WO2022061824A1 - Methods, apparatuses and computer medium for radio signal simulation - Google Patents

Methods, apparatuses and computer medium for radio signal simulation Download PDF

Info

Publication number
WO2022061824A1
WO2022061824A1 PCT/CN2020/118155 CN2020118155W WO2022061824A1 WO 2022061824 A1 WO2022061824 A1 WO 2022061824A1 CN 2020118155 W CN2020118155 W CN 2020118155W WO 2022061824 A1 WO2022061824 A1 WO 2022061824A1
Authority
WO
WIPO (PCT)
Prior art keywords
grids
environment
area
virtual
virtual radio
Prior art date
Application number
PCT/CN2020/118155
Other languages
French (fr)
Inventor
Daniel BOVENSIEPEN
Jie Zhang
Original Assignee
Siemens Aktiengesellschaft
Siemens Ltd., China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft, Siemens Ltd., China filed Critical Siemens Aktiengesellschaft
Priority to PCT/CN2020/118155 priority Critical patent/WO2022061824A1/en
Publication of WO2022061824A1 publication Critical patent/WO2022061824A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/10Geometric effects
    • G06T15/20Perspective computation

Definitions

  • the disclosure relates to wireless communication, and more particularly to methods, apparatuses and computer medium for radio signal simulation.
  • radio-based communication systems are becoming a reasonable alternative to wired-based communication systems in more and more areas.
  • AGVs Automated guided vehicle
  • HMIs Human machine interface
  • machine tools are connected wirelessly to monitor their states and perform control tasks.
  • IEEE and 3GPP are furthermore adopting radio technologies such as millimetre-wave (mmWave) technologies to better approach the requirements of areas traditionally not being connected wireless. Due to the nonintuitive propagation properties of radio signals, it makes it harder yet to deploy such systems.
  • mmWave millimetre-wave
  • a system which creates a Digital Twin of the Wireless Network, containing a 3D model, a propagation simulation and an AR (Augmented Reality) device to make the nonintuitive propagation behavior of deployment locations of an radio source visible to a human, is proposed in the applicant’s PCT application WO2019/227485A1 entitled “Augmented Reality Method for simulating wireless signal and apparatus” , all of which are incorporated herein by reference.
  • PCT application WO2019/227485A1 entitled “Augmented Reality Method for simulating wireless signal and apparatus” , all of which are incorporated herein by reference.
  • it may take long simulation time (e.g., several hours) to calculate the propagation field for a real 3D model to receive the final result.
  • FPGA Field Programmable Gate Arrays
  • GPU Graphics Processing Units
  • a less computing intensive algorithm e.g. only considering direct distance instead of full raytracing
  • a first exemplary aspect of the disclosure provides a method for radio signal simulation.
  • the method comprises: determining a field of view of a user device or user in an environment; dividing the environment into a plurality of areas including a first area associated with the field of view and a second area different from the first area; creating an initial set of grids for the plurality of areas; determining parameters related to a virtual radio device, the virtual radio device being a virtual radio source or reflector; placing the virtual radio device in a virtual representation of the environment; and based on the parameters and position of the virtual radio device and the virtual representation of the environment, iteratively simulating and rendering virtual radio signal coverage for the virtual radio device in the virtual representation using the initial set of grids for the plurality of areas in an order that the first area is given priority over the second area.
  • a second exemplary aspect of the disclosure provides an apparatus for radio signal simulation.
  • the apparatus comprises: a determining module configured to determine a field of view of a user device or user in the environment; a dividing module configured to divide the environment into a plurality of areas including a first area associated with the field of view and a second area different from the first area; a creating module configured to create an initial set of grids for the plurality of areas; a setting module configured to determine parameters related to a virtual radio device that is a virtual radio source or reflector and place the virtual radio device in a virtual representation of the environment; and a simulating module configured to iteratively simulating and rendering virtual radio signal coverage for the virtual radio device in the virtual representation using the initial set of grids for the plurality of areas in an order that the first area is given priority over the second area based on the parameters and position of the virtual radio device and the virtual representation of the environment.
  • a third exemplary aspect of the disclosure provides an apparatus for radio signal simulation.
  • the apparatus comprises a processor and a memory storing instructions that when executed by the processor cause the apparatus to perform a method according to the first exemplary aspect described above.
  • a fourth exemplary aspect of the disclosure provides a computer-readable storage medium having instructions stored thereon, the instructions to perform a method according to the first exemplary aspect described above.
  • a fifth exemplary aspect of the disclosure provides a computer program product tangibly embodied in a computer-readable storage medium and comprising instructions to perform a method according to the first exemplary aspect described above.
  • the disclosure proposes an optimized progressive build-up of a simulation result via rendering of interlaced simulation data points to provide a faster feedback loop to the user. It can also be combined with previous improvements of the simulation speed itself as it is independent from the simulation algorithm and hardware.
  • FIG. 1 is a diagram illustrating an example architecture for radio signal simulation in accordance with embodiments of the disclosure.
  • FIG. 2 is a flowchart illustrating an example method for radio signal simulation in accordance with embodiments of the disclosure.
  • FIG. 3 is a flowchart illustrating further sub-steps of the method of FIG. 2 in accordance with embodiments of the disclosure.
  • FIGS. 4 to 8 illustrate an example process to implement the method of FIGS. 2 and 3 in accordance with embodiments of the disclosure.
  • FIG. 9 illustrates an example apparatus for radio signal simulation in accordance with embodiments of the disclosure.
  • FIG. 10 illustrates an example apparatus for radio signal simulation in accordance with embodiments of the disclosure.
  • FIG. 1 is a diagram illustrating an example architecture 100 for radio signal simulation in accordance with embodiments of the disclosure.
  • the architecture 100 may include an environment 101, a user 102 and a user device M1.
  • the user device M1 may be a head mounted or handheld device carried by the user 102 or any other wearable or portable devices such as cellular phones, tablets, head-up display (HUD) , or the like.
  • the user device M1 allows to place a virtual radio device M2 in a virtual representation of the environment 101 (i.e., the virtual radio device M2 can be virtually placed in the environment 101) and visualizes simulation results of virtual radio signal coverage for the virtual radio device M1 in the virtual representation to provide augmented reality (AR) display.
  • the user device M1 may have one or more sensors or cameras to capture the environment 101 to form a virtual representation of the environment 101.
  • the virtual radio device M2 may be a virtual radio source or reflector.
  • FIG. 2 is a flowchart illustrating an example method 200 for radio signal simulation in accordance with embodiments of the disclosure.
  • the method 200 can be implemented by a user device M1 of FIG. 1.
  • the method 200 includes steps 201 to 206.
  • the method 200 determines a field of view of a user device or user in an environment.
  • the field of view may be observed for an ambient environment by a user or a user device carried by the user.
  • the method 200 divides the environment into a plurality of areas including a first area associated with the field of view and a second area different from the first area.
  • the method 200 creates an initial set of grids for the plurality of areas.
