WO2022061829A1 - 无线通信方法和设备 - Google Patents

无线通信方法和设备 Download PDF

Info

Publication number
WO2022061829A1
WO2022061829A1 PCT/CN2020/118166 CN2020118166W WO2022061829A1 WO 2022061829 A1 WO2022061829 A1 WO 2022061829A1 CN 2020118166 W CN2020118166 W CN 2020118166W WO 2022061829 A1 WO2022061829 A1 WO 2022061829A1
Authority
WO
WIPO (PCT)
Prior art keywords
identifier
remote terminal
relay terminal
terminal
identification
Prior art date
Application number
PCT/CN2020/118166
Other languages
English (en)
French (fr)
Inventor
郭雅莉
刘建华
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/118166 priority Critical patent/WO2022061829A1/zh
Priority to CN202080104715.5A priority patent/CN116235628A/zh
Publication of WO2022061829A1 publication Critical patent/WO2022061829A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • the embodiments of the present application relate to the field of communication, and more particularly, to wireless communication methods and devices.
  • End-to-end communication refers to end-to-end communication.
  • V2V Vehicle to Vehicle
  • V2X Vehicle to Everything
  • D2D Device to Device
  • the sender sends a Direct Communication Request (DCR) message to the receiver, and if the receiver responds to the DCR message, the receiver and the sender can communicate directly.
  • DCR Direct Communication Request
  • the embodiments of the present application provide a method that enables a relay terminal to control data transmission of a remote terminal, and accordingly, can improve the management and control capability of the network on the remote terminal and the system performance of the relay terminal.
  • a wireless communication method which is applied to the policy control function PCF of the relay terminal, including:
  • first quality of service QoS control information of the relay terminal is determined.
  • a wireless communication method which is applied to the policy control function PCF of the relay terminal, including:
  • Second quality of service QoS control information of the remote terminal is determined.
  • a wireless communication method is provided, applied to the access and mobility management function AMF of the relay terminal, including:
  • a wireless communication method applied to a session management function SMF of a relay terminal, including:
  • a wireless communication method applied to a relay terminal, including:
  • a core network device configured to execute the method in the above-mentioned first aspect or each of its implementations.
  • the terminal device includes a functional module for executing the method in the first aspect or each implementation manner thereof.
  • a core network device for executing the method in the second aspect or each of its implementations.
  • the terminal device includes a functional module for executing the method in the second aspect or each implementation manner thereof.
  • a core network device configured to execute the method in the third aspect or each of its implementations.
  • the terminal device includes a functional module for executing the method in the third aspect or each implementation manner thereof.
  • a core network device for executing the method in the fourth aspect or each of its implementations.
  • the terminal device includes a functional module for executing the method in the fourth aspect or each implementation manner thereof.
  • a relay device for executing the method in the fifth aspect or each of its implementations.
  • the terminal device includes a functional module for executing the method in the fifth aspect or each implementation manner thereof.
  • a core network device including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory, so as to execute the method in the above-mentioned first aspect or each implementation manner thereof.
  • a twelfth aspect provides a core network device including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory, so as to execute the method in the above-mentioned second aspect or each implementation manner thereof.
  • a thirteenth aspect provides a core network device including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory, so as to execute the method in the third aspect or each of its implementations.
  • a fourteenth aspect provides a core network device including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory, so as to execute the method in the above fourth aspect or each of its implementations.
  • a fifteenth aspect provides a relay terminal including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory, so as to execute the method in the fifth aspect or each of its implementations.
  • a sixteenth aspect provides a chip for implementing any one of the foregoing first to fifth aspects or the method in each of its implementations.
  • the chip includes: a processor for invoking and running a computer program from a memory, so that a device installed with the chip executes any one of the first to fifth aspects or implementations thereof method in .
  • a seventeenth aspect provides a computer-readable storage medium for storing a computer program, the computer program causing a computer to execute the method in any one of the above-mentioned first to fifth aspects or the respective implementations thereof.
  • a computer program product comprising computer program instructions, the computer program instructions causing a computer to perform the method in any one of the above-mentioned first to fifth aspects or the implementations thereof.
  • a nineteenth aspect provides a computer program that, when run on a computer, causes the computer to perform the method in any one of the above-mentioned first to fifth aspects or the implementations thereof.
  • the PCF of the relay terminal can determine the first quality of service QoS control information of the relay terminal based on the at least one subscription information.
  • the access network device of the relay terminal or the user plane function UPF of the relay terminal can control the QoS of the relay terminal based on the first QoS control information determined by the PCF, so that the medium
  • the relay terminal controls the data transmission of the remote terminal, and accordingly, the management and control capability of the network on the remote terminal and the system performance of the relay terminal can be improved.
  • FIG. 1 and FIG. 2 are examples of the communication system provided by the embodiments of the present application.
  • FIG. 3 to FIG. 9 are schematic flowcharts of the wireless communication method provided by the embodiments of the present application.
  • FIG. 10 to FIG. 13 are schematic block diagrams of core network devices provided by embodiments of the present application.
  • FIG. 14 is a schematic block diagram of a relay terminal provided by an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 16 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • New Radio Interface New Radio, NR
  • evolution system of NR system LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum on unlicensed spectrum, NR-U) system, Universal Mobile Telecommunication System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (Wireless Fidelity, WiFi), next-generation communication systems or other communication systems, etc.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • LTE-U New Radio Interface
  • NR New Radio Interface
  • UMTS Universal Mobile Telecommunication
  • the communication system in this embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) distribution. web scene.
  • Carrier Aggregation, CA Carrier Aggregation, CA
  • DC Dual Connectivity
  • SA standalone
  • This embodiment of the present application does not limit the applied spectrum.
  • the embodiments of the present application may be applied to licensed spectrum, and may also be applied to unlicensed spectrum.
  • FIG. 1 exemplarily shows a schematic diagram of a communication system 100 applied in the present application.
  • the communication system 100 mainly includes a terminal device (User Equipment, UE) 101, an access network (Access Network, AN) device 102, an access and mobility management function (Access and Mobility Management Function, AMF) Entity 103, Session Management Function (SMF) entity 104, User Plane Function (UPF) entity 105, Policy Control Function (PCF) entity 106, Unified Data Management (Unified Data Management, UDM) entity 107, Data Network (DN) 108, Application Function (AF) entity 109, Authentication Server Function (AUSF) entity 110, Network Slice Selection Function (Network Slice Selection Function, NSSF) entity 111.
  • UE User Equipment
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • PCF Policy Control Function
  • UDM Unified Data Management
  • UDM Data Management
  • DN Data Network
  • AF Application Function
  • AUSF
  • the UE 101 performs an access stratum connection with the AN device 102 through the Uu interface to exchange access stratum messages and wireless data transmission, and the UE 101 communicates with the AMF entity 103 through the N1 interface for non-access stratum ( Non-Access Stratum (NAS) connection to exchange NAS messages;
  • AN device 102 is connected to AMF entity 103 through N2 interface, and AN device 102 is connected to UPF entity 105 through N3 interface; multiple UPF entities 105 are connected through N9 interface , UPF entity 105 is connected with DN 108 through N6 interface, at the same time, UPF entity 105 is connected with SMF entity 104 through N4 interface;
  • SMF entity 104 is connected with PCF entity 106 through N7 interface, SMF entity 104 is connected with UDM entity 107 through N10 interface,
  • the SMF entity 104 controls the UPF entity 105 through the N4 interface, and at the same time, the SMF entity 104 is connected to the AMF entity 103 through the N1 interface
  • the entity 103 is connected with the AUSF entity 110 through the N12 interface, the AMF entity 103 is connected with the NSSF entity 111 through the N22 interface, and at the same time, the AMF entity 103 is connected with the PCF entity 106 through the N15 interface; the PCF entity 106 is connected with the AF entity 109 through the N5 interface; AUSF The entity 110 is connected to the UDM entity 107 through the N13 interface.
  • the UDM entity 107 is a subscription database in the core network, and stores subscription data of users in the 5G network.
  • the AMF entity 103 is the mobility management function in the core network
  • the SMF entity 104 is the session management function in the core network.
  • the AMF entity 103 is also responsible for sending messages related to session management to the UE 101 and SMF entity 104 forwarding.
  • the PCF entity 106 is a policy management function in the core network, and is responsible for formulating policies related to mobility management, session management, and charging of the UE 101.
  • the UPF entity 105 is a user plane function in the core network, and performs data transmission with the external data network through the N6 interface, and performs data transmission with the AN device 102 through the N3 interface.
  • a protocol data unit Protocol Data Unit, PDU
  • PDU Protocol Data Unit
  • the AMF entity 103 and the SMF entity 104 obtain user subscription data from the UDM entity 107 through the N8 and N10 interfaces, respectively, and obtain policy data from the PCF entity 106 through the N15 and N7 interfaces.
  • NEF Network Exposure Function
  • a device having a communication function in the network/system may be referred to as a communication device.
  • the above communication system 100 is described by taking a 5G communication system as an example.
  • this application can also be applied to other 3GPP communication systems, such as a 4G communication system, or a future 3GPP communication system. This application does not limited.
  • terminal equipment may also be referred to as user equipment, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile station device, user terminal, terminal, wireless communication device, user agent or user equipment, etc.
  • the terminal device can be a station (STAION, ST) in the WLAN, can be a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a Wireless Local Loop (WLL) station, a personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, and next-generation communication systems, such as terminal devices in NR networks or Terminal equipment in the future evolved Public Land Mobile Network (Public Land Mobile Network, PLMN) network, etc.
  • STAION, ST Session Initiation Protocol
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the above-mentioned AN device 102 may be a device for communicating with mobile devices, and the AN device 102 may be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA, or a A base station (NodeB, NB) in WCDMA, an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a base station in vehicle-mounted devices, wearable devices, and NR networks ( gNB) or network equipment in the future evolved PLMN network, etc.
  • Access Point Access Point
  • BTS Base Transceiver Station
  • NodeB, NB A base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • LTE Long Term Evolution
  • gNB gNode B
  • a network device provides services for a cell
  • a terminal device communicates with the network device through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell
  • the cell may be a network device (for example, a frequency domain resource).
  • the cell corresponding to the base station), the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell), where the small cell can include: Metro cell, Micro cell, Pico cell cell), Femto cell, etc.
  • These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-speed data transmission services.
  • a terminal device with the ProSe capability can directly communicate with another terminal device with the ProSe capability through the PC5 interface.
  • the terminal device can act as a relay terminal, and another remote terminal with the ProSe capability can establish a direct connection with the Relay UE through the PC5 interface, and Interact with the external network through the PDU session established by the remote terminal and the 5G network.
  • Its system architecture is shown in Figure 2.
  • the remote terminal is connected to the relay terminal through the PC5 interface, and the relay terminal is connected to the Next Generation Evolutional Radio Access Network (NG-RAN) through the Uu interface, thereby connecting to 5G
  • the core network (5G Core Network, 5GC) 5G Core Network, 5GC
  • 5GC is connected to the application server (application server, AS) through the N6 interface.
  • FIG. 2 uses a 5G communication system as an example to illustrate, of course, it can also be applied to other 3GPP communication systems, such as a 4G communication system, or a future 3GPP communication system, which is not limited in this application.
  • the application server (AS) in FIG. 2 may also be other terminal devices or an external public safety Internet.
  • the relay terminal establishes a PDU session with the 5G network, and the remote terminal exchanges data with the external network through the PDU session of the relay terminal.
  • the network element serving the relay terminal will determine the QoS control for the PDU session of the relay terminal according to the subscription information of the relay terminal.
  • the network element serving the relay terminal cannot obtain the subscription information of the remote terminal, and therefore cannot perform effective QoS control on the data transmission of the remote terminal.
  • the UE-AMBR subscribed by the remote terminal is 100Mbps, that is, when the remote terminal directly exchanges data with the external network through the 5G network, the maximum code rate of all non-GBR services at the UE level allowed is 100Mbps.
  • the UE-AMBR subscribed by the relay terminal is 500 Mbps. Since the network element serving the relay terminal cannot obtain the subscription information of the remote terminal, when the remote terminal transmits data through the PDU session of the relay terminal, the remote terminal may transmit data of 500 Mbps, which is far more than that of the remote terminal.
  • the contract with 5G network is limited to 100Mbps.
  • the embodiments of this application further improve the functions of the PCF of the relay terminal, the AMF of the relay terminal, the SMF of the relay terminal, and the relay terminal when the remote terminal exchanges data with the external network through the relay terminal. Perfect to improve the network's management and control capability of remote terminals and the system performance of relay terminals.
  • FIG. 3 shows a schematic flowchart of a wireless communication method 210 according to an embodiment of the present application, and the method 210 may be executed by a core network device.
  • a core network device For example, the 5GC shown in Figure 2.
  • Another example is the policy control function function PCF of the relay terminal.
  • the method 210 may include:
  • the PCF of the relay terminal may determine the first quality of service QoS control information of the relay terminal based on the at least one subscription information.
  • the access network device of the relay terminal or the user plane function UPF of the relay terminal can control the QoS of the relay terminal based on the first QoS control information determined by the PCF, so that the medium
  • the relay terminal controls the data transmission of the remote terminal, and accordingly, the management and control capability of the network on the remote terminal and the system performance of the relay terminal can be improved.
  • the at least one subscription information includes first subscription information obtained from the access and mobility management function AMF of the relay terminal.
  • the first subscription information includes the user equipment aggregated maximum bit rate UE-AMBR.
  • the at least one subscription information includes second subscription information obtained from the session management function SMF of the relay terminal.
  • the second subscription information includes at least one of the following information subscribed by the remote terminal:
  • Session Aggregate Maximum Bit Rate (session Aggregate Maximum Bit Rate, session-AMBR);
  • 5G Quality of Service Identifier 5G QoS Identifier, 5QI
  • ARP Allocation and Retention Priority
  • the method 210 may further include:
  • the first QoS control information is sent to the access network device of the relay terminal or the user plane function UPF of the relay terminal.
  • FIG. 4 shows a schematic flowchart of a wireless communication method 220 according to an embodiment of the present application, and the method 220 may be executed by a core network device.
  • a core network device For example, the 5GC shown in Figure 2.
  • Another example is the policy control function function PCF of the relay terminal.
  • the method 220 may include:
  • the PCF of the relay terminal may determine the second quality of service QoS control information of the remote terminal based on the at least one subscription information.
