WO2022061872A1 - 一种小数据传输方法及装置、终端设备 - Google Patents

一种小数据传输方法及装置、终端设备 Download PDF

Info

Publication number
WO2022061872A1
WO2022061872A1 PCT/CN2020/118343 CN2020118343W WO2022061872A1 WO 2022061872 A1 WO2022061872 A1 WO 2022061872A1 CN 2020118343 W CN2020118343 W CN 2020118343W WO 2022061872 A1 WO2022061872 A1 WO 2022061872A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
threshold
amount
terminal device
data volume
Prior art date
Application number
PCT/CN2020/118343
Other languages
English (en)
French (fr)
Inventor
石聪
林雪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20954723.1A priority Critical patent/EP4207916A4/en
Priority to CN202080103713.4A priority patent/CN116326111A/zh
Priority to PCT/CN2020/118343 priority patent/WO2022061872A1/zh
Publication of WO2022061872A1 publication Critical patent/WO2022061872A1/zh
Priority to US18/127,328 priority patent/US20230239858A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the embodiments of the present application relate to the field of mobile communication technologies, and in particular, to a small data transmission method and apparatus, and a terminal device.
  • a terminal device in an inactive state can perform small data transmission, that is, Inactive Data Transmission (IDT).
  • IDT Inactive Data Transmission
  • the terminal device in the inactive state decides whether to initiate the inactive small data transmission based on the data volume to be transmitted and the data volume threshold. However, it is not clear how the terminal device calculates the data volume to be transmitted.
  • Embodiments of the present application provide a small data transmission method and apparatus, and a terminal device.
  • the terminal device determines a first data volume, where the first data volume includes the data volume of the radio resource control (Radio Resource Control, RRC) message and the data volume of at least one data radio bearer (Data Radio Bearer, DRB) buffer;
  • RRC Radio Resource Control
  • DRB Data Radio Bearer
  • the terminal device determines whether to initiate inactive small data transmission based on the first data amount.
  • the small data transmission apparatus provided by the embodiment of the present application is applied to terminal equipment, and the apparatus includes:
  • a determining unit configured to determine a first data amount, where the first data amount includes the data amount of the RRC message and the data amount buffered by at least one DRB; and determine whether to initiate inactive small data transmission based on the first data amount.
  • the terminal device provided by the embodiments of the present application includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned small data transmission method.
  • the chip provided by the embodiment of the present application is used to implement the above-mentioned small data transmission method.
  • the chip includes: a processor for invoking and running a computer program from the memory, so that the device installed with the chip executes the above-mentioned small data transmission method.
  • the computer-readable storage medium provided by the embodiment of the present application is used for storing a computer program, and the computer program enables a computer to execute the above-mentioned small data transmission method.
  • the computer program product provided by the embodiments of the present application includes computer program instructions, and the computer program instructions cause a computer to execute the above-mentioned small data transmission method.
  • the computer program provided by the embodiments of the present application when running on a computer, enables the computer to execute the above-mentioned small data transmission method.
  • the terminal determines that the amount of data to be transmitted (that is, the first amount of data) includes the amount of data of the RRC message and the amount of data buffered by at least one DRB, thereby specifying the amount of data to be transmitted, according to the amount of data to be transmitted Determines whether to initiate an inactive small data transfer.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart 1 of a small data transmission method provided by an embodiment of the present application.
  • FIG. 3 is a second schematic flowchart of a small data transmission method provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a small data transmission device provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • 5G communication systems or future communication systems etc.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal 120 (or referred to as a communication terminal, a terminal).
  • the network device 110 may provide communication coverage for a particular geographic area and may communicate with terminals located within the coverage area.
  • the network device 110 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in an LTE system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the
  • the network device can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, a wearable device, a hub, a switch, a bridge, a router, a network-side device in a 5G network, or a network device in a future communication system, etc.
  • the communication system 100 also includes at least one terminal 120 located within the coverage of the network device 110 .
  • Terminal includes, but is not limited to, connections via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connections; and/or another data connection/network; and/or via a wireless interface, e.g. for cellular networks, Wireless Local Area Networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM-FM A broadcast transmitter; and/or a device of another terminal configured to receive/transmit a communication signal; and/or an Internet of Things (IoT) device.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN Wireless Local Area Networks
  • WLAN Wireless Local Area Networks
  • digital television networks such as DVB-H networks, satellite networks, AM-FM A broadcast transmitter
  • IoT Internet of Things
  • a terminal arranged to communicate through a wireless interface may be referred to as a "wireless communication terminal", “wireless terminal” or “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular telephones; Personal Communications System (PCS) terminals that may combine cellular radio telephones with data processing, facsimile, and data communication capabilities; may include radio telephones, pagers, Internet/Intranet PDAs with networking access, web browsers, memo pads, calendars, and/or Global Positioning System (GPS) receivers; and conventional laptop and/or palmtop receivers or others including radiotelephone transceivers electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • a terminal may refer to an access terminal, user equipment (UE), subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks or terminals in future evolved PLMNs, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal (Device to Device, D2D) communication may be performed between the terminals 120 .
  • the 5G communication system or the 5G network may also be referred to as a new radio (New Radio, NR) system or an NR network.
  • New Radio NR
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the communication system 100 may include multiple network devices, and the coverage of each network device may include other numbers of terminals. This embodiment of the present application This is not limited.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • a device having a communication function in the network/system may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal 120 with a communication function, and the network device 110 and the terminal 120 may be the specific devices described above, which will not be repeated here;
  • the device may further include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • 5G 3rd Generation Partnership Project
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra-Reliable Low-Latency Communications
  • mMTC Massive Machine-Type Communications
  • eMBB still aims at users' access to multimedia content, services and data, and its demand is growing rapidly.
  • eMBB since eMBB may be deployed in different scenarios, such as indoor, urban, rural, etc., its capabilities and requirements are also quite different, so it cannot be generalized and must be analyzed in detail in combination with specific deployment scenarios.
  • Typical applications of URLLC include: industrial automation, power automation, telemedicine operations (surgery), traffic safety assurance, etc.
  • Typical features of mMTC include: high connection density, small data volume, latency-insensitive services, low cost and long service life of the module.
  • RRC_INACTIVE state In the 5G network environment, in order to reduce air interface signaling, quickly restore wireless connections, and quickly restore data services, a new RRC state is defined, that is, RRC_INACTIVE state. This state is different from the RRC idle (RRC_IDLE) state and the RRC active (RRC_ACTIVE) state. in,
  • RRC_IDLE state (referred to as idle state): mobility is reselection based on cell selection, paging is initiated by the core network (Core Network, CN), and the paging area is configured by the CN. There is no context of terminal equipment on the base station side, and no RRC connection exists.
  • RRC_INACTIVE state (referred to as inactive state): mobility is based on cell selection and reselection, there is a connection between CN-NR, a terminal device context exists on a certain base station, paging is triggered by RAN, and RAN-based The paging area is managed by the RAN, and the network side knows the location of the terminal device based on the paging area level of the RAN.
  • RRC_CONNECTED state (referred to as connected (connected) state for short): there is an RRC connection, and a terminal device context exists on the base station side and the terminal device side.
  • the network side knows that the location of the terminal equipment is at the specific cell level. Mobility is the mobility controlled by the network side. Unicast data can be transmitted between the terminal equipment and the base station.
  • the above three RRC states can be converted to each other.
  • some RRC parameters on the terminal equipment side in the inactive state are configured through the RRC release message.
  • the main RRC parameters are as follows:
  • the inactive RNTI (I-RNTI) is used to identify the inactive context of the terminal device on the base station side, and is unique within the base station.
  • RNA is an area used to control the terminal equipment to perform cell selection and reselection in an inactive state, and is also a paging range area for initial RAN paging.
  • RAN paging cycle (RAN Paging cycle), used to calculate the paging occasion of the RAN initial paging.
  • NCC Next hop Chaining Counter
  • the terminal equipment moves in the RNA area, it does not need to notify the network side, and follows the mobility behavior in the RRC idle state, that is, the principle of cell selection and reselection.
  • the terminal device moves out of the paging area configured by the RAN, the terminal device triggers the RRC connection recovery procedure (ie, RRC resume procedure), and re-acquires the paging area configured by the RAN.
  • the network side needs to transmit data to the terminal equipment, that is, when downlink data arrives, the base station that saves the terminal equipment context will trigger all cells in the RAN paging area to send paging messages to the terminal equipment, so that the inactive terminal equipment The RRC connection can be restored and data reception can be performed.
  • the terminal equipment in the inactive state is configured with a RAN paging area.