  • the initial set of grids may be spacious (or coarse) grids that do not meet a target level (e.g., a fidelity level to create a high-fidelity simulation result) for simulation but have reduced amount of positions for simulation.
  • a target level e.g., a fidelity level to create a high-fidelity simulation result
  • the method 200 determines parameters related to a virtual radio device which is a virtual radio source or reflector.
  • the parameters of the virtual radio device may be set by user input or through configuration on a user interface of a user device.
  • the method 200 places the virtual radio device in a virtual representation of the environment.
  • the virtual representation of the environment may be a multi-dimensional virtual representation of the environment formed by capturing the environment.
  • the method 200 iteratively simulates and renders virtual radio signal coverage for the virtual radio device in the virtual representation using the initial set of grids for the plurality of areas in an order that the first area is given priority over the second area based on the parameters and position of the virtual radio device and the virtual representation of the environment.
  • the simulation for the environment including a plurality of areas is performed in sequence to progressively simulate and rendering the radio signal simulation.
  • the method 200 further acquires a viewing angle of the user device or user in the environment and determines the field of view based on the viewing angle.
  • the viewing angle should not be understood as an angle formed only by line of sight, but determined by the position in the environment and an angle to the real-world environment.
  • the viewing angle may be acquired using available sensors (e.g. inertial measurement units) of a user device or parameters of a camera of a user device.
  • the method 200 further divides the environment into the plurality of areas based on proximity of an area to the field of view. For example, the proximity of an area to the field of view may be determined by calculating the number or portion of points falling into the field of view.
  • the first area may be determined to be closer to the field of view than the second area.
  • all or at least part of the field of view may be set as the first area and the remaining part of the environment may be further divided into one or more other areas, such as a second area.
  • the viewing angle is wide (e.g., a full angle visible) and the field of view is wide, then only a part of the field of view is considered as the first area.
  • the initial set of grids comprises a second initial set of grids for the second area
  • the method 200 iteratively simulates and renders the virtual radio signal coverage using the initial set of grids for the plurality of areas by: a step of simulating and rendering the virtual radio signal coverage using the second initial set of grids for the second area as a second current set of grids; a step of creating a second subsequent set of grids over the second current set of grids, the second subsequent set of grids being at least partially narrower than the second current set of grids; a step of simulating and rendering the virtual radio signal coverage using the second subsequent set of grids; a step of updating the second current set of grids using the second subsequent set of grids after each simulation, wherein the step of creating the second subsequent set of grids, the step of simulating and rendering the virtual radio signal coverage using the second subsequent set of grids and the step of updating the second current set of grids are repeatedly executed until a target level (e.g., a fidelity level to create a high
  • the method 200 renders the virtual radio signal coverage by adding marks indicating the radio signal coverage on the basis of the environment as an augmented reality image and rendering the augmented reality image.
  • adding marks on the basis of the environment may comprises plotting the marks on the basis of a virtual representation of the environment.
  • the plotting may comprise one of: plotting a pattern of the virtual radio signal coverage on the ground of the environment; plotting a pattern of the virtual radio signal coverage on a photo of the environment.
  • the method 200 captures the environment to form a multi-dimensional virtual representation of the environment by: taking pictures of the environment from different positions and at different angles, so as to get at least two images for each scene; measuring depth information of each pixel in the images using a stereo triangulation method.
  • the parameters may comprise one or more of: device type, frequency, antenna type and antenna gain of the virtual radio device, and so on.
  • the method 200 can provide an optimized progressive build-up of a simulation result via iteratively rendering of simulation data points for different areas to provide a faster feedback loop to the user. Since simulation results for an area within the field view is firstly rendered, it is feasible for the user to freely check different installation spots by placing the virtual radio device at different locations to observe the propagation behavior at first time.
  • the method 200 can also be combined with previous improvements of the simulation speed itself as it is independent from the simulation algorithm and hardware.
  • FIG. 3 is a flowchart 300 illustrating further sub-steps of step 206 of the method 200 of FIG. 2 in accordance with embodiments of the disclosure, wherein the initial set of grids comprises a first initial set of grids for the first area.
  • the step 206 includes sub-steps 301 to 304.
  • the step 206 simulates and renders the virtual radio signal coverage using the first initial set of grids for the first area as a first current set of grids.
  • the step 206 creates a first subsequent set of grids over the first current set of grids, wherein the first subsequent set of grids are at least partially narrower than the first current set of grids.
  • the step 206 simulates and renders the virtual radio signal coverage using the first subsequent set of grids.
  • the step 206 updates the first current set of grids using the first subsequent set of grids after each simulation.
  • the sub-steps 301 to 304 are repeatedly executed until a target level for simulation is met. All or at least part of the first initial (current) set of grids may be split into narrower (fine) subsequent set of grids to finally meet the simulation fidelity level using progressive simulation.
  • the initial set of grids comprises a second initial set of grids for the second area and the sub-steps 301 to 304 are repeatedly executed by using the second initial set of grids and a second subsequent set of grids until a target level for simulation is met.
  • the sub-steps 301 to 304 are repeatedly executed by using the second initial set of grids and a second subsequent set of grids until a target level for simulation is met.
  • the method 200 can provide interlaced visualization for augmented radio emission simulation. It can reduce the amount of positions in space which need to be considered for the simulation to the smallest amount which still make the final result useful to the end-user. Only the positions necessary for the end-user are sent to the simulation process to be calculated. The user will be satisfied by seeing just a subset of the simulation result at any point in time by progressive simulation.
  • the method 200 can also be combined with previous improvements of the simulation speed itself as it is independent from the simulation algorithm and hardware.
  • the calculation of the radio simulation may be performed by either a user device or a computing unit separate from the user device (for example, implemented by cloud computing technology) .
  • the user device needs additional computing performance and battery power support.
  • the requirements for computing performance and battery power are significantly reduced although the user device will require an additional communication interface.
  • the increase in the accuracy, precision or efficiency of calculations will facilitate the improvement of product performance without the need to upgrade user device.
  • FIGS. 4 to 8 illustrate an example process to implement the method 200 of FIGS. 2 and 3 in accordance with embodiments of the disclosure.
  • FIG. 4 is a diagram illustrating an example architecture 400 for radio signal simulation in accordance with embodiments of the disclosure.
