WO2022061969A1 - 一种测斜机器人及倾斜度测量方法 - Google Patents

一种测斜机器人及倾斜度测量方法 Download PDF

Info

Publication number
WO2022061969A1
WO2022061969A1 PCT/CN2020/120206 CN2020120206W WO2022061969A1 WO 2022061969 A1 WO2022061969 A1 WO 2022061969A1 CN 2020120206 W CN2020120206 W CN 2020120206W WO 2022061969 A1 WO2022061969 A1 WO 2022061969A1
Authority
WO
WIPO (PCT)
Prior art keywords
inclinometer
motor
inclination
guide wheel
data
Prior art date
Application number
PCT/CN2020/120206
Other languages
English (en)
French (fr)
Inventor
周洪军
彭建华
李仁民
方雷
Original Assignee
南京壹捌零安全科技有限公司
南京深地智能建造技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京壹捌零安全科技有限公司, 南京深地智能建造技术研究院有限公司 filed Critical 南京壹捌零安全科技有限公司
Publication of WO2022061969A1 publication Critical patent/WO2022061969A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link

Definitions

  • the invention relates to an inclination measuring robot and an inclination measurement method.
  • Inclination monitoring refers to the use of instruments and equipment to monitor the inclination angle of the earth, which is widely used in the monitoring of slopes, landslides and urban deep foundation pits.
  • Inclination monitoring During the construction and excavation of deep foundation pits, there are often hidden dangers of quality accidents, resulting in dangerous situations in the foundation pits and damage to adjacent buildings and underground pipelines. Therefore, it is necessary to understand the deep deformation of the foundation pits to determine and optimize the construction plan.
  • a hole is first drilled in the soil at the monitoring position, and then the inclinometer pipe is buried in the drill hole, so that the inclinometer pipe can be deformed in coordination with the body, and the digital vertical movable inclinometer is used.
  • Instrument probe, control cable, pulley device and readout instrument to observe the deformation of the inclinometer.
  • the bottom of the probe inclinometer pipe moves to the top, pauses at a half-meter interval and conducts the measurement of inclination.
  • the inclinometer has problems such as inconvenient cable winding and manual wire-paying measurement errors during use.
  • Wireless automatic inclinometers include wireless foundation pit inclinometers, wireless inclinometers while drilling, and wireless fiber-optic gyro inclinometers.
  • the wireless fiber optic gyroscope inclinometer has the disadvantages of high cost and high technical threshold, and it is rarely used in practical engineering.
  • the wireless measuring-while-drilling inclinometer has a fixed operating environment and is a new type of inclinometer tool suitable for vertical wells and vertical well sections.
  • the wireless foundation pit inclinometer uses bluetooth, wifi and other communication methods, and the fixed inclinometer is more convenient. However, none of them have an integral inclination measuring mechanism and cannot achieve complete automatic measurement.
  • the Internet of Things technology is increasingly being applied to the monitoring of natural disasters and other fields.
  • the inclinometer probe similar to the movable inclinometer is fixedly installed in the inclinometer pipe, and the data is transmitted through the network to realize automatic monitoring.
  • the parallel connection between the probes there are many outgoing wires, and the number of installed probes is limited by the size and cost of the inclined measuring tube, resulting in insufficient detection depth or too large probe spacing, resulting in low accuracy.
  • the fiber grating sensor has the characteristics of anti-electromagnetic interference, anti-corrosion and good durability, and it is small in size and small in mass, easy to lay and install, and has little impact on the performance and mechanical parameters of the monitored object after implantation.
  • Fiber Bragg grating sensing technology and distributed fiber optic sensors have been used to monitor deep horizontal displacement, but fiber testing instruments have the disadvantages of high cost and high technical threshold, and they are rarely used in practical projects.
  • an inclinometer robot Aiming at the current situation of inclinometer instruments, aiming at real accuracy, an inclinometer robot is designed. Using wireless communication technology, microprocessor technology and robot technology, the multi-point flexible data acquisition, data wireless transmission and detection process control are realized.
  • an inclinometer robot which includes an inclinometer pipe, an inclinometer part and a driving device;
  • the inclinometer pipe includes an underground pipe extending in a vertical direction and a
  • the steering tube is provided with an outer casing on the outer casing of the steering tube, the steering tube is rotatably installed in the outer casing, and the underground pipe and the steering tube are connected up and down;
  • the inclinometer includes a protective tube, which is installed in the The inclination measuring assembly in the protective tube is provided with a roller on the outer side of the protective tube, and the protective tube has a first central axis extending along the vertical direction;
  • the inner wall of the underground pipe is provided with a first guide groove for holding the roller, and the first guide groove extends in the vertical direction;
  • the inner wall of the steering pipe is provided with a second guide groove for holding the roller.
  • the second guide grooves extend in the vertical direction; the number of the first guide grooves in the underground pipe is set to keep the position of the inclinometer still, when the steering pipe rotates 180° around the first central axis, the rollers can still be clamped in the first guide groove;
  • the first guide groove can be communicated with the second guide groove, so that the roller can enter the second guide groove along the first guide groove, and when the steering tube rotates 180°, the roller can still enter the second guide groove along the first guide groove.
  • the driving device includes a lifting part and a turning part, the lifting part includes a winch mounted on a support table, a guide wheel and a first motor for driving the winch to rotate; a traction rope is wound on the winch, and the traction rope is guided
  • the wheel is connected to the protective tube, and driven by the first motor, the winch can drive the inclinometer to move up and down in the inclinometer tube through the traction rope, and drive the guide wheel to rotate;
  • the second motor used to drive the steering tube to rotate; the first motor and the second motor are both stepping motors or servo motors.
  • a steering tube is provided, so that when the inclinometer enters the steering tube, the steering tube can be rotated, so that the inclinometer can be rotated 180°, so that the inclinometer can be measured twice in the same inclination direction , using the average of the two measurements as the slope value at a certain height.
  • the first motor and the second motor are used to drive the inclinometer to move up and down and the steering tube to rotate, respectively. Since the first motor and the second motor are both stepper motors or servo motors, they can be positioned accurately, thus ensuring the measurement accuracy.
  • the inclinometer moves up and down, it can be detected at the determined height position, and the inclinometer can accurately complete the 180° steering, which provides a guarantee for the accurate measurement of the inclination.
  • the outer casing is fixed on the ground; the inner wall of the upper end of the outer casing is radially outwardly recessed to form an upper diameter expansion portion, so that the inner wall of the upper end of the outer casing is formed.
  • the inner wall of the lower end of the outer sleeve is radially outwardly recessed to form a lower diameter expansion portion, so that the inner wall of the lower end of the outer sleeve forms a lower stepped portion facing downward;
  • the upper fixing piece is sleeved on the steering tube
  • an upper angular contact bearing is installed between the upper fixing part and the upper step part;
  • the lower fixing part is sleeved on the lower end of the steering tube, and a lower angular contact bearing is installed between the lower fixing part and the lower step part, so that the steering tube can rotate freely Install the outer casing;
  • the underground pipe, the steering pipe and the outer casing are arranged coaxially, and the steering pipe is arranged just above the underground pipe.
  • a gap is provided between the steering tube and the underground tube.
  • the gap between the steering pipe and the underground pipe is preferably 0.8-1.2 mm.
  • a centering flange is embedded in the ground, a positioning portion is provided on the upper side of the centering flange, and the outer sleeve is fixedly clamped on the positioning portion.
  • the inclinometer robot also includes a measurement control system, the measurement control system includes a central processing unit, a first motor control unit, a second motor control unit and a storage unit connected to the central processing unit, which are also connected to the central processing unit.
  • the measurement control system includes a central processing unit, a first motor control unit, a second motor control unit and a storage unit connected to the central processing unit, which are also connected to the central processing unit.
  • guide wheel speed detection unit and position detection unit are also connected to the central processing unit.
  • the first motor control unit which is controlled by the central processing unit and controls the operation of the first motor
  • the second motor control unit which is controlled by the central processing unit and controls the operation of the second motor
  • the storage unit stores the inclination measurement mode and the setting control data, and the setting control data is at least one of the first group of control data and the second group of control data, wherein the first group of control data includes the guide wheel.
  • the second set of control data includes the second set rotational speed of the guide wheel, the second set rotation time of the guide wheel, the second set number of rotations of the guide wheel, the second set stop time between two rotations of the guide wheel, first measurement of height;
  • the inclination measurement method is any one of two detection methods of detection from top to bottom or detection from bottom to top;
  • the guide wheel speed detection unit is used to detect the speed of the guide wheel and send the speed to the central processing unit;
  • the position detection unit is used to detect whether the inclinometer is located in the steering tube, and send the detection result to the central processing unit;
  • the position detection unit includes a Hall switch installed in the rotating tube and a magnet installed on the inclinometer. The switch is connected to the central processing unit;
  • a central processing unit for executing any one of the first program and the second program
  • the first procedure includes the following steps:
  • step (3) Detect whether the inclinometer is located in the steering tube through the detection data of the position detection unit, when the inclinometer is not located in the steering tube, issue a command to the first motor control unit to start the first motor, and lift the inclinometer to the steering In the tube, then perform step (3); or when the inclinometer is located in the steering tube, perform step (3);
  • the position detection unit When the position detection unit detects that the inclinometer is located in the steering tube, it sends the detection result to the central processing unit, and the central processing unit sends a command to the second motor control unit to make the second motor rotate forward, drive the steering tube to rotate 180° forward, drive the The inclinometer rotates 180° forward;
  • the second procedure includes the following steps:
  • the external input command includes an inclination measurement mode, and the inclination measurement mode is to detect from bottom to top;
  • step (10) Detect whether the inclinometer is located in the steering tube through the detection data of the position detection unit, when the inclinometer is not located in the steering tube, issue a command to the first motor control unit to start the first motor, and lift the inclinometer to the steering In the tube, then perform step (10); or when the inclinometer is located in the steering tube, perform step (10);
  • the position detection unit When the position detection unit detects that the inclinometer is located in the steering tube, it sends the detection result to the central processing unit, and the central processing unit sends a command to the second motor control unit to make the second motor rotate forward, drive the steering tube to rotate 180° forward, drive the The inclinometer rotates 180° forward;
  • (13) issue an order to the first motor control unit again, start the first motor, make the first motor rotate forward, and sink the inclinometer to the first measurement position;
  • Two measuring method programs are set up in the measuring system of the inclinometer robot, and one of them can be selected individually according to different needs. In the two measurement method programs, two measurements are made, and the average value of the two measurements is the final value. Accurate, there are zero drift and instrument assembly errors in a single test, and this error can be well eliminated by using two tests.
  • the inclinometer assembly includes an inclination detection part and a battery module, and a wireless charging module is arranged on the ground, the wireless charging module is used for wirelessly charging the battery module, and the battery module is connected with the inclination detection part. connection for supplying power to the inclination sensing part;
  • the inclination detection part includes an inclination sensor, a data storage module, a LORA wireless data transmitter, an acceleration sensor and a microprocessor, and the inclination sensor, the data storage module, the LORA wireless data transmitter and the acceleration sensor are respectively connected with the microprocessor; the LORA The wireless data transmitter is connected to an external remote server and is used to send data to the remote server; wherein:
  • the tilt sensor is used to detect tilt data and store the data in the data storage module
  • Acceleration sensor used to detect the acceleration of inclination
  • Microprocessor for coordinating the work of the inclination sensor, data storage module, LORA wireless data transmitter and acceleration sensor;
  • step (3) and step (5) when the acceleration sensor detects that the downward acceleration is zero and lasts for the first set time, the inclination sensor collects the detection data, and stores the collected data in the data In the storage module, the first set time is less than the first set stop time between two rotations of the guide wheel;
  • step (11) and step (14) when the acceleration sensor detects that the upward acceleration is zero and continues for the second set time, the inclination sensor collects the detection data, and stores the collected data in the data storage Within the module, the second set time is less than the second set stop time between two rotations of the guide wheel.
  • a data storage module is set up. During the detection process, the obtained detection data is temporarily stored in the storage module.
  • the detection data is transmitted through the LORA wireless data transmitter.
  • the data is sent to an external remote server to avoid the disadvantage that the inclinometer cannot be sent out due to signal shielding when the inclinometer is located underground.
  • Using the LORA wireless data transmitter to transmit the detection data can reduce the arrangement of data lines.
  • the reduction of data lines can reduce the impact on construction.
  • the setting of the acceleration sensor can make the detection of data more accurate and controllable.
  • the detection of inclinometer data basically relies on the inclination sensor to detect a large amount of data, and the stable part of the data is taken as the final detection data.