  • the terminal equipment needs to perform periodic location update according to the period configured by the network.
  • Scenarios that trigger the terminal device to perform RNA update include the RNAU timer timeout or the terminal device moving to an area outside the RNA.
  • a terminal device in an inactive state can perform small data transmission, that is, small data transmission in an inactive state.
  • Inactive small data transfers support three types of data transfers, namely:
  • the terminal device in the inactive state decides whether to initiate the inactive small data transmission based on the data volume to be transmitted and the data volume threshold. However, it is not clear how the terminal device calculates the data volume to be transmitted.
  • the terminal device determines the amount of data to be transmitted based on its own implementation. However, this method does not give any information on the amount of data. There is uncertainty about how the terminal device calculates the amount of data to be transmitted.
  • the following technical solutions of the embodiments of the present application are proposed, and the technical solutions of the embodiments of the present application provide a clear way to determine the size of the amount of data to be transmitted.
  • FIG. 2 is a schematic flowchart 1 of a small data transmission method provided by an embodiment of the present application. As shown in FIG. 2 , the small data transmission method includes the following steps:
  • Step 201 The terminal device determines a first data volume, where the first data volume includes the data volume of the RRC message and the data volume of at least one DRB buffer.
  • the first amount of data is the amount of data to be transmitted by the terminal device.
  • the amount of data to be transmitted by the terminal device is used to characterize the size of the MAC PDU to be transmitted.
  • the first data amount includes the data amount of the RRC message and the data amount buffered by at least one DRB.
  • the first data volume also includes the data volume of at least one Media Access Control Control Element (Media Access Control Element, MAC CE).
  • Media Access Control Element Media Access Control Element, MAC CE
  • the first data amount further includes the data amount of the packet header corresponding to at least one protocol layer.
  • the packet headers corresponding to the at least one protocol layer include: Media Access Control (Media Access Control, MAC) packet headers, Radio Link Control (Radio Link Control, RLC) packet headers and Packet Data Convergence Protocol (Packet Data Convergence Protocol, PDCP) ) header.
  • the first amount of data the amount of data of the RRC message+the amount of data buffered by at least one DRB.
  • the first amount of data the amount of data of the RRC message+the amount of data buffered by at least one DRB+the amount of data of at least one MAC CE.
  • the first data volume the data volume of the RRC message+the data volume of the at least one DRB buffer+the data volume of the at least one MAC CE+the data volume of the packet header corresponding to the at least one protocol layer.
  • the RRC message is an RRC connection recovery request message.
  • At least one DRB may be implemented in two manners, which are described below.
  • the terminal device has N DRBs, and N is a positive integer; the terminal device receives RRC-specific signaling sent by the network device, the RRC-specific signaling carries first indication information, and the first indication information is used to indicate the M DRBs in the N DRBs support inactive small data transmission, and M is a positive integer less than or equal to N.
  • A) Mode 1 The at least one DRB refers to the M DRBs.
  • the first data amount includes the buffered data amount of the DRB of the terminal device that supports small data transmission in the inactive state.
  • the first amount of data the amount of data of the RRC message+the amount of data buffered by the M DRBs+the amount of data of at least one MAC CE.
  • Mode 2 The at least one DRB refers to the N DRBs.
  • the first data amount includes the buffered data amount of all DRBs of the terminal device.
  • the first amount of data the amount of data of the RRC message+the amount of data buffered by the N DRBs+the amount of data of at least one MAC CE.
  • the buffered data volume of the at least one DRB includes the buffered data volume of each DRB in the at least one DRB, and the buffered data volume of each DRB includes the PDCP buffered data volume and/or the RLC buffered data volume.
  • the PDCP buffer data amount includes at least one of the following:
  • the PDCP SDU has the following characteristics: the PDCP layer receives the PDCP SDU from the upper layer, and the PDCP SDU has not been established as a corresponding PDCP data PDU.
  • the PDCP data PDU has the following characteristics: after the PDCP layer establishes the PDCP data PDU, the PDCP data PDU has not been transmitted to the lower layer.
  • At least one PDCP controls the data volume of the PDU.
  • the amount of RLC buffer data includes at least one of the following:
  • the RLC SDU has the following characteristics: the RLC layer receives the RLC SDU from the upper layer, the RLC SDU does not need to be segmented, and the RLC SDU has not been included in the corresponding RLC data PDU.
  • the RLC SDU segment has the following characteristics: the RLC layer receives the RLC SDU from the upper layer, the RLC SDU needs to be divided into RLC SDU segments (RLC SDU segment), and the RLC SDU segment has not been included into the corresponding RLC data in the PDU.
  • the RLC data PDU has the following characteristics: after the RLC layer establishes the RLC data PDU, the RLC data PDU is in a suspended state for initial transmission.
  • the at least one MAC CE includes a BSR MAC CE, where the BSR MAC CE refers to a MAC CE used to bear a buffer status report (Buffer Status Report, BSR).
  • BSR Buffer Status Report
  • Step 202 The terminal device determines whether to initiate inactive small data transmission based on the first data amount.
  • the first data amount is less than or equal to a first threshold, it is determined to initiate inactive small data transmission.
  • the first data amount is less than or equal to a first threshold, and the channel quality measurement value measured by the terminal device is greater than or equal to a second threshold, it is determined to initiate inactive small data transmission.
  • the channel quality may be reference signal received power (Reference Signal Received Power, RSRP) or reference signal received quality (Reference Signal Received Quality, RSRQ).
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • the terminal device receives a system message sent by a network device, where the system message includes at least one data volume threshold and/or at least one channel quality threshold; wherein the at least one data volume threshold is used to determine the the first threshold, and the at least one channel quality threshold is used to determine the second threshold.
  • the data volume threshold is the first threshold.
  • the terminal device may select one data volume threshold from the multiple data volume thresholds as the first threshold, for example: select the smallest data volume threshold Or the maximum data amount threshold is used as the first threshold.
  • the terminal device compares the first data volume with multiple data volume thresholds respectively, determines at least one data volume threshold that satisfies the condition, and sets the at least one data volume threshold or the minimum value of the at least one data volume threshold reported to the network device.
  • satisfying the condition means that the first data amount is less than or equal to the data amount threshold.
  • the channel quality threshold is the second threshold.
  • the terminal device may select one channel quality threshold from the multiple channel quality thresholds as the second threshold, for example: select the smallest channel quality threshold Or the maximum channel quality threshold is used as the second threshold.
  • the terminal device compares the channel quality measurement value with multiple channel quality thresholds respectively, determines at least one channel quality threshold that satisfies the condition, and sets the at least one channel quality threshold or the maximum value among the at least one channel quality threshold. reported to the network device.
  • satisfying the condition means that the channel quality measurement value is greater than or equal to the channel quality threshold.
  • the one data volume threshold is the first threshold
  • the terminal device compares the first data volume and all channel quality thresholds.
  • the data volume threshold if the first data volume is less than or equal to the data volume threshold, the terminal device compares the channel quality measurement value with the multiple channel quality thresholds, and obtains the data from the multiple channel quality thresholds.
  • a second threshold less than or equal to the channel quality measurement value is determined in the terminal device; the terminal device indicates the second threshold to the network device.
  • the channel quality threshold is the second threshold. If it is determined from the multiple channel quality thresholds that there are multiple channel quality thresholds less than or equal to the channel quality measurement value, the maximum value among the multiple channel quality thresholds is used as the second threshold.
  • the terminal device indicates the second threshold to the network device, which may be implemented in the following manner:
  • Implicit method the terminal device sends a first preamble to the network device on the first random access resource, and the first random access resource and/or the first preamble is used to indicate the first Two thresholds.
  • the random access resources may be RO resources.
  • the random access resource and/or the preamble have a corresponding relationship with the threshold, and the second threshold can be implicitly indicated by selecting a specific first random access resource and/or the first preamble.
  • Display mode the terminal device sends second indication information to the network device, where the second indication information is used to indicate the second threshold.
  • the second indication information may be carried in the MAC CE.
  • the network device in this embodiment of the present application may be a base station, such as a gNB.
  • FIG. 3 is a second schematic flowchart of a small data transmission method provided by an embodiment of the present application. As shown in FIG. 3 , the small data transmission method includes the following steps:
  • Step 301 The terminal device receives a system message, where the system message includes inactive state configuration information.
  • the configuration information in the inactive state includes indication information, and the indication information is used to indicate that the current cell supports small data transmission in the inactive state.
  • the inactive state configuration information also includes relevant parameters of inactive state small data transmission, including but not limited to at least one of the following:
  • Random access configuration parameters at least one data volume threshold, and at least one channel quality threshold.
  • Step 302 The terminal equipment receives RRC-specific signaling, where the RRC-specific signaling carries indication information, and the indication information is used to indicate a DRB of the terminal equipment that supports inactive small data transmission.
  • Step 303 The terminal device determines whether the amount of data to be transmitted is less than or equal to a data amount threshold.