  • FIG. 5 is a diagram 500 illustrating orientation of the user device M1 and the user 102 in the environment 101 in accordance with embodiments of the disclosure.
  • FIG. 6 is a diagram 600 illustrating grid partitioning of the environment 101 in accordance with embodiments of the disclosure.
  • FIG. 7 is a diagram 700 illustrating further grid partitioning of the environment 101 in accordance with embodiments of the disclosure.
  • FIG. 8 is a diagram 800 illustrating partitioning of the environment 101 into a plurality of areas.
  • the architecture 400 is similar to the architecture 100 of FIG. 1. Identical elements or elements having identical functions are designated by the same reference numeral.
  • a field of view D2 of a user device M1 or a user 102 in an environment 101 is determined.
  • a viewing angle D1 of the user device M1 or user 102 in the environment can be acquired for example by using available sensors (e.g. inertial measurement units) of the user device or parameters of a camera of the user device, positions of the user device or user, or so on.
  • the field of view D2 may be determined based on the acquired viewing angle D1.
  • the environment 101 can be divided into a plurality of areas (e.g., four in FIG. 8) including at least a first area associated with the field of view and one or more areas different from the first area, and an initial set of grids for the plurality of areas can be created.
  • the initial set of grids may be spacious (or coarse) grids that do not meet a target level (e.g., a fidelity level to create a high-fidelity simulation result) for simulation but have reduced amount of positions for simulation.
  • the dividing of the environment into the plurality of areas may be based on proximity of an area to the field of view. For example, the plurality of areas may be assigned different priority levels D4 (see Fig.
  • a first area may be assigned the highest priority with value ‘1’ for simulation, a second area may be assigned a lower priority with value ‘2’ for simulation, ..., and a fourth area may be assigned the lowest priority with value ‘4’ for simulation. 5.
  • Simulation for the radio emission of the radio device M2 may be started by providing the positions of all nodes on the initial spacious set of grids D3 1 with the highest priority to a simulator.
  • the set of grids are upgraded to a subsequent narrower set of grids with a higher number of nodes D3 1+n .
  • Simulation for the radio emission of the radio device M2 may be continued by providing the positions of all nodes on the subsequent narrower set of grids D3 1+n to the simulator. This iterative simulation will not stop until an acceptable detail level (e.g., a fidelity level to create a high-fidelity simulation result) is reached. Then, this iterative simulation will be started for grid positions with lower priorities.
  • an acceptable detail level e.g., a fidelity level to create a high-fidelity simulation result
  • FIG. 9 illustrates an example apparatus 900 for radio signal simulation in accordance with embodiments of the disclosure.
  • the apparatus 900 includes a determining module 901, a dividing module 902, a creating module 903, a setting module 904 and a simulating and rendering module 905.
  • the determining module 901 may be configured to determine a field of view of a user device or user in an environment.
  • the dividing module 902 may be configured to divide the environment into a plurality of areas including a first area associated with the field of view and a second area different from the first area.
  • the creating module 903 may be configured to create an initial set of grids for the plurality of areas.
  • the setting module 904 may be configured to determine parameters related to a virtual radio device that is a virtual radio source or reflector and place the virtual radio device in a virtual representation of the environment.
  • the simulating and rendering module 905 may be configured to iteratively simulating and rendering virtual radio signal coverage for the virtual radio device in the virtual representation using the initial set of grids for the plurality of areas in an order that the first area is given priority over the second area based on the parameters and position of the virtual radio device and the virtual representation of the environment.
  • the determining module 901, the dividing module 902, the creating module 903, the setting module 904 and the simulating and rendering module 905 or another module of the apparatus 900 may be further configured to perform respective steps or sub-steps of the method 200 as described above. For the sake of brevity, they are no more described in detail.
  • FIG. 10 illustrates an example apparatus 1000 for radio signal simulation in accordance with embodiments of the disclosure.
  • the apparatus 1000 includes a processor 1001 and a memory 1002 coupled to the processor 1001.
  • the processor 1001 may be a general-purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof.
  • the memory 1002 may include random access memory (RAM) and read only memory (ROM) .
  • the memory 1002 may store computer-readable, computer-executable software including instructions that, when executed, cause the processor 1001 to perform various functions described herein (e.g., any or all steps or sub-steps of the method 200 of FIGS. 2 and 3, the example process of FIGS. 4 to 8) .
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be performed by one or more other processing units (or cores) , on at least one integrated circuit (IC) .
  • IC integrated circuit
  • different types of ICs may be used (e.g., Structured/Platform ASICs, an FPGA, or another semi-custom IC) , which may be programmed in any manner known in the art.
  • the functions of each unit may also be implemented, in whole or in part, with instructions embodied in a memory, formatted to be executed by one or more general or application-specific processors.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer.
  • non-transitory computer-readable media can comprise RAM, ROM, electrically erasable programmable read only memory (EEPROM) , compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • RAM random access memory
  • ROM read only memory
  • EEPROM electrically erasable programmable read only memory
  • CD compact disk
  • magnetic disk storage or other magnetic storage devices or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or
  • any connection is properly termed a non-transitory computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
  • the traditional radio emission simulation process scales linear to the level of fidelity of the simulation result itself.
  • a large amount of positions in space have to be considered for the simulation, hence the processing time will increase.
  • the method and apparatus as described in the disclosure reduce the amount of positions in space which need to be considered for the simulation to the smallest amount which still make the final result useful to the end-user. It is feasible to apply on-site simulation experiments in an interactive manner, e.g., the user freely checks different installation spots by placing a virtual radio device at different locations to observe the propagation behavior. The user will be satisfied by seeing just a subset of the simulation result at any point in time by progressive simulation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Computer Graphics (AREA)
  • Evolutionary Computation (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The disclosure relates to method, apparatuses and computer medium for radio signal simulation. A method for radio signal simulation, comprising: determining a field of view of a user device or user in an environment; dividing the environment into a plurality of areas including a first area associated with the field of view and a second area different from the first area; creating an initial set of grids for the plurality of areas; determining parameters related to a virtual radio device, the virtual radio device being a virtual radio source or reflector; placing the virtual radio device in a virtual representation of the environment; and based on the parameters and position of the virtual radio device and the virtual representation of the environment, iteratively simulating and rendering virtual radio signal coverage for the virtual radio device in the virtual representation using the initial set of grids for the plurality of areas in an order that the first area is given priority over the second area.