  • the detection method can detect the inclination, it needs to process a large amount of detection data, which not only increases the calculation amount of the processor, but also cannot accurately control the detection process.
  • an acceleration sensor is used to determine the detection time. It can reduce the number of detections, thereby reducing the processing of detection data, improving the detection effect, and improving the detection accuracy.
  • appropriate detection equipment can be selected to control the detection cost.
  • the wireless charging module charges the battery to the battery.
  • the module is wirelessly charged.
  • the measurement control system further includes a power detector connected to the central processing unit, and the power detector is used to detect the input power of the first motor;
  • the first motor when the first motor is powered off, after the first motor restores power supply, the first motor is rotated forward, the inclinometer is lowered along the inclinometer tube, and the input power of the first motor is detected.
  • the detector detects that the input power of the first motor is lower than the set power, preferably when the power detector detects that the input power of the first motor is lower than 20% of the set power, it is determined that the inclinometer reaches the bottom of the underground pipe , and then reverse the first motor, lift the inclinometer into the steering tube, and then perform the corresponding steps according to the side inclination:
  • step (2)-step (7) When the inclination measurement method is to detect from top to bottom, then perform step (2)-step (7);
  • step (9)-step (16) is performed.
  • this design can actively respond to power failures.
  • the system can re-detect itself without manual intervention, which can reduce the workload of monitoring personnel and improve the working effect of the equipment.
  • step (10) and step (13) the 3rd set rotation time of the guide wheel and the 3rd set rotation time of the guide wheel in the storage unit, in step (10) and step (13),
  • the guide wheel is controlled to rotate at the third set rotation speed, and when the third set rotation time is reached, the inclinometer reaches the first measurement height.
  • the measurement control system further includes a power detector connected to the central processing unit, and the power detector is used to detect the input power of the first motor;
  • the input power of the first motor is detected, and when the power detector detects the input power of the first motor
  • the input power is lower than the set power, it is determined that the inclinometer reaches the bottom of the underground pipe, that is, the inclinometer reaches the first measurement height.
  • the above method can also accurately determine whether the inclinometer reaches the bottom of the inclinometer pipe, that is, whether it reaches the bottom of the underground pipe.
  • the present application also provides an inclination measurement method, which is performed by the above-mentioned inclinometer robot, which is any one of the first measurement method and the second measurement method;
  • the first measurement method includes the following steps:
  • the central processing unit accepts an externally input start command, and the external input command includes an inclination measurement mode, and the inclination measurement mode is to detect from top to bottom;
  • step (3) Detect whether the inclinometer is located in the steering tube through the position detection unit; when the inclinometer is not located in the steering tube, issue a command to the first motor control unit, start the first motor, lift the inclinometer into the steering tube, and then Perform step (3); or when the inclinometer is located in the steering tube, perform step (3);
  • the central processing unit accepts an externally input start command, and the external input command includes an inclination measurement mode, and the inclination measurement mode is to detect from bottom to top;
  • step (10) Detect whether the inclinometer is located in the steering tube through the position detection unit, when the inclinometer is not located in the steering tube, issue a command to the first motor control unit, start the first motor, lift the inclinometer into the steering tube, and then Perform step (10); or when the inclinometer is located in the steering tube, perform step (10);
  • this inclination measurement method two measurement methods are set for selection, and in the specific detection process, the selection can be made according to specific needs.
  • the two measurement method programs two measurements are made, and the average value of the two measurements is the final value. Accurate, there are zero drift and instrument assembly errors in a single test, and this error can be well eliminated by using two tests.
  • the inclinometer includes an inclination detection part and a battery module, and a wireless charging module is arranged on the ground, the wireless charging module is used for wirelessly charging the battery module, and the battery module and the inclination detection part connect;
  • the inclination detection part includes an inclination sensor, a data storage module, a LORA wireless data transmitter, an acceleration sensor and a microprocessor, and the inclination sensor, the data storage module, the LORA wireless data transmitter and the acceleration sensor are respectively connected with the microprocessor; the LORA The wireless data transmitter is connected to an external remote server and is used to send data to the remote server; wherein:
  • the tilt sensor is used to detect tilt data and store the data in the data storage module
  • Acceleration sensor used to detect the acceleration of inclination
  • Microprocessor for coordinating the work of the inclination sensor, data storage module, LORA wireless data transmitter and acceleration sensor;
  • step (3) and step (5) when the acceleration sensor detects that the downward acceleration is zero and lasts for the first set time, the inclination sensor collects the detection data, and stores the collected data in the data In the storage module, the first set time is less than the set stop time between two rotations of the guide wheel;
  • step (11) and step (14) when the acceleration sensor detects that the upward acceleration is zero and continues for the second set time, the inclination sensor collects the detection data, and stores the collected data in the data storage Within the module, the second set time is less than the second set stop time between two rotations of the guide wheel.
  • a data storage module is set up. During the detection process, the obtained detection data is temporarily stored in the storage module.
  • the detection data is transmitted through the LORA wireless data transmitter.
  • the data is sent to an external remote server to avoid the disadvantage that the inclinometer cannot be sent out due to signal shielding when the inclinometer is located underground.
  • Using the LORA wireless data transmitter to transmit the detection data can reduce the arrangement of data lines.
  • the reduction of data lines can reduce the impact on construction.
  • the setting of the acceleration sensor can make the detection of data more accurate and controllable.
  • the detection of inclinometer data basically relies on the inclination sensor to detect a large amount of data, and the stable part of the data is taken as the final detection data.
  • the detection method can detect the inclination, it needs to process a large amount of detection data, which not only increases the calculation amount of the processor, but also cannot accurately control the detection process.
  • an acceleration sensor is used to determine the detection time. It can reduce the number of detections, thereby reducing the processing of detection data, improving the detection effect, and improving the detection accuracy.
  • appropriate detection equipment can be selected to control the detection cost.
  • FIG. 1 is a schematic structural diagram of an embodiment of the present invention.
  • FIG. 2 is a left side view of FIG. 1 .
  • FIG. 3 is an enlarged view of the direction A-A in FIG. 1 .
  • FIG. 4 is an enlarged view of part B in FIG. 1 .
  • FIG. 5 is an enlarged view of part C in FIG. 1 .
  • FIG. 6 is a diagram of a measurement control system.
  • Figure 7 is a system diagram of the inclinometer assembly.
  • the inclinometer robot includes an inclinometer tube, an inclinometer portion and a driving device.
  • the inclinometer includes an underground pipe 11 extending in a vertical direction and a steering pipe 16 arranged on the upper side of the underground pipe.
  • An outer casing 63 is provided on the outer casing of the steering pipe, and the steering pipe is rotatably installed in the outer casing.
  • the underground pipe and the steering pipe are connected up and down.
  • the inclinometer portion includes an inclinometer 30, the inclinometer 30 includes a protection tube 31, an inclinometer assembly installed in the protection tube, two sets of rollers are installed on the outer side of the protection tube 31, and the protection tube 31 has vertical
  • the first central axis 311 extends in the direction.
  • the length of the steering tube is such that at least the two sets of rollers of the inclinometer are located in the steering tube.
  • each group of rollers includes two rollers 32 arranged in the vertical direction, and each roller in one group of rollers is vertically opposite to one roller in the other group of rollers.
  • Two rollers in each set of rollers are arranged symmetrically on the outside of the protective tube.
  • the inner wall of the underground pipe 11 is provided with two first guide grooves 12 for holding the roller
  • the inner wall of the steering pipe 16 is provided with two second guide grooves 18 for holding the roller.
  • Both the guide groove 12 and the second guide groove 18 extend in the vertical direction.
  • Two of the first guide grooves are symmetrically arranged on the inner wall of the underground pipe, and the two second guide grooves are symmetrically arranged on the inner wall of the steering pipe.
  • the two first guide grooves can be communicated with a second guide groove respectively.
  • the roller can enter the second guide groove along the first guide groove.
  • the two first guide grooves can still communicate with one second guide groove respectively, so that the roller can still enter the second guide groove along the first guide groove.
  • the number of the first guide grooves in the underground pipe is set to keep the position of the inclinometer still, and when the steering pipe rotates 180° around the first central axis, the roller can still be clamped in the first guide groove; the The first guide groove can be communicated with the second guide groove, so that the roller can enter the second guide groove along the first guide groove, and when the steering tube rotates 180°, the roller can still enter the second guide groove along the first guide groove. in the guide groove.
  • the numbers of the first guide grooves and the second guide grooves are the same as the number of rollers in each group of rollers. It can be understood that in other embodiments, the numbers of the first guide grooves and the second guide grooves may be larger. the number in each set of rollers, so that the same inclinometer can be used to measure the inclination in different directions,
  • each group of rollers may also include an even number of rollers such as four or six rollers evenly arranged on the protective tube along the circumferential direction, but it is not appropriate to set too many rollers or an odd number of rollers. Too many rollers have no benefit other than increased cost. For an odd number of rollers, a larger number of first guide grooves need to be provided, so that when the steering tube is rotated 180°, the rollers can still enter the second guide groove along the first guide groove.
  • the driving device includes a lifting part and a turning part
  • the lifting part includes a winch 53 installed on the support table 51, a guide wheel 54 and a first motor 52 for driving the winch to rotate; a traction rope 55 is wound on the winch 53 , the traction rope 55 is connected to the protective tube 3 through the guide wheel 54.
  • the winch Under the drive of the first motor 52, the winch can drive the inclinometer 30 to reciprocate in the inclinometer tube through the traction rope 55 in the up and down direction, and drive the guide Wheel turns 54.
  • the steering part includes a second motor 42 mounted on the support table for driving the steering tube to rotate.
  • the first motor and the second motor are both stepper motors. It can be understood that in other embodiments, the first motor and the second motor may also be servo motors, or one of the two may be a stepper motor, and the other may be a stepper motor. The one is the servo motor.
  • the output shaft of the second motor 42 extends downward along the vertical direction
  • the first pulley 43 is installed on the output shaft of the second motor
  • the second pulley is fixedly installed on the outer wall of the steering tube 16 19.
  • the timing belt 44 is wrapped around the first pulley 43 and the second pulley 19.
  • a centering flange 61 is buried on the ground.
  • the centering flange 61 includes a flange 611 with a center hole.
  • the flange 611 extends in the horizontal direction.
  • the limit ring 612 is formed by protruding upward from the upper surface 614 of the flange, and the outer sleeve is fixedly supported on the upper surface 614 of the flange and abuts on the inner peripheral surface 613 of the limit ring , the inner peripheral surface and the central hole of the limiting ring are coaxially arranged with the outer sleeve.
  • Anchor bolts 62 fix the centering flange to the ground.
  • the outer sleeve 63 is fixedly connected to the support platform 51 through the connecting plate 511 .
  • the limiting ring becomes a positioning portion, that is, a positioning portion is provided on the upper side surface of the centering flange, and the outer sleeve is fixedly clamped on the positioning portion. That is, the outer sleeve 63 is indirectly fixed on the ground through the centering flange, and it can be understood that in other implementations, the outer sleeve 63 can also be directly fixed on the ground by using a connector or concrete.
  • the underground pipe, the steering pipe and the outer casing are arranged coaxially, and the steering pipe is arranged just above the underground pipe.
  • the first central axis 311 becomes the common central axis of the underground pipe, steering pipe and outer casing.
  • the inner wall of the upper end of the outer sleeve 63 is recessed radially outward to form an upper enlarged diameter portion 631, so that the inner wall of the upper end of the outer sleeve forms an upper step portion 632 facing upward; the inner wall of the lower end of the outer sleeve 63 is recessed radially outwards
  • a lower enlarged diameter portion 636 is formed, and a lower step portion 637 facing downward is formed on the inner wall of the lower end of the outer sleeve.
  • the upper angular contact bearing 67 is sleeved on the upper end of the steering tube 16 and pressed against the upper step portion.
  • the upper hoop 66 is tightly fixed on the upper end of the steering tube. Press on the upper step.
  • the upper hoop 66 is formed as an upper fixing member.
  • the lower angular contact bearing 64 is sleeved on the lower end of the steering tube 16 and pressed against the lower step.
  • the lower hoop 65 is tightly fixed on the lower end of the steering tube, and the lower hoop 65 tightly presses the lower angular contact bearing 64 on the lower step. Ministry.
  • the lower hoop 65 is formed as a lower fixing member.
  • the upper angular contact bearing 67 and the lower angular contact bearing 64 allow the steering tube to be rotatably mounted on the outer sleeve.
  • an upper angular contact bearing is installed between the upper fixing member and the upper step portion, and a lower angular contact bearing is installed between the lower fixing member and the lower step portion, so that the steering tube is rotatably installed on the outer sleeve.
