WO2022062133A1 - Fully-degradable friction nano-generator, preparation method therefor and use thereof - Google Patents

Fully-degradable friction nano-generator, preparation method therefor and use thereof Download PDF

Info

Publication number
WO2022062133A1
WO2022062133A1 PCT/CN2020/129533 CN2020129533W WO2022062133A1 WO 2022062133 A1 WO2022062133 A1 WO 2022062133A1 CN 2020129533 W CN2020129533 W CN 2020129533W WO 2022062133 A1 WO2022062133 A1 WO 2022062133A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
amino acid
composite material
friction
acid composite
Prior art date
Application number
PCT/CN2020/129533
Other languages
French (fr)
Chinese (zh)
Inventor
江文
朱朋莉
孙蓉
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2022062133A1 publication Critical patent/WO2022062133A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/175Amines; Quaternary ammonium compounds containing COOH-groups; Esters or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Laminated Bodies (AREA)

Abstract

A fully-degradable friction nano-generator, a preparation method therefor and the use thereof. The fully-degradable friction nano-generator comprises a first friction layer and a second friction layer, wherein the first friction layer comprises a first amino acid composite material layer (11) and a first metal current collector layer (12) which are sequentially stacked; and the second friction layer comprises a second amino acid composite material layer (11) and a second metal current collector layer (12) which are sequentially stacked. By adding amino acids from a wide range of sources into the materials of the friction layers to form composite materials, amino acid crystal compounds with different functional groups are introduced to the surfaces of the materials of the friction layers, such that the electron gain and loss capacities of the friction layers are greatly differentiated, the purpose of effectively improving the electricity output performance of the friction nano-generator is achieved, and the electrical output performance is adjustable.