Description

METHODS, APPARATUSES AND COMPUTER MEDIUM FOR RADIO SIGNAL SIMULATION TECHNICAL FIELD
The disclosure relates to wireless communication, and more particularly to methods, apparatuses and computer medium for radio signal simulation.
BACKGROUND
With the improvement of wireless technologies like 802.11 and 5G, radio-based communication systems are becoming a reasonable alternative to wired-based communication systems in more and more areas. Already today AGVs (Automated guided vehicle) , HMIs (Human machine interface) and machine tools are connected wirelessly to monitor their states and perform control tasks. IEEE and 3GPP are furthermore adopting radio technologies such as millimetre-wave (mmWave) technologies to better approach the requirements of areas traditionally not being connected wireless. Due to the nonintuitive propagation properties of radio signals, it makes it harder yet to deploy such systems.
A system, which creates a Digital Twin of the Wireless Network, containing a 3D model, a propagation simulation and an AR (Augmented Reality) device to make the nonintuitive propagation behavior of deployment locations of an radio source visible to a human, is proposed in the applicant’s PCT application WO2019/227485A1 entitled “Augmented Reality Method for simulating wireless signal and apparatus” , all of which are incorporated herein by reference. However, it may take long simulation time (e.g., several hours) to calculate the propagation field for a real 3D model to receive the final result.
SUMMARY
Although the system proposed in a patent publication WO2019/227485A1 is able to calculate the propagation field for a real 3D model, it takes long simulation time. This limitation leads to the situation that placing a virtual radio source or  reflector in space and visualize the propagation is a very slow iterative process. It does not allow for the end-user, who wants to find the optimal position for the radio source or reflector, to experiment via trial and error with many different locations on-site.
Today there are several approaches to reduce the overall time to receive the propagation simulation results: adopting a more powerful computer to scale vertical the simulation task; using more specialized hardware (e.g. Field Programmable Gate Arrays (FPGA) , Graphics Processing Units (GPU) , etc. ) ; adopting multi-tasking to scale horizontal the simulation tasks; or using a less computing intensive algorithm (e.g. only considering direct distance instead of full raytracing) . However, previous solutions tried to speed up the general simulation process itself or reduce the quality of the simulation results (e.g. when using a less computing intensive algorithm) .
In view of above, a first exemplary aspect of the disclosure provides a method for radio signal simulation. The method comprises: determining a field of view of a user device or user in an environment; dividing the environment into a plurality of areas including a first area associated with the field of view and a second area different from the first area; creating an initial set of grids for the plurality of areas; determining parameters related to a virtual radio device, the virtual radio device being a virtual radio source or reflector; placing the virtual radio device in a virtual representation of the environment; and based on the parameters and position of the virtual radio device and the virtual representation of the environment, iteratively simulating and rendering virtual radio signal coverage for the virtual radio device in the virtual representation using the initial set of grids for the plurality of areas in an order that the first area is given priority over the second area.
A second exemplary aspect of the disclosure provides an apparatus for radio signal simulation. The apparatus comprises: a determining module configured to determine a field of view of a user device or user in the environment; a dividing module configured to divide the environment into a plurality of areas including a first area associated with the field of view and a second area different from the first area; a creating module configured to create an initial set of grids for the plurality of areas; a  setting module configured to determine parameters related to a virtual radio device that is a virtual radio source or reflector and place the virtual radio device in a virtual representation of the environment; and a simulating module configured to iteratively simulating and rendering virtual radio signal coverage for the virtual radio device in the virtual representation using the initial set of grids for the plurality of areas in an order that the first area is given priority over the second area based on the parameters and position of the virtual radio device and the virtual representation of the environment.
A third exemplary aspect of the disclosure provides an apparatus for radio signal simulation. The apparatus comprises a processor and a memory storing instructions that when executed by the processor cause the apparatus to perform a method according to the first exemplary aspect described above.
A fourth exemplary aspect of the disclosure provides a computer-readable storage medium having instructions stored thereon, the instructions to perform a method according to the first exemplary aspect described above.
A fifth exemplary aspect of the disclosure provides a computer program product tangibly embodied in a computer-readable storage medium and comprising instructions to perform a method according to the first exemplary aspect described above.
The disclosure proposes an optimized progressive build-up of a simulation result via rendering of interlaced simulation data points to provide a faster feedback loop to the user. It can also be combined with previous improvements of the simulation speed itself as it is independent from the simulation algorithm and hardware.
BRIEF DESCRIPTION OF THE DRAWINGS
In the text which follows, the disclosure will be explained in greater detail, without restricting the general concept of the disclosure, on the basis of example embodiments and with reference to the figures.
FIG. 1 is a diagram illustrating an example architecture for radio signal simulation in accordance with embodiments of the disclosure.
FIG. 2 is a flowchart illustrating an example method for radio signal simulation in accordance with embodiments of the disclosure.
FIG. 3 is a flowchart illustrating further sub-steps of the method of FIG. 2 in accordance with embodiments of the disclosure.
FIGS. 4 to 8 illustrate an example process to implement the method of FIGS. 2 and 3 in accordance with embodiments of the disclosure.
FIG. 9 illustrates an example apparatus for radio signal simulation in accordance with embodiments of the disclosure.
FIG. 10 illustrates an example apparatus for radio signal simulation in accordance with embodiments of the disclosure.
Description to the reference numerals:
100: architecture
101: environment
102: user
M1: user device
M2: virtual radio device
200: method
201: step
202: step
203: step
204: step
205: step
206: step
300: method
301: sub-step
302: sub-step
303: sub-step
304: sub-step
400: architecture
D2: field of view
500: diagram of orientation
D1: viewing angle
600: diagram of grid partitioning
D3 1: initial spacious set of grids
700: diagram of further grid partitioning
D3 1+n: subsequent narrower set of grids
800: diagram of partitioning environment
D4: priority level
900: apparatus
901: determining module
902: dividing module
903: creating module
904: setting module
905: simulating and rendering module
1000: apparatus
1001: processor
1002: memory
DETAILED DESCRIPTION
The disclosure will be further described in detail in conjunction with the accompanying drawings and embodiments. It should be understood that the particular embodiments described herein are only used to illustrate the disclosure but not to limit the disclosure.
FIG. 1 is a diagram illustrating an example architecture 100 for radio signal simulation in accordance with embodiments of the disclosure. The architecture 100 may include an environment 101, a user 102 and a user device M1. For example, the user device M1 may be a head mounted or handheld device carried by the user 102 or  any other wearable or portable devices such as cellular phones, tablets, head-up display (HUD) , or the like. The user device M1 allows to place a virtual radio device M2 in a virtual representation of the environment 101 (i.e., the virtual radio device M2 can be virtually placed in the environment 101) and visualizes simulation results of virtual radio signal coverage for the virtual radio device M1 in the virtual representation to provide augmented reality (AR) display. The user device M1 may have one or more sensors or cameras to capture the environment 101 to form a virtual representation of the environment 101. The virtual radio device M2 may be a virtual radio source or reflector.
FIG. 2 is a flowchart illustrating an example method 200 for radio signal simulation in accordance with embodiments of the disclosure. The method 200 can be implemented by a user device M1 of FIG. 1. The method 200 includes steps 201 to 206.