  • the gap between the lower end surface 17 of the steering tube and the upper end surface 13 of the underground tube there is a gap between the lower end surface 17 of the steering tube and the upper end surface 13 of the underground tube, and the gap is specifically 1 mm. It can be understood that, in other embodiments, the gap between the steering tube and the underground tube may also be 0.8mm, 0.9mm, 1.1mm or 1.2mm, and of course other data may be between 0.8-1.2mm.
  • the inclinometer robot further includes a measurement control system 700 , the measurement control system 700 includes a central processing unit 701 , a first motor control unit 702 connected to the central processing unit 701 , a second motor
  • the control unit 703 and the storage unit 704 are also connected with a guide wheel speed detection unit 705 , a position detection unit 706 and a power detector 709 on the central processing unit.
  • the first motor control unit is controlled by the central processing unit and controls the operation of the first motor.
  • the second motor control unit is controlled by the central processing unit and controls the operation of the second motor.
  • the storage unit stores the inclination measurement mode and setting control data
  • the setting control data includes a first group of control data and a second group of control data
  • the first group of control data includes the first set rotational speed of the guide wheel, the guide wheel The first set rotation time of the guide wheel, the first set number of rotations of the guide wheel, and the first set stop time between two rotations of the guide wheel.
  • the second set of control data includes the second set rotational speed of the guide wheel, the second set rotation time of the guide wheel, the second set number of rotations of the guide wheel, the second set stop time between two rotations of the guide wheel, First measurement of height.
  • the set control data may include only the first group of control data or only the second group of control data.
  • the inclination measurement method includes two detection methods: detection from top to bottom or detection from bottom to top. It can be understood that, in other embodiments, the inclination measurement method may further include detection from top to bottom or only from bottom to top.
  • the guide wheel speed detection unit is used to detect the rotation speed of the guide wheel and send the rotation speed to the central processing unit.
  • the position detection unit is used to detect whether the inclinometer is located in the steering tube, and send the detection result to the central processing unit; the position detection unit includes a Hall switch installed in the rotating tube and a magnet installed on the inclinometer. The switch is connected to the central processing unit.
  • the first set rotation speed and the second set rotation speed of the guide wheel are both capable of making the inclinometer move in the vertical direction at a speed of 0.05/sec.
  • the first set rotation time and the second set rotation time of the guide wheel Both are 10 seconds, the first set number of rotations and the second set number of rotations of the guide wheel are both 10 times, and the first set stop time and the second set stop time between two rotations of the guide wheel are both 15 Second.
  • the first set rotational speed and the second set rotational speed of the guide wheel may also be different.
  • the first set rotational speed of the guide wheel may be set to enable the inclinometer to rotate at a speed of 0.04/sec. The speed moves in the vertical direction
  • the second set rotational speed of the guide wheel is set to enable the inclinometer to move in the vertical direction at a speed of 0.09/sec.
  • the first set rotation time and the second set rotation time of the guide wheel may also be different.
  • the first set rotation time of the guide wheel is 8 seconds
  • the second set rotation time is 15 seconds.
  • the first set number of rotations and the second set number of rotations of the guide wheel may also be different, for example, the first set number of rotations of the guide wheel is 8 times, and the second set number of rotations is 20 times.
  • the first set stop time and the second set stop time between two rotations of the guide wheel can also be different.
  • the first set stop time between two rotations of the guide wheel is 12 seconds
  • the second set stop time is 12 seconds. for 19 seconds.
  • the settings of the above data are all exemplary, and in specific operations, specific settings can be made according to different requirements.
  • the guide wheel speed detection unit 705 is used to detect the rotation speed of the guide wheel 54 and send the rotation speed to the central processing unit; in this embodiment, the guide wheel speed detection unit 705 is a rotary encoder (specific model).
  • the position detection unit 706 is used to detect whether the inclinometer 30 is located in the steering tube 16, and send the detection result to the central processing unit; the position detection unit 706 includes a Hall switch 707 installed on the inner wall of the rotating tube and a The magnet 708 on the inclinometer is specifically installed on the inner wall of the protective tube 31 , and the Hall switch is connected to the central processing unit 701 .
  • the power detector is used to detect the input power of the first motor.
  • the power detector is a power meter.
  • a central processing unit 701 configured to execute any one of the first program and the second program
  • the first procedure includes the following steps:
  • the position detection unit When the position detection unit detects that the inclinometer is located in the steering tube, it sends the detection result to the central processing unit, and the central processing unit sends a command to the second motor control unit to make the second motor rotate forward, drive the steering tube to rotate 180° forward, drive the The inclinometer rotates 180° forward;
  • the second procedure includes the following steps:
  • the position detection unit When the position detection unit detects that the inclinometer is located in the steering tube, it sends the detection result to the central processing unit, and the central processing unit sends a command to the second motor control unit to make the second motor rotate forward, drive the steering tube to rotate 180° forward, drive the The inclinometer rotates 180° forward;
  • (13) issue an order to the first motor control unit again, start the first motor, make the first motor rotate forward, and sink the inclinometer to the first measurement position;
  • the inclinometer assembly 800 includes an inclination detection unit 810 and a battery module 820 , and a wireless charging module 830 is provided on the ground.
  • the wireless charging module 830 is used for wirelessly charging the battery module 820 .
  • the battery module is connected to the inclination angle detection part, and is used for supplying power to the inclination angle sensor part.
  • the inclination detection part 810 includes an inclination sensor 802, a data storage module 804, a LORA wireless data transmitter 803, an acceleration sensor 805 and a microprocessor 801.
  • the inclination sensor, the data storage module, the LORA wireless data transmitter and the acceleration sensor are all connected to the processor connection.
  • the LORA wireless data transmitter is connected to an external remote server 850 and used to send data to the remote server 850 . in:
  • the tilt sensor is used to detect tilt data and store the data in the data storage module.
  • the inclination sensor specifically adopts the MPU-6050 inclination sensor.
  • the inclination sensor integrates a three-axis accelerometer and a three-axis gyroscope. By reading the sensor's three-axis acceleration, three-axis angular velocity and other raw data, using the attitude dynamics core algorithm, combined with high Dynamic Kalman filter fusion algorithm to solve real-time stable three-axis attitude angle.
  • the acceleration sensor is used to detect the acceleration of the inclinometer.
  • the acceleration sensor is integrated in the MPU-6050 chip.
  • Microprocessor for coordinating the work of the inclination sensor, data storage module, LORA wireless data transmitter and acceleration sensor.
  • the microprocessor adopts STM32F103 series chips.
  • the microprocessor acts as the core of the entire inclination sensor and controls the measurement of inclination, data storage and wireless communication.
  • the data storage module 804 is an AT24C04 chip.
  • the LORA wireless data transmitter 803 is the SX1268 chip, which is a long-distance, low-power wireless transceiver and a high-performance Internet of Things wireless transceiver.
  • the battery module 820 includes a rechargeable battery 808 and a T3168 chip 807 connected to the rechargeable battery.
  • the T3168 chip is a charging receiving end for receiving the electric energy sent by the wireless charging module.
  • the wireless charging module is the XKT-510 chip, and the wireless charging module is the charging transmitter.
  • the XKT-510 chip is used to cooperate with the charging circuit T3168 chip as a rechargeable battery to charge the rechargeable battery.
  • step (3) and step (5) when the acceleration sensor detects that the downward acceleration is zero and lasts for the first set time, the inclination sensor collects the detection data, and stores the collected data in the data In the storage module, the first set time is less than the set stop time between two rotations of the guide wheel. The first set time is 11 seconds.
  • step (11) and step (14) when the acceleration sensor detects that the upward acceleration is zero and continues for the second set time, the inclination sensor collects the detection data, and stores the collected data in the data storage within the module, the second set time is less than the second set stop time between two rotations of the guide wheel.
  • the first set time is 12 seconds.
  • the wireless charging module wirelessly charges the battery module.
  • the detector detects that the input power of the first motor is lower than the set power, it determines that the inclinometer has reached the bottom of the underground pipe, and then reverses the first motor, lifts the inclinometer into the steering tube, and executes the operation according to the side slope method.
  • step (2)-step (7) When the inclination measurement method is to detect from top to bottom, then perform step (2)-step (7);
  • step (98)-step (16) is performed.
  • the power detector detects that the input power of the first motor is lower than 20% of the set power, it is determined that the inclinometer reaches the bottom of the underground pipe.
  • the setting of the first motor is The constant power is 10W.
  • the power detector detects that the input power of the first motor is lower than 2W, it is determined that the inclinometer reaches the bottom of the underground pipe.
  • the storage unit also stores the third set rotation speed of the guide wheel and the third set rotation time of the guide wheel.
  • the guide wheel is controlled to rotate at the third set rotation speed, when When the third set rotation time is reached, the inclinometer reaches the first measurement height.
  • the measurement and control system further includes a power detector connected to the central processing unit, and the power detector is used to detect the input power of the first motor;
  • the input power of the first motor is detected, and when the power detector detects the input power of the first motor
  • the input power is lower than the set power, it is determined that the inclinometer reaches the bottom of the underground pipe, that is, the inclinometer reaches the first measurement height.
  • the inclination measurement method is specifically performed by the above-mentioned inclination measuring robot.
  • the first measurement method is specifically adopted, which includes the following steps:
  • the central processing unit accepts an externally input start command, and the external input command includes an inclination measurement mode, and the inclination measurement mode is to detect from top to bottom;
  • step (3) Detect whether the inclinometer is located in the steering tube through the position detection unit; when the inclinometer is not located in the steering tube, issue a command to the first motor control unit, start the first motor, lift the inclinometer into the steering tube, and then Perform step (3); or when the inclinometer is located in the steering tube, perform step (3);
  • the inclinometer includes an inclination detection part and a battery module, a wireless charging module is provided on the ground, the wireless charging module is used for wirelessly charging the battery module, and the battery module is connected with the inclination detection part;
  • the inclination detection part includes an inclination sensor, a data storage module, a LORA wireless data transmitter, an acceleration sensor and a microprocessor, and the inclination sensor, the data storage module, the LORA wireless data transmitter and the acceleration sensor are respectively connected with the microprocessor; the LORA The wireless data transmitter is connected to an external remote server and is used to send data to the remote server; wherein:
  • the tilt sensor is used to detect tilt data and store the data in the data storage module
  • Acceleration sensor used to detect the acceleration of inclination
  • Microprocessor for coordinating the work of the inclination sensor, data storage module, LORA wireless data transmitter and acceleration sensor.
  • step (3) and step (5) when the acceleration sensor detects that the downward acceleration is zero and lasts for the first set time, the inclination sensor collects the detection data, and stores the collected data in the data In the storage module, the first set time is less than the set stop time between two rotations of the guide wheel.
  • the inclination measurement method can also adopt a second measurement method, which includes the following steps:
  • the central processing unit accepts an externally input start command, and the external input command includes an inclination measurement mode, and the inclination measurement mode is to detect from bottom to top;
  • step (9) Detect whether the inclinometer is located in the steering tube through the position detection unit, when the inclinometer is not located in the steering tube, issue a command to the first motor control unit, start the first motor, lift the inclinometer into the steering tube, and then Perform step (9); or when the inclinometer is located in the steering tube, perform step (9);
  • the inclinometer also includes an inclination detection part and a battery module, a wireless charging module is provided on the ground, the wireless charging module is used for wirelessly charging the battery module, and the battery module is connected with the inclination detection part;
  • the inclination detection part includes an inclination sensor, a data storage module, a LORA wireless data transmitter, an acceleration sensor and a microprocessor, and the inclination sensor, the data storage module, the LORA wireless data transmitter and the acceleration sensor are respectively connected with the microprocessor; the LORA The wireless data transmitter is connected to an external remote server and is used to send data to the remote server; wherein:
  • the tilt sensor is used to detect tilt data and store the data in the data storage module
  • Acceleration sensor used to detect the acceleration of inclination
  • Microprocessor for coordinating the work of the inclination sensor, data storage module, LORA wireless data transmitter and acceleration sensor.
  • step (11) and step (14) when the acceleration sensor detects that the upward acceleration is zero and continues for the second set time, the inclination sensor collects the detection data, and stores the collected data in the data storage Within the module, the second set time is less than the second set stop time between two rotations of the guide wheel.