Description

一种全可降解摩擦纳米发电机及其制备方法和应用A fully degradable triboelectric nanogenerator and its preparation method and application 技术领域technical field
本发明属于医疗器械技术领域,涉及一种摩擦纳米发电机及其制备方法和应用,具体涉及一种全可降解摩擦纳米发电机及其制备方法和应用,尤其涉及一种电输出性能高的全可降解摩擦纳米发电机及其制备方法和应用。The invention belongs to the technical field of medical devices, and relates to a triboelectric nanogenerator, a preparation method and application thereof, in particular to a fully degradable triboelectric nanogenerator, a preparation method and application thereof, and in particular to a fully degradable triboelectric generator with high electrical output performance. Degradable triboelectric nanogenerator and preparation method and application thereof.
背景技术Background technique
可植入式医疗器械(Implantable Medical Devices,简称IMDs)由于具有使用灵巧和方便、能实时监控病人健康状况以及有效地治疗各种突发病症等优点,现已被广泛应用于临床医疗中。目前,制约有源IMDs发展的关键因素主要是能源供给问题。绝大多数有源式IMDs的电源主要由内置电池提供,一旦电池能量耗尽,IMDs将停止正常工作。Implantable Medical Devices (IMDs for short) have been widely used in clinical medicine due to their advantages of dexterity and convenience, real-time monitoring of patients' health status, and effective treatment of various emergencies. At present, the key factor restricting the development of active IMDs is energy supply. The power of most active IMDs is mainly provided by the built-in battery. Once the battery power is exhausted, the IMDs will stop working normally.
摩擦纳米发电机(TENG)是近年来开发出的一种新型能量采集技术,它已被证明可以有效地在生物体体内收集组织或器官运动所产生的机械能并将其转化为电能输出。TENG转化得到的电能输出可以给IMDs电池充电,这为IMDs电源来源提供一种全新的选择方式。Triboelectric nanogenerators (TENGs) are a new type of energy harvesting technology developed in recent years, which have been proven to efficiently harvest the mechanical energy generated by the movement of tissues or organs in vivo and convert it into electrical output. The electrical energy output converted by TENG can be used to charge the batteries of IMDs, which provides a new option for the power source of IMDs.
当前,电子产品由于更新换代及破损等原因,导致每年在全球各地不断地产生大量的电子垃圾(E-waste)。这些废弃的电子垃圾通常含有大量的有毒有害金属或非金属元素,传统的填埋及焚烧处理方法对水源、土地及空气等人类生存环境具有灾难性后果。因此开发低毒性、环境友好、可再生、可降解的新型材料来替代目前电子产品部分元器件或制备具有完全零废物排放的新型电子设备是未来主流发展方向。瞬态电子是近年来发展起来的一种新兴电子器件制备技术。它是指器件在完成指定功能后,其物理形态和功能可以在外界刺激触发下立即发生部分消失或者完全消失。瞬态电子技术的出现可以极大地改善 传统意义上电子产品报废以后产生的严重E-waste污染问题。At present, due to the replacement and damage of electronic products, a large amount of electronic waste (E-waste) is continuously generated around the world every year. These discarded e-wastes usually contain a large amount of toxic and harmful metal or non-metal elements. Traditional landfill and incineration methods have catastrophic consequences for human living environments such as water, land and air. Therefore, the development of low-toxicity, environmentally friendly, renewable, and degradable new materials to replace some components of current electronic products or to prepare new electronic devices with completely zero waste emissions is the mainstream development direction in the future. Transient electrons are an emerging electronic device fabrication technology developed in recent years. It means that after the device completes the specified function, its physical form and function can be partially or completely disappeared immediately under the trigger of external stimuli. The emergence of transient electronic technology can greatly improve the serious E-waste pollution problem that occurs after electronic products are scrapped in the traditional sense.
将瞬态电子技术应用于IMDs领域,器件在完成使用功能后,可以在生物体内发生降解被人体代谢或吸收,病人就可以避免进行二次手术移除器件过程,这将极大地减轻病人的痛苦、降低潜在的手术风险和炎症反应、减少医疗成本和防止医疗资源浪费。Applying transient electronic technology to the field of IMDs, the device can degrade in the living body and be metabolized or absorbed by the human body after the device completes its function, and the patient can avoid the process of removing the device by a second operation, which will greatly reduce the pain of the patient. , reduce the potential surgical risk and inflammatory response, reduce medical costs and prevent the waste of medical resources.
摩擦纳米发电机的电输出性能很大程度上取决于摩擦层材料之间的电荷转移量,而电荷转移量与构成摩擦层表面材料的分子组分密切相关,带有不同官能团的分子表现出不同的电子得失能力。由于目前全可降解摩擦纳米发电机所选取的摩擦层材料的组成成分单一,从而导致摩擦层之间电子得失能力相近或相同,进而使得转移电荷量低下,摩擦纳米发电机电输出性能低下。The electrical output performance of triboelectric nanogenerators largely depends on the amount of charge transfer between the friction layer materials, and the amount of charge transfer is closely related to the molecular components constituting the surface material of the friction layer, and molecules with different functional groups show different electronic gain and loss capability. Due to the single composition of the friction layer material selected by the current fully degradable triboelectric nanogenerator, the electron gain and loss ability between the friction layers is similar or the same, which in turn reduces the amount of transferred charges and the electrical output performance of the triboelectric nanogenerator.
发明内容SUMMARY OF THE INVENTION
针对现有技术的不足,本发明的目的在于提供一种摩擦纳米发电机及其制备方法和应用,具体提供一种全可降解摩擦纳米发电机及其制备方法和应用,尤其提供一种电输出性能高的全可降解摩擦纳米发电机及其制备方法和应用。In view of the deficiencies of the prior art, the purpose of the present invention is to provide a triboelectric nanogenerator and its preparation method and application, specifically a fully degradable triboelectric nanogenerator and its preparation method and application, especially to provide an electrical output A fully degradable triboelectric nanogenerator with high performance and its preparation method and application.
为达到此发明目的,本发明采用以下技术方案:In order to achieve this object of the invention, the present invention adopts the following technical solutions:
第一方面,本发明提供一种全可降解摩擦纳米发电机,所述全可降解摩擦纳米发电机包括第一摩擦层和第二摩擦层;所述第一摩擦层包括依次相叠的第一氨基酸复合材料层和第一金属集流体层;所述第二摩擦层包括依次相叠的第二氨基酸复合材料层和第二金属集流体层。In a first aspect, the present invention provides a fully degradable triboelectric nanogenerator. The fully degradable triboelectric nanogenerator includes a first friction layer and a second friction layer; the first friction layer includes a first friction layer that is stacked in sequence. An amino acid composite material layer and a first metal current collector layer; the second friction layer includes a second amino acid composite material layer and a second metal current collector layer stacked in sequence.
本发明通过在摩擦层材料中加入氨基酸组成复合材料的方式,在摩擦层材料表面引入带有不同官能团结构的氨基酸晶体化合物,从而极大地差异化摩擦层之间的电子得失能力,达到有效提高摩擦纳米发电机电输出性能的目 的。同时,本发明也是首次提出利用氨基酸材料作为全可降解摩擦纳米发电机的摩擦层电极材料来使用,它是一种新型的可植入式全可降解摩擦纳米发电机结构。In the invention, amino acid crystal compounds with different functional group structures are introduced on the surface of the friction layer material by adding amino acids to the friction layer material to form a composite material, thereby greatly differentiating the electronic gain and loss ability between the friction layers and effectively improving the friction The purpose of nanogenerator electrical output performance. At the same time, the present invention is also the first to propose to use amino acid material as the friction layer electrode material of the fully degradable triboelectric nanogenerator, which is a new type of implantable fully degradable triboelectric nanogenerator structure.
优选地,所述第一氨基酸复合材料层的制备原料包括氨基酸和/或氨基酸衍生物,还包括高分子材料。Preferably, the preparation raw materials of the first amino acid composite material layer include amino acids and/or amino acid derivatives, and also include polymer materials.
本发明所涉及的纳米发电机中第一氨基酸复合材料层的制备原料包括氨基酸和/或氨基酸衍生物,以及高分子材料。The raw materials for the preparation of the first amino acid composite material layer in the nanogenerator of the present invention include amino acids and/or amino acid derivatives, and polymer materials.
所述高分子材料包括胶原、明胶、大豆蛋白、蛋清、丝素蛋白、海藻酸钠、纤维素、木质素、甲壳素、壳聚糖、透明质酸、聚氧化乙烯、聚己内酯、聚乳酸、聚乳酸-羟基乙酸共聚物、聚乙烯醇、微生物聚酯、聚对二氧环己酮或聚酸酐中的任意一种或至少两种的组合。The polymer materials include collagen, gelatin, soybean protein, egg white, silk fibroin, sodium alginate, cellulose, lignin, chitin, chitosan, hyaluronic acid, polyethylene oxide, polycaprolactone, poly Any one or a combination of at least two of lactic acid, polylactic acid-glycolic acid copolymer, polyvinyl alcohol, microbial polyester, polydioxanone, or polyanhydride.
本发明所涉及的高分子材料均是具有良好生物相容性和生物可吸收性的高分子材料,使制备得到的纳米发电机不仅具有全可降解性能,而且它们也可以进行生物体内植入。The polymer materials involved in the present invention are all polymer materials with good biocompatibility and bioabsorbability, so that the prepared nanogenerators not only have fully degradable properties, but also can be implanted in vivo.
所述至少两种的组合例如蛋清和丝素蛋白的组合、海藻酸钠和纤维素的组合、壳聚糖和透明质酸的组合等,其他任意的组合方式均可选择,在此便不再一一赘述。The combination of the at least two types, such as the combination of egg white and silk fibroin, the combination of sodium alginate and cellulose, the combination of chitosan and hyaluronic acid, etc., can be selected from any other combination, which will not be omitted here. Repeat them one by one.