At step 201, the method 200 determines a field of view of a user device or user in an environment. The field of view may be observed for an ambient environment by a user or a user device carried by the user.
At step 202, the method 200 divides the environment into a plurality of areas including a first area associated with the field of view and a second area different from the first area.
At step 203, the method 200 creates an initial set of grids for the plurality of areas. The initial set of grids may be spacious (or coarse) grids that do not meet a target level (e.g., a fidelity level to create a high-fidelity simulation result) for simulation but have reduced amount of positions for simulation.
At step 204, the method 200 determines parameters related to a virtual radio device which is a virtual radio source or reflector. For example, the parameters of the virtual radio device may be set by user input or through configuration on a user interface of a user device.
At step 205, the method 200 places the virtual radio device in a virtual representation of the environment. The virtual representation of the environment may  be a multi-dimensional virtual representation of the environment formed by capturing the environment.
At step 206, the method 200 iteratively simulates and renders virtual radio signal coverage for the virtual radio device in the virtual representation using the initial set of grids for the plurality of areas in an order that the first area is given priority over the second area based on the parameters and position of the virtual radio device and the virtual representation of the environment. In this step, the simulation for the environment including a plurality of areas is performed in sequence to progressively simulate and rendering the radio signal simulation.
In an embodiment, the method 200 further acquires a viewing angle of the user device or user in the environment and determines the field of view based on the viewing angle. Herein, the viewing angle should not be understood as an angle formed only by line of sight, but determined by the position in the environment and an angle to the real-world environment. For example, the viewing angle may be acquired using available sensors (e.g. inertial measurement units) of a user device or parameters of a camera of a user device.
In an embodiment, the method 200 further divides the environment into the plurality of areas based on proximity of an area to the field of view. For example, the proximity of an area to the field of view may be determined by calculating the number or portion of points falling into the field of view. The first area may be determined to be closer to the field of view than the second area. For example, all or at least part of the field of view may be set as the first area and the remaining part of the environment may be further divided into one or more other areas, such as a second area. In some examples, if the viewing angle is wide (e.g., a full angle visible) and the field of view is wide, then only a part of the field of view is considered as the first area.
In an embodiment, the initial set of grids comprises a second initial set of grids for the second area, and the method 200 iteratively simulates and renders the virtual radio signal coverage using the initial set of grids for the plurality of areas by: a step of simulating and rendering the virtual radio signal coverage using the second  initial set of grids for the second area as a second current set of grids; a step of creating a second subsequent set of grids over the second current set of grids, the second subsequent set of grids being at least partially narrower than the second current set of grids; a step of simulating and rendering the virtual radio signal coverage using the second subsequent set of grids; a step of updating the second current set of grids using the second subsequent set of grids after each simulation, wherein the step of creating the second subsequent set of grids, the step of simulating and rendering the virtual radio signal coverage using the second subsequent set of grids and the step of updating the second current set of grids are repeatedly executed until a target level (e.g., a fidelity level to create a high-fidelity simulation result) for simulation is met. All or at least part of the first initial (current) set of grids may be split into narrower (fine) subsequent set of grids to finally meet the simulation fidelity level using progressive simulation.
In an embodiment, the method 200 renders the virtual radio signal coverage by adding marks indicating the radio signal coverage on the basis of the environment as an augmented reality image and rendering the augmented reality image. For example, adding marks on the basis of the environment may comprises plotting the marks on the basis of a virtual representation of the environment. The plotting may comprise one of: plotting a pattern of the virtual radio signal coverage on the ground of the environment; plotting a pattern of the virtual radio signal coverage on a photo of the environment.
In an embodiment, the method 200 captures the environment to form a multi-dimensional virtual representation of the environment by: taking pictures of the environment from different positions and at different angles, so as to get at least two images for each scene; measuring depth information of each pixel in the images using a stereo triangulation method.
In an embodiment, the parameters may comprise one or more of: device type, frequency, antenna type and antenna gain of the virtual radio device, and so on.
As described above, the method 200 can provide an optimized progressive build-up of a simulation result via iteratively rendering of simulation data points for different areas to provide a faster feedback loop to the user. Since simulation results for an area within the field view is firstly rendered, it is feasible for the user to freely check different installation spots by placing the virtual radio device at different locations to observe the propagation behavior at first time. The method 200 can also be combined with previous improvements of the simulation speed itself as it is independent from the simulation algorithm and hardware.
FIG. 3 is a flowchart 300 illustrating further sub-steps of step 206 of the method 200 of FIG. 2 in accordance with embodiments of the disclosure, wherein the initial set of grids comprises a first initial set of grids for the first area. The step 206 includes sub-steps 301 to 304.
At sub-step 301, the step 206 simulates and renders the virtual radio signal coverage using the first initial set of grids for the first area as a first current set of grids.
At sub-step 302, the step 206 creates a first subsequent set of grids over the first current set of grids, wherein the first subsequent set of grids are at least partially narrower than the first current set of grids.
At sub-step 303, the step 206 simulates and renders the virtual radio signal coverage using the first subsequent set of grids.
At sub-step 304, the step 206 updates the first current set of grids using the first subsequent set of grids after each simulation.
The sub-steps 301 to 304 are repeatedly executed until a target level for simulation is met. All or at least part of the first initial (current) set of grids may be split into narrower (fine) subsequent set of grids to finally meet the simulation fidelity level using progressive simulation.
Similarly, the initial set of grids comprises a second initial set of grids for the second area and the sub-steps 301 to 304 are repeatedly executed by using the second  initial set of grids and a second subsequent set of grids until a target level for simulation is met. For the sake of brevity, they are no more described in detail.
As described above, the method 200 can provide interlaced visualization for augmented radio emission simulation. It can reduce the amount of positions in space which need to be considered for the simulation to the smallest amount which still make the final result useful to the end-user. Only the positions necessary for the end-user are sent to the simulation process to be calculated. The user will be satisfied by seeing just a subset of the simulation result at any point in time by progressive simulation. The method 200 can also be combined with previous improvements of the simulation speed itself as it is independent from the simulation algorithm and hardware.
It should be understood that the calculation of the radio simulation may be performed by either a user device or a computing unit separate from the user device (for example, implemented by cloud computing technology) . In embodiments where the related calculation is performed by the user device, the user device needs additional computing performance and battery power support. In embodiments where the related calculation is performed by a separate computing unit, the requirements for computing performance and battery power are significantly reduced although the user device will require an additional communication interface. And for methods such as performing calculations in the cloud, the increase in the accuracy, precision or efficiency of calculations will facilitate the improvement of product performance without the need to upgrade user device.