  • the access network device of the relay terminal, the user plane function UPF of the relay terminal, or the relay terminal can provide the QoS of the remote terminal based on the second QoS control information determined by the PCF. Control, correspondingly, can improve the management and control capability of the network on the remote terminal and the system performance of the relay terminal.
  • the at least one subscription information includes first subscription information obtained from the access and mobility management function AMF of the relay terminal.
  • the first subscription information includes the user equipment aggregated maximum bit rate UE-AMBR.
  • the at least one subscription information includes second subscription information obtained from the session management function SMF of the relay terminal.
  • the second subscription information includes at least one of the following information subscribed by the remote terminal:
  • Session aggregation maximum bit rate session-AMBR Session aggregation maximum bit rate session-AMBR
  • the at least one subscription information includes third subscription information obtained from a unified data management UDM or a unified data repository (Unified Data Repository, UDR).
  • UDM Unified Data Repository
  • the third subscription information includes at least one of the following information:
  • PC5 aggregate maximum bit rate of user equipment (UE-PC5 Aggregate Maximum Bit Rate, UE-PC5-AMBR);
  • PC5-link Aggregate Maximum Bit Rate PC5-link-AMBR
  • the PC5 5G QoS identifier PQI that the remote terminal is allowed to use is allowed to use.
  • the method further includes:
  • the method 220 may further include:
  • the method 220 may further include:
  • the relay terminal Send the second QoS control information and a second identifier of the remote terminal to the relay terminal, where the second identifier is an identifier of the remote terminal that is different from the first identifier.
  • the second QoS control information is sent to the relay terminal through an access and mobility management function AMF of the relay terminal.
  • the first identifier includes at least one of the following: a user concealed identifier (Subscription Concealed Identifier, SUCI), a user permanent identifier (Subscription Permanent Identifier, SUPI), or a general public user identifier (Generic Public Subscription Identifier, GPSI).
  • SUCI Subscribed Identifier
  • SUPI Subscribed Permanent Identifier
  • GPSI Global System for Mobile Communications
  • the second identifier includes at least one of the following: a user hidden identifier SUCI, a user permanent identifier SUPI, or a general public user identifier GPSI.
  • the second QoS control information includes at least one of the following information:
  • Session aggregation maximum bit rate session-AMBR Session aggregation maximum bit rate session-AMBR
  • PC5 aggregate maximum bit rate UE-PC5-AMBR of user equipment
  • the PC5 5G QoS identifier PQI that the remote terminal is allowed to use is allowed to use.
  • the wireless communication method according to the embodiment of the present application is described in detail from the perspective of the PCF, and the following will describe the method according to the present application from the perspective of the access and mobility management function AMF of the relay terminal in conjunction with FIG. 5.
  • the wireless communication method of an embodiment It should be understood that the steps involved in interaction in various method embodiments provided in this application may refer to each other.
  • FIG. 5 shows a schematic flowchart of a wireless communication method 230 according to an embodiment of the present application.
  • the method 230 may be performed by core network equipment.
  • the method 230 may include:
  • S232 Receive the first subscription information of the remote terminal sent by the UDM or the UDR.
  • the first subscription information includes the user equipment aggregated maximum bit rate UE-AMBR.
  • the method 230 may further include:
  • the method 230 may further include:
  • the method 230 may further include:
  • the first subscription information is sent to the policy control function PCF of the relay terminal.
  • the method 230 may further include:
  • the relay terminal Sending the second QoS control information and a second identifier to the relay terminal, where the second identifier is an identifier of the remote terminal that is different from the first identifier.
  • the method 230 may further include:
  • the second identifier is an identifier of the remote terminal that is different from the first identifier
  • the second identifier includes at least one of the following: a user hidden identifier SUCI, a user permanent identifier SUPI, or a general public user identifier GPSI.
  • the first identifier includes at least one of the following: a user hidden identifier SUCI, a user permanent identifier SUPI, or a general public user identifier GPSI.
  • FIG. 6 shows a schematic flowchart of a wireless communication method 240 according to an embodiment of the present application.
  • the method 240 may be performed by core network equipment.
  • the method 240 may include:
  • S242 Receive the second subscription information of the remote terminal sent by the UDM or the UDR.
  • the second subscription information includes at least one of the following information subscribed by the remote terminal:
  • Session aggregation maximum bit rate session-AMBR Session aggregation maximum bit rate session-AMBR
  • the method 240 may further include:
  • the first identification and the second identification sent by the AMF are received, where the second identification is an identification of the remote terminal that is different from the first identification.
  • the method 240 may further include:
  • the second identifier includes at least one of the following: a user hidden identifier SUCI, a user permanent identifier SUPI, or a general public user identifier GPSI.
  • the first identifier includes at least one of the following: a user hidden identifier SUCI, a user permanent identifier SUPI, or a general public user identifier GPSI.
  • the method 240 may further include:
  • the second subscription information is sent to the policy control function PCF of the relay terminal.
  • FIG. 7 shows a schematic flowchart of a wireless communication method 250 according to an embodiment of the present application.
  • the method 250 may be performed by a relay terminal.
  • the relay terminal shown in FIG. 2 the relay terminal shown in FIG. 2 .
  • the method 250 may include:
  • the relay terminal may control the QoS of the remote terminal through the second QoS control information, so as to improve the network's management and control capability of the remote terminal and the system performance of the relay terminal.
  • the second QoS control information is information determined by the policy control function PCF of the relay terminal based on at least one subscription information of the remote terminal.
  • the S251 may include:
  • the second QoS control information and the second identifier of the remote terminal are received, where the second identifier is an identifier of the remote terminal that is different from the first identifier.
  • the first identifier includes at least one of the following: a user hidden identifier SUCI, a user permanent identifier SUPI, or a general public user identifier GPSI.
  • the second identifier includes at least one of the following: a user hidden identifier SUCI, a user permanent identifier SUPI, or a general public user identifier GPSI.
  • the second QoS control information is information configured for the relay terminal by the policy control function PCF of the relay terminal.
  • the second QoS control information includes at least one of the following information:
  • Session aggregation maximum bit rate session-AMBR Session aggregation maximum bit rate session-AMBR
  • PC5 aggregate maximum bit rate UE-PC5-AMBR of user equipment
  • the PC5 5G QoS identifier PQI that the remote terminal is allowed to use is allowed to use.
  • the S252 may include:
  • Session aggregation maximum bit rate session-AMBR Session aggregation maximum bit rate session-AMBR
  • PC5 aggregated maximum bit rate UE-PC5-AMBR of the user equipment PC5 aggregated maximum bit rate UE-PC5-AMBR of the user equipment
  • the method 250 may further include:
  • FIG. 8 is a schematic flowchart of a wireless communication method 300 provided by an embodiment of the present application.
  • the 300 may include some or all of the following:
  • the AMF of the relay terminal sends the remote terminal identifier to the UDM.
  • the AMF of the relay terminal can obtain the first identifier of the remote terminal (eg SUCI, SUPI or GPSI), and the AMF of the relay terminal sends the identifier of the remote terminal to the UDM.
  • the first identifier of the remote terminal eg SUCI, SUPI or GPSI
  • the AMF of the relay terminal receives the first subscription information of the remote terminal sent by the UDM.
  • the AMF of the relay terminal obtains the first subscription information of the remote terminal from the UDM, including the UE-AMBR subscribed by the remote terminal.
  • the AMF of the relay terminal sends the remote terminal identifier to the SMF of the relay terminal.
  • the AMF of the relay terminal sends the first identifier of the remote terminal to the SMF of the relay terminal.
  • the SMF of the relay terminal sends the remote terminal identifier to the UDM.
  • the SMF of the relay terminal sends the first identifier of the remote terminal to the UDM.
  • the SMF of the relay terminal receives the second subscription information of the remote terminal sent by the UDM.
  • the SMF of the relay terminal obtains the second subscription information of the remote terminal from the UDM. It includes the information used for QoS control such as session-AMBR, 5QI, and ARP for a specific DNN or slice subscribed by the remote terminal.
  • QoS control such as session-AMBR, 5QI, and ARP for a specific DNN or slice subscribed by the remote terminal.
  • the AMF of the relay terminal sends the first subscription information of the remote terminal to the PCF of the relay terminal.
  • the AMF of the relay terminal sends the first subscription information of the remote terminal, such as the UE-AMBR subscribed by the remote terminal, to the PCF of the relay terminal.
  • the SMF of the relay terminal sends the second subscription information of the remote terminal to the PCF of the relay terminal.
  • the SMF of the relay terminal sends the second subscription information of the remote terminal, such as session-AMBR, 5QI, ARP of the subscription of the remote terminal, to the PCF of the relay terminal.
  • the second subscription information of the remote terminal such as session-AMBR, 5QI, ARP of the subscription of the remote terminal
  • the PCF of the relay terminal determines first QoS control information of the relay terminal based on the first subscription information and the second subscription information.
  • the PCF of the relay terminal adjusts the QoS control information of the relay terminal according to the subscription information of the remote terminal, for example, adjusts the UE-AMBR or session-AMBR of the relay terminal.
  • FIG. 9 is a schematic flowchart of a wireless communication method 400 provided by an embodiment of the present application.
  • the 400 may include some or all of the following:
  • the AMF of the relay terminal sends the remote terminal identifier to the UDM.
  • the AMF of the relay terminal receives the first subscription information of the remote terminal sent by the UDM.
  • the AMF of the relay terminal sends the remote terminal identifier to the SMF of the relay terminal.
  • the SMF of the relay terminal sends the remote terminal identifier to the UDM.
  • the SMF of the relay terminal receives the second subscription information of the remote terminal sent by the UDM.
  • the AMF of the relay terminal sends the first subscription information of the remote terminal to the PCF of the relay terminal.
  • the SMF of the relay terminal sends the second subscription information of the remote terminal to the PCF of the relay terminal.
  • the AMF of the relay terminal sends the remote terminal identifier to the PCF of the relay terminal.
  • the SMF of the relay terminal sends the remote terminal identifier to the PCF of the relay terminal.
  • the AMF of the relay terminal or the SMF of the relay terminal combines the first identifier of the remote terminal (for example, SUCI, SUPI, or GPSI), or the first identifier of the remote terminal with the second identifier of the remote terminal (for example, SUCI, SUPI, or GPSI).
  • the combination of SUPI or GPSI with an identifier different from the first identifier) is sent to the PCF of the relay terminal.
  • the PCF of the relay terminal sends the remote terminal identifier to the UDM.
  • the PCF of the relay terminal sends the first identifier of the remote terminal to the UDM.
  • S410 The PCF of the relay terminal receives the third subscription information of the remote terminal sent by the UDM.
  • the PCF of the relay terminal obtains the third subscription information of the remote terminal from the UDM. It includes PC5 QoS control parameters subscribed by the remote terminal, such as UE-PC5-AMBR of the remote terminal, or PC5-link-AMBR, or PQI information that the remote terminal is allowed to use.
  • PC5 QoS control parameters subscribed by the remote terminal such as UE-PC5-AMBR of the remote terminal, or PC5-link-AMBR, or PQI information that the remote terminal is allowed to use.
  • the PCF of the relay terminal determines the second QoS control information of the remote terminal.
  • the PCF of the relay terminal determines the QoS parameters for controlling the remote terminal, such as UE-PC5-AMBR, or PC5-link-AMBR, which is used to control the data transmission of the remote terminal through the PC5 interface, or allows the remote terminal PQI information used, or UE-AMBR, session-AMBR, 5QI, ARP used to control the data transmission of the remote terminal through the Uu interface, specific DNN or slice.
  • the QoS parameters for controlling the remote terminal such as UE-PC5-AMBR, or PC5-link-AMBR, which is used to control the data transmission of the remote terminal through the PC5 interface, or allows the remote terminal PQI information used, or UE-AMBR, session-AMBR, 5QI, ARP used to control the data transmission of the remote terminal through the Uu interface, specific DNN or slice.
  • the PCF of the relay terminal sends the second QoS control information of the remote terminal to the relay terminal.
  • the PCF of the relay terminal sends the QoS parameters that are controlled by the remote terminal and the first identifier of the remote terminal or the second identifier of the remote terminal to the relay terminal.
  • the message in this step is forwarded by the AMF of the relay terminal.
  • the AMF of the relay terminal may replace the first identifier of the remote terminal in the message received from the PCF of the relay terminal with the second identifier of the remote terminal Then send it to the relay terminal.
  • the relay terminal controls the data transmission of the remote terminal based on the second QoS control information.
  • the relay terminal is responsible for controlling the data transmission of the remote terminal.
  • the relay terminal may accept or reject or modify the QoS request on the PC5 interface of the remote terminal according to the QoS parameters for controlling the remote terminal; and/or, the relay terminal will The QoS parameter is further sent to the remote terminal; and/or, the relay terminal will convert the parameters that the remote terminal transmits data through the Uu interface to perform QoS control on, and the parameter that the remote terminal transmits through the PC5 interface performs QoS control; and/or , the relay terminal performs bit rate control of the uplink or downlink data packets of the remote terminal according to the QoS parameters for controlling the remote terminal, for example, discarding the data packets exceeding the AMBR.
  • FIG. 8 and FIG. 9 are only examples of the present application, and should not be construed as limitations on the present application.
  • the AMF/SMF/PCF of the relay terminal does not need to acquire the subscription of the remote terminal.
  • the PCF of the relay terminal may configure QoS control information on the relay terminal. For example, use the same QoS control for any remote terminal using a specific slice, DNN, service type, service code or application identity; e.g. UE-PC5-AMBR, PC5-link-AMBR, PQI information allowed, for UE-AMBR or session-AMBR, etc., which control the transmission of data through the Uu interface.
  • the total AMBR information for controlling all traffic of a specific slice, DNN, service type, service code or application identifier without distinguishing between remote terminals, etc. Based on this, the relay terminal controls the data transmission of the remote terminal according to the configuration information.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the present application.
  • the implementation of the embodiments constitutes no limitation.
  • the terms “downlink” and “uplink” are used to indicate the transmission direction of signals or data, wherein “downlink” is used to indicate that the transmission direction of signals or data is from the site to the user equipment of the cell In the first direction, “uplink” is used to indicate that the transmission direction of the signal or data is the second direction sent from the user equipment of the cell to the site.
  • downlink signal indicates that the transmission direction of the signal is the first direction.
  • the term “and/or” is only an association relationship for describing associated objects, indicating that there may be three kinds of relationships. Specifically, A and/or B can represent three situations: A exists alone, A and B exist simultaneously, and B exists alone. In addition, the character "/" in this text generally indicates that the related objects are an "or" relationship.
  • FIG. 10 is a schematic block diagram of a core network device 510 according to an embodiment of the present application.
  • the core network device 510 may include:
  • an obtaining unit 511 configured to obtain at least one subscription information of the remote terminal
  • the determining unit 512 is configured to determine the first quality of service QoS control information of the relay terminal based on the at least one subscription information.
  • the at least one subscription information includes first subscription information obtained from the access and mobility management function AMF of the relay terminal.
  • the first subscription information includes the user equipment aggregated maximum bit rate UE-AMBR.
  • the at least one subscription information includes second subscription information obtained from the session management function SMF of the relay terminal.
  • the second subscription information includes at least one of the following information subscribed by the remote terminal:
  • Session aggregation maximum bit rate session-AMBR Session aggregation maximum bit rate session-AMBR
  • the obtaining unit 511 is further configured to:
