WO2022061882A1 - 一种小区搜索方法、通信装置、可读存储介质及芯片系统 - Google Patents

一种小区搜索方法、通信装置、可读存储介质及芯片系统 Download PDF

Info

Publication number
WO2022061882A1
WO2022061882A1 PCT/CN2020/118392 CN2020118392W WO2022061882A1 WO 2022061882 A1 WO2022061882 A1 WO 2022061882A1 CN 2020118392 W CN2020118392 W CN 2020118392W WO 2022061882 A1 WO2022061882 A1 WO 2022061882A1
Authority
WO
WIPO (PCT)
Prior art keywords
duration
data
frequency point
synchronization signal
preset
Prior art date
Application number
PCT/CN2020/118392
Other languages
English (en)
French (fr)
Inventor
张玥
魏璟鑫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080014825.2A priority Critical patent/CN114586418A/zh
Priority to PCT/CN2020/118392 priority patent/WO2022061882A1/zh
Publication of WO2022061882A1 publication Critical patent/WO2022061882A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a cell search method, a communication device, a readable storage medium, and a chip system.
  • the user's terminal equipment often performs cell search operations.
  • the terminal equipment since the terminal equipment usually does not have the configuration information of the cell where it is located after it is powered on, it needs to perform a cell search after powering on to obtain the configuration information of the cell, so as to realize the communication between the terminal equipment and the base station and other user terminals.
  • the cell search performed after the terminal device is powered on is usually referred to as an initial cell search, which may also be referred to as an initial cell search.
  • the 3rd Generation Partnership Project (3GPP) new technology (New Radio, NR) system has a total of 1008 cells in the physical layer, each cell corresponds to a cell identification (ID), and 1008 cells can be divided into 336 different groups, each group contains 3 different cell IDs, the specific relationship can be embodied in the following formula:
  • the process of cell search at a frequency point includes: receiving the signal of the frequency point, deciphering the received signal, and determining the cell ID, time domain location and frequency domain location of the cell according to the deciphered signal.
  • the terminal device will select the cell master information block (MIB) and system information block (SIB) according to certain criteria, and initiate random access. Since the terminal device may need to search a large number of frequency points when performing cell search, the time for the terminal device to perform the cell search is relatively long, and the power consumption of the terminal device is relatively large.
  • MIB cell master information block
  • SIB system information block
  • the present application provides a cell search method, a communication device, a readable storage medium and a chip system, which are used to shorten the time for a terminal device to perform a cell search, thereby saving the power of the terminal device.
  • an embodiment of the present application provides a cell search method.
  • a terminal device receives data of a first frequency point of a first duration, and determines on the data of the first frequency point of the first duration. If the synchronization signal cannot be searched, the data of the second frequency point of the second duration is received, and the synchronization signal is searched for the data of the second frequency point of the second duration. Wherein, the first duration is different from the second duration.
  • the synchronization signal cannot be searched on the data of the first frequency point of the first duration, which may be that there is no search for the first frequency point of the first duration
  • the data of the first frequency point of the first duration is processed, so that it is determined that no synchronization signal can be searched for the data of the first frequency point of the first duration.
  • "it is determined that the synchronization signal cannot be searched on the data of the first frequency point of the first duration" can also be understood as "presuming, inferring, judging or determining: in the first duration No synchronization signal can be found on the data of the first frequency point".
  • the synchronization signal cannot be searched on the data of the first frequency point of the first duration, which may be the first frequency of the first duration
  • the data of the first frequency point is searched, but the synchronization signal is not found.
  • the data on each frequency point received by the terminal device may be sent by a network device, and the data of the first frequency point and the second frequency point may be sent by the same network device, or may be different It is not limited in this embodiment of the present application.
  • the synchronization signal can be searched according to the received data of different durations. Further searching for the received data may or may not find a synchronization signal. It should be noted that even if it is determined that the synchronization signal cannot be searched for the data of the first frequency point of the first duration in the embodiment of the present application, if the data of the first frequency point of the first duration is searched, it is possible If a synchronization signal is found, it may not be possible to find a synchronization signal.
  • each frequency point receives data of the same duration
  • the solution of "each frequency point receives data of the same duration" in the embodiment of the present application is essentially different. Further, because it is not necessary to "receive data of the same duration at each frequency point", for some frequency points, data of a shorter duration can be received, thereby shortening the time delay of cell search at the frequency point.
  • the first duration includes K1 preset durations
  • the second duration includes K2 preset durations.
  • the K1 and the K2 are respectively positive integers, and the value of the K1 is different from the value of the K2. Since the synchronization signal is sent periodically, and the preset duration is the basic granularity, when the preset duration is an integer multiple of the transmission period of the synchronization signal, it is possible to receive an integer number of signals of the preset duration at one frequency point. Improves the probability of receiving a sync signal.
  • the preset duration is the transmission period of the synchronization signal configured in the NR.
  • the transmission period of synchronization is a period of time, and the value of this period can also be equal to the period of the SS burst set.
  • the preset duration is the transmission period of the synchronization signal configured in the NR. In this way, a signal with an integer number of preset durations is received at one frequency point, which can improve the possibility of receiving a synchronization signal.
  • the transmission period of the synchronization signal configured in the NR is one of the following: 5 milliseconds (ms), 10 ms, 20 ms, 40 ms, 80 ms, and 160 ms. In a possible implementation manner, the transmission period of the synchronization signal configured in the NR is one of the following: 5ms, 10ms, 20ms, 40ms, 80ms, and 160ms. In this way, it can be more compatible with the prior art of the transmission period of the synchronization signal.
  • the transmission period of the synchronization signal configured in the NR is: 20ms.
  • the transmission period of the synchronization signal configured in the NR is: 20ms. Since the default value of the transmission period of the synchronization signal in the NR defined in the prior art is 20 ms, this possible implementation manner may be more compatible with the prior art.
  • the terminal device After the terminal device receives the data of the first frequency point of the first duration, when it is determined that the data of the first frequency point that satisfies the first duration is local to the time domain of the PSS If the normalized cross-correlation value corresponding to the signal is smaller than the first threshold value, it is determined that no synchronization signal can be searched on the data of the first frequency point of the first duration.
  • the normalized cross-correlation value corresponding to the data of the first frequency point of the first duration and the time-domain local signal of the PSS can reflect the similarity between the two, if the normalized cross-correlation value is small (That is to say, the similarity is small), then it can be determined that the possibility of searching for a synchronization signal on the data of the first frequency point of the first time duration is small.
  • the data of the first frequency point is searched, and it is directly determined that no synchronization signal can be searched for the data of the first frequency point of the first duration. And if the cell search is no longer performed on the frequency point, the purpose of shortening the cell search time can be achieved.
  • the terminal device after receiving the data of the first frequency point of the first duration, determines the time domain between the data of the first frequency point and the PSS satisfying the first duration If the normalized cross-correlation value corresponding to the local signal is less than the first threshold value, and the synchronization signal is searched for the data of the first frequency point of the first duration, and no synchronization signal is found, then It is determined that no synchronization signal can be searched for the data of the first frequency point of the first duration, and it may also be determined that no synchronization signal can be searched to the data of the first frequency point of the first duration.
  • the NR system may receive 20ms data with at least one frequency, if all the 20ms data is discarded and the cell search is not performed, the situation of cell omission may be more serious. Based on this, even if the first duration The normalized cross-correlation value corresponding to the data of the first frequency point and the time-domain local signal of the PSS is small (that is to say, the similarity is small). Case.
  • the first duration is shorter than the second duration.
  • the normalized cross-correlation value corresponding to the data of the first frequency point of the first duration and the time-domain local signal of the PSS is less than a first threshold value.
  • the normalized cross-correlation value corresponding to the data of the first time period before the data of the second frequency point of the second time period and the time domain local signal of the PSS is not less than the first threshold value.
  • the normalized cross-correlation value corresponding to the data of the first frequency point of the first duration and the time-domain local signal of the PSS can reflect the similarity between the two, therefore , when the normalized cross-correlation value corresponding to the data of the first frequency point of the first time period and the time-domain local signal of the PSS is less than the first threshold value, it can be determined that there is an NR system on the first frequency point. Community is unlikely.
  • the normalized cross-correlation value corresponding to the data of the second frequency point of the first time period and the time-domain local signal of the PSS in the data of the second frequency point of the second time period is not less than the first frequency point
  • the threshold value it can be determined that there is a high possibility that there is a cell of the NR system on the first frequency point.
  • Cell search as such, can support lower signal-to-noise ratios.
  • the receiving, by the terminal device, data of the first duration on the first frequency may specifically include: the terminal device receiving the data of the jth preset duration on the first frequency until The data of the first preset duration to the jth preset duration data on the first frequency point satisfy the first condition.
  • the j is a positive integer starting from 1.
  • the value of the first duration is: j preset durations under the condition that the data of the first preset duration to the jth preset duration on the first frequency point satisfy the first condition value of duration.
  • the receiving, by the terminal device, the data of the second duration on the second frequency may specifically include: the terminal device receiving the data of the jth preset duration on the second frequency until the The data of the first preset duration to the jth preset duration data on the second frequency point satisfy the first condition, and the j is a positive integer starting from 1.
  • the value of the second duration is: j preset durations under the condition that the data of the first preset duration to the jth preset duration on the second frequency point satisfy the first condition value of duration.
  • satisfying the first condition includes satisfying that the value of j is not less than a preset value K0.
  • satisfying the first condition includes satisfying: the normalized cross-correlation values corresponding to the data of the first preset duration to the jth preset duration and the time-domain local signal of the PSS are smaller than the first threshold value.
  • a judgment may be made every time data of the duration of one synchronization signal cycle is received, and if it is judged that the currently received data meets the first condition, it may stop at the first frequency point Receive data.
  • the normalized correlation value is small, it means that there is a small possibility of NR cells on this frequency.
  • the action of receiving data on this frequency point) does not necessarily have to meet the requirement of "receiving K0 synchronization signal cycles". In this way, the purpose of reducing the cell search delay can be achieved.
  • the normalized cross-correlation value corresponding to the data received on a frequency point and the time domain local signal of the PSS is large, it means that there is a high possibility of NR cells on the frequency point. In this case, , more data of this frequency can be received, so that a smaller signal-to-noise ratio can be satisfied.
  • the maximum data receiving duration (that is, the maximum duration of receiving data at this frequency point) is the duration of K0 synchronous signal cycles. In this way, it is compatible with the existing technology and will not cause Too much data of the target frequency is received to increase the cell search delay.
  • the value of K0 is a preset number of cycles of synchronization signals that the terminal device needs to receive on the frequency point during the cell search process. As such, this embodiment may be more compatible with the prior art.
  • the value of K0 is 2. Since the default value of the transmission period of the synchronization signal in the NR configured in the prior art is 2 transmission periods of the synchronization signal, this possible implementation manner may be more compatible with the prior art.
  • the terminal device searches the synchronization signal for the data of the second frequency point of the second duration, when the data of the second frequency point of the second duration meets the data of the second frequency point of the second duration If the normalized cross-correlation value corresponding to the time-domain local signal of the PSS is smaller than the first threshold value, it is determined that no synchronization signal can be searched on the data of the second frequency point of the second duration.
  • the synchronization signal search may be performed on the data of the first frequency point of the first duration, or the synchronization signal search may not be performed.
  • the normalized cross-correlation value corresponding to the data of the first frequency point of the first duration and the time-domain local signal of the PSS can reflect the similarity between the two, if the normalized cross-correlation value is small (That is to say, the similarity is small), then it is considered that the first frequency point has a small possibility of existing in the NR system cell, so it can be directly determined that the synchronization signal is found on the data of the first frequency point of the first duration. Very unlikely. If the cell search is no longer performed on the frequency point, the purpose of shortening the cell search time can be achieved.
  • the terminal device searches the synchronization signal for the data of the second frequency point of the second duration, when the data of the second frequency point of the second duration meets the data of the second frequency point of the second duration
  • the normalized cross-correlation value corresponding to the time-domain local signal of the PSS is less than the first threshold value, and the synchronization signal is searched for the data of the second frequency point of the second duration, and no search is found.
  • the synchronization signal it can be determined that the synchronization signal cannot be searched on the data of the second frequency point of the second duration. Since the NR system may receive 20ms data with at least one frequency, if all the 20ms data is discarded and the cell search is not performed, the situation of cell omission may be more serious. Based on this, even if the first duration The normalized cross-correlation value corresponding to the data of the first frequency point and the time-domain local signal of the PSS is small (that is to say, the similarity is small). Case.
  • the terminal device searches the synchronization signal for the data of the second frequency point of the second duration, when the data of the second frequency point of the second duration meets the data of the second frequency point of the second duration
  • the normalized cross-correlation value corresponding to the time-domain local signal of the PSS is not less than the first threshold value, and the synchronization signal is searched for the data of the second frequency point of the second duration, and no search results are found.
  • the synchronization signal it can be determined that the synchronization signal cannot be searched on the data of the second frequency point of the second duration.
  • the synchronization signal is searched for the data of the second frequency point of the second duration. If no synchronization signal is found, it can be determined that the first No synchronization signal can be searched for the data of the second frequency point of the two durations.
  • the terminal device may first receive data on the a priori frequency point, and when it is determined that the cell of the NR system is not searched on the a priori frequency point, or the cell of the NR system is searched for However, if the camping is unsuccessful, the terminal device will continue to perform cell search on the frequency points of the supported frequency bands.
  • the terminal device may receive the data of the a priori frequency point of the third duration, the third duration is longer than the third duration A duration, and the value of the third duration is a preset duration of the synchronization signal that the terminal device needs to receive on the frequency point during the cell search process.
  • the present application further provides a communication device.
  • the communication device may be any kind of device at the receiving end that performs data transmission in a wireless manner. For example, communication chips or terminal equipment, etc.
  • the device on the sending end and the device on the receiving end are relative.
  • the communication device can be used as the above-mentioned terminal equipment or a communication chip that can be used for the terminal equipment.
  • a communication apparatus including a communication unit and a processing unit, so as to execute any one of the implementation manners of any one of the above-mentioned methods of the first aspect.
  • the communication unit is used to perform functions related to transmission and reception.
  • the communication unit includes a receiving unit and a sending unit.
  • the communication device is a communication chip, and the communication unit may be an input/output circuit or port of the communication chip.
  • the communication unit may be a transmitter and receiver, or the communication unit may be a transmitter and receiver.
  • the communication apparatus further includes various modules that can be used to execute any one of the implementation manners of any one of the above-mentioned communication methods in the first aspect.
  • a communication apparatus is provided, where the communication apparatus is the above-mentioned terminal device. Includes processor and memory.
  • the memory is used to store computer programs or instructions
  • the processor is used to call and run the computer programs or instructions from the memory, and when the processor executes the computer programs or instructions in the memory,
  • the communication apparatus is caused to perform any one of the implementations of any one of the above-mentioned methods of the first aspect.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the transceiver may include a transmitter (transmitter) and a receiver (receiver).
  • a communication apparatus including a processor.
  • the processor coupled to the memory, is operable to perform the method of any aspect of the first aspect and any possible implementation of the first aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication apparatus is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the communication device is a chip or a system of chips.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip or a chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • a system in a fifth aspect, includes the above-mentioned terminal equipment and network equipment.
  • a computer program product includes: a computer program (also referred to as code, or instruction), which, when the computer program is executed, enables the computer to execute any one of the above-mentioned first aspects.
  • a computer-readable storage medium stores a computer program (also referred to as code, or instruction), when it runs on a computer, causing the computer to execute any one of the above-mentioned first aspects.
  • the method in one possible implementation manner, or causing the computer to execute the method in any one of the implementation manners of the first aspect.
  • a system-on-chip may include a processor.
  • the processor coupled to the memory, is operable to perform the method of any aspect of the first aspect and any possible implementation of the first aspect.
  • the chip system further includes a memory.
  • Memory used to store computer programs (also called code, or instructions).
  • the processor is configured to call and run the computer program from the memory, so that the device installed with the chip system executes the method in any one of the implementation manners of the first aspect.
  • a processing device comprising: an input circuit, an output circuit and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that any aspect of the first aspect and the method in any possible implementation manner of the first aspect are implemented.
  • the above-mentioned processing device may be a chip
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver
  • the signal output by the output circuit may be, for example, but not limited to, output to and transmitted by a transmitter
  • the circuit can be the same circuit that acts as an input circuit and an output circuit at different times.
  • the embodiments of the present application do not limit the specific implementation manners of the processor and various circuits.
  • FIG. 1 is a schematic diagram of a possible system architecture to which an embodiment of the present application is applicable;
  • FIG. 2 is a schematic structural diagram of an SSB provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method for cell search provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of another method for cell search provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a possible system architecture to which this embodiment of the present application is applicable.
  • the system architecture shown in Figure 1 includes network equipment and terminal equipment.
  • FIG. 1 shows two network devices and one terminal device, which are network device 101 , network device 102 and terminal device 103 respectively.
  • the number is not limited.
  • the system architecture to which the embodiments of the present application apply may include other devices, such as core network devices, wireless relay devices, and wireless backhaul devices, in addition to network devices and terminal devices. limited.
  • the network device in the embodiment of the present application may integrate all functions in an independent physical device, or may distribute the functions on multiple independent physical devices, which is not limited by the embodiment of the present application.
  • the terminal device in the embodiment of the present application may be connected to the network device in a wireless manner.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • CDMA wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • General Packet Radio Service General Packet Radio Service, GPRS
  • LTE Long Term Evolution
  • LTE Frequency Division Duplex Frequency Division Duplex
  • TDD Time Division Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • Terminal devices include devices that provide voice and/or data connectivity to users, and may include, for example, handheld devices with wireless connectivity, or processing devices connected to a wireless modem.
  • the terminal equipment may communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device (D2D) terminal equipment, V2X terminal equipment, machine-to-machine/machine-type communication ( machine-to-machine/machine-type communications, M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station) , remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), or user equipment (user device), etc.
  • IoT Internet of things
  • these may include mobile telephones (or "cellular" telephones), computers with mobile terminal equipment, portable, pocket-sized, hand-held, computer-embedded mobile devices, and the like.
  • mobile telephones or "cellular" telephones
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • constrained devices such as devices with lower power consumption, or devices with limited storage capacity, or devices with limited computing power, etc.
  • it includes information sensing devices such as barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), and laser scanners.