FIGS. 4 to 8 illustrate an example process to implement the method 200 of FIGS. 2 and 3 in accordance with embodiments of the disclosure. FIG. 4 is a diagram illustrating an example architecture 400 for radio signal simulation in accordance with embodiments of the disclosure. FIG. 5 is a diagram 500 illustrating orientation of the user device M1 and the user 102 in the environment 101 in accordance with embodiments of the disclosure. FIG. 6 is a diagram 600 illustrating grid partitioning of the environment 101 in accordance with embodiments of the disclosure. FIG. 7 is a  diagram 700 illustrating further grid partitioning of the environment 101 in accordance with embodiments of the disclosure. FIG. 8 is a diagram 800 illustrating partitioning of the environment 101 into a plurality of areas.
Referring to FIG. 4, the architecture 400 is similar to the architecture 100 of FIG. 1. Identical elements or elements having identical functions are designated by the same reference numeral. A field of view D2 of a user device M1 or a user 102 in an environment 101 is determined.
Referring to FIG. 1, the user may hold the user device M1 in his hand and hold it into a specific direction. Referring to FIG. 1, a viewing angle D1 of the user device M1 or user 102 in the environment can be acquired for example by using available sensors (e.g. inertial measurement units) of the user device or parameters of a camera of the user device, positions of the user device or user, or so on. The field of view D2 may be determined based on the acquired viewing angle D1.
Referring to FIGS. 6 and 8, the environment 101 can be divided into a plurality of areas (e.g., four in FIG. 8) including at least a first area associated with the field of view and one or more areas different from the first area, and an initial set of grids for the plurality of areas can be created. The initial set of grids may be spacious (or coarse) grids that do not meet a target level (e.g., a fidelity level to create a high-fidelity simulation result) for simulation but have reduced amount of positions for simulation. The dividing of the environment into the plurality of areas may be based on proximity of an area to the field of view. For example, the plurality of areas may be assigned different priority levels D4 (see Fig. 8) based on the fact how close the related positions of the area are to the actual field of view D2. A first area may be assigned the highest priority with value ‘1’ for simulation, a second area may be assigned a lower priority with value ‘2’ for simulation, …, and a fourth area may be assigned the lowest priority with value ‘4’ for simulation. 5. Simulation for the radio emission of the radio device M2 may be started by providing the positions of all nodes on the initial spacious set of grids D3 1 with the highest priority to a simulator.
Referring to FIG. 7, after all nodes on the spacious grid are calculated by the simulator, the set of grids are upgraded to a subsequent narrower set of grids with a higher number of nodes D3 1+n. Simulation for the radio emission of the radio device M2 may be continued by providing the positions of all nodes on the subsequent narrower set of grids D3 1+n to the simulator. This iterative simulation will not stop until an acceptable detail level (e.g., a fidelity level to create a high-fidelity simulation result) is reached. Then, this iterative simulation will be started for grid positions with lower priorities.
FIG. 9 illustrates an example apparatus 900 for radio signal simulation in accordance with embodiments of the disclosure. The apparatus 900 includes a determining module 901, a dividing module 902, a creating module 903, a setting module 904 and a simulating and rendering module 905.
The determining module 901 may be configured to determine a field of view of a user device or user in an environment.
The dividing module 902 may be configured to divide the environment into a plurality of areas including a first area associated with the field of view and a second area different from the first area.
The creating module 903 may be configured to create an initial set of grids for the plurality of areas.
The setting module 904 may be configured to determine parameters related to a virtual radio device that is a virtual radio source or reflector and place the virtual radio device in a virtual representation of the environment.
The simulating and rendering module 905 may be configured to iteratively simulating and rendering virtual radio signal coverage for the virtual radio device in the virtual representation using the initial set of grids for the plurality of areas in an order that the first area is given priority over the second area based on the parameters and position of the virtual radio device and the virtual representation of the environment.
In further embodiments, the determining module 901, the dividing module 902, the creating module 903, the setting module 904 and the simulating and rendering module 905 or another module of the apparatus 900 may be further configured to perform respective steps or sub-steps of the method 200 as described above. For the sake of brevity, they are no more described in detail.
FIG. 10 illustrates an example apparatus 1000 for radio signal simulation in accordance with embodiments of the disclosure. The apparatus 1000 includes a processor 1001 and a memory 1002 coupled to the processor 1001. The processor 1001 may be a general-purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof. The memory 1002 may include random access memory (RAM) and read only memory (ROM) . The memory 1002 may store computer-readable, computer-executable software including instructions that, when executed, cause the processor 1001 to perform various functions described herein (e.g., any or all steps or sub-steps of the method 200 of FIGS. 2 and 3, the example process of FIGS. 4 to 8) .
The various illustrative blocks and modules described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) . Thus, the functions described herein may be performed by one or more other processing units (or cores) , on at least one integrated circuit (IC) . In various examples, different types of ICs may  be used (e.g., Structured/Platform ASICs, an FPGA, or another semi-custom IC) , which may be programmed in any manner known in the art. The functions of each unit may also be implemented, in whole or in part, with instructions embodied in a memory, formatted to be executed by one or more general or application-specific processors.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media can comprise RAM, ROM, electrically erasable programmable read only memory (EEPROM) , compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a non-transitory computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
It is understood that the specific order or hierarchy of blocks in the processes /flowcharts disclosed is an illustration of exemplary approaches. Based upon design preferences, it is understood that the specific order or hierarchy of blocks in the  processes /flowcharts may be rearranged. Further, some blocks may be combined or omitted. The accompanying method claims present elements of the various blocks in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
The traditional radio emission simulation process scales linear to the level of fidelity of the simulation result itself. To create a high-fidelity simulation result, a large amount of positions in space have to be considered for the simulation, hence the processing time will increase. The method and apparatus as described in the disclosure reduce the amount of positions in space which need to be considered for the simulation to the smallest amount which still make the final result useful to the end-user. It is feasible to apply on-site simulation experiments in an interactive manner, e.g., the user freely checks different installation spots by placing a virtual radio device at different locations to observe the propagation behavior. The user will be satisfied by seeing just a subset of the simulation result at any point in time by progressive simulation. Consequently, it allows for the end-user, who wants to find the optimal position for the radio source or reflector, to experiment via trial and error with many different locations on-site in a fast and iterative way. The method can also be combined with previous improvements of the simulation speed itself as it is independent from the simulation algorithm and hardware. Furthermore, this strategy can be fully implemented on the end-user side. Only the positions necessary for the end-user are sent to the simulation process to be calculated. Existing simulation processes do not need to be adapted. Neither a software update noir a hardware update (special GPUs or FPGAs) are required.
While the foregoing is directed to some embodiments of the disclosure, it will be appreciated by those skilled in the art that the disclosure can be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The presently disclosed embodiments are therefore considered in all aspects to be illustrative and not restricted. The scope of the disclosure is indicated by the  claims rather than the foregoing description and all changes that come within the meaning and the range and equivalence thereof are intended to be embraced therein.