  • the first QoS control information is sent to the access network device of the relay terminal or the user plane function UPF of the relay terminal.
  • the apparatus embodiments and the method embodiments may correspond to each other, and similar descriptions may refer to the method embodiments.
  • the core network device 510 shown in FIG. 10 may correspond to the corresponding subject in executing the method 210 , 300 or 400 of the embodiments of the present application, and the aforementioned and other operations and/or functions of each unit in the core network device 510 In order to implement the corresponding processes in the respective methods in FIG. 3 , FIG. 8 or FIG. 9 , for the sake of brevity, details are not repeated here.
  • FIG. 11 is a schematic block diagram of a core network device 520 according to an embodiment of the present application.
  • the core network device 520 may include:
  • an obtaining unit 521 configured to obtain at least one subscription information of the remote terminal
  • the determining unit 522 is configured to determine the second quality of service QoS control information of the remote terminal based on the at least one subscription information.
  • the at least one subscription information includes first subscription information obtained from the access and mobility management function AMF of the relay terminal.
  • the first subscription information includes the user equipment aggregated maximum bit rate UE-AMBR.
  • the at least one subscription information includes second subscription information obtained from the session management function SMF of the relay terminal.
  • the second subscription information includes at least one of the following information subscribed by the remote terminal:
  • Session aggregation maximum bit rate session-AMBR Session aggregation maximum bit rate session-AMBR
  • the at least one subscription information includes third subscription information obtained from a unified data management UDM or a unified data storage UDR.
  • the third subscription information includes at least one of the following information:
  • PC5 aggregate maximum bit rate UE-PC5-AMBR of user equipment
  • the PC5 5G QoS identifier PQI that the remote terminal is allowed to use is allowed to use.
  • the obtaining unit 521 is further configured to:
  • the obtaining unit 521 is further configured to:
  • the obtaining unit 521 is further configured to:
  • the relay terminal Send the second QoS control information and a second identifier of the remote terminal to the relay terminal, where the second identifier is an identifier of the remote terminal that is different from the first identifier.
  • the second QoS control information is sent to the relay terminal through an access and mobility management function AMF of the relay terminal.
  • the first identifier includes at least one of the following: a user hidden identifier SUCI, a user permanent identifier SUPI, or a general public user identifier GPSI.
  • the second identifier includes at least one of the following: a user hidden identifier SUCI, a user permanent identifier SUPI, or a general public user identifier GPSI.
  • the second QoS control information includes at least one of the following information:
  • Session aggregation maximum bit rate session-AMBR Session aggregation maximum bit rate session-AMBR
  • PC5 aggregate maximum bit rate UE-PC5-AMBR of user equipment
  • the PC5 5G QoS identifier PQI that the remote terminal is allowed to use is allowed to use.
  • the apparatus embodiments and the method embodiments may correspond to each other, and similar descriptions may refer to the method embodiments.
  • the core network device 520 shown in FIG. 11 may correspond to the corresponding subject in executing the method 220, 300 or 400 of the embodiments of the present application, and the aforementioned and other operations and/or functions of each unit in the core network device 520 In order to implement the corresponding processes in the respective methods in FIG. 4 , FIG. 8 or FIG. 9 , for brevity, details are not repeated here.
  • FIG. 12 is a schematic block diagram of a core network device 530 according to an embodiment of the present application.
  • the core network device 530 may include:
  • a sending unit 531 configured to send the first identifier of the remote terminal to the unified data management UDM or the unified data storage UDR;
  • the receiving unit 532 is configured to receive the first subscription information of the remote terminal sent by the UDM or the UDR.
  • the first subscription information includes the user equipment aggregated maximum bit rate UE-AMBR.
  • the sending unit 531 is further configured to:
  • the sending unit 531 is further configured to:
  • the sending unit 531 is further configured to:
  • the first subscription information is sent to the policy control function PCF of the relay terminal.
  • the receiving unit 532 is further configured to:
  • the sending unit 531 is further configured to:
  • the relay terminal Sending the second QoS control information and a second identifier to the relay terminal, where the second identifier is an identifier of the remote terminal that is different from the first identifier.
  • the receiving unit 532 is further configured to:
  • the sending unit 531 is also used for:
  • the second identifier includes at least one of the following: a user hidden identifier SUCI, a user permanent identifier SUPI, or a general public user identifier GPSI.
  • the first identifier includes at least one of the following: a user hidden identifier SUCI, a user permanent identifier SUPI, or a general public user identifier GPSI.
  • the apparatus embodiments and the method embodiments may correspond to each other, and similar descriptions may refer to the method embodiments.
  • the core network device 530 shown in FIG. 12 may correspond to the corresponding subject in executing the methods 230, 300 or 400 of the embodiments of the present application, and the aforementioned and other operations and/or functions of each unit in the core network device 530 In order to implement the corresponding processes in the respective methods in FIG. 5 , FIG. 8 or FIG. 9 , for the sake of brevity, details are not repeated here.
  • FIG. 13 is a schematic block diagram of a core network device 540 according to an embodiment of the present application.
  • the core network device 540 may include:
  • a sending unit 541, configured to send the first identifier of the remote terminal to the unified data management UDM or the unified data storage UDR;
  • the receiving unit 542 is configured to receive the second subscription information of the remote terminal sent by the UDM or the UDR.
  • the second subscription information includes at least one of the following information subscribed by the remote terminal:
  • Session aggregation maximum bit rate session-AMBR Session aggregation maximum bit rate session-AMBR
  • the receiving unit 542 is further configured to:
  • the first identification and the second identification sent by the AMF are received, where the second identification is an identification of the remote terminal that is different from the first identification.
  • the sending unit 541 is further configured to:
  • the second identifier includes at least one of the following: a user hidden identifier SUCI, a user permanent identifier SUPI, or a general public user identifier GPSI.
  • the first identifier includes at least one of the following: a user hidden identifier SUCI, a user permanent identifier SUPI, or a general public user identifier GPSI.
  • the sending unit 541 is further configured to:
  • the second subscription information is sent to the policy control function PCF of the relay terminal.
  • the apparatus embodiments and the method embodiments may correspond to each other, and similar descriptions may refer to the method embodiments.
  • the core network device 540 shown in FIG. 13 may correspond to the corresponding subject in executing the methods 240, 300 or 400 of the embodiments of the present application, and the aforementioned and other operations and/or functions of each unit in the core network device 540 In order to implement the corresponding processes in the respective methods in FIG. 6 , FIG. 8 or FIG. 9 , for brevity, details are not repeated here.
  • FIG. 14 is a schematic block diagram of a relay terminal 550 according to an embodiment of the present application.
  • the relay terminal 550 may include:
  • an obtaining unit 551, configured to obtain the second quality of service QoS control information of the remote terminal
  • the control unit 552 is configured to control the data transmission of the remote terminal based on the second QoS control information.
  • the second QoS control information is information determined by the policy control function PCF of the relay terminal based on at least one subscription information of the remote terminal.
  • the obtaining unit 551 is specifically configured to:
  • the second QoS control information and the second identifier of the remote terminal are received, where the second identifier is an identifier of the remote terminal that is different from the first identifier.
  • the first identifier includes at least one of the following: a user hidden identifier SUCI, a user permanent identifier SUPI, or a general public user identifier GPSI.
  • the second identifier includes at least one of the following: user hidden identifier SUCI, user permanent identifier SUPI or general public user identifier GPSI.
  • the second QoS control information is information configured for the relay terminal by the policy control function PCF of the relay terminal.
  • the second QoS control information includes at least one of the following information:
  • Session aggregation maximum bit rate session-AMBR Session aggregation maximum bit rate session-AMBR
  • PC5 aggregate maximum bit rate UE-PC5-AMBR of user equipment
  • the PC5 5G QoS identifier PQI that the remote terminal is allowed to use is allowed to use.
  • control unit 552 is specifically configured to:
  • control unit 552 is specifically configured to:
  • Session aggregation maximum bit rate session-AMBR Session aggregation maximum bit rate session-AMBR
  • PC5 aggregated maximum bit rate UE-PC5-AMBR of the user equipment PC5 aggregated maximum bit rate UE-PC5-AMBR of the user equipment
  • control unit 552 is further configured to:
  • the apparatus embodiments and the method embodiments may correspond to each other, and similar descriptions may refer to the method embodiments.
  • the relay terminal 550 shown in FIG. 10 may correspond to the corresponding subject in performing the methods 250 , 300 or 400 of the embodiments of the present application, and the aforementioned and other operations and/or functions of each unit in the relay terminal 550 In order to implement the corresponding processes in the respective methods in FIG. 3 , FIG. 8 or FIG. 9 , for the sake of brevity, details are not repeated here.
  • the steps of the method embodiments in the embodiments of the present application may be completed by an integrated logic circuit of hardware in the processor and/or instructions in the form of software, and the steps of the methods disclosed in combination with the embodiments of the present application may be directly embodied as hardware
  • the execution of the decoding processor is completed, or the execution is completed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory, electrically erasable programmable memory, registers, and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps in the above method embodiments in combination with its hardware.
  • processing unit and the communication unit referred to above may be implemented by a processor and a transceiver, respectively.
  • FIG. 15 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application.
  • the communication device 600 may include a processor 610 .
  • the processor 610 may call and run a computer program from the memory to implement the methods in the embodiments of the present application.
  • the communication device 600 may further include a memory 620 .
  • the memory 620 may be used to store indication information, and may also be used to store codes, instructions, etc. executed by the processor 610 .
  • the processor 610 may call and run a computer program from the memory 620 to implement the methods in the embodiments of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630 .
  • the processor 610 can control the transceiver 630 to communicate with other devices, and specifically, can send information or data to other devices, or receive information or data sent by other devices.
  • Transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of the antennas may be one or more.
  • each component in the communication device 600 is connected through a bus system, wherein the bus system includes a power bus, a control bus and a status signal bus in addition to a data bus.
  • the communication device 600 may be the core network device of the embodiments of the present application, and the communication device 600 may implement the corresponding processes implemented by the core network device in each method of the embodiments of the present application, that is, may correspond to For the sake of brevity, the corresponding subject in executing the method according to the embodiment of the present application will not be repeated here.
  • the communication device 600 may be the relay terminal of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the relay terminal in each method of the embodiment of the present application. That is to say, it may correspond to a corresponding subject in executing the method according to the embodiment of the present application, which is not repeated here for brevity.
  • the embodiment of the present application also provides a chip.
  • the chip may be an integrated circuit chip, which has a signal processing capability, and can implement or execute the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the chip may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • the chip can be applied to various communication devices, so that the communication device installed with the chip can execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • FIG. 16 is a schematic structural diagram of a chip 700 according to an embodiment of the present application.
  • the chip 700 includes a processor 710 .
  • the processor 710 may call and run a computer program from the memory to implement the methods in the embodiments of the present application.
  • the chip 700 may further include a memory 720 .
  • the processor 710 may call and run a computer program from the memory 720 to implement the methods in the embodiments of the present application.
  • the memory 720 may be used to store instruction information, and may also be used to store codes, instructions and the like executed by the processor 710 .
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated in the processor 710 .
  • the chip 700 may further include an input interface 730 .
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip 700 can be applied to the network device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the network device in the various methods of the embodiments of the present application, and can also implement the various methods of the embodiments of the present application.
  • the corresponding process implemented by the terminal device in FIG. 1 is not repeated here.
  • bus system includes a power bus, a control bus and a status signal bus in addition to a data bus.
  • the processors referred to above may include, but are not limited to:
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the processor may be used to implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of this application.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in random access memory, flash memory, read-only memory, programmable read-only memory or erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory mentioned above includes but is not limited to:
  • Non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Random Access Memory
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • Embodiments of the present application also provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium stores one or more programs including instructions that, when executed by a portable electronic device including a plurality of application programs, enable the portable electronic device to perform methods 300 through 500 The method of the illustrated embodiment.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and are not repeated here for brevity.
  • the embodiments of the present application also provide a computer program product, including a computer program.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. Repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, in order to It is concise and will not be repeated here.
  • a computer program is also provided in the embodiments of the present application.
  • the computer program When executed by a computer, it enables the computer to perform the method of the method embodiment.
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program runs on the computer, the computer executes the corresponding processes implemented by the network device in each method of the embodiments of the present application. For the sake of brevity. , and will not be repeated here.
  • an embodiment of the present application further provides a communication system, which may include the above-mentioned terminal equipment and network equipment to form a communication system 100 as shown in FIG. 1 , which is not repeated here for brevity.
  • a communication system which may include the above-mentioned terminal equipment and network equipment to form a communication system 100 as shown in FIG. 1 , which is not repeated here for brevity.
  • system and the like in this document may also be referred to as “network management architecture” or “network system” and the like.
  • a software functional unit If implemented in the form of a software functional unit and sold or used as a stand-alone product, it may be stored in a computer-readable storage medium.
  • the technical solutions of the embodiments of the present application can be embodied in the form of software products in essence, or the parts that make contributions to the prior art or the parts of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a read-only memory, a random access memory, a magnetic disk or an optical disk and other media that can store program codes.
  • division of units, modules or components in the apparatus embodiments described above is only a logical function division, and other division methods may be used in actual implementation.
  • multiple units, modules or components may be combined or integrated To another system, or some units or modules or components can be ignored, or not implemented.
  • the above-mentioned units/modules/components described as separate/display components may or may not be physically separated, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units/modules/components may be selected according to actual needs to achieve the purpose of the embodiments of the present application.

