的T-OADM装置。
作为示例,控制单元可以向第一光束调整装置和第二光束调整装置分别发送控制信号,使得第一光束调整装置和第二光束调整装置可以分别根据控制信号来对光束的传输方向进行调整。
作为一种可能的实现方式,可以预先配置T-OADM装置能够下载或上传的信号的多个波长,以及每个波长对应的光束调整装置对入射光束、透射光束以及反射光束的偏转角度。当获取T-OADM装置需要下载或上传的信号的波长的指令时,即可根据该预先配置,确定该波长对应的光束调整装置对入射光束、透射光束以及反射光束的偏转角度。
作为另一种可能的实现方式,可以预先保存T-OADM装置能够下载或上传的信号的波长与光束调整装置对入射光束、透射光束以及反射光束的偏转角度的对应关系。当获取T-OADM装置需要下载或上传的信号的波长的指令时,可以根据该对应关系,确定该波长对应的光束调整装置对入射光束、透射光束以及反射光束的偏转角度。
本申请中的各个实施例可以独立的使用,也可以进行联合的使用,这里不做限定。
应理解,本申请实施例中,第一、第二、第三以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的光束调整装置、不同的端口、不同的波长等。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或一个以上;“A和B中的至少一个”,类似于“A和/或B”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和B中的至少一个,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种可调光分插复用器T-OADM,其特征在于,包括:第一端口、第一光束调整装置、第一光学滤波片、第二光束调整装置、第二端口,第三端口,其中,
    所述第一端口,用于输入包含至少两个波长的输入光束;
    所述第一光束调整装置,用于根据所述T-OADM下载的第一信号调整所述输入光束的传输方向,使得所述输入光束以第一入射角射到所述第一光学滤波片,其中,所述第一入射角与所述第一信号的波长对应;
    所述第一光学滤波片,用于接收以所述第一入射角入射的光束,并将所述入射的光束分为第一透射光束和第一反射光束,其中,所述第一透射光束中包含光束的波长与所述第一反射光束中包含光束的波长不同;
    所述第二光束调整装置用于根据所述第一入射角调整所述第一透射光束的传输方向;
    所述第二端口,用于输出所述第一透射光束;
    所述第一光束调整装置还用于根据所述第一入射角调整所述第一反射光束的传输方向;
    所述第三端口,用于输出所述第一反射光束。
  2. 根据权利要求1所述的T-OADM,其特征在于,所述第一光束调装置包括入射光束调整装置和反射光束调整装置,其中,
    所述入射光束调整装置用于调整所述输入光束的传输方向;
    所述反射光束调整装置用于调整所述第一反射光束的传输方向。
  3. 根据权利要求2所述的T-OADM,其特征在于,还包括第一光学装置,其中,所述入射光束调整装置、所述第一光学装置、所述第一光学滤波片和所述第二光束调整装置依次位于第一光轴上;
    所述第一光学装置用于将从所述入射光束调整装置出射的光束汇聚到所述第二光束调整装置上,其中,从所述入射光束调整装置出射的光束与所述第一光轴的夹角与从所述第一光学装置出射的光束与所述第一光轴的夹角一一对应。
  4. 根据权利要求3所述的T-OADM,其特征在于,所述第一光学装置包括第一光学4f系统,
    所述入射光束调整装置位于所述第一光学4f系统的前透镜的前焦点处,所述第二光束调整装置位于所述第一光学4f系统的后透镜的经所述第一光学滤波片透射的光路的后焦点处,所述反射光束调整装置位于所述第一光学4f系统的后透镜的经所述第一光学滤波片反射的光路的后焦点处。
  5. 根据权利要求3所述的T-OADM,其特征在于,所述第一光学装置包括第一透镜,所述入射光束调整装置位于所述第一透镜的第一侧的两倍焦距处,所述第二光束调整装置位于所述第一透镜的第二侧的经所述第一光学滤波片透射的光路的两倍焦距处,所述反射光束调整装置位于所述第一透镜的经所述第一光学滤波片反射的光路的两倍焦距处。