  • the amount of data to be transmitted is the first amount of data
  • the calculation method of the first amount of data may refer to the foregoing related solutions.
  • Step 304 The terminal device determines whether the channel quality measurement value is greater than or equal to the channel quality threshold.
  • Step 305 If the amount of data to be transmitted is less than or equal to the data amount threshold, and the channel quality measurement value is greater than or equal to the channel quality threshold, the terminal device initiates inactive small data transmission.
  • the terminal device initiates inactive small data transmission means: the terminal device transmits the data to be transmitted by means of inactive small data transmission.
  • inactive small data transmission supports three There are two types of data transmission, namely: data transmission based on 4-step random access procedure; data transmission based on 2-step random access procedure; data transmission based on CG.
  • the terminal device has 4 DRBs, namely DRB#1, DRB#2, DRB#3 and DRB#4.
  • the terminal device receives dedicated RRC signaling (such as RRC release message), the dedicated RRC signaling is used to configure DRB#1, DRB#2 supports inactive small data transmission, DRB#3 and DRB#4 do not support inactive state Small data transfer.
  • the terminal device calculates the data volume to be transmitted including the data volume of the RRC message and the data volume buffered by DRB#1 and/or DRB#2.
  • the data volume of the potential MAC CE and the data volume of the packet header corresponding to at least one protocol layer are also included.
  • the calculated amount of data to be transmitted is the size of the MAC PDU. Compare the amount of data to be transmitted with the data amount threshold, and compare the RSRP measurement value with the RSRP threshold. If the amount of data to be transmitted is less than or equal to the amount of data Threshold and the RSRP measurement value is greater than or equal to the RSRP threshold, the terminal device decides to initiate inactive small data transmission.
  • the small data includes a MAC PDU, and the MAC PDU contains an RRC message, DRB#1 and/or DRB#2 to be transmitted data, and potentially MAC CE.
  • Embodiment 2 (The DRB with data cache is not configured with SDT):
  • the terminal device has 4 DRBs, namely DRB#1, DRB#2, DRB#3 and DRB#4.
  • the terminal device receives dedicated RRC signaling (such as RRC release message), the dedicated RRC signaling is used to configure DRB#1, DRB#2 supports inactive small data transmission, DRB#3 and DRB#4 do not support inactive state Small data transfer.
  • the terminal device When DRB#3 or DRB#4 has data buffer, the terminal device directly initiates the RRC connection recovery process, and sends the data to be transmitted after connecting to the RRC connection. or,
  • the terminal equipment calculates the data volume to be transmitted including the data volume of the RRC message, DRB#3 or DRB# 4 The amount of buffered data, the amount of data buffered by DRB#1 and/or DRB#2.
  • the data volume of the potential MAC CE and the data volume of the packet header corresponding to at least one protocol layer are also included.
  • the calculated amount of data to be transmitted is the size of the MAC PDU. Compare the amount of data to be transmitted with the data amount threshold, and compare the RSRP measurement value with the RSRP threshold.
  • the terminal device decides to initiate inactive small data transmission. Further, the terminal device may indicate the presence of buffered data in the network DRB#3 or DRB#4 through signaling (eg, BSR).
  • signaling eg, BSR
  • FIG. 4 is a schematic structural diagram of a small data transmission apparatus provided by an embodiment of the present application, which is applied to terminal equipment. As shown in FIG. 4 , the small data transmission apparatus includes:
  • the determining unit 401 is configured to determine a first data volume, where the first data volume includes the data volume of the RRC message and the data volume of at least one DRB buffer; determine whether to initiate inactive small data transmission based on the first data volume.
  • the first data amount further includes the data amount of at least one MAC CE.
  • the first data amount further includes the data amount of the packet header corresponding to at least one protocol layer.
  • the header corresponding to the at least one protocol layer includes: a MAC header, an RLC header and a PDCP header.
  • the terminal device has N DRBs, and N is a positive integer;
  • the device also includes:
  • a receiving unit 402 configured to receive RRC-specific signaling sent by a network device, where the RRC-specific signaling carries first indication information, where the first indication information is used to indicate that M DRBs in the N DRBs support deactivation state small data transmission, M is a positive integer less than or equal to N.
  • the at least one DRB refers to the M DRBs.
  • the at least one DRB refers to the N DRBs.
  • the data volume buffered by the at least one DRB includes the data volume buffered by each DRB in the at least one DRB, and the data volume buffered by each DRB includes the PDCP buffer data volume and/or the RLC buffer. The amount of data.
  • the PDCP buffer data amount includes at least one of the following:
  • At least one PDCP controls the data volume of the PDU.
  • the amount of RLC buffer data includes at least one of the following:
  • the determining unit 401 is configured to determine to initiate inactive small data transmission if the first data amount is less than or equal to a first threshold; or, if the first data amount is less than or equal to the first threshold.
  • a threshold, and the channel quality measurement value measured by the terminal device is greater than or equal to the second threshold, it is determined to initiate small data transmission in an inactive state.
  • the device further includes:
  • a receiving unit 402 configured to receive a system message sent by a network device, where the system message includes at least one data volume threshold and/or at least one channel quality threshold;
  • the at least one data volume threshold is used to determine the first threshold
  • the at least one channel quality threshold is used to determine the second threshold
  • the one data volume threshold is the first threshold
  • the apparatus further includes: a comparison unit (not shown in the figure), configured to compare the first data amount with the data amount threshold, and if the first data amount is less than or equal to the data amount threshold, compare all the data amounts. the channel quality measurement value and the plurality of channel quality thresholds;
  • the determining unit 401 is further configured to determine a second threshold less than or equal to the channel quality measurement value from the plurality of channel quality thresholds;
  • the apparatus further includes: an indicating unit (not shown in the figure) for indicating the second threshold to a network device.
  • the indicating unit is configured to send a first preamble to the network device on the first random access resource, where the first random access resource and/or the first preamble are used for Indicate the second threshold; or, send second indication information to the network device, where the second indication information is used to indicate the second threshold.
  • the RRC message is an RRC connection recovery request message.
  • FIG. 5 is a schematic structural diagram of a communication device 500 provided by an embodiment of the present application.
  • the communication device may be a terminal device.
  • the communication device 500 shown in FIG. 5 includes a processor 510, and the processor 510 may call and run a computer program from a memory to implement the methods in the embodiments of the present application.
  • the communication device 500 may further include a memory 520 .
  • the processor 510 may call and run a computer program from the memory 520 to implement the methods in the embodiments of the present application.
  • the memory 520 may be a separate device independent of the processor 510 , or may be integrated in the processor 510 .
  • the communication device 500 may further include a transceiver 530, and the processor 510 may control the transceiver 530 to communicate with other devices, specifically, may send information or data to other devices, or receive other devices Information or data sent by a device.
  • the transceiver 530 may include a transmitter and a receiver.
  • the transceiver 530 may further include antennas, and the number of the antennas may be one or more.
  • the communication device 500 may specifically be a network device in this embodiment of the present application, and the communication device 500 may implement the corresponding processes implemented by the network device in each method in the embodiment of the present application. For brevity, details are not repeated here. .
  • the communication device 500 may specifically be the mobile terminal/terminal device of the embodiments of the present application, and the communication device 500 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and will not be repeated here.
  • FIG. 6 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 600 shown in FIG. 6 includes a processor 610, and the processor 610 can call and run a computer program from a memory, so as to implement the method in this embodiment of the present application.
  • the chip 600 may further include a memory 620 .
  • the processor 610 may call and run a computer program from the memory 620 to implement the methods in the embodiments of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated in the processor 610 .
  • the chip 600 may further include an input interface 630 .
  • the processor 610 may control the input interface 630 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the chip 600 may further include an output interface 640 .
  • the processor 610 can control the output interface 640 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • FIG. 7 is a schematic block diagram of a communication system 700 provided by an embodiment of the present application. As shown in FIG. 7 , the communication system 700 includes a terminal device 710 and a network device 720 .
  • the terminal device 710 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 720 can be used to implement the corresponding functions implemented by the network device in the above method. For brevity, details are not repeated here. .
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include, but not limited to, these and any other suitable types of memory.
  • Embodiments of the present application further provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and are not repeated here for brevity.
  • Embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. Repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, For brevity, details are not repeated here.
  • the embodiments of the present application also provide a computer program.
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. For the sake of brevity. , and will not be repeated here.
  • the computer program may be applied to the mobile terminal/terminal device in the embodiments of the present application, and when the computer program is run on the computer, the mobile terminal/terminal device implements the various methods of the computer program in the embodiments of the present application.
  • the corresponding process for the sake of brevity, will not be repeated here.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种小数据传输方法及装置、终端设备,该方法包括:终端设备确定第一数据量,所述第一数据量包括无线资源控制RRC消息的数据量和至少一个数据无线承载DRB缓存的数据量;所述终端设备基于所述第一数据量确定是否发起非激活态小数据传输。