Abstract

本申请实施例提供了一种无线通信方法,应用于中继终端的策略控制功能PCF,包括:获取远端终端的至少一个签约信息;基于所述至少一个签约信息,确定中继终端的第一服务质量QoS控制信息。所述方法能够使得中继终端对远端终端的数据传输进行控制,相应的,能够提高网络对远端终端的管控能力和中继终端的系统性能。

Description

无线通信方法和设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及无线通信方法和设备。
背景技术
端到端通信指终端到终端的通信。例如,车辆到车辆(Vehicle to Vehicle,V2V)、车辆到其他设备(Vehicle to Everything,V2X)、终端到终端(Device to Device,D2D)等。具体的,发送端向接收端发送直接通信请求(Direct Communication Request,DCR)消息,如果接收端响应了所述DCR消息,则接收端和发送端之间可以直接进行通讯。
如果发送端和请求端之间的距离过远,则需要通过中继终端实现发送端和请求端之间的端到端通信,但是,截止目前,中继终端的功能还需要进一步完善。
发明内容
本申请实施例提供一种,能够使得中继终端对远端终端的数据传输进行控制,相应的,能够提高网络对远端终端的管控能力和中继终端的系统性能。
第一方面,提供了一种无线通信方法,应用于中继终端的策略控制功能功能PCF,包括:
获取远端终端的至少一个签约信息;
基于所述至少一个签约信息,确定中继终端的第一服务质量QoS控制信息。
第二方面,提供了一种无线通信方法,应用于中继终端的策略控制功能功能PCF,包括:
获取远端终端的至少一个签约信息;
基于所述至少一个签约信息,确定所述远端终端的第二服务质量QoS控制信息。
第三方面,提供了一种无线通信方法,应用于中继终端的接入与移动性管理功能AMF,包括:
向所述统一数据管理UDM或统一数据存储UDR发送远端终端的第一标识;
接收所述UDM或所述UDR发送所述远端终端的第一签约信息。
第四方面,提供了一种无线通信方法,应用于中继终端的会话管理功能SMF,包括:
向所述统一数据管理UDM或统一数据存储UDR发送远端终端的第一标识;
接收所述UDM或所述UDR发送所述远端终端的第二签约信息。
第五方面,提供了一种无线通信方法,应用于中继终端,包括:
获取远端终端的第二服务质量QoS控制信息;
基于所述第二QoS控制信息,对远端终端的数据传输进行控制。
第六方面,提供了一种核心网设备,用于执行上述第一方面或其各实现方式中的方法。具体地,所述终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第七方面,提供了一种核心网设备,用于执行上述第二方面或其各实现方式中的方法。具体地,所述终端设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第八方面,提供了一种核心网设备,用于执行上述第三方面或其各实现方式中的方法。具体地,所述终端设备包括用于执行上述第三方面或其各实现方式中的方法的功能模块。
第九方面,提供了一种核心网设备,用于执行上述第四方面或其各实现方式中的方法。具体地,所述终端设备包括用于执行上述第四方面或其各实现方式中的方法的功能模块。
第十方面,提供了一种中继设备,用于执行上述第五方面或其各实现方式中的方法。具体地,所述终端设备包括用于执行上述第五方面或其各实现方式中的方法的功能模块。
第十一方面,提供了一种核心网设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第一方面或其各实现方式中的方法。
第十二方面,提供了一种核心网设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第二方面或其各实现方式中的方法。
第十三方面,提供了一种核心网设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第三方面或其各实现方式中的方法。
第十四方面,提供了一种核心网设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第四方面或其各实现方式中的方法。
第十五方面,提供了一种中继终端,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第五方面或其各实现方式中的方法。
第十六方面,提供了一种芯片,用于实现上述第一方面至第五方面中的任一方面或其各实现方式中的方法。具体地,所述芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述第一方面至第五方面中的任一方面或其各实现方式中的方法。
第十七方面,提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行上述第一方面至第五方面中的任一方面或其各实现方式中的方法。
第十八方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第五方面中的任一方面或其各实现方式中的方法。
第十九方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第五方面中的任一方面或其各实现方式中的方法。
基于以上技术方案,中继终端的PCF通过基于所述至少一个签约信息,可确定出中继终端的第一服务质量QoS控制信息。由此,所述中继终端的接入网设备或所述中继终端的用户面功能UPF可基于所述PCF确定的第一QoS控制信息对所述中继终端的QoS进行控制,进而使得中继终端对远端终端的数据传输进行控制,相应的,能够提高网络对远端终端的管控能力和中继终端的系统性能。
附图说明
[根据细则91更正 11.12.2020] 
图1和图2均是本申请实施例提供的通信系统的示例。
图3至图9均是本申请实施例提供的无线通信方法的示意性流程图。
图10至图13均是本申请实施例提供的核心网设备的示意性框图。
图14是本申请实施例提供的中继终端的示意性框图。
图15是本申请实施例提供的通信设备的示意性框图。
图16是本申请实施例提供的芯片的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新空口(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例对应用的频谱并不限定。例如,本申请实施例可以应用于授权频谱,也可以应用于免授权频谱。
图1示例性地示出了一种本申请应用的通信系统100的示意图。如图1所示,该通信系统100主要包括终端设备(User Equipment,UE)101、接入网(Access Network,AN)设备102、接入与移动性管理功能(Access and Mobility Management Function,AMF)实体103、会话管理功能(Session Management Function,SMF)实体104、用户面功能(User Plane Function,UPF)实体105、策略控制功能(Policy Control function,PCF)实体106、统一数据管理(Unified Data Management,UDM)实体107、数据网络(Data Network,DN)108、应用功能(Application Function,AF)实体109、鉴权服务器功能(Authentication Server Function,AUSF)实体110、网络切片选择功能(Network Slice Selection Function,NSSF)实体111。
具体地,在通信系统100中,UE 101通过Uu接口与AN设备102进行接入层连接,以交互接入层消息及无线数据传输,UE 101通过N1接口与AMF实体103进行非接入层(Non-Access Stratum,NAS)连接,以交互NAS消息;AN设备102通过N2接口与AMF实体103连接,以及AN设备102通过N3接口与UPF实体105连接;多个UPF实体105之间通过N9接口连接,UPF实体105通过 N6接口与DN 108连接,同时,UPF实体105通过N4接口与SMF实体104连接;SMF实体104通过N7接口与PCF实体106连接,SMF实体104通过N10接口与UDM实体107连接,SMF实体104通过N4接口控制UPF实体105,同时,SMF实体104通过N11接口与AMF实体103连接;多个AMF实体103之间通过N14接口连接,AMF实体103通过N8接口与UDM实体107连接,AMF实体103通过N12接口与AUSF实体110连接,AMF实体103通过N22接口与NSSF实体111连接,同时,AMF实体103通过N15接口与PCF实体106连接;PCF实体106通过N5接口与AF实体109连接;AUSF实体110通过N13接口与UDM实体107连接。
在通信系统100中,UDM实体107是核心网中的签约数据库,存储用户在5G网络中的签约数据。AMF实体103是核心网中的移动性管理功能,SMF实体104是核心网中的会话管理功能,AMF实体103在对UE 101进行移动性管理之外,还负责将从会话管理相关消息在UE 101和SMF实体104之间的转发。PCF实体106是核心网中的策略管理功能,负责制定对UE 101的移动性管理、会话管理、计费等相关的策略。UPF实体105是核心网中的用户面功能,通过N6接口与外部数据网络进行数据传输,通过N3接口与AN设备102进行数据传输。UE 101通过Uu口接入5G网络后,在SMF实体104的控制下建立UE 101到UPF实体105的协议数据单元(Protocol Data Unit,PDU)会话数据连接,从而进行数据传输。AMF实体103和SMF实体104分别通过N8和N10接口从UDM实体107获取用户签约数据,通过N15和N7接口从PCF实体106获取策略数据。
另外,通信系统100中还存在网络开放功能(Network Exposure Function,NEF)实体,用于与第三方应用服务器接口,在核心网节点与第三方应用之间进行信息传递。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。
需要说明的是,上述通信系统100是以5G通信系统为例进行说明,当然,本申请也可以适用于其他3GPP通信系统,例如4G通信系统,或者未来的3GPP通信系统,本申请对此并不限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请实施例结合终端设备和网络设备描述了各个实施例,其中:终端设备也可以称为用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,NR网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
上述AN设备102可以是用于与移动设备通信的设备,AN设备102可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的基站(gNB)或者未来演进的PLMN网络中的网络设备等。
在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
在本申请实施例中,具有ProSe能力的终端设备可以通过PC5接口与具有ProSe能力的另外一个终端设备直接通信。当一个终端设备既可以通过5G网络连接外部数据网络,还具有ProSe能力时, 这个终端设备可以充当中继终端,另外一个具有ProSe能力的远端终端可以通过PC5接口与Relay UE建立直接连接,并通过远端终端与5G网络建立的PDU会话与外部网络交互。其系统架构如图2所示。如图2所示,远端终端通过PC5接口连接到中继终端,以及中继终端通过Uu接口连接下一代演进型无线接入网(Next Generation Evolutional Radio Access Network,NG-RAN),从而连接5G核心网(5G Core Network,5GC),5GC通过N6接口连接到应用服务器(application server,AS)。
需要说明的是,图2是以5G通信系统为例进行说明,当然,也可以适用于其他3GPP通信系统,例如4G通信系统,或者未来的3GPP通信系统,本申请对此并不限定。另外,在本申请实施例中,图2中的应用服务器(AS)也可以是其他的终端设备或者外部公共安全互联网。
需要说明的是,中继终端与5G网络建立PDU会话,远端终端通过中继终端的PDU会话与外部网络进行数据交互。服务于中继终端的网元会根据中继终端的签约信息决定对中继终端的PDU会话的QoS控制。
但是,服务于中继终端的网元无法得到远端终端的签约信息,因此并不能对远端终端的数据传输进行有效的QoS控制。例如假设远端终端签约的UE-AMBR为100Mbps,也就是说,远端终端直接通过5G网络与外部网络进行数据交互时,允许的UE级别的所有non-GBR业务的最大码率之和为100Mbps,假设中继终端签约的UE-AMBR为500Mbps。由于服务于中继终端的网元无法得到远端终端的签约信息,当远端终端通过中继终端的PDU会话进行数据传输时,远端终端可能可以传输500Mbps的数据,远远超过远端终端和5G网络的签约限制100Mbps。
基于此,本申请实施例对远端终端通过中继终端与外部网络进行数据交互时,对中继终端的PCF、中继终端的AMF、中继终端的SMF以及中继终端的功能做了进一步完善,以提高网络对远端终端的管控能力和中继终端的系统性能。
图3示出了根据本申请实施例的无线通信方法210的示意性流程图,所述方法210可以由核心网设备执行。例如,图2所示的5GC。再如,中继终端的策略控制功能功能PCF。
如图3所示,所述方法210可包括:
S211,获取远端终端的至少一个签约信息;
S212,基于所述至少一个签约信息,确定中继终端的第一服务质量(Quality of service,QoS)控制信息。
例如,中继终端的PCF通过基于所述至少一个签约信息,可确定出中继终端的第一服务质量QoS控制信息。
由此,所述中继终端的接入网设备或所述中继终端的用户面功能UPF可基于所述PCF确定的第一QoS控制信息对所述中继终端的QoS进行控制,进而使得中继终端对远端终端的数据传输进行控制,相应的,能够提高网络对远端终端的管控能力和中继终端的系统性能。
在本申请的一些实施例中,所述至少一个签约信息包括从所述中继终端的接入与移动性管理功能AMF获取的第一签约信息。
在本申请的一些实施例中,所述第一签约信息包括用户设备聚合最大比特速率UE-AMBR。
在本申请的一些实施例中,所述至少一个签约信息包括从所述中继终端的会话管理功能SMF获取的第二签约信息。
在本申请的一些实施例中,所述第二签约信息包括所述远端终端签约的以下信息中的至少一项:
会话聚合最大比特速率(session Aggregate Maximum Bit Rate,session-AMBR);
5G服务质量标识(5G QoS Identifier,5QI);或
分配与保持优先级(Allocation and Retention Priority,ARP)。
在本申请的一些实施例中,所述方法210还可包括:
向所述中继终端的接入网设备或所述中继终端的用户面功能UPF发送所述第一QoS控制信息。
图4示出了根据本申请实施例的无线通信方法220的示意性流程图,所述方法220可以由核心网设备执行。例如,图2所示的5GC。再如,中继终端的策略控制功能功能PCF。
如图4所示,所述方法220可包括:
S221,获取远端终端的至少一个签约信息;
S222,基于所述至少一个签约信息,确定所述远端终端的第二服务质量QoS控制信息。
例如,中继终端的PCF通过基于所述至少一个签约信息,可确定出远端终端的第二服务质量QoS控制信息。
由此,所述中继终端的接入网设备、所述中继终端的用户面功能UPF或所述中继终端可基于所述PCF确定的第二QoS控制信息对所述远端终端的QoS进行控制,相应的,能够提高网络对远端终端的管控能力和中继终端的系统性能。
在本申请的一些实施例中,所述至少一个签约信息包括从所述中继终端的接入与移动性管理功能AMF获取的第一签约信息。
在本申请的一些实施例中,所述第一签约信息包括用户设备聚合最大比特速率UE-AMBR。
在本申请的一些实施例中,所述至少一个签约信息包括从所述中继终端的会话管理功能SMF获取的第二签约信息。
在本申请的一些实施例中,所述第二签约信息包括所述远端终端签约的以下信息中的至少一项:
会话聚合最大比特速率session-AMBR;
5G QoS标识5QI;或
分配与保持优先级ARP。
在本申请的一些实施例中,所述至少一个签约信息包括从统一数据管理UDM或统一数据存储(Unified Data Repository,UDR)获取的第三签约信息。