优选地,所述氨基酸和/或氨基酸衍生物与高分子材料的质量比为(0.1-2.0):1,例如0.1:1、0.2:1、0.4:1、0.5:1、0.8:1、1.0:1、1.2:1、1.4:1、1.6:1、1.8:1或2.0:1等,上述范围内的任意具体点值均可选择,在此便不再一一赘述。Preferably, the mass ratio of the amino acid and/or amino acid derivative to the polymer material is (0.1-2.0):1, such as 0.1:1, 0.2:1, 0.4:1, 0.5:1, 0.8:1, 1.0 :1, 1.2:1, 1.4:1, 1.6:1, 1.8:1 or 2.0:1, etc. Any specific point value within the above range can be selected, and will not be repeated here.
所述氨基酸和/或氨基酸衍生物与高分子材料的质量比特定选择为(0.1-2.0):1是因为若高分子材料的比例进一步提高,则相对加入的氨基酸和/或 氨基酸衍生物的量非常稀少,从而导致摩擦纳米发电机的电输出性能低下;若高分子材料的比例进一步降低,则无法有效地制备出复合膜电极材料。The specific selection of the mass ratio of the amino acid and/or amino acid derivative to the polymer material is (0.1-2.0): 1 because if the ratio of the polymer material is further increased, the relative amount of the amino acid and/or amino acid derivative added It is very rare, resulting in low electrical output performance of triboelectric nanogenerators; if the proportion of polymer materials is further reduced, composite membrane electrode materials cannot be effectively prepared.
优选地,所述第二氨基酸复合材料层的制备原料包括氨基酸和/或氨基酸衍生物,还包括高分子材料。Preferably, the preparation raw materials of the second amino acid composite material layer include amino acids and/or amino acid derivatives, and also include polymer materials.
本发明所涉及的纳米发电机中第二氨基酸复合材料层的制备原料包括氨基酸和/或氨基酸衍生物,以及高分子材料。The raw materials for the preparation of the second amino acid composite material layer in the nanogenerator of the present invention include amino acids and/or amino acid derivatives, and polymer materials.
所述高分子材料包括胶原、明胶、大豆蛋白、蛋清、丝素蛋白、海藻酸钠、纤维素、木质素、甲壳素、壳聚糖、透明质酸、聚氧化乙烯、聚己内酯、聚乳酸、聚乳酸-羟基乙酸共聚物、聚乙烯醇、微生物聚酯、聚对二氧环己酮或聚酸酐中的任意一种或至少两种的组合。The polymer materials include collagen, gelatin, soybean protein, egg white, silk fibroin, sodium alginate, cellulose, lignin, chitin, chitosan, hyaluronic acid, polyethylene oxide, polycaprolactone, poly Any one or a combination of at least two of lactic acid, polylactic acid-glycolic acid copolymer, polyvinyl alcohol, microbial polyester, polydioxanone, or polyanhydride.
本发明所涉及的高分子材料均是具有良好生物相容性和生物可吸收性的高分子材料,使制备得到的纳米发电机不仅具有全可降解性能,而且它们也可以进行生物体内植入。The polymer materials involved in the present invention are all polymer materials with good biocompatibility and bioabsorbability, so that the prepared nanogenerators not only have fully degradable properties, but also can be implanted in vivo.
所述至少两种的组合例如蛋清和丝素蛋白的组合、海藻酸钠和纤维素的组合、壳聚糖和透明质酸的组合等,其他任意的组合方式均可选择,在此便不再一一赘述。The combination of the at least two types, such as the combination of egg white and silk fibroin, the combination of sodium alginate and cellulose, the combination of chitosan and hyaluronic acid, etc., can be selected from any other combination, which will not be omitted here. Repeat them one by one.
优选地,所述氨基酸和/或氨基酸衍生物与高分子材料的质量比为(0.1-2.0):1,例如0.1:1、0.2:1、0.4:1、0.5:1、0.8:1、1.0:1、1.2:1、1.4:1、1.6:1、1.8:1或2.0:1等,上述范围内的任意具体点值均可选择,在此便不再一一赘述。Preferably, the mass ratio of the amino acid and/or amino acid derivative to the polymer material is (0.1-2.0):1, such as 0.1:1, 0.2:1, 0.4:1, 0.5:1, 0.8:1, 1.0 :1, 1.2:1, 1.4:1, 1.6:1, 1.8:1 or 2.0:1, etc. Any specific point value within the above range can be selected, and will not be repeated here.
所述氨基酸和/或氨基酸衍生物与高分子材料的质量比特定选择为(0.1-2.0):1是因为若高分子材料的比例进一步提高,则相对加入的氨基酸和/或氨基酸衍生物的量非常稀少,从而导致摩擦纳米发电机的电输出性能低下;若 高分子材料的比例进一步降低,则无法有效地制备出复合膜电极材料。The specific selection of the mass ratio of the amino acid and/or amino acid derivative to the polymer material is (0.1-2.0): 1 because if the ratio of the polymer material is further increased, the relative amount of the amino acid and/or amino acid derivative added It is very rare, resulting in low electrical output performance of triboelectric nanogenerators; if the proportion of polymer materials is further reduced, composite membrane electrode materials cannot be effectively prepared.
优选地,所述第一金属集流体层和第二金属集流体层的制备原料独立地选自镁、钼、钨或铁中的任意一种或至少两种的组合。Preferably, the preparation raw materials of the first metal current collector layer and the second metal current collector layer are independently selected from any one or a combination of at least two of magnesium, molybdenum, tungsten or iron.
所述至少两种的组合例如镁和钼的组合、钼和钨的组合、钨和铁的组合等,其他任意的组合方式均可选择,在此便不再一一赘述。The combination of the at least two types, such as the combination of magnesium and molybdenum, the combination of molybdenum and tungsten, the combination of tungsten and iron, etc., can be selected from any other combination, which will not be repeated here.
优选地,所述第一摩擦层还包括相叠于第一氨基酸复合材料层和第一金属集流体层中间的第一基底层。Preferably, the first friction layer further includes a first base layer overlapping the first amino acid composite material layer and the first metal current collector layer.
优选地,所述第二摩擦层还包括相叠于第二氨基酸复合材料层和第二金属集流体层中间的第二基底层。Preferably, the second friction layer further includes a second base layer overlapping the second amino acid composite material layer and the second metal current collector layer.
根据第一氨基酸复合材料层和第二氨基酸复合材料层的机械性能,其可直接用于摩擦层的制备,也可以粘附在基底层上再用于摩擦层的制备。According to the mechanical properties of the first amino acid composite material layer and the second amino acid composite material layer, they can be directly used for the preparation of the friction layer, or can be adhered to the base layer and then used for the preparation of the friction layer.
优选地,所述第一基底层的厚度为10-5000μm,例如10μm、50μm、100μm、150μm、200μm、250μm、300μm、400μm、500μm、1000μm、2000μm、3000μm、4000μm或5000μm等,上述数值范围内的其他具体点值均可选择,在此便不再一一赘述。Preferably, the thickness of the first base layer is 10-5000 μm, such as 10 μm, 50 μm, 100 μm, 150 μm, 200 μm, 250 μm, 300 μm, 400 μm, 500 μm, 1000 μm, 2000 μm, 3000 μm, 4000 μm or 5000 μm, etc., within the above numerical ranges Other specific point values of , can be selected, and will not be repeated here.
优选地,所述第二基底层的厚度为10-5000μm,例如10μm、50μm、100μm、150μm、200μm、250μm、300μm、400μm、500μm、1000μm、2000μm、3000μm、4000μm或5000μm等,上述数值范围内的其他具体点值均可选择,在此便不再一一赘述。Preferably, the thickness of the second base layer is 10-5000 μm, such as 10 μm, 50 μm, 100 μm, 150 μm, 200 μm, 250 μm, 300 μm, 400 μm, 500 μm, 1000 μm, 2000 μm, 3000 μm, 4000 μm or 5000 μm, etc., within the above numerical ranges Other specific point values of , can be selected, and will not be repeated here.
优选地,所述第一基底层和第二基底层的制备原料独立地选自胶原、明胶、大豆蛋白、蛋清、丝素蛋白、海藻酸钠、纤维素、木质素、甲壳素、壳聚糖、透明质酸、聚氧化乙烯、聚己内酯、聚乳酸、聚乳酸-羟基乙酸共聚物、聚乙烯醇、微生物聚酯、聚对二氧环己酮或聚酸酐中的任意一种或至少 两种的组合。Preferably, the preparation materials of the first base layer and the second base layer are independently selected from collagen, gelatin, soybean protein, egg white, silk fibroin, sodium alginate, cellulose, lignin, chitin, chitosan , hyaluronic acid, polyethylene oxide, polycaprolactone, polylactic acid, polylactic acid-co-glycolic acid copolymer, polyvinyl alcohol, microbial polyester, polydioxanone or any one or at least one of polyanhydrides combination of the two.
所述至少两种的组合例如蛋清和丝素蛋白的组合、海藻酸钠和纤维素的组合、壳聚糖和透明质酸的组合等,其他任意的组合方式均可选择,在此便不再一一赘述。The combination of the at least two types, such as the combination of egg white and silk fibroin, the combination of sodium alginate and cellulose, the combination of chitosan and hyaluronic acid, etc., can be selected from any other combination, which will not be omitted here. Repeat them one by one.
优选地,所述第一氨基酸复合材料层和第二氨基酸复合材料层的厚度独立地为1-5000μm,例如1μm、10μm、50μm、100μm、150μm、200μm、250μm、300μm、400μm、500μm、1000μm、2000μm、3000μm、4000μm或5000μm等,上述数值范围内的其他具体点值均可选择,在此便不再一一赘述。Preferably, the thicknesses of the first amino acid composite material layer and the second amino acid composite material layer are independently 1-5000 μm, such as 1 μm, 10 μm, 50 μm, 100 μm, 150 μm, 200 μm, 250 μm, 300 μm, 400 μm, 500 μm, 1000 μm, 2000 μm, 3000 μm, 4000 μm or 5000 μm, etc., and other specific point values within the above numerical range can be selected, which will not be repeated here.
优选地,所述第一金属集流体层和第二金属集流体层的厚度独立地为10nm-10μm,例如0.01μm、0.05μm、0.1μm、0.5μm、1μm、2μm、5μm或10μm等,上述数值范围内的其他具体点值均可选择,在此便不再一一赘述。Preferably, the thicknesses of the first metal current collector layer and the second metal current collector layer are independently 10 nm-10 μm, such as 0.01 μm, 0.05 μm, 0.1 μm, 0.5 μm, 1 μm, 2 μm, 5 μm or 10 μm, etc. Other specific point values within the numerical range can be selected, which will not be repeated here.