  • RFID radio frequency identification
  • GPS global positioning system
  • a network device includes an access network (AN) device, such as a base station (eg, an access point), which may refer to a device in an access network that communicates with a wireless terminal device over an air interface through one or more cells.
  • the base station can be used to convert received air frames to and from Internet Protocol (IP) packets and act as a router between the terminal device and the rest of the access network, which can include the IP network.
  • IP Internet Protocol
  • the RSU can be a fixed infrastructure entity supporting V2X applications and can exchange messages with other entities supporting V2X applications.
  • the network device can also coordinate the attribute management of the air interface.
  • the network equipment may include an LTE system or an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in long term evolution-advanced (LTE-A), or may also include fifth generation mobile
  • the next generation node B ( gNB ) in the new radio (NR) system of the communication technology (the 5th generation, 5G) may also include the cloud radio access network (Cloud RAN)
  • a centralized unit (centralized unit, CU) and a distributed unit (distributed unit, DU) in the system are not limited in the embodiments of the present application.
  • a primary synchronization signal (Primary Synchronization Signal, PSS) and a secondary synchronization signal (Secondary Synchronization Signal, SSS) can be used to complete cell search.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the PSS frequency domain signal is given by Only sure, a total of 3.
  • the SSS frequency domain signal is given by Sure.
  • the process of cell search at the frequency point includes: receiving the signal of the frequency point, deciphering the received signal, and determining the cell ID, time domain location and frequency domain location of the cell according to the deciphered signal.
  • the terminal device when searching for a cell, the terminal device will first use the primary synchronization signal PSS to find the time domain location of the cell and the Then use the secondary synchronization signal SSS to confirm the cell's Finally, the cell ID and time domain position are obtained according to formula (1), and the frequency domain position of the cell is obtained by combining the frequency point information, and the search for the frequency point cell ends.
  • the cell ID, time domain location and frequency domain location of the cell are successfully determined, it can be called a successful cell search.
  • the cell ID, the time domain location and the frequency domain location of the cell are not successfully determined, it may be called a cell search failure, or a cell unsuccessful search.
  • the terminal device After the cell search is successful, the terminal device will select the master information block (MIB) and system information block (SIB) of the cell according to certain criteria, and initiate random access in order to successfully camp in the cell. If the cell camping fails, the terminal device needs to change the cell to camp on.
  • MIB master information block
  • SIB system information block
  • the operations of receiving data, cell search and cell camping may be performed on one frequency point first, and when the cell camping on this frequency point fails, data receiving, cell search and cell camping may be performed on the next frequency point.
  • the operation of cell camping may be performed.
  • the terminal device may also receive data of multiple frequency points first, then perform cell search for the multiple frequency points respectively, and then perform cell camping on the frequency points where the cells are searched.
  • the cell search performed after the terminal device is powered on may be called initial cell search.
  • the solution for performing cell search provided by the embodiments of the present application can be applied in the process of initial cell search. In a possible implementation manner, it can also be adaptively applied to the cell search process performed by the terminal equipment in the connected state.
  • the embodiments of the present application take the NR system as an example, and when introducing the embodiments and the beneficial effects, the cell searching for the NR system is also described as an example.
  • the cells of the NR system are correspondingly replaced with cells of other communication systems.
  • the cells of the NR system can be correspondingly replaced by the cells of the LTE system. .
  • the terminal device maintains some frequency points as a priori information to search first, and these frequency points may be called a priori frequency points.
  • the prior frequency points include, but are not limited to, the frequency points that have been successfully camped on before, the frequency points that have been successfully de-broadcasted before, and the frequency points where the neighbor cells are configured in the base station system message.
  • the terminal device generally searches for a priori frequency point, and if the terminal device finds a cell on the a priori frequency point, it will try to camp on the found cell. If the terminal device does not find a cell on the a priori frequency point, or finds a cell on the a priori frequency point but fails to camp, the terminal device can continue to perform cell search on the frequency point of the frequency band supported by the terminal device.
  • the process of performing cell search by the terminal device on the frequency points of the frequency band supported by the terminal device may be referred to as frequency band search.
  • the data sent by the network device for a certain period of time on each frequency point the data sent by the network device for a certain period of time on each frequency point, The received signal is decoded, and the cell ID, time domain location and frequency domain location of the cell are determined from the decoded signal.
  • the frequency points in the frequency band supported by the terminal device may be sorted first, and then data is received for each frequency point in sequence according to the sorting of the frequency points.
  • a frequency band search method may be based on frequency point power statistics. By measuring the received signal strength indicator (RSSI) of the frequency points, and counting the RSSI of all the frequency points (or some frequency points selected according to a certain interval) within a certain bandwidth, and then arrange the frequency points in descending order of RSSI Then, the frequency points are received in order from high to low, and then the cell search can be performed on the frequency points according to the order of RSSI from high to low.
  • RSSI received signal strength indicator
  • the design idea of this sorting method is that the larger the frequency point of RSSI, the stronger the signal, and the greater the possibility of finding a cell on this frequency point.
  • each frequency band may be searched one by one according to the technical solutions provided in the embodiments of the present invention.
  • the UE is configured with two frequency bands Band 1 and Band 2.
  • cell search is performed on each frequency point supported on the frequency band Band 1.
  • each frequency point supported on the frequency band Band 1 can be sorted (for example, it can be According to RSSI), then according to the order of RSSI, cell search is performed on the frequency points.
  • the frequency point supported by Band 1 is not successfully camped, the cell search can be performed on each frequency point supported on the frequency band Band 2 .
  • the synchronization signal and physical broadcast channel block (Synchronization Signal and Physical broadcast channel block, SSB) are introduced.
  • each SSB can occupy 4 orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbols, and the OFDM symbols can also be written as OFDM symbols.
  • FIG. 2 exemplarily shows a schematic structural diagram of an SSB.
  • an SSB can usually consist of a synchronization signal (the synchronization signal includes a Primary Synchronization Signal (PSS) 201 and a Secondary Synchronization Signal (Secondary Synchronization Signal). , SSS) 202) and a physical broadcast channel block (Physical broadcast channel, PBCH) block 203.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical broadcast channel block
  • the subcarrier spacing (SCS) of the OFDM symbol occupied by SSB can be 15 kilohertz (KHz), 30KHz, 120KHz, 240KHz, of which 15KHz and 30KHz can be used for frequency band search in the frequency band below 6GHz, and 120KHz and 240KHz can be used Search in frequency bands above 6GHz.
  • the value of L can be at most L (wherein, the value of L can be a positive integer, and the value of L is related to the frequency band.
  • the maximum value of L in the frequency band search can be 64.
  • SSBs form a synchronization signal set (Synchronization Signal burst set, SS burst set), and the SS burst set is sent periodically.
  • the transmission period of the SS burst set is configurable, for example, it can be configured as one of ⁇ 5 milliseconds (ms), 10ms, 20ms, 40ms, 80ms, and 160ms ⁇ .
  • the current protocol stipulates that in the initial cell dwell phase, the default SS burst set period (default SS burst set period) is configured as 20ms.
  • the period of the SS burst set may be equal to the transmission period of the synchronization signal.
  • the base station may use different transmit beam directions.
  • SSBs with the same time-domain symbols in two SS burst set periods correspond to the same transmit beam direction. All transmitted SSBs within an SS burst set period can be limited to 5ms duration.
  • the terminal device does not know the timing information of the cell when performing cell search for each frequency point. Therefore, the terminal device will first use the length of the transmission period of the synchronization signal specified in the protocol as the basic granularity. Receive a signal with a specified duration (the duration is the length of multiple preset transmission cycles).
  • K0 is the preset number of cycles of synchronization signals that the terminal device needs to receive at the frequency point during the cell search process.
  • Section 4.1 protocol stipulates For initial cell selection, a UE may assume that half frames with SS/PBCH blocks occur with a periodicity of 2 frames. The corresponding Chinese meaning is: the default configuration of the transmission period of the synchronization signal in the NR system is 20ms.
  • the NR protocol also stipulates that the signal-to-noise ratio of the received signal is -6dB. In order to ensure the signal-to-noise ratio of -6dB, the value of K0 can be set to 2, of course, it can also be set to a positive integer such as 3, 4, etc. The value of K0 can be set by Different manufacturers set their own.
  • the duration of the synchronization signal that the terminal device needs to receive on the frequency point in the cell search process is the length of two synchronization signal transmission periods (40ms). It can be understood that in the NR system, the value of K0 is 2. The transmission period of the synchronization signal is 20ms.
  • the embodiment of the present application provides a solution to reduce the time delay of cell search by adjusting the duration of receiving data at one frequency point.
  • the embodiments of the present application are not only applicable to the NR system, but also applicable to other communication systems, such as the LTE system.
  • a signal of 20ms (the length of 4 transmission periods) is received at the point.
  • the value of K0 is 4.
  • the embodiment of the present application is applied in the LTE system, the duration of receiving data on the frequency point can be adjusted, and then The delay of cell search can be reduced.
  • the data transmitted by the base station contains the primary synchronization signal PSS (Primary Synchronization Signal) within 20ms (the PSS transmission period of the NR system is 20ms). If there is no NR on the frequency point system cell, then the data received within 20ms does not include PSS.
  • PSS Primary Synchronization Signal
  • the normalized cross-correlation value corresponding to the time domain local signal of the data and the PSS can reflect the similarity between the two signals. If the normalized cross-correlation value is large, the similarity between the two signals is high, which can It reflects that there is a high possibility of an NR cell at this frequency. Possibly, if the normalized cross-correlation value is small, the similarity between the two signals is low, which may reflect that the frequency point is less likely to have an NR cell. Based on this, in a possible implementation manner, the normalized cross-correlation value corresponding to the data on the frequency point and the time-domain local signal of the PSS can be used to determine the duration of receiving data on one frequency point, thereby shortening the time period. The purpose of cell search delay.
  • FIG. 3 exemplarily shows a schematic flowchart of a cell search method provided by an embodiment of the present application. As shown in FIG. 3 , the method includes:
  • Step 301 the terminal device receives the data of the first frequency point of the first duration, and determines that the synchronization signal cannot be searched on the data of the first frequency point of the first duration;
  • Step 302 the terminal device receives the data of the second frequency point of the second duration, and performs a synchronization signal search for the data of the second frequency point of the second duration, wherein the first duration is different from the second duration.
  • the data on each frequency point received by the terminal device may be sent by a network device, and the data of the first frequency point and the second frequency point may be sent by the same network device, or may be different It is not limited in this embodiment of the present application.
  • the data on the frequency point received by the terminal device may include the synchronization signal, or may be service data that does not include the synchronization signal.
  • the terminal device may first receive data on the a priori frequency point, and when it is determined that the cell of the NR system is not searched on the a priori frequency point, or the cell of the NR system is searched for However, if the camping is unsuccessful, the terminal device will continue to perform cell search on the frequency points of the supported frequency bands.
  • the process of cell search on the a priori frequency point may adopt the solution provided in FIG. 3 or FIG. 4 above.
  • the solution provided in FIG. 3 or FIG. 4 may also be used in the subsequent frequency band search.
  • the aforementioned first frequency point and second frequency point may both be a priori frequency points or both non-a priori frequency points, or the first frequency point may be a priori frequency point, and the second frequency point may be a priori frequency point. is a non-prior frequency point.
  • the search process for a priori frequency points can also be accelerated.
  • the terminal device receives data of a priori frequency point of a third duration, the third duration is greater than the first duration, and the value of the third duration is a preset value in the cell The duration of the synchronization signal that the terminal device needs to receive at the frequency point during the search process.
  • a synchronization signal is searched for data of a priori frequency points of a third duration, and no synchronization signal is found.
  • the synchronization signal is searched for the data of the a priori frequency points of the third time duration, and the synchronization signal is successfully searched, but the dwell fails.
  • the terminal device can continue to perform frequency band search, and for the frequency points in the frequency band search, the solution provided in FIG. 3 or FIG. 4 can be adopted.
  • the duration of receiving data at a frequency point may be related to various factors, such as the normalized cross-correlation value corresponding to the time domain local signal of the data and the PSS, RSSI, one of the current signal quality of the frequency point, or There are a number of related issues, which will not be explained too much here, and the follow-up content will be introduced in detail.
  • the duration of the data received on the frequency point may be shorter, and it is not necessary to satisfy the “receive K0 period of a synchronization signal”, thereby shortening the cell search time delay.
  • the duration of the data received on the frequency point can be longer, so that a lower signal-to-noise ratio can be satisfied.
  • the first frequency point and the second frequency point are two frequency points. It can belong to the same frequency band, or it can belong to two different frequency bands.
  • the first duration is shorter than the second duration.
  • the normalized cross-correlation value corresponding to the data of the first frequency point of the first duration and the time-domain local signal of the PSS is smaller than the first threshold value.
  • the normalized cross-correlation value corresponding to the data of the first time duration and the time domain local signal of the PSS in the data of the second frequency point of the second duration is not less than the first threshold value.
  • the first duration includes K1 preset durations
  • the second duration includes K2 preset durations.
  • K1 and K2 are positive integers respectively, and the value of K1 is different from the value of K2.
  • the duration of the data of the received frequency points can be based on the preset duration, and the preset duration can be the synchronization signal transmission cycle mentioned in the foregoing content. In this way, it can be compatible with the existing technology, and can increase the search for synchronization signals. possibility.
  • the preset duration is: the transmission period of the synchronization signal configured in the NR.
  • the transmission period of the synchronization signal can be selected from a preset value.
  • the transmission period of the synchronization signal configured in the NR is one of the following: 5ms, 10ms, 20ms, 40ms, 80ms, and 160ms.
  • the existing NR protocol stipulates that the default configuration of the transmission period of the synchronization signal is 20ms. Based on this, in a possible implementation, the transmission of the synchronization signal in the embodiment of the present application may be The period is limited to: 20ms.
  • the first duration is 20ms and the second duration is 40ms
  • data of 20ms is received at the first frequency
  • the data of the first frequency of 20ms is the same as the time domain local signal of the PSS.
  • the corresponding normalized cross-correlation value is less than the first threshold value.
  • Receive 40ms data at the second frequency point, and the normalized cross-correlation value corresponding to the first 20ms of the second frequency point data and the PSS time domain local signal in the 40ms second frequency point data is not less than the first Threshold value.
  • the normalized cross-correlation value corresponding to the data of the first frequency point of the first duration and the time-domain local signal of the PSS can reflect the similarity between the two, therefore, in the 20ms
  • the normalized cross-correlation value corresponding to the data of the first frequency point and the time domain local signal of the PSS is less than the first threshold value, it can be determined that there is little possibility of a cell of the NR system on the first frequency point.
  • the normalized cross-correlation value corresponding to the data of the second frequency point of the first 20ms in the data of the second frequency point of 40ms and the time domain local signal of the PSS is not less than the first threshold value , it can be determined that there is a high possibility that there is a cell of the NR system on the first frequency. In this case, you can continue to receive data on the second frequency for a certain period of time before performing a cell search on the second frequency. , which can support a lower signal-to-noise ratio.
  • the data of the first duration may be The data of the first frequency point is searched for the synchronization signal, and may not be searched for the synchronization signal.
  • the synchronization signal search is performed or not, as long as the condition "the normalized cross-correlation value corresponding to the data of the first frequency point of the first duration and the time-domain local signal of the PSS is less than the first threshold value", it can be determined that The synchronization signal cannot be searched for the data of the first frequency point of the first duration, and then the above step 302 may be executed.
  • the normalized cross-correlation value corresponding to the data of the first frequency point of the first duration and the time-domain local signal of the PSS can reflect the similarity between the two, if the normalized cross-correlation value is small (that is, similar If the first frequency is less likely to exist in the NR system cell, it can be directly determined that no synchronization signal can be searched on the data of the first frequency of the first duration.
  • the normalized cross-correlation value corresponding to the data at the first frequency point of the first duration and the time-domain local signal of the PSS is smaller than the first threshold value, then it is determined that the No synchronization signal can be searched for the data of the first frequency point. In this possible implementation, it may be required that the synchronization signal search is not performed on the data of the first frequency point of the first duration.
  • the normalized cross-correlation value corresponding to the data of the first frequency point of the first duration and the time-domain local signal of the PSS can reflect the similarity between the two, if the normalized cross-correlation value is small (that is, If the similarity is small), it is considered that the first frequency point is less likely to exist in an NR system cell, so the frequency point can no longer be searched for cells, thereby shortening the cell search time.
  • the normalized cross-correlation value corresponding to the data of the first frequency point of the first duration and the time-domain local signal of the PSS is smaller than the first threshold value, for the first duration
  • the data of the first frequency point is searched for a synchronization signal, and no synchronization signal is found. In this case, it can be determined that the synchronization signal cannot be searched for the data of the first frequency point of the first duration. Since the NR system may receive 20ms data with at least one frequency point, if all the 20ms data is discarded and the cell search is not performed, the situation of cell omission may be more serious.
  • the normalized cross-correlation value corresponding to the data of a frequency point and the time-domain local signal of the PSS is small (that is to say, the similarity is small).
  • the synchronization signal is searched for the data of the second frequency point of the second duration, and the synchronization signal may or may not be found. If the synchronization signal is found, the terminal device will try to camp on the second frequency, if the camping fails, it will continue to perform cell search on other frequencies, and if the camping is successful, the process of cell search will end. If the terminal device does not search for a synchronization signal on the second frequency, the terminal device may continue to perform cell search on other frequencies. In this embodiment of the present application, there may be various possible implementations for determining that the synchronization signal cannot be searched on the data of the second frequency point of the second duration.
  • the second The data of the second frequency point of the duration is searched for the synchronization signal, and the search for the synchronization signal may not be performed. Regardless of whether the synchronization signal search is performed or not, as long as the condition "the normalized cross-correlation value corresponding to the data of the second frequency point of the second duration and the time-domain local signal of the PSS is less than the first threshold value", it can be determined that The synchronization signal cannot be searched on the data of the second frequency point of the second duration.
  • the normalized cross-correlation value corresponding to the data of the second frequency point of the second duration and the time-domain local signal of the PSS can reflect the similarity between the two, if the normalized cross-correlation value is small (that is, similar If the second frequency is less likely to exist in the NR system cell, it can be determined that no synchronization signal can be searched on the data of the second frequency for the second duration.
  • the normalized cross-correlation value corresponding to the data of the second frequency point of the second time duration and the time-domain local signal of the PSS is less than the first threshold value, it can be determined that the second time duration No synchronization signal can be searched on the data of the second frequency point of . In this possible implementation, it may be required not to search for the synchronization signal for the data of the second frequency point of the second duration.
  • the normalized cross-correlation value corresponding to the data of the second frequency point of the second duration and the time-domain local signal of the PSS can reflect the similarity between the two, if the normalized cross-correlation value is small (that is, If the similarity is small), it is considered that the second frequency point is less likely to exist in the NR system cell, so the frequency point can no longer be searched for cells, so that the purpose of shortening the cell search time can be achieved.
  • the second duration The data of the second frequency point is searched for a synchronization signal, and no synchronization signal is found. In this case, it can be determined that the synchronization signal cannot be searched for the data of the second frequency point of the second duration. Since the NR system may receive 20ms data with at least one frequency, if all the 20ms data is discarded and the cell search is not performed, the situation of cell omission may be more serious.