  6. 根据权利要求2所述的T-OADM,其特征在于,还包括球面反射镜,用于将所述入射光束调整装置出射的光束汇聚到所述第二光束调整装置上,其中,从所述入射光束调整装置出射的光束与光轴的夹角与从所述球面反射镜出射的光束与光轴的夹角一一对应。
  7. 根据权利要求2所述的T-OADM,其特征在于,还包括第二光学装置和第三光学装置,
    所述输入光束调整装置、所述第一光学滤波片、所述第二光学装置和所述第二光束调整装置依次位于第二光轴上;
    所述第二光学装置用于将从所述第一光学滤波片出射的第一透射光束汇聚到所述第二光束调整装置上,其中,从所述入射光束调整装置出射的光束与所述第二光轴的夹角与从所述第二光学装置出射的光束与所述第二光轴的夹角一一对应;
    所述第一光学滤波片、所述第三光学装置和所述反射光束调整装置位于第三光轴上;
    所述第三光学装置用于将从所述第一光学滤波片出射的第一反射光束汇聚到所述反射光束调整装置上,其中,从所述入射光束调整装置出射的光束与所述第二光轴的夹角与从所述第三光学装置出射的光束与所述第三光轴的夹角一一对应。
  8. 根据权利要求7所述的T-OADM,其特征在于,
    所述第二光学装置包括第二光学4f系统,所述入射光束调整装置位于所述第二光学4f系统的前透镜的前焦点处,所述第二光束调整装置位于所述第二光学4f系统的后透镜的后焦点处;或者
    所述第二光学装置包括第二透镜,所述入射光束调整装置位于所述第二透镜的第一侧的两倍焦距处,所述第二光束调整装置位于所述第二透镜的第二侧的两倍焦距处。
  9. 根据权利要求7或8所述的T-OADM,其特征在于,
    所述第三光学装置包括第三光学4f系统,所述入射光束调整装置位于所述第三光学4f系统的前透镜的经所述第一光学滤波片反射的光路的前焦点处,所述反射光束调整装置位于所述第三光学4f系统的后透镜的后焦点处;或者
    所述第三光学装置包括第三透镜,所述入射光束调整装置位于所述第三透镜第一侧的经所述第一光学滤波片反射的光路的两倍焦距处,所述反射光束调整装置位于所述第三透镜的第二侧的两倍焦距处。
  10. 根据权利要求2所述的T-OADM,其特征在于,还包括第四光学装置、第五光学装置和第六光学装置,其中,所述入射光束调整装置、所述第四光学装置、所述第一光学滤波片、所述第五光学装置和所述第二光束调整装置依次位于第四光轴上;
    所述第一光学滤波片、所述第六光学装置和所述反射光束调整装置依次位于第五光轴上;
    所述第四光学装置用于将所述入射光束调整装置出射的光束汇聚到所述第一光学滤波片上,其中,从所述入射光束调整装置出射的光束与所述第四光轴的夹角与从所述第四光学装置出射的光束与所述第四光轴的夹角一一对应;
    所述第五光学装置用于将从所述第一光学滤波片出射的所述第一透射光束汇聚到所述第二光束调整装置上,其中,从所述第一光学滤波片出射的所述第一透射光束与所述第四光轴的夹角与从所述第五光学装置出射的光束与所述第四光轴的夹角一一对应;
    所述第六光学装置用于将从所述第一光学滤波片出射的所述第一反射光束汇聚到所述反射光束调整装置上,其中,从所述第一光学滤波片出射的所述第一反射光束之与所述第五光轴的夹角与从所述第六光学装置出射的光束与所述第五光轴的夹角一一对应。
  11. 根据权利要求10所述的T-OADM,其特征在于,
    所述第四光学装置包括第四光学4f系统,所述入射光束调整装置位于所述第四光学4f系统的前透镜的前焦点处,所述第一光学滤波片位于所述第四光学4f系统的后透镜的后焦点处;或者
    所述第四光学装置包括第四透镜,所述入射光束调整装置位于所述第四透镜的第一侧的 两倍焦距处,所述第一光学滤波片位于所述第四透镜的第二侧的两倍焦距处。
  12. 根据权利要求10或11所述的T-OADM,其特征在于,
    所述第五光学装置包括第五光学4f系统,所述第一光学滤波片位于所述第五光学4f系统的前透镜的前焦点处,所述第二光束调整装置位于所述第五光学4f系统的后透镜的后焦点处;或者