Abstract

一种测斜机器人,其包括测斜管、测斜部和驱动装置;测斜管包括相通的地下管(11)和转向管(16),在转向管(16)外套设有外套管(63);测斜部包括测斜仪(30),测斜仪(30)包括防护管(31)和测斜组件,在防护管(31)外安装有滚轮(32);在地下管(11)内设置有第一导向槽(12),在转向管(16)内设置有第二导向槽(18);转向管(16)转动180°时,滚轮(32)仍能够沿第一导向槽(12)进入到第二导向槽(18)内;驱动装置包括升降部和转向部,升降部包括绞盘(53)、导向轮(54)和第一电机(52);绞盘(53)上的牵引绳(55)经导向轮(54)连接到防护管(31)上;转向部包括第二电机(42)。测斜机器人及倾斜度测量方法,能够对测量点准确定位,从而保证了测斜仪(30)能够在所确定的高度位置进行检测,且使测斜仪(30)准确地完成180°的转向,为倾斜度的准确测量提供保障。

Description

一种测斜机器人及倾斜度测量方法 技术领域
本发明涉及一种测斜机器人及倾斜度测量方法。
背景技术
倾斜监测是指利用仪器设备监测大地内部倾斜角度,广泛用于边坡、滑坡和城市深基坑的监测中。在深基坑的施工开挖过程中,经常伴随着质量事故隐患,致使基坑出现险情,破坏领近建筑以及地下管道,因此需要了解基坑的深层变形情况,以此确定和优化施工方案。
目前普遍采用活动式测斜仪进行人工测读。主要存在以下问题:①测量效率低,测量过程费时费力,无法做到实时监测;②测量仪器的抗干扰性、耐久性和长期稳定性等特点较差,难以适应长期监测的要求。③测量误差大,数据连续性差,采集分析周期长,受现场环境干扰大,不能及时指导施工。
目前的经常使用的自动测斜仪测量时,先在监测位置的土体中钻孔,再将测斜管埋入钻孔之中,使测斜管跟随本体协调变形,采用数字垂直活动测斜仪探头,控制电缆,滑轮装置和读数仪来观测测斜管的变形。观测时,探头测斜管底部向顶部移动,在半米间距处暂停并进行测量倾斜工作。该测斜仪在使用过程中存在线缆绕线不方便、人工放线测量误差等问题。无线的自动测斜仪包括无线基坑测斜仪、无线随钻测斜仪、无线光纤陀螺测斜仪。无线光纤陀螺测斜仪存在昂贵、技术门槛高等缺点在实际工程中应用较少。无线随钻测斜仪使用环境固定,是一种适用于直井及直井段的新型测斜工具。无线基坑测斜仪使用蓝牙、wifi等通信方式,固定式测斜比较方便。但是它们都没有整体的测斜机构,不能实现完全的自动化测量。
随着微电子、无线通信、信息感知、数据处理技术和机器人技术的快速发展,物联网技术越来越多地被应用到自然灾害的监测等领域中。已有的固定式测斜装置通过将类似于活动式测斜仪的测斜探头固定安装在测斜管内,通过网络传输数据以实现自动化监测。但由于探头之间为并联方式,出线较多,安装的探头数量受测斜管尺寸及造价所限,导致探测深度不足或者探头间距过大造成精度不高。
光纤光栅传感器则具有抗电磁干扰、抗腐蚀和耐久性好等特点,且其体积小,质量小,便于铺设和安装,植入后对监测对象的性能和力学参数等影响较小。已有采用光纤布拉格光栅传感技术和分布式光纤传感器对深层水平位移监测进行研究,但是光纤测试仪器存在昂贵、技术门槛高等缺点在实际工程中应用较少。
针对测斜仪器的现状,以实精确性为目标,设计了测斜机器人。使用无线通信技术、微处理器技术和机器人技术,实现了对数据的多点灵活采集、数据无线传输和检测过程控制。
发明内容
为解决上述问题,本申请首先提出了一种测斜机器人,其包括测斜管、测斜部和驱动装置;该测斜管包括沿竖直方向延伸的地下管和设置在地下管上侧的转向管,在转向管外套设有外套管,该转向管转动自如地安装在外套管内,地下管和转向管上下连通;该测斜部包括测斜仪,该测斜仪包括防护管、安装在该防护管内的测斜组件,在防护管的外侧安装有滚轮,该防护管具有沿竖直方向延伸的第一中心轴线;
在地下管的内壁上设置有用于卡持该滚轮的第一导向槽,该第一导向槽沿竖直方向延伸;在转向管的内壁上设置有用于卡持该滚轮的第二导向槽,该第二导向槽沿竖直方向延伸;地下管内的第一导向槽的数量被设置为:保持测斜仪的位置不动,当转向管绕第一中心轴线转动180°时,滚轮仍能够卡持在第一导向槽内;
该第一导向槽能够与第二导向槽相连通,使滚轮能够沿第一导向槽进入到第二导向槽内,且在转向管转动180°时,滚轮仍能够沿第一导向槽进入到第二导向槽内;
该驱动装置包括升降部和转向部,该升降部包括安装在支撑台上的绞盘、导向轮和用于驱动该绞盘转动的第一电机;在该绞盘上缠绕有牵引绳,该牵引绳经导向轮连接到防护管上,在第一电机的驱动下,该绞盘能够经牵引绳带动测斜仪在测斜管内沿上下方向往复移动,并带动导向轮转动;该转向部包括安装在支撑台上的用于驱动转向管转动的第二电机;该第一电机和第二电机均为步进电机或伺服电机。
本申请中,设置了转向管,使测斜仪在进入到转向管内时,转动转向管,能够使测斜仪转动180°,从而能够使测斜仪能够在同一倾斜方向上,进行两次测量,利用两次测量的平均值作为某一高度的倾斜值。其中的第一电机和第二电机分别用来带动测斜仪上下移动和转向管转动,由于第一电机和第二电机均采用步进电机或伺服电机,能够准确地进行定位,从而保证了测斜仪在上下移动时,能够在所确定的高度位置进行检测,且能够使测斜仪准确地完成180°的转向,为倾斜度的准确测量提供保障。
进一步,为保证转向管能够转动自如地安装在外套管上,该外套管固定在地面上;外套管的上端的内壁沿径向向外凹陷形成上扩径部,使外套管的上端的内壁形成一朝向上方的上台阶部;外套管的下端的内壁沿径向向外凹陷形成下扩径部,使外套管的下端的内壁形成一朝向下方的下台阶部;上固定件套装在转向管的上端,在上固定件与上台阶部之间安装有上角接触轴承;下固定件套装在转向管的下端,在下固定件与下台阶部之间安装有下角接触轴承,使转向管转动自如地安装外套管上;
地下管、转向管和外套管同轴设置,且转向管设置在地下管的正上方。
进一步,为了避免转向管在转动时,与地下管发生摩擦,而影响转向管的顺利转动,在转向管与地下管之间具有间隙。转向管与地下管之间的间隙优选为0.8-1.2mm。
具体地,为便于固定外套管,在地面埋设有对中法兰,在该对中法兰的上侧面上设置定位部,该外套管固定卡持在定位部上。
进一步,该测斜机器人还包括测量控制系统,该测量控制系统包括中央处理单元,与中央处理单元连接的第一电机控制单元、第二电机控制单元和存储单元,在该中央处理单元上还连接有导向轮速度检测单元和位置检测单元;其中:
第一电机控制单元,接受中央处理单元的控制,并控制第一电机的运转;
第二电机控制单元,接受中央处理单元的控制,并控制第二电机的运转;
存储单元,存储有测斜方式和设定控制数据,该设定控制数据为第一组控制数据和第二组控制数据两者中的至少之一者,其中第一组控制数据包括导向轮的第一设定转速、导向轮的第一设定转动时间、导向轮的第一设定转动次数、导向轮两次转动之间的第一设定停止时间;
第二组控制数据包括导向轮的第二设定转速、导向轮的第二设定转动时间、导向轮的第二设定转动次数、导向轮两次转动之间的第二设定停止时间、首次测量高度;
该测斜方式为从上向下进行检测或从下向上进行检测两种检测方式中的任意一种;
导向轮速度检测单元,用于检测导向轮的转速,并将转速发送到中央处理单元;
位置检测单元,用于检测测斜仪是否位于转向管内,并将检测结果输送到中央处理单元;该位置检测单元包括安装在旋转管内的霍尔开关和安装在测斜仪上的磁铁,该霍尔开关连接到中央处理单元上;
中央处理单元,用于执行第一程序和第二程序中的任意一种;
该第一程序包括如下步骤:
(1)接收位置检测单元的检测数据和外部输入命令,该外部输入命令包括测斜方式,该测斜方式为从上向下进行检测;
(2)通过位置检测单元的检测数据检测测斜仪是否位于转向管内,当测斜仪不位于转向管内时,向第一电机控制单元发出命令,启动第一电机,将测斜仪提升到转向管内,然后执行步骤(3);或当测斜仪位于转向管内时,执行步骤(3);
(3)向第一电机控制单元发出命令,启动第一电机,使第一电机正转,根据导向轮速度检测单元所检测到的导向轮的转速,控制第一电机,使导向轮依照第一设定转速、第一设定转动时间和导向轮两次转动之间的第一设定停止时间进行转动,直到完成第一设定转动次数;牵引绳带动测斜仪向下移动,在导向轮每次停止转动后,测斜仪记录倾角数据,完成第一次倾角数据检测;
(4)向第一电机控制单元发出命令,使第一电机反转,将测斜仪向上提升到转向管内;
当位置检测单元检测到测斜仪位于转向管内时,向中央处理单元发出检测结果,中央处理单元向第二电机控制单元发出命令,使第二电机正转,带动转向管正转180°,带动测斜仪正转180°;
(5)再次向第一电机控制单元发出命令,启动第一电机,使第一电机正转,根据导向轮速度检测单元所检测到的导向轮的转速,控制第一电机,使导向轮依照第一设定转速、第一设定转动时间和导向轮两次转动之间的第一设定停止时间转动,直到完成第一设定转动次数;牵引绳带动测斜仪向下移动,在导向轮每次停止转动后,测斜仪记录倾角数据,完成第二次倾角数据检测;
(6)向第一电机控制单元发出命令,使第一电机反转,将测斜仪向上提升到转向管内;向第二电机控制单元发出命令,使第二电机反转,带动转向管反转180°,带动测斜仪反转180°;
(7)停止工作,等待下次外部输入命令;
该第二程序包括如下步骤:
(8)接收位置检测单元的检测数据和外部输入命令,该外部输入命令包括测斜方式,该测斜方式为从下向上进行检测;
(9)通过位置检测单元的检测数据检测测斜仪是否位于转向管内,当测斜仪不位于转向管内时,向第一电机控制单元发出命令,启动第一电机,将测斜仪提升到转向管内,然后执行步骤(10);或当测斜仪位于转向管内时,执行步骤(10);
(10)向第一电机控制单元发出命令,启动第一电机,使第一电机正转,将测斜仪下沉到首次测量高度;
(11)向第一电机控制单元发出命令,使第一电机反转,使导向轮依照第二设定转速、第二设定转动时间和导向轮两次转动之间的第二设定停止时间进行转动,直到完成第二设定转动次数;牵引绳带动测斜仪向上移动,在导向轮每次停止转动后,测斜仪记录倾角数据,完成第一次倾角数据检测;
(12)向第一电机控制单元发出命令,使第一电机保持反转,将测斜仪向上提升到转向管内;
当位置检测单元检测到测斜仪位于转向管内时,向中央处理单元发出检测结果,中央处理单元向第二电机控制单元发出命令,使第二电机正转,带动转向管正转180°,带动测斜仪正转180°;
(13)再次向第一电机控制单元发出命令,启动第一电机,使第一电机正转,将测斜仪下沉到首次测量位置;
(14)向第一电机控制单元发出命令,使第一电机反转,根据导向轮速度检测单元所检测到的导向轮的转速,控制第一电机,使导向轮依照第二设定转速、第二设定转动时间和导 向轮两次转动之间的第二设定停止时间转动,直到完成第二设定转动次数;牵引绳带动测斜仪向上移动,在导向轮每次停止转动后,测斜仪记录倾角数据,完成第二次倾角数据检测;
(15)向第一电机控制单元发出命令,使第一电机保持反转,将测斜仪向上提升到转向管内;向第二电机控制单元发出命令,使第二电机反转,带动转向管反转180°,带动测斜仪反转180°;
(16)停止工作,等待下次外部输入命令。
在该测斜机器人的测量系统中设置了两种测量方法程序,根据不同的需要,可以单独选择其中的一种。在两种测量方法程序中,均进行了两次测量,检测结果以两次检测的平均值为最终检测值,并且在两次测量过程中,测斜仪被转动180°,从而使检测数据更加准确,单次检测中,存在零漂及仪器装配误差,采用两次检测可以很好地消除这种误差。
进一步,为了保持测斜组件的正常工作,该测斜组件包括倾角检测部和电池模块,在地面设置有无线充电模块,该无线充电模块用于向电池模块无线充电,该电池模块与倾角检测部连接,用于向倾角传感部供电;
倾角检测部包括倾角传感器、数据存储模块、LORA无线数据传输器、加速度传感器和微处理器,该倾角传感器、数据存储模块、LORA无线数据传输器和加速度传感器均分别与微处理器连接;该LORA无线数据传输器与外部的远程服务器相连接,并用于向该远程服务器发送数据;其中:
倾角传感器,用于检测倾斜数据,并将数据存储到数据存储模块中;
加速度传感器,用于检测测斜的加速度;
微处理器,用于协调倾角传感器、数据存储模块、LORA无线数据传输器和加速度传感器的工作;
在步骤(3)、步骤(5)中,当加速度传感器检测到向下的加速度为零,并持续第一设定时间后,倾角传感器进行检测数据采集,并将所采集到的数据存储在数据存储模块内,该第一设定时间少于导向轮两次转动之间的第一设定停止时间;
在步骤(11)和步骤(14)中,当加速度传感器检测到向上的加速度为零,并持续第二设定时间后,倾角传感器进行检测数据采集,并将所采集到的数据存储在数据存储模块内,该第二设定时间少于导向轮两次转动之间的第二设定停止时间。
本申请中,设置了数据存储模块,在检测过程中,所获得的检测数据被临时存储在存储模块中,在测斜仪上升到测斜管的顶部时,再通过LORA无线数据传输器将检测数据发送到外部的远程服务器中,避免测斜仪位于地下时,由于受到信号屏蔽而无法将数据向外发送的弊端,利用LORA无线数据传输器来传输检测数据,可以减少数据线的排布,当本申请用于基坑的倾斜度检测时,数据线的减少可以降低对施工的影响。
加速度传感器的设置,能够使数据的检测更加准确和具有可控性,在目前,测斜数据的检测基本上依靠倾角传感器来检测大量的数据,取数据稳定的部分作为最终的检测数据,这种检测方法虽然能够对倾斜度进行检测,但是需要对大量的检测数据进行处理,不但增加了处理器的运算量,且无法对检测过程进行精准的控制,本申请中利用加速度传感器来确定检测的时间点,减少检测次数,由此可减少检测数据的处理,提高检测效果,也提高检测精准度,在此基础上,能够根据所选择设备的具体处理能力,来设定恰当的检测速度,提高设备的使用效率,同时也可以根据具体的检测精度要求,来选择适当的检测设备,以控制检测费用。
进一步,为保证测斜仪的正常工作,以及使测斜仪能够随时进行工作,以使测斜仪能够在需要时,随时进行工作,当测斜仪进入到转向管内时,无线充电模块向电池模块进行无线充电。
进一步,为应对突然断电的情况,该测量控制系统还包括连接在中央处理单元上的功率检测器,该功率检测器用于检测第一电机的输入功率;