Claims (13)

  1. A method for radio signal simulation, comprising:
    determining a field of view of a user device or user in an environment;
    dividing the environment into a plurality of areas including a first area associated with the field of view and a second area different from the first area;
    creating an initial set of grids for the plurality of areas;
    determining parameters related to a virtual radio device, the virtual radio device being a virtual radio source or reflector;
    placing the virtual radio device in a virtual representation of the environment; and
    based on the parameters and position of the virtual radio device and the virtual representation of the environment, iteratively simulating and rendering virtual radio signal coverage for the virtual radio device in the virtual representation using the initial set of grids for the plurality of areas in an order that the first area is given priority over the second area.
  2. The method of claim 1, further comprising acquiring a viewing angle of the user device or user in the environment, and
    wherein determining the field of view comprises determining the field of view based on the viewing angle.
  3. The method of claim 1, wherein dividing the environment into the plurality of areas comprises dividing the environment into the plurality of areas based on proximity of an area to the field of view.
  4. The method of claim 1, wherein the first area is determined to be closer to the field of view than the second area.
  5. The method of claim 1, wherein the initial set of grids comprises a first initial set of grids for the first area, and
    wherein iteratively simulating and rendering the virtual radio signal coverage using the initial set of grids for the plurality of areas comprises:
    a step of simulating and rendering the virtual radio signal coverage using the first initial set of grids for the first area as a first current set of grids;
    a step of creating a first subsequent set of grids over the first current set of grids, the first subsequent set of grids being at least partially narrower than the first current set of grids;
    a step of simulating and rendering the virtual radio signal coverage using the first subsequent set of grids;
    a step of updating the first current set of grids using the first subsequent set of grids after each simulation,
    wherein the step of creating the first subsequent set of grids, the step of simulating and rendering the virtual radio signal coverage using the first subsequent set of grids and the step of updating the first current set of grids are repeatedly executed until a target level for simulation is met.
  6. The method of claim 1, wherein the initial set of grids comprises a second initial set of grids for the second area, and
    wherein iteratively simulating and rendering the virtual radio signal coverage using the initial set of grids for the plurality of areas comprises:
    a step of simulating and rendering the virtual radio signal coverage using the second initial set of grids for the second area as a second current set of grids;
    a step of creating a second subsequent set of grids over the second current set of grids, the second subsequent set of grids being at least partially narrower than the second current set of grids;
    a step of simulating and rendering the virtual radio signal coverage using the second subsequent set of grids;
    a step of updating the second current set of grids using the second subsequent set of grids after each simulation,
    wherein the step of creating the second subsequent set of grids, the step of simulating and rendering the virtual radio signal coverage using the second subsequent set of grids and the step of updating the second current set of grids are repeatedly executed until a target level for simulation is met.
  7. The method of claim 1, wherein rendering the virtual radio signal coverage comprises adding marks indicating the radio signal coverage on the basis of the environment as an augmented reality image and rendering the augmented reality image.
  8. The method of claim 1, wherein the virtual representation of the environment is formed by capturing the environment.
  9. The method of claim 1, wherein the parameters comprise one or more of: device type, frequency, antenna type and antenna gain of the virtual radio device.
  10. An apparatus for radio signal simulation, comprising:
    a determining module configured to determine a field of view of a user device or user in an environment;
    a dividing module configured to divide the environment into a plurality of areas including a first area associated with the field of view and a second area different from the first area;
    a creating module configured to create an initial set of grids for the plurality of areas;
    a setting module configured to determine parameters related to a virtual radio device that is a virtual radio source or reflector and place the virtual radio device in a virtual representation of the environment; and
    a simulating and rendering module configured to iteratively simulating and rendering virtual radio signal coverage for the virtual radio device in the virtual representation using the initial set of grids for the plurality of areas in an order that the first area is given priority over the second area based on the parameters and position of the virtual radio device and the virtual representation of the environment.
  11. An apparatus for radio signal simulation, comprising:
    a processor; and
    a memory storing instructions that when executed by the processor cause the apparatus to perform the method defined in any one of claims 1 to 9.
  12. A computer-readable storage medium having instructions stored thereon, the instructions to perform the method defined in any one of claims 1 to 9.
  13. A computer program product tangibly embodied in a computer-readable storage medium and comprising instructions to perform the method defined in any one of claims 1 to 9.
PCT/CN2020/118155 2020-09-27 2020-09-27 Methods, apparatuses and computer medium for radio signal simulation WO2022061824A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/118155 WO2022061824A1 (en) 2020-09-27 2020-09-27 Methods, apparatuses and computer medium for radio signal simulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/118155 WO2022061824A1 (en) 2020-09-27 2020-09-27 Methods, apparatuses and computer medium for radio signal simulation