在本申请的一些实施例中,所述第三签约信息包括以下信息中的至少一项:
用户设备的PC5聚合最大比特速率(UE-PC5Aggregate Maximum Bit Rate,UE-PC5-AMBR);
PC5链路的聚合最大比特速率(PC5-link Aggregate Maximum Bit Rate,PC5-link-AMBR);或
允许所述远端终端使用的PC5 5G QoS标识PQI。
在本申请的一些实施例中,所述方法还包括:
向所述UDM或所述UDR发送所述远端终端的第一标识。
在本申请的一些实施例中,所述方法220还可包括:
接收所述中继终端的接入与移动性管理功能AMF或所述中继终端的会话管理功能SMF发送的所述远端终端的第一标识;或
接收所述中继终端的AMF或所述中继终端的SMF发送的所述远端终端的第一标识和第二标识,所述第二标识为所述远端终端的与所述第一标识不同的标识。
在本申请的一些实施例中,所述方法220还可包括:
向所述中继终端发送所述第二QoS控制信息和所述远端终端的第一标识;或
向所述中继终端发送所述第二QoS控制信息和所述远端终端的第二标识,所述第二标识为所述远端终端的与所述第一标识不同的标识。
在本申请的一些实施例中,所述第二QoS控制信息通过所述中继终端的接入与移动性管理功能AMF发送给所述中继终端。
在本申请的一些实施例中,所述第一标识包括以下中的至少一项:用户隐藏标识(Subscription Concealed Identifier,SUCI)、用户永久标识(Subscription Permanent Identifier,SUPI)或通用公共用户标识(Generic Public Subscription Identifier,GPSI)。
在本申请的一些实施例中,所述第二标识包括以下中的至少一项:用户隐藏标识SUCI、用户永久标识SUPI或通用公共用户标识GPSI。
在本申请的一些实施例中,所述第二QoS控制信息包括以下信息中的至少一项:
用户设备聚合最大比特速率UE-AMBR;
会话聚合最大比特速率session-AMBR;
5G QoS标识5QI;
分配与保持优先级ARP;
用户设备的PC5聚合最大比特速率UE-PC5-AMBR;
PC5链路的聚合最大比特速率PC5-link-AMBR;或
允许所述远端终端使用的PC5 5G QoS标识PQI。
上文中结合图3和图4,从PCF的角度详细描述了根据本申请实施例的无线通信方法,下面将结合图5,从中继终端的接入与移动性管理功能AMF的角度描述根据本申请实施例的无线通信方法。应理解,本申请提供的各个方法实施例涉及交互的步骤可以相互参考。
图5示出了根据本申请实施例的无线通信方法230的示意性流程图。所述方法230可以由核心网设备执行。例如,图2所示的5GC。例如,中继终端的AMF。
如图5所示,所述方法230可包括:
S231,向所述统一数据管理UDM或统一数据存储UDR发送远端终端的第一标识;
S232,接收所述UDM或所述UDR发送所述远端终端的第一签约信息。
在本申请的一些实施例中,所述第一签约信息包括用户设备聚合最大比特速率UE-AMBR。
在本申请的一些实施例中,所述方法230还可包括:
向所述中继终端的会话管理功能SMF发送所述第一标识;或
向所述SMF发送所述第一标识和第二标识,所述第二标识为所述远端终端的与所述第一标识不同的标识。
在本申请的一些实施例中,所述方法230还可包括:
向所述中继终端的策略控制功能功能PCF发送所述第一标识;或
向所述PCF发送所述第一标识和第二标识,所述第二标识为所述远端终端的与所述第一标识不同的标识。
在本申请的一些实施例中,所述方法230还可包括:
向所述中继终端的策略控制功能功能PCF发送所述第一签约信息。
在本申请的一些实施例中,所述方法230还可包括:
接收所述中继终端的策略控制功能功能PCF发送的第二服务质量QoS控制信息和所述第一标识;
向所述中继终端的发送所述第二QoS控制信息和第二标识,所述第二标识为所述远端终端的与所述第一标识不同的标识。
在本申请的一些实施例中,所述方法230还可包括:
接收所述中继终端的策略控制功能功能PCF发送的第二服务质量QoS控制信息和第二标识,所述第二标识为所述远端终端的与所述第一标识不同的标识;
向所述中继终端的发送所述第二QoS控制信息和所述第二标识。
在本申请的一些实施例中,所述第二标识包括以下中的至少一项:用户隐藏标识SUCI、用户永久标识SUPI或通用公共用户标识GPSI。
在本申请的一些实施例中,所述第一标识包括以下中的至少一项:用户隐藏标识SUCI、用户永久标识SUPI或通用公共用户标识GPSI。
下面将结合图6,从中继终端的会话管理功能SMF的角度描述根据本申请实施例的无线通信方法。应理解,本申请提供的各个方法实施例涉及交互的步骤可以相互参考。
图6示出了根据本申请实施例的无线通信方法240的示意性流程图。所述方法240可以由核心网设备执行。例如,图2所示的5GC。例如,中继终端的SMF。
如图6所示,所述方法240可包括:
S241,向所述统一数据管理UDM或统一数据存储UDR发送远端终端的第一标识;
S242,接收所述UDM或所述UDR发送所述远端终端的第二签约信息。
在本申请的一些实施例中,所述第二签约信息包括所述远端终端签约的以下信息中的至少一项:
会话聚合最大比特速率session-AMBR;
5G QoS标识5QI;或
分配与保持优先级ARP。
在本申请的一些实施例中,所述方法240还可包括:
接收所述中继终端的接入与移动性管理功能AMF发送的所述第一标识;或
接收所述AMF发送的所述第一标识和第二标识,所述第二标识为所述远端终端的与所述第一标识不同的标识。
在本申请的一些实施例中,所述方法240还可包括:
向所述中继终端的策略控制功能功能PCF发送所述第一标识;或
向所述PCF发送所述第一标识和第二标识,所述第二标识为所述远端终端的与所述第一标识不同的标识。
在本申请的一些实施例中,所述第二标识包括以下中的至少一项:用户隐藏标识SUCI、用户永久标识SUPI或通用公共用户标识GPSI。
在本申请的一些实施例中,所述第一标识包括以下中的至少一项:用户隐藏标识SUCI、用户永久标识SUPI或通用公共用户标识GPSI。
在本申请的一些实施例中,所述方法240还可包括:
向所述中继终端的策略控制功能功能PCF发送所述第二签约信息。
下面将结合图7,从中继终端的角度描述根据本申请实施例的无线通信方法。应理解,本申请提供的各个方法实施例涉及交互的步骤可以相互参考。
图7示出了根据本申请实施例的无线通信方法250的示意性流程图。所述方法250可以由中继终端执行。例如,图2所示的中继终端。
如图7所示,所述方法250可包括:
S251,获取远端终端的第二服务质量QoS控制信息;
S252,基于所述第二QoS控制信息,对远端终端的数据传输进行控制。
例如,中继终端可通过所述第二QoS控制信息对所述远端终端的QoS进行控制,以提高网络对远端终端的管控能力和中继终端的系统性能。
在本申请的一些实施例中,所述第二QoS控制信息为所述中继终端的策略控制功能功能PCF基于所述远端终端的至少一个签约信息确定的信息。
在本申请的一些实施例中,所述S251可包括:
接收所述第二QoS控制信息和所述远端终端的第一标识;或
接收所述第二QoS控制信息和所述远端终端的第二标识,所述第二标识为所述远端终端的与所述第一标识不同的标识。
在本申请的一些实施例中,所述第一标识包括以下中的至少一项:用户隐藏标识SUCI、用户永久标识SUPI或通用公共用户标识GPSI。
在本申请的一些实施例中,所述第二标识包括以下中的至少一项:用户隐藏标识SUCI、用户永久标识SUPI或通用公共用户标识GPSI。
在本申请的一些实施例中,所述第二QoS控制信息为所述中继终端的策略控制功能功能PCF针对所述中继终端配置的信息。
在本申请的一些实施例中,所述第二QoS控制信息包括以下信息中的至少一项:
用户设备聚合最大比特速率UE-AMBR;
会话聚合最大比特速率session-AMBR;
5G QoS标识5QI;
分配与保持优先级ARP;
用户设备的PC5聚合最大比特速率UE-PC5-AMBR;
PC5链路的聚合最大比特速率PC5-link-AMBR;或
允许所述远端终端使用的PC5 5G QoS标识PQI。
在本申请的一些实施例中,所述S252可包括:
向所述远端终端发送所述第二QoS控制信息;和/或
基于所述第二QoS控制信息,对所述远端终端的上行或下行数据包的码率进行控制;和/或
基于所述第二QoS控制信息,接受、拒绝或修改所述远端终端的PC5接口上的QoS请求。
例如,丢弃所述远端终端的上行或下行数据包中的速率超过以下中的至少一项的数据包:
用户设备聚合最大比特速率UE-AMBR;
会话聚合最大比特速率session-AMBR;
用户设备的PC5聚合最大比特速率UE-PC5-AMBR;或
PC5链路的聚合最大比特速率PC5-link-AMBR。
在本申请的一些实施例中,所述方法250还可包括:
将针对Uu接口传输的QoS控制信息,转换为针对PC5接口传输的QoS控制信息。
图8是本申请实施例提供的无线通信方法300的示意性流程图。
如图8所示,所述300可包括以下中的部分或全部内容:
S301,中继终端的AMF向UDM发送远端终端标识。
例如,中继终端的AMF可以获得远端终端的第一标识(例如SUCI、SUPI或者GPSI),中继终端的AMF将远端终端的标识发送给UDM。
S302,中继终端的AMF接收UDM发送的远端终端的第一签约信息。
例如,中继终端的AMF从UDM获得远端终端的第一签约信息,其中包括远端终端签约的UE-AMBR。
S303,中继终端的AMF向中继终端的SMF发送远端终端标识。
例如,中继终端的AMF将远端终端的第一标识发送给中继终端的SMF。
S304,中继终端的SMF向UDM发送远端终端标识。
例如,中继终端的SMF将远端终端的第一标识发送给UDM。
S305,中继终端的SMF接收UDM发送的远端终端的第二签约信息。
例如,中继终端的SMF从UDM获得远端终端的第二签约信息。其中包括远端终端签约的对于特定DNN或者切片的session-AMBR,5QI,ARP等用于QoS控制的信息。
S306,中继终端的AMF向中继终端的PCF发送远端终端的第一签约信息。
例如,中继终端的AMF将远端终端的第一签约信息,例如远端终端签约的UE-AMBR发送给中继终端的PCF。
S307,中继终端的SMF向中继终端的PCF发送远端终端的第二签约信息。
例如,中继终端的SMF将远端终端的第二签约信息,例如远端终端的签约的session-AMBR,5QI,ARP发送给中继终端的PCF。
S308,中继终端的PCF基于所述第一签约信息和所述第二签约信息确定中继终端的第一QoS控制信息。
例如,中继终端的PCF根据远端终端的签约信息调整中继终端的QoS控制信息,例如调整中继终端的UE-AMBR或者session-AMBR。
图9是本申请实施例提供的无线通信方法400的示意性流程图。
如图9所示,所述400可包括以下中的部分或全部内容:
S401,中继终端的AMF向UDM发送远端终端标识。
S402,中继终端的AMF接收UDM发送的远端终端的第一签约信息。
S403,中继终端的AMF向中继终端的SMF发送远端终端标识。
S404,中继终端的SMF向UDM发送远端终端标识。
S405,中继终端的SMF接收UDM发送的远端终端的第二签约信息。
S406,中继终端的AMF向中继终端的PCF发送远端终端的第一签约信息。
S407,中继终端的SMF向中继终端的PCF发送远端终端的第二签约信息。
需要说明的是,图9中的S401~S407可参见图8中针对S301~S307的描述,为避免重复,此处不再赘述。
S408a,中继终端的AMF向中继终端的PCF发送远端终端标识。
S408b,中继终端的SMF向中继终端的PCF发送远端终端标识。
例如,中继终端的AMF或者中继终端的SMF将远端终端的第一标识(例如SUCI、SUPI或者GPSI),或者远端终端的第一标识与远端终端的第二标识(例如SUCI、SUPI或者GPSI中不同于第一标识的标识)的组合发送给中继终端的PCF。
S409,中继终端的PCF向UDM发送远端终端标识。
例如,中继终端的PCF将远端终端的第一标识发送给UDM。
S410,中继终端的PCF接收UDM发送的远端终端的第三签约信息。
例如,中继终端的PCF从UDM获得远端终端的第三签约信息。其中包括远端终端签约的PC5QoS控制参数,例如远端终端的UE-PC5-AMBR,或者PC5-link-AMBR或者允许远端终端使用的PQI信息。
S411,中继终端的PCF确定远端终端的第二QoS控制信息。
例如,中继终端的PCF确定对远端终端进行控制的QoS参数,例如用于对远端终端通过PC5接口传输数据进行控制的UE-PC5-AMBR,或者PC5-link-AMBR或者允许远端终端使用的PQI信息,或者用于对远端终端通过Uu接口传输数据进行控制的UE-AMBR,特定DNN或者切片的session-AMBR,5QI,ARP。
S412,中继终端的PCF向中继终端发送远端终端的第二QoS控制信息。
例如,中继终端的PCF将对远端终端进行控制的QoS参数及远端终端的第一标识或者远端终端的第二标识发送给中继终端。该步骤的消息由中继终端的AMF转发,可选的,中继终端的AMF可以将从中继终端的PCF收到的消息中的远端终端的第一标识替换为远端终端的第二标识再发送给中继终端。
S413,中继终端基于所述第二QoS控制信息,对远端终端的数据传输进行控制。
例如,中继终端负责对远端终端的数据传输进行控制。例如,中继终端可以根据对远端终端进行控制的QoS参数接受或者拒绝或者修改远端终端的PC5接口上的QoS请求;和/或,中继终端将收到的对远端终端进行控制的QoS参数进一步发送给远端终端;和/或,中继终端将对远端终端通过Uu接口传输数据进行QoS控制的参数转换对远端终端通过PC5接口传输数据进行QoS控制的参数;和/或,中继终端根据对远端终端进行控制的QoS参数进行远端终端的上行或者下行数据包的码率控制,例如丢弃超过AMBR的数据包。
应理解,图8和图9仅为本申请的示例,不应理解为对本申请的限制。
例如,中继终端的AMF/SMF/PCF不需要获取远端终端的签约。
例如,中继终端的PCF可以在中继终端上配置QoS控制信息。例如,对使用特定切片、DNN、业务类型、业务代码或应用标识的任何远端终端,使用相同的QoS控制;例如UE-PC5-AMBR、PC5-link-AMBR、允许使用的PQI信息、用于对通过Uu接口传输数据进行控制的UE-AMBR或session-AMBR等。再如,对特定切片、DNN、业务类型、业务代码或应用标识的不区分远端终端的所有流量进行控制的总的AMBR信息等。基于此,由中继终端根据配置信息对远端终端的数据传输 进行控制。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”和“上行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
上文结合图1至图9,详细描述了本申请的方法实施例,下文结合图10至图16,详细描述本申请的装置实施例。
图10是本申请实施例的核心网设备510的示意性框图。
如图10所示,所述核心网设备510可包括:
获取单元511,用于获取远端终端的至少一个签约信息;
确定单元512,用于基于所述至少一个签约信息,确定中继终端的第一服务质量QoS控制信息。
在本申请的一些实施例中,所述至少一个签约信息包括从所述中继终端的接入与移动性管理功能AMF获取的第一签约信息。
在本申请的一些实施例中,所述第一签约信息包括用户设备聚合最大比特速率UE-AMBR。
在本申请的一些实施例中,所述至少一个签约信息包括从所述中继终端的会话管理功能SMF获取的第二签约信息。
所述第二签约信息包括所述远端终端签约的以下信息中的至少一项:
会话聚合最大比特速率session-AMBR;
5G QoS标识5QI;或
分配与保持优先级ARP。
在本申请的一些实施例中,所述获取单元511还用于:
向所述中继终端的接入网设备或所述中继终端的用户面功能UPF发送所述第一QoS控制信息。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图10所示的核心网设备510可以对应于执行本申请实施例的方法210、300或400中的相应主体,并且核心网设备510中的各个单元的前述和其它操作和/或功能分别为了实现图3、图8或图9中的各个方法中的相应流程,为了简洁,在此不再赘述。
图11是本申请实施例的核心网设备520的示意性框图。
如图11所示,所述核心网设备520可包括:
获取单元521,用于获取远端终端的至少一个签约信息;
确定单元522,用于基于所述至少一个签约信息,确定所述远端终端的第二服务质量QoS控制信息。
在本申请的一些实施例中,所述至少一个签约信息包括从所述中继终端的接入与移动性管理功能AMF获取的第一签约信息。
在本申请的一些实施例中,所述第一签约信息包括用户设备聚合最大比特速率UE-AMBR。
在本申请的一些实施例中,所述至少一个签约信息包括从所述中继终端的会话管理功能SMF获取的第二签约信息。
在本申请的一些实施例中,所述第二签约信息包括所述远端终端签约的以下信息中的至少一项:
会话聚合最大比特速率session-AMBR;
5G QoS标识5QI;或
分配与保持优先级ARP。
在本申请的一些实施例中,所述至少一个签约信息包括从统一数据管理UDM或统一数据存储UDR获取的第三签约信息。
在本申请的一些实施例中,所述第三签约信息包括以下信息中的至少一项:
用户设备的PC5聚合最大比特速率UE-PC5-AMBR;
PC5链路的聚合最大比特速率PC5-link-AMBR;或
允许所述远端终端使用的PC5 5G QoS标识PQI。
在本申请的一些实施例中,所述获取单元521还用于:
向所述UDM或所述UDR发送所述远端终端的第一标识。
在本申请的一些实施例中,所述获取单元521还用于:
接收所述中继终端的接入与移动性管理功能AMF或所述中继终端的会话管理功能SMF发送的所述远端终端的第一标识;或
接收所述中继终端的AMF或所述中继终端的SMF发送的所述远端终端的第一标识和第二标识,所述第二标识为所述远端终端的与所述第一标识不同的标识。
在本申请的一些实施例中,所述获取单元521还用于:
向所述中继终端发送所述第二QoS控制信息和所述远端终端的第一标识;或
向所述中继终端发送所述第二QoS控制信息和所述远端终端的第二标识,所述第二标识为所述远端终端的与所述第一标识不同的标识。
在本申请的一些实施例中,所述第二QoS控制信息通过所述中继终端的接入与移动性管理功能AMF发送给所述中继终端。
在本申请的一些实施例中,所述第一标识包括以下中的至少一项:用户隐藏标识SUCI、用户永久标识SUPI或通用公共用户标识GPSI。
在本申请的一些实施例中,所述第二标识包括以下中的至少一项:用户隐藏标识SUCI、用户永久标识SUPI或通用公共用户标识GPSI。
在本申请的一些实施例中,所述第二QoS控制信息包括以下信息中的至少一项:
用户设备聚合最大比特速率UE-AMBR;
会话聚合最大比特速率session-AMBR;
5G QoS标识5QI;
分配与保持优先级ARP;
用户设备的PC5聚合最大比特速率UE-PC5-AMBR;
PC5链路的聚合最大比特速率PC5-link-AMBR;或
允许所述远端终端使用的PC5 5G QoS标识PQI。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图11所示的核心网设备520可以对应于执行本申请实施例的方法220、300或400中的相应主体,并且核心网设备520中的各个单元的前述和其它操作和/或功能分别为了实现图4、图8或图9中的各个方法中的相应流程,为了简洁,在此不再赘述。
图12是本申请实施例的核心网设备530的示意性框图。
如图12所示,所述核心网设备530可包括:
发送单元531,用于向所述统一数据管理UDM或统一数据存储UDR发送远端终端的第一标识;
接收单元532,用于接收所述UDM或所述UDR发送所述远端终端的第一签约信息。
在本申请的一些实施例中,所述第一签约信息包括用户设备聚合最大比特速率UE-AMBR。
在本申请的一些实施例中,所述发送单元531还用于:
向所述中继终端的会话管理功能SMF发送所述第一标识;或
向所述SMF发送所述第一标识和第二标识,所述第二标识为所述远端终端的与所述第一标识不同的标识。
在本申请的一些实施例中,所述发送单元531还用于:
向所述中继终端的策略控制功能功能PCF发送所述第一标识;或
向所述PCF发送所述第一标识和第二标识,所述第二标识为所述远端终端的与所述第一标识不同的标识。
在本申请的一些实施例中,所述发送单元531还用于:
向所述中继终端的策略控制功能功能PCF发送所述第一签约信息。
在本申请的一些实施例中,所述接收单元532还用于:
接收所述中继终端的策略控制功能功能PCF发送的第二服务质量QoS控制信息和所述第一标识;所述发送单元531还用于:
向所述中继终端的发送所述第二QoS控制信息和第二标识,所述第二标识为所述远端终端的与 所述第一标识不同的标识。
在本申请的一些实施例中,所述接收单元532还用于:
接收所述中继终端的策略控制功能功能PCF发送的第二服务质量QoS控制信息和第二标识,所述第二标识为所述远端终端的与所述第一标识不同的标识;所述发送单元531还用于:
向所述中继终端的发送所述第二QoS控制信息和所述第二标识。
在本申请的一些实施例中,所述第二标识包括以下中的至少一项:用户隐藏标识SUCI、用户永久标识SUPI或通用公共用户标识GPSI。
在本申请的一些实施例中,所述第一标识包括以下中的至少一项:用户隐藏标识SUCI、用户永久标识SUPI或通用公共用户标识GPSI。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图12所示的核心网设备530可以对应于执行本申请实施例的方法230、300或400中的相应主体,并且核心网设备530中的各个单元的前述和其它操作和/或功能分别为了实现图5、图8或图9中的各个方法中的相应流程,为了简洁,在此不再赘述。
图13是本申请实施例的核心网设备540的示意性框图。
如图13所示,所述核心网设备540可包括:
发送单元541,用于向所述统一数据管理UDM或统一数据存储UDR发送远端终端的第一标识;
接收单元542,用于接收所述UDM或所述UDR发送所述远端终端的第二签约信息。
在本申请的一些实施例中,所述第二签约信息包括所述远端终端签约的以下信息中的至少一项:
会话聚合最大比特速率session-AMBR;
5G QoS标识5QI;或
分配与保持优先级ARP。
在本申请的一些实施例中,所述接收单元542还用于:
接收所述中继终端的接入与移动性管理功能AMF发送的所述第一标识;或
接收所述AMF发送的所述第一标识和第二标识,所述第二标识为所述远端终端的与所述第一标识不同的标识。
在本申请的一些实施例中,所述发送单元541还用于:
向所述中继终端的策略控制功能功能PCF发送所述第一标识;或
向所述PCF发送所述第一标识和第二标识,所述第二标识为所述远端终端的与所述第一标识不同的标识。
在本申请的一些实施例中,所述第二标识包括以下中的至少一项:用户隐藏标识SUCI、用户永久标识SUPI或通用公共用户标识GPSI。
在本申请的一些实施例中,所述第一标识包括以下中的至少一项:用户隐藏标识SUCI、用户永久标识SUPI或通用公共用户标识GPSI。
在本申请的一些实施例中,所述发送单元541还用于:
向所述中继终端的策略控制功能功能PCF发送所述第二签约信息。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图13所示的核心网设备540可以对应于执行本申请实施例的方法240、300或400中的相应主体,并且核心网设备540中的各个单元的前述和其它操作和/或功能分别为了实现图6、图8或图9中的各个方法中的相应流程,为了简洁,在此不再赘述。
图14是本申请实施例的中继终端550的示意性框图。
如图14所示,所述中继终端550可包括:
获取单元551,用于获取远端终端的第二服务质量QoS控制信息;
控制单元552,用于基于所述第二QoS控制信息,对远端终端的数据传输进行控制。
在本申请的一些实施例中,所述第二QoS控制信息为所述中继终端的策略控制功能功能PCF基于所述远端终端的至少一个签约信息确定的信息。
在本申请的一些实施例中,所述获取单元551具体用于:
接收所述第二QoS控制信息和所述远端终端的第一标识;或
接收所述第二QoS控制信息和所述远端终端的第二标识,所述第二标识为所述远端终端的与所述第一标识不同的标识。
在本申请的一些实施例中,所述第一标识包括以下中的至少一项:用户隐藏标识SUCI、用户永久标识SUPI或通用公共用户标识GPSI。
在本申请的一些实施例中,所述第二标识包括以下中的至少一项:用户隐藏标识SUCI、用户永 久标识SUPI或通用公共用户标识GPSI。
在本申请的一些实施例中,所述第二QoS控制信息为所述中继终端的策略控制功能功能PCF针对所述中继终端配置的信息。
在本申请的一些实施例中,所述第二QoS控制信息包括以下信息中的至少一项:
用户设备聚合最大比特速率UE-AMBR;
会话聚合最大比特速率session-AMBR;
5G QoS标识5QI;
分配与保持优先级ARP;
用户设备的PC5聚合最大比特速率UE-PC5-AMBR;
PC5链路的聚合最大比特速率PC5-link-AMBR;或
允许所述远端终端使用的PC5 5G QoS标识PQI。
在本申请的一些实施例中,所述控制单元552具体用于:
向所述远端终端发送所述第二QoS控制信息;和/或
基于所述第二QoS控制信息,对所述远端终端的上行或下行数据包的码率进行控制;和/或
基于所述第二QoS控制信息,接受、拒绝或修改所述远端终端的PC5接口上的QoS请求。
在本申请的一些实施例中,所述控制单元552具体用于:
丢弃所述远端终端的上行或下行数据包中的速率超过以下中的至少一项的数据包:
用户设备聚合最大比特速率UE-AMBR;
会话聚合最大比特速率session-AMBR;
用户设备的PC5聚合最大比特速率UE-PC5-AMBR;或
PC5链路的聚合最大比特速率PC5-link-AMBR。
在本申请的一些实施例中,所述控制单元552还用于:
将针对Uu接口传输的QoS控制信息,转换为针对PC5接口传输的QoS控制信息。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图10所示的中继终端550可以对应于执行本申请实施例的方法250、300或400中的相应主体,并且中继终端550中的各个单元的前述和其它操作和/或功能分别为了实现图3、图8或图9中的各个方法中的相应流程,为了简洁,在此不再赘述。
上文中结合附图从功能模块的角度描述了本申请实施例的通信设备。应理解,该功能模块可以通过硬件形式实现,也可以通过软件形式的指令实现,还可以通过硬件和软件模块组合实现。
具体地,本申请实施例中的方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路和/或软件形式的指令完成,结合本申请实施例公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。
可选地,软件模块可以位于随机存储器,闪存、只读存储器、可编程只读存储器、电可擦写可编程存储器、寄存器等本领域的成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法实施例中的步骤。
例如,上文涉及的处理单元和通信单元可分别由处理器和收发器实现。
图15是本申请实施例的通信设备600示意性结构图。
如图15所示,所述通信设备600可包括处理器610。
其中,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
请继续参见图15,通信设备600还可以包括存储器620。
其中,该存储器620可以用于存储指示信息,还可以用于存储处理器610执行的代码、指令等。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
请继续参见图15,通信设备600还可以包括收发器630。
其中,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
应当理解,该通信设备600中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
还应理解,该通信设备600可为本申请实施例的核心网设备,并且该通信设备600可以实现本申请实施例的各个方法中由核心网设备实现的相应流程,也就是说,可以对应于执行根据本申请实施例的方法中的相应主体,为了简洁,在此不再赘述。类似地,该通信设备600可为本申请实施例的中继 终端,并且该通信设备600可以实现本申请实施例的各个方法中由中继终端实现的相应流程。也就是说,可以对应于执行根据本申请实施例的方法中的相应主体,为了简洁,在此不再赘述。
此外,本申请实施例中还提供了一种芯片。
例如,芯片可能是一种集成电路芯片,具有信号的处理能力,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。所述芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。可选地,该芯片可应用到各种通信设备中,使得安装有该芯片的通信设备能够执行本申请实施例中的公开的各方法、步骤及逻辑框图。
图16是根据本申请实施例的芯片700的示意性结构图。
如图16所示,所述芯片700包括处理器710。
其中,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
请继续参见图16,所述芯片700还可以包括存储器720。
其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。该存储器720可以用于存储指示信息,还可以用于存储处理器710执行的代码、指令等。存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
请继续参见图16,所述芯片700还可以包括输入接口730。
其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
请继续参见图16,所述芯片700还可以包括输出接口740。
其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
应理解,所述芯片700可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,也可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
还应理解,该芯片700中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
上文涉及的处理器可以包括但不限于:
通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等等。
所述处理器可以用于实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
上文涉及的存储器包括但不限于:
易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
应注意,本文描述的存储器旨在包括这些和其它任意适合类型的存储器。
本申请实施例中还提供了一种计算机可读存储介质,用于存储计算机程序。该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行方法300至方法500所示实施例的方法。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁, 在此不再赘述。
本申请实施例中还提供了一种计算机程序产品,包括计算机程序。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序。当该计算机程序被计算机执行时,使得计算机可以执行方法实施例的方法。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
此外,本申请实施例还提供了一种通信系统,所述通信系统可以包括上述涉及的终端设备和网络设备,以形成如图1所示的通信系统100,为了简洁,在此不再赘述。需要说明的是,本文中的术语“系统”等也可以称为“网络管理架构”或者“网络系统”等。
还应当理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。
例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。
例如,以上所描述的装置实施例中单元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些单元或模块或组件可以忽略,或不执行。
又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块/组件来实现本申请实施例的目的。
最后,需要说明的是,上文中显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上内容,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (57)