在检测过程中,当第一电机出现断电情况时,在第一电机恢复供电后,使第一电机正转,将测斜仪沿测斜管下降,检测第一电机的输入功率,当功率检测器检测到第一电机的输入功率低于设定功率时,优选当功率检测器检测到第一电机的输入功率低于设定功率的20%时,,判定测斜仪到达地下管的底部,然后使第一电机反转,将测斜仪提升到转向管内,然后根据侧斜方式执行相应的步骤:
当测斜方式为从上向下进行检测时,然后执行步骤(2)-步骤(7);
当测斜方式为从下向上进行检测时,然后执行步骤(9)-步骤(16)。
利用该设计,可以主动应对断电事故,当发生断电事故时,系统可以自行重新进行检测,而无需人工干预,由此可以降低监控人员的工作量,并提高设备的工作效果。
进一步,为了使测斜仪准确到达首次测量高度,在存储单元中还存储有导向轮的第三设定转速和导向轮的第三设定转动时间,步骤(10)和步骤(13)中,控制导向轮以第三设定转速进行转动,当达到第三设定转动时间时,测斜仪到达首次测量高度。
进一步,该测量控制系统还包括连接在中央处理单元上的功率检测器,该功率检测器用于检测第一电机的输入功率;
当首次测量位置位于地下管的底部时,步骤(10)和步骤(13)中,在测斜仪的下沉过程中,检测第一电机的输入功率,当功率检测器检测到第一电机的输入功率低于设定功率时,判定测斜仪到达地下管的底部,即测斜仪到达首次测量高度。
对于首次测量高度位于测斜管的底部时,采用上述方法也可以准确地判断测斜仪是否到达测斜管的底部,即是否到达地下管的底部。
其次,本申请还提供一种倾斜度测量方法,其采用上述的测斜机器人进行,其为第一测量方法和第二测量方法中的任意一种;
该第一测量方法包括如下步骤:
(1)中央处理单元接受外部输入的启动命令,该外部输入命令包括测斜方式,该测斜方式为从上向下进行检测;
(2)通过位置检测单元检测测斜仪是否位于转向管内;当测斜仪不位于转向管内时,向第一电机控制单元发出命令,启动第一电机,将测斜仪提升到转向管内,然后执行步骤(3);或当测斜仪位于转向管内时,执行步骤(3);
(3)启动第一电机,使第一电机正转,控制第一电机,使导向轮依照第一设定转速、第一设定转动时间和导向轮两次转动之间的第一设定停止时间进行转动,直到完成第一设定转动次数;牵引绳带动测斜仪向下移动,在导向轮每次停止转动后,测斜仪记录倾角数据,完成第一次倾角数据检测;
(4)使第一电机反转,将测斜仪向上提升到转向管内;当测斜仪位于转向管内时,使第二电机正转,带动转向管正转180°,带动测斜仪正转180°;
(5)再次启动第一电机,使第一电机正转,控制第一电机,使导向轮依照第一设定转速、第一设定转动时间和导向轮两次转动之间的第一设定停止时间转动,直到完成第一设定转动次数;牵引绳带动测斜仪向下移动,在导向轮每次停止转动后,测斜仪记录倾角数据;
(6)使第一电机反转,将测斜仪向上提升到转向管内;使第二电机反转,带动转向管反转180°,带动测斜仪反转180°;
(7)停止工作,等待下次外部输入命令;
(8)中央处理单元接受外部输入的启动命令,该外部输入命令包括测斜方式,该测斜方式为从下向上进行检测;
(9)通过位置检测单元检测测斜仪是否位于转向管内,当测斜仪不位于转向管内时,向第一电机控制单元发出命令,启动第一电机,将测斜仪提升到转向管内,然后执行步骤(10);或当测斜仪位于转向管内时,执行步骤(10);
(10)启动第一电机,使第一电机正转,将测斜仪下沉到首次测量高度;
(11)使第一电机反转,控制第一电机,使导向轮依照第二设定转速、第二设定转动时间和导向轮两次转动之间的第二设定停止时间进行转动,直到完成第二设定转动次数;牵引绳带动测斜仪向上移动,在导向轮每次停止转动后,测斜仪记录倾角数据,完成第一次倾角数据检测;
(12)使第一电机保持反转,将测斜仪向上提升到转向管内;当测斜仪位于转向管内时,使第二电机正转,带动转向管正转180°,带动测斜仪正转180°;
(13)再次向第一电机控制单元发出命令,使第一电机正转,将测斜仪下沉到首次测量位置;
(14)再次启动第一电机,使第一电机反转,控制第一电机,使导向轮依照第二设定转速、第二设定转动时间和导向轮两次转动之间的第二设定停止时间转动,直到完成第二设定转动次数;牵引绳带动测斜仪向上移动,在导向轮每次停止转动后,测斜仪记录倾角数据,完成第二次倾角数据检测;
(15)使第一电机保持反转,将测斜仪向上提升到转向管内;使第二电机反转,带动转向管反转180°,带动测斜仪反转180°;
(16)停止工作,等待下次外部输入命令。
在本倾斜度测量方法中,设置了两种测量方法供选择,在具体的检测过程中,可以根据具体的需要进行选择。在两种测量方法程序中,均进行了两次测量,检测结果以两次检测的平均值为最终检测值,并且在两次测量过程中,测斜仪被转动180°,从而使检测数据更加准确,单次检测中,存在零漂及仪器装配误差,采用两次检测可以很好地消除这种误差。
进一步,为了保持测斜组件的正常工作,该测斜仪包括倾角检测部和电池模块,在地面设置有无线充电模块,该无线充电模块用于向电池模块无线充电,该电池模块与倾角检测部连接;
倾角检测部包括倾角传感器、数据存储模块、LORA无线数据传输器、加速度传感器和微处理器,该倾角传感器、数据存储模块、LORA无线数据传输器和加速度传感器均分别与微处理器连接;该LORA无线数据传输器与外部的远程服务器相连接,并用于向该远程服务器发送数据;其中:
倾角传感器,用于检测倾斜数据,并将数据存储到数据存储模块中;
加速度传感器,用于检测测斜的加速度;
微处理器,用于协调倾角传感器、数据存储模块、LORA无线数据传输器和加速度传感器的工作;
在步骤(3)和步骤(5)中,当加速度传感器检测到向下的加速度为零,并持续第一设定时间后,倾角传感器进行检测数据采集,并将所采集到的数据存储在数据存储模块内,该第一设定时间少于导向轮两次转动之间的设定停止时间;
在步骤(11)和步骤(14)中,当加速度传感器检测到向上的加速度为零,并持续第二设定时间后,倾角传感器进行检测数据采集,并将所采集到的数据存储在数据存储模块内,该第二设定时间少于导向轮两次转动之间的第二设定停止时间。
本申请中,设置了数据存储模块,在检测过程中,所获得的检测数据被临时存储在存储模块中,在测斜仪上升到测斜管的顶部时,再通过LORA无线数据传输器将检测数据发送到外部的远程服务器中,避免测斜仪位于地下时,由于受到信号屏蔽而无法将数据向外发送的弊 端,利用LORA无线数据传输器来传输检测数据,可以减少数据线的排布,当本申请用于基坑的倾斜度检测时,数据线的减少可以降低对施工的影响。
加速度传感器的设置,能够使数据的检测更加准确和具有可控性,在目前,测斜数据的检测基本上依靠倾角传感器来检测大量的数据,取数据稳定的部分作为最终的检测数据,这种检测方法虽然能够对倾斜度进行检测,但是需要对大量的检测数据进行处理,不但增加了处理器的运算量,且无法对检测过程进行精准的控制,本申请中利用加速度传感器来确定检测的时间点,减少检测次数,由此可减少检测数据的处理,提高检测效果,也提高检测精准度,在此基础上,能够根据所选择设备的具体处理能力,来设定恰当的检测速度,提高设备的使用效率,同时也可以根据具体的检测精度要求,来选择适当的检测设备,以控制检测费用。
附图说明
图1是本发明的一种实施例的结构示意图。
图2是图1的左视图。
图3是图1中A-A向的放大图。
图4是图1中B部分的放大图。
图5是图1中C部分的放大图。
图6是测量控制系统图。
图7是测斜组件的系统图。
具体实施方式
以下首先对测斜机器人进行说明。
参阅图1-图5,该测斜机器人包括测斜管、测斜部和驱动装置。
该测斜管包括沿竖直方向延伸的地下管11和设置在地下管上侧的转向管16,在转向管外套设有一外套管63,该转向管转动自如地安装在外套管内。地下管和转向管上下连通。
该测斜部包括测斜仪30,该测斜仪30包括防护管31、安装在该防护管内的测斜组件,在防护管31的外侧安装有两组滚轮,该防护管31具有沿竖直方向延伸的第一中心轴线311。
在竖直方向上,转向管的长度至少要使测斜仪的两组滚轮全部位于转向管内。
本实施例中,每组滚轮均包括沿竖直方向设置的两个滚轮32,其中一组滚轮中的每个滚轮均与另一组滚轮中的一个滚轮在竖直方向上相对。每组滚轮中的两个滚轮均对称地布置在防护管的外侧。
在地下管11的内壁上设置有两条用于卡持该滚轮的第一导向槽12,在转向管16的内壁上设置有两条用于卡持该滚轮的第二导向槽18,第一导向槽12和第二导向槽18均沿竖直方 向延伸。其中两条第一导向槽对称地设置在地下管的内壁上,两条第二导向槽对称地设置在转向管的内壁上,两条第一导向槽能够分别与一条第二导向槽相连通,使滚轮能够沿第一导向槽进入到第二导向槽内。当转向管转动180°时,两条第一导向槽仍能够分别与一条第二导向槽相连通,使滚轮仍能够沿第一导向槽进入到第二导向槽内。
即,地下管内的第一导向槽的数量被设置为:保持测斜仪的位置不动,当转向管绕第一中心轴线转动180°时,滚轮仍能够卡持在第一导向槽内;该第一导向槽能够与第二导向槽相连通,使滚轮能够沿第一导向槽进入到第二导向槽内,且在转向管转动180°时,滚轮仍能够沿第一导向槽进入到第二导向槽内。
本实施例中,第一导向槽和第二导向槽的数量均与每组滚轮中的滚轮数量相同,可以理解,在其他实施例中,第一导向槽和第二导向槽的数量还可以多于每组滚轮中的数量,以便于利用同一测斜管测量不同方向的倾斜度,
可以理解,在其他实施例中,每组滚轮还可以包括沿周向均匀地设置在防护管上的四个或六个滚轮等偶数个滚轮,但不宜设置太多数量的滚轮或奇数个滚轮,滚轮数量太多,除增加成本外,已无其它益处。奇数个滚轮,需要设置更多数量的第一导向槽,才能够使转向管在转动180°时,滚轮仍能够沿第一导向槽进入到第二导向槽内。
该驱动装置包括升降部和转向部,该升降部包括安装在支撑台51上的绞盘53、导向轮54和用于驱动该绞盘转动的第一电机52;在该绞盘53上缠绕有牵引绳55,该牵引绳55经导向轮54连接到防护管3上,在第一电机52的驱动下,该绞盘能够经牵引绳55带动测斜仪30在测斜管内沿上下方向往复移动,并带动导向轮转动54。该转向部包括安装在支撑台上的用于驱动转向管转动的第二电机42。该第一电机和第二电机均为步进电机,可以理解,在其他实施例中,第一电机和第二电机还可以为伺服电机,或两者中的一者为步进电机,另一者为伺服电机。
本实施例中,第二电机42的输出轴沿竖直方向向下延伸,在第二电机的输出轴上安装有第一带轮43,在转向管16的外壁上固定安装有第二带轮19,同步带44环绕在第一带轮43和第二带轮19上。
在地面埋设有对中法兰61,该对中法兰61包括具有中心孔的法兰盘611,该法兰盘611沿水平方向延伸,在该法兰盘611的上侧设置有呈环状的限位环612,该限位环由法兰盘的上表面614向上突出而形成,外套管固定支撑在法兰盘的上表面614上,并抵靠在限位环的内周面613上,该限位环的内周面和中心孔均与外套管同轴设置。地脚螺栓62将对中法兰固定在地面。为避免外套管产生倾斜,本实施例中,外套管63经连接板511固定连接支撑台51上。
该限位环形成为定位部,即在该对中法兰的上侧面上设置定位部,该外套管固定卡持在定位部上。也即,该外套管63经对中法兰间接固定在地面上,可以理解,在其他实施中,还可以利用连接件或混凝土将外套管63直接固定在地面上。
请参阅图4和图5,地下管、转向管和外套管同轴设置,且转向管设置在地下管的正上方。第一中心轴线311成为地下管、转向管和外套管的共同的中心轴线。
外套管63的上端的内壁沿径向向外凹陷形成上扩径部631,使外套管的上端的内壁形成一朝向上方的上台阶部632;外套管63的下端的内壁沿径向向外凹陷形成下扩径部636,使外套管的下端的内壁形成一朝向下方的下台阶部637。
上角接触轴承67套设在转向管16的上端,并抵压在上台阶部上,上抱箍66紧密地固定在转向管的上端,该上抱箍66将上角接触轴承67紧密地抵压在上台阶部上。该上抱箍66形成为上固定件。下角接触轴承64套设在转向管16的下端,并抵压在下台阶部上,下抱箍65紧密地固定在转向管的下端,该下抱箍65将下角接触轴承64紧密地抵压在下台阶部上。该下抱箍65形成为下固定件。
上角接触轴承67和下角接触轴承64使转向管转动自如地安装外套管上。
即,在上固定件与上台阶部之间安装有上角接触轴承;在下固定件与下台阶部之间安装有下角接触轴承,使转向管转动自如地安装外套管上。
为避免转向管与地下管产生摩擦,影响转向管的灵活性,在本实施例中,在转向管的下端面17与地下管的上端面13之间具有间隙,该间隙具体为1mm。可以理解,在其他实施例中,转向管与地下管之间的间隙还可以为0.8mm、0.9mm、1.1mm或1.2mm,当然有可以为0.8-1.2mm之间的其他数据。
请参阅图6,在本实施例中,该测斜机器人还包括测量控制系统700,该测量控制系统700包括中央处理单元701,与中央处理单元701连接的第一电机控制单元702、第二电机控制单元703和存储单元704,在该中央处理单元上还连接有导向轮速度检测单元705、位置检测单元706和功率检测器709。其中:
第一电机控制单元,接受中央处理单元的控制,并控制第一电机的运转。
第二电机控制单元,接受中央处理单元的控制,并控制第二电机的运转。
存储单元,存储有测斜方式和设定控制数据,该设定控制数据包括第一组控制数据和第二组控制数据,其中第一组控制数据包括导向轮的第一设定转速、导向轮的第一设定转动时间、导向轮的第一设定转动次数、导向轮两次转动之间的第一设定停止时间。
第二组控制数据包括导向轮的第二设定转速、导向轮的第二设定转动时间、导向轮的第二设定转动次数、导向轮两次转动之间的第二设定停止时间、首次测量高度。
可以理解,在其他实施例中,设定控制数据可以仅包括第一组控制数据或仅包括第二组控制数据。
本实施例中,测斜方式包括从上向下进行检测或从下向上进行检测两种检测方式。可以理解,在其他实施例中,测斜方式可以进包括从上向下进行检测或仅包括从下向上进行检测。
导向轮速度检测单元,用于检测导向轮的转速,并将转速发送到中央处理单元。位置检测单元,用于检测测斜仪是否位于转向管内,并将检测结果输送到中央处理单元;该位置检测单元包括安装在旋转管内的霍尔开关和安装在测斜仪上的磁铁,该霍尔开关连接到中央处理单元上。
导向轮的第一设定转速和第二设定转速均为能够使测斜仪以0.05/秒的速度在竖直方向上移动,导向轮的第一设定转动时间和第二设定转动时间均为10秒,导向轮的第一设定转动次数和第二设定转动次数均为10次,导向轮两次转动之间的第一设定停止时间和第二设定停止时间均为15秒。
当然,在其他实施例中,导向轮的第一设定转速和第二设定转速还可以不同,例如可以将导向轮的第一设定转速设定为能够使测斜仪以0.04/秒的速度在竖直方向上移动,而将导向轮的第二设定转速设定为能够使测斜仪以0.09/秒的速度在竖直方向上移动。
导向轮的第一设定转动时间和第二设定转动时间也可以不同,例如导向轮的第一设定转动时间为8秒,第二设定转动时间为15秒。
导向轮的第一设定转动次数和第二设定转动次数也可以不同,例如导向轮的第一设定转动次数为8次,第二设定转动次数20次。
导向轮两次转动之间的第一设定停止时间和第二设定停止时间也可以不同,例如导向轮两次转动之间的第一设定停止时间为12秒,第二设定停止时间为19秒。
上述各数据的设定均为示例性的,在具体的操作中,可以根据不同的要求进行具体的设定。
导向轮速度检测单元705,用于检测导向轮54的转速,并将转速发送到中央处理单元;本实施例中,导向轮速度检测单元705为旋转编码器(具体型号)。
位置检测单元706,用于检测测斜仪30是否位于转向管16内,并将检测结果输送到中央处理单元;该位置检测单元706包括安装在旋转管的内壁上的霍尔开关707和安装在测斜仪上的磁铁708,该磁铁具体安装在防护管31的内壁上,该霍尔开关连接到中央处理单元701上。
该功率检测器用于检测第一电机的输入功率。其中的功率检测器为一电力表。
中央处理单元701,用于执行第一程序和第二程序中的任意一种;
该第一程序包括如下步骤:
(1)接收位置检测单元708的检测数据和外部输入命令,该外部输入命令包括测斜方式,该测斜方式为从上向下进行检测;
(2)接收位置检测单元708的霍尔开关的检测数据,通过位置检测单元706的检测数据检测测斜仪30是否位于转向管16内,当测斜仪不位于转向管内时,向第一电机控制单元发出命令,启动第一电机,将测斜仪提升到转向管内,然后执行步骤(3);或当测斜仪位于转向管内时,执行步骤(3)。
(3)向第一电机控制单元发出命令,启动第一电机,使第一电机正转,根据导向轮速度检测单元所检测到的导向轮的转速,控制第一电机,使导向轮依照第一设定转速、第一设定转动时间和导向轮两次转动之间的第一设定停止时间进行转动,直到完成第一设定转动次数;牵引绳带动测斜仪向下移动,在导向轮每次停止转动后,测斜仪记录倾角数据,完成第一次倾角数据检测;
(4)向第一电机控制单元发出命令,使第一电机反转,将测斜仪向上提升到转向管内;
当位置检测单元检测到测斜仪位于转向管内时,向中央处理单元发出检测结果,中央处理单元向第二电机控制单元发出命令,使第二电机正转,带动转向管正转180°,带动测斜仪正转180°;
(5)再次向第一电机控制单元发出命令,启动第一电机,使第一电机正转,根据导向轮速度检测单元所检测到的导向轮的转速,控制第一电机,使导向轮依照第一设定转速、第一设定转动时间和导向轮两次转动之间的第一设定停止时间转动,直到完成第一设定转动次数;牵引绳带动测斜仪向下移动,在导向轮每次停止转动后,测斜仪记录倾角数据,完成第二次倾角数据检测;
(6)向第一电机控制单元发出命令,使第一电机反转,将测斜仪向上提升到转向管内;向第二电机控制单元发出命令,使第二电机反转,带动转向管反转180°,带动测斜仪反转180°;
(7)停止工作,等待下次外部输入命令;
该第二程序包括如下步骤:
(8)接收位置检测单元708的检测数据和外部输入命令,该外部输入命令包括测斜方式,该测斜方式为从下向上进行检测;
(9)接收位置检测单元708的霍尔开关的检测数据,通过位置检测单元706的检测数据检测测斜仪30是否位于转向管16内,当测斜仪不位于转向管内时,向第一电机控制单元发出命令,启动第一电机,将测斜仪提升到转向管内,然后执行步骤(10);或当测斜仪位于转向管内时,执行步骤(10)。
(10)向第一电机控制单元发出命令,启动第一电机,使第一电机正转,将测斜仪下沉到首次测量高度;
(11)向第一电机控制单元发出命令,使第一电机反转,使导向轮依照第二设定转速、第二设定转动时间和导向轮两次转动之间的第二设定停止时间进行转动,直到完成第二设定 转动次数;牵引绳带动测斜仪向上移动,在导向轮每次停止转动后,测斜仪记录倾角数据,完成第一次倾角数据检测;
(12)向第一电机控制单元发出命令,使第一电机保持反转,将测斜仪向上提升到转向管内;
当位置检测单元检测到测斜仪位于转向管内时,向中央处理单元发出检测结果,中央处理单元向第二电机控制单元发出命令,使第二电机正转,带动转向管正转180°,带动测斜仪正转180°;
(13)再次向第一电机控制单元发出命令,启动第一电机,使第一电机正转,将测斜仪下沉到首次测量位置;
(14)向第一电机控制单元发出命令,使第一电机反转,根据导向轮速度检测单元所检测到的导向轮的转速,控制第一电机,使导向轮依照第二设定转速、第二设定转动时间和导向轮两次转动之间的第二设定停止时间转动,直到完成第二设定转动次数;牵引绳带动测斜仪向上移动,在导向轮每次停止转动后,测斜仪记录倾角数据,完成第二次倾角数据检测;
(15)向第一电机控制单元发出命令,使第一电机保持反转,将测斜仪向上提升到转向管内;向第二电机控制单元发出命令,使第二电机反转,带动转向管反转180°,带动测斜仪反转180°;
(16)停止工作,等待下次外部输入命令。
请参阅图7,在本实施例中,该测斜组件800包括倾角检测部810和电池模块820,在地面设置有无线充电模块830,该无线充电模块830用于向电池模块820无线充电,该电池模块与倾角检测部连接,用于向倾角传感部供电。
倾角检测部810包括倾角传感器802、数据存储模块804、LORA无线数据传输器803、加速度传感器805和微处理器801,该倾角传感器、数据存储模块、LORA无线数据传输器和加速度传感器均分别与微处理器连接。该LORA无线数据传输器与外部的远程服务器850相连接,并用于向该远程服务器850发送数据。其中:
倾角传感器,用于检测倾斜数据,并将数据存储到数据存储模块中。倾角传感器具体采用MPU-6050倾角传感器,该倾角传感器整合了三轴加速度器和三轴陀螺仪,通过读取传感器的三轴加速度、三轴角速度等原始数据,运用姿态动力学核心算法,结合高动态卡尔曼滤波融合算法,解算出实时稳定的三轴姿态角度。
加速度传感器,用于检测测斜的加速度。加速度传感器集成在MPU-6050芯片中。
微处理器,用于协调倾角传感器、数据存储模块、LORA无线数据传输器和加速度传感器的工作。微处理器采用STM32F103系列的芯片,微处理器作为整个测斜传感器的核心,控制倾角的测量、数据的存储和无线通信。
数据存储模块804为AT24C04芯片。
LORA无线数据传输器803为SX1268芯片,该芯片是一款远距离、低功耗的无线收发器,是一款高性能的物联网无线收发器。
电池模块820,包括可充电电池808和连接在可充电电池上的T3168芯片807,该T3168芯片为充电接收端,用于接收无线充电模块所发出的电能。无线充电模块为XKT-510芯片,该无线充电模块为充电发射端。使用XKT-510芯片与作为可充电电池的充电电路T3168芯片配合,用于给可充电电池进行充电。
在步骤(3)和步骤(5)中,当加速度传感器检测到向下的加速度为零,并持续第一设定时间后,倾角传感器进行检测数据采集,并将所采集到的数据存储在数据存储模块内,该第一设定时间少于导向轮两次转动之间的设定停止时间。第一设定时间为11秒。
在步骤(11)和步骤(14)中,当加速度传感器检测到向上的加速度为零,并持续第二设定时间后,倾角传感器进行检测数据采集,并将所采集到的数据存储在数据存储模块内,该第二设定时间少于导向轮两次转动之间的第二设定停止时间。第一设定时间为12秒。
当测斜仪进入到转向管内时,无线充电模块向电池模块进行无线充电。
在检测过程中,当第一电机出现断电情况时,在第一电机恢复供电后,使第一电机正转,将测斜仪沿测斜管下降,检测第一电机的输入功率,当功率检测器检测到第一电机的输入功率低于设定功率时,判定测斜仪到达地下管的底部,然后使第一电机反转,将测斜仪提升到转向管内,然后根据侧斜方式执行相应的步骤:
当测斜方式为从上向下进行检测时,然后执行步骤(2)-步骤(7);
当测斜方式为从下向上进行检测时,然后执行步骤(98)-步骤(16)。
本实施例中,优选当功率检测器检测到第一电机的输入功率低于设定功率的20%时,判定测斜仪到达地下管的底部,具体在本实施例中,第一电机的设定功率为10W,当功率检测器检测到第一电机的输入功率低于2W时,判定测斜仪到达地下管的底部。
在存储单元中还存储有导向轮的第三设定转速和导向轮的第三设定转动时间,步骤(10)和步骤(13)中,控制导向轮以第三设定转速进行转动,当达到第三设定转动时间时,测斜仪到达首次测量高度。
或者,该测量控制系统还包括连接在中央处理单元上的功率检测器,该功率检测器用于检测第一电机的输入功率;
当首次测量位置位于地下管的底部时,步骤(10)和步骤(13)中,在测斜仪的下沉过程中,检测第一电机的输入功率,当功率检测器检测到第一电机的输入功率低于设定功率时,判定测斜仪到达地下管的底部,即测斜仪到达首次测量高度。
以下对倾斜度测量方法进行说明。
该倾斜度测量方法具体采用上述的测斜机器人进行,在本实施例中,具体采用第一测量方法,包括如下步骤:
(1)中央处理单元接受外部输入的启动命令,该外部输入命令包括测斜方式,该测斜方式为从上向下进行检测;
(2)通过位置检测单元检测测斜仪是否位于转向管内;当测斜仪不位于转向管内时,向第一电机控制单元发出命令,启动第一电机,将测斜仪提升到转向管内,然后执行步骤(3);或当测斜仪位于转向管内时,执行步骤(3);
(3)启动第一电机,使第一电机正转,控制第一电机,使导向轮依照第一设定转速、第一设定转动时间和导向轮两次转动之间的第一设定停止时间进行转动,直到完成第一设定转动次数;牵引绳带动测斜仪向下移动,在导向轮每次停止转动后,测斜仪记录倾角数据,完成第一次倾角数据检测;
(4)使第一电机反转,将测斜仪向上提升到转向管内;当测斜仪位于转向管内时,使第二电机正转,带动转向管正转180°,带动测斜仪正转180°;
(5)再次启动第一电机,使第一电机正转,控制第一电机,使导向轮依照第一设定转速、第一设定转动时间和导向轮两次转动之间的第一设定停止时间转动,直到完成第一设定转动次数;牵引绳带动测斜仪向下移动,在导向轮每次停止转动后,测斜仪记录倾角数据;
(6)使第一电机反转,将测斜仪向上提升到转向管内;使第二电机反转,带动转向管反转180°,带动测斜仪反转180°;
(7)停止工作,等待下次外部输入命令。
在该第一测量方法中,该测斜仪包括倾角检测部和电池模块,在地面设置有无线充电模块,该无线充电模块用于向电池模块无线充电,该电池模块与倾角检测部连接;
倾角检测部包括倾角传感器、数据存储模块、LORA无线数据传输器、加速度传感器和微处理器,该倾角传感器、数据存储模块、LORA无线数据传输器和加速度传感器均分别与微处理器连接;该LORA无线数据传输器与外部的远程服务器相连接,并用于向该远程服务器发送数据;其中:
倾角传感器,用于检测倾斜数据,并将数据存储到数据存储模块中;
加速度传感器,用于检测测斜的加速度;
微处理器,用于协调倾角传感器、数据存储模块、LORA无线数据传输器和加速度传感器的工作。
在步骤(3)和步骤(5)中,当加速度传感器检测到向下的加速度为零,并持续第一设定时间后,倾角传感器进行检测数据采集,并将所采集到的数据存储在数据存储模块内,该第一设定时间少于导向轮两次转动之间的设定停止时间。
可以理解,在另一实施例中,该倾斜度测量方法还可以采用第二测量方法,包括如下步骤:
(8)中央处理单元接受外部输入的启动命令,该外部输入命令包括测斜方式,该测斜方式为从下向上进行检测;
(9)通过位置检测单元检测测斜仪是否位于转向管内,当测斜仪不位于转向管内时,向第一电机控制单元发出命令,启动第一电机,将测斜仪提升到转向管内,然后执行步骤(9);或当测斜仪位于转向管内时,执行步骤(9);
(10)启动第一电机,使第一电机正转,将测斜仪下沉到首次测量高度;
(11)使第一电机反转,控制第一电机,使导向轮依照第二设定转速、第二设定转动时间和导向轮两次转动之间的第二设定停止时间进行转动,直到完成第二设定转动次数;牵引绳带动测斜仪向上移动,在导向轮每次停止转动后,测斜仪记录倾角数据,完成第一次倾角数据检测;
(12)使第一电机保持反转,将测斜仪向上提升到转向管内;当测斜仪位于转向管内时,使第二电机正转,带动转向管正转180°,带动测斜仪正转180°;
(13)再次向第一电机控制单元发出命令,使第一电机正转,将测斜仪下沉到首次测量位置;
(14)再次启动第一电机,使第一电机反转,控制第一电机,使导向轮依照第二设定转速、第二设定转动时间和导向轮两次转动之间的第二设定停止时间转动,直到完成第二设定转动次数;牵引绳带动测斜仪向上移动,在导向轮每次停止转动后,测斜仪记录倾角数据,完成第二次倾角数据检测;
(15)使第一电机保持反转,将测斜仪向上提升到转向管内;使第二电机反转,带动转向管反转180°,带动测斜仪反转180°;
(16)停止工作,等待下次外部输入命令。
在第二测量方法中,该测斜仪也包括倾角检测部和电池模块,在地面设置有无线充电模块,该无线充电模块用于向电池模块无线充电,该电池模块与倾角检测部连接;
倾角检测部包括倾角传感器、数据存储模块、LORA无线数据传输器、加速度传感器和微处理器,该倾角传感器、数据存储模块、LORA无线数据传输器和加速度传感器均分别与微处理器连接;该LORA无线数据传输器与外部的远程服务器相连接,并用于向该远程服务器发送数据;其中:
倾角传感器,用于检测倾斜数据,并将数据存储到数据存储模块中;
加速度传感器,用于检测测斜的加速度;
微处理器,用于协调倾角传感器、数据存储模块、LORA无线数据传输器和加速度传感器的工作。
在步骤(11)和步骤(14)中,当加速度传感器检测到向上的加速度为零,并持续第二设定时间后,倾角传感器进行检测数据采集,并将所采集到的数据存储在数据存储模块内,该第二设定时间少于导向轮两次转动之间的第二设定停止时间。

