WO2022061906A1 - 一种航线规划方法及设备 - Google Patents
一种航线规划方法及设备 Download PDFInfo
- Publication number
- WO2022061906A1 WO2022061906A1 PCT/CN2020/118466 CN2020118466W WO2022061906A1 WO 2022061906 A1 WO2022061906 A1 WO 2022061906A1 CN 2020118466 W CN2020118466 W CN 2020118466W WO 2022061906 A1 WO2022061906 A1 WO 2022061906A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- route
- operation block
- block
- segment
- segments
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 238000000926 separation method Methods 0.000 claims description 4
- 238000013507 mapping Methods 0.000 abstract description 16
- 238000010586 diagram Methods 0.000 description 32
- 238000004891 communication Methods 0.000 description 4
- 238000004590 computer program Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/10—Simultaneous control of position or course in three dimensions
- G05D1/101—Simultaneous control of position or course in three dimensions specially adapted for aircraft
Definitions
- the invention relates to the field of computer technology, and in particular, to a route planning method and equipment.
- the current UAV surveying and mapping process is mainly to demarcate an area to be surveyed and mapped, plan the surveying and mapping route and photo waypoints according to the surveying and mapping requirements, the UAV will fly, and the photo data will be processed after obtaining the photo data.
- the operation area is usually divided into multiple sub-areas, and a single sub-area corresponds to one flight of each UAV, and then multiple aircraft are used for simultaneous operation.
- the current route planning method often has an abnormal overlap rate in the adjacent part of the sub-region, which greatly affects the mapping effect. It can be seen that how to ensure a uniform overlap rate of adjacent parts of sub-regions when planning a route to improve the accuracy of surveying and mapping has become an urgent problem to be solved.
- the embodiment of the present invention discloses a route planning method and device, which can ensure that the overlap ratio of adjacent parts of sub-regions is uniform, and help to improve the accuracy of surveying and mapping.
- a first aspect of the embodiments of the present invention discloses a route planning method, and the method includes:
- a working area of the aircraft is acquired, where the working area includes adjacent first working blocks and second working blocks.
- a route is planned in the operation area, and the route includes a plurality of mutually parallel route segments in the first operation block and a plurality of mutually parallel route segments in the second operation block.
- the plurality of route segments in the first operation block include a first route segment
- the plurality of route segments in the second operation block include a second route segment, and the second route segment on the same line as said first flight segment;
- a plurality of the route segments of the first operation block and a plurality of the route segments of the second operation block are adjacent to the first operation block and the second operation block.
- the boundaries are parallel to each other.
- a second aspect of the embodiments of the present invention discloses a route planning device, comprising: a processor and a memory, wherein:
- the memory is used to store program instructions.
- a working area of the aircraft is acquired, where the working area includes adjacent first working blocks and second working blocks.
- a route is planned in the operation area, and the route includes a plurality of mutually parallel route segments in the first operation block and a plurality of mutually parallel route segments in the second operation block.
- the plurality of route segments in the first operation block include a first route segment
- the plurality of route segments in the second operation block include a second route segment, and the second route segment on the same line as said first flight segment;
- a plurality of the route segments of the first operation block and a plurality of the route segments of the second operation block are adjacent to the first operation block and the second operation block.
- the boundaries are parallel to each other.
- a third aspect of the embodiments of the present invention discloses a route planning device, and the device includes:
- the obtaining module is used for obtaining the working area of the aircraft, where the working area includes the adjacent first working block and the second working block.
- the planning module is used for planning a route in the operation area, the route includes a plurality of mutually parallel route segments located in the first operation block, and a plurality of mutually parallel route segments in the second operation block route segment.
- the plurality of route segments in the first operation block include a first route segment
- the plurality of route segments in the second operation block include a second route segment, and the second route segment on the same line as said first flight segment;
- a plurality of the route segments of the first operation block and a plurality of the route segments of the second operation block are adjacent to the first operation block and the second operation block.
- the boundaries are parallel to each other.
- a fourth aspect of the embodiments of the present invention discloses a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the route planning method described in the first aspect.
- the operation area of the aircraft can be acquired, the operation area includes a first operation block and a second operation block adjacent to the same boundary, and a route is planned in the operation area, and the route includes the operation area located in the first operation area.
- a plurality of mutually parallel route segments and a plurality of mutually parallel route segments in the second operation block wherein the plurality of the route segments in the first operation block include a first route segment, and the second route segment
- the plurality of the route segments in the operation block include a second route segment, and the second route segment and the first route segment are on the same straight line; or, the plurality of the route segments in the first operation block
- the route segment and a plurality of the route segments of the second operation block are all parallel to the adjacent boundaries of the first operation block and the second operation block, so that the adjacent parts of the sub-areas can be ensured.
- the overlap ratio is uniform, which helps to improve the accuracy of the mapping.
- FIG. 1 is a schematic flowchart of a route planning method disclosed in an embodiment of the present invention
- Fig. 2a is a schematic diagram of another working area disclosed in an embodiment of the present invention.
- 2b is a schematic diagram of a planned route disclosed in an embodiment of the present invention.
- 2c is a schematic diagram of another planned route disclosed in an embodiment of the present invention.
- 2d is a schematic diagram of another planned route disclosed in an embodiment of the present invention.
- 2e is a schematic diagram of another planned route disclosed in an embodiment of the present invention.
- FIG. 3 is a schematic flowchart of another route planning method disclosed in an embodiment of the present invention.
- Fig. 4a is a schematic diagram of generating a reference line disclosed in an embodiment of the present invention.
- 4b is a schematic diagram of a cutting reference line disclosed in an embodiment of the present invention.
- 4c is a schematic diagram of an endpoint of a flight segment disclosed in an embodiment of the present invention.
- 4d is a schematic diagram of another planned route disclosed in an embodiment of the present invention.
- FIG. 4e is a schematic diagram of a route retraction disclosed in an embodiment of the present invention.
- 4f is a schematic diagram of an end point of a retracted route segment within a route disclosed by an embodiment of the present invention.
- 4g is a schematic diagram of another planned route disclosed in an embodiment of the present invention.
- 4h is a schematic diagram of another generation of reference lines disclosed in an embodiment of the present invention.
- 4i is a schematic diagram of another cutting reference line disclosed in an embodiment of the present invention.
- 4j is a schematic diagram of another planned route disclosed in an embodiment of the present invention.
- 4k is a schematic diagram of an endpoint of another route segment disclosed in an embodiment of the present invention.
- 41 is a schematic diagram of an endpoint of another route segment disclosed in an embodiment of the present invention.
- 4m is a schematic diagram of another planned route disclosed by an embodiment of the present invention.
- 4n is a schematic diagram of another planned route disclosed in an embodiment of the present invention.
- 4o is a schematic diagram of another planned route disclosed in an embodiment of the present invention.
- 4p is a schematic diagram of generating an extension line and a reference line disclosed in an embodiment of the present invention.
- 4q is a schematic diagram of an endpoint of another flight segment disclosed in an embodiment of the present invention.
- 4r is a schematic diagram of another working area disclosed in an embodiment of the present invention.
- 4s is a schematic diagram of yet another generation of reference lines disclosed in an embodiment of the present invention.
- 4t is a schematic diagram of another planned route disclosed in an embodiment of the present invention.
- FIG. 4u is a schematic diagram of another air route retraction disclosed in an embodiment of the present invention.
- Fig. 4v is the schematic diagram of the end point of another setback route segment within another route disclosed by an embodiment of the present invention.
- 4w is a schematic diagram of another planned route disclosed in an embodiment of the present invention.
- FIG. 5 is a schematic structural diagram of a route planning device disclosed in an embodiment of the present invention.
- FIG. 6 is a schematic structural diagram of a route planning device disclosed in an embodiment of the present invention.
- FIG. 1 is a schematic flowchart of a route planning method provided by an embodiment of the present invention.
- the route planning method includes the following steps:
- the operation area refers to the area where the aircraft needs to perform flight tasks and take pictures during the flight to complete the surveying and mapping.
- the operation area can be determined according to the location coordinates set by the user, or it can be the location area designated by the user on the map.
- the work area may include at least two sub-areas, and the at least two sub-areas may be obtained by dividing the work area according to the user's settings, or automatically divided according to parameters such as the area and shape of the work area.
- the area may be denoted as a work block, for example, the work area includes a first work block and a second work block adjacent to the same boundary.
- the ground control terminal of the aircraft may acquire the operation area, and the ground control terminal executes the route planning, or the aircraft may obtain the operation area from the ground control terminal, and the aircraft executes the route planning.
- Plan a route in the operation area the route includes a plurality of mutually parallel route segments located in the first operation block, and a plurality of mutually parallel route segments in the second operation block;
- the plurality of route segments in the first operation block include a first route segment
- the plurality of route segments in the second operation block include a second route segment, and the second route segment on the same line as said first flight segment;
- a plurality of the route segments of the first operation block and a plurality of the route segments of the second operation block are adjacent to the first operation block and the second operation block.
- the boundaries are parallel to each other.
- the first route segment or an extension of the second route segment intersects the boundary.
- the plurality of flight segments in the first operation block include an extension line of the first flight segment intersecting the boundary
- the plurality of flight segments in the second operation block It includes a second route segment that coincides with the extension of the first route segment.
- a route can be planned for the operation area, so that the planned route includes a plurality of mutually parallel route segments located in the first operation block, and a plurality of mutually parallel route segments in the second operation block.
- Route segment if the extension line of the first route segment in the multiple route segments of the first operation block intersects with the boundary, that is to say, the route direction is the same as that adjacent to the first operation block and the second operation block. If the boundary intersects, the multiple route segments of the second operation block include a second route segment that overlaps with the extension line of the first route segment. This ensures that when the route direction intersects the same adjacent boundary, the The lateral overlap rate of the adjacent parts of the region is uniform.
- the work area includes a first work block ACDB and a second work block AEFB, and the first work block and the second work block are adjacent to the same boundary AB.