第二方面,本发明提供一种如上所述的全可降解摩擦纳米发电机的制备方法,所述制备方法包括如下步骤:将第一摩擦层和第二摩擦层中的第一氨基酸复合材料层和第二氨基酸复合材料层表面朝内,第一金属集流体层和第二金属集流体层朝外,组装成垂直接触分离式的所述全可降解摩擦纳米发电机。In a second aspect, the present invention provides a preparation method of the above-mentioned fully degradable triboelectric nanogenerator, the preparation method comprising the steps of: the first amino acid composite material layer in the first friction layer and the second friction layer With the surface of the second amino acid composite material layer facing inward, and the first metal current collector layer and the second metal current collector layer facing outward, the fully degradable triboelectric nanogenerator of vertical contact separation type is assembled.
所述第一摩擦层和第二摩擦层间的间隔距离为0.1mm-100mm,例如0.1mm、1mm、5mm、10mm、20mm、40mm、50mm、60mm、80mm或100mm等,上述数值范围内的其他具体点值均可选择,在此便不再一一赘述。The distance between the first friction layer and the second friction layer is 0.1mm-100mm, for example, 0.1mm, 1mm, 5mm, 10mm, 20mm, 40mm, 50mm, 60mm, 80mm or 100mm, etc., other values within the above-mentioned range The specific point values can be selected, and will not be repeated here.
优选地,所述得到全可降解摩擦纳米发电机后还可以对其进行封装,封装过程如下:首先将摩擦纳米发电机置于一张制备好的封装层的正中间位置,用另外一张大小相同的封装层置于摩擦纳米发电机上面并使上下膜四周 重合,根据封装层材料的理化特性,在上下层四周空隙位置通过热熔塑封及涂抹材料粘结剂等方式将封装层与基底层严丝合缝地密封,完成整体器件的封装。Preferably, after the fully degradable triboelectric nanogenerator is obtained, it can also be encapsulated. The encapsulation process is as follows: first, place the triboelectric nanogenerator in the middle position of a prepared encapsulation layer, and use another The same encapsulation layer is placed on the triboelectric nanogenerator and the upper and lower membranes are overlapped. According to the physical and chemical properties of the encapsulation layer material, the encapsulation layer and the base layer are connected to the base layer by hot-melt plastic sealing and smearing of material binders at the gaps around the upper and lower layers. It is tightly sealed to complete the package of the whole device.
优选地,所述封装层的制备原料包括胶原、明胶、大豆蛋白、蛋清、丝素蛋白、海藻酸钠、纤维素、木质素、甲壳素、壳聚糖、透明质酸、聚己内酯、聚乳酸、聚乳酸-羟基乙酸共聚物、聚乙烯醇、微生物聚酯、聚对二氧环己酮或聚酸酐中的任意一种或至少两种的组合。Preferably, the preparation materials of the encapsulation layer include collagen, gelatin, soybean protein, egg white, silk fibroin, sodium alginate, cellulose, lignin, chitin, chitosan, hyaluronic acid, polycaprolactone, Any one or a combination of at least two of polylactic acid, polylactic acid-glycolic acid copolymer, polyvinyl alcohol, microbial polyester, polydioxanone or polyanhydride.
优选地,所述第一摩擦层的制备方法包括如下步骤:Preferably, the preparation method of the first friction layer comprises the following steps:
(1)将第一氨基酸复合材料层的制备原料与溶剂混合,均质,然后流延成膜、旋转涂膜、浇铸成膜或熔融成膜,干燥后得到第一氨基酸复合材料层;(1) mixing the preparation raw materials of the first amino acid composite material layer with a solvent, homogenizing, then casting film, spin coating, casting film or melting film, and drying to obtain the first amino acid composite material layer;
(2)在第一氨基酸复合材料层的一侧通过电镀、喷涂或磁控溅射的方法制备第一金属集流体层,最终得到所述第一摩擦层。(2) preparing a first metal current collector layer by electroplating, spraying or magnetron sputtering on one side of the first amino acid composite material layer, and finally obtaining the first friction layer.
优选地,所述均质后高分子材料的质量分数为1-20%,例如1%、2%、5%、8%、10%、12%、15%或20%等,上述数值范围内的其他具体点值均可选择,在此便不再一一赘述。Preferably, the mass fraction of the homogenized polymer material is 1-20%, for example, 1%, 2%, 5%, 8%, 10%, 12%, 15% or 20%, etc., within the range of the above values Other specific point values of , can be selected, and will not be repeated here.
优选地,所述干燥的温度为40-80℃,例如40℃、50℃、60℃、70℃或80℃等,时间为10-30h,例如10h、15h、20h、25h或30h等,上述数值范围内的其他具体点值均可选择,在此便不再一一赘述。Preferably, the drying temperature is 40-80°C, such as 40°C, 50°C, 60°C, 70°C or 80°C, etc., and the drying time is 10-30h, such as 10h, 15h, 20h, 25h or 30h, etc., the above Other specific point values within the numerical range can be selected, which will not be repeated here.
优选地,步骤(1)所述得到第一氨基酸复合材料层后还包括步骤(1'):在第一氨基酸复合材料层的一侧粘附第一基底层;然后在第一基底层远离第一氨基酸复合材料层的一侧通过电镀、喷涂或磁控溅射的方法制备第一金属集流体层,最终得到所述第一摩擦层。Preferably, after the first amino acid composite material layer is obtained in step (1), it further includes step (1'): adhering the first base layer on one side of the first amino acid composite material layer; then on the first base layer away from the first base layer A first metal current collector layer is prepared on one side of the amino acid composite material layer by electroplating, spraying or magnetron sputtering, and finally the first friction layer is obtained.
优选地,所述第一基底层的制备方法包括:将第一基底层的制备原料与溶剂混合,均质,然后流延成膜、旋转涂膜、浇铸成膜或熔融成膜,干燥后得到第一基底层。Preferably, the preparation method of the first base layer comprises: mixing the preparation raw materials of the first base layer with a solvent, homogenizing, then casting into a film, spin coating, casting into a film or melting into a film, and drying to obtain first base layer.
优选地,所述第二摩擦层的制备方法包括如下步骤:Preferably, the preparation method of the second friction layer comprises the following steps:
(1)将第二氨基酸复合材料层的制备原料与溶剂混合,均质,然后流延成膜、旋转涂膜、浇铸成膜或熔融成膜,干燥后得到第二氨基酸复合材料层;(1) mixing the preparation raw materials of the second amino acid composite material layer with a solvent, homogenizing, then casting into a film, spin coating, casting into a film or melting into a film, and drying to obtain a second amino acid composite layer;
(2)在第二氨基酸复合材料层的一侧通过电镀、喷涂或磁控溅射的方法制备第二金属集流体层,最终得到所述第二摩擦层;(2) preparing the second metal current collector layer by electroplating, spraying or magnetron sputtering on one side of the second amino acid composite material layer, and finally obtaining the second friction layer;
优选地,所述均质后高分子材料的质量分数为1-20%,例如1%、2%、5%、8%、10%、12%、15%或20%等,上述数值范围内的其他具体点值均可选择,在此便不再一一赘述。Preferably, the mass fraction of the homogenized polymer material is 1-20%, for example, 1%, 2%, 5%, 8%, 10%, 12%, 15% or 20%, etc., within the range of the above values Other specific point values of , can be selected, and will not be repeated here.
优选地,所述干燥的温度为40-80℃,例如40℃、50℃、60℃、70℃或80℃等,时间为10-30h,例如10h、15h、20h、25h或30h等,上述数值范围内的其他具体点值均可选择,在此便不再一一赘述。Preferably, the drying temperature is 40-80°C, such as 40°C, 50°C, 60°C, 70°C or 80°C, etc., and the drying time is 10-30h, such as 10h, 15h, 20h, 25h or 30h, etc., the above Other specific point values within the numerical range can be selected, which will not be repeated here.
优选地,步骤(1)所述得到第二氨基酸复合材料层后还包括步骤(1'):在第二氨基酸复合材料层的一侧粘附第二基底层;然后在第二基底层远离第二氨基酸复合材料层的一侧通过电镀、喷涂或磁控溅射的方法制备第二金属集流体层,最终得到所述第二摩擦层。Preferably, after the second amino acid composite material layer is obtained in step (1), it further includes step (1'): adhering the second base layer on one side of the second amino acid composite material layer; A second metal current collector layer is prepared on one side of the diamino acid composite material layer by electroplating, spraying or magnetron sputtering, and finally the second friction layer is obtained.
优选地,所述第二基底层的制备方法包括:将第二基底层的制备原料与溶剂混合,均质,然后流延成膜、旋转涂膜、浇铸成膜或熔融成膜,干燥后得到第二基底层。Preferably, the preparation method of the second base layer comprises: mixing the preparation raw materials of the second base layer with a solvent, homogenizing, then casting into a film, spin coating, casting into a film or melting into a film, and drying to obtain second base layer.
第三方面,本发明提供一种如上所述的全可降解摩擦纳米发电机在为可 植入式医疗器械进行能源供给中的应用。In a third aspect, the present invention provides an application of the above-mentioned fully degradable triboelectric nanogenerator in energy supply for implantable medical devices.
相对于现有技术,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明通过在摩擦层材料中加入来源广泛的氨基酸组成复合材料的方式,在摩擦层材料表面引入带有不同官能团结构的氨基酸晶体化合物,从而极大地差异化摩擦层之间的电子得失能力,达到有效提高摩擦纳米发电机电输出性能的目的,其开路电压(V OC)最高可达到45V,其短路电流(I SC)最高可达到0.48μA,且这种电输出性能是可调节的。本发明首次提出利用氨基酸材料作为全可降解摩擦纳米发电机的摩擦层电极材料来使用,它是一种新型的可植入式全可降解摩擦纳米发电机结构。 By adding amino acids from a wide range of sources into the friction layer material to form a composite material, the invention introduces amino acid crystal compounds with different functional group structures on the surface of the friction layer material, so as to greatly differentiate the electronic gain and loss ability between the friction layers, and achieve For the purpose of effectively improving the electrical output performance of the triboelectric nanogenerator, its open circuit voltage (V OC ) can reach up to 45V, and its short-circuit current (I SC ) can reach up to 0.48 μA, and the electrical output performance can be adjusted. The present invention proposes to use amino acid material as the electrode material of the friction layer of the fully degradable triboelectric nanogenerator for the first time, which is a new type of implantable fully degradable triboelectric nanogenerator structure.
附图说明Description of drawings
图1是实施例1中第一氨基酸复合材料层或第二氨基酸复合材料层的结构示意图;1 is a schematic structural diagram of the first amino acid composite material layer or the second amino acid composite material layer in Example 1;