Description

一种小数据传输方法及装置、终端设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种小数据传输方法及装置、终端设备。
背景技术
处于非激活态的终端设备,可以进行小数据传输,即非激活态小数据传输(Inactive Data Transmission,IDT)。
处于非激活态的终端设备,基于待传输的数据量(data volume)和数据量门限来决定是否发起非激活态小数据传输,但是终端设备如何计算待传输的数据量并没有明确。
发明内容
本申请实施例提供一种小数据传输方法及装置、终端设备。
本申请实施例提供的小数据传输方法,包括:
终端设备确定第一数据量,所述第一数据量包括无线资源控制(Radio Resource Control,RRC)消息的数据量和至少一个数据无线承载(Data Radio Bearer,DRB)缓存的数据量;
所述终端设备基于所述第一数据量确定是否发起非激活态小数据传输。
本申请实施例提供的小数据传输装置,应用于终端设备,所述装置包括:
确定单元,用于确定第一数据量,所述第一数据量包括RRC消息的数据量和至少一个DRB缓存的数据量;基于所述第一数据量确定是否发起非激活态小数据传输。
本申请实施例提供的终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的小数据传输方法。
本申请实施例提供的芯片,用于实现上述的小数据传输方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的小数据传输方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的小数据传输方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的小数据传输方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的小数据传输方法。
通过上述技术方案,终端确定待传输的数据量(即第一数据量)包括RRC消息的数据量和至少一个DRB缓存的数据量,从而明确了待传输的数据量,根据该待传输的数据量确定是否发起非激活态小数据传输。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的一种通信系统架构的示意性图;
图2是本申请实施例提供的小数据传输方法的流程示意图一;
图3是本申请实施例提供的小数据传输方法的流程示意图二;
图4是本申请实施例提供的小数据传输装置的结构组成示意图;
图5是本申请实施例提供的一种通信设备示意性结构图;
图6是本申请实施例的芯片的示意性结构图;
图7是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、系统、5G通信系统或未来的通信系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来通信系统中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端120。作为在此使用的“终端”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop, WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G通信系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端120,网络设备110和终端120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例相关的技术方案进行说明。
随着人们对速率、延迟、高速移动性、能效的追求以及未来生活中业务的多样性、复杂性,为此第三代合作伙伴计划(3 rd Generation Partnership Project,3GPP)国际标准组织开始研发5G。5G的主要应用场景为:增强移动超宽带(enhanced Mobile Broadband,eMBB)、低时延高可靠通信(Ultra-Reliable Low-Latency Communications,URLLC)、大规模机器类通信(massive Machine-Type Communications,mMTC)。
一方面,eMBB仍然以用户获得多媒体内容、服务和数据为目标,其需求增长十分迅速。另一方面,由于eMBB可能部署在不同的场景中,例如室内,市区,农村等,其能力和需求的差别也比较大,所以不能一概而论,必须结合具体的部署场景详细分析。URLLC的典型应用包括:工业自动化,电力自动化,远程医疗操作(手术),交通安全保障等。mMTC的典型特点包括:高连接密度,小数据量,时延不敏感业务,模块的低成本和长使用寿命等。
5G网络环境中为了降低空口信令和快速恢复无线连接,快速恢复数据业务的目的,定义了一个新的RRC状态,即RRC非激活(RRC_INACTIVE)状态。这种状态有别于RRC空闲(RRC_IDLE)状态和RRC激活(RRC_ACTIVE)状态。其中,
·RRC_IDLE状态(简称为空闲(idle)态):移动性为基于小区选择重选,寻呼由核心网(Core Network,CN)发起,寻呼区域由CN配置。基站侧不存在终端设备的上下文,不存在RRC连接。
·RRC_INACTIVE状态(简称为非激活(inactive)态):移动性为基于小区选择重选,存在CN-NR之间的连接,终端设备上下文存在某个基站上,寻呼由RAN触发,基于RAN的寻呼区域由RAN管理,网络侧知道终端设备的位置是基于RAN的寻呼区域级别的。
·RRC_CONNECTED状态(简称为连接(connected)态):存在RRC连接,基站 侧和终端设备侧存在终端设备上下文。网络侧知道终端设备的位置是具体小区级别的。移动性是网络侧控制的移动性。终端设备和基站之间可以传输单播数据。
上述三种RRC状态之间可以相互转换,其中,非激活态下的一些终端设备侧的RRC参数是通过RRC释放消息配置的,主要RRC参数如下:
非激活RNTI(I-RNTI),用于标识终端设备在基站侧的终端设备非激活上下文,在基站内唯一。
RAN通知区域(RAN Notification Area,RNA),用于控制终端设备在非激活态下进行小区选择重选的区域,也是RAN初始的寻呼的寻呼范围区域。
RAN寻呼周期(RAN Paging cycle),用于计算RAN初始寻呼的寻呼时机。
下一跳链计数(Next hop Chaining Counter,NCC),用于确定RRC连接恢复过程中使用的秘钥。
当终端设备在RNA区域内移动时不用通知网络侧,遵循RRC空闲态下的移动性行为,即小区选择重选原则。当终端设备移动出RAN配置的寻呼区域时,终端设备触发恢复RRC连接流程(即RRC resume procedure),并重新获取RAN配置的寻呼区域。当网络侧需要给该终端设备传输数据时,即有下行数据到达时,保存终端设备上下文的基站会触发RAN寻呼区域内的所有小区发送寻呼消息给终端设备,使得非激活态的终端设备能够恢复RRC连接,进行数据接收。另外,处于非激活态的终端设备,配置了RAN寻呼区域,在该区域内为了保证终端设备的可达性,终端设备需要按照网络配置的周期进行周期性位置更新。触发终端设备执行RNA更新的场景有RNAU定时器超时或者终端设备移动到RNA之外的区域。
处于非激活态的终端设备,可以进行小数据传输,即非激活态小数据传输。非激活态小数据传输支持三种类型的数据传输,即:
基于4步随机接入过程的数据传输;
基于2步随机接入过程的数据传输;
基于预配置资源(Configured Grant,CG)的数据传输。
处于非激活态的终端设备,基于待传输的数据量(data volume)和数据量门限来决定是否发起非激活态小数据传输,但是终端设备如何计算待传输的数据量并没有明确。在LTE用户面早数据传输(User Plane-Early Data Transmission,UP-EDT)的方案中,终端设备是基于自身实现来决定待传输的数据量的,然而,这种方式对于数据量的大小没有给出准确的定义,即终端设备如何计算待传输的数据量具有不确定性。为此,提出了本申请实施例的以下技术方案,本申请实施例的技术方案给出一种明确的方式来确定待传输的数据量的大小。