    所述第五光学装置包括第五透镜,所述第一光学滤波片位于所述第五透镜的第一侧的两倍焦距处,所述第二光束调整装置位于所述第五透镜的第二侧的两倍焦距处。
  13. 根据权利要求10-12任一项所述的T-OADM,其特征在于,
    所述第六光学装置包括第六4f系统,所述第一光学滤波片位于所述第六光学4f系统的前透镜的前焦点处,所述反射光束调整装置位于所述第六光学4f系统的后透镜的后焦点处;或者
    所述第六光学装置包括第六透镜,所述第一光学滤波片位于所述第六透镜的第一侧的两倍焦距处,所述反射光束调整装置位于所述第六透镜的第二侧的两倍焦距处。
  14. 根据权利要求2-13任一项所述的T-OADM,其特征在于,所述入射光束调整装置为微机电系统MEMS微镜或液晶附硅LCOS,所述第二光束调整装置为MEMS微镜或LCOS,所述反射光束调整装置为MEMS微镜或LCOS。
  15. 根据权利要求1所述的T-OADM,其特征在于,所述第一光束调整装置包括双反射面MEMS微镜,所述T-OADM还包括球面反射镜,用于将所述双反射面MEMS微镜出射的光束汇聚到所述第二光束调整装置上,其中,从所述双反射面MEMS微镜出射的光束与所述光轴的夹角与从所述球面反射镜出射的光束与所述光轴的夹角一一对应。
  16. 根据权利要求1-15任一项所述的T-OADM装置,其特征在于,还包括控制单元,所述控制单元用于:
    接收指令,所述指令用于指示所述T-OADM下载的第一信号的波长;
    根据所述第一信号的波长,确定所述第一光束调整装置对所述输入光束的第一偏转角度,所述第二光束调整装置对所述第一透射光束的第二偏转角度,以及所述第一光束调整装置对所述第一反射光束的第三偏转角度;
    根据所述第一偏转角度,控制所述第一光束调整装置对所述输入光束的传输方向进行调整;
    根据所述第二偏转角度,控制所述第二光束调整装置对所述第一透射光束的传输方向进行调整;
    根据所述第三偏转角度,控制所述第一光束调整装置对所述第一反射光束的传输方向进行调整。
  17. 根据权利要求1-15任一项所述的T-OADM,其特征在于,还包括第二光学滤波片、第三光束调整装置、第四光束调整装置、第四端口,
    所述第一光束调整装置用于根据所述T-OADM下载的第二信号调整所述第一反射光束的传输方向,使得所述第一反射光束以第二入射角射到所述第二光学滤波片,其中,所述第二入射角与所述第二信号的波长对应;
    所述第二光学滤波片,用于接收以所述第二入射角入射的光束,并将入射到所述第二光学滤波片的光束分为第二透射光束和第二反射光束,其中,所述第二透射光束中包含光束的波长与所述第二反射光束中包含光束的波长不同;
    所述第三光束调整装置用于根据所述第二入射角调整所述第二透射光束的传输方向;
    所述第四端口,用于输出所述第二透射光束;
    所述第四光束调整装置用于根据所述第二入射角调整所述第二反射光束的传输方向;
    所述第三端口,用于输出所述第二反射光束。
  18. 根据权利要求1-17任一项所述的T-OADM,其特征在于,所述第一光学滤波片上包括至少两个区域,所述至少两个区域具有不同滤波带宽;
    所述装置还包括驱动部件,与所述第一光学滤波片连接,用于驱动所述第一光学滤波片移动,使得所述输入光束入射到所述至少两个区域中的第一区域,其中,所述第一区域的滤波波长与所述第一信号的波长相同。
  19. 根据权利要求1-18任一项所述的T-OADM,其特征在于,所述第一光学滤波片为带通式光学滤波片或带阻式光学滤波片,其中,
    当所述第一光学滤波片为带通式光学滤波片时,所述第一光学滤波片将入射的光束分为包含第一波长的所述第一透射光束和包含至少一个波长的所述第一反射光束,其中,所述第一波长为以所述第一入射角射到所述第一光学滤波片时所述第一光学滤波片选择的光束的波长;或
    当所述第一滤波片为带阻式光学滤波片时,所述第一光学滤波片将入射的光束分为包含第一波长的所述第一反射光束和包含至少一个波长的所述第一透射光束,其中,所述第一波长为以所述第一入射角射到所述第一光学滤波片时所述第一光学滤波片选择的光束的波长。