- the route planned for the operation area may be as shown in Fig. 2b or Fig. 2c, wherein the first operation block and the second operation block
- the second operation block includes a plurality of parallel flight routes respectively.
- the plurality of flight routes of the first operation block includes an extension line of the first flight section 12 intersecting with the boundary AB.
- the second operation block includes multiple flight routes.
- the segment includes a second route segment 34 that coincides with the extension line of the first route segment 12, so as to ensure that in the case where the route direction intersects with the same adjacent border, the adjacent part of the sub-region (that is, at the border AB) is adjacent.
- the overlap rate is uniform.
- the interval between any two adjacent flight segments in the first operation block or the second operation block is equal, which can ensure that the side overlap ratio of each sub-area is uniform. Helps improve the accuracy of mapping. As shown in Figure 2b or Figure 2c, the interval between any two adjacent flight segments is d.
- the route can be indented, so that the distance between the end point of the route segment included in the first operation block or the second operation block and the boundary is the first distance, which not only ensures that the aircraft is in the same sub-area
- the flight safety of the adjacent boundary also ensures that the heading overlap rate is uniform in the entire operation area, which helps to improve the accuracy of surveying and mapping.
- the end points of the route segments are indented.
- the The endpoint 2 of the route segment 12 of one operation block and the endpoint 3 of the route segment 34 of the second operation block are retracted along the route direction to their respective operation blocks, so that in the planned route, each operation area
- the end points of the route segments included in the block have a certain distance (ie, the first distance L) from the boundary AB.
- the plurality of route segments of the first operation block are parallel to the boundary
- the plurality of route segments of the second operation block are also parallel to the boundary.
- the interval between any two adjacent route segments in the multiple parallel route segments in the first operation block or the second operation block is the target interval, then if the route direction is parallel to the boundary, the second
- the interval between the route segment closest to the boundary in the operation block and the route segment closest to the boundary in the first operation block is also the target interval.
- the route segments in each operation block are parallel to the boundary AB, and the interval between any two adjacent route segments in the first operation block or the second operation block is the target interval d , and the interval between the route segment 34 closest to the boundary AB in the second operation block and the route segment 12 closest to the boundary AB in the first operation block is also the target interval d, which can ensure that the route direction and the phase
- the lateral overlap ratio of the adjacent parts of the sub-regions is uniform.
- the endpoints of the route segment shown in Figure 2d can be indented to obtain the route shown in Figure 2e, so that in the planned route, the endpoints of the route segments included in each operation block are the same as
- the corresponding boundary has a certain distance L, which not only ensures the flight safety of the aircraft on the boundary, but also ensures that the heading overlap rate is uniform in the entire operation area.
- the operation area of the aircraft may be acquired, the operation area includes the first operation block and the second operation block adjacent to the same boundary, and a route is planned in the operation area, and the route includes the first operation area located in the first operation area.
- Multiple parallel flight segments in the block, and multiple parallel flight segments within the second operation block if the multiple flight segments in the first operation block include an extension line and boundary of the first flight segment If they intersect, the multiple flight segments in the second operation block include a second flight segment that overlaps with the extension line of the first flight segment, so as to ensure that the overlap rate of the adjacent parts of the sub-regions is uniform, which is helpful for improving surveying and mapping. accuracy.
- FIG. 3 is a schematic flowchart of another route planning method provided by an embodiment of the present invention.
- the route planning method includes the following steps:
- the boundary is the boundary between the first operation block and the second operation block adjacent to each other.
- step 301 For the specific implementation of step 301, reference may be made to the relevant description of step 101 in the foregoing embodiment, and details are not repeated here.
- the preset route direction may be a fixed default direction or a direction freely set by the user.
- a plurality of reference lines covering the operation area may be generated according to the flight direction, wherein the interval between any two adjacent reference lines is the same.
- the specific manner of determining the interval between the reference lines may include: acquiring the set side overlap rate and flight parameters, determining the target interval according to the side overlap rate and the flight parameter, and based on the target interval Generates equally spaced reference lines covering the work area in the course direction.
- the flight parameters may include a flight height, a field of view (Field of view, FOV) of a camera on the aircraft, and the like.
- FOV field of view
- each route segment coincides with the reference line, obtain the route segment included in the first operation block or the second operation block, and then connect the beginning and end of the route segment in each operation block to generate the route segment of each operation block. route.
- the reference line can be directly cut by using the boundaries of each operation block, and the line segment inside the operation block obtained after cutting can be used as the route segment, and then the route segment in each operation block can be used as the route segment.
- the end-to-end connection of each operation block can be generated.
- the generated reference line can be as shown in Figure 4a, the reference line covers the entire operation area and runs through the first operation block and the second operation
- the reference line can be cut directly by using the boundary of each operation block.
- the first operation block is to use the boundaries AC, CD, DB, AB to cut the reference line
- the second operation area is used to cut the reference line.
- the block is to use the boundaries AE, EF, FB, AB to cut the reference line, and the line segment inside the operation block obtained after cutting can be used as the route segment, and the route of each operation block is generated, as shown in Figure 4d.
- the intersection of the reference line and each boundary of the first work block and the second work block can be obtained.
- the specific intersection is shown in FIG. 4c, including the boundary AC with the first work block. 2 intersections with the boundary CD of the first work block, 2 intersections with the boundary DB of the first work block, 4 intersections with the boundary AE of the second work block, and the second The four intersection points of the boundary EF of the work block, the four intersection points with the boundary FB of the second work block, and the four intersection points with the common boundary AB, wherein the two points A and B are the endpoints of the common boundary, and here It is not the intersection of the reference line and the boundary, and then the intersection points are connected along the direction of the reference line to form the route segments of each operation block.
- Each route segment coincides with the reference line, and the generated route can be shown in Figure 4d.
- the position of the endpoint of the route segment included in the first operation block or the second operation block can be adjusted so that the endpoint is the same as the first operation block.
- the distance of any boundary of the second operation block is less than or equal to the preset distance threshold, so as to ensure a certain course overlap rate at the boundary, and the course overlap rate at the boundary is uniform.
- the preset distance threshold may be set according to the heading overlap rate.
- the end point b can be moved to the inside of the first operation block and the second operation block along the route direction respectively, and the first operation block can be obtained.
- the preset distance threshold Lmax can be calculated by the following formula:
- Lmax (d1/2)*sin ⁇
- d1 is the photographing distance interval in the route direction
- ⁇ is the included angle between the route direction and the boundary AB.
- the generated reference line can be as shown in Figure 4h, the reference line covers the entire operation area and runs through the first operation block and the second operation
- the boundary of the block can then be used to directly cut the reference line by using the boundary of each operation block, wherein the first operation block is to use the boundaries AC, CD, DB to cut the reference line, and the second operation block is to use the boundary to cut the reference line.
- AE, EF, and FB cut the reference line, and the line segment inside the operation block obtained after cutting can be used as the route segment, and the route of each operation block is generated, as shown in Figure 4j.
- the intersection of the reference line and each boundary of the first operation block and the second operation block can be obtained.
- the specific intersection is shown in FIG. 4k, including the boundary AC with the first operation block. 6 intersections with the boundary CD of the first work block, 8 intersections with the boundary DB of the first work block, 10 intersections with the boundary AE of the second work block, and 1 intersection point of the boundary EF of the work block and 9 intersection points of the boundary FB of the second work block, of which the two points A and B are the endpoints of the common boundary, not the intersection of the reference line and the boundary, then Connect the intersection points along the direction of the reference line to form the route segments of each operation block, each route segment coincides with the reference line, and the generated route can be shown in Figure 4j.
- the route of the entire operation area in addition to directly planning the route of each operation block in the operation area according to the route direction, can also be planned first, and then the route segments in the route of the entire operation area can be cut. points, so as to obtain the route of each operation block.
- an initial route segment parallel to the route direction and running through the first operation block and the second operation block that is, the route segment corresponding to the entire operation area
- the initial route segment is segmented to obtain A route segment in each of the first and second operation blocks.
- an implementation manner of generating the initial route segment may be: generating a reference line parallel to the route direction and passing through the first operation block and the second operation block, and determining based on the reference line that runs through the first operation block and the second operation area The initial flight segment of the block, where the initial flight segment coincides with the reference line. For example, a reference line covering the entire operation area can be generated, and then the reference line can be directly cut by using the boundary of the entire operation area, so as to obtain an initial route segment corresponding to the entire operation area, which runs through the first operation block and the second operation area.
- Operation block or, after generating a reference line covering the entire operation area, you can obtain the intersection of the reference line and each boundary of the entire operation area, and then connect the intersection points along the direction of the reference line to form the initial route segment corresponding to the operation area , each initial flight segment coincides with the reference line.
- the initial route segment is segmented to obtain the route segment in each operation block in the first operation block and the second operation block.
- the implementation method may be: using the first operation block and the second operation area.
- the initial route segment is segmented on the same boundary adjacent to the block to obtain the route segment in each operation block in the first operation block and the second operation block, so as to plan the route of each operation block.
- the reference line shown in Figure 4a can be generated first, and then the intersection of the reference line and each boundary (including the boundaries CD, DF, FE, EC) of the entire operation area can be obtained, and the specific intersection is shown in Figure 4l. , including 4 intersection points with the boundary CD of the work area, 6 intersection points with the boundary DF of the work area, 4 intersection points with the boundary FE of the work area, and 6 intersection points with the boundary EC of the work area, among which A, B These two points are the endpoints of the common boundary of the first operation block and the second operation block included in the operation area. This is not the intersection of the reference line and the boundary, and then the intersection points are connected along the direction of the reference line to form the entire operation.
- the initial route segment corresponding to the area, each initial route segment coincides with the reference line, as shown in Figure 4m.
- the reference line can be cut directly by using the boundary of the entire work area, specifically, the reference line can be cut by using the boundaries CD, DF, FE, and EC of the work area.
- the obtained line segment inside the operation area can be used as the initial route segment, as shown in Figure 4m.
- the same boundary AB adjacent to the first operation block and the second operation block can be used to segment the initial route segment.