图2是本申请实施例提供的小数据传输方法的流程示意图一,如图2所示,所述小数据传输方法包括以下步骤:
步骤201:终端设备确定第一数据量,所述第一数据量包括RRC消息的数据量和至少一个DRB缓存的数据量。
本申请实施例中,所述第一数据量为终端设备待传输的数据量。这里,终端设备待传输的数据量用于表征待传输的MAC PDU的大小。
本申请实施例中,所述第一数据量包括RRC消息的数据量和至少一个DRB缓存的数据量。
进一步,可选地,所述第一数据量还包括至少一个媒体接入控制控制单元(Media Access Control Control Element,MAC CE)的数据量。
进一步,可选地,所述第一数据量还包括至少一个协议层对应的包头的数据量。这里,所述至少一个协议层对应的包头包括:媒体接入控制(Media Access Control, MAC)包头、无线链路控制(Radio Link Control,RLC)包头和分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)包头。
在一个示例中,第一数据量=RRC消息的数据量+至少一个DRB缓存的数据量。
在一个示例中,第一数据量=RRC消息的数据量+至少一个DRB缓存的数据量+至少一个MAC CE的数据量。
在一个示例中,第一数据量=RRC消息的数据量+至少一个DRB缓存的数据量+至少一个MAC CE的数据量+至少一个协议层对应的包头的数据量。
以下对上述方案中第一数据量的各个组成部分进行详细描述。
●RRC消息的数据量
在一可选方式中,所述RRC消息为RRC连接恢复请求消息。
●至少一个DRB缓存的数据量
本申请实施例中,至少一个DRB可以有两种实现方式,以下对其进行描述。
所述终端设备具有N个DRB,N为正整数;所述终端设备接收网络设备发送的RRC专属信令,所述RRC专属信令携带第一指示信息,所述第一指示信息用于指示所述N个DRB中的M个DRB支持非激活态小数据传输,M为小于等于N的正整数。
A)方式一:所述至少一个DRB是指所述M个DRB。
对于方式一来说,第一数据量包括终端设备的支持非激活态小数据传输的DRB的缓存数据量。
在一个示例中,第一数据量=RRC消息的数据量+M个DRB缓存的数据量+至少一个MAC CE的数据量。
B)方式二:所述至少一个DRB是指所述N个DRB。
对于方式二来说,第一数据量包括终端设备的所有DRB的缓存数据量。
在一个示例中,第一数据量=RRC消息的数据量+N个DRB缓存的数据量+至少一个MAC CE的数据量。
上述方案中,所述至少一个DRB缓存的数据量包括所述至少一个DRB中每个DRB缓存的数据量,所述每个DRB缓存的数据量包括PDCP缓存数据量和/或RLC缓存数据量。
在一可选方式中,所述PDCP缓存数据量包括以下至少之一:
1)至少一个PDCP SDU的数据量;
这里,PDCP SDU具有以下特征:PDCP层从上层接收到PDCP SDU,且该PDCP SDU还未被建立成对应的PDCP数据PDU。
2)至少一个PDCP数据PDU的数据量;
这里,PDCP数据PDU具有以下特征:PDCP层建立PDCP数据PDU后,还未将该PDCP数据PDU传输到下层。
3)至少一个PDCP控制PDU的数据量。
在一可选方式中,所述RLC缓存数据量包括以下至少之一:
1)至少一个RLC SDU的数据量;
这里,RLC SDU具有以下特征:RLC层从上层接收到RLC SDU,该RLC SDU不需要被分割,且该RLC SDU还未被包含至对应的RLC数据PDU中。
2)至少一个RLC SDU分段的数据量;
这里,RLC SDU分段具有以下特征:RLC层从上层接收到RLC SDU,该RLC SDU需要被分割成RLC SDU分段(RLC SDU segment),该RLC SDU分段还未被包含至对应的RLC数据PDU中。
3)至少一个RLC数据PDU的数据量。
这里,RLC数据PDU具有以下特征:RLC层建立RLC数据PDU后,该RLC数据PDU处于针对初始传输的悬挂状态。
●至少一个MAC CE的数据量
在一可选方式中,所述至少一个MAC CE包括BSR MAC CE,这里,BSR MAC CE是指用于承载缓存状态报告(Buffer Status Report,BSR)的MAC CE。
步骤202:所述终端设备基于所述第一数据量确定是否发起非激活态小数据传输。
在一可选方式中,若所述第一数据量小于等于第一门限,则确定发起非激活态小数据传输。
在另一可选方式中,若所述第一数据量小于等于第一门限,且所述终端设备测量得到的信道质量测量值大于等于第二门限,则确定发起非激活态小数据传输。
这里,可选地,信道质量可以是参考信号接收功率(Reference Signal Received Power,RSRP)或者参考信号接收质量(Reference Signal Received Quality,RSRQ)。
本申请实施例中,所述终端设备接收网络设备发送的系统消息,所述系统消息包括至少一个数据量门限和/或至少一个信道质量门限;其中,所述至少一个数据量门限用于确定所述第一门限,所述至少一个信道质量门限用于确定所述第二门限。
在一个示例中,网络设备通过系统消息配置一个数据量门限的情况下,该数据量门限即为所述第一门限。
在一个示例中,网络设备通过系统消息配置多个数据量门限的情况下,终端设备可以从多个数据量门限中选择一个数据量门限作为所述第一门限,例如:选择最小的数据量门限或者最大的数据量门限作为所述第一门限。或者,终端设备将第一数据量与多个数据量门限分别进行比较,确定出满足条件的至少一个数据量门限,将所述至少一个数据量门限或者所述至少一个数据量门限中的最小值上报给网络设备。这里,满足条件是指:第一数据量小于等于数据量门限。
在一个示例中,网络设备通过系统消息配置一个信道质量门限的情况下,该信道质量门限即为所述第二门限。
在一个示例中,网络设备通过系统消息配置多个信道质量门限的情况下,终端设备可以从多个信道质量门限中选择一个信道质量门限作为所述第二门限,例如:选择最小的信道质量门限或者最大的信道质量门限作为所述第二门限。或者,终端设备将信道质量测量值与多个信道质量门限分别进行比较,确定出满足条件的至少一个信道质量门限,将所述至少一个信道质量门限或者所述至少一个信道质量门限中的最大值上报给网络设备。这里,满足条件是指:信道质量测量值大于等于信道质量门限。
在一个示例中,所述系统消息包括一个数据量门限和多个信道质量门限的情况下,所述一个数据量门限为所述第一门限,所述终端设备比较所述第一数据量和所述数据量门限,若所述第一数据量小于等于所述数据量门限,则所述终端设备比较所述信道质量测量值和所述多个信道质量门限,并从所述多个信道质量门限中确定出小于等于所述信道质量测量值的第二门限;所述终端设备向网络设备指示所述第二门限。
这里,若从所述多个信道质量门限中确定出小于等于所述信道质量测量值的有一个信道质量门限,则该信道质量门限即为所述第二门限。若从所述多个信道质量门限中确定出小于等于所述信道质量测量值的有多个信道质量门限,则将多个信道质量门限中的最大值作为所述第二门限。
上述方案中,所述终端设备向网络设备指示所述第二门限,可以通过以下方式来实现:
I)隐式方式:所述终端设备在第一随机接入资源上向网络设备发送第一前导码,所述第一随机接入资源和/或所述第一前导码用于指示所述第二门限。
这里,随机接入资源可以是RO资源。
随机接入资源和/或前导码与门限具有对应关联关系,通过选取特定的第一随机接入资源和/或第一前导码可以隐式的指示第二门限。
II)显示方式:所述终端设备向网络设备发送第二指示信息,所述第二指示信息用于指示所述第二门限。
这里,可选地,所述第二指示信息可以携带在MAC CE中。
需要说明的是,本申请实施例的网络设备可以是基站,如gNB。
图3是本申请实施例提供的小数据传输方法的流程示意图二,如图3所示,所述小数据传输方法包括以下步骤:
步骤301:终端设备接收系统消息,所述系统消息包括非激活态配置信息。
这里,非激活态配置信息包括一个指示信息,该指示信息用于指示当前小区支持非激活态小数据传输。进一步,非激活态配置信息还包括非激活态小数据传输的相关参数,包括但不局限于以下至少之一:
随机接入配置参数、至少一个数据量门限、至少一个信道质量门限。
步骤302:终端设备接收RRC专属信令,所述RRC专属信令携带一个指示信息,该指示信息用于指示所述终端设备的支持非激活态小数据传输的DRB。
步骤303:终端设备判断待传输数据量是否小于等于数据量门限。
这里,待传输数据量即为第一数据量,第一数据量的计算方法可以参照前述相关方案。
步骤304:终端设备判断信道质量测量值是否大于等于信道质量门限。
步骤305:若待传输数据量小于等于数据量门限,且信道质量测量值大于等于信道质量门限,则终端设备发起非激活态小数据传输。
本申请实施例的技术方案中,终端设备发起非激活态小数据传输是指:终端设备通过非激活态小数据传输的方式去传输待传输的数据,具体地,非激活态小数据传输支持三种类型的数据传输,即:基于4步随机接入过程的数据传输;基于2步随机接入过程的数据传输;基于CG的数据传输。
以下结合具体应用示例对本申请实施例的技术方案进行举例说明。
应用示例一
终端设备具有4个DRB,分别为DRB#1,DRB#2,DRB#3和DRB#4。终端设备接收专属RRC信令(如RRC释放消息),所述专属RRC信令用于配置DRB#1,DRB#2支持非激活态小数据传输,DRB#3和DRB#4不支持非激活态小数据传输。
当DRB#1和/或DRB#2有数据缓存时,终端设备计算待传输的数据量包括RRC消息的数据量、DRB#1和/或DRB#2缓存的数据量。可选地,还包扩潜在的MAC CE的数据量和至少一个协议层对应的包头的数据量。计算出的待传输的数据量即为MAC PDU的大小,将该待传输的数据量与数据量门限进行比较,同时将RSRP测量值与RSRP门限进行比较,若待传输的数据量小于等于数据量门限且RSRP测量值大于等于RSRP门限,则终端设备决定发起非激活态小数据传输,这里,小数据包括一个MAC PDU,该MAC PDU包含RRC消息,DRB#1和/或DRB#2的待传数据,以及潜在的MAC CE。
应用示例二
实施例二(存在数据缓存的DRB没有配置SDT):
终端设备具有4个DRB,分别为DRB#1,DRB#2,DRB#3和DRB#4。终端设备接收专属RRC信令(如RRC释放消息),所述专属RRC信令用于配置DRB#1,DRB#2支持非激活态小数据传输,DRB#3和DRB#4不支持非激活态小数据传输。
A)当DRB#3或DRB#4有数据缓存时,终端设备直接发起RRC连接恢复流程, 连接RRC连接后发送待传输的数据。或者,
B)当DRB#3或DRB#4有数据缓存,且DRB#1和/或DRB#2也有数据缓存时,终端设备计算待传输的数据量包括RRC消息的数据量、DRB#3或DRB#4缓存的数据量、DRB#1和/或DRB#2缓存的数据量。可选地,还包括潜在的MAC CE的数据量和至少一个协议层对应的包头的数据量。计算出的待传输的数据量即为MAC PDU的大小,将该待传输的数据量与数据量门限进行比较,同时将RSRP测量值与RSRP门限进行比较,若待传输的数据量小于等于数据量门限且RSRP测量值大于等于RSRP门限,则终端设备决定发起非激活态小数据传输。进一步,终端设备可以通过信令(例如BSR)指示网络DRB#3或DRB#4存在缓存数据。
图4是本申请实施例提供的小数据传输装置的结构组成示意图,应用于终端设备,如图4所示,所述小数据传输装置包括:
确定单元401,用于确定第一数据量,所述第一数据量包括RRC消息的数据量和至少一个DRB缓存的数据量;基于所述第一数据量确定是否发起非激活态小数据传输。
在一可选方式中,所述第一数据量还包括至少一个MAC CE的数据量。
在一可选方式中,所述第一数据量还包括至少一个协议层对应的包头的数据量。
在一可选方式中,所述至少一个协议层对应的包头包括:MAC包头、RLC包头和PDCP包头。
在一可选方式中,所述终端设备具有N个DRB,N为正整数;
所述装置还包括:
接收单元402,用于接收网络设备发送的RRC专属信令,所述RRC专属信令携带第一指示信息,所述第一指示信息用于指示所述N个DRB中的M个DRB支持非激活态小数据传输,M为小于等于N的正整数。
在一可选方式中,所述至少一个DRB是指所述M个DRB。
在一可选方式中,所述至少一个DRB是指所述N个DRB。
在一可选方式中,所述至少一个DRB缓存的数据量包括所述至少一个DRB中每个DRB缓存的数据量,所述每个DRB缓存的数据量包括PDCP缓存数据量和/或RLC缓存数据量。
在一可选方式中,所述PDCP缓存数据量包括以下至少之一:
至少一个PDCP SDU的数据量;
至少一个PDCP数据PDU的数据量;
至少一个PDCP控制PDU的数据量。
在一可选方式中,所述RLC缓存数据量包括以下至少之一:
至少一个RLC SDU的数据量;
至少一个RLC SDU分段的数据量;
至少一个RLC数据PDU的数据量。
在一可选方式中,所述确定单元401,用于若所述第一数据量小于等于第一门限,则确定发起非激活态小数据传输;或者,若所述第一数据量小于等于第一门限,且所述终端设备测量得到的信道质量测量值大于等于第二门限,则确定发起非激活态小数据传输。
在一可选方式中,所述装置还包括:
接收单元402,用于接收网络设备发送的系统消息,所述系统消息包括至少一个数据量门限和/或至少一个信道质量门限;
其中,所述至少一个数据量门限用于确定所述第一门限,所述至少一个信道质量 门限用于确定所述第二门限。
在一可选方式中,所述系统消息包括一个数据量门限和多个信道质量门限的情况下,所述一个数据量门限为所述第一门限;
所述装置还包括:比较单元(图中未示出),用于比较所述第一数据量和所述数据量门限,若所述第一数据量小于等于所述数据量门限,则比较所述信道质量测量值和所述多个信道质量门限;
所述确定单元401,还用于从所述多个信道质量门限中确定出小于等于所述信道质量测量值的第二门限;
所述装置还包括:指示单元(图中未示出),用于向网络设备指示所述第二门限。
在一可选方式中,所述指示单元,用于在第一随机接入资源上向网络设备发送第一前导码,所述第一随机接入资源和/或所述第一前导码用于指示所述第二门限;或者,向网络设备发送第二指示信息,所述第二指示信息用于指示所述第二门限。
在一可选方式中,所述RRC消息为RRC连接恢复请求消息。
本领域技术人员应当理解,本申请实施例的上述小数据传输装置的相关描述可以参照本申请实施例的小数据传输方法的相关描述进行理解。
图5是本申请实施例提供的一种通信设备500示意性结构图。该通信设备可以是终端设备,图5所示的通信设备500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图5所示,通信设备500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
可选地,如图5所示,通信设备500还可以包括收发器530,处理器510可以控制该收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备500具体可为本申请实施例的网络设备,并且该通信设备500可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备500具体可为本申请实施例的移动终端/终端设备,并且该通信设备500可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图6是本申请实施例的芯片的示意性结构图。图6所示的芯片600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图6所示,芯片600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,该芯片600还可以包括输入接口630。其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片600还可以包括输出接口640。其中,处理器610可以控制该输出接口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图7是本申请实施例提供的一种通信系统700的示意性框图。如图7所示,该通信系统700包括终端设备710和网络设备720。
其中,该终端设备710可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备720可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和 任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该 计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (35)

  1. 一种小数据传输方法,所述方法包括:
    终端设备确定第一数据量,所述第一数据量包括无线资源控制RRC消息的数据量和至少一个数据无线承载DRB缓存的数据量;
    所述终端设备基于所述第一数据量确定是否发起非激活态小数据传输。
  2. 根据权利要求1所述的方法,其中,所述第一数据量还包括至少一个媒体接入控制控制单元MAC CE的数据量。
  3. 根据权利要求1或2所述的方法,其中,所述第一数据量还包括至少一个协议层对应的包头的数据量。
  4. 根据权利要求3所述的方法,其中,所述至少一个协议层对应的包头包括:媒体接入控制MAC包头、无线链路控制RLC包头和分组数据汇聚协议PDCP包头。
  5. 根据权利要求1至4中任一项所述的方法,其中,所述终端设备具有N个DRB,N为正整数;
    所述方法还包括:
    所述终端设备接收网络设备发送的RRC专属信令,所述RRC专属信令携带第一指示信息,所述第一指示信息用于指示所述N个DRB中的M个DRB支持非激活态小数据传输,M为小于等于N的正整数。
  6. 根据权利要求5所述的方法,其中,所述至少一个DRB是指所述M个DRB。
  7. 根据权利要求5所述的方法,其中,所述至少一个DRB是指所述N个DRB。
  8. 根据权利要求1至7中任一项所述的方法,其中,所述至少一个DRB缓存的数据量包括所述至少一个DRB中每个DRB缓存的数据量,所述每个DRB缓存的数据量包括PDCP缓存数据量和/或RLC缓存数据量。
  9. 根据权利要求8所述的方法,其中,所述PDCP缓存数据量包括以下至少之一:
    至少一个PDCP SDU的数据量;
    至少一个PDCP数据PDU的数据量;
    至少一个PDCP控制PDU的数据量。
  10. 根据权利要求8所述的方法,其中,所述RLC缓存数据量包括以下至少之一:
    至少一个RLC SDU的数据量;
    至少一个RLC SDU分段的数据量;
    至少一个RLC数据PDU的数据量。
  11. 根据权利要求1至10中任一项所述的方法,其中,所述终端设备基于所述第一数据量确定是否发起非激活态小数据传输,包括:
    若所述第一数据量小于等于第一门限,则确定发起非激活态小数据传输;或者,
    若所述第一数据量小于等于第一门限,且所述终端设备测量得到的信道质量测量值大于等于第二门限,则确定发起非激活态小数据传输。
  12. 根据权利要求11所述的方法,其中,所述方法还包括:
    所述终端设备接收网络设备发送的系统消息,所述系统消息包括至少一个数据量门限和/或至少一个信道质量门限;
    其中,所述至少一个数据量门限用于确定所述第一门限,所述至少一个信道质量门限用于确定所述第二门限。
  13. 根据权利要求12所述的方法,其中,所述系统消息包括一个数据量门限和多个信道质量门限的情况下,所述一个数据量门限为所述第一门限,所述方法还包括:
    所述终端设备比较所述第一数据量和所述数据量门限,若所述第一数据量小于等于所述数据量门限,则所述终端设备比较所述信道质量测量值和所述多个信道质量门限,并从所述多个信道质量门限中确定出小于等于所述信道质量测量值的第二门限;
    所述终端设备向网络设备指示所述第二门限。
  14. 根据权利要求13所述的方法,其中,所述终端设备向网络设备指示所述第二门限,包括:
    所述终端设备在第一随机接入资源上向网络设备发送第一前导码,所述第一随机接入资源和/或所述第一前导码用于指示所述第二门限;或者,
    所述终端设备向网络设备发送第二指示信息,所述第二指示信息用于指示所述第二门限。
  15. 根据权利要求1至14中任一项所述的方法,其中,所述RRC消息为RRC连接恢复请求消息。
  16. 一种小数据传输装置,应用于终端设备,所述装置包括:
    确定单元,用于确定第一数据量,所述第一数据量包括RRC消息的数据量和至少一个DRB缓存的数据量;基于所述第一数据量确定是否发起非激活态小数据传输。
  17. 根据权利要求16所述的装置,其中,所述第一数据量还包括至少一个MAC CE的数据量。
  18. 根据权利要求16或17所述的装置,其中,所述第一数据量还包括至少一个协议层对应的包头的数据量。
  19. 根据权利要求18所述的装置,其中,所述至少一个协议层对应的包头包括:MAC包头、RLC包头和PDCP包头。
  20. 根据权利要求16至19中任一项所述的装置,其中,所述终端设备具有N个DRB,N为正整数;
    所述装置还包括:
    接收单元,用于接收网络设备发送的RRC专属信令,所述RRC专属信令携带第一指示信息,所述第一指示信息用于指示所述N个DRB中的M个DRB支持非激活态小数据传输,M为小于等于N的正整数。
  21. 根据权利要求20所述的装置,其中,所述至少一个DRB是指所述M个DRB。
  22. 根据权利要求20所述的装置,其中,所述至少一个DRB是指所述N个DRB。
  23. 根据权利要求16至22中任一项所述的装置,其中,所述至少一个DRB缓存的数据量包括所述至少一个DRB中每个DRB缓存的数据量,所述每个DRB缓存的数据量包括PDCP缓存数据量和/或RLC缓存数据量。
  24. 根据权利要求23所述的装置,其中,所述PDCP缓存数据量包括以下至少之一:
    至少一个PDCP SDU的数据量;
    至少一个PDCP数据PDU的数据量;
    至少一个PDCP控制PDU的数据量。
  25. 根据权利要求23所述的装置,其中,所述RLC缓存数据量包括以下至少之一:
    至少一个RLC SDU的数据量;
    至少一个RLC SDU分段的数据量;
    至少一个RLC数据PDU的数据量。
  26. 根据权利要求16至25中任一项所述的装置,其中,所述确定单元,用于若所述第一数据量小于等于第一门限,则确定发起非激活态小数据传输;或者,若所述第一数据量小于等于第一门限,且所述终端设备测量得到的信道质量测量值大于等于第二门限,则确定发起非激活态小数据传输。
  27. 根据权利要求26所述的装置,其中,所述装置还包括:
    接收单元,用于接收网络设备发送的系统消息,所述系统消息包括至少一个数据量门限和/或至少一个信道质量门限;
    其中,所述至少一个数据量门限用于确定所述第一门限,所述至少一个信道质量门限用于确定所述第二门限。
  28. 根据权利要求27所述的装置,其中,所述系统消息包括一个数据量门限和多个信道质量门限的情况下,所述一个数据量门限为所述第一门限;
    所述装置还包括:比较单元,用于比较所述第一数据量和所述数据量门限,若所述第一数据量小于等于所述数据量门限,则比较所述信道质量测量值和所述多个信道质量门限;
    所述确定单元,还用于从所述多个信道质量门限中确定出小于等于所述信道质量测量值的第二门限;
    所述装置还包括:指示单元,用于向网络设备指示所述第二门限。
  29. 根据权利要求28所述的装置,其中,所述指示单元,用于在第一随机接入资源上向网络设备发送第一前导码,所述第一随机接入资源和/或所述第一前导码用于指示所述第二门限;或者,向网络设备发送第二指示信息,所述第二指示信息用于指示所述第二门限。
  30. 根据权利要求16至29中任一项所述的装置,其中,所述RRC消息为RRC连接恢复请求消息。
  31. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至15中任一项所述的方法。
  32. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至15中任一项所述的方法。
  33. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至15中任一项所述的方法。
  34. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至15中任一项所述的方法。
  35. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至15中任一项所述的方法。
PCT/CN2020/118343 2020-09-28 2020-09-28 一种小数据传输方法及装置、终端设备 WO2022061872A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20954723.1A EP4207916A4 (en) 2020-09-28 2020-09-28 SMALL DATA TRANSMISSION METHOD AND APPARATUS AND TERMINAL DEVICE
CN202080103713.4A CN116326111A (zh) 2020-09-28 2020-09-28 一种小数据传输方法及装置、终端设备
PCT/CN2020/118343 WO2022061872A1 (zh) 2020-09-28 2020-09-28 一种小数据传输方法及装置、终端设备
US18/127,328 US20230239858A1 (en) 2020-09-28 2023-03-28 Small data transmission method and apparatus, and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/118343 WO2022061872A1 (zh) 2020-09-28 2020-09-28 一种小数据传输方法及装置、终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/127,328 Continuation US20230239858A1 (en) 2020-09-28 2023-03-28 Small data transmission method and apparatus, and terminal device