  20. 一种可调光分插复用器T-OADM,其特征在于,包括:第一端口、转动部件、光学滤波片、反射镜、透射端口和反射端口,其中,所述转动部件分别与所述光学滤波片和所述反射镜连接,所述光学滤波片与所述反射镜连接,且所述光学滤波片与所述反射镜的反射面之间具有夹角;
    所述第一端口,用于输入包含至少两个波长的输入光束;
    所述转动部件,用于转动以调整所述光学滤波片和所述反射镜的倾斜角度,使得所述输入光束以第一入射角射到所述光学滤波片;
    所述光学滤波片,用于将所述入射的光束分为透射光束和反射光束,其中,所述透射光束中包含光束的波长与所述反射光束中包含光束的波长不同;
    所述反射镜,用于对所述反射光束的进行反射,使得所述反射光束输出至所述反射端口;
    所述透射端口,用于输出所述透射光束;
    所述反射端口,用于输出所述反射光束。
  21. 根据权利要求20所述的T-OADM,其特征在于,所述光学滤波片与所述反射镜的反射面之间的角度的范围为40°至120°。
  22. 根据权利要求20或21所述的T-OADM,其特征在于,光束在所述光学滤波片上形成的光斑位置与光束在所述反射镜的反射面上形成的光斑的位置之间的光路长度小于或等于80mm。
  23. 根据权利要求20所述的T-OADM,其特征在于,所述反射镜的反射面与所述光学滤波片垂直设置。
  24. 根据权利要求23所述的T-OADM,其特征在于,还包括双光纤准直器和第一棱镜,所述双光纤准直器和所述第一棱镜,位于所述第一端口和所述光学滤波片之间,且位于所述反射端口和所述反射镜之间;
    所述输入光束依次经所述双光纤准直器和所述第一棱镜入射到所述光学滤波片,所述反射镜出射的反射光束依次经所述第一棱镜和所述双光纤准直器入射到所述反射端口,其中,入射到所述光学滤波片的输入光束与从所述反射镜出射的反射光束平行。
  25. 根据权利要求20-24任一项所述的T-OADM,其特征在于,还包括第二棱镜和第三棱镜,
    所述第二棱镜位于所述光学滤波片与所述透射端口之间,用于减小所述透射光束的位移距离;
    所述第三棱镜位于所述反射镜与所述反射端口之间,用于减小所述反射光束的位移距离。
  26. 根据权利要求20-25任一项所述的T-OADM,其特征在于,所述光学滤波片为带通式光学滤波片或带阻式光学滤波片,其中,
    当所述光学滤波片为带通式光学滤波片时,所述光学滤波片将入射的光束分为包含第一波长的所述透射光束和包含至少一个波长的所述反射光束,其中,所述第一波长为以所述第一入射角射到所述光学滤波片时所述光学滤波片选择的光束的波长;或
    当所述滤波片为带阻式光学滤波片时,所述光学滤波片将入射的光束分为包含第一波长的所述反射光束和包含至少一个波长的所述透射光束,其中,所述第一波长为以所述第一入射角射到所述光学滤波片时所述光学滤波片选择的光束的波长。
PCT/CN2021/111571 2020-09-25 2021-08-09 可调光分插复用器 WO2022062736A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21871113.3A EP4206767A4 (en) 2020-09-25 2021-08-09 TUNABLE OPTICAL ADD/DROP MULTIPLEXER
US18/125,930 US20230231642A1 (en) 2020-09-25 2023-03-24 Tunable optical add/drop multiplexer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011027812.7 2020-09-25
CN202011027812.7A CN114252960A (zh) 2020-09-25 2020-09-25 可调光分插复用器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/125,930 Continuation US20230231642A1 (en) 2020-09-25 2023-03-24 Tunable optical add/drop multiplexer