- the initial route segment intersecting with the boundary AB is segmented to obtain 4 segmentation points a, b, c, d, and the initial route segment is divided into two through these 4 segmentation points, Thus, the route segments included in each operation block are obtained.
- the route of a certain operation block in the operation area can also be planned first, and then other operations can be planned based on this as a reference block route.
- multiple route segments parallel to the route direction can be generated in the first operation block, and then based on the extension of the multiple route segments generated in the first operation block, the route can be generated in the second operation block. segment, so as to obtain the route segment in each operation block in the first operation block and the second operation block.
- any one of the above-mentioned methods for generating route segments can be used to first generate and route in the first operation block. Multiple route segments with parallel directions are obtained to obtain the route of the first operation block. Then, as shown in Fig. 4p, an extension line of each route segment in the first operation block is generated. Specifically, an extension line of each route segment intersecting with the adjacent same boundary AB is generated, and then the extension line is generated. As the benchmark, multiple reference lines are generated that are parallel to the route direction and run through the second operation block. The distance between any two adjacent reference lines and the distance between adjacent extension lines and reference lines are the same as any two. The spacing between adjacent extension lines is equal.
- intersection points between each extension line and the reference line and the boundary of the second work block as shown in Figure 4q, it can be seen that the specific intersection points include 4 intersection points with the boundary AE of the second work block, and The four intersection points of the boundary EF of the second work block and the four intersection points of the boundary FB of the second work block, these intersection points and the node of the route segment in the first work block and the adjacent same boundary AB are taken as The endpoints of the route segments are connected along the route direction to form the route segments in the second operation block, and the routes of each operation block in the operation area can be obtained, as shown in Figure 4d.
- the routes of each operation block in the operation area can be planned through the above various feasible methods, which is highly flexible in route planning, suitable for various usage scenarios, and can ensure the overlapping of adjacent parts of sub-areas.
- the rate is uniform, which helps to improve the accuracy of surveying and mapping.
- the work area can be divided into three or more work blocks. As shown in FIG. 4r, the work area includes a first work block ABDC, a second work block ABFE, and a third work block. Block BIGD and the fourth operation block BIHF have a total of 4 operation blocks.
- each operation block directly cuts the reference line, wherein the first operation block uses the boundaries AC, CD, DB to cut the reference line, and the second operation block uses the boundaries AE, EF, FB to cut the reference line
- the third operation block is to use the boundary BD, DG, GI to cut the reference line
- the fourth operation block is to use the boundary BF, FH, HI to cut the reference line, and the obtained after cutting is located in each operation block.
- the inner line segment can be used as the corresponding route segment, or the intersection of the reference line and the boundary of each operation block can be obtained, and then the intersection point can be used as the endpoint of the route segment to connect to form the route segment inside each operation block, thereby generating
- the routes of each operation block are shown in Figure 4t.
- the endpoints of the route segments located on the shared boundary can be adjusted so that the distance between the endpoints and the shared boundary is less than or equal to a preset distance threshold to ensure that the The boundary has a certain heading overlap rate, and the heading overlap rate at the boundary is uniform.
- the preset distance threshold may be set according to the heading overlap rate.
- the end point e can be adjusted to the first operation block along the route direction respectively.
- Move inside the 3rd work block obtain the end point e1 in the first work block and the end point e2 in the 3rd work block, the distance between the end points e1, e2 and the boundary BD is L, and L is less than or equal to the preset distance Threshold value, and then adjust the position of each endpoint on the boundary BD and BF, and move the same distance, the endpoint of the route segment after moving is shown in Figure 4v, and then connect the endpoints to generate each operation area.
- the route of the block can ensure that there is a certain course overlap rate at the boundary, and the course overlap rate at the boundary is uniform, and it can also avoid different aircraft flying in each operation block. When a collision occurs near the boundary, the flight safety of the aircraft is guaranteed.
- the operation area of the aircraft can be obtained, the operation area includes the first operation block and the second operation area adjacent to the same boundary, and reference lines with the same interval covering the operation area are generated, and the direction of the reference line is Based on the preset route direction setting, the route segment included in the first operation block or the second operation block is determined based on the reference line, and the route segment included in the first operation block or the second operation block coincides with the reference line, and then Connect the head and tail of the route segments included in the first operation block or the second operation block to generate the route of the first operation block or the second operation block, so as to determine the route segments of each operation block by generating reference lines, And generating a route can ensure that the overlap rate of the adjacent parts of the sub-region is uniform, which helps to improve the accuracy of mapping.
- FIG. 5 is a schematic structural diagram of a route planning apparatus according to an embodiment of the present invention.
- the route planning device described in this embodiment includes:
- the obtaining module 501 is configured to obtain a working area of the aircraft, where the working area includes a first working block and a second working block adjacent to the same boundary.
- a planning module 502 configured to plan a route in the operation area, the route includes a plurality of mutually parallel route segments located in the first operation block, and a plurality of parallel route segments in the second operation block route segment.
- the plurality of route segments in the first operation block include a first route segment
- the plurality of route segments in the second operation block include a second route segment, and the second route segment on the same line as said first flight segment;
- a plurality of the route segments of the first operation block and a plurality of the route segments of the second operation block are adjacent to the first operation block and the second operation block.
- the boundaries are parallel to each other.
- the first route segment or an extension of the second route segment intersects the boundary.
- the plurality of the flight line segments of the second operation block are parallel to the boundary.
- the interval between any two adjacent route segments in a plurality of mutually parallel route segments in the first operation block or the second operation block is the target interval; the second operation The target interval is the interval between the route segment closest to the boundary in the block and the route segment closest to the boundary in the first operation block.
- the interval between any two adjacent flight segments in the first operation block or the second operation block is equal.
- the distance between the end point of the route segment included in the first operation block or the second operation block and the boundary is the first distance.
- the planning module 502 is specifically used for:
- Equally spaced reference lines are generated covering the work area, and the directions of the reference lines are set based on a preset course direction.
- the route segment included in the first operation block or the second operation block is determined based on the reference line, and the route segment included in the first operation block or the second operation block is the same as the route segment included in the first operation block or the second operation block.
- the reference lines coincide.
- the planning module 502 is further configured to:
- Adjusting the position of the end point of the route segment included in the first operation block or the second operation block, so that the end point is the same as any one of the first operation block or the second operation block The distance of the boundary is less than or equal to the preset distance threshold.
- the preset distance threshold is set according to the heading overlap rate.
- the planning module 502 is specifically used for:
- a target separation is determined based on the side overlap ratio and the flight parameters.
- the equally spaced reference lines covering the work area are generated in a preset course direction based on the target spacing.
- the planning module 502 is specifically used for:
- a route segment of the work area is generated according to the route direction.
- the planning module 502 is specifically used for:
- An initial route segment parallel to the route direction and traversing the first work block and the second work block is generated.
- the initial route segment is segmented to obtain the route segment in each of the first operation block and the second operation block.
- the planning module 502 is specifically used for:
- a plurality of the route segments parallel to the route direction are generated within the first work block.
- a route segment is generated in the second work block based on a plurality of extensions of the air route segments generated in the first work block.
- the planning module 502 is specifically used for:
- a reference line parallel to the route direction and passing through the first work block and the second work block is generated.
- An initial route segment through the first work block and the second work block is determined based on the reference line, the initial route segment coincides with the reference line.
- each functional module of the route planning device described in the embodiment of the present invention may be specifically implemented according to the method in the method embodiment described in FIG. 1 or FIG. 3 , and the specific implementation process may refer to FIG. 1 or FIG. 3 .
- the relevant description of the method embodiment of 3 is not repeated here.
- FIG. 6 is a schematic structural diagram of a route planning device according to an embodiment of the present invention.
- the route planning apparatus described in this embodiment includes: a processor 601 , a memory 602 and a communication device 603 .
- the above-mentioned processor 601, memory 602, and communication device 603 are connected by a bus.
- the above-mentioned processor 601 can be a central processing unit (Central Processing Unit, CPU), and the processor can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuit (Application Specific Integrated Circuit, ASIC) ), off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
- a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
- the above-mentioned communication device 603 is used to send and receive data, such as position data of the work area, flight parameters, route data of the work area, and the like.
- the above-mentioned memory 602 may include read-only memory and random access memory, and provides program instructions and data to the processor 601 .
- a portion of memory 602 may also include non-volatile random access memory.
- a working area of the aircraft is acquired, where the working area includes a first working block and a second working block adjacent to the same boundary.
- a route is planned in the operation area, and the route includes a plurality of mutually parallel route segments in the first operation block and a plurality of mutually parallel route segments in the second operation block.
- the plurality of route segments in the first operation block include a first route segment
- the plurality of route segments in the second operation block include a second route segment, and the second route segment on the same line as said first flight segment;
- a plurality of the route segments of the first operation block and a plurality of the route segments of the second operation block are adjacent to the first operation block and the second operation block.
- the boundaries are parallel to each other.
- the first route segment or an extension line of the second route segment intersects the boundary.
- the plurality of the flight line segments of the second operation block are parallel to the boundary.
- the interval between any two adjacent route segments in a plurality of mutually parallel route segments in the first operation block or the second operation block is the target interval; the second operation The target interval is the interval between the route segment closest to the boundary in the block and the route segment closest to the boundary in the first operation block.
- the interval between any two adjacent flight segments in the first operation block or the second operation block is equal.
- the distance between the end point of the route segment included in the first operation block or the second operation block and the boundary is the first distance.
- processor 601 is specifically used for:
- Equally spaced reference lines are generated covering the work area, and the directions of the reference lines are set based on a preset course direction.
- the route segment included in the first operation block or the second operation block is determined based on the reference line, and the route segment included in the first operation block or the second operation block is the same as the route segment included in the first operation block or the second operation block.
- the reference lines coincide.
- the processor 601 is further configured to:
- Adjusting the position of the end point of the route segment included in the first operation block or the second operation block, so that the end point is the same as any one of the first operation block or the second operation block The distance of the boundary is less than or equal to the preset distance threshold.
- the preset distance threshold is set according to the heading overlap rate.