  1. 一种无线通信方法,其特征在于,应用于中继终端的策略控制功能功能PCF,包括:
    获取远端终端的至少一个签约信息;
    基于所述至少一个签约信息,确定中继终端的第一服务质量QoS控制信息。
  2. 根据权利要求1所述的方法,其特征在于,所述至少一个签约信息包括从所述中继终端的接入与移动性管理功能AMF获取的第一签约信息。
  3. 根据权利要求2所述的方法,其特征在于,所述第一签约信息包括用户设备聚合最大比特速率UE-AMBR。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述至少一个签约信息包括从所述中继终端的会话管理功能SMF获取的第二签约信息。
  5. 根据权利要求4所述的方法,其特征在于,所述第二签约信息包括所述远端终端签约的以下信息中的至少一项:
    会话聚合最大比特速率session-AMBR;
    5G QoS标识5QI;或
    分配与保持优先级ARP。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    向所述中继终端的接入网设备或所述中继终端的用户面功能UPF发送所述第一QoS控制信息。
  7. 一种无线通信方法,其特征在于,应用于中继终端的策略控制功能功能PCF,包括:
    获取远端终端的至少一个签约信息;
    基于所述至少一个签约信息,确定所述远端终端的第二服务质量QoS控制信息。
  8. 根据权利要求7所述的方法,其特征在于,所述至少一个签约信息包括从所述中继终端的接入与移动性管理功能AMF获取的第一签约信息。
  9. 根据权利要求8所述的方法,其特征在于,所述第一签约信息包括用户设备聚合最大比特速率UE-AMBR。
  10. 根据权利要求7至3中任一项所述的方法,其特征在于,所述至少一个签约信息包括从所述中继终端的会话管理功能SMF获取的第二签约信息。
  11. 根据权利要求10所述的方法,其特征在于,所述第二签约信息包括所述远端终端签约的以下信息中的至少一项:
    会话聚合最大比特速率session-AMBR;
    5G QoS标识5QI;或
    分配与保持优先级ARP。
  12. 根据权利要求7至11中任一项所述的方法,其特征在于,所述至少一个签约信息包括从统一数据管理UDM或统一数据存储UDR获取的第三签约信息。
  13. 根据权利要求12所述的方法,其特征在于,所述第三签约信息包括以下信息中的至少一项:
    用户设备的PC5聚合最大比特速率UE-PC5-AMBR;
    PC5链路的聚合最大比特速率PC5-link-AMBR;或
    允许所述远端终端使用的PC5 5G QoS标识PQI。
  14. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    向所述UDM或所述UDR发送所述远端终端的第一标识。
  15. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    接收所述中继终端的接入与移动性管理功能AMF或所述中继终端的会话管理功能SMF发送的所述远端终端的第一标识;或
    接收所述中继终端的AMF或所述中继终端的SMF发送的所述远端终端的第一标识和第二标识,所述第二标识为所述远端终端的与所述第一标识不同的标识。
  16. 根据权利要求7至15中任一项所述的方法,其特征在于,所述方法还包括:
    向所述中继终端发送所述第二QoS控制信息和所述远端终端的第一标识;或
    向所述中继终端发送所述第二QoS控制信息和所述远端终端的第二标识,所述第二标识为所述远端终端的与所述第一标识不同的标识。
  17. 根据权利要求16所述的方法,其特征在于,所述第二QoS控制信息通过所述中继终端的接入与移动性管理功能AMF发送给所述中继终端。
  18. 根据权利要求14至17中任一项所述的方法,其特征在于,所述第一标识包括以下中的至少一项:用户隐藏标识SUCI、用户永久标识SUPI或通用公共用户标识GPSI。
  19. 根据权利要求15至17中任一项所述的方法,其特征在于,所述第二标识包括以下中的至少一项:用户隐藏标识SUCI、用户永久标识SUPI或通用公共用户标识GPSI。
  20. 根据权利要求7至19中任一项所述的方法,其特征在于,所述第二QoS控制信息包括以下信息中的至少一项:
    用户设备聚合最大比特速率UE-AMBR;
    会话聚合最大比特速率session-AMBR;
    5G QoS标识5QI;
    分配与保持优先级ARP;
    用户设备的PC5聚合最大比特速率UE-PC5-AMBR;
    PC5链路的聚合最大比特速率PC5-link-AMBR;或
    允许所述远端终端使用的PC5 5G QoS标识PQI。
  21. 一种无线通信方法,其特征在于,应用于中继终端的接入与移动性管理功能AMF,包括:
    向所述统一数据管理UDM或统一数据存储UDR发送远端终端的第一标识;
    接收所述UDM或所述UDR发送所述远端终端的第一签约信息。
  22. 根据权利要求21所述的方法,其特征在于,所述第一签约信息包括用户设备聚合最大比特速率UE-AMBR。
  23. 根据权利要求21或22所述的方法,其特征在于,所述方法还包括:
    向所述中继终端的会话管理功能SMF发送所述第一标识;或
    向所述SMF发送所述第一标识和第二标识,所述第二标识为所述远端终端的与所述第一标识不同的标识。
  24. 根据权利要求21至23中任一项所述的方法,其特征在于,所述方法还包括:
    向所述中继终端的策略控制功能功能PCF发送所述第一标识;或
    向所述PCF发送所述第一标识和第二标识,所述第二标识为所述远端终端的与所述第一标识不同的标识。
  25. 根据权利要求21至24中任一项所述的方法,其特征在于,所述方法还包括:
    向所述中继终端的策略控制功能功能PCF发送所述第一签约信息。
  26. 根据权利要求21至25中任一项所述的方法,其特征在于,所述方法还包括:
    接收所述中继终端的策略控制功能功能PCF发送的第二服务质量QoS控制信息和所述第一标识;
    向所述中继终端的发送所述第二QoS控制信息和第二标识,所述第二标识为所述远端终端的与所述第一标识不同的标识。
  27. 根据权利要求21至25中任一项所述的方法,其特征在于,所述方法还包括:
    接收所述中继终端的策略控制功能功能PCF发送的第二服务质量QoS控制信息和第二标识,所述第二标识为所述远端终端的与所述第一标识不同的标识;
    向所述中继终端的发送所述第二QoS控制信息和所述第二标识。
  28. 根据权利要求23、24、26以及27中任一项所述的方法,其特征在于,所述第二标识包括以下中的至少一项:用户隐藏标识SUCI、用户永久标识SUPI或通用公共用户标识GPSI。
  29. 根据权利要求21至28中任一项所述的方法,其特征在于,所述第一标识包括以下中的至少一项:用户隐藏标识SUCI、用户永久标识SUPI或通用公共用户标识GPSI。
  30. 一种无线通信方法,其特征在于,应用于中继终端的会话管理功能SMF,包括:
    向所述统一数据管理UDM或统一数据存储UDR发送远端终端的第一标识;
    接收所述UDM或所述UDR发送所述远端终端的第二签约信息。
  31. 根据权利要求30所述的方法,其特征在于,所述第二签约信息包括所述远端终端签约的以下信息中的至少一项:
    会话聚合最大比特速率session-AMBR;
    5G QoS标识5QI;或
    分配与保持优先级ARP。
  32. 根据权利要求30或31所述的方法,其特征在于,所述方法还包括:
    接收所述中继终端的接入与移动性管理功能AMF发送的所述第一标识;或
    接收所述AMF发送的所述第一标识和第二标识,所述第二标识为所述远端终端的与所述第一标识不同的标识。
  33. 根据权利要求30至32中任一项所述的方法,其特征在于,所述方法还包括:
    向所述中继终端的策略控制功能功能PCF发送所述第一标识;或
    向所述PCF发送所述第一标识和第二标识,所述第二标识为所述远端终端的与所述第一标识不同的标识。
  34. 根据权利要求32或33所述的方法,其特征在于,所述第二标识包括以下中的至少一项:用户隐藏标识SUCI、用户永久标识SUPI或通用公共用户标识GPSI。
  35. 根据权利要求30至34中任一项所述的方法,其特征在于,所述第一标识包括以下中的至少一项:用户隐藏标识SUCI、用户永久标识SUPI或通用公共用户标识GPSI。
  36. 根据权利要求30至35中任一项所述的方法,其特征在于,所述方法还包括:
    向所述中继终端的策略控制功能功能PCF发送所述第二签约信息。
  37. 一种无线通信方法,其特征在于,应用于中继终端,包括:
    获取远端终端的第二服务质量QoS控制信息;
    基于所述第二QoS控制信息,对远端终端的数据传输进行控制。
  38. 根据权利要求37所述的方法,其特征在于,所述第二QoS控制信息为所述中继终端的策略控制功能功能PCF基于所述远端终端的至少一个签约信息确定的信息。
  39. 根据权利要求37或38所述的方法,其特征在于,所述获取远端终端的第二服务质量QoS控制信息,包括:
    接收所述第二QoS控制信息和所述远端终端的第一标识;或
    接收所述第二QoS控制信息和所述远端终端的第二标识,所述第二标识为所述远端终端的与所述第一标识不同的标识。
  40. 根据权利要求39所述的方法,其特征在于,所述第一标识包括以下中的至少一项:用户隐藏标识SUCI、用户永久标识SUPI或通用公共用户标识GPSI。
  41. 根据权利要求39所述的方法,其特征在于,所述第二标识包括以下中的至少一项:用户隐藏标识SUCI、用户永久标识SUPI或通用公共用户标识GPSI。
  42. 根据权利要求37所述的方法,其特征在于,所述第二QoS控制信息为所述中继终端的策略控制功能功能PCF针对所述中继终端配置的信息。
  43. 根据权利要求37至42中任一项所述的方法,其特征在于,所述第二QoS控制信息包括以下信息中的至少一项:
    用户设备聚合最大比特速率UE-AMBR;
    会话聚合最大比特速率session-AMBR;
    5G QoS标识5QI;
    分配与保持优先级ARP;
    用户设备的PC5聚合最大比特速率UE-PC5-AMBR;
    PC5链路的聚合最大比特速率PC5-link-AMBR;或
    允许所述远端终端使用的PC5 5G QoS标识PQI。
  44. 根据权利要求37至43中任一项所述的方法,其特征在于,所述基于所述第二QoS控制信息,对远端终端的数据传输进行控制,包括:
    向所述远端终端发送所述第二QoS控制信息;和/或
    基于所述第二QoS控制信息,对所述远端终端的上行或下行数据包的码率进行控制;和/或
    基于所述第二QoS控制信息,接受、拒绝或修改所述远端终端的PC5接口上的QoS请求。
  45. 根据权利要求44所述的方法,其特征在于,所述基于所述第二QoS控制信息,对所述远端终端的上行数据包或下行数据包的码率进行控制,包括:
    丢弃所述远端终端的上行或下行数据包中的速率超过以下中的至少一项的数据包:
    用户设备聚合最大比特速率UE-AMBR;
    会话聚合最大比特速率session-AMBR;
    用户设备的PC5聚合最大比特速率UE-PC5-AMBR;或
    PC5链路的聚合最大比特速率PC5-link-AMBR。
  46. 根据权利要求37至45中任一项所述的方法,其特征在于,所述方法还包括:
    将针对Uu接口传输的QoS控制信息,转换为针对PC5接口传输的QoS控制信息。
  47. 一种核心网设备,其特征在于,包括:
    获取单元,用于获取远端终端的至少一个签约信息;
    确定单元,用于基于所述至少一个签约信息,确定中继终端的第一服务质量QoS控制信息。
  48. 一种核心网设备,其特征在于,包括:
    获取单元,用于获取远端终端的至少一个签约信息;
    确定单元,用于基于所述至少一个签约信息,确定所述远端终端的第二服务质量QoS控制信息。
  49. 一种核心网设备,其特征在于,包括:
    发送单元,用于向所述统一数据管理UDM或统一数据存储UDR发送远端终端的第一标识;
    接收单元,用于接收所述UDM或所述UDR发送所述远端终端的第一签约信息。
  50. 一种核心网设备,其特征在于,包括:
    发送单元,用于向所述统一数据管理UDM或统一数据存储UDR发送远端终端的第一标识;
    接收单元,用于接收所述UDM或所述UDR发送所述远端终端的第二签约信息。
  51. 一种中继终端,其特征在于,包括:
    获取单元,用于获取远端终端的第二服务质量QoS控制信息;
    控制单元,用于基于所述第二QoS控制信息,对远端终端的数据传输进行控制。
  52. 一种核心网设备,其特征在于,包括:
    处理器、存储器和收发器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行如权利要求1至6中任一项所述的方法、如权利要求7至20中任一项所述的方法、如权利要求21至29中任一项所述的方法或如权利要求30至36中任一项所述的方法。
  53. 一种中继终端,其特征在于,包括:
    处理器、存储器和收发器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求37至46中任一项所述的方法。
  54. 一种芯片,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至6中任一项所述的方法、如权利要求7至20中任一项所述的方法、如权利要求21至29中任一项所述的方法、如权利要求30至36中任一项所述的方法或如权利要求37至46中任一项所述的方法。
  55. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求xx至xx中任一项所述的方法。
  56. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求1至6中任一项所述的方法、如权利要求7至20中任一项所述的方法、如权利要求21至29中任一项所述的方法、如权利要求30至36中任一项所述的方法或如权利要求37至46中任一项所述的方法。
  57. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至6中任一项所述的方法、如权利要求7至20中任一项所述的方法、如权利要求21至29中任一项所述的方法、如权利要求30至36中任一项所述的方法或如权利要求37至46中任一项所述的方法。
PCT/CN2020/118166 2020-09-27 2020-09-27 无线通信方法和设备 WO2022061829A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/118166 WO2022061829A1 (zh) 2020-09-27 2020-09-27 无线通信方法和设备
CN202080104715.5A CN116235628A (zh) 2020-09-27 2020-09-27 无线通信方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/118166 WO2022061829A1 (zh) 2020-09-27 2020-09-27 无线通信方法和设备