Publications (1)

Publication Number Publication Date
WO2022061872A1 true WO2022061872A1 (zh) 2022-03-31

Family

ID=80846121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118343 WO2022061872A1 (zh) 2020-09-28 2020-09-28 一种小数据传输方法及装置、终端设备

Country Status (4)

Country Link
US (1) US20230239858A1 (zh)
EP (1) EP4207916A4 (zh)
CN (1) CN116326111A (zh)
WO (1) WO2022061872A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023236985A1 (zh) * 2022-06-08 2023-12-14 中兴通讯股份有限公司 一种信息传输方法、通信节点及存储介质
CN117242834A (zh) * 2022-04-15 2023-12-15 北京小米移动软件有限公司 无线传输的方法、装置、通信设备及存储介质
WO2024022418A1 (zh) * 2022-07-28 2024-02-01 展讯通信(上海)有限公司 数据传输方法及装置、计算机可读存储介质、终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107371264A (zh) * 2016-05-12 2017-11-21 电信科学技术研究院 一种上行数据传输的方法及设备
CN108696934A (zh) * 2017-02-14 2018-10-23 中国移动通信有限公司研究院 一种传输方法和设备
CN109246811A (zh) * 2017-05-11 2019-01-18 中兴通讯股份有限公司 一种数据传输方法及装置
CN110999404A (zh) * 2017-08-10 2020-04-10 京瓷株式会社 通信控制方法
US20200186606A1 (en) * 2017-10-13 2020-06-11 Idac Holdings, Inc. 5g internet of things data delivery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110012557A (zh) * 2018-01-05 2019-07-12 夏普株式会社 无线通信设备和方法
US11432239B2 (en) * 2018-10-18 2022-08-30 Apple Inc. Inactive mode operations
WO2020087280A1 (en) * 2018-10-30 2020-05-07 Qualcomm Incorporated Configurations for small data transmission

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107371264A (zh) * 2016-05-12 2017-11-21 电信科学技术研究院 一种上行数据传输的方法及设备
CN108696934A (zh) * 2017-02-14 2018-10-23 中国移动通信有限公司研究院 一种传输方法和设备
CN109246811A (zh) * 2017-05-11 2019-01-18 中兴通讯股份有限公司 一种数据传输方法及装置
CN110999404A (zh) * 2017-08-10 2020-04-10 京瓷株式会社 通信控制方法
US20200186606A1 (en) * 2017-10-13 2020-06-11 Idac Holdings, Inc. 5g internet of things data delivery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL COMMUNICATIONS: "UE Transmissions in New State for NR", 3GPP DRAFT; R2-166870 (NR SI AI9221 DATATRANSMISSIONINNEWSTATE), 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Kaohsiung; 20161010 - 20161014, 9 October 2016 (2016-10-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051151311 *
See also references of EP4207916A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117242834A (zh) * 2022-04-15 2023-12-15 北京小米移动软件有限公司 无线传输的方法、装置、通信设备及存储介质
WO2023236985A1 (zh) * 2022-06-08 2023-12-14 中兴通讯股份有限公司 一种信息传输方法、通信节点及存储介质
WO2024022418A1 (zh) * 2022-07-28 2024-02-01 展讯通信(上海)有限公司 数据传输方法及装置、计算机可读存储介质、终端

Also Published As

Publication number Publication date
US20230239858A1 (en) 2023-07-27
EP4207916A1 (en) 2023-07-05
CN116326111A (zh) 2023-06-23
EP4207916A4 (en) 2024-02-14

Similar Documents

Publication Publication Date Title
US20200351977A1 (en) Information transmission method and apparatus, and communication device
WO2021203310A1 (zh) 一种数据传输方法及装置、终端设备
US20220124859A1 (en) Data transmission method and apparatus, and communication device
WO2022061872A1 (zh) 一种小数据传输方法及装置、终端设备
WO2020118726A1 (zh) 一种参数配置方法及装置、网络设备、终端
US12063697B2 (en) Data transmission method and apparatus, and terminal
WO2021203252A1 (zh) 非激活态下的数据发送、接收方法及装置、用户设备
WO2022236484A1 (zh) Sdt失败上报的方法、终端设备和网络设备
WO2021189235A1 (zh) 一种数据传输方法及装置、通信设备
US20220061075A1 (en) Information transmission method and apparatus, and network device
JP7213950B2 (ja) 情報構成方法および装置、端末、ネットワーク機器
WO2020056587A1 (zh) 一种切换处理方法、终端设备及网络设备
WO2021000320A1 (zh) 一种数据传输方法及装置、网络设备、终端
WO2020061995A1 (zh) 一种信息传输方法及装置、终端、网络设备
WO2022109955A1 (zh) 一种信息指示方法及装置、终端设备、网络设备
WO2022236835A1 (zh) 确定终端设备行为的方法及装置、终端设备、网络设备
WO2022021413A1 (zh) 一种密钥生成方法及装置、终端设备、网络设备
WO2022021023A1 (zh) 信息指示方法及装置、终端设备、网络设备
WO2022052004A1 (zh) 一种通信方法及装置、终端设备、网络设备
WO2020258182A1 (zh) 数据传输方法、装置和通信设备
WO2020061947A1 (zh) 一种基于定时器的处理方法、终端设备及网络设备
WO2020034125A1 (zh) 一种恢复rrc连接的方法及装置、终端
WO2021203400A1 (zh) 一种传输策略的配置方法及装置、网络设备、终端设备
WO2022110048A1 (zh) 一种信息指示方法及装置、终端设备、网络设备
WO2023122889A1 (zh) 一种通信处理方法及装置、终端设备、接入网设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954723

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020954723

Country of ref document: EP

Effective date: 20230331

NENP Non-entry into the national phase

Ref country code: DE