- processor 601 is specifically used for:
- a target separation is determined based on the side overlap ratio and the flight parameters.
- the equally spaced reference lines covering the work area are generated in a preset course direction based on the target spacing.
- processor 601 is specifically used for:
- a route segment of the work area is generated according to the route direction.
- processor 601 is specifically used for:
- An initial route segment parallel to the route direction and traversing the first work block and the second work block is generated.
- the initial route segment is segmented to obtain the route segment in each of the first operation block and the second operation block.
- processor 601 is specifically used for:
- a plurality of the route segments parallel to the route direction are generated within the first work block.
- a route segment is generated in the second work block based on a plurality of extensions of the air route segments generated in the first work block.
- processor 601 is specifically used for:
- a reference line parallel to the route direction and passing through the first work block and the second work block is generated.
- An initial route segment through the first work block and the second work block is determined based on the reference line, the initial route segment coincides with the reference line.
- the processor 601, the memory 602, and the communication device 603 described in the embodiment of the present invention may execute the implementation manner described in the route planning method provided in FIG. 1 or FIG. 3 in the embodiment of the present invention, and may also execute the present invention.
- Embodiment The implementation manner of the route planning apparatus described in FIG. 5 will not be repeated here.
- Embodiments of the present invention further provide a computer storage medium, where program instructions are stored in the computer storage medium, and when the program is executed, the program may include some or all of the steps of the route planning method in the embodiment corresponding to FIG. 1 or FIG. 3 .
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Traffic Control Systems (AREA)
Abstract
一种航线规划方法及设备,该航线规划方法包括:获取飞行器的作业区域,作业区域包括相邻的第一作业区块和第二作业区块(101);在作业区域规划航线,该航线包括位于第一作业区块内的多条互相平行的航线段和第二作业区块内的多条互相平行的航线段;其中,第一作业区块的多条航线段中包括第一航线段,第二作业区块的多条航线段中包括第二航线段,第二航线段与第一航线段在同一条直线上;或者,第一作业区块的多条航线段和第二作业区块的多条航线段,均与第一作业区块和第二作业区块相邻的边界互相平行(102)。该方法可以保证子区域邻接部分的重叠率均匀,有助于提升测绘的准确度。
Description
本发明涉及计算机技术领域,尤其涉及一种航线规划方法及设备。
相比于传统的测绘技术,利用无人机进行测绘具有更加快速、便捷、低成本、精度高等优势。当前无人机测绘流程主要是划定一块待测绘区域,根据测绘要求规划测绘航线和拍照航点,无人机执飞,获取拍照数据后进行处理。目前,对于大型作业区域,例如大型机场、城市等场景,通常是将作业区域分割为多个子区域,单个子区域对应每架无人机一次飞行,然后采用多机进行同时作业。然而,目前的航线规划方法在子区域邻接部分的重叠率往往存在异常,这极大的影响了测绘效果。可见,如何在规划航线时保证子区域邻接部分的重叠率均匀,以提升测绘的准确度已成为亟待解决的问题。
发明内容
本发明实施例公开了一种航线规划方法及设备,可以保证子区域邻接部分的重叠率均匀,有助于提升测绘的准确度。
本发明实施例第一方面公开了一种航线规划方法,所述方法包括:
获取飞行器的作业区域,所述作业区域包括相邻的第一作业区块和第二作业区块。
在所述作业区域规划航线,所述航线包括位于所述第一作业区块内的多条互相平行的航线段,和所述第二作业区块内的多条互相平行的航线段。
其中,所述第一作业区块的多条所述航线段中包括第一航线段,所述第二作业区块的多条所述航线段中包括第二航线段,所述第二航线段和所述第一航线段在同一条直线上;或者,
所述第一作业区块的多条所述航线段和所述第二作业区块的多条所述航线段,均与所述第一作业区块和所述第二作业区块相邻的边界互相平行。
本发明实施例第二方面公开了一种航线规划设备,包括:处理器和存储器,其中:
所述存储器,用于存储程序指令。
所述处理器调用所述程序指令时用于执行:
获取飞行器的作业区域,所述作业区域包括相邻的第一作业区块和第二作业区块。
在所述作业区域规划航线,所述航线包括位于所述第一作业区块内的多条互相平行的航线段,和所述第二作业区块内的多条互相平行的航线段。
其中,所述第一作业区块的多条所述航线段中包括第一航线段,所述第二作业区块的多条所述航线段中包括第二航线段,所述第二航线段和所述第一航线段在同一条直线上;或者,
所述第一作业区块的多条所述航线段和所述第二作业区块的多条所述航线段,均与所述第一作业区块和所述第二作业区块相邻的边界互相平行。
本发明实施例第三方面公开了一种航线规划装置,所述装置包括:
获取模块,用于获取飞行器的作业区域,所述作业区域包括相邻的第一作业区块和第二作业区块。
规划模块,用于在所述作业区域规划航线,所述航线包括位于所述第一作业区块内的多条互相平行的航线段,和所述第二作业区块内的多条互相平行的航线段。
其中,所述第一作业区块的多条所述航线段中包括第一航线段,所述第二作业区块的多条所述航线段中包括第二航线段,所述第二航线段和所述第一航线段在同一条直线上;或者,
所述第一作业区块的多条所述航线段和所述第二作业区块的多条所述航线段,均与所述第一作业区块和所述第二作业区块相邻的边界互相平行。
本发明实施例第四方面公开了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述第一方面所述的航线规划方法。
本发明实施例可以获取飞行器的作业区域,作业区域包括相邻于同一边界的第一作业区块和第二作业区块,并在作业区域规划航线,该航线包括位于第一作业区块内的多条互相平行的航线段和第二作业区块内的多条互相平行的航线段,其中,所述第一作业区块的多条所述航线段中包括第一航线段,所述第二作业区块的多条所述航线段中包括第二航线段,所述第二航线段和所述第一航线段在同一条直线上;或者,所述第一作业区块的多条所述航线段和所述第二作业区块的多条所述航线段,均与所述第一作业区块和所述第二作业区块相邻的边界互相平行,从而可以保证子区域邻接部分的重叠率均匀,有助于提升测绘的准确度。
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种航线规划方法的流程示意图;
图2a是本发明实施例公开的另一种作业区域的示意图;
图2b是本发明实施例公开的一种规划的航线的示意图;
图2c是本发明实施例公开的另一种规划的航线的示意图;
图2d是本发明实施例公开的又一种规划的航线的示意图;
图2e是本发明实施例公开的又一种规划的航线的示意图;
图3是本发明实施例公开的另一种航线规划方法的流程示意图;
图4a是本发明实施例公开的一种生成参考线的示意图;
图4b是本发明实施例公开的一种切割参考线的示意图;
图4c是本发明实施例公开的一种航线段的端点的示意图;
图4d是本发明实施例公开的又一种规划的航线的示意图;
图4e是本发明实施例公开的一种航线内缩的示意图;
图4f是本发明实施例公开的一种航线内缩后航线段的端点的示意图;
图4g是本发明实施例公开的又一种规划的航线的示意图;
图4h是本发明实施例公开的另一种生成参考线的示意图;
图4i是本发明实施例公开的另一种切割参考线的示意图;
图4j是本发明实施例公开的又一种规划的航线的示意图;
图4k是本发明实施例公开的另一种航线段的端点的示意图;
图4l是本发明实施例公开的又一种航线段的端点的示意图;
图4m是本发明实施例公开的又一种规划的航线的示意图;
图4n是本发明实施例公开的又一种规划的航线的示意图;
图4o是本发明实施例公开的又一种规划的航线的示意图;