  • the normalized cross-correlation value corresponding to the data of the second frequency point and the time-domain local signal of the PSS is small (that is to say, the similarity is small).
  • the normalized cross-correlation value corresponding to the data at the second frequency point of the second duration and the time-domain local signal of the PSS is not less than (may be greater than, or may be equal to) the first
  • the synchronization signal is searched for the data of the second frequency point of the second duration, and no synchronization signal is found. In this case, it can be determined that the synchronization signal cannot be searched for the data of the second frequency point of the second duration.
  • the normalized cross-correlation value corresponding to the data of the second frequency point of the second duration and the time-domain local signal of the PSS is not less than the first threshold value, it indicates that the possibility of the existence of an NR cell on the second frequency point is relatively high. In this case, the synchronization signal is searched for the data of the second frequency point of the second duration. If the synchronization signal is not searched, it can be determined that the synchronization cannot be searched for the data of the second frequency point of the second duration. Signal.
  • the terminal device searches for the synchronization signal for the data of the second frequency point of the second duration.
  • the received data of the second frequency point of the second duration may be Processing is performed to determine whether the received data of the second frequency point of the second duration includes a synchronization signal. In this way, the received data can be multiplexed. In a possible implementation, the received data can be multiplexed to perform the initial cell search. Thus, compared to the scheme of re-receiving data to perform the cell search or the initial cell search , multiplexing the received data can save resources and reduce the delay of cell search.
  • the duration of receiving data at one frequency point may be related to various factors, such as the normalized cross-correlation value, RSSI, target frequency point corresponding to the time domain local signal of the data and the PSS. It is related to one or more of the configuration information and the value of K0.
  • factors such as the normalized cross-correlation value, RSSI, target frequency point corresponding to the time domain local signal of the data and the PSS. It is related to one or more of the configuration information and the value of K0. The following examples illustrate several factors.
  • the target frequency point may be one of the a priori frequency points of the terminal equipment, or may be a frequency point in the frequency band supported by the terminal equipment.
  • the target frequency point in the embodiment of the present application may be the first frequency point mentioned in the embodiment of the present application, the second frequency point mentioned in the embodiment of the present application, or the first frequency point and the second frequency point.
  • the remaining frequency points other than the frequency point that is to say, the implementation for the target frequency point in the embodiments of this application may be applicable to the first frequency point, the second frequency point, or the first frequency point. and frequencies other than the second frequency.
  • the terminal device receives the data of the jth preset duration on the target frequency until the data of the first preset duration to the jth preset duration on the target frequency satisfies the first condition.
  • j is a positive integer starting from 1.
  • the terminal device receives data of the jth preset duration on the first frequency until the first preset time on the first frequency is reached. The data of the duration to the data of the jth preset duration satisfy the first condition.
  • the target frequency is the second frequency
  • the jth preset duration data on the second frequency is received until the first preset duration on the second frequency
  • the data to the jth preset duration satisfies the first condition.
  • satisfying the first condition includes satisfying at least one of the following “content a1, content a2, content a3 and content a4”:
  • the value of content a1, j is not less than the preset value K0;
  • the normalized cross-correlation value corresponding to the data of the target frequency point of the first preset duration to the jth preset duration and the time-domain local signal of the PSS is smaller than the first threshold value.
  • the configuration information of the target frequency point indicates that K0 preset duration data are received at the target frequency point, and the current value of j is not less than K0;
  • the RSSI of the data of the target frequency point is less than the RSSI threshold.
  • the content a2 when the value of j is 1, the content a2 can be written as: the normalized cross-correlation value corresponding to the data of the target frequency point of the first preset duration and the time-domain local signal of the PSS is smaller than the first Threshold value.
  • a judgment may be made every time data of the duration of one synchronization signal cycle is received, and if it is judged that the currently received data meets the first condition, the data reception at this frequency point may be stopped.
  • how long the terminal device can receive data at the frequency point can be related to the target of the first preset duration to the jth preset duration.
  • the data of the frequency point is related to the normalized cross-correlation value corresponding to the time-domain local signal of the PSS. If the normalized correlation value is small, it means that there is a small possibility of an NR cell on the frequency point.
  • the maximum data receiving duration (that is, the maximum duration of receiving data at this frequency point) is the duration of K0 synchronous signal cycles. In this way, it is compatible with the existing technology and will not cause Too much data of the target frequency is received to increase the cell search delay.
  • FIG. 4 exemplarily shows a schematic flowchart of another method for cell search.
  • a frequency point is used as an example, and the introduction is performed on one frequency point.
  • the process of implementing the program is still described in the name of "target frequency point”.
  • the method includes:
  • Step 401 start.
  • Step 402 the terminal device initializes the value of j.
  • j can be valued from 1, and j is a positive integer, that is, for each new frequency point, initializing the value of j means that the value of j is updated to 1.
  • Step 403 the terminal device receives the jth preset duration data at the target frequency
  • Step 404 the terminal device determines whether the normalized cross-correlation value corresponding to the data of the target frequency point of the first preset duration to the jth preset duration and the time domain local signal of the PSS is less than the first threshold value;
  • step 405 If it is less than, go to step 405;
  • step 407 If not less than, go to step 407 .
  • step 404 when the value of j is 1, step 404 can also be written as: the terminal device determines that the data of the target frequency point of the first preset duration corresponds to the time-domain local signal of the PSS Whether the normalized cross-correlation value of is less than the first threshold; if it is less than, go to step 405; if not, go to step 407.
  • Step 405 the terminal device stops receiving data on the target frequency.
  • Step 406 the terminal device performs a cell search on the target frequency point according to the data of the first preset time length to the data of the target frequency point of the jth preset time length.
  • Step 407 the terminal device determines whether the value of j is not less than the preset value K0;
  • step 408 If the value of j is less than the K0, execute step 408;
  • step 409 If the value of j is not less than the K0, execute step 409;
  • Step 408 the terminal device increments the value of j by 1; and re-executes step 403;
  • Step 409 the terminal device stops receiving data on the target frequency, and performs cell search on the target frequency according to the data of the first preset duration to the jth preset duration of the target frequency.
  • step 406 may be executed, or step 406 may not be executed. Since the NR system may receive 20ms data with at least one frequency, if all the 20ms data is discarded and the cell search is not performed, the situation of cell omission may be more serious. Based on this, even if the first preset The normalized cross-correlation value corresponding to the time-domain local signal of the PSS between the data of the target frequency point with the duration to the jth preset duration is small (that is to say, the similarity is small). The search can reduce the situation of cell omission.
  • the normalized cross-correlation value corresponding to the data of the target frequency point from the 1st preset duration to the jth preset duration and the time-domain local signal of the PSS is smaller (that is, the similarity is smaller) , it can be considered that the target frequency is less likely to exist in the NR system cell, so the frequency point can no longer be searched for cells, so that the purpose of shortening the cell search time can be achieved.
  • the following introduces a possible calculation method of the normalized cross-correlation value corresponding to the target frequency point data of a preset time period and the PSS time domain local signal by taking the target frequency point receiving data of a preset duration as an example.
  • the normalized cross-correlation value corresponding to the data of a preset duration of the target frequency point and the PSS time-domain local signal is represented by V(f).
  • the size of the normalized cross-correlation value between the UE and the time-domain local signal of the PSS will also be affected by the quality of the received signal.
  • each PSS signal is numbered by a cell group It is uniquely determined. Therefore, when the UE performs the normalized cross-correlation calculation, it is necessary to perform a normalized cross-correlation value calculation for each of the three PSS sequences, and then select the maximum value as the normalized cross-correlation value corresponding to the frequency point. value V(f).
  • the sequence length is N, for The complex conjugate of ;
  • the normalized cross-correlation value corresponding to the data of the target frequency points of N3 preset durations and the PSS time domain local signal may be equal to: the target frequency point of each preset duration in the data of the target frequency points of N3 preset durations
  • the average value of the normalized cross-correlation value of the data and the PSS time-domain local signal, wherein, the normalized cross-correlation value of the data of the target frequency point of each preset duration and the PSS time-domain local signal can be based on the above formula (2 ) and formula (3).
  • the frequency band search method in the embodiment of the present invention can also support baseband frequency offset compensation, and the frequency band search scheme with several baseband frequency offset compensation values can also support larger frequency offset, allowing the UE to use a low-cost crystal oscillator.
  • a low-cost crystal oscillator with a frequency offset of about 10ppm corresponds to a frequency offset of about +/- 38KHz when the carrier is 3.8GHz.
  • a frequency band search method with three baseband frequency offset compensation values can be used. Three frequency offset compensation values They are 0KHz, +26KHz, -26KHz respectively.
  • V(f) For the frequency band search method that supports baseband frequency offset compensation, the calculation process of V(f) is as follows:
  • r i (d+n, ⁇ f) after baseband frequency offset compensation taking f as the frequency point, the sequence of data of a target frequency point with a preset duration received by the receiving antenna i, d is the sampling point within the preset time number, ⁇ f is the frequency offset compensation value.
  • At least one means one or more, and “plurality” means two or more.
  • “And/or”, which describes the association relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s). For example, at least one item (a) of a, b, or c can represent: a, b, c, ab, ac, bc, or abc, where a, b, c can be single or multiple .
  • ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the order, sequence, priority or importance of multiple objects degree.
  • first frequency point and the second frequency point are only for distinguishing different frequency points, and do not indicate the difference in priority or importance of the two frequency points.
  • each network element in the above-mentioned implementation includes corresponding hardware structures and/or software modules for executing each function.
  • the present invention can be implemented in hardware or a combination of hardware and computer software in conjunction with the units and algorithm steps of each example described in the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of the present invention.
  • FIG. 5 is a schematic structural diagram of a communication device provided by an embodiment of the application.
  • the communication device may be a terminal device, or a chip or a circuit, such as a chip or circuit that can be provided in the terminal device. .
  • the communication device 1301 may further include a bus system, wherein the processor 1302, the memory 1304, and the transceiver 1303 may be connected through the bus system.
  • the above-mentioned processor 1302 may be a chip.
  • the processor 1302 may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or a system on chip (SoC). It can be a central processing unit (CPU), a network processor (NP), a digital signal processing circuit (DSP), or a microcontroller (microcontroller). unit, MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • SoC system on chip
  • SoC system on chip
  • MCU microcontroller
  • MCU programmable logic device
  • PLD programmable logic device
  • each step of the above-mentioned method can be completed by an integrated logic circuit of hardware in the processor 1302 or an instruction in the form of software.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as being executed by a hardware processor, or executed by a combination of hardware and software modules in the processor 1302 .
  • the software module may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory 1304, and the processor 1302 reads the information in the memory 1304, and completes the steps of the above method in combination with its hardware.
  • processor 1302 in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the aforementioned processors may be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • the methods, steps, and logic block diagrams disclosed in the embodiments of this application can be implemented or executed.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory 1304 in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the communication apparatus may include a processor 1302 , a transceiver 1303 and a memory 1304 .
  • the memory 1304 is used for storing instructions
  • the processor 1302 is used for executing the instructions stored in the memory 1304, so as to implement the relevant solution of the terminal device in the corresponding method of any one or any of the items shown in FIG. 1 to FIG. 4 above. .
  • the transceiver 1303 of the communication device 1301 is configured to receive the data of the first frequency point of the first duration; the processor 1302 is configured to: when searching for the data of the first frequency point of the first duration without If a synchronization signal is output, the transceiver 1303 receives the data of the second frequency point of the second duration, and searches for the synchronization signal of the data of the second frequency point of the second duration; wherein the first duration is different from the second duration.
  • the processor 1302 is further configured to:
  • the normalized cross-correlation value corresponding to the data of the first frequency point of the first duration and the time-domain local signal of the PSS is less than the first threshold value
  • the normalized cross-correlation value corresponding to the data of the first frequency point of the first duration and the time-domain local signal of the PSS is less than the first threshold value, and the data of the first frequency point of the first duration is searched for the synchronization signal, No sync signal was found.
  • the processor 1302 is specifically configured to:
  • the data of the jth preset duration on the first frequency is received by the transceiver 1303 until the data of the first preset duration to the jth preset duration on the first frequency meet the first condition, j is a positive integer starting from 1; wherein, the value of the first duration is: when the data of the first preset duration to the jth preset duration on the first frequency point meet the first condition j preset duration values;
  • satisfying the first condition includes satisfying one of the following contents:
  • the value of j is not less than the preset value K0;
  • the normalized cross-correlation values corresponding to the data of the first preset duration to the data of the jth preset duration and the time-domain local signal of the PSS are smaller than the first threshold value.
  • the processor 1302 is specifically configured to:
  • the data of the jth preset duration on the second frequency is received by the transceiver 1303 until the data of the first preset duration to the jth preset duration on the second frequency meet the first condition, j is a positive integer starting from 1; wherein, the value of the second duration is: when the data of the first preset duration to the jth preset duration on the second frequency point satisfies the first condition j preset duration values.
  • the processor 1302 is specifically configured to:
  • the normalized cross-correlation value corresponding to the data of the second frequency point of the second duration and the time-domain local signal of the PSS is less than the first threshold value
  • the normalized cross-correlation value corresponding to the data of the second frequency point of the second duration and the time-domain local signal of the PSS is less than the first threshold value, and the synchronization signal is searched for the data of the second frequency point of the second duration, No synchronization signal was found;
  • the normalized cross-correlation value corresponding to the data of the second frequency point of the second duration and the time domain local signal of the PSS is not less than the first threshold value, and the synchronization signal is searched for the data of the second frequency point of the second duration, No sync signal was found.
  • the transceiver 1303 is further configured to: receive data of a priori frequency points of a third duration, where the third duration is greater than the first duration, and the value of the third duration is a preset in cell search The duration of the synchronization signal that the terminal device needs to receive on the frequency point during the process.
  • the processor 1302 is further configured to: perform a synchronization signal search on the data of the a priori frequency points of the third duration, and no synchronization signal is found; or, perform a synchronization signal search on the data of the a priori frequency points of the third duration, and the search is successful to the sync signal and the dwell at the a priori frequency fails.
  • FIG. 6 is a schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 1401 may include a communication interface 1403 , a processor 1402 , and a memory 1404 .
  • the communication interface 1403 is used for inputting and/or outputting information; the processor 1402 is used for executing computer programs or instructions, so that the communication apparatus 1401 implements the method on the terminal device side in the related solutions of FIG. 1 to FIG. 4 .
  • the communication interface 1403 can implement the solution implemented by the transceiver 1303 in FIG. 5
  • the processor 1402 can implement the solution implemented by the processor 1302 in FIG. 5
  • the memory 1404 can implement the memory 1304 in FIG. 5. The implemented solution will not be repeated here.
  • FIG. 7 is a schematic diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 1501 may be a terminal device, or may be a chip or a circuit, for example, it may be provided in the terminal device chip or circuit.
  • the communication apparatus may correspond to the terminal device in the above method.
  • the communication apparatus can implement the steps performed by the terminal device in any one or more of the corresponding methods shown in FIG. 1 to FIG. 4 above.
  • the communication apparatus may include a processing unit 1502 , a communication unit 1503 and a storage unit 1504 .
  • the processing unit 1502 may be a processor or a controller, for example, a general-purpose central processing unit (CPU), general-purpose processor, digital signal processing (DSP), application specific integrated circuit (application specific integrated circuit) circuits, ASIC), field programmable gate array (FPGA), or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute the various exemplary logical blocks, modules and circuits described in connection with this disclosure.
  • a processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • the storage unit 1504 may be a memory.
  • the communication unit 1503 is an interface circuit of the device for receiving signals from other devices. For example, when the device is implemented as a chip, the communication unit 1503 is an interface circuit used by the chip to receive signals from other chips or devices, or an interface circuit used by the chip to send signals to other chips or devices.
  • the communication apparatus 1501 may be a terminal device in any of the foregoing embodiments, and may also be a chip for performing cell search.
  • the processing unit 1502 may be, for example, a processor
  • the communication unit 1503 may be, for example, a transceiver.
  • the transceiver may include a radio frequency circuit
  • the storage unit may be, for example, a memory.
  • the processing unit 1502 may be, for example, a processor
  • the communication unit 1503 may be, for example, an input/output interface, a pin, or a circuit.
  • the processing unit 1502 can execute computer-executed instructions stored in a storage unit.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit can also be a session management network element located in the A storage unit outside the chip, such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), etc.
  • ROM read-only memory
  • RAM random access memory
  • the communication apparatus 1501 is the above-mentioned terminal device.
  • the communication unit 1503 of the communication apparatus 1301 is used to receive data of the first frequency point of the first duration;
  • the processing unit 1502 is used to: If the synchronization signal cannot be searched for the data of one frequency point, the data of the second frequency point of the second duration is received through the communication unit 1503, and the synchronization signal is searched for the data of the second frequency point of the second duration; The duration is different from the second duration.
  • each unit in the foregoing communication apparatus 1501 may refer to the implementation of the corresponding method embodiments, and details are not described herein again.
  • the division of the units of the above communication apparatus is only a division of logical functions, and may be fully or partially integrated into a physical entity in actual implementation, or may be physically separated.
  • the communication unit 1503 may be implemented by the transceiver 1303 shown in FIG. 5 above, and the processing unit 1502 may be implemented by the processor 1302 shown in FIG. 5 above.
  • the present application also provides a computer program product, the computer program product includes: computer program code or instructions, when the computer program code or instructions are run on a computer, the computer is made to execute FIG. 1 To the method of any one of the embodiments shown in FIG. 4 .
  • the present application further provides a computer-readable storage medium, where the computer-readable medium stores program codes, and when the program codes are executed on a computer, the computer is made to execute FIG. 1 to FIG. 4 .
  • the present application further provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • a computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center over a wire (e.g.
  • coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless means to transmit to another website site, computer, server or data center.
  • a computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • Useful media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, high-density digital video disc (DVD)), or semiconductor media (eg, solid state disc (SSD)) )Wait.
  • the network equipment in the above apparatus embodiments corresponds to the terminal equipment and the network equipment or terminal equipment in the method embodiments, and corresponding steps are performed by corresponding modules or units, for example, the communication unit (transceiver) performs the receiving or sending in the method embodiments.
  • the steps other than sending and receiving can be performed by the processing unit (processor).
  • processor For functions of specific units, reference may be made to corresponding method embodiments.
  • the number of processors may be one or more.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • Units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as stand-alone products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods of the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种小区搜索方法、通信装置、可读存储介质及芯片系统,终端设备接收第一时长的第一频点的数据,当在所述第一时长的所述第一频点的数据上搜索不出同步信号,则终端设备接收第二时长的第二频点的数据,对所述第二时长的所述第二频点的数据进行同步信号的搜索。所述第一时长与所述第二时长不同。由于可以在第一频点和第二频点分别接收不同时长的数据,则针对一些频点,可以接收较短时长的数据,而并不需要在每个频点均接收相同时长的数据,从而可以缩短进行小区搜索的时延。