Publications (1)

Publication Number Publication Date
WO2022061829A1 true WO2022061829A1 (zh) 2022-03-31

Family

ID=80844853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118166 WO2022061829A1 (zh) 2020-09-27 2020-09-27 无线通信方法和设备

Country Status (2)

Country Link
CN (1) CN116235628A (zh)
WO (1) WO2022061829A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150029866A1 (en) * 2013-07-29 2015-01-29 Htc Corporation Method of relay discovery and communication in a wireless communications system
WO2017028294A1 (zh) * 2015-08-20 2017-02-23 华为技术有限公司 数据处理方法和设备
CN109155797A (zh) * 2017-03-08 2019-01-04 华为技术有限公司 通信方法及装置
CN109246688A (zh) * 2017-07-11 2019-01-18 华为技术有限公司 设备接入方法、设备及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150029866A1 (en) * 2013-07-29 2015-01-29 Htc Corporation Method of relay discovery and communication in a wireless communications system
WO2017028294A1 (zh) * 2015-08-20 2017-02-23 华为技术有限公司 数据处理方法和设备
CN109155797A (zh) * 2017-03-08 2019-01-04 华为技术有限公司 通信方法及装置
CN109246688A (zh) * 2017-07-11 2019-01-18 华为技术有限公司 设备接入方法、设备及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Remote UE resource handling via Nwk Relay", 3GPP DRAFT; S2-152268_PROSE_BEARERS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Dubrovnik, Croatia; 20150706 - 20150710, 6 July 2015 (2015-07-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050986984 *

Also Published As

Publication number Publication date
CN116235628A (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
US11477307B2 (en) Media access control protocol data unit processing method and apparatus
WO2019019224A1 (zh) 命令接收方法、装置及通信系统
WO2022036555A1 (zh) 中继传输的方法、中继终端和远端终端
WO2020087509A1 (zh) 无线通信方法、终端设备和网络设备
US20230090232A1 (en) Terminal device and network device
WO2020150876A1 (zh) 会话建立方法、终端设备和网络设备
WO2022056676A1 (zh) 业务识别方法、终端设备和网络设备
WO2022160123A1 (zh) 接入方式选择方法、终端设备和网络设备
WO2020211778A1 (zh) 小区切换方法以及装置
WO2023102940A1 (zh) 无线通信方法、远端终端以及中继终端
WO2022126641A1 (zh) 无线通信方法、终端设备、第一接入网设备以及网元
WO2022160205A1 (zh) 一种数据传输方法、终端设备和网络设备
WO2022061829A1 (zh) 无线通信方法和设备
WO2021160013A1 (zh) 无线通信的方法和装置以及通信设备
WO2022151021A1 (zh) 缓存状态上报的方法、缓存状态上报的配置方法及装置
US20220377547A1 (en) Wireless communication method, terminal device and network element
WO2022061838A1 (zh) 启用反向映射机制方法、终端设备和网络设备
WO2023011180A1 (zh) 载波配置方法及通信装置
WO2023141909A1 (zh) 无线通信方法、远端ue以及网元
WO2022222748A1 (zh) 中继通信方法和装置
WO2022213779A1 (zh) 参数配置方法、终端设备和网络设备
WO2023155655A1 (zh) 算力能力感知方法和装置
WO2023280085A1 (zh) 频带范围上报的方法和通信装置
WO2022133977A1 (zh) 服务质量QoS控方法、终端设备和网络设备
WO2022056870A1 (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954680

Country of ref document: EP

Kind code of ref document: A1