图4p是本发明实施例公开的一种生成延长线和参考线的示意图;
图4q是本发明实施例公开的又一种航线段的端点的示意图;
图4r是本发明实施例公开的另一种作业区域的示意图;
图4s是本发明实施例公开的又一种生成参考线的示意图;
图4t是本发明实施例公开的又一种规划的航线的示意图;
图4u是本发明实施例公开的另一种航线内缩的示意图;
图4v是本发明实施例公开的另一种航线内缩后航线段的端点的示意图;
图4w是本发明实施例公开的又一种规划的航线的示意图;
图5是本发明实施例公开的一种航线规划装置的结构示意图;
图6是本发明实施例公开的一种航线规划设备的结构示意图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,为本发明实施例提供的一种航线规划方法的流程示意图。该航线规划方法包括以下步骤:
101、获取飞行器的作业区域,所述作业区域包括相邻的第一作业区块和第二作业区块。
其中,作业区域是指需要飞行器执行飞行任务,并在飞行过程中进行拍照以完成测绘的区域。该作业区域可以根据用户设置的位置坐标确定,也可以是用户在地图中指定的位置区域。该作业区域可以包括至少两个子区域,该至少两个子区域可以是根据用户的设置对作业区域进行拆分得到的,也可以是根据该作业区域的面积、形状等参数自动拆分得到的,子区域可以记为作业区块,例如该作业区域包括相邻于同一边界的第一作业区块和第二作业区块。
具体的,可以是飞行器的地面控制端获取该作业区域,并由地面控制端执行航线规划,也可以是飞行器从地面控制端获取该作业区域,由飞行器执行航线规划。
102、在所述作业区域规划航线,所述航线包括位于所述第一作业区块内的多条互相平行的航线段,和所述第二作业区块内的多条互相平行的航线段;
其中,所述第一作业区块的多条所述航线段中包括第一航线段,所述第二作业区块的多条所述航线段中包括第二航线段,所述第二航线段和所述第一航线段在同一条直线上;或者,
所述第一作业区块的多条所述航线段和所述第二作业区块的多条所述航线段,均与所述第一作业区块和所述第二作业区块相邻的边界互相平行。
若所述第二航线段与所述第一航线段属于同一条直线,所述第一航线段或者所述第二航线段的延长线与所述边界相交。
也就是说,若所述第一作业区块的多条所述航线段中包括一第一航线段的延长线与所述边界相交,则所述第二作业区块的多条所述航线段中包括一第二航线段与所述第一航线段的延长线重合。
具体的,获取作业区域后,可以针对该作业区域规划航线,使得规划的航线包括位于第一作业区块内的多条互相平行的航线段,和第二作业区块内的多条互相平行的航线段,如果第一作业区块的多条航线段中包括一第一航线段的延长线与边界相交,也即是说航线方向与第一作业区块和第二作业区块相邻的同一边界相交,则第二作业区块的多条航线段中包括一第二航线段与第一航线段的延长线重合,这样可以保证在航线方向与相邻的同一边界相交的情况下,在子区域邻接部分的旁向重叠率是均匀的。
举例来说,如图2a所示,作业区域包括第一作业区块ACDB和第二作业区块AEFB,第一作业区块和第二作业区块相邻于同一边界AB。如果航线方向与第一作业区块和第二作业区块相邻的同一边界AB相交,则针对该作业区域规划的航线可以如图2b或者图2c所示,其中,第一作业区块和第二作业区块内分别包括多条互相平行的航线段,第一作业区块的多条航线段中包括一第一航线段12的延长线与边界AB相交,第二作业区块的多条航线段中包括一第二航线段34与第一航线段12的延长线重合,这样可以保证在航线方向与相邻的同一边界相交的情况下,在子区域邻接部分(即边界AB处)的旁向重叠率是均匀的。
在一些可行的实施方式中,第一作业区块或第二作业区块内任意两条相邻的航线段之间的间隔相等,可以保证各子区域的旁向重叠率都是均匀的,有助于提升测绘的准确度。如图2b或者图2c所示,任意两条相邻的航线段之间的间隔均为d。
在一些可行的实施方式中,可以对航线进行内缩,使得第一作业区块或第二作业区块包括的航线段的端点与边界的距离为第一距离,不仅保证了飞行器在子区域相邻边界的飞行安全,也保证了航向重叠率在整个作业区域中都是均匀的,有助于提升测绘的准确度。如图2c所示,相比于图2b规划的航线,对航线段的端点进行了内缩,以第一作业区块的航线段12、第二作业区块的航线段34为例,将第一作业区块的航线段12的端点2、第二作业区块的航线段34的端点3沿着航线方向向各自所在的作业区块进行内缩,从而使得规划出的航线中,各个作业区块包括的航线段的端点与边界AB具有一定的距离(即第一距离L)。
在一些可行的实施方式中,规划出的航线中,如果第一作业区块的多条航线段与边界平行,则第二作业区块的多条航线段也与边界平行。第一作业区块或第二作业区块内的多条互相平行的航线段中任意两条相邻的航线段之间的间隔为目标间隔,则在航线方向与边 界平行的情况下,第二作业区块中距离边界最近的航线段,与第一作业区块中距离边界最近的航线段之间的间隔也为该目标间隔。如图2d所示,每个作业区块内的航线段都与边界AB平行,第一作业区块或第二作业区块内任意两条相邻的航线段之间的间隔均为目标间隔d,并且第二作业区块中距离边界AB最近的航线段34,与第一作业区块中距离边界AB最近的航线段12之间的间隔也为该目标间隔d,可以保证在航线方向与相邻的同一边界AB平行的情况下,在子区域邻接部分的旁向重叠率是均匀的。
在一些可行的实施方式中,可以对图2d所示的航线段的端点进行内缩,得到如图2e所示的航线,使得规划出的航线中,各个作业区块包括的航线段的端点与相应的边界具有一定的距离L,不仅保证了飞行器在边界的飞行安全,也保证了航向重叠率在整个作业区域中都是均匀的。
本发明实施例中,可以获取飞行器的作业区域,作业区域包括相邻于同一边界的第一作业区块和第二作业区块,并在该作业区域规划航线,该航线包括位于第一作业区块内的多条互相平行的航线段,和第二作业区块内的多条互相平行的航线段,如果第一作业区块的多条航线段中包括一第一航线段的延长线与边界相交,则第二作业区块的多条所航线段中包括一第二航线段与所述第一航线段的延长线重合,从而可以保证子区域邻接部分的重叠率均匀,有助于提升测绘的准确度。
请参阅图3,为本发明实施例提供的另一种航线规划方法的流程示意图。该航线规划方法方法包括以下步骤:
301、获取飞行器的作业区域,所述作业区域包括相邻于同一边界的第一作业区块和第二作业区块。
在本申请其他实施例中,该边界即为第一作业区块和第二作业区块相邻的边界。
其中,步骤301的具体实现可以参见前述实施例中步骤101的相关描述,此处不再赘述。
302、生成覆盖所述作业区域的间隔相同的参考线,所述参考线的方向是基于预设航线方向设定的。
其中,预设航线方向可以是固定设置的默认方向,也可以是用户自由设置的方向。
具体的,可以根据航线方向生成覆盖作业区域的多条参考线,其中,任意两条相邻的参考线之间的间隔均相同。
在一些可行的实施方式中,确定参考线之间的间隔的具体方式可以包括:获取设置的旁向重叠率和飞行参数,根据旁向重叠率和飞行参数确定目标间隔,并基于该目标间隔在航线方向上生成覆盖作业区域的间隔相同的参考线。
在一些可行的实施方式中,飞行参数可以包括飞行高度、飞行器上相机的视场角(Field of view,FOV)等。
303、基于所述参考线确定所述第一作业区块或所述第二作业区块包括的航线段,所述第一作业区块或所述第二作业区块包括的所述航线段与所述参考线重合。
304、将所述第一作业区块或所述第二作业区块包括的所述航线段的首尾连接,以生成所述第一作业区块或所述第二作业区块的航线。
具体的,可以确定每条参考线与第一作业区块以及第二作业区块的每条边界的交点, 将交点作为航线段的端点,然后将端点沿着参考线的方向连接起来组成航线段,每条航线段都与参考线重合,得到第一作业区块或第二作业区块包括的航线段,再将各个作业区块内的航线段的首尾连接,即可生成各个作业区块的航线。
在一些可行的实施方式中,可以利用各个作业区块的边界对参考线直接进行切割,切割后得到的位于作业区块内部的线段即可作为航线段,再将各个作业区块内的航线段的首尾连接,即可生成各个作业区块的航线。
在一些可行的实施方式中,以航线方向与相邻的同一边界相交为例,生成的参考线可以如图4a所示,参考线覆盖整个作业区域,且贯穿第一作业区块以及第二作业区块的每条边界,然后可以利用各个作业区块的边界对参考线直接进行切割,其中,第一作业区块是利用边界AC、CD、DB、AB对参考线进行切割,第二作业区块是利用边界AE、EF、FB、AB对参考线进行切割,切割后得到的位于作业区块内部的线段即可作为航线段,并生成各个作业区块的航线,如图4d所示。
或者,如图4b所示,可以获取参考线与第一作业区块以及第二作业区块的每条边界的交点,具体的交点如图4c所示,包括与第一作业区块的边界AC的2个交点、与第一作业区块的边界CD的4个交点、与第一作业区块的边界DB的2个交点、与第二作业区块的边界AE的4个交点、与第二作业区块的边界EF的4个交点、与第二作业区块的边界FB的4个交点以及与共同边界AB的4个交点,其中A、B这2个点是共同边界的端点,这里并不是参考线与边界的交点,然后将交点沿着参考线的方向连接起来组成各个作业区块的航线段,每条航线段都与参考线重合,生成的航线可以如图4d所示。
在一些可行的实施方式中,在得到各个作业区块包括的航线段之后,可以调整第一作业区块或第二作业区块包括的航线段的端点的位置,使得端点与第一作业区块或第二作业区块任一边界的距离小于或等于预设距离阈值,以保证在边界处具有一定的航向重叠率,且边界处的航向重叠率都是均匀的。其中,该预设距离阈值可以是根据航向重叠率设定的。
如图4e所示,以调整相邻的同一边界AB上的航线段的端点b为例,可以沿着航线方向分别将端点b向第一作业区块和第二作业区块内部移动,得到第一作业区块内的端点b1和第二作业区块内的端点b2,端点b1、b2与边界AB的距离为L,且L小于或等于预设距离阈值,然后对其他端点(a、c、d)的位置也进行调整,并移动同样的距离,则移动后航线段的端点如图4f所示,最终生成的各个作业区块的航线如图4g所示,可以保证在边界处具有一定的航向重叠率,且边界处的航向重叠率都是均匀的,此外还可以避免不同的飞行器在各个作业区块内飞行作业时在边界附近发生碰撞,保证飞行器的飞行安全。其中,预设距离阈值Lmax可以通过如下公式计算:
Lmax=(d1/2)*sinθ,d1是航线方向上的拍照距离间隔,θ是航线方向与边界AB之间的夹角。
在一些可行的实施方式中,以航线方向与相邻的同一边界平行为例,生成的参考线可以如图4h所示,参考线覆盖整个作业区域,且贯穿第一作业区块以及第二作业区块的边界,然后可以利用各个作业区块的边界对参考线直接进行切割,其中,第一作业区块是利用边界AC、CD、DB对参考线进行切割,第二作业区块是利用边界AE、EF、FB对参考线进行切割,切割后得到的位于作业区块内部的线段即可作为航线段,并生成各个作业区块的 航线,如图4j所示。