Description

一种小区搜索方法、通信装置、可读存储介质及芯片系统 技术领域
本申请涉及通信技术领域,具体涉及一种小区搜索方法、通信装置、可读存储介质及芯片系统。
背景技术
在实际应用中,用户的终端设备会经常进行小区搜索的操作。举个例子,由于终端设备开机后通常没有所在小区的配置信息,因此开机后需进行小区搜索,获取小区的配置信息,进而实现终端设备与基站以及其它用户终端间的通信。通常将终端设备开机后进行的小区搜索称为初始搜索(initial cell search),也可以称为小区初搜。
第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)新技术(New Radio,NR)系统物理层共有1008个小区,每个小区均对应有一个小区标识(Identification,ID),1008个小区可分成336个不同的组,每组包含3个不同的小区ID,具体关系可体现为以下公式:
Figure PCTCN2020118392-appb-000001
在公式(1)中,
Figure PCTCN2020118392-appb-000002
表示小区的ID;
Figure PCTCN2020118392-appb-000003
表示小区组号,范围为0~335;
Figure PCTCN2020118392-appb-000004
表示组内编号,范围为0~2。每个物理小区标识
Figure PCTCN2020118392-appb-000005
对应唯一一个小区组号
Figure PCTCN2020118392-appb-000006
和组内编号
Figure PCTCN2020118392-appb-000007
在频点进行小区搜索的过程包括:接收该频点的信号,解已接收的信号,并根据解出的信号确定小区的小区ID、时域位置和频域位置。当成功确定出小区的小区ID、时域位置和频域位置时,可以称为小区搜索成功。在小区搜索成功之后,终端设备会按照一定准则选择小区解主信息块(master information block,MIB)和系统信息块(System Information Blocks,SIB),发起随机接入。由于终端设备在进行小区搜索时可能需要对大量频点进行搜索,因此,终端设备进行小区搜索的时间较长,终端设备的耗电量较大。
发明内容
本申请提供一种小区搜索方法、通信装置、可读存储介质及芯片系统,用于缩短终端设备进行小区搜索的时间,从而可以节省终端设备的电量。
第一方面,本申请实施例提供一种小区搜索方法,该方法中,终端设备接收第一时长的第一频点的数据,确定在所述第一时长的所述第一频点的数据上搜索不出同步信号,接收第二时长的第二频点的数据,对所述第二时长的所述第二频点的数据进行同步信号的搜索。其中,所述第一时长与所述第二时长不同。
在一种可能地实施方式中,本申请实施例中,确定在所述第一时长的所述第一频点的数据上搜索不出同步信号,可以是没有对第一时长的第一频点的数据进行搜索,而对第一时长的第一频点的数据进行了处理,从而确定在所述第一时长的所述第一频点的数据上搜索不出同步信号。在该实施方式中,“确定在所述第一时长的所述第一频点的数据上搜索不出同步信号”也可以理解为“推测、推断、判断或判定:在所述第一时长的所述第一频 点的数据上搜索不出同步信号”。“确定在所述第一时长的所述第一频点的数据上搜索不出同步信号”也可以理解为“在所述第一时长的所述第一频点的数据上搜索出同步信号的可能性小于预设的可能性阈值”。
在另一种可能地实施方式中,本申请实施例中,确定在所述第一时长的所述第一频点的数据上搜索不出同步信号,可以是对第一时长的第一频点的数据进行了搜索,而并未搜索出同步信号,此时确定在所述第一时长的所述第一频点的数据上搜索不出同步信号。
在本申请实施例方式中,终端设备接收到的各个频点上的数据可以是网络设备发送的,第一频点和第二频点的数据可以是同一个网络设备发送的,也可以是不同的网络设备发送的,本申请实施例不做限定。
本申请实施例中针对两个不同的频点,如第一频点和第二频点,可以接收不同时长的数据,进而可以根据接收到的不同时长的数据确定是否可以搜索出同步信号,可以进一步的对接收到的数据进行搜索,可能会搜索到同步信号,也可能搜索不到同步信号。需要说明的,本申请实施例中即使确定在所述第一时长的所述第一频点的数据上搜索不出同步信号,若对第一时长的第一频点的数据进行搜索,也有可能搜索到同步信号,也有可能搜索不到同步信号。可以看出,本申请实施例中“每个频点均接收相同时长的数据”的方案有着本质的不同。进一步,正是由于不需要“每个频点均接收相同时长的数据”,则针对一些频点,可以接收较短时长的数据,从而可以缩短在该频点进行小区搜索的时延。
在一种可能地实现方式中,所述第一时长包括K1个预设时长,所述第二时长包括K2个所述预设时长。所述K1和所述K2分别为正整数,所述K1的值与所述K2的值不同。由于同步信号是周期性发送的,而以预设时长为基本粒度,当预设时长与同步信号的发送周期是整数倍关系时,在一个频点接收整数个预设时长的长度的信号,可以提高接收到同步信号的可能性。
在一种可能地实现方式中,所述预设时长为NR中配置的同步信号的发送周期。同步性的发送周期为一段时长,该时长的值也可以等于SS burst set的周期的时长。在一种可能地实现方式中,所述预设时长为NR中配置的同步信号的发送周期。如此,在一个频点接收整数个预设时长的长度的信号,可以提高接收到同步信号的可能性。
在一种可能地实现方式中,NR中配置的同步信号的发送周期为以下内容中的一项:5毫秒(ms)、10ms、20ms、40ms、80ms、160ms。在一种可能地实现方式中,NR中配置的同步信号的发送周期为以下内容中的一项:5ms、10ms、20ms、40ms、80ms、160ms。如此,可以与同步信号的发送周期现有技术更加兼容。
在一种可能地实现方式中,所述NR中配置的同步信号的发送周期为:20ms。所述NR中配置的同步信号的发送周期为:20ms。由于现有技术中定义的NR中的同步信号的发送周期的缺省值为20ms,因此,这种可能地实现方式可以与现有技术更加兼容。
在一种可能地实现方式中,终端设备在所述接收第一时长的第一频点的数据之后,当确定满足所述第一时长的所述第一频点的数据与PSS的时域本地信号对应的归一化互相关值小于第一门限值,则确定在所述第一时长的所述第一频点的数据上搜索不出同步信号。由于所述第一时长的所述第一频点的数据与PSS的时域本地信号对应的归一化互相关值可以反映二者之间的相似度,如果归一化互相关值较小(也就是说相似度较小),则可以确定在所述第一时长的所述第一频点的数据上搜索出同步信号的可能性较小,在该实施方式中,可以不对第一时长的第一频点的数据进行搜索,而直接确定在所述第一时长的所述第 一频点的数据上搜索不出同步信号。且若不再对该频点进行小区搜索,则可以实现缩短小区搜索时间的目的。
在另一种可能地实现方式中,终端设备在所述接收第一时长的第一频点的数据之后,当确定满足所述第一时长的所述第一频点的数据与PSS的时域本地信号对应的归一化互相关值小于所述第一门限值,且对所述第一时长的所述第一频点的数据进行同步信号的搜索,并未搜索到同步信号,则可以确定在所述第一时长的所述第一频点的数据上搜索不出同步信号,且也可以确定在所述第一时长的所述第一频点的数据上搜索不出同步信号。由于NR系统中可能至少会接收有一个频点的20ms的数据,若将该20ms的数据全部丢弃并不进行小区搜索,则小区遗漏的情况可能会较为严重,基于此,即使所述第一时长的所述第一频点的数据与PSS的时域本地信号对应的归一化互相关值较小(也就是说相似度较小),若依然对该频点进行小区搜索,可以减缓小区遗漏的情况。
在一种可能地实施方式中,所述第一时长小于所述第二时长。所述第一时长的所述第一频点的数据与PSS的时域本地信号对应的归一化互相关值小于第一门限值。所述第二时长的第二频点的数据中的前第一时长的数据与PSS的时域本地信号对应的归一化互相关值不小于第一门限值。该实施方式中,可以看出,由于所述第一时长的所述第一频点的数据与PSS的时域本地信号对应的归一化互相关值可以反映二者之间的相似度,因此,在2第一时长的所述第一频点的数据与PSS的时域本地信号对应的归一化互相关值小于第一门限值时,可以确定在第一频点上存在NR系统的小区的可能性不大。而针对第二频点,当第二时长的第二频点的数据中的前第一时长的第二频点的数据与PSS的时域本地信号对应的归一化互相关值不小于第一门限值时,可以确定在第一频点上存在NR系统的小区的可能性较大,这种情况下,可以在第二频点上继续接收一定时长的数据之后再对第二频点进行小区搜索,如此,可以支持更低的信噪比。
在一种可能地实施方式中,终端设备所述接收第一频点上第一时长的数据,具体可以包括:终端设备接收所述第一频点上的第j个预设时长的数据,直至所述第一频点上的第1个预设时长的数据至第j个预设时长的数据满足所述第一条件。所述j为从1开始取值的正整数。其中,所述第一时长的值为:在所述第一频点上的第1个预设时长的数据至第j个预设时长的数据满足所述第一条件的情况下j个预设时长的值。在一种可能地实施方式中,若判断当前已接收到的第一频点的数据满足第一条件,则可以确定在所述第一时长的所述第一频点的数据上搜索不出同步信号。
在一种可能地实施方式中,终端设备所述接收第二频点上第二时长的数据具体可以包括:终端设备接收所述第二频点上的第j个预设时长的数据,直至所述第二频点上的第1个预设时长的数据至第j个预设时长的数据满足所述第一条件,所述j为从1开始取值的正整数。其中,所述第二时长的值为:在所述第二频点上的第1个预设时长的数据至第j个预设时长的数据满足所述第一条件的情况下j个预设时长的值。在一种可能地实施方式中,若判断当前已接收到的第二频点的数据满足第一条件,则可以确定在所述第一时长的所述第二频点的数据上搜索不出同步信号。
在一种可能地实施方式中,满足所述第一条件包括满足所述j的取值不小于预设值K0。或者,满足所述第一条件包括满足:第1个预设时长的数据至第j个预设时长的数据与PSS的时域本地信号对应的归一化互相关值小于所述第一门限值。在本申请实施例中,针对第一频点,可以每接收一个同步信号周期的时长的数据,进行一次判断,若判断当前已接收 到的数据满足第一条件,则可以停止在第一频点接收数据。
基于此,若归一化相关值较小,则说明该频点上存在NR小区的可能性较小,这种情况下,可以及早结束在该频点上的收数(即可以及早的结束在该频点上接收数据的动作),不必一定要满足“接收够K0个同步信号周期”的时长的要求,如此,可以达到减少小区搜索时延的目的。另一方面,当一个频点上收到的数据与PSS的时域本地信号对应的归一化互相关值较大,则说明该频点上存在NR小区的可能性较大,这种情况下,可以多接收一些该频点的数据,从而可以满足一个较小的信噪比。第三方面,针对一个频点,最大的收数时长(即在该频点接收数据的最大时长)为K0个同步信号周期的时长,如此,既可以与现有技术兼容,且也不会导致过多接收目标频点的数据而加大小区搜索时延。
在一种可能地实施方式中,所述K0的值为预设的在小区搜索进程中终端设备在频点上需接收的同步信号的周期的数量。如此,该实施方式可以与现有技术更加兼容。
在一种可能地实施方式中,所述K0的值为2。由于现有技术中配置的NR中的同步信号的发送周期的缺省值为2个同步信号的发送周期,因此,这种可能地实现方式可以与现有技术更加兼容。
在一种可能地实现方式中,终端设备在对所述第二时长的所述第二频点的数据进行同步信号的搜索之后,当满足所述第二时长的所述第二频点的数据与PSS的时域本地信号对应的归一化互相关值小于第一门限值,确定在所述第二时长的所述第二频点的数据上搜索不出同步信号。在该实施方式中,可以对第一时长的所述第一频点的数据进行同步信号的搜索,也可以不进行同步信号的搜索。由于所述第一时长的所述第一频点的数据与PSS的时域本地信号对应的归一化互相关值可以反映二者之间的相似度,如果归一化互相关值较小(也就是说相似度较小),则认为第一频点存在NR系统小区的可能性较小,因此可以直接确定在所述第一时长的所述第一频点的数据上搜索出同步信号的可能性很小。若不再对该频点进行小区搜索,则可以实现缩短小区搜索时间的目的。
在一种可能地实现方式中,终端设备在对所述第二时长的所述第二频点的数据进行同步信号的搜索之后,当满足所述第二时长的所述第二频点的数据与PSS的时域本地信号对应的归一化互相关值小于所述第一门限值,且对所述第二时长的所述第二频点的数据进行同步信号的搜索,并未搜索到同步信号,可以确定在所述第二时长的所述第二频点的数据上搜索不出同步信号。由于NR系统中可能至少会接收有一个频点的20ms的数据,若将该20ms的数据全部丢弃并不进行小区搜索,则小区遗漏的情况可能会较为严重,基于此,即使所述第一时长的所述第一频点的数据与PSS的时域本地信号对应的归一化互相关值较小(也就是说相似度较小),若依然对该频点进行小区搜索,可以减缓小区遗漏的情况。
在一种可能地实现方式中,终端设备在对所述第二时长的所述第二频点的数据进行同步信号的搜索之后,当满足所述第二时长的所述第二频点的数据与PSS的时域本地信号对应的归一化互相关值不小于所述第一门限值,对所述第二时长的所述第二频点的数据进行同步信号的搜索,并未搜索到同步信号,可以确定在所述第二时长的所述第二频点的数据上搜索不出同步信号。在该实施方式中,当所述第二时长的所述第二频点的数据与PSS的时域本地信号对应的归一化互相关值不小于第一门限值时,则表明在第二频点上存在NR小区的可能性较大,这种情况下对第二时长的所述第二频点的数据进行同步信号的搜索,在未搜索到同步信号的情况下可以判定在所述第二时长的所述第二频点的数据上搜索不出同步信号。
在一种可能地实施方式中,本申请实施例中终端设备可以先在先验频点上接收数据,当确定在先验频点上未搜索到NR系统的小区,或者搜索到NR系统的小区但是未成功驻留,则终端设备会对其所支持的频段的频点上继续进行小区搜索。在一种可能地实现方式中,终端设备所述接收第一时长的第一频点的数据之前,终端设备可以接收第三时长的先验频点的数据,所述第三时长大于所述第一时长,且所述第三时长的值为预设的在小区搜索进程中终端设备在频点上需接收的同步信号的时长。对所述第三时长的所述先验频点的数据进行同步信号搜索,未搜出同步信号;或者,对所述第三时长的先验频点的数据进行同步信号搜索,成功搜索到同步信号且在所述先验频点驻留失败。在这种可能地实施方式中,本申请实施例中提到的第一频点和第二频点均不属于先验频点。由于先验频点中驻留成功的可能性较大,因此对先验频点的搜索可以在每个先验频点均接收K0个同步信号周期的时长的数据,从而可以得到较低的信噪比。
相应于第一方面中的任一种方法,本申请还提供了一种通信装置。通信装置可以是以无线方式进行数据传输的任意一种接收端的设备。例如,通信芯片或终端设备等。在通信过程中,发送端的设备和接收端的设备是相对的。在某些通信过程中,通信装置可以作为上述终端设备或可用于终端设备的通信芯片。
第二方面,提供了一种通信装置,包括通信单元和处理单元,以执行上述第一方面任一种方法中的任一种实施方式。通信单元用于执行与发送和接收相关的功能。可选地,通信单元包括接收单元和发送单元。在一种设计中,通信装置为通信芯片,通信单元可以为通信芯片的输入输出电路或者端口。
在另一种设计中,通信单元可以为发射器和接收器,或者通信单元为发射机和接收机。
可选的,通信装置还包括可用于执行上述第一方面任一种通信方法中的任一种实施方式的各个模块。
第三方面,提供了一种通信装置,该通信装置为上述终端设备。包括处理器和存储器。可选的,还包括收发器,该存储器用于存储计算机程序或指令,该处理器用于从存储器中调用并运行该计算机程序或指令,当所述处理器执行存储器中的计算机程序或指令时,使得该通信装置执行上述第一方面任一种方法中的任一种实施方式。
可选的,处理器为一个或多个,存储器为一个或多个。
可选的,存储器可以与处理器集成在一起,或者存储器与处理器分离设置。
可选的,收发器中可以包括,发射机(发射器)和接收机(接收器)。
第四方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行第一方面任一方面,以及第一方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
在又一种实现方式中,该通信装置为芯片或芯片系统。当该通信装置为芯片或芯片系统时,所述通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
第五方面,提供了一种系统,系统包括上述终端设备和网络设备。
第六方面,提供了一种计算机程序产品,计算机程序产品包括:计算机程序(也可以 称为代码,或指令),当计算机程序被运行时,使得计算机执行上述第一方面中任一种可能实现方式中的方法,或者使得计算机执行上述第一方面任一种实现方式中的方法。
第七面,提供了一种计算机可读存储介质,计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面中任一种可能实现方式中的方法,或者使得计算机执行上述第一方面任一种实现方式中的方法。
第八面,提供了一种芯片系统,该芯片系统可以包括处理器。该处理器与存储器耦合,可用于执行第一方面任一方面,以及第一方面中任一种可能实现方式中的方法。可选地,该芯片系统还包括存储器。存储器,用于存储计算机程序(也可以称为代码,或指令)。处理器,用于从存储器调用并运行所述计算机程序,使得安装有所述芯片系统的设备执行上述第一方面任一种实现方式中的方法。
第九方面,提供了一种处理装置,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述第一方面任一方面,以及第一方面中任一种可能实现方式中的方法被实现。
在具体实现过程中,上述处理装置可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
附图说明
图1为本申请实施例适用的一种可能的系统架构示意图;
图2为本申请实施例提供的一种SSB的结构示意图;
图3为本申请实施例提供的一种小区搜索的方法流程示意图;
图4为本申请实施例提供的另一种小区搜索的方法流程示意图;
图5为本申请实施例提供的一种通信装置的结构示意图;
图6为本申请实施例提供的另一种通信装置的结构示意图;
图7为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请实施例进行详细描述。
图1为本申请实施例适用的一种可能的系统架构示意图。如图1所示的系统架构包括网络设备和终端设备。为了示例,图1中示出了两个网络设备和一个终端设备,分别为网络设备101、网络设备102和终端设备103,应理解,本申请实施例对系统架构中网络设备的数量、终端设备的数量不作限定。而且本申请实施例所适用的系统架构中除了包括网络设备和终端设备以外,还可以包括其它设备,如核心网设备、无线中继设备和无线回传设备等,对此本申请实施例也不作限定。以及,本申请实施例中的网络设备可以将所有的功能集成在一个独立的物理设备,也可以将功能分布在多个独立的物理设备上,对此本申请实施例也不作限定。此外,本申请实施例中的终端设备可以通过无线方式与网络设备连接。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile Communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(General Packet Radio Service,GPRS)系统、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统,以及第五代移动网络(the 5th generation,5G)通信系统等。本申请实施例中以NR中的5G系统进行介绍,但是本领域技术人员可知,本申请实施例适用范围不限于5G通讯系统。
下面对本申请实施例涉及到的术语以及相关技术进行相关介绍。
(1)终端设备。
终端设备包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、V2X终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
(2)网络设备。