Publications (1)

Publication Number Publication Date
WO2022061824A1 true WO2022061824A1 (en) 2022-03-31

Family

ID=80844755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118155 WO2022061824A1 (en) 2020-09-27 2020-09-27 Methods, apparatuses and computer medium for radio signal simulation

Country Status (1)

Country Link
WO (1) WO2022061824A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109086726A (en) * 2018-08-10 2018-12-25 陈涛 A kind of topography's recognition methods and system based on AR intelligent glasses
CN109765989A (en) * 2017-11-03 2019-05-17 奥多比公司 The dynamic mapping of virtual and physics interaction
WO2019227485A1 (en) * 2018-06-01 2019-12-05 西门子股份公司 Augmented reality method for simulating wireless signal, and apparatus
US20200219322A1 (en) * 2019-01-09 2020-07-09 Vmware, Inc. Snapping, virtual inking, and accessibility in augmented reality

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109765989A (en) * 2017-11-03 2019-05-17 奥多比公司 The dynamic mapping of virtual and physics interaction
WO2019227485A1 (en) * 2018-06-01 2019-12-05 西门子股份公司 Augmented reality method for simulating wireless signal, and apparatus
CN109086726A (en) * 2018-08-10 2018-12-25 陈涛 A kind of topography's recognition methods and system based on AR intelligent glasses
US20200219322A1 (en) * 2019-01-09 2020-07-09 Vmware, Inc. Snapping, virtual inking, and accessibility in augmented reality

Similar Documents

Publication Publication Date Title
CN110765620B (en) Aircraft visual simulation method, system, server and storage medium
US9544706B1 (en) Customized head-related transfer functions
JP2021507403A (en) Cache and update dense 3D reconstruction data
CN112560137A (en) Multi-model fusion method and system based on smart city
KR20240071414A (en) Conditional modification of augmented reality object
KR102139172B1 (en) Autonomous vehicle simulation method in virtual environment
US11003812B2 (en) Experience driven development of mixed reality devices with immersive feedback
JP2023519728A (en) 2D image 3D conversion method, apparatus, equipment, and computer program
US11238645B2 (en) Method and system for computer graphics rendering
CN110110696B (en) Method and apparatus for processing information
US20210042022A1 (en) Configuring objective-effectuators for synthesized reality settings
US20240161391A1 (en) Relightable neural radiance field model
KR101208767B1 (en) Stereoscopic image generation method, device and system using circular projection and recording medium for the same
WO2022061824A1 (en) Methods, apparatuses and computer medium for radio signal simulation
KR100743391B1 (en) An improved method for selecting level-of-details using viewpoint adjustment in stereoscopic terrain visualization
CN106875480B (en) Method for organizing urban three-dimensional data
CN115544622A (en) Urban and rural participation type three-dimensional planning design platform, method, equipment and storage medium
KR20230129495A (en) SYSTEM AND METHOD FOR SIMULATING LIGHT-IN-FLIGHT
CN112204622A (en) Rendering device, learning device, rendering method, and program
CN117575985B (en) Method, device, equipment and medium for supervising casting of automobile parts
CN117197319B (en) Image generation method, device, electronic equipment and storage medium
CN116719054B (en) Virtual laser radar point cloud generation method, computer equipment and storage medium
CN113469877B (en) Object display method, scene display method, device and computer readable medium
CN116824082B (en) Virtual terrain rendering method, device, equipment, storage medium and program product
JP7530102B2 (en) PROGRAM, INFORMATION PROCESSING APPARATUS AND METHOD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954675

Country of ref document: EP

Kind code of ref document: A1