或者,如图4i所示,可以获取参考线与第一作业区块以及第二作业区块的每条边界的交点,具体的交点如图4k所示,包括与第一作业区块的边界AC的6个交点、与第一作业区块的边界CD的2个交点、与第一作业区块的边界DB的8个交点、与第二作业区块的边界AE的10个交点、与第二作业区块的边界EF的1个交点以及与第二作业区块的边界FB的9个交点,其中A、B这2个点是共同边界的端点,这里并不是参考线与边界的交点,然后将交点沿着参考线的方向连接起来组成各个作业区块的航线段,每条航线段都与参考线重合,生成的航线可以如图4j所示。
在一些可行的实施方式中,除了根据航线方向直接规划作业区域中各个作业区块的航线之外,还可以先规划整个作业区域的航线,然后再对整个作业区域的航线中的航线段进行切分,从而得到各个作业区块的航线。具体的,可以先生成与航线方向平行,且贯穿第一作业区块和第二作业区块的初始航线段(即整个作业区域对应的航线段),然后对初始航线段进行切分处理,得到第一作业区块和第二作业区块中每个作业区块里的航线段。
其中,生成初始航线段的实现方式可以是:生成与航线方向平行,且贯穿第一作业区块和第二作业区块的参考线,基于参考线确定贯穿第一作业区块和第二作业区块的初始航线段,其中,初始航线段与参考线重合。例如,可以生成覆盖整个作业区域的参考线,然后利用整个作业区域的边界对参考线直接进行切割,从而得到整个作业区域对应的初始航线段,该初始航线段贯穿第一作业区块和第二作业区块,或者,生成覆盖整个作业区域的参考线之后,可以获取参考线与整个作业区域的每条边界的交点,然后将交点沿着参考线的方向连接起来组成作业区域对应的初始航线段,每条初始航线段都与参考线重合。
其中,对初始航线段进行切分处理,得到第一作业区块和第二作业区块中每个作业区块里的航线段的实现方式可以是:利用第一作业区块和第二作业区块相邻的同一边界对初始航线段进行切分处理,得到第一作业区块和第二作业区块中每个作业区块里的航线段,从而规划出各个作业区块的航线。
举例来说,可以先生成如图4a所示的参考线,然后获取参考线与整个作业区域的每条边界(包括边界CD、DF、FE、EC)的交点,具体的交点如图4l所示,包括与作业区域的边界CD的4个交点、与作业区域的边界DF的6个交点、与作业区域的边界FE的4个交点以及与作业区域的边界EC的6个交点,其中A、B这2个点是作业区域包括的第一作业区块和第二作业区块的共同边界的端点,这里并不是参考线与边界的交点,然后将交点沿着参考线的方向连接起来组成整个作业区域对应的初始航线段,每条初始航线段都与参考线重合,如图4m所示。
或者,在生成如图4a所示的参考线之后,可以利用整个作业区域的边界对参考线直接进行切割,具体是利用作业区域的边界CD、DF、FE、EC对参考线进行切割,切割后得到的位于作业区域内部的线段即可作为初始航线段,如图4m所示。
如图4n所示,在得到整个作业区域对应的初始航线段之后,可以利用第一作业区块和第二作业区块相邻的同一边界AB对初始航线段进行切分处理,具体是对作业区域包括的初始航线段中与边界AB相交的初始航线段进行切分处理,得到4个切分点a、b、c、d,通过这4个切分点将初始航线段一分为二,从而得到每个作业区块包括的航线段。
在一些可行的实施方式中,除了根据航线方向直接规划作业区域中各个作业区块的航线之外,还可以先规划作业区域中某个作业区块的航线,然后再以此为参考规划其他作业区块的航线。具体的,可以在第一作业区块内生成与航线方向平行的多条航线段,然后基于在第一作业区块内生成的多条航线段的延长线,在第二作业区块内生成航线段,从而得到第一作业区块和第二作业区块中每个作业区块里的航线段。
举例来说,如图4o所示,对于作业区域板块的第一作业区块和第二作业区块,可以利用上述生成航线段的任意一种方式,先在第一作业区块内生成与航线方向平行的多条航线段,得到第一作业区块的航线。然后,如图4p所示,生成第一作业区块内的各条航线段的延长线,具体可以是生成与相邻的同一边界AB相交的各条航线段的延长线,然后再以延长线为基准,生成与航线方向平行且贯穿第二作业区块的多条参考线,任意两条相邻的参考线之间的间距、相邻的延长线和参考线之间的间距均与任意两条相邻的延长线之间的间距相等。获取每条延长线和参考线与第二作业区块的边界之间的交点,如图4q所示,可以看到,具体的交点包括与第二作业区块的边界AE的4个交点、与第二作业区块的边界EF的4个交点以及与第二作业区块的边界FB的4个交点,将这些交点以及第一作业区块内的航线段与相邻的同一边界AB的节点作为航线段的端点,并沿着航线方向连接起来,组成第二作业区块内的航线段,即可得到作业区域中各个作业区块的航线,如图4d所示。
可以看出,通过以上多种可行的方式都可以规划出作业区域内各个作业区块的航线,在航线规划时具有高度灵活性,适用于多种使用场景,并且可以保证子区域邻接部分的重叠率均匀,有助于提升测绘的准确度。
在一些可行的实施方式中,作业区域可以划分为三个或者三个以上的作业区块,如图4r所示,作业区域包括第一作业区块ABDC、第二作业区块ABFE、第三作业区块BIGD和第四作业区块BIHF共4个作业区块,假设航线方向与边界AB、BI平行,则可以按照航线方向生成覆盖整个作业区域的参考线,如图4s所示,然后可以利用各个作业区块的边界对参考线直接进行切割,其中,第一作业区块是利用边界AC、CD、DB对参考线进行切割,第二作业区块是利用边界AE、EF、FB对参考线进行切割,第三作业区块是利用边界BD、DG、GI对参考线进行切割,第四作业区块是利用边界BF、FH、HI对参考线进行切割,切割后得到的位于各个作业区块内部的线段即可作为对应的航线段,或者也可以获取参考线与每个作业区块的边界的交点,然后将交点作为航线段的端点连接起来形成各个作业区块内部的航线段,从而生成各个作业区块的航线,如图4t所示。
在一些可行的实施方式中,在得到各个作业区块包括的航线段之后,可以调整位于共用边界上的航线段的端点,使得端点与共用边界的距离小于或等于预设距离阈值,以保证在边界处具有一定的航向重叠率,且边界处的航向重叠率都是均匀的。其中,该预设距离阈值可以是根据航向重叠率设定的。
如图4u所示,以调整第一作业区块和第三作业区块相邻的同一边界BD上的航线段的端点e为例,可以沿着航线方向分别将端点e向第一作业区块和第三作业区块内部移动,得到第一作业区块内的端点e1和第三作业区块内的端点e2,端点e1、e2与边界BD的距离为L,且L小于或等于预设距离阈值,然后对边界BD、BF上的各个端点的位置也进行调整,并移动同样的距离,则移动后航线段的端点如图4v所示,然后将端点之间连接起来, 以生成各个作业区块的航线,如图4w所示,从而可以保证在边界处具有一定的航向重叠率,且边界处的航向重叠率都是均匀的,此外还可以避免不同的飞行器在各个作业区块内飞行作业时在边界附近发生碰撞,保证飞行器的飞行安全。
本发明实施例中,可以获取飞行器的作业区域,作业区域包括相邻于同一边界的第一作业区块和第二作业区块,生成覆盖作业区域的间隔相同的参考线,参考线的方向是基于预设航线方向设定的,基于参考线确定第一作业区块或第二作业区块包括的航线段,第一作业区块或第二作业区块包括的航线段与参考线重合,然后将第一作业区块或第二作业区块包括的航线段的首尾连接,以生成第一作业区块或第二作业区块的航线,从而通过生成参考线确定各个作业区块的航线段,并生成航线,可以保证子区域邻接部分的重叠率均匀,有助于提升测绘的准确度。
请参阅图5,为本发明实施例提供的一种航线规划装置的结构示意图。本实施例中所描述的航线规划装置包括:
获取模块501,用于获取飞行器的作业区域,所述作业区域包括相邻于同一边界的第一作业区块和第二作业区块。
规划模块502,用于在所述作业区域规划航线,所述航线包括位于所述第一作业区块内的多条互相平行的航线段,和所述第二作业区块内的多条互相平行的航线段。
其中,所述第一作业区块的多条所述航线段中包括第一航线段,所述第二作业区块的多条所述航线段中包括第二航线段,所述第二航线段和所述第一航线段在同一条直线上;或者,
所述第一作业区块的多条所述航线段和所述第二作业区块的多条所述航线段,均与所述第一作业区块和所述第二作业区块相邻的边界互相平行。
若所述第二航线段与所述第一航线段属于同一条直线,所述第一航线段或者所述第二航线段的延长线与所述边界相交。
可选的,若所述第一作业区块的多条所述航线段与所述边界平行,则所述第二作业区块的多条所述航线段与所述边界平行。
可选的,所述第一作业区块或所述第二作业区块内的多条互相平行的航线段中任意两条相邻的航线段之间的间隔为目标间隔;所述第二作业区块中距离所述边界最近的航线段,与所述第一作业区块中距离所述边界最近的航线段之间的间隔为所述目标间隔。
可选的,所述第一作业区块或所述第二作业区块内任意两条相邻的航线段之间的间隔相等。
可选的,所述第一作业区块或所述第二作业区块包括的所述航线段的端点与所述边界的距离为第一距离。
可选的,所述规划模块502,具体用于:
生成覆盖所述作业区域的间隔相同的参考线,所述参考线的方向是基于预设航线方向设定的。
基于所述参考线确定所述第一作业区块或所述第二作业区块包括的航线段,所述第一作业区块或所述第二作业区块包括的所述航线段与所述参考线重合。
将所述第一作业区块或所述第二作业区块包括的所述航线段的首尾连接,以生成所述 第一作业区块或所述第二作业区块的航线。
可选的,所述规划模块502,还用于:
调整所述第一作业区块或所述第二作业区块包括的所述航线段的端点的位置,以使得所述端点与所述第一作业区块或所述第二作业区块任一边界的距离小于或等于预设距离阈值。
可选的,所述预设距离阈值是根据航向重叠率设定的。
可选的,所述规划模块502,具体用于:
获取旁向重叠率和飞行参数。
根据所述旁向重叠率和所述飞行参数确定目标间隔。
基于所述目标间隔在预设航线方向上生成覆盖所述作业区域的间隔相同的参考线。
可选的,所述规划模块502,具体用于:
获取规划的航线方向。
根据所述航线方向生成所述作业区域的航线段。
可选的,所述规划模块502,具体用于:
生成与所述航线方向平行,且贯穿所述第一作业区块和所述第二作业区块的初始航线段。
对所述初始航线段进行切分处理,得到所述第一作业区块和所述第二作业区块中每个作业区块里的航线段。
可选的,所述规划模块502,具体用于:
在所述第一作业区块内生成与所述航线方向平行的多条所述航线段。
基于在所述第一作业区块内生成的多条所述航线段的延长线,在所述第二作业区块内生成航线段。
可选的,所述规划模块502,具体用于:
生成与所述航线方向平行,且贯穿所述第一作业区块和所述第二作业区块的参考线。
基于所述参考线确定贯穿所述第一作业区块和所述第二作业区块的初始航线段,所述初始航线段与所述参考线重合。
可以理解的是,本发明实施例所描述的航线规划装置的各功能模块的功能可根据图1或图3所述的方法实施例中的方法具体实现,其具体实现过程可以参照图1或图3的方法实施例的相关描述,此处不再赘述。
请参阅图6,为本发明实施例提供的一种航线规划设备的结构示意图。本实施例中所描述的航线规划设备,包括:处理器601、存储器602和通信装置603。上述处理器601、存储器602和通信装置603通过总线连接。
上述处理器601可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
上述通信装置603,用于收发数据,例如作业区域的位置数据、飞行参数、作业区域 的航线数据等。