网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备。基站可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。网络设备还可协调对空口的属性管理。例如,网络设备可以包括LTE系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(the 5 th generation,5G)新无线(new radio,NR)系统中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit, DU),本申请实施例并不限定。
(3)同步信号。
终端设备在小区搜索过程中,会在频点上搜索同步信号。在NR系统中可以利用主同步信号(Primary Synchronization Signal,PSS)和辅同步信号(Secondary Synchronization Signal,SSS)完成小区搜索。PSS频域信号由
Figure PCTCN2020118392-appb-000008
唯一确定,共3个。SSS频域信号由
Figure PCTCN2020118392-appb-000009
Figure PCTCN2020118392-appb-000010
确定。
(4)小区搜索和小区驻留。
在频点进行小区搜索的过程包括:接收该频点的信号,解已接收的信号,并根据解出的信号确定小区的小区ID、时域位置和频域位置。在一种可能地实施方式中,小区搜索时,终端设备会先用主同步信号PSS找到小区的时域位置和小区的
Figure PCTCN2020118392-appb-000011
然后使用辅同步信号SSS确认小区的
Figure PCTCN2020118392-appb-000012
最终根据公式(1)得到小区ID和时域位置,再结合频点信息得到小区的频域位置,则该频点小区搜索结束。
当成功确定出小区的小区ID、时域位置和频域位置时,可以称为小区搜索成功。当未成功确定出小区的小区ID、时域位置和频域位置时,则可以称为小区搜索失败,或者称为小区未搜索成功。
在小区搜索成功之后,终端设备会按照一定准则选择小区解主信息块(master information block,MIB)和系统信息块(System Information Blocks,SIB),发起随机接入,以便成功在小区驻留。若小区驻留失败,则终端设备需要更换小区进行驻留。
本申请实施例中,可以先对一个频点进行接收数据、小区搜索和小区驻留的操作,当在该频点进行小区驻留失败,则可以对下一个频点进行接收数据、小区搜索和小区驻留的操作。在另外一种可能地实现方式中,终端设备也可以先接收多个频点的数据,之后对多个频点分别进行小区搜索,之后再针对搜索到小区的频点分别进行小区驻留。
当终端设备开机之后进行的小区搜索可以称为小区初搜。本申请实施例提供的用于进行小区搜索的方案可以应用在小区初搜的过程中。在一种可能地实施方式中,也可以适应性的应用到处于连接态的终端设备进行的小区搜索过程中。
需要说明的是,本申请实施例中是以NR系统为例,在介绍实施例以及有益效果时,也是以搜索NR系统的小区为例进行介绍的。当本申请实施例应用在其他通信系统时,将NR系统的小区对应替换为其他通信系统的小区,例如,当本申请应用在LTE系统时,可以将NR系统的小区对应替换为LTE系统的小区。
(5)先验频点。
终端设备为加快小区初搜时小区搜索的速度,会维护一些频点作为先验信息优先进行搜索,这些频点可以称为先验频点。先验频点包括但不限于之前成功驻留的频点、之前成功解广播的频点、基站系统消息中配置邻区所在的频点等。
(6)频段搜索。
在一种可能地实施方式中,终端设备一般会对先验频点进行搜索,如果终端设备在先验频点上搜到小区,则会尝试在搜到的小区上进行驻留。若终端设备未在先验频点上搜到小区,或者在先验频点上搜到了小区但是驻留失败,则终端设备可以对其所支持的频段的频点上继续进行小区搜索。其中,终端设备对其所支持的频段的频点进行小区搜索的过程可以称为频段搜索。
无论是在先验频点上进行的小区搜索,还是在频带的频点上进行的小区搜索,终端设备在小区搜索过程中,会在每个频点上均一定时长的网络设备发送的数据,解已接收的信号,并根据解出的信号确定小区的小区ID、时域位置和频域位置。
在一种可能地实施方式中,在频段搜索过程中,可以先对终端设备支持的频段中的频点进行排序,之后依据频点的排序,依序对各个频点进行数据的接收。在一种可能地实施方式中,可以基于频点功率统计的频段搜索方法。通过测量频点的接收的信号强度指示(Received Signal Strength Indicator,RSSI),并统计一定带宽内的所有频点(或按一定间距选取的部分频点)的RSSI,再将频点按RSSI降序排列后,从高到低的依次对频点进行数据的接收,进而可以依据RSSI的从高到低的次序对频点进行小区搜索。这种排序方法的设计思想是,RSSI越大的频点,其信号就越强,在该频点上搜到小区的可能性就越大。
需要说明的是,可能UE配置有多个频段,因此在进行小区搜索时,可以按照本发明实施例提供的技术方案逐一地对每个频段进行搜索。例如,UE配置有两个频段Band 1、Band 2,首先,对频段Band 1上支持的各个频点进行小区搜索,具体来说,可以对频段Band 1上支持的各个频点进行排序(例如可以依据RSSI),之后依据RSSI的排序,对频点进行小区搜索,当未成功在Band 1支持的频点上驻留时,可以再对频段Band 2上支持的各个频点进行小区搜索。
(7)以NR系统为例,介绍同步信号和物理广播信道块(Synchronization Signal and Physical broadcast channel block,SSB)。
在NR系统中,每个SSB可以占用4个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,OFDM符号也可以写为OFDM symbol。图2示例性示出了一种SSB的结构示意图,如图2所示,一个SSB通常可以由同步信号(同步信号包括主同步信号(Primary Synchronization Signal,PSS)201和辅同步信号(Secondary Synchronization Signal,SSS)202)和物理广播信道块(Physical broadcast channel,PBCH)块203组成。
(8)以NR系统为例,介绍同步信号发送周期。
SSB占用的OFDM符号的子载波间隔(subcarrier spacing,SCS)可取值15千赫兹(KHz)、30KHz、120KHz、240KHz,其中15KHz、30KHz可以用于6GHz以下频段的频段搜索,120KHz、240KHz可以用于6GHz以上频段的频段搜索。在NR系统中,可以由至多L(其中,L的值可以为正整数,L的取值与频段有关,比如,6GHz以下频段的频段搜索中L的取值最大可以为8;6GHz以上频段的频段搜索中L的取值最大可以为64。)个SSB组成同步信号集(Synchronization Signal burst set,SS burst set),SS burst set周期性发送。
SS burst set的发送周期可配,例如可以配置为{5毫秒(ms)、10ms、20ms、40ms、80ms和160ms}中的一项。当前协议规定,在小区初始驻留阶段,SS burst set的缺省周期(default SS burst set period)配置为20ms。SS burst set的周期可以等于同步信号的发送周期。
针对一个SS burst set的发送周期内的时域符号不同SSB,基站可以采用不同的发射波束方向。两个SS burst set周期中时域符号相同的SSB对应相同的发射波束方向。一个SS burst set周期内的所有发送的SSB可以限制在5ms时长内。
由于在小区搜索过程中,终端设备对各频点进行小区搜索时并不知道小区的定时信息,所以终端设备会先以协议规定的同步信号的发送周期的长度为基础粒度,在每个频点上接收指定时长(该时长为预设的多个发送周期的长度)的信号。
本申请实施例中的后续内容将用到K0的值,K0的值为预设的在小区搜索进程中终端设备在频点上需接收的同步信号的周期的数量。
38.213 4.1节协议规定For initial cell selection,a UE may assume that half frames with SS/PBCH blocks occur with a periodicity of 2 frames。对应中文含义为:在NR系统中同步信号的发送周期缺省配置为20ms。NR协议中还规定了接收信号的信噪比为-6dB,为了保证信噪比-6dB,可以将K0的值设置为2,当然也可以设置为3、4等正整数,K0的值可以由不同的厂家自己设置。在实际应用中,可以有如下配置:在小区搜索进程中终端设备在频点上需接收的同步信号的时长为2个同步信号的发送周期的长度(40ms)。可以理解为,在NR系统中,K0的取值为2。同步信号的发送周期为20ms。
由于通信系统的频点较多,且不是所有频点上都有同步信号,因此,在一个通信系统中,对所有频点都使用固定时长接收数据会造成小区搜索时延很长,基于此,本申请实施例提供一种方案通过调整在一个频点接收数据的时长来减少小区搜索的时延。
需要说明的是,本申请实施例不仅仅适用于NR系统,也可以适用其它通信系统,例如LTE系统,在LTE系统中同步信号的发送周期缺省配置为5ms,可以配置终端设备在每个频点上接收20ms(4个发送周期的长度)的信号,在LTE系统中,K0的值为4,当在LTE系统中应用本申请实施例时,可以调整在频点上接收数据的时长,进而可以减少小区搜索的时延。
(9)频点上的数据与PSS的时域本地信号对应的归一化互相关值。
如果在频点上存在NR系统小区,那么基站发射的数据在20ms时间内(NR系统的PSS发送周期为20ms)就包含有主同步信号PSS(Primary Synchronization Signal),如果在频点上不存在NR系统小区,那么在20ms时间内接收到的数据就不包含PSS。
数据与PSS的时域本地信号对应的归一化互相关值可以反映两个信号之间的相似度,若归一化互相关值较大,则两个信号之间的相似度较高,可以反映该频点存在NR小区的可能性较大。可能地,若归一化互相关值较小,则两个信号之间的相似度较低,可以反映该频点存在NR小区的可能性较小。基于此,在一种可能地实施方式中,可以利用频点上的数据与PSS的时域本地信号对应的归一化互相关值来确定在一个频点上接收数据的时长,从而可以达到缩短小区搜索时延的目的。
关于归一化互相关值的介绍将在后续进行更加详细的介绍,在此先不做过多阐述。
基于上述内容,图3示例性示出了本申请实施例提供的一种小区搜索方法的流程示意图,如图3所示,该方法包括:
步骤301,终端设备接收第一时长的第一频点的数据,确定在第一时长的第一频点的数据上搜索不出同步信号;
步骤302,终端设备接收第二时长的第二频点的数据,对第二时长的第二频点的数据进行同步信号的搜索;其中,第一时长与第二时长不同。
在本申请实施例方式中,终端设备接收到的各个频点上的数据可以是网络设备发送的,第一频点和第二频点的数据可以是同一个网络设备发送的,也可以是不同的网络设备发送的,本申请实施例不做限定。终端设备接收到的频点上的数据可能包括同步信号,也可能是不包括同步信号的业务数据。
通过上述图3中提供的方案可以看出,本申请实施例中针对两个不同的频点,如第一频点和第二频点,可以接收不同时长的数据,进而根据接收到的不同时长的数据确定收发 搜索到同步信号。可以看出,本申请实施例中与预设的“每个频点均接收相同时长的数据”有着本质的不同。进一步,正是由于不需要“每个频点均接收相同时长的数据”,则针对一些频点,可以接收较短时长的数据,从而可以缩短在该频点进行小区搜索的时延。
在一种可能地实施方式中,本申请实施例中终端设备可以先在先验频点上接收数据,当确定在先验频点上未搜索到NR系统的小区,或者搜索到NR系统的小区但是未成功驻留,则终端设备会对其所支持的频段的频点上继续进行小区搜索。在一种可能地实施方式中,针对一个先验频点,在该先验频点上进行小区搜索的过程可以采用上述图3或图4提供的方案。在后续进行频段搜索时也可以采用图3或图4提供的方案。在这种实施方式下,前述的第一频点和第二频点可以都是先验频点,也可以都是非先验频点,或者第一频点为先验频点,第二频点为非先验频点。如此,在对先验频点进行小区搜索时,也可以加快对先验频点的搜索进程。
在另一种可能地实施方式中,针对先验频点,终端设备接收第三时长的先验频点的数据,第三时长大于第一时长,且第三时长的值为预设的在小区搜索进程中终端设备在频点上需接收的同步信号的时长。在一种可能地实施方式中,对第三时长的先验频点的数据进行同步信号搜索,未搜出同步信号。在另一种可能地实施方式中,对第三时长的先验频点的数据进行同步信号搜索且成功搜索到同步信号,但是驻留失败。在这两种情况中的任一种情况下,终端设备可以继续进行频段搜索,针对频段搜索中的频点,可以采用图3或图4提供的方案,在这种可能地实施方式中,本申请实施例中提到的第一频点和第二频点均不属于先验频点。由于先验频点中驻留成功的可能性较大,因此对先验频点的搜索可以在每个先验频点均接收K0个同步信号周期的时长的数据,从而可以得到较低的信噪比。
在图3所提供的方案中,可以对两个不同的频点接收不同时长的数据。而在一个频点上接收数据的时长可以与多种因素有关,例如可以与数据与PSS的时域本地信号对应的归一化互相关值、RSSI、频点当前的信号质量中的一项或多项有关,在此先不做过多的阐述,后续内容将详细介绍。在一种可能地实施方式中,当根据已接收到的信号判断该频点存在NR系统的小区的可能性较小时,在该频点上接收的数据的时长可以短一些,不必满足“接收K0个同步信号的周期”的要求,从而可以缩短小区搜索的时延。而针对存在NR系统的小区的可能性较大的频点,在该频点上接收的数据的时长可以长一些,从而可以满足较低的信噪比。
在一种可能地实施方式中,第一频点和第二频点是两个频点。可以属于同一个频带,也可以属于两个不同的频带。在一种可能地实施方式中第一时长小于第二时长。第一时长的第一频点的数据与PSS的时域本地信号对应的归一化互相关值小于第一门限值。第二时长的第二频点的数据中的前第一时长的数据与PSS的时域本地信号对应的归一化互相关值不小于第一门限值。
在一种可能地实施方式中,第一时长包括K1个预设时长,第二时长包括K2个预设时长。K1和K2分别为正整数,K1的值与K2的值不同。如此,可以使接收频点的数据的时长以预设时长为粒度,预设时长可以为前述内容中提到的同步信号发送周期,如此,可以与现有技术兼容,且可以增加搜索到同步信号的可能性。
在一种可能地实施方式中,预设时长为:NR中配置的同步信号的发送周期。同步信号的发送周期可以从预设的值里选取一个。在一种可能地实施方式中,NR中配置的同步信号的发送周期为以下内容中的一项:5ms、10ms、20ms、40ms、80ms、160ms。为了与 现有技术兼容,现有的NR协议中规定同步信号的发送周期的缺省配置为20ms,基于此,在一种可能地实施方式中,可以将本申请实施例中的同步信号的发送周期限定为:20ms。
举个例子,若第一时长为20ms,第二时长为40ms,则该实施方式中,在第一频点接收20ms的数据,且该20ms的第一频点的数据与PSS的时域本地信号对应的归一化互相关值小于第一门限值。在第二频点接收40ms的数据,且该40ms的第二频点的数据中的前20ms的第二频点的数据与PSS的时域本地信号对应的归一化互相关值不小于第一门限值。该实施方式中,可以看出,由于第一时长的第一频点的数据与PSS的时域本地信号对应的归一化互相关值可以反映二者之间的相似度,因此,在20ms的第一频点的数据与PSS的时域本地信号对应的归一化互相关值小于第一门限值时,可以确定在第一频点上存在NR系统的小区的可能性不大。而针对第二频点,当40ms的第二频点的数据中的前20ms的第二频点的数据与PSS的时域本地信号对应的归一化互相关值不小于第一门限值时,可以确定在第一频点上存在NR系统的小区的可能性较大,这种情况下,可以在第二频点上继续接收一定时长的数据之后再对第二频点进行小区搜索,如此,可以支持更低的信噪比。
在上述步骤301之后,在上述步骤302之前,可以有多种可能地实施方式用于确定在第一时长的第一频点的数据上搜索不出同步信号。在一种可能地实施方式中,第一时长的第一频点的数据与PSS的时域本地信号对应的归一化互相关值小于第一门限值的情况下,可以对第一时长的第一频点的数据进行同步信号的搜索,也可以不进行同步信号的搜索。无论进行或不进行同步信号的搜索,只要满足条件“第一时长的第一频点的数据与PSS的时域本地信号对应的归一化互相关值小于第一门限值”,则可以确定在第一时长的第一频点的数据上搜索不出同步信号,进而可以执行上述步骤302。由于第一时长的第一频点的数据与PSS的时域本地信号对应的归一化互相关值可以反映二者之间的相似度,如果归一化互相关值较小(也就是说相似度较小),则认为第一频点存在NR系统小区的可能性较小,因此可以直接确定在第一时长的第一频点的数据上搜索不出同步信号。
在另一种可能地实施方式中,在第一时长的第一频点的数据与PSS的时域本地信号对应的归一化互相关值小于第一门限值,则确定在第一时长的第一频点的数据上搜索不出同步信号。在该可能地实施方式中可以要求不对第一时长的第一频点的数据进行同步信号的搜索。由于第一时长的第一频点的数据与PSS的时域本地信号对应的归一化互相关值可以反映二者之间的相似度,因此如果归一化互相关值较小(也就是说相似度较小),则认为第一频点存在NR系统小区的可能性较小,因此可以不再对该频点进行小区搜索,从而可以实现缩短小区搜索时间的目的。
在另一种可能地实施方式中,在第一时长的第一频点的数据与PSS的时域本地信号对应的归一化互相关值小于第一门限值的情况下,对第一时长的第一频点的数据进行同步信号的搜索,且并未搜索到同步信号。这种情况下,可以判定在第一时长的第一频点的数据上搜索不出同步信号。由于NR系统中可能至少会接收有一个频点的20ms的数据,若将该20ms的数据全部丢弃并不进行小区搜索,则小区遗漏的情况可能会较为严重,基于此,即使第一时长的第一频点的数据与PSS的时域本地信号对应的归一化互相关值较小(也就是说相似度较小),若依然对该频点进行小区搜索,可以减缓小区遗漏的情况。
在上述步骤302中,对第二时长的第二频点的数据进行同步信号的搜索,可能搜到同步信号,也可能搜索不到同步信号。若搜索到了同步信号,则终端设备会在第二频点上尝试驻留,若驻留失败则继续在其他频点上进行小区搜索,若驻留成功,则结束小区搜索的 进程。若终端设备未在第二频点上搜索到同步信号,则终端设备可以继续在其他频点上进行小区搜索。本申请实施例中可以有多种可能地实施方式用于确定在第二时长的第二频点的数据上搜索不出同步信号。
比如,在一种可能地实施方式中,第二时长的第二频点的数据与PSS的时域本地信号对应的归一化互相关值小于第一门限值的情况下,可以对第二时长的第二频点的数据进行同步信号的搜索,也可以不进行同步信号的搜索。无论进行或不进行同步信号的搜索,只要满足条件“第二时长的第二频点的数据与PSS的时域本地信号对应的归一化互相关值小于第一门限值”,则可以确定在第二时长的第二频点的数据上搜索不出同步信号。由于第二时长的第二频点的数据与PSS的时域本地信号对应的归一化互相关值可以反映二者之间的相似度,如果归一化互相关值较小(也就是说相似度较小),则认为第二频点存在NR系统小区的可能性较小,因此可以确定在第二时长的第二频点的数据上搜索不出同步信号。
在另一种可能地实施方式中,当第二时长的第二频点的数据与PSS的时域本地信号对应的归一化互相关值小于第一门限值,则可以确定在第二时长的第二频点的数据上搜索不出同步信号。在该可能地实施方式中可以要求不对第二时长的第二频点的数据进行同步信号的搜索。由于第二时长的第二频点的数据与PSS的时域本地信号对应的归一化互相关值可以反映二者之间的相似度,因此如果归一化互相关值较小(也就是说相似度较小),则认为第二频点存在NR系统小区的可能性较小,因此可以不再对该频点进行小区搜索,从而可以实现缩短小区搜索时间的目的。
在另一种可能地实施方式中,在第二时长的第二频点的数据与PSS的时域本地信号对应的归一化互相关值小于第一门限值的情况下,对第二时长的第二频点的数据进行同步信号的搜索,且并未搜索到同步信号。这种情况下,可以判定在第二时长的第二频点的数据上搜索不出同步信号。由于NR系统中可能至少会接收有一个频点的20ms的数据,若将该20ms的数据全部丢弃并不进行小区搜索,则小区遗漏的情况可能会较为严重,基于此,即使第二时长的第二频点的数据与PSS的时域本地信号对应的归一化互相关值较小(也就是说相似度较小),若依然对该频点进行小区搜索,可以减缓小区遗漏的情况。