图2是实施例1中第一摩擦层或第二摩擦层的结构示意图,其中,11为第一氨基酸复合材料层或第二氨基酸复合材料层;12为第一金属集流体层或第二金属集流体层;2 is a schematic structural diagram of the first friction layer or the second friction layer in Example 1, wherein 11 is the first amino acid composite material layer or the second amino acid composite material layer; 12 is the first metal current collector layer or the second metal layer collector layer;
图3是实施例1中摩擦纳米发电机的结构示意图,其中,11为第一氨基酸复合材料层或第二氨基酸复合材料层;12为第一金属集流体层或第二金属集流体层。3 is a schematic structural diagram of the triboelectric nanogenerator in Example 1, wherein 11 is the first amino acid composite material layer or the second amino acid composite material layer; 12 is the first metal current collector layer or the second metal current collector layer.
具体实施方式detailed description
下面通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。The technical solutions of the present invention are further described below through specific embodiments. It should be understood by those skilled in the art that the embodiments are only for helping the understanding of the present invention, and should not be regarded as a specific limitation of the present invention.
下述实施例涉及的高分子材料的来源如下:The sources of the polymer materials involved in the following examples are as follows:
海藻酸钠购自于Sigma-Aldrich,型号为viscosity 15-25cP,1%in H 2O。 Sodium alginate was purchased from Sigma-Aldrich as viscosity 15-25cP, 1% in H2O .
聚乙烯醇购自于Sigma-Aldrich,型号为average M w 130,000。 Polyvinyl alcohol was purchased from Sigma-Aldrich under the model average M w 130,000.
丝素蛋白购自于苏州丝美特生物技术有限公司,型号为分子量≥100000道尔顿。Silk fibroin was purchased from Suzhou Simeite Biotechnology Co., Ltd., and the model is molecular weight ≥ 100,000 Daltons.
明胶购自于Sigma-Aldrich,型号为V900863。Gelatin was purchased from Sigma-Aldrich, model number V900863.
聚氧化乙烯购自于Sigma-Aldrich,型号为average M v 200000。 Polyethylene oxide was purchased from Sigma-Aldrich, model average M v 200000.
实施例1Example 1
本实施例提供一种全可降解摩擦纳米发电机,其制备方法如下:The present embodiment provides a fully degradable triboelectric nanogenerator, and its preparation method is as follows:
(1)第一氨基酸复合材料层的制备:先配置体积分数为1%醋酸溶液,然后将海藻酸钠粉末材料加入到醋酸溶液中,充分搅拌均匀,得到质量分数为3%的均质溶液。接着,在海藻酸钠溶液中加入甘氨酸粉末并使混合溶液中甘氨酸与海藻酸钠的质量比为1.2:1,充分搅拌均匀。最后将得到的混合溶液倒入到洁净的玻璃平皿中,25℃下静置除去气泡后放置于60℃真空干燥箱内,保持12h,得到平整的厚度为300μm的第一氨基酸复合材料层。其示意图如图1所示。(1) Preparation of the first amino acid composite material layer: firstly prepare an acetic acid solution with a volume fraction of 1%, then add the sodium alginate powder material into the acetic acid solution, and fully stir to obtain a homogeneous solution with a mass fraction of 3%. Next, add glycine powder to the sodium alginate solution to make the mass ratio of glycine and sodium alginine in the mixed solution to be 1.2:1, and stir well. Finally, the obtained mixed solution was poured into a clean glass dish, left standing at 25°C to remove air bubbles, and then placed in a vacuum drying oven at 60°C for 12 hours to obtain a flat first amino acid composite layer with a thickness of 300 μm. Its schematic diagram is shown in Figure 1.
(2)第二氨基酸复合材料层的制备:先将聚乙烯醇高分子材料加入到去离子水溶液中,加热到95℃并充分搅拌均匀,得到质量分数为8%的聚乙烯醇水溶液。接着,在聚乙烯醇溶液中加入丝氨酸粉末并使混合溶液中丝氨酸与聚乙烯醇的质量比为0.45:1,充分搅拌均匀。最后将得到的混合溶液倒入到洁净的玻璃平皿中,25℃下静置除去气泡后放置于60℃真空干燥箱内,保持18h,得到平整的厚度为200μm的第二氨基酸复合材料层。其示意图如图1所示。(2) Preparation of the second amino acid composite material layer: firstly, the polyvinyl alcohol polymer material was added to the deionized aqueous solution, heated to 95° C. and fully stirred to obtain a polyvinyl alcohol aqueous solution with a mass fraction of 8%. Next, add serine powder to the polyvinyl alcohol solution to make the mass ratio of serine and polyvinyl alcohol in the mixed solution to be 0.45:1, and stir well. Finally, the obtained mixed solution was poured into a clean glass plate, left standing at 25°C to remove air bubbles, and then placed in a vacuum drying oven at 60°C for 18 hours to obtain a second amino acid composite layer with a thickness of 200 μm. Its schematic diagram is shown in Figure 1.
由于上述制备所得到的复合材料层机械性能良好,可以同时作为基底层来使用,所以无需额外制备基底层,可以将复合材料层直接用于摩擦层结构来使 用。Since the composite material layer prepared above has good mechanical properties and can be used as a base layer at the same time, there is no need to prepare an additional base layer, and the composite material layer can be directly used in the friction layer structure.
(3)分别在第一氨基酸复合材料层和第二氨基酸复合材料层的一侧通过测控溅射的方法制备得到金属镁集流体层,具体过程如下:将复合材料层置于磁控溅射仪器腔体中,溅射参数直流溅射功率100W,持续时间20min,得到厚度为500nm的第一金属集流体层和第二金属集流体层,同时得到第一摩擦层和第二摩擦层。其示意图如图2所示。(3) prepare the metal magnesium current collector layer by measuring and controlling sputtering on one side of the first amino acid composite material layer and the second amino acid composite material layer respectively, and the specific process is as follows: the composite material layer is placed on a magnetron sputtering apparatus In the cavity, sputtering parameters DC sputtering power 100W, duration 20min, a first metal current collector layer and a second metal current collector layer with a thickness of 500nm are obtained, and a first friction layer and a second friction layer are obtained simultaneously. Its schematic diagram is shown in Figure 2.
(4)摩擦纳米发电机的组装:将第一摩擦层和第二摩擦层中的第一氨基酸复合材料层和第二氨基酸复合材料层表面朝内,第一金属集流体层和第二金属集流体层朝外,通过垂直分离模式组装摩擦纳米发电机(间隔1mm),再引出输出导线。其示意图如图3所示。(4) Assembly of the triboelectric nanogenerator: the surfaces of the first amino acid composite material layer and the second amino acid composite material layer in the first friction layer and the second friction layer face inward, the first metal current collector layer and the second metal collector layer With the fluid layer facing outwards, the triboelectric nanogenerators were assembled in a vertical separation mode (with an interval of 1 mm), and then the output wires were led out. Its schematic diagram is shown in Figure 3.
实施例2Example 2
本实施例提供一种全可降解摩擦纳米发电机,其制备方法如下:The present embodiment provides a fully degradable triboelectric nanogenerator, and its preparation method is as follows:
(1)第一氨基酸复合材料层的制备:将丝素蛋白加入到去离子水溶液中,充分溶解后离心去除杂质,得到质量分数10%的丝素蛋白水溶液。接着,在丝素蛋白水溶液中加入赖氨酸粉末并使混合溶液中丝氨酸与丝素蛋白的质量比为0.35:1,充分搅拌均匀。最后将得到的混合溶液倒入到洁净的玻璃平皿中,25℃下静置除去气泡后放置于60℃真空干燥箱内,保持18h,得到平整的厚度为800μm的第一氨基酸复合材料层。(1) Preparation of the first amino acid composite material layer: silk fibroin was added to a deionized aqueous solution, fully dissolved and centrifuged to remove impurities to obtain a silk fibroin aqueous solution with a mass fraction of 10%. Next, add lysine powder to the silk fibroin aqueous solution so that the mass ratio of serine and silk fibroin in the mixed solution is 0.35:1, and stir well. Finally, the obtained mixed solution was poured into a clean glass dish, left standing at 25°C to remove air bubbles, and then placed in a vacuum drying oven at 60°C for 18 hours to obtain a first amino acid composite material layer with a thickness of 800 μm.
(2)第二氨基酸复合材料层的制备:先将聚乙烯醇高分子材料加入到去离子水溶液中,加热到95℃并充分搅拌均匀,得到质量分数为8%的聚乙烯醇水溶液。接着,在聚乙烯醇溶液中加入苏氨酸粉末并使混合溶液中苏氨酸与聚乙烯醇的质量比为0.6:1,充分搅拌均匀。最后将得到的混合溶液倒入到洁净的玻璃平皿中,25℃下静置除去气泡后放置于60℃真空干燥箱内,保持24h, 得到平整的厚度为400μm的第二氨基酸复合材料层。(2) Preparation of the second amino acid composite material layer: firstly, the polyvinyl alcohol polymer material was added to the deionized aqueous solution, heated to 95° C. and fully stirred to obtain a polyvinyl alcohol aqueous solution with a mass fraction of 8%. Next, threonine powder is added to the polyvinyl alcohol solution to make the mass ratio of threonine and polyvinyl alcohol in the mixed solution to be 0.6:1, and the mixture is fully stirred. Finally, the obtained mixed solution was poured into a clean glass plate, left standing at 25°C to remove air bubbles, and then placed in a 60°C vacuum drying oven for 24 hours to obtain a second amino acid composite material layer with a thickness of 400 μm.
由于上述制备所得到的复合材料层机械性能良好,可以同时作为基底层来使用,所以无需额外制备基底层,可以将复合材料层直接用于摩擦层结构来使用。Since the composite material layer prepared above has good mechanical properties and can be used as a base layer at the same time, there is no need to prepare an additional base layer, and the composite material layer can be directly used in the friction layer structure.
(3)分别在第一氨基酸复合材料层和第二氨基酸复合材料层的一侧通过测控溅射的方法制备得到金属铁集流体层,具体过程如下:将复合材料层置于磁控溅射仪器腔体中,溅射参数直流溅射功率100W,持续时间20min,得到厚度为600nm的第一金属集流体层和第二金属集流体层,同时得到第一摩擦层和第二摩擦层。(3) prepare the metal iron current collector layer by measuring and controlling sputtering on one side of the first amino acid composite material layer and the second amino acid composite material layer respectively, and the specific process is as follows: the composite material layer is placed on a magnetron sputtering apparatus In the cavity, sputtering parameters DC sputtering power 100W, duration 20min, obtain a first metal current collector layer and a second metal current collector layer with a thickness of 600nm, and simultaneously obtain a first friction layer and a second friction layer.