上述存储器602可以包括只读存储器和随机存取存储器,并向处理器601提供程序指令和数据。存储器602的一部分还可以包括非易失性随机存取存储器。其中,所述处理器601调用所述程序指令时用于执行:
获取飞行器的作业区域,所述作业区域包括相邻于同一边界的第一作业区块和第二作业区块。
在所述作业区域规划航线,所述航线包括位于所述第一作业区块内的多条互相平行的航线段,和所述第二作业区块内的多条互相平行的航线段。
其中,所述第一作业区块的多条所述航线段中包括第一航线段,所述第二作业区块的多条所述航线段中包括第二航线段,所述第二航线段和所述第一航线段在同一条直线上;或者,
所述第一作业区块的多条所述航线段和所述第二作业区块的多条所述航线段,均与所述第一作业区块和所述第二作业区块相邻的边界互相平行。
可选的,若所述第二航线段与所述第一航线段属于同一条直线,所述第一航线段或者所述第二航线段的延长线与所述边界相交。
可选的,若所述第一作业区块的多条所述航线段与所述边界平行,则所述第二作业区块的多条所述航线段与所述边界平行。
可选的,所述第一作业区块或所述第二作业区块内的多条互相平行的航线段中任意两条相邻的航线段之间的间隔为目标间隔;所述第二作业区块中距离所述边界最近的航线段,与所述第一作业区块中距离所述边界最近的航线段之间的间隔为所述目标间隔。
可选的,所述第一作业区块或所述第二作业区块内任意两条相邻的航线段之间的间隔相等。
可选的,所述第一作业区块或所述第二作业区块包括的所述航线段的端点与所述边界的距离为第一距离。
可选的,所述处理器601,具体用于:
生成覆盖所述作业区域的间隔相同的参考线,所述参考线的方向是基于预设航线方向设定的。
基于所述参考线确定所述第一作业区块或所述第二作业区块包括的航线段,所述第一作业区块或所述第二作业区块包括的所述航线段与所述参考线重合。
将所述第一作业区块或所述第二作业区块包括的所述航线段的首尾连接,以生成所述第一作业区块或所述第二作业区块的航线。
可选的,所述处理器601,还用于:
调整所述第一作业区块或所述第二作业区块包括的所述航线段的端点的位置,以使得所述端点与所述第一作业区块或所述第二作业区块任一边界的距离小于或等于预设距离阈值。
可选的,所述预设距离阈值是根据航向重叠率设定的。
可选的,所述处理器601,具体用于:
获取旁向重叠率和飞行参数。
根据所述旁向重叠率和所述飞行参数确定目标间隔。
基于所述目标间隔在预设航线方向上生成覆盖所述作业区域的间隔相同的参考线。
可选的,所述处理器601,具体用于:
获取规划的航线方向。
根据所述航线方向生成所述作业区域的航线段。
可选的,所述处理器601,具体用于:
生成与所述航线方向平行,且贯穿所述第一作业区块和所述第二作业区块的初始航线段。
对所述初始航线段进行切分处理,得到所述第一作业区块和所述第二作业区块中每个作业区块里的航线段。
可选的,所述处理器601,具体用于:
在所述第一作业区块内生成与所述航线方向平行的多条所述航线段。
基于在所述第一作业区块内生成的多条所述航线段的延长线,在所述第二作业区块内生成航线段。
可选的,所述处理器601,具体用于:
生成与所述航线方向平行,且贯穿所述第一作业区块和所述第二作业区块的参考线。
基于所述参考线确定贯穿所述第一作业区块和所述第二作业区块的初始航线段,所述初始航线段与所述参考线重合。
具体实现中,本发明实施例中所描述的处理器601、存储器602和通信装置603可执行本发明实施例图1或图3提供的航线规划方法中所描述的实现方式,也可执行本发明实施例图5所描述的航线规划装置的实现方式,在此不再赘述。
本发明实施例还提供了一种计算机存储介质,该计算机存储介质中存储有程序指令,所述程序执行时可包括如图1或图3对应实施例中的航线规划方法的部分或全部步骤。
需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本申请,某一些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:闪存盘、只读存储器(Read-Only Memory,ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
以上对本发明实施例所提供的一种航线规划方法及设备进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
Claims (26)
- 一种航线规划方法,其特征在于,所述方法包括:获取飞行器的作业区域,所述作业区域包括相邻的第一作业区块和第二作业区块;在所述作业区域规划航线,所述航线包括位于所述第一作业区块内的多条互相平行的航线段,和所述第二作业区块内的多条互相平行的航线段;其中,所述第一作业区块的多条所述航线段中包括第一航线段,所述第二作业区块的多条所述航线段中包括第二航线段,所述第二航线段与所述第一航线段在同一条直线上;或者,所述第一作业区块的多条所述航线段和所述第二作业区块的多条所述航线段,均与所述第一作业区块和所述第二作业区块相邻的边界互相平行。
- 根据权利要求1所述的方法,其特征在于,若所述第二航线段与所述第一航线段属于同一条直线,所述第一航线段或者所述第二航线段的延长线与所述边界相交。
- 根据权利要求1所述的方法,其特征在于,所述第一作业区块或所述第二作业区块内的多条互相平行的航线段中任意两条相邻的航线段之间的间隔为目标间隔;所述第二作业区块中距离所述边界最近的航线段,与所述第一作业区块中距离所述边界最近的航线段之间的间隔为所述目标间隔。
- 根据权利要求1所述的方法,其特征在于,所述第一作业区块或所述第二作业区块内任意两条相邻的航线段之间的间隔相等。
- 根据权利要求1所述的方法,其特征在于,所述第一作业区块或所述第二作业区块包括的所述航线段的端点与所述边界的距离为第一距离。
- 根据权利要求1~5中任一项所述的方法,其特征在于,所述在所述作业区域规划航线,包括:生成覆盖所述作业区域的间隔相同的参考线,所述参考线的方向是基于预设航线方向设定的;基于所述参考线确定所述第一作业区块或所述第二作业区块包括的航线段,所述第一作业区块或所述第二作业区块包括的所述航线段与所述参考线重合;将所述第一作业区块或所述第二作业区块包括的所述航线段的首尾连接,以生成所述第一作业区块或所述第二作业区块的航线。
- 根据权利要求6所述的方法,其特征在于,所述将所述第一作业区块或所述第二作业区块包括的所述航线段的首尾连接之前,所述方法还包括:调整所述第一作业区块或所述第二作业区块包括的所述航线段的端点的位置,以使得所述端点与所述第一作业区块或所述第二作业区块任一边界的距离小于或等于预设距离阈 值。
- 根据权利要求7所述的方法,其特征在于,所述预设距离阈值是根据航向重叠率设定的。
- 根据权利要求6所述的方法,其特征在于,所述生成覆盖所述作业区域的间隔相同的参考线,包括:获取旁向重叠率和飞行参数;根据所述旁向重叠率和所述飞行参数确定目标间隔;基于所述目标间隔在预设航线方向上生成覆盖所述作业区域的间隔相同的参考线。
- 根据权利要求1~5中任一项所述的方法,其特征在于,所述在所述作业区域规划航线,包括:获取规划的航线方向;根据所述航线方向生成所述作业区域的航线段。
- 根据权利要求10所述的方法,其特征在于,所述根据所述航线方向生成所述作业区域的航线段,包括:生成与所述航线方向平行,且贯穿所述第一作业区块和所述第二作业区块的初始航线段;对所述初始航线段进行切分处理,得到所述第一作业区块和所述第二作业区块中每个作业区块里的航线段。
- 根据权利要求10所述的方法,其特征在于,所述根据所述航线方向生成所述作业区域的航线段,包括:在所述第一作业区块内生成与所述航线方向平行的多条所述航线段;基于在所述第一作业区块内生成的多条所述航线段的延长线,在所述第二作业区块内生成航线段。
- 根据权利要求11所述的方法,其特征在于,所述生成与所述航线方向平行,且贯穿所述第一作业区块和所述第二作业区块的初始航线段,包括:生成与所述航线方向平行,且贯穿所述第一作业区块和所述第二作业区块的参考线;基于所述参考线确定贯穿所述第一作业区块和所述第二作业区块的初始航线段,所初始航线段与所述参考线重合。
- 一种航线规划设备,其特征在于,包括:处理器和存储器,其中:所述存储器,用于存储程序指令;所述处理器调用所述程序指令时用于执行:获取飞行器的作业区域,所述作业区域包括相邻于同一边界的第一作业区块和第二作业区块;在所述作业区域规划航线,所述航线包括位于所述第一作业区块内的多条互相平行的航线段,和所述第二作业区块内的多条互相平行的航线段;其中,所述第一作业区块的多条所述航线段中包括第一航线段,所述第二作业区块的多条所述航线段中包括第二航线段,所述第二航线段与所述第一航线段在同一条直线上;或者,所述第一作业区块的多条所述航线段和所述第二作业区块的多条所述航线段,均与所述第一作业区块和所述第二作业区块相邻的边界互相平行。
- 根据权利要求14所述的航线规划设备,其特征在于,若所述第二航线段与所述第一航线段属于同一条直线,所述第一航线段或者所述第二航线段的延长线与所述边界相交。
- 根据权利要求15所述的航线规划设备,其特征在于,所述第一作业区块或所述第二作业区块内的多条互相平行的航线段中任意两条相邻的航线段之间的间隔为目标间隔;所述第二作业区块中距离所述边界最近的航线段,与所述第一作业区块中距离所述边界最近的航线段之间的间隔为所述目标间隔。
- 根据权利要求14所述的航线规划设备,其特征在于,所述第一作业区块或所述第二作业区块内任意两条相邻的航线段之间的间隔相等。
- 根据权利要求14所述的航线规划设备,其特征在于,所述第一作业区块或所述第二作业区块包括的所述航线段的端点与所述边界的距离为第一距离。
- 根据权利要求14~18中任一项所述的航线规划设备,其特征在于,所述处理器,具体用于:生成覆盖所述作业区域的间隔相同的参考线,所述参考线的方向是基于预设航线方向设定的;基于所述参考线确定所述第一作业区块或所述第二作业区块包括的航线段,所述第一作业区块或所述第二作业区块包括的所述航线段与所述参考线重合;将所述第一作业区块或所述第二作业区块包括的所述航线段的首尾连接,以生成所述第一作业区块或所述第二作业区块的航线。
- 根据权利要求19所述的航线规划设备,其特征在于,所述处理器,还用于:调整所述第一作业区块或所述第二作业区块包括的所述航线段的端点的位置,以使得所述端点与所述第一作业区块或所述第二作业区块任一边界的距离小于或等于预设距离阈值。
- 根据权利要求20所述的航线规划设备,其特征在于,所述预设距离阈值是根据航向重叠率设定的。
- 根据权利要求19所述的航线规划设备,其特征在于,所述处理器,具体用于:获取旁向重叠率和飞行参数;根据所述旁向重叠率和所述飞行参数确定目标间隔;基于所述目标间隔在预设航线方向上生成覆盖所述作业区域的间隔相同的参考线。
- 根据权利要求14~18中任一项所述的航线规划设备,其特征在于,所述处理器,具体用于:获取规划的航线方向;根据所述航线方向生成所述作业区域的航线段。