Publications (1)

Publication Number Publication Date
WO2022062736A1 true WO2022062736A1 (zh) 2022-03-31

Family

ID=80789449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111571 WO2022062736A1 (zh) 2020-09-25 2021-08-09 可调光分插复用器

Country Status (4)

Country Link
US (1) US20230231642A1 (zh)
EP (1) EP4206767A4 (zh)
CN (1) CN114252960A (zh)
WO (1) WO2022062736A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6362904B1 (en) * 2000-09-01 2002-03-26 Robert H. Cormack Tunable optical filter with retained complementary output
CN1874195A (zh) * 2006-06-29 2006-12-06 武汉光迅科技股份有限公司 基于tff的复用/解复用器roadm
US7262904B1 (en) * 2002-05-10 2007-08-28 Alliance Fiber Optic Products, Inc. Tunable optical add/drop device
CN101051868A (zh) * 2006-04-04 2007-10-10 Jds尤尼弗思公司 可调光分/插复用器
US20110170164A1 (en) * 2010-01-08 2011-07-14 Ligang Wang Tunable thin-film filter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6832018B2 (en) * 2002-04-30 2004-12-14 Mustafa A.G. Abushagur Dynamically reconfigurable optical add/drop multiplexer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6362904B1 (en) * 2000-09-01 2002-03-26 Robert H. Cormack Tunable optical filter with retained complementary output
US7262904B1 (en) * 2002-05-10 2007-08-28 Alliance Fiber Optic Products, Inc. Tunable optical add/drop device
CN101051868A (zh) * 2006-04-04 2007-10-10 Jds尤尼弗思公司 可调光分/插复用器
CN1874195A (zh) * 2006-06-29 2006-12-06 武汉光迅科技股份有限公司 基于tff的复用/解复用器roadm
US20110170164A1 (en) * 2010-01-08 2011-07-14 Ligang Wang Tunable thin-film filter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4206767A4

Also Published As

Publication number Publication date
EP4206767A1 (en) 2023-07-05
US20230231642A1 (en) 2023-07-20
EP4206767A4 (en) 2024-02-21
CN114252960A (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
CN104620155B (zh) 一种波长选择开关
US8190025B2 (en) Wavelength selective switch having distinct planes of operation
US8731403B2 (en) Multicast optical switch
US7164859B2 (en) Free-space dynamic wavelength routing systems with interleaved channels for enhanced performance
US6529307B1 (en) Selective intensity modulation of channels in a multiplexed optical communication system
CA2389622A1 (en) Wavelength router
US20130272650A1 (en) Wavelength cross connect device
US20030021526A1 (en) Dynamic dispersion compensator
US7292786B1 (en) Method and system for a re-configurable optical multiplexer, de-multiplexer and optical add-drop multiplexer
WO2017147770A1 (zh) 波长选择开关装置、通信设备和波长切换方法
US11728919B2 (en) Optical communications apparatus and wavelength selection method
CN103168270A (zh) 光操作装置
CN108169858A (zh) 一种多波长选择开关
JP2009168840A (ja) 波長選択スイッチ
CN107367796A (zh) 一种波长选择开关
WO2021051960A1 (zh) 一种光谱处理装置以及可重构光分插复用器
US7333688B2 (en) Method and apparatus for free-space optical switching
WO2022062736A1 (zh) 可调光分插复用器
JP5651904B2 (ja) N×n波長選択スイッチ
JP6251202B2 (ja) 波長選択スイッチ
US6766081B2 (en) Focal length dispersion compensation for field curvature
US6798951B2 (en) Wavelength router with a transmissive dispersive element
WO2019203307A1 (ja) 波長選択光スイッチ
WO2024001533A1 (zh) 一种波长选择器件及相应交换设备
WO2023024819A1 (zh) 光分插复用器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021871113

Country of ref document: EP

Effective date: 20230327

NENP Non-entry into the national phase

Ref country code: DE