(4)摩擦纳米发电机的组装:将第一摩擦层和第二摩擦层中的第一氨基酸复合材料层和第二氨基酸复合材料层表面朝内,第一金属集流体层和第二金属集流体层朝外,通过垂直分离模式组装摩擦纳米发电机(间隔2mm),再引出输出导线。(4) Assembly of the triboelectric nanogenerator: the surfaces of the first amino acid composite material layer and the second amino acid composite material layer in the first friction layer and the second friction layer face inward, the first metal current collector layer and the second metal collector layer With the fluid layer facing outwards, the triboelectric nanogenerators were assembled in a vertical separation mode (with an interval of 2 mm), and then the output wires were led out.
实施例3Example 3
本实施例提供一种全可降解摩擦纳米发电机,其制备方法如下:The present embodiment provides a fully degradable triboelectric nanogenerator, and its preparation method is as follows:
(1)第一氨基酸复合材料层的制备:将明胶加入到去离子水溶液中,充分溶解后离心去除杂质,得到质量分数8%的明胶水溶液。接着,在明胶水溶液中加入谷氨酰胺粉末并使混合溶液中谷氨酰胺与明胶的质量比为0.8:1,充分搅拌均匀。最后将得到的混合溶液倒入到洁净的玻璃平皿中,25℃下静置除去气泡后放置于40℃真空干燥箱内,保持24h,得到平整的厚度为80μm的第一氨基酸复合材料层。(1) Preparation of the first amino acid composite material layer: adding gelatin into a deionized aqueous solution, fully dissolving it, and centrifuging to remove impurities to obtain an aqueous gelatin solution with a mass fraction of 8%. Next, add glutamine powder to the gelatin aqueous solution so that the mass ratio of glutamine and gelatin in the mixed solution is 0.8:1, and stir well. Finally, the obtained mixed solution was poured into a clean glass plate, left standing at 25°C to remove air bubbles, and then placed in a vacuum drying oven at 40°C for 24 hours to obtain a first amino acid composite material layer with a thickness of 80 μm.
(2)第二氨基酸复合材料层的制备:先将聚氧化乙烯高分子材料加入到 去离子水溶液中,加热到90℃并充分搅拌均匀,得到质量分数为10%的聚氧化乙烯水溶液。接着,在聚氧化乙烯溶液中加入丙氨酸粉末并使混合溶液中丙氨酸与聚氧化乙烯的质量比为1.2:1,充分搅拌均匀。最后将得到的混合溶液倒入到洁净的玻璃平皿中,25℃下静置除去气泡后放置于60℃真空干燥箱内,保持24h,得到平整的厚度为1mm的第二氨基酸复合材料层。(2) Preparation of the second amino acid composite material layer: firstly, the polyethylene oxide polymer material was added to the deionized aqueous solution, heated to 90°C and fully stirred to obtain a polyethylene oxide aqueous solution with a mass fraction of 10%. Next, alanine powder was added to the polyethylene oxide solution to make the mass ratio of alanine and polyethylene oxide in the mixed solution to be 1.2:1, and the mixture was fully stirred. Finally, the obtained mixed solution was poured into a clean glass dish, left standing at 25°C to remove air bubbles, and then placed in a vacuum drying oven at 60°C for 24 hours to obtain a second amino acid composite material layer with a thickness of 1 mm.
由于上述制备所得到的第一氨基酸复合材料层的机械强度相对比较差,需要依附在基底层上作为摩擦层结构来使用。Because the mechanical strength of the first amino acid composite material layer prepared above is relatively poor, it needs to be attached to the base layer and used as a friction layer structure.
(3)称取聚氧化乙烯高分子材料加入到去离子水溶液中,加热到90℃并充分搅拌均匀,得到质量分数为10%的聚氧化乙烯溶液。再将得到的混合溶液倒入到洁净的玻璃平皿中,25℃下静置除去气泡后放置于60℃真空干燥箱内,保持24h,得到PEO膜基底层材料。最后将第一氨基酸复合材料层粘附到PEO基底层上。(3) Weigh the polyethylene oxide polymer material and add it into the deionized aqueous solution, heat it to 90° C. and stir well to obtain a polyethylene oxide solution with a mass fraction of 10%. Then, the obtained mixed solution was poured into a clean glass plate, left standing at 25°C to remove air bubbles, and then placed in a vacuum drying oven at 60°C for 24 hours to obtain a PEO film base layer material. Finally the first amino acid composite layer is adhered to the PEO base layer.
(4)分别在步骤(3)产物PEO基底层远离第一氨基酸复合材料层的一侧以及第二氨基酸复合材料层的一侧通过测控溅射的方法制备得到金属钼集流体层,具体过程如下:将复合材料层置于磁控溅射仪器腔体中,溅射参数直流溅射功率100W,持续时间20min,得到厚度为700nm的第一金属集流体层和第二金属集流体层,同时得到第一摩擦层和第二摩擦层。(4) The metal molybdenum current collector layer is prepared by measuring and controlling sputtering on the side of the PEO base layer far away from the first amino acid composite material layer and the side of the second amino acid composite material layer in step (3) respectively, and the specific process is as follows : The composite material layer is placed in the cavity of the magnetron sputtering instrument, the sputtering parameter DC sputtering power is 100W, the duration is 20min, and the first metal current collector layer and the second metal current collector layer with a thickness of 700nm are obtained. A first friction layer and a second friction layer.
(5)摩擦纳米发电机的组装:将第一摩擦层和第二摩擦层中的第一氨基酸复合材料层和第二氨基酸复合材料层表面朝内,第一金属集流体层和第二金属集流体层朝外,通过垂直分离模式组装摩擦纳米发电机(间隔1.5mm),再引出输出导线。(5) Assembly of the triboelectric nanogenerator: the surfaces of the first amino acid composite material layer and the second amino acid composite material layer in the first friction layer and the second friction layer face inward, the first metal current collector layer and the second metal collector layer With the fluid layer facing outward, the triboelectric nanogenerators were assembled in a vertical separation mode (with an interval of 1.5 mm), and then the output wires were led out.
评价试验:Evaluation test:
对实施例1-3的摩擦纳米发电机的电输出性能进行测试,过程主要是利用线性马达作为外力作用,设置其工作频率为1HZ,通过力科(Teledyne LeCroy)示波器HDO9000及吉时利(Keithley)静电计6517B来分别测试表征摩擦纳米发电机的开路电压(V OC)和短路电流(I SC)大小。结果如表1所示:表1 The electrical output performance of the triboelectric nanogenerators of Examples 1-3 is tested. The process is mainly to use a linear motor as an external force, set its operating frequency to 1HZ, and use a Teledyne LeCroy oscilloscope HDO9000 and Keithley ) electrometer 6517B to test the open-circuit voltage (V OC ) and short-circuit current (I SC ) of the triboelectric nanogenerator, respectively. The results are shown in Table 1: Table 1
组别group 开路电压(V OC) Open Circuit Voltage (V OC ) 短路电流(I SC) Short circuit current (I SC )
实施例1Example 1 35V35V 0.40μA0.40μA
实施例2Example 2 40V40V 0.45μA0.45μA
实施例3Example 3 45V45V 0.48μA0.48μA
由表1数据可知:本发明所涉及的全可降解摩擦纳米发电机具有非常好的电输出性能,其开路电压可达到35-45V,其短路电流可达到0.40-0.48μA,均显著高于现有技术(如文献S.Parandeh,M.Kharaziha,F.Karimzadeh,An eco-friendly triboelectric hybrid nanogenerators based on graphene oxide incorporated polycaprolactone fibers and cellulose paper,Nano Energy,Volume 59,2019,Pages 412-421.)中分别使用PCL/GO和纤维素纸作为摩擦电极层的摩擦纳米发电机,公开的20V和0.15μA。It can be seen from the data in Table 1 that the fully degradable triboelectric nanogenerator involved in the present invention has very good electrical output performance, its open-circuit voltage can reach 35-45V, and its short-circuit current can reach 0.40-0.48μA, which are significantly higher than those of the present invention. There are technologies (such as literature S.Parandeh, M.Kharaziha, F.Karimzadeh, An eco-friendly triboelectric hybrid nanogenerators based on graphene oxide incorporated polycaprolactone fibers and cellulose paper, Nano Energy, Volume 59, 2019, Pages 412-421.) Triboelectric nanogenerators using PCL/GO and cellulose paper as the triboelectrode layer were disclosed at 20 V and 0.15 μA, respectively.
申请人声明,本发明通过上述实施例来说明本发明的一种全可降解摩擦纳米发电机及其制备方法和应用,但本发明并不局限于上述实施例,即不意味着本发明必须依赖上述实施例才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。The applicant declares that the present invention illustrates a fully degradable triboelectric nanogenerator and its preparation method and application through the above-mentioned embodiments, but the present invention is not limited to the above-mentioned embodiments, that is, it does not mean that the present invention must rely on Only the above-mentioned embodiment can be implemented. Those skilled in the art should understand that any improvement to the present invention, the equivalent replacement of each raw material of the product of the present invention, the addition of auxiliary components, the selection of specific methods, etc., all fall within the protection scope and disclosure scope of the present invention.
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进 行多种简单变型,这些简单变型均属于本发明的保护范围。The preferred embodiments of the present invention are described in detail above, but the present invention is not limited to the specific details of the above-mentioned embodiments. Within the scope of the technical concept of the present invention, various simple modifications can be made to the technical solutions of the present invention. These simple modifications All belong to the protection scope of the present invention.
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。In addition, it should be noted that the specific technical features described in the above-mentioned specific embodiments can be combined in any suitable manner under the condition of no contradiction. In order to avoid unnecessary repetition, the present invention has The combination method will not be specified otherwise.

Claims (10)

  1. 一种全可降解摩擦纳米发电机,其特征在于,所述全可降解摩擦纳米发电机包括第一摩擦层和第二摩擦层;所述第一摩擦层包括依次相叠的第一氨基酸复合材料层和第一金属集流体层;所述第二摩擦层包括依次相叠的第二氨基酸复合材料层和第二金属集流体层。A fully degradable triboelectric nanogenerator, characterized in that the fully degradable triboelectric nanogenerator comprises a first friction layer and a second friction layer; the first friction layer comprises first amino acid composite materials stacked in sequence layer and a first metal current collector layer; the second friction layer includes a second amino acid composite material layer and a second metal current collector layer stacked in sequence.
  2. 如权利要求1所述的全可降解摩擦纳米发电机,其特征在于,所述第一氨基酸复合材料层的制备原料包括氨基酸和/或氨基酸衍生物,还包括高分子材料;The fully degradable triboelectric nanogenerator according to claim 1, wherein the preparation raw materials of the first amino acid composite material layer include amino acids and/or amino acid derivatives, and also include polymer materials;
    所述高分子材料包括胶原、明胶、大豆蛋白、蛋清、丝素蛋白、海藻酸钠、纤维素、木质素、甲壳素、壳聚糖、透明质酸、聚氧化乙烯、聚己内酯、聚乳酸、聚乳酸-羟基乙酸共聚物、聚乙烯醇、微生物聚酯、聚对二氧环己酮或聚酸酐中的任意一种或至少两种的组合;The polymer materials include collagen, gelatin, soybean protein, egg white, silk fibroin, sodium alginate, cellulose, lignin, chitin, chitosan, hyaluronic acid, polyethylene oxide, polycaprolactone, poly Any one or a combination of at least two of lactic acid, polylactic acid-glycolic acid copolymer, polyvinyl alcohol, microbial polyester, polydioxanone or polyanhydride;
    优选地,所述氨基酸和/或氨基酸衍生物与高分子材料的质量比为(0.1-2.0):1。Preferably, the mass ratio of the amino acid and/or amino acid derivative to the polymer material is (0.1-2.0):1.
  3. 如权利要求1或2所述的全可降解摩擦纳米发电机,其特征在于,所述第二氨基酸复合材料层的制备原料包括氨基酸和/或氨基酸衍生物,还包括高分子材料;The fully degradable triboelectric nanogenerator according to claim 1 or 2, wherein the preparation raw materials of the second amino acid composite material layer include amino acids and/or amino acid derivatives, and also include polymer materials;
    所述高分子材料包括胶原、明胶、大豆蛋白、蛋清、丝素蛋白、海藻酸钠、纤维素、木质素、甲壳素、壳聚糖、透明质酸、聚氧化乙烯、聚己内酯、聚乳酸、聚乳酸-羟基乙酸共聚物、聚乙烯醇、微生物聚酯、聚对二氧环己酮或聚酸酐中的任意一种或至少两种的组合;The polymer materials include collagen, gelatin, soybean protein, egg white, silk fibroin, sodium alginate, cellulose, lignin, chitin, chitosan, hyaluronic acid, polyethylene oxide, polycaprolactone, poly Any one or a combination of at least two of lactic acid, polylactic acid-glycolic acid copolymer, polyvinyl alcohol, microbial polyester, polydioxanone or polyanhydride;
    优选地,所述氨基酸和/或氨基酸衍生物与高分子材料的质量比为(0.1-2.0):1。Preferably, the mass ratio of the amino acid and/or amino acid derivative to the polymer material is (0.1-2.0):1.
  4. 如权利要求1-3中任一项所述的全可降解摩擦纳米发电机,其特征在 于,所述第一金属集流体层和第二金属集流体层的制备原料独立地选自镁、钼、钨或铁中的任意一种或至少两种的组合。The fully degradable triboelectric nanogenerator according to any one of claims 1-3, wherein the first metal current collector layer and the second metal current collector layer are prepared from raw materials independently selected from magnesium, molybdenum , any one of tungsten or iron or a combination of at least two of them.
  5. 如权利要求1-4中任一项所述的全可降解摩擦纳米发电机,其特征在于,所述第一摩擦层还包括相叠于第一氨基酸复合材料层和第一金属集流体层中间的第一基底层;The fully degradable triboelectric nanogenerator according to any one of claims 1-4, wherein the first friction layer further comprises a layer overlapping the first amino acid composite material layer and the first metal current collector layer the first substrate layer;
    优选地,所述第二摩擦层还包括相叠于第二氨基酸复合材料层和第二金属集流体层中间的第二基底层;Preferably, the second friction layer further comprises a second base layer overlapping the second amino acid composite material layer and the second metal current collector layer;
    优选地,所述第一基底层的厚度为10-5000μm;Preferably, the thickness of the first base layer is 10-5000 μm;
    优选地,所述第二基底层的厚度为10-5000μm;Preferably, the thickness of the second base layer is 10-5000 μm;
    优选地,所述第一基底层和第二基底层的制备原料独立地选自胶原、明胶、大豆蛋白、蛋清、丝素蛋白、海藻酸钠、纤维素、木质素、甲壳素、壳聚糖、透明质酸、聚氧化乙烯、聚己内酯、聚乳酸、聚乳酸-羟基乙酸共聚物、聚乙烯醇、微生物聚酯、聚对二氧环己酮或聚酸酐中的任意一种或至少两种的组合。Preferably, the preparation materials of the first base layer and the second base layer are independently selected from collagen, gelatin, soybean protein, egg white, silk fibroin, sodium alginate, cellulose, lignin, chitin, chitosan , hyaluronic acid, polyethylene oxide, polycaprolactone, polylactic acid, polylactic acid-co-glycolic acid copolymer, polyvinyl alcohol, microbial polyester, polydioxanone or any one or at least one of polyanhydrides combination of the two.
  6. 如权利要求1-5中任一项所述的全可降解摩擦纳米发电机,其特征在于,所述第一氨基酸复合材料层和第二氨基酸复合材料层的厚度独立地为1-5000μm;The fully degradable triboelectric nanogenerator according to any one of claims 1-5, wherein the thicknesses of the first amino acid composite material layer and the second amino acid composite material layer are independently 1-5000 μm;
    优选地,所述第一金属集流体层和第二金属集流体层的厚度独立地为10nm-10μm。Preferably, the thicknesses of the first metal current collector layer and the second metal current collector layer are independently 10 nm-10 μm.
  7. 如权利要求1-6中任一项所述的全可降解摩擦纳米发电机的制备方法,其特征在于,所述制备方法包括如下步骤:将第一摩擦层和第二摩擦层中的第一氨基酸复合材料层和第二氨基酸复合材料层表面朝内,第一金属集流体层和第二金属集流体层朝外,组装成垂直接触分离式的所述全可降解摩 擦纳米发电机。The preparation method of the fully degradable triboelectric nanogenerator according to any one of claims 1-6, characterized in that, the preparation method comprises the steps of: the first friction layer and the second friction layer of the first friction layer The surfaces of the amino acid composite material layer and the second amino acid composite material layer face inward, and the first metal current collector layer and the second metal current collector layer face outward, and are assembled into the fully degradable triboelectric nanogenerator of vertical contact separation type.
  8. 如权利要求7所述的全可降解摩擦纳米发电机的制备方法,其特征在于,所述第一摩擦层的制备方法包括如下步骤:The preparation method of the fully degradable triboelectric nanogenerator according to claim 7, wherein the preparation method of the first friction layer comprises the following steps:
    (1)将第一氨基酸复合材料层的制备原料与溶剂混合,均质,然后流延成膜、旋转涂膜、浇铸成膜或熔融成膜,干燥后得到第一氨基酸复合材料层;(1) mixing the preparation raw materials of the first amino acid composite material layer with a solvent, homogenizing, then casting film, spin coating, casting film or melting film, and drying to obtain the first amino acid composite material layer;
    (2)在第一氨基酸复合材料层的一侧通过电镀、喷涂或磁控溅射的方法制备第一金属集流体层,最终得到所述第一摩擦层;(2) preparing the first metal current collector layer by electroplating, spraying or magnetron sputtering on one side of the first amino acid composite material layer, and finally obtaining the first friction layer;
    优选地,所述均质后高分子材料的质量分数为1-20%;Preferably, the mass fraction of the homogenized polymer material is 1-20%;
    优选地,所述干燥的温度为40-80℃,时间为10-30h;Preferably, the drying temperature is 40-80°C, and the drying time is 10-30h;
    优选地,步骤(1)所述得到第一氨基酸复合材料层后还包括步骤(1'):在第一氨基酸复合材料层的一侧粘附第一基底层;然后在第一基底层远离第一氨基酸复合材料层的一侧通过电镀、喷涂或磁控溅射的方法制备第一金属集流体层,最终得到所述第一摩擦层;Preferably, after the first amino acid composite material layer is obtained in step (1), it further includes step (1'): adhering the first base layer on one side of the first amino acid composite material layer; then on the first base layer away from the first base layer A first metal current collector layer is prepared on one side of the amino acid composite material layer by electroplating, spraying or magnetron sputtering, and finally the first friction layer is obtained;
    优选地,所述第一基底层的制备方法包括:将第一基底层的制备原料与溶剂混合,均质,然后流延成膜、旋转涂膜、浇铸成膜或熔融成膜,干燥后得到第一基底层。Preferably, the preparation method of the first base layer comprises: mixing the preparation raw materials of the first base layer with a solvent, homogenizing, then casting into a film, spin coating, casting into a film or melting into a film, and drying to obtain first base layer.
  9. 如权利要求7所述的全可降解摩擦纳米发电机的制备方法,其特征在于,所述第二摩擦层的制备方法包括如下步骤:The preparation method of the fully degradable triboelectric nanogenerator according to claim 7, wherein the preparation method of the second friction layer comprises the following steps:
    (1)将第二氨基酸复合材料层的制备原料与溶剂混合,均质,然后流延成膜、旋转涂膜、浇铸成膜或熔融成膜,干燥后得到第二氨基酸复合材料层;(1) mixing the preparation raw material of the second amino acid composite material layer with a solvent, homogenizing, then casting into a film, spin coating, casting into a film or melting into a film, and drying to obtain a second amino acid composite layer;
    (2)在第二氨基酸复合材料层的一侧通过电镀、喷涂或磁控溅射的方法 制备第二金属集流体层,最终得到所述第二摩擦层;(2) the second metal current collector layer is prepared by the method of electroplating, spraying or magnetron sputtering on one side of the second amino acid composite material layer, and finally the second friction layer is obtained;
    优选地,所述均质后高分子材料的质量分数为1-20%;Preferably, the mass fraction of the homogenized polymer material is 1-20%;
    优选地,所述干燥的温度为40-80℃,时间为10-30h;Preferably, the drying temperature is 40-80°C, and the drying time is 10-30h;
    优选地,步骤(1)所述得到第二氨基酸复合材料层后还包括步骤(1'):在第二氨基酸复合材料层的一侧粘附第二基底层;然后在第二基底层远离第二氨基酸复合材料层的一侧通过电镀、喷涂或磁控溅射的方法制备第二金属集流体层,最终得到所述第二摩擦层;Preferably, after obtaining the second amino acid composite material layer in step (1), it further includes step (1'): adhering the second base layer on one side of the second amino acid composite material layer; A second metal current collector layer is prepared on one side of the diamino acid composite material layer by electroplating, spraying or magnetron sputtering, and finally the second friction layer is obtained;
    优选地,所述第二基底层的制备方法包括:将第二基底层的制备原料与溶剂混合,均质,然后流延成膜、旋转涂膜、浇铸成膜或熔融成膜,干燥后得到第二基底层。Preferably, the preparation method of the second base layer comprises: mixing the preparation raw materials of the second base layer with a solvent, homogenizing, then casting into a film, spin coating, casting into a film or melting into a film, and drying to obtain second base layer.
  10. 如权利要求1-6中任一项所述的全可降解摩擦纳米发电机在为可植入式医疗器械进行能源供给中的应用。Application of the fully degradable triboelectric nanogenerator according to any one of claims 1 to 6 in energy supply for implantable medical devices.
PCT/CN2020/129533 2020-09-23 2020-11-17 Fully-degradable friction nano-generator, preparation method therefor and use thereof WO2022062133A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011010965.0 2020-09-23
CN202011010965.0A CN114257118A (en) 2020-09-23 2020-09-23 Fully degradable friction nano-generator and preparation method and application thereof