- 根据权利要求23所述的航线规划设备,其特征在于,所述处理器,具体用于:生成与所述航线方向平行,且贯穿所述第一作业区块和所述第二作业区块的初始航线段;对所述初始航线段进行切分处理,得到所述第一作业区块和所述第二作业区块中每个作业区块里的航线段。
- 根据权利要求23所述的航线规划设备,其特征在于,所述处理器,具体用于:在所述第一作业区块内生成与所述航线方向平行的多条所述航线段;基于在所述第一作业区块内生成的多条所述航线段的延长线,在所述第二作业区块内生成航线段。
- 根据权利要求24所述的航线规划设备,其特征在于,所述处理器,具体用于:生成与所述航线方向平行,且贯穿所述第一作业区块和所述第二作业区块的参考线;基于所述参考线确定贯穿所述第一作业区块和所述第二作业区块的初始航线段,所述初始航线段与所述参考线重合。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/118466 WO2022061906A1 (zh) | 2020-09-28 | 2020-09-28 | 一种航线规划方法及设备 |
CN202080035013.6A CN113826054A (zh) | 2020-09-28 | 2020-09-28 | 一种航线规划方法及设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/118466 WO2022061906A1 (zh) | 2020-09-28 | 2020-09-28 | 一种航线规划方法及设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022061906A1 true WO2022061906A1 (zh) | 2022-03-31 |
Family
ID=78924223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/118466 WO2022061906A1 (zh) | 2020-09-28 | 2020-09-28 | 一种航线规划方法及设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113826054A (zh) |
WO (1) | WO2022061906A1 (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106774434A (zh) * | 2017-01-18 | 2017-05-31 | 北京艾森博航空科技股份有限公司 | 应用于无人机植保的自动避障方法及系统 |
CN107544540A (zh) * | 2017-09-11 | 2018-01-05 | 陕西土豆数据科技有限公司 | 一种应用于旋翼无人机的航线规划方法 |
WO2018083698A1 (en) * | 2016-11-03 | 2018-05-11 | Datumate Ltd. | System and method for automatically acquiring two-dimensional images and three-dimensional point cloud data of a field to be surveyed |
CN108919832A (zh) * | 2018-07-23 | 2018-11-30 | 京东方科技集团股份有限公司 | 无人机作业航线规划方法、无人机施药方法及装置 |
CN109855627A (zh) * | 2019-01-04 | 2019-06-07 | 哈瓦国际航空技术(深圳)有限公司 | 无人机分架次规划航线的方法、装置、设备和存储介质 |
CN109931934A (zh) * | 2017-12-19 | 2019-06-25 | 杭州海康机器人技术有限公司 | 无人机作业任务的规划方法及装置 |
CN110275544A (zh) * | 2019-04-16 | 2019-09-24 | 上海大学 | 一种植保无人机航线规划方法 |
CN110622088A (zh) * | 2017-04-20 | 2019-12-27 | 深圳市大疆创新科技有限公司 | 飞行路径确定方法、信息处理装置、程序和记录介质 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106502264B (zh) * | 2016-10-26 | 2018-05-01 | 广州极飞科技有限公司 | 植保无人机的作业系统 |
CN107860387B (zh) * | 2017-10-19 | 2018-12-07 | 上海拓攻机器人有限公司 | 植保无人机作业航线规划方法及植保无人机 |
CN109074093B (zh) * | 2017-12-18 | 2021-11-16 | 深圳市大疆创新科技有限公司 | 一种无人机的航线规划方法、控制设备及存储介质 |
-
2020
- 2020-09-28 CN CN202080035013.6A patent/CN113826054A/zh active Pending
- 2020-09-28 WO PCT/CN2020/118466 patent/WO2022061906A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018083698A1 (en) * | 2016-11-03 | 2018-05-11 | Datumate Ltd. | System and method for automatically acquiring two-dimensional images and three-dimensional point cloud data of a field to be surveyed |
CN106774434A (zh) * | 2017-01-18 | 2017-05-31 | 北京艾森博航空科技股份有限公司 | 应用于无人机植保的自动避障方法及系统 |
CN110622088A (zh) * | 2017-04-20 | 2019-12-27 | 深圳市大疆创新科技有限公司 | 飞行路径确定方法、信息处理装置、程序和记录介质 |
CN107544540A (zh) * | 2017-09-11 | 2018-01-05 | 陕西土豆数据科技有限公司 | 一种应用于旋翼无人机的航线规划方法 |
CN109931934A (zh) * | 2017-12-19 | 2019-06-25 | 杭州海康机器人技术有限公司 | 无人机作业任务的规划方法及装置 |
CN108919832A (zh) * | 2018-07-23 | 2018-11-30 | 京东方科技集团股份有限公司 | 无人机作业航线规划方法、无人机施药方法及装置 |
CN109855627A (zh) * | 2019-01-04 | 2019-06-07 | 哈瓦国际航空技术(深圳)有限公司 | 无人机分架次规划航线的方法、装置、设备和存储介质 |
CN110275544A (zh) * | 2019-04-16 | 2019-09-24 | 上海大学 | 一种植保无人机航线规划方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113826054A (zh) | 2021-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108871288B (zh) | 一种无人机带状倾斜影像航测方法及系统 | |
US20190266772A1 (en) | Method and apparatus for editing road element on map, electronic device, and storage medium | |
CN112313725B (zh) | 航线生成方法、地面端设备、无人机、系统和存储介质 | |
CN108481320B (zh) | 一种机器人的移动控制方法及机器人 | |
WO2021073654A1 (zh) | 无人机的安全航线生成方法、装置、控制终端和无人机 | |
CN109074093B (zh) | 一种无人机的航线规划方法、控制设备及存储介质 | |
JP2021534481A (ja) | 障害物又は地面の認識及び飛行制御方法、装置、機器及び記憶媒体 | |
CN109508034B (zh) | 一种复杂多边形测区下的多旋翼无人机测绘航线规划方法 | |
CN112229414B (zh) | 障碍物规避路线的生成方法、装置、无人设备和存储介质 | |
JP7000637B2 (ja) | 運転参照経路の処理方法、装置、車両、及びプログラム | |
WO2021087750A1 (zh) | 无人飞行器的航线规划方法和装置 | |
CN109032165B (zh) | 无人机航线的生成方法和装置 | |
JP2018523821A (ja) | ナビゲーションマップの制御方法、装置及び記憶媒体 | |
JP7122059B2 (ja) | シミュレーションデータ量拡張方法、装置、端末、記憶媒体、及びプログラム | |
US10133929B2 (en) | Positioning method and positioning device for unmanned aerial vehicle | |
WO2018094741A1 (zh) | 一种航线编辑方法、装置及控制设备 | |
JP2020148776A (ja) | 車両軌跡計画方法、装置、コンピュータ設備、コンピュータ可読記憶媒体、及びプログラム | |
CN110675414B (zh) | 地块分割方法、装置、电子设备及存储介质 | |
WO2022227878A1 (zh) | 一种车道线标注方法及装置 | |
WO2023000221A1 (zh) | 可行驶区域生成方法、可移动平台及存储介质 | |
CN114660568B (zh) | 一种激光雷达障碍物检测方法及装置 | |
US20220084415A1 (en) | Flight planning method and related apparatus | |
WO2023179717A1 (zh) | 用于激光雷达的点云处理方法、装置、设备及存储介质 | |
CN109466786A (zh) | 一种针对交流单回直线塔的无人机自主巡检方法 | |
WO2022061906A1 (zh) | 一种航线规划方法及设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20954756 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20954756 Country of ref document: EP Kind code of ref document: A1 |