Claims (12)

  1. 一种测斜机器人,其特征在于,包括测斜管、测斜部和驱动装置;
    该测斜管包括沿竖直方向延伸的地下管和设置在地下管上侧的转向管,在转向管外套设有外套管,该转向管转动自如地安装在外套管内,地下管和转向管上下连通;
    该测斜部包括测斜仪,该测斜仪包括防护管、安装在该防护管内的测斜组件,在防护管的外侧安装有滚轮,该防护管具有沿竖直方向延伸的第一中心轴线;
    在地下管的内壁上设置有用于卡持该滚轮的第一导向槽,该第一导向槽沿竖直方向延伸;在转向管的内壁上设置有用于卡持该滚轮的第二导向槽,该第二导向槽沿竖直方向延伸;地下管内的第一导向槽的数量被设置为:保持测斜仪的位置不动,当转向管绕第一中心轴线转动180°时,滚轮仍能够卡持在第一导向槽内;该第一导向槽能够与第二导向槽相连通,使滚轮能够沿第一导向槽进入到第二导向槽内,且在转向管转动180°时,滚轮仍能够沿第一导向槽进入到第二导向槽内。
    该驱动装置包括升降部和转向部,该升降部包括安装在支撑台上的绞盘、导向轮和用于驱动该绞盘转动的第一电机;在该绞盘上缠绕有牵引绳,该牵引绳经导向轮连接到防护管上,在第一电机的驱动下,该绞盘能够经牵引绳带动测斜仪在测斜管内沿上下方向往复移动,并带动导向轮转动;该转向部包括安装在支撑台上的用于驱动转向管转动的第二电机;
    该第一电机和第二电机均为步进电机或伺服电机。
  2. 根据权利要求1所述的测斜机器人,其特征在于,
    该外套管固定在地面上;外套管的上端的内壁沿径向向外凹陷形成上扩径部,使外套管的上端的内壁形成一朝向上方的上台阶部;外套管的下端的内壁沿径向向外凹陷形成下扩径部,使外套管的下端的内壁形成一朝向下方的下台阶部;上固定件套装在转向管的上端,在上固定件与上台阶部之间安装有上角接触轴承;下固定件套装在转向管的下端,在下固定件与下台阶部之间安装有下角接触轴承,使转向管转动自如地安装外套管上;
    地下管、转向管和外套管同轴设置,且转向管设置在地下管的正上方。
  3. 根据权利要求2所述的测斜机器人,其特征在于,在转向管与地下管之间具有间隙。
  4. 根据权利要求1所述的测斜机器人,其特征在于,在地面埋设有对中法兰,在该对中法兰的上侧面上设置定位部,该外套管固定卡持在定位部上。
  5. 根据权利要求1所述的测斜机器人,其特征在于,
    还包括测量控制系统,该测量控制系统包括中央处理单元,与中央处理单元连接的第一电机控制单元、第二电机控制单元和存储单元,在该中央处理单元上还连接有导向轮速度检测单元和位置检测单元;其中:
    第一电机控制单元,接受中央处理单元的控制,并控制第一电机的运转;
    第二电机控制单元,接受中央处理单元的控制,并控制第二电机的运转;
    存储单元,存储有测斜方式和设定控制数据,该设定控制数据为第一组控制数据和第二组控制数据两者中的至少之一者,其中第一组控制数据包括导向轮的第一设定转速、导向轮的第一设定转动时间、导向轮的第一设定转动次数、导向轮两次转动之间的第一设定停止时间;
    第二组控制数据包括导向轮的第二设定转速、导向轮的第二设定转动时间、导向轮的第二设定转动次数、导向轮两次转动之间的第二设定停止时间、首次测量高度;
    该测斜方式为从上向下进行检测或从下向上进行检测两种检测方式中的任意一种;
    导向轮速度检测单元,用于检测导向轮的转速,并将转速发送到中央处理单元;
    位置检测单元,用于检测测斜仪是否位于转向管内,并将检测结果输送到中央处理单元;该位置检测单元包括安装在旋转管内的霍尔开关和安装在测斜仪上的磁铁,该霍尔开关连接到中央处理单元上;
    中央处理单元,用于执行第一程序和第二程序中的任意一种;
    该第一程序包括如下步骤:
    (1)接收位置检测单元的检测数据和外部输入命令,该外部输入命令包括测斜方式,该测斜方式为从上向下进行检测;
    (2)通过位置检测单元的检测数据检测测斜仪是否位于转向管内,当测斜仪不位于转向管内时,向第一电机控制单元发出命令,启动第一电机,将测斜仪提升到转向管内,然后执行步骤(3);或当测斜仪位于转向管内时,执行步骤(3);
    (3)向第一电机控制单元发出命令,启动第一电机,使第一电机正转,根据导向轮速度检测单元所检测到的导向轮的转速,控制第一电机,使导向轮依照第一设定转速、第一设定转动时间和导向轮两次转动之间的第一设定停止时间进行转动,直到完成第一设定转动次数;牵引绳带动测斜仪向下移动,在导向轮每次停止转动后,测斜仪记录倾角数据,完成第一次倾角数据检测;
    (4)向第一电机控制单元发出命令,使第一电机反转,将测斜仪向上提升到转向管内;
    当位置检测单元检测到测斜仪位于转向管内时,向中央处理单元发出检测结果,中央处理单元向第二电机控制单元发出命令,使第二电机正转,带动转向管正转180°,带动测斜仪正转180°;
    (5)再次向第一电机控制单元发出命令,启动第一电机,使第一电机正转,根据导向轮速度检测单元所检测到的导向轮的转速,控制第一电机,使导向轮依照第一设定转速、第一设定转动时间和导向轮两次转动之间的第一设定停止时间转动,直到完成第一设定转动次数;牵引绳带动测斜仪向下移动,在导向轮每次停止转动后,测斜仪记录倾角数据,完成第二次倾角数据检测;
    (6)向第一电机控制单元发出命令,使第一电机反转,将测斜仪向上提升到转向管内;向第二电机控制单元发出命令,使第二电机反转,带动转向管反转180°,带动测斜仪反转180°;
    (7)停止工作,等待下次外部输入命令;
    该第二程序包括如下步骤:
    (8)接收位置检测单元的检测数据和外部输入命令,该外部输入命令包括测斜方式,该测斜方式为从下向上进行检测;
    (9)通过位置检测单元的检测数据检测测斜仪是否位于转向管内,当测斜仪不位于转向管内时,向第一电机控制单元发出命令,启动第一电机,将测斜仪提升到转向管内,然后执行步骤(10);或当测斜仪位于转向管内时,执行步骤(10);
    (10)向第一电机控制单元发出命令,启动第一电机,使第一电机正转,将测斜仪下沉到首次测量高度;
    (11)向第一电机控制单元发出命令,使第一电机反转,使导向轮依照第二设定转速、第二设定转动时间和导向轮两次转动之间的第二设定停止时间进行转动,直到完成第二设定转动次数;牵引绳带动测斜仪向上移动,在导向轮每次停止转动后,测斜仪记录倾角数据,完成第一次倾角数据检测;
    (12)向第一电机控制单元发出命令,使第一电机保持反转,将测斜仪向上提升到转向管内;
    当位置检测单元检测到测斜仪位于转向管内时,向中央处理单元发出检测结果,中央处理单元向第二电机控制单元发出命令,使第二电机正转,带动转向管正转180°,带动测斜仪正转180°;
    (13)再次向第一电机控制单元发出命令,启动第一电机,使第一电机正转,将测斜仪下沉到首次测量位置;
    (14)向第一电机控制单元发出命令,使第一电机反转,根据导向轮速度检测单元所检测到的导向轮的转速,控制第一电机,使导向轮依照第二设定转速、第二设定转动时间和导向轮两次转动之间的第二设定停止时间转动,直到完成第二设定转动次数;牵引绳带动测斜仪向上移动,在导向轮每次停止转动后,测斜仪记录倾角数据,完成第二次倾角数据检测;
    (15)向第一电机控制单元发出命令,使第一电机保持反转,将测斜仪向上提升到转向管内;向第二电机控制单元发出命令,使第二电机反转,带动转向管反转180°,带动测斜仪反转180°;
    (16)停止工作,等待下次外部输入命令。
  6. 根据权利要求5所述的测斜机器人,其特征在于,
    该测斜组件包括倾角检测部和电池模块,在地面设置有无线充电模块,该无线充电模块用于向电池模块无线充电,该电池模块与倾角检测部连接,用于向倾角传感部供电;
    倾角检测部包括倾角传感器、数据存储模块、LORA无线数据传输器、加速度传感器和微处理器,该倾角传感器、数据存储模块、LORA无线数据传输器和加速度传感器均分别与微处理器连接;该LORA无线数据传输器与外部的远程服务器相连接,并用于向该远程服务器发送数据;其中:
    倾角传感器,用于检测倾斜数据,并将数据存储到数据存储模块中;
    加速度传感器,用于检测测斜的加速度;
    微处理器,用于协调倾角传感器、数据存储模块、LORA无线数据传输器和加速度传感器的工作;
    在步骤(3)、步骤(5)中,当加速度传感器检测到向下的加速度为零,并持续第一设定时间后,倾角传感器进行检测数据采集,并将所采集到的数据存储在数据存储模块内,该第一设定时间少于导向轮两次转动之间的第一设定停止时间;
    在步骤(11)和步骤(14)中,当加速度传感器检测到向上的加速度为零,并持续第二设定时间后,倾角传感器进行检测数据采集,并将所采集到的数据存储在数据存储模块内,该第二设定时间少于导向轮两次转动之间的第二设定停止时间。
  7. 根据权利要求6所述的测斜机器人,其特征在于,
    当测斜仪进入到转向管内时,无线充电模块向电池模块进行无线充电。
  8. 根据权利要求5所述的测斜机器人,其特征在于,
    该测量控制系统还包括连接在中央处理单元上的功率检测器,该功率检测器用于检测第一电机的输入功率;
    在检测过程中,当第一电机出现断电情况时,在第一电机恢复供电后,使第一电机正转,将测斜仪沿测斜管下降,检测第一电机的输入功率,当功率检测器检测到第一电机的输入功率低于设定功率时,判定测斜仪到达地下管的底部,然后使第一电机反转,将测斜仪提升到转向管内,然后根据侧斜方式执行相应的步骤:
    当测斜方式为从上向下进行检测时,然后执行步骤(2)-步骤(7);
    当测斜方式为从下向上进行检测时,然后执行步骤(9)-步骤(16)。
  9. 根据权利要求5所述的测斜机器人,其特征在于,
    在存储单元中还存储有导向轮的第三设定转速和导向轮的第三设定转动时间,步骤(10)和步骤(13)中,控制导向轮以第三设定转速进行转动,当达到第三设定转动时间时,测斜仪到达首次测量高度。
  10. 根据权利要求5所述的测斜机器人,其特征在于,
    该测量控制系统还包括连接在中央处理单元上的功率检测器,该功率检测器用于检测第一电机的输入功率;
    当首次测量位置位于地下管的底部时,步骤(10)和步骤(13)中,在测斜仪的下沉过程中,检测第一电机的输入功率,当功率检测器检测到第一电机的输入功率低于设定功率时,判定测斜仪到达地下管的底部,即测斜仪到达首次测量高度。
  11. 一种倾斜度测量方法,其采用权利要求5所述的测斜机器人进行,其特征在于,包括第一测量方法和第二测量方法中的任意一种;
    该第一测量方法包括如下步骤:
    (1)中央处理单元接受外部输入的启动命令,该外部输入命令包括测斜方式,该测斜方式为从上向下进行检测;
    (2)通过位置检测单元检测测斜仪是否位于转向管内;当测斜仪不位于转向管内时,向第一电机控制单元发出命令,启动第一电机,将测斜仪提升到转向管内,然后执行步骤(3);或当测斜仪位于转向管内时,执行步骤(3);
    (3)启动第一电机,使第一电机正转,控制第一电机,使导向轮依照第一设定转速、第一设定转动时间和导向轮两次转动之间的第一设定停止时间进行转动,直到完成第一设定转动次数;牵引绳带动测斜仪向下移动,在导向轮每次停止转动后,测斜仪记录倾角数据,完成第一次倾角数据检测;
    (4)使第一电机反转,将测斜仪向上提升到转向管内;当测斜仪位于转向管内时,使第二电机正转,带动转向管正转180°,带动测斜仪正转180°;
    (5)再次启动第一电机,使第一电机正转,控制第一电机,使导向轮依照第一设定转速、第一设定转动时间和导向轮两次转动之间的第一设定停止时间转动,直到完成第一设定转动次数;牵引绳带动测斜仪向下移动,在导向轮每次停止转动后,测斜仪记录倾角数据;
    (6)使第一电机反转,将测斜仪向上提升到转向管内;使第二电机反转,带动转向管反转180°,带动测斜仪反转180°;
    (7)停止工作,等待下次外部输入命令;
    该第二程序包括如下步骤:
    (8)中央处理单元接受外部输入的启动命令,该外部输入命令包括测斜方式,该测斜方式为从下向上进行检测;
    (9)通过位置检测单元检测测斜仪是否位于转向管内,当测斜仪不位于转向管内时,向第一电机控制单元发出命令,启动第一电机,将测斜仪提升到转向管内,然后执行步骤(9);或当测斜仪位于转向管内时,执行步骤(9);
    (10)启动第一电机,使第一电机正转,将测斜仪下沉到首次测量高度;
    (11)使第一电机反转,控制第一电机,使导向轮依照第二设定转速、第二设定转动时间和导向轮两次转动之间的第二设定停止时间进行转动,直到完成第二设定转动次数;牵引绳带动测斜仪向上移动,在导向轮每次停止转动后,测斜仪记录倾角数据,完成第一次倾角数据检测;
    (12)使第一电机保持反转,将测斜仪向上提升到转向管内;当测斜仪位于转向管内时,使第二电机正转,带动转向管正转180°,带动测斜仪正转180°;
    (13)再次向第一电机控制单元发出命令,使第一电机正转,将测斜仪下沉到首次测量位置;
    (14)再次启动第一电机,使第一电机反转,控制第一电机,使导向轮依照第二设定转速、第二设定转动时间和导向轮两次转动之间的第二设定停止时间转动,直到完成第二设定转动次数;牵引绳带动测斜仪向上移动,在导向轮每次停止转动后,测斜仪记录倾角数据,完成第二次倾角数据检测;
    (15)使第一电机保持反转,将测斜仪向上提升到转向管内;使第二电机反转,带动转向管反转180°,带动测斜仪反转180°;
    (16)停止工作,等待下次外部输入命令。
  12. 根据权利要求11所述的倾斜度测量方法,其特征在于,
    该测斜仪包括倾角检测部和电池模块,在地面设置有无线充电模块,该无线充电模块用于向电池模块无线充电,该电池模块与倾角检测部连接;
    倾角检测部包括倾角传感器、数据存储模块、LORA无线数据传输器、加速度传感器和微处理器,该倾角传感器、数据存储模块、LORA无线数据传输器和加速度传感器均分别与微处理器连接;该LORA无线数据传输器与外部的远程服务器相连接,并用于向该远程服务器发送数据;其中:
    倾角传感器,用于检测倾斜数据,并将数据存储到数据存储模块中;
    加速度传感器,用于检测测斜的加速度;
    微处理器,用于协调倾角传感器、数据存储模块、LORA无线数据传输器和加速度传感器的工作;
    在步骤(3)和步骤(5)中,当加速度传感器检测到向下的加速度为零,并持续第一设定时间后,倾角传感器进行检测数据采集,并将所采集到的数据存储在数据存储模块内,该第一设定时间少于导向轮两次转动之间的设定停止时间;
    在步骤(11)和步骤(14)中,当加速度传感器检测到向上的加速度为零,并持续第二设定时间后,倾角传感器进行检测数据采集,并将所采集到的数据存储在数据存储模块内,该第二设定时间少于导向轮两次转动之间的第二设定停止时间。
PCT/CN2020/120206 2020-09-22 2020-10-10 一种测斜机器人及倾斜度测量方法 WO2022061969A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011000667.3A CN112097739A (zh) 2020-09-22 2020-09-22 一种测斜机器人及倾斜度测量方法
CN202011000667.3 2020-09-22