Publications (1)

Publication Number Publication Date
WO2022062133A1 true WO2022062133A1 (en) 2022-03-31

Family

ID=80788637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129533 WO2022062133A1 (en) 2020-09-23 2020-11-17 Fully-degradable friction nano-generator, preparation method therefor and use thereof

Country Status (2)

Country Link
CN (1) CN114257118A (en)
WO (1) WO2022062133A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103107732A (en) * 2013-01-30 2013-05-15 天津理工大学 Organism medical disposable micro friction motor and manufacture method thereof
CN105811799A (en) * 2014-12-31 2016-07-27 北京纳米能源与系统研究所 Full-degradable nanogenerator
US20180013359A1 (en) * 2014-12-03 2018-01-11 Samsung Electronics Co., Ltd. Triboelectric generation device
CN107800323A (en) * 2016-09-07 2018-03-13 北京纳米能源与系统研究所 A kind of full degradable nano generator of natural material
CN108336924A (en) * 2018-02-06 2018-07-27 中国科学院上海微系统与信息技术研究所 A kind of bioprotein flexible nano friction generator and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109412456B (en) * 2018-11-03 2019-10-18 东华大学 For converting mechanical energy to the friction nanometer power generator and preparation method thereof of electric energy
CN109687756B (en) * 2019-02-21 2020-04-07 中国科学院兰州化学物理研究所 Friction nano-generator based on biological membrane material and suitable for being used in high-humidity environment and preparation method and application thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103107732A (en) * 2013-01-30 2013-05-15 天津理工大学 Organism medical disposable micro friction motor and manufacture method thereof
US20180013359A1 (en) * 2014-12-03 2018-01-11 Samsung Electronics Co., Ltd. Triboelectric generation device
CN105811799A (en) * 2014-12-31 2016-07-27 北京纳米能源与系统研究所 Full-degradable nanogenerator
CN107800323A (en) * 2016-09-07 2018-03-13 北京纳米能源与系统研究所 A kind of full degradable nano generator of natural material
CN108336924A (en) * 2018-02-06 2018-07-27 中国科学院上海微系统与信息技术研究所 A kind of bioprotein flexible nano friction generator and preparation method thereof

Also Published As

Publication number Publication date
CN114257118A (en) 2022-03-29

Similar Documents

Publication Publication Date Title
Guan et al. Highly efficient self-healable and dual responsive hydrogel-based deformable triboelectric nanogenerators for wearable electronics
Zhou et al. Super‐assembled hierarchical cellulose aerogel‐gelatin solid electrolyte for implantable and biodegradable zinc ion battery
Li et al. Photothermally tunable biodegradation of implantable triboelectric nanogenerators for tissue repairing
Zhang et al. Highly adhesive and self-healing γ-PGA/PEDOT: PSS conductive hydrogels enabled by multiple hydrogen bonding for wearable electronics
Wang et al. Enhanced cell proliferation by electrical stimulation based on electroactive regenerated bacterial cellulose hydrogels
Jiang et al. Fully bioabsorbable natural‐materials‐based triboelectric nanogenerators
CN111744023B (en) Self-adhesive hydrogel patch with spontaneous electrical property and preparation method and application thereof
WO2019192116A1 (en) Charged composite membrane having electrical topology characteristics of extracellular matrix and preparation method therefor
Wang et al. Integrating supercapacitor with sodium hyaluronate based hydrogel as a novel All-In-One wound Dressing: Self-Powered electronic stimulation
Guo et al. Application of conductive polymer hydrogels in flexible electronics
CN102727931B (en) Construction and preparation of three-dimensional bionic electropolarized gradient pore nerve conduit
Shao et al. Antibacterial, wearable, transparent tannic acid–thioctic acid–phytic acid hydrogel for adhesive bandages
Zhang et al. Adhesive and tough hydrogels: from structural design to applications
CN107800323A (en) A kind of full degradable nano generator of natural material
CN107233625A (en) A kind of powered composite membrane and preparation method thereof that prevents adhesion for skull repairing
Kim et al. Biocompatible and biodegradable triboelectric nanogenerators based on hyaluronic acid hydrogel film
Ravikumar et al. Synergistic effect of polymorphism, substrate conductivity and electric field stimulation towards enhancing muscle cell growth in vitro
CN106935905A (en) A kind of fibrous lithium-air battery of high-temperature stable and preparation method thereof
Gan et al. Bioadhesive and electroactive hydrogels for flexible bioelectronics and supercapacitors enabled by a redox-active core–shell PEDOT@ PZIF-71 system
CN104671223A (en) Porous carbon and nitrogen two-dimensional nano-sheet and method for preparing IPMC electrochemical actuator
WO2022062133A1 (en) Fully-degradable friction nano-generator, preparation method therefor and use thereof
Jia et al. A biocompatible and fully erodible conducting polymer enables implanted rechargeable Zn batteries
Wang et al. Electroconductive and Immunomodulatory Natural Polymer‐Based Hydrogel Bandages Designed for Peripheral Nerve Regeneration
WO2022062134A1 (en) Amino acid gel electrode material-based triboelectric nanogenerator, production method therefor, and application thereof
CN212365760U (en) Interdigital transient super capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954977

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954977

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/08/2023)