在另一种可能地实施方式中,在第二时长的第二频点的数据与PSS的时域本地信号对应的归一化互相关值不小于(可以是大于,或者也可以是等于)第一门限值的情况下,对第二时长的第二频点的数据进行同步信号的搜索,且并未搜索到同步信号。这种情况下,可以判定在第二时长的第二频点的数据上搜索不出同步信号。当第二时长的第二频点的数据与PSS的时域本地信号对应的归一化互相关值不小于第一门限值时,则表明在第二频点上存在NR小区的可能性较大,这种情况下对第二时长的第二频点的数据进行同步信号的搜索,在未搜索到同步信号的情况下可以判定在第二时长的第二频点的数据上搜索不出同步信号。
在上述步骤302中,终端设备对第二时长的第二频点的数据进行同步信号的搜索,在一种可能地实施方式中,可以对已接收到的第二时长的第二频点的数据进行处理,以判定已接收到的第二时长的第二频点的数据中是否包括有同步信号。如此,可以复用已接收到的数据,在一种可能地实施方式中,可以复用接收到的数据进行小区初搜,如此,相对于重新接收数据进行小区搜索或小区初搜的方案来说,复用已接收的数据可以节省资源,减少小区搜索的时延。
在另一种可能地实施方式中,也可以在第二频点上重新接收一定时长的数据,对重新 接收的该一定时长的数据进行处理,以判定重新接收的该一定时长的数据中是否包括有同步信号。
在图3所提供的方案中,可以对两个不同的频点接收不同时长的数据。在一种可能地实施方式中,在一个频点上接收数据的时长可以与多种因素有关,例如可以与数据与PSS的时域本地信号对应的归一化互相关值、RSSI、目标频点的配置信息、K0的值中的一项或多项有关。下面以几个因素为例进行举例说明。
需要说明的是,为了介绍的更加清楚,本申请实施例以“目标频点”的称呼进行介绍。目标频点可以是终端设备的先验频点中的一个,也可以使终端设备所支持的频带中的一个频点。本申请实施例中的目标频点可以为本申请实施例中提到的第一频点,也可以为本申请实施例提到的第二频点,也可以为除第一频点和第二频点之外的其余频点,也就是说,本申请实施例中针对目标频点的实施方式可以适用于第一频点,也可以适用于第二频点,也可以适用于第一频点和第二频点之外的频点。
在一种可能地实施方式中,终端设备接收目标频点上的第j个预设时长的数据,直至目标频点上的第1个预设时长的数据至第j个预设时长的数据满足第一条件。j为从1开始取值的正整数。在一种可能地实施方式中,若目标频点为第一频点,则终端设备接收第一频点上的第j个预设时长的数据,直至第一频点上的第1个预设时长的数据至第j个预设时长的数据满足第一条件。在一种可能地实施方式中,若目标频点为第二频点,则接收第二频点上的第j个预设时长的数据,直至第二频点上的第1个预设时长的数据至第j个预设时长的数据满足第一条件。
其中,满足第一条件包括满足以下“内容a1、内容a2、内容a3和内容a4”中的至少一项:
内容a1,j的取值不小于预设值K0;
内容a2,第1个预设时长至第j个预设时长的目标频点的数据与PSS的时域本地信号对应的归一化互相关值小于第一门限值。
内容a3,目标频点的配置信息指示在目标频点接收K0个预设时长的数据,且当前j的取值不小于K0;
内容a4,目标频点的数据的RSSI小于RSSI阈值。
在内容a2中,当j的取值为1时,内容a2可以写为:第1个预设时长的目标频点的数据与PSS的时域本地信号对应的归一化互相关值小于第一门限值。
在本申请实施例中,针对一个频点,可以每接收一个同步信号周期的时长的数据,进行一次判断,若判断当前已接收到的数据满足第一条件,则可以停止在该频点接收数据。结合上述示例来看,在一种可能地实施方式中,针对一个频点,终端设备可以在该频点接收多长时间的数据可以与第1个预设时长至第j个预设时长的目标频点的数据与PSS的时域本地信号对应的归一化互相关值有关,若归一化相关值较小,则说明该频点上存在NR小区的可能性较小,这种情况下,可以及早结束在该频点上的收数(即可以及早的结束在该频点上接收数据的动作),不必一定要满足“接收够K0个同步信号周期”的时长的要求,如此,可以达到减少小区搜索时延的目的。另一方面,当一个频点上收到的数据与PSS的时域本地信号对应的归一化互相关值较大,则说明该频点上存在NR小区的可能性较大,这种情况下,可以多接收一些该频点的数据,从而可以满足一个较小的信噪比。第三方面,针对一个频点,最大的收数时长(即在该频点接收数据的最大时长)为K0个同步信号周 期的时长,如此,既可以与现有技术兼容,且也不会导致过多接收目标频点的数据而加大小区搜索时延。
基于上述内容,为了更清楚的介绍本申请实施例提供的方案,图4示例性示出了另一种小区搜索的方法流程示意图,图4中以一个频点为例,介绍在一个频点上执行方案的过程,为了介绍方便,仍以“目标频点”的名称进行介绍。如图4所示,该方法包括:
步骤401,开始。
步骤402,终端设备初始化j的取值。
需要说明的是,其中,针对每个目标频点,j可以从1开始取值,j为正整数,即针对每个新的频点,初始化j的取值的意思是j的取值更新为1。
步骤403,终端设备在目标频点接收第j个预设时长的数据;。
步骤404,终端设备判断第1个预设时长至第j个预设时长的目标频点的数据与PSS的时域本地信号对应的归一化互相关值是否小于第一门限值;
若小于,则执行步骤405;
若不小于,则执行步骤407。
需要说明的是,在步骤404中,当j的取值为1时,步骤404中也可以写为:终端设备判断第1个预设时长的目标频点的数据与PSS的时域本地信号对应的归一化互相关值是否小于第一门限值;若小于,则执行步骤405;若不小于,则执行步骤407。
步骤405,终端设备停止在目标频点上接收数据。
步骤406,终端设备根据第1个预设时长的数据至第j个预设时长的目标频点的数据,对目标频点进行小区搜索。
步骤407,终端设备判断j的值是否不小于预设值K0;
若j的值小于该K0,则执行步骤408;
若j的值不小于该K0,则执行步骤409;
步骤408,终端设备令j的取值加1;并重新执行步骤403;
步骤409,终端设备停止在目标频点上接收数据,根据第1个预设时长的数据至第j个预设时长的目标频点的数据,对目标频点进行小区搜索。
需要说明的是,在步骤405之后,可以执行步骤406,也可以不执行步骤406。由于NR系统中可能至少会接收有一个频点的20ms的数据,若将该20ms的数据全部丢弃并不进行小区搜索,则小区遗漏的情况可能会较为严重,基于此,即使第1个预设时长至第j个预设时长的目标频点的数据与PSS的时域本地信号对应的归一化互相关值较小(也就是说相似度较小),若依然对该目标频点进行小区搜索,可以减缓小区遗漏的情况。另一方面,如果第1个预设时长至第j个预设时长的目标频点的数据与PSS的时域本地信号对应的归一化互相关值较小(也就是说相似度较小),则可以认为目标频点存在NR系统小区的可能性较小,因此可以不再对该频点进行小区搜索,从而可以实现缩短小区搜索时间的目的。
下面介绍以目标频点接收一个预设时长的数据为例,介绍一个预设时长的目标频点的数据与PSS时域本地信号对应的归一化互相关值的可能地计算方法。目标频点的一个预设时长的数据与PSS时域本地信号对应的归一化互相关值用V(f)表示。
需要说明的是,即使UE在频点上的接收数据中包含有PSS,其与PSS的时域本地信号之间的归一化互相关值的大小还会受接收信号质量的影响,接收信号质量越好,V(f)就 会越大,这也是为什么会在相对较小的V(f)对应的频点上搜索到NR系统小区的原因。由上述内容可知,V(f)的大小受接收数据是否为PSS以及接收信号质量这两个因素的影响。
(1)在3GPP TS 36.211协议中定义了3个PSS信号,每个PSS信号都由一个小区组内编号
Figure PCTCN2020118392-appb-000013
唯一确定,因此在UE进行归一化互相关的计算时,需要分别对3个PSS序列均进行一次归一化互相关值计算,然后再选取最大值作为与频点对应的归一化互相关值V(f)。
具体地,V(f)的计算过程如下:
Figure PCTCN2020118392-appb-000014
Figure PCTCN2020118392-appb-000015
在公式(2)和公式(3)中:
N R为接收天线个数,i为天线索引,例如,N R=2,则i=0,1;
Figure PCTCN2020118392-appb-000016
为以f为频点,接收天线i接收到的一个预设时长的目标频点的数据的序列,d为预设时间内的采样点个数;
Figure PCTCN2020118392-appb-000017
为基于
Figure PCTCN2020118392-appb-000018
确定的PSS的时域本地信号,
Figure PCTCN2020118392-appb-000019
的序列长度为N,
Figure PCTCN2020118392-appb-000020
Figure PCTCN2020118392-appb-000021
的复共轭;
Figure PCTCN2020118392-appb-000022
L为将
Figure PCTCN2020118392-appb-000023
的序列长度分为M段后,每段的序列长度,L=N/M,例如,N=256,M=2,则L=N/M=128通过设置M数值的方式来调整L,在M不等于1时计算
Figure PCTCN2020118392-appb-000024
可以允许更大范围的频偏,相对于M=1而言,M不等于1时计算
Figure PCTCN2020118392-appb-000025
的精准度更高。
在一种可能地实施方式中,当需要计算多个预设时长的目标频点的数据与PSS时域本地信号对应的归一化互相关值时,比如N3个,N3为大于1的正整数,N3个预设时长的目标频点的数据与PSS时域本地信号对应的归一化互相关值可以等于:N3个预设时长的目标频点的数据中每个预设时长的目标频点的数据与PSS时域本地信号的归一化互相关值得平均值,其中,每个预设时长的目标频点的数据与PSS时域本地信号的归一化互相关值可以根据上述公式(2)和公式(3)计算得到。
此外,本发明实施例频段搜索方法还可以支持基带频偏补偿,且带若干个基带频偏补偿值的频段搜索方案还可以支持更大的频偏,允许UE采用低成本晶振。例如,大约10ppm频偏的低成本晶振,在载波为3.8GHz时,对应大约+/-38KHz频偏,此时可采用带3个基带频偏补偿值的频段搜索方法,三个频偏补偿值分别为0KHz、+26KHz、-26KHz。
对于支持基带频偏补偿的频段搜索方法来说,V(f)的计算过程如下:
Figure PCTCN2020118392-appb-000026
Figure PCTCN2020118392-appb-000027
在公式(2)和公式(3)中:
r i(d+n,Δf)经过基带频偏补偿后的以f为频点,接收天线i接收到的一个预设时长的目标频点的数据的序列,d为预设时间内的采样点个数,Δf为频偏补偿值。
需要说明的是,本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有特别说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一频点和第二频点,只是为了区分不同的频点,而并不是表示这两个频点的优先级或者重要程度等的不同。
上述主要从各个网元之间交互的角度对本申请提供的方案进行了介绍。可以理解的是,上述实现各网元为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
根据前述方法,图5为本申请实施例提供的通信装置的结构示意图,如图5所示,该通信装置可以为终端设备,也可以为芯片或电路,比如可设置于终端设备的芯片或电路。
进一步的,该通信装置1301还可以进一步包括总线系统,其中,处理器1302、存储器1304、收发器1303可以通过总线系统相连。
应理解,上述处理器1302可以是一个芯片。例如,该处理器1302可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器1302中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器1302中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器 等本领域成熟的存储介质中。该存储介质位于存储器1304,处理器1302读取存储器1304中的信息,结合其硬件完成上述方法的步骤。
应注意,本申请实施例中的处理器1302可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器1304可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
该通信装置1301对应上述方法中的终端设备的情况下,该通信装置可以包括处理器1302、收发器1303和存储器1304。该存储器1304用于存储指令,该处理器1302用于执行该存储器1304存储的指令,以实现如上图1至图4中所示的任一项或任多项对应的方法中终端设备的相关方案。
在该实施方式中,通信装置1301的收发器1303,用于接收第一时长的第一频点的数据;处理器1302,用于:当在第一时长的第一频点的数据上搜索不出同步信号,则通过收发器1303接收第二时长的第二频点的数据,对第二时长的第二频点的数据进行同步信号的搜索;其中,第一时长与第二时长不同。
在一种可能地实施方式中,处理器1302,还用于:
当满足如下条件中的一项时,确定在第一时长的第一频点的数据上搜索不出同步信号:
第一时长的第一频点的数据与PSS的时域本地信号对应的归一化互相关值小于第一门限值;
第一时长的第一频点的数据与PSS的时域本地信号对应的归一化互相关值小于第一门限值,且对第一时长的第一频点的数据进行同步信号的搜索,并未搜索到同步信号。
在一种可能地实施方式中,处理器1302,具体用于:
通过收发器1303接收第一频点上的第j个预设时长的数据,直至第一频点上的第1个预设时长的数据至第j个预设时长的数据满足第一条件,j为从1开始取值的正整数;其中,第一时长的值为:在第一频点上的第1个预设时长的数据至第j个预设时长的数据满足第一条件的情况下j个预设时长的值;
其中,满足第一条件包括满足以下内容中的一项:
j的取值不小于预设值K0;
第1个预设时长的数据至第j个预设时长的数据与PSS的时域本地信号对应的归一化互相关值小于第一门限值。
在一种可能地实施方式中,处理器1302,具体用于:
通过收发器1303接收第二频点上的第j个预设时长的数据,直至第二频点上的第1个预设时长的数据至第j个预设时长的数据满足第一条件,j为从1开始取值的正整数;其中,第二时长的值为:在第二频点上的第1个预设时长的数据至第j个预设时长的数据满足第一条件的情况下j个预设时长的值。
在一种可能地实施方式中,处理器1302,具体用于:
当满足如下条件中的一项时,确定在第二时长的第二频点的数据上搜索不出同步信号:
第二时长的第二频点的数据与PSS的时域本地信号对应的归一化互相关值小于第一门限值;
第二时长的第二频点的数据与PSS的时域本地信号对应的归一化互相关值小于第一门限值,且对第二时长的第二频点的数据进行同步信号的搜索,并未搜索到同步信号;
第二时长的第二频点的数据与PSS的时域本地信号对应的归一化互相关值不小于第一门限值,对第二时长的第二频点的数据进行同步信号的搜索,并未搜索到同步信号。
在一种可能地实施方式中,收发器1303,还用于:接收第三时长的先验频点的数据,第三时长大于第一时长,且第三时长的值为预设的在小区搜索进程中终端设备在频点上需接收的同步信号的时长。处理器1302,还用于:对第三时长的先验频点的数据进行同步信号搜索,未搜出同步信号;或者,对第三时长的先验频点的数据进行同步信号搜索,成功搜索到同步信号且在先验频点驻留失败。
该通信装置所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,例如K0、第一时长、第二时长、第一条件等概念,此处不做赘述。
根据前述方法,图6为本申请实施例提供的通信装置的结构示意图,如图6所示,通信装置1401可以包括通信接口1403、处理器1402和存储器1404。通信接口1403,用于输入和/或输出信息;处理器1402,用于执行计算机程序或指令,使得通信装置1401实现上述图1至图4的相关方案中终端设备侧的方法图4。本申请实施例中,通信接口1403可以实现上述图5的收发器1303所实现的方案,处理器1402可以实现上述图5的处理器1302所实现的方案,存储器1404可以实现上述图5的存储器1304所实现的方案,在此不再赘述。
基于以上实施例以及相同构思,图7为本申请实施例提供的通信装置的示意图,如图7所示,该通信装置1501可以为终端设备,也可以为芯片或电路,比如可设置于终端设备的芯片或电路。
该通信装置可以对应上述方法中的终端设备。该通信装置可以实现如上图1至图4中 所示的任一项或任多项对应的方法中终端设备所执行的步骤。该通信装置可以包括处理单元1502、通信单元1503和存储单元1504。
其中,处理单元1502可以是处理器或控制器,例如可以是通用中央处理器(central processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等。存储单元1504可以是存储器。通信单元1503是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该通信单元1503是该芯片用于从其它芯片或装置接收信号的接口电路,或者,是该芯片用于向其它芯片或装置发送信号的接口电路。
该通信装置1501可以为上述任一实施例中的终端设备,还可以为用于进行小区搜索芯片。例如,当通信装置1501为终端设备时,该处理单元1502例如可以是处理器,该通信单元1503例如可以是收发器。可选的,该收发器可以包括射频电路,该存储单元例如可以是存储器。例如,当通信装置1501为用于进行小区搜索的芯片时,该处理单元1502例如可以是处理器,该通信单元1503例如可以是输入/输出接口、管脚或电路等。该处理单元1502可执行存储单元存储的计算机执行指令,可选地,该存储单元为该芯片内的存储单元,如寄存器、缓存等,该存储单元还可以是该会话管理网元内的位于该芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
通信装置1501为上述终端设备,在该实施方式中,通信装置1301的通信单元1503,用于接收第一时长的第一频点的数据;处理单元1502,用于:当在第一时长的第一频点的数据上搜索不出同步信号,则通过通信单元1503接收第二时长的第二频点的数据,对第二时长的第二频点的数据进行同步信号的搜索;其中,第一时长与第二时长不同。
该通信装置所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
可以理解的是,上述通信装置1501中各个单元的功能可以参考相应方法实施例的实现,此处不再赘述。
应理解,以上通信装置的单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。本申请实施例中,通信单元1503可以由上述图5的收发器1303实现,处理单元1502可以由上述图5的处理器1302实现。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码或指令,当该计算机程序代码或指令在计算机上运行时,使得该计算机执行图1至图4所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图1至图4所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
需要指出的是,本专利申请文件的一部分包含受著作权保护的内容。除了对专利局的专利文件或记录的专利文档内容制作副本以外,著作权人保留著作权。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (30)

  1. 一种小区搜索方法,其特征在于,包括:
    接收第一时长的第一频点的数据,确定在所述第一时长的所述第一频点的数据上搜索不出同步信号;
    接收第二时长的第二频点的数据,对所述第二时长的所述第二频点的数据进行同步信号的搜索;
    其中,所述第一时长与所述第二时长不同。
  2. 如权利要求1所述的方法,其特征在于,所述第一时长包括K1个预设时长,所述第二时长包括K2个所述预设时长;
    所述K1和所述K2分别为正整数,所述K1的值与所述K2的值不同。
  3. 如权利要求2所述的方法,其特征在于,所述预设时长为:
    新技术NR中配置的同步信号的发送周期。
  4. 如权利要求3所述的方法,其特征在于,新技术NR中配置的同步信号的发送周期为以下内容中的一项:5毫秒ms、10ms、20ms、40ms、80ms、160ms。
  5. 如权利要求3或4所述的方法,其特征在于,所述NR中配置的同步信号的发送周期为:20毫秒ms。
  6. 如权利要求1-5中任一项所述的方法,其特征在于,所述确定在所述第一时长的所述第一频点的数据上搜索不出同步信号,包括:
    当满足如下条件中的一项时,确定在所述第一时长的所述第一频点的数据上搜索不出同步信号:
    所述第一时长的所述第一频点的数据与PSS的时域本地信号对应的归一化互相关值小于第一门限值;
    所述第一时长的所述第一频点的数据与PSS的时域本地信号对应的归一化互相关值小于所述第一门限值,且对所述第一时长的所述第一频点的数据进行同步信号的搜索,并未搜索到同步信号。
  7. 如权利要求1-6中任一项所述的方法,其特征在于,所述第一时长小于所述第二时长;
    所述第一时长的所述第一频点的数据与PSS的时域本地信号对应的归一化互相关值小于第一门限值;
    所述第二时长的第二频点的数据中的前第一时长的数据与PSS的时域本地信号对应的归一化互相关值不小于第一门限值。
  8. 如权利要求1-7中任一项所述的方法,其特征在于,所述接收第一频点上第一时长的数据,包括:
    接收所述第一频点上的第j个预设时长的数据,直至所述第一频点上的第1个预设时长的数据至第j个预设时长的数据满足所述第一条件,所述j为从1开始取值的正整数;
    其中,所述第一时长的值为:在所述第一频点上的第1个预设时长的数据至第j个预设时长的数据满足所述第一条件的情况下j个预设时长的值;
    其中,满足所述第一条件包括满足以下内容中的一项:
    所述j的取值不小于预设值K0;
    第1个预设时长的数据至第j个预设时长的数据与PSS的时域本地信号对应的归一化互相关值小于所述第一门限值。
  9. 如权利要求1-8中任一项所述的方法,其特征在于,所述接收第二频点上第二时长的数据,包括:
    接收所述第二频点上的第j个预设时长的数据,直至所述第二频点上的第1个预设时长的数据至第j个预设时长的数据满足所述第一条件,所述j为从1开始取值的正整数;
    其中,所述第二时长的值为:在所述第二频点上的第1个预设时长的数据至第j个预设时长的数据满足所述第一条件的情况下j个预设时长的值;
    其中,满足所述第一条件包括满足以下内容中的一项:
    所述j的取值不小于预设值K0;
    第1个预设时长至第j个预设时长的数据与PSS的时域本地信号对应的归一化互相关值小于所述第一门限值。
  10. 如权利要求8或9所述的方法,其特征在于,所述K0的值为预设的在小区搜索进程中终端设备在频点上需接收的同步信号的周期的数量。
  11. 如权利要求10所述的方法,其特征在于,所述K0的值为2。
  12. 如权利要求1-11中任一项所述的方法,其特征在于,所述对所述第二时长的所述第二频点的数据进行同步信号的搜索之后,还包括:
    当满足如下条件中的一项时,确定在所述第二时长的所述第二频点的数据上搜索不出同步信号:
    所述第二时长的所述第二频点的数据与PSS的时域本地信号对应的归一化互相关值小于第一门限值;
    所述第二时长的所述第二频点的数据与PSS的时域本地信号对应的归一化互相关值小于所述第一门限值,且对所述第二时长的所述第二频点的数据进行同步信号的搜索,并未搜索到同步信号;
    所述第二时长的所述第二频点的数据与PSS的时域本地信号对应的归一化互相关值不小于所述第一门限值,对所述第二时长的所述第二频点的数据进行同步信号的搜索,并未搜索到同步信号。
  13. 如权利要求1-12中任一项所述的方法,其特征在于,所述接收第一时长的第一频点的数据之前,还包括:
    接收第三时长的先验频点的数据,所述第三时长大于所述第一时长,且所述第三时长的值为预设的在小区搜索进程中终端设备在频点上需接收的同步信号的时长;
    对所述第三时长的所述先验频点的数据进行同步信号搜索,未搜出同步信号;或者,对所述第三时长的先验频点的数据进行同步信号搜索,成功搜索到同步信号且在所述先验频点驻留失败。
  14. 一种通信装置,其特征在于,包括:
    收发器,用于接收第一时长的第一频点的数据,接收第二时长的第二频点的数据;
    处理器,用于:确定在所述第一时长的所述第一频点的数据上搜索不出同步信号,对所述第二时长的所述第二频点的数据进行同步信号的搜索;其中,所述第一时长与所述第二时长不同。
  15. 如权利要求14所述的通信装置,其特征在于,所述第一时长包括K1个预设时长,所述第二时长包括K2个所述预设时长;
    所述K1和所述K2分别为正整数,所述K1的值与所述K2的值不同。
  16. 如权利要求15所述的通信装置,其特征在于,所述预设时长为:
    新技术NR中配置的同步信号的发送周期。
  17. 如权利要求16所述的通信装置,其特征在于,新技术NR中配置的同步信号的发送周期为以下内容中的一项:5毫秒ms、10ms、20ms、40ms、80ms、160ms。
  18. 如权利要求15或16所述的通信装置,其特征在于,所述NR中配置的同步信号的发送周期为:20毫秒ms。
  19. 如权利要求14-18中任一项所述的通信装置,其特征在于,所述处理器,还用于:
    当满足如下条件中的一项时,确定在所述第一时长的所述第一频点的数据上搜索不出同步信号:
    所述第一时长的所述第一频点的数据与PSS的时域本地信号对应的归一化互相关值小于第一门限值;
    所述第一时长的所述第一频点的数据与PSS的时域本地信号对应的归一化互相关值小于所述第一门限值,且对所述第一时长的所述第一频点的数据进行同步信号的搜索,并未搜索到同步信号。
  20. 如权利要求14-19中任一项所述的通信装置,其特征在于,所述第一时长小于所述第二时长;
    所述第一时长的所述第一频点的数据与PSS的时域本地信号对应的归一化互相关值小于第一门限值;
    所述第二时长的第二频点的数据中的前第一时长的数据与PSS的时域本地信号对应的归一化互相关值不小于第一门限值。
  21. 如权利要求14-20中任一项所述的通信装置,其特征在于,所述处理器,具体用于:
    通过所述收发器接收所述第一频点上的第j个预设时长的数据,直至所述第一频点上的第1个预设时长的数据至第j个预设时长的数据满足所述第一条件,所述j为从1开始取值的正整数;
    其中,所述第一时长的值为:在所述第一频点上的第1个预设时长的数据至第j个预设时长的数据满足所述第一条件的情况下j个预设时长的值;
    其中,满足所述第一条件包括满足以下内容中的一项:
    所述j的取值不小于预设值K0;
    第1个预设时长的数据至第j个预设时长的数据与PSS的时域本地信号对应的归一化互相关值小于所述第一门限值。
  22. 如权利要求14-21中任一项所述的通信装置,其特征在于,所述处理器,具体用于:
    通过所述收发器接收所述第二频点上的第j个预设时长的数据,直至所述第二频点上的第1个预设时长的数据至第j个预设时长的数据满足所述第一条件,所述j为从1开始取值的正整数;
    其中,所述第二时长的值为:在所述第二频点上的第1个预设时长的数据至第j个预 设时长的数据满足所述第一条件的情况下j个预设时长的值;
    其中,满足所述第一条件包括满足以下内容中的一项:
    所述j的取值不小于预设值K0;
    第1个预设时长至第j个预设时长的数据与PSS的时域本地信号对应的归一化互相关值小于所述第一门限值。
  23. 如权利要求21或22所述的通信装置,其特征在于,所述K0的值为预设的在小区搜索进程中终端设备在频点上需接收的同步信号的周期的数量。
  24. 如权利要求23所述的通信装置,其特征在于,所述K0的值为2。
  25. 如权利要求14-24中任一项所述的通信装置,其特征在于,所述处理器,具体用于:
    当满足如下条件中的一项时,确定在所述第二时长的所述第二频点的数据上搜索不出同步信号:
    所述第二时长的所述第二频点的数据与PSS的时域本地信号对应的归一化互相关值小于第一门限值;
    所述第二时长的所述第二频点的数据与PSS的时域本地信号对应的归一化互相关值小于所述第一门限值,且对所述第二时长的所述第二频点的数据进行同步信号的搜索,并未搜索到同步信号;
    所述第二时长的所述第二频点的数据与PSS的时域本地信号对应的归一化互相关值不小于所述第一门限值,对所述第二时长的所述第二频点的数据进行同步信号的搜索,并未搜索到同步信号。
  26. 如权利要求14-25中任一项所述的通信装置,其特征在于,所述收发器,还用于:
    接收第三时长的先验频点的数据,所述第三时长大于所述第一时长,且所述第三时长的值为预设的在小区搜索进程中终端设备在频点上需接收的同步信号的时长;
    所述处理器,还用于:
    对所述第三时长的所述先验频点的数据进行同步信号搜索,未搜出同步信号;或者,对所述第三时长的先验频点的数据进行同步信号搜索,成功搜索到同步信号且在所述先验频点驻留失败。
  27. 一种通信装置,其特征在于,所述装置包括处理器和存储器,
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行存储器中的计算机程序,使得权利要求1-13中任一项所述的方法被执行。
  28. 一种通信装置,其特征在于,所述装置包括处理器和通信接口,
    所述通信接口,用于输入和/或输出信息;
    所述处理器,用于执行计算机程序,使得权利要求1-13中任一项所述的方法被执行。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行程序,所述计算机可执行程序在被计算机调用时,使所述计算机执行如权利要求1至13任一项所述的方法。
  30. 一种芯片系统,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于从所述存储器调用并运行所述计算机程序,使得安装有所述芯片系统的 设备执行如利要求1-13任一项所述的方法。
PCT/CN2020/118392 2020-09-28 2020-09-28 一种小区搜索方法、通信装置、可读存储介质及芯片系统 WO2022061882A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080014825.2A CN114586418A (zh) 2020-09-28 2020-09-28 一种小区搜索方法、通信装置、可读存储介质及芯片系统
PCT/CN2020/118392 WO2022061882A1 (zh) 2020-09-28 2020-09-28 一种小区搜索方法、通信装置、可读存储介质及芯片系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/118392 WO2022061882A1 (zh) 2020-09-28 2020-09-28 一种小区搜索方法、通信装置、可读存储介质及芯片系统

Publications (1)

Publication Number Publication Date
WO2022061882A1 true WO2022061882A1 (zh) 2022-03-31

Family

ID=80846139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118392 WO2022061882A1 (zh) 2020-09-28 2020-09-28 一种小区搜索方法、通信装置、可读存储介质及芯片系统

Country Status (2)

Country Link
CN (1) CN114586418A (zh)
WO (1) WO2022061882A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070010280A1 (en) * 2003-06-18 2007-01-11 Nec Corporation Cell search process for wireless communication system
CN102316552A (zh) * 2010-07-06 2012-01-11 联芯科技有限公司 移动终端无网络小区搜索方法
CN102356671A (zh) * 2011-08-19 2012-02-15 华为技术有限公司 一种通信系统频段搜索的方法和装置
CN111093252A (zh) * 2019-12-27 2020-05-01 重庆物奇科技有限公司 一种窄带物联网NB-IoT的分层快速搜索方法
CN111372261A (zh) * 2018-12-25 2020-07-03 普天信息技术有限公司 基于直放站的无线通信方法和系统、终端、基站及直放站

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102752831B (zh) * 2012-06-25 2014-01-08 华为技术有限公司 一种频段搜索方法及装置
CN106559857B (zh) * 2016-10-17 2020-05-08 华为技术有限公司 一种先验频点排序的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070010280A1 (en) * 2003-06-18 2007-01-11 Nec Corporation Cell search process for wireless communication system
CN102316552A (zh) * 2010-07-06 2012-01-11 联芯科技有限公司 移动终端无网络小区搜索方法
CN102356671A (zh) * 2011-08-19 2012-02-15 华为技术有限公司 一种通信系统频段搜索的方法和装置
CN111372261A (zh) * 2018-12-25 2020-07-03 普天信息技术有限公司 基于直放站的无线通信方法和系统、终端、基站及直放站
CN111093252A (zh) * 2019-12-27 2020-05-01 重庆物奇科技有限公司 一种窄带物联网NB-IoT的分层快速搜索方法

Also Published As

Publication number Publication date
CN114586418A (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
US11825491B2 (en) Method for monitoring PDCCH, terminal and network device
US20100254351A1 (en) Method and apparatus for performing a handover in an evolved universal terrestrial radio access network
WO2020025061A1 (zh) 传输信号的方法、终端设备和网络设备
TWI733801B (zh) 傳輸系統訊息的方法、基地台和終端
WO2018153245A1 (zh) 非连续接收方法、终端及网络设备
WO2015027437A1 (zh) 通信方法、用户设备和基站
CN113271683A (zh) 一种基于ue能力进行通信的方法和ue及网络侧设备
EP3614609A1 (en) Signal transmission method and apparatus
CN110191501B (zh) 用于nr的按需系统信息请求过程的设备和存储器元件
WO2020061958A1 (zh) 接收信息、发送信息的方法和设备
CA3025573A1 (en) Information transmission method and device
WO2022027511A1 (zh) 小区选择或重选方法,信息发送方法以及装置
US20230362842A1 (en) Wireless communication method, network device and terminal device
CN114424666B (zh) 一种通信方法及装置
WO2022042369A1 (zh) 一种多卡模式下的搜网方法、装置及终端设备
WO2020087543A1 (zh) 一种信号的发送方法、接收方法、发送装置、接收装置和通信系统
WO2022077322A1 (zh) 探测参考信号的发送和接收方法以及装置
RU2730686C1 (ru) Способ беспроводной связи, оконечное устройство и передающие и принимающие узлы
WO2021026929A1 (zh) 一种通信方法及装置
US20230116565A1 (en) Bwp configuration method and apparatus, terminal device, and network device
WO2022061882A1 (zh) 一种小区搜索方法、通信装置、可读存储介质及芯片系统
WO2020061954A1 (zh) 区分寻呼消息的方法、网络设备和终端设备
CN113329425B (zh) 一种信息配置方法及装置、终端
WO2019237310A1 (zh) 一种信息传输方法及装置、终端设备、网络设备
WO2020087541A1 (zh) 下行控制信息的传输方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954732

Country of ref document: EP

Kind code of ref document: A1