Publications (1)

Publication Number Publication Date
WO2022061969A1 true WO2022061969A1 (zh) 2022-03-31

Family

ID=73755745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120206 WO2022061969A1 (zh) 2020-09-22 2020-10-10 一种测斜机器人及倾斜度测量方法

Country Status (2)

Country Link
CN (1) CN112097739A (zh)
WO (1) WO2022061969A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114964093A (zh) * 2022-05-12 2022-08-30 宁波睿威工程技术有限公司 一种地铁车站深基坑深层水平位移测量装置
CN115200550A (zh) * 2022-09-16 2022-10-18 济宁鲁威液压科技股份有限公司 罐道倾斜测量装置及其使用方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113252246B (zh) * 2021-06-18 2021-11-05 中国科学院武汉岩土力学研究所 一种可回收的地下连续墙接缝处渗漏检测装置
CN116625316B (zh) * 2023-07-25 2023-09-29 昌乐县市政公用事业服务中心 一种测斜仪

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202970700U (zh) * 2012-12-25 2013-06-05 重庆华渝电气仪表总厂 陀螺测斜仪的旋转机构与外壳之间的减震结构
CN105937898A (zh) * 2016-06-29 2016-09-14 武汉长澳大地工程有限公司 一种全智能测斜装置及测斜方法
CN208635785U (zh) * 2018-07-13 2019-03-22 广州日昇岩土科技有限公司 一种全自动机械式智能测斜装置
KR101979292B1 (ko) * 2018-12-10 2019-05-16 라온구조안전기술(주) 광섬유 센서와 회전핀을 이용한 안전진단용 다방향 지중경사 측정장치 및 이를 이용한 지중경사 측정방법
CN110306611A (zh) * 2019-07-31 2019-10-08 石家庄铁道大学 用于滑动式测斜仪智能提拉设备及测斜方法
CN110359440A (zh) * 2019-08-05 2019-10-22 广州日昇岩土科技有限公司 一种智能测斜系统及其监测方法
CN210242774U (zh) * 2019-05-13 2020-04-03 中交第四航务工程勘察设计院有限公司 一种全自动岩土测斜仪
CN111307116A (zh) * 2020-01-13 2020-06-19 河南中智岩土科技有限公司 一种新型测斜仪探头及其测量方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2077140U (zh) * 1990-07-11 1991-05-15 中国人民解放军甘肃省兰州军分区修械所 微机胀管控制仪
CN101963501A (zh) * 2010-08-12 2011-02-02 刘文峰 使用移动式测斜仪监测边坡稳定性的施工方法
JP5780429B2 (ja) * 2011-11-16 2015-09-16 株式会社ジェイテクト 車両用操舵装置
CN204402809U (zh) * 2014-12-09 2015-06-17 河南油田亚盛电器有限责任公司 一种抽油机平衡智能调节装置
JP6572624B2 (ja) * 2015-05-20 2019-09-11 オイレス工業株式会社 滑り軸受及びそれを具備した軸受機構
CN205469249U (zh) * 2016-03-14 2016-08-17 浙江万达汽车方向机股份有限公司 一种用双角接触轴承的转向管柱转向轴固定结构
CN108500436B (zh) * 2018-04-03 2020-12-22 佛山市美利德电子有限公司 一种智能电动式电阻焊机施焊机构及其控制系统
CN110211142A (zh) * 2019-05-31 2019-09-06 南京深地智能建造技术研究院有限公司 一种基于视频图像处理的深基坑的坑外水位在线检测方法
CN210621665U (zh) * 2019-07-31 2020-05-26 中铁十八局集团有限公司 用于滑动式测斜仪智能提拉设备
CN111521140A (zh) * 2020-04-27 2020-08-11 上海菲伽智能科技有限公司 土体位移监测系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202970700U (zh) * 2012-12-25 2013-06-05 重庆华渝电气仪表总厂 陀螺测斜仪的旋转机构与外壳之间的减震结构
CN105937898A (zh) * 2016-06-29 2016-09-14 武汉长澳大地工程有限公司 一种全智能测斜装置及测斜方法
CN208635785U (zh) * 2018-07-13 2019-03-22 广州日昇岩土科技有限公司 一种全自动机械式智能测斜装置
KR101979292B1 (ko) * 2018-12-10 2019-05-16 라온구조안전기술(주) 광섬유 센서와 회전핀을 이용한 안전진단용 다방향 지중경사 측정장치 및 이를 이용한 지중경사 측정방법
CN210242774U (zh) * 2019-05-13 2020-04-03 中交第四航务工程勘察设计院有限公司 一种全自动岩土测斜仪
CN110306611A (zh) * 2019-07-31 2019-10-08 石家庄铁道大学 用于滑动式测斜仪智能提拉设备及测斜方法
CN110359440A (zh) * 2019-08-05 2019-10-22 广州日昇岩土科技有限公司 一种智能测斜系统及其监测方法
CN111307116A (zh) * 2020-01-13 2020-06-19 河南中智岩土科技有限公司 一种新型测斜仪探头及其测量方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114964093A (zh) * 2022-05-12 2022-08-30 宁波睿威工程技术有限公司 一种地铁车站深基坑深层水平位移测量装置
CN114964093B (zh) * 2022-05-12 2023-03-24 浙江华展工程研究设计院有限公司 一种地铁车站深基坑深层水平位移测量装置
CN115200550A (zh) * 2022-09-16 2022-10-18 济宁鲁威液压科技股份有限公司 罐道倾斜测量装置及其使用方法
CN115200550B (zh) * 2022-09-16 2022-12-06 济宁鲁威液压科技股份有限公司 罐道倾斜测量装置及其使用方法

Also Published As

Publication number Publication date
CN112097739A (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
WO2022061969A1 (zh) 一种测斜机器人及倾斜度测量方法
CN201429416Y (zh) 活动式测斜仪自动提升测量装置
CN105937898A (zh) 一种全智能测斜装置及测斜方法
CN105887942B (zh) 一种自动智能基坑测斜方法
CN110306611B (zh) 用于滑动式测斜仪智能提拉设备及测斜方法
CN205748352U (zh) 一种全智能测斜装置
CN105804127B (zh) 自动智能基坑测斜系统
CN208635785U (zh) 一种全自动机械式智能测斜装置
CN109631842A (zh) 一种全自动测斜系统及其监测方法
CN110736422B (zh) 一种预制磁场布设系统及变形状态响应方法
CN104074510A (zh) 一种钻机用深度检测装置
CN112252971B (zh) 一种花键式水平定向钻进工程地质勘察控向装置
CN109883395A (zh) 一种自动测斜装置
CN104501772B (zh) 水工结构土石结合区域不均匀沉降组合监测装置及方法
CN107036578B (zh) 基桩成孔质量检测系统及其检测方法
CN104343437A (zh) 基于激光陀螺的钻孔轨迹测量装置及方法
CN113756717A (zh) 一种旋转导向装置
CN104501773B (zh) 一种水工建筑物竖向变形监测装置及方法
CN110345909B (zh) 一种全自动机械式智能分层沉降仪
CN209247002U (zh) 一种全自动测斜系统
CN210621665U (zh) 用于滑动式测斜仪智能提拉设备
CN108507475B (zh) 一种深层水平位移测量装置
CN110174090B (zh) 基于自动升降测斜仪的智能牵引式深层水平位移监测系统
LU501077B1 (en) Safety inspection robot for underground tunnel
CN220566066U (zh) 无缆存储式光纤陀螺测斜仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954815

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954815

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20954815

Country of ref document: EP

Kind code of ref document: A1