WO2022061684A1 - 一种通信方法、装置及系统 - Google Patents

一种通信方法、装置及系统 Download PDF

Info

Publication number
WO2022061684A1
WO2022061684A1 PCT/CN2020/117590 CN2020117590W WO2022061684A1 WO 2022061684 A1 WO2022061684 A1 WO 2022061684A1 CN 2020117590 W CN2020117590 W CN 2020117590W WO 2022061684 A1 WO2022061684 A1 WO 2022061684A1
Authority
WO
WIPO (PCT)
Prior art keywords
rru
information
optical module
module
bbu
Prior art date
Application number
PCT/CN2020/117590
Other languages
English (en)
French (fr)
Inventor
马宁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/117590 priority Critical patent/WO2022061684A1/zh
Priority to EP20954536.7A priority patent/EP4210375A4/en
Priority to CN202080103865.4A priority patent/CN116325861A/zh
Publication of WO2022061684A1 publication Critical patent/WO2022061684A1/zh
Priority to US18/188,675 priority patent/US20230224731A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method, device, and system.
  • the base station may include a baseband unit (baseband unit, BBU) and at least one remote radio unit (remote radio unit, RRU).
  • BBU baseband unit
  • RRU remote radio unit
  • the BBU and the at least one RRU are connected by optical fibers, and the BBU can manage the at least one RRU through optical fiber communication.
  • the optical fiber communication link between the BBU and the RRU will involve the BBU, the optical fiber, the optical module and the RRU.
  • the communication link between the BBU and the RRU fails, it is generally necessary to locate the fault.
  • the communication link between the BBU and the RRU fails due to the following reasons: BBU equipment failure, BBU optical module failure, BBU and RRU failures
  • BBU equipment failure BBU optical module failure
  • BBU and RRU failures The optical fiber between the RRUs is faulty, the optical module on the RRU side is faulty, and the RRU equipment is faulty.
  • the link between the BBU and the RRU is disconnected. Therefore, due to the failure of the optical fiber between the BBU and the RRU, the optical module on the RRU side is faulty, and the RRU equipment is faulty. If the communication link between the BBU and the RRU is faulty, the BBU cannot automatically obtain the information of the RRU, so it needs to manually participate in the fault location. The operation is time-consuming and laborious, and the base station cannot be maintained efficiently.
  • the present application provides a communication method, device and system, so that even after the optical fiber communication link between the BBU and the RRU fails, communication can still be performed between the BBU and the RRU, so as to realize the link failure. Rapid positioning.
  • an embodiment of the present application provides a communication method, which is applied to a first RRU.
  • the method includes: determining that a link between the first RRU and a BBU is in an abnormal state; the first RRU passes a power line carrier in the first RRU
  • a communication (power line communication, PLC) module sends the first information to the at least one second RRU.
  • the first information includes information of a first RRU and/or information of an optical module connected to the first RRU.
  • the first RRU is connected to at least one second RRU through a power line, and at least one second RRU is provided with a PLC module.
  • a PLC module is set in the RRU, and different RRUs are connected by a power line, so that different RRUs can perform PLC through the PLC module.
  • the first RRU The information of the first RRU and/or the information of the optical module connected to the first RRU can be sent to the BBU through at least one second RRU, so that the BBU can quickly determine the fault information of the link and realize the rapid location of the link fault , and the faulty link can be maintained in time, which improves the maintenance efficiency of the base station.
  • the first RRU may send the first information to at least one second RRU in the following manner: the first RRU broadcasts the first information to at least one second RRU through a PLC module in the first RRU.
  • the RRUs communicate in a broadcast manner, and there is no need to add a relay device on the basis of the existing power supply system (including power supply and power line), which has low cost and high practicability.
  • the first RRU may determine that the link between the first RRU and the BBU is in an abnormal state in the following manner: if the first RRU does not receive a heartbeat packet from the BBU within the first time period, then Determine that the link is in an abnormal state.
  • the first RRU can conveniently and accurately determine the link state between the first RRU and the BBU according to the heartbeat packet.
  • the information of the first RRU includes at least one of the following information: the identifier of the first RRU, the information of the radio frequency module of the first RRU, the information of the communication link between the first RRU and the BBU.
  • the BBU can quickly and accurately locate the fault of the first RRU according to the information of the first RRU, so that the efficiency and accuracy of fault location are high.
  • the information of the optical module includes at least one of the following information: the identification of the optical module, the optical power of the optical module, the bias current of the optical module, the device information of the optical module, or the information of the optical module. accident details.
  • the BBU can quickly and accurately locate the fault of the optical module according to the information of the optical module, so that the efficiency and accuracy of fault location are high.
  • an embodiment of the present application provides a communication method, which is applied to a second RRU.
  • the method includes: receiving first information from the first RRU through a power line carrier communication PLC module in the second RRU, and sending the first information to the baseband unit BBU first information.
  • the first information includes information of the first RRU and/or information of an optical module connected to the first RRU; the first RRU is connected to the second RRU through a power line, and the second RRU is provided with a PLC module.
  • a PLC module is set in the RRU, and different RRUs are connected by a power line, so that different RRUs can perform PLC through the PLC module.
  • the first RRU The information of the first RRU and/or the information of the optical module connected to the first RRU can be sent to the BBU through at least one second RRU, so that the BBU can determine the fault information of the link in time, thereby realizing the rapid location of the link fault , and the faulty link can be maintained in time, which improves the maintenance efficiency of the base station.
  • the second RRU when it is determined that the second RRU is an assisting RRU of the first RRU, the second RRU sends the first information to the BBU.
  • the second RRU when the second RRU is an assisting RRU of the first RRU, the second RRU sends the first information to the BBU, so that too many RRUs can be prevented from sending the first information to the BBU, thereby saving signaling overhead.
  • the second RRU may determine that the second RRU is an assisting RRU of the first RRU in the following manner: acquiring second information, and determining, according to the second information, that the second RRU is an assisting RRU of the first RRU,
  • the second information includes the identity of the first RRU.
  • the second RRU can quickly determine whether it is an assisting RRU of the first RRU according to the second information, so that the communication efficiency is higher.
  • the second RRU may acquire the second information in the following manner: receiving the second information from the BBU or the first RRU; or acquiring the second information from a preset storage space.
  • the second RRU can quickly acquire the second information from the preset storage space.
  • the information of the first RRU includes at least one of the following information: the identifier of the first RRU, the information of the radio frequency module of the first RRU, the running time of the first RRU, or the first RRU in The number of resets in the first period.
  • the BBU can quickly and accurately locate the fault of the first RRU according to the above-mentioned information of the first RRU, so that the efficiency and accuracy of fault location are high.
  • the information of the optical module includes at least one of the following information: the identification of the optical module, the optical power of the optical module, the bit error rate of the optical module, the bias current of the optical module, the Device information, or optical module fault information.
  • the BBU can quickly and accurately locate the fault of the optical module according to the information of the optical module, so that the efficiency and accuracy of fault location are high.
  • an embodiment of the present application provides a communication method, which is applied to a BBU.
  • the method includes: receiving first information sent by a second RRU, and determining fault information according to the first information; wherein the first information includes the first RRU information and/or information of the optical module connected to the first RRU; the first RRU is connected to the second RRU through a power line, and the first RRU and the second RRU are respectively provided with power line carrier communication PLC modules.
  • a PLC module is set in the RRU, and different RRUs are connected by a power line, so that different RRUs can perform PLC through the PLC module.
  • the first RRU The information of the first RRU and/or the information of the optical module connected to the first RRU can be sent to the BBU through at least one second RRU, so that the BBU can determine the fault information of the link in time, thereby realizing the rapid location of the link fault , and the faulty link can be maintained in time, which improves the maintenance efficiency of the base station.
  • the fault information includes at least one of the following information: the first RRU is faulty, the optical module connected to the first RRU is faulty, or the optical fiber between the first RRU and the BBU is faulty.
  • the BBU further determines that the assisting RRU of the first RRU is the second RRU; and sends second information to the second RRU, where the second information includes the identifier of the first RRU.
  • the BBU determines the assisting RRU of the RRU, and the BBU can determine the assisting RRU for the first RRU according to the current allocation of assisting RRUs of each RRU, thereby making the assisting RRU determined by the BBU more reasonable, avoiding Some RRUs need to assist multiple RRUs, or some RRUs have no RRUs to assist.
  • the information of the first RRU includes at least one of the following information: the identifier of the first RRU, the information of the radio frequency module of the first RRU, the running time of the first RRU, or the first RRU in The number of resets in the first period.
  • the BBU can quickly and accurately locate the fault of the first RRU according to the information of the first RRU, so that the efficiency and accuracy of fault location are high.
  • the information of the optical module includes at least one of the following information: the identification of the optical module, the optical power of the optical module, the bit error rate of the optical module, the bias current of the optical module, the Device information, or fault information of the optical module connected to the first RRU.
  • the BBU can quickly and accurately locate the fault of the optical module according to the information of the optical module, so that the efficiency and accuracy of fault location are high.
  • the design of the power-saving feature of base station shutdown is mainly to shut down the power amplifier of the RRU module or even directly shut down the RRU module. sleep state.
  • the interfaces in the BBU and the RRU are usually not closed when the RRU sleeps.
  • the power consumption of the above interfaces is still high, so it is hoped that the BBU and the RRU can be further shut down. interface to achieve further energy saving of the base station.
  • the embodiments of the present application propose the following communication methods to solve the problem that the RRU cannot exit the current sleep state on demand when it enters a deep sleep state.
  • exiting the current dormancy state may refer to returning to the normal working state, or it may refer to just exiting the current dormant state, and will still enter another energy-saving effect that is relatively poor. sleep state.
  • an embodiment of the present application provides a communication method, which is applied to a BBU.
  • the method includes: determining that the first remote radio unit RRU exits a dormant state; sending third information to the second RRU, where the third information is used to indicate the first remote radio unit RRU One RRU exits the dormant state; wherein, the first RRU is connected to the second RRU through a power line, and the first RRU and the second RRU are respectively provided with PLC modules for power line carrier communication; the first RRU entering the dormant state includes at least one of the following: turning off The laser connected to the optical module of the first RRU stops the power supply of the optical module connected to the first RRU, or closes the circuit between the optical module connected to the first RRU and the first RRU.
  • the first RRU may enter a deep sleep state according to actual needs to save power consumption.
  • the BBU can send third information (the third information is used to instruct the first RRU to exit the current sleep state) to the second RRU through the optical fiber, and the second RRU can send the first RRU to the first RRU through the power line
  • the RRU sends the third information to make the first RRU exit the sleep state.
  • the first RRU may enter a deep sleep state, so that the interface between the RRU and the BBU is turned off, thereby saving power consumption.
  • the third information is used to instruct the second RRU to cause the first RRU to exit the current sleep state through the PLC module in the second RRU.
  • the optical module connected to the first RRU includes at least one of the following: an optical module arranged on the first RRU, an optical module arranged on the BBU for communicating with the first RRU, arranged on An optical module on the cascaded RRU of the first RRU, or an optical module provided on the front RRU of the first RRU and connected to the first RRU.
  • an embodiment of the present application provides a communication method, which is applied to a second RRU.
  • the method includes: receiving third information from a baseband unit BBU, where the third information is used to instruct the first RRU to exit a sleep state;
  • the PLC module in the RRU sends the third information to the first RRU; wherein the first RRU is connected to the second RRU through a power line, and the first RRU and the second RRU are respectively provided with PLC modules for power line carrier communication.
  • the first RRU may enter a deep sleep state according to actual needs to save power consumption.
  • the BBU can send third information (the third information is used to instruct the first RRU to exit the current sleep state) to the second RRU through the optical fiber, and the second RRU can send the first RRU to the first RRU through the power line
  • the RRU sends the third information to make the first RRU exit the sleep state.
  • the first RRU may enter a deep sleep state, so that the interface between the RRU and the BBU is turned off, thereby saving power consumption.
  • sending the third information to the first RRU through the PLC module in the second RRU includes: determining that there is no optical fiber link between the second RRU and the first RRU, or, the second RRU The optical fiber link with the first RRU is abnormal; the third information is sent to the first RRU through the PLC module in the second RRU.
  • the second RRU when the second RRU cannot send the third information to the first RRU through the optical fiber, the second RRU can send the third information to the first RRU through the PLC module in the second RRU, so that the first RRU can send the third information to the first RRU.
  • the reliability of the RRU sending the third information is relatively high.
  • the first RRU in the dormant state satisfies at least one of the following conditions: the laser of the optical module connected to the first RRU is in an off state, and the power supply state of the optical module connected to the first RRU It is not powered, or the circuit between the optical module connected to the first RRU and the first RRU is in a closed state.
  • the first RRU when the first RRU satisfies the above conditions, the first RRU is in a deep sleep state, thereby saving power consumption.
  • the optical module connected to the first RRU includes at least one of the following: an optical module arranged on the first RRU, an optical module arranged on the BBU for communicating with the first RRU, arranged on An optical module on the cascaded RRU of the first RRU, or an optical module provided on the front RRU of the first RRU and connected to the first RRU.
  • an embodiment of the present application provides a communication method, which is applied to a first RRU.
  • the method includes: determining to enter a sleep state; receiving third information from the second RRU through a power line carrier communication PLC module in the first RRU ; determine to exit the sleep state; wherein, the first RRU is connected to the second RRU through a power line, and the second RRU is provided with a PLC module.
  • the first RRU may enter a deep sleep state according to actual needs to save power consumption.
  • the BBU can send third information (the third information is used to instruct the first RRU to exit the current sleep state) to the second RRU through the optical fiber, and the second RRU can send the first RRU to the first RRU through the power line
  • the RRU sends the third information to make the first RRU exit the sleep state.
  • the first RRU may enter a deep sleep state, so that the interface between the RRU and the BBU is turned off, thereby saving power consumption.
  • entering the sleep state includes at least one of the following: turning off the laser of the optical module connected to the first RRU, stopping the power supply of the optical module connected to the first RRU, and turning off the optical module connected to the first RRU The circuit between the module and the first RRU.
  • the interfaces on the first RRU and the BBU can be turned off, thereby saving more power consumption.
  • the first RRU in the dormant state satisfies at least one of the following conditions: the laser of the optical module connected to the first RRU is in an off state, and the power supply state of the optical module connected to the first RRU It is not powered, or the circuit between the optical module connected to the first RRU and the first RRU is in a closed state.
  • the interfaces on the first RRU and the BBU can be turned off, thereby saving more power consumption.
  • the optical module connected to the first RRU includes at least one of the following: an optical module arranged on the first RRU, an optical module arranged on the BBU for communicating with the first RRU, arranged on An optical module on the cascaded RRU of the first RRU, or an optical module provided on the front RRU of the first RRU and connected to the first RRU.
  • an embodiment of the present application provides a communication device, including: at least one processor and an interface circuit, where the interface circuit is configured to receive a signal from another communication device other than the communication device and transmit it to the processor The processor or the signal from the processor is sent to other communication devices than the communication device, and the processor is used for implementing the method according to any one of the first aspect through logic circuits or executing code instructions.
  • an embodiment of the present application provides a communication device, including: at least one processor and an interface circuit, where the interface circuit is configured to receive a signal from another communication device other than the communication device and transmit it to the processor The processor or sends the signal from the processor to the communication device other than the communication device, and the processor is used for implementing the method according to any one of the second aspect by means of a logic circuit or executing code instructions.
  • an embodiment of the present application provides a communication device, including: at least one processor and an interface circuit, where the interface circuit is configured to receive a signal from another communication device other than the communication device and transmit it to the processor The processor or the signal from the processor is sent to other communication devices than the communication device, and the processor is used for implementing the method according to any one of the third aspect through logic circuits or executing code instructions.
  • an embodiment of the present application provides a communication device, including: at least one processor and an interface circuit, where the interface circuit is configured to receive a signal from another communication device other than the communication device and transmit it to the processor
  • the processor or the signal from the processor is sent to other communication devices than the communication device, and the processor is used for implementing the method according to any one of the fourth aspect through logic circuits or executing code instructions.
  • an embodiment of the present application provides a communication device, including: at least one processor and an interface circuit, where the interface circuit is configured to receive signals from other communication devices other than the communication device and transmit to the communication device A processor or a signal from the processor is sent to other communication devices than the communication device, and the processor is used to implement the method according to any one of the fifth aspects by means of a logic circuit or executing code instructions.
  • an embodiment of the present application provides a communication device, including: at least one processor and an interface circuit, where the interface circuit is configured to receive signals from other communication devices other than the communication device and transmit to the communication device.
  • the processor or the processor sends the signal from the processor to other communication devices than the communication device, and the processor is used to implement the method according to any one of the sixth aspect by means of a logic circuit or executing code instructions.
  • an embodiment of the present application provides a communication device, the communication device includes: at least one processor and a memory, the processor is coupled to the memory, the memory includes a computer program, and the computer program Executed in the at least one processor to implement the function of the first RRU in any of the methods according to the first aspect.
  • an embodiment of the present application provides a communication device, the communication device includes: at least one processor and a memory, the processor is coupled to the memory, the memory includes a computer program, and the computer program Executed in the at least one processor to implement the functions of the second RRU in any of the methods according to the second aspect.
  • an embodiment of the present application provides a communication device, the communication device includes: at least one processor and a memory, the processor is coupled to the memory, the memory includes a computer program, and the computer program Executed in the at least one processor to implement the function of the BBU in any of the methods according to the third aspect.
  • an embodiment of the present application provides a communication device, the communication device includes: at least one processor and a memory, the processor is coupled to the memory, the memory includes a computer program, and the computer program Executed in the at least one processor to implement the function of the BBU in any of the methods according to the fourth aspect.
  • an embodiment of the present application provides a communication device, the communication device includes: at least one processor and a memory, the processor is coupled to the memory, the memory includes a computer program, and the computer program Executed in the at least one processor to implement the function of the second RRU in any of the methods according to the fifth aspect.
  • an embodiment of the present application provides a communication device, the communication device includes: at least one processor and a memory, the processor is coupled to the memory, the memory includes a computer program, and the computer program Executed in the at least one processor to implement the function of the first RRU in any of the methods according to the sixth aspect.
  • an embodiment of the present application provides a communication system, including the communication device according to the seventh aspect or the above, the communication device according to the eighth aspect, and the communication device according to the ninth aspect.
  • an embodiment of the present application provides a communication system, including the communication device according to the tenth aspect or the above, the communication device according to the eleventh aspect, and the communication device according to the twelfth aspect.
  • an embodiment of the present application provides a communication apparatus, where the apparatus is configured to execute the method of any one of the first to sixth aspects.
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program or instruction is stored in the computer-readable storage medium.
  • an embodiment of the present application provides a computer program product, including a computer program, which, when run on a computer device, causes the computer device to execute any one of the first to sixth aspects.
  • a PLC module is set in the RRU, and different RRUs are connected through power lines, so that different RRUs can perform PLC through the PLC module.
  • the communication between the BBU and the first RRU is After the link fails, the first RRU can send the information of the first RRU and/or the information of the optical module connected to the first RRU to the BBU through at least one second RRU, so that the BBU can determine the fault information of the link in time, The rapid location of the link fault is realized, and the faulty link can be maintained in time, which improves the maintenance efficiency of the base station.
  • FIG. 1A is an architectural diagram of a base station according to an embodiment of the present application.
  • FIG. 1B is an architectural diagram of another base station provided by an embodiment of the present application.
  • FIG. 1C is an architectural diagram of another base station provided by an embodiment of the present application.
  • FIG. 1D is an architectural diagram of still another base station provided by an embodiment of the present application.
  • FIG. 1E is an architectural diagram of another base station provided by an embodiment of the present application.
  • FIG. 1F is an architectural diagram of another base station provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a communication process provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another communication process provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a communication process provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a communication process provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of still another communication device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of still another communication apparatus provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • the base station may generally include a BBU and at least one RRU, and the BBU and at least one RRU may be connected by an optical fiber.
  • RRU IF processing, RF processing, duplexing, etc. can be performed on the signal.
  • the IF processing may include digital in-phase/quadrature (I/Q) modulation and demodulation, frequency up-conversion, digital to analog (DA) DA/analog to digital (AD) conversion.
  • RRU may also be referred to as RFU.
  • an antenna may also be integrated in the RRU, and in this case, the RRU may also be called an active antenna unit (active antenna unit, AAU).
  • AAU active antenna unit
  • the following description takes an RRU as an example, that is, the RRU shown in the following may also be an RFU or an AAU.
  • BBU It can perform baseband processing on signals, and the BBU can also provide transmission interfaces, radio resources, and clock information for the RRU.
  • Baseband processing may include channel encoding/decoding processing, modulation/demodulation processing.
  • Optical module used for photoelectric conversion and electro-optical conversion.
  • the optical module can be inserted into the device (such as RRU, BBU, etc.), and perform photoelectric conversion and electro-optical conversion on the signals transmitted between the devices. For example, when a device sends an electrical signal, an optical module inserted on the device can convert the electrical signal into an optical signal for sending. After the optical module inserted in the device receives the optical signal, the optical signal can be converted into an electrical signal for reception.
  • Power line communication use power lines to transmit data (service data or signaling).
  • data service data or signaling
  • the data sending end can load the high-frequency signal carrying data information into the current and transmit it through the power line, and the adapter at the data receiving end can separate the high-frequency signal from the current, so as to obtain the high-frequency signal carried in the high-frequency signal. Data information.
  • PLC module It can provide PLC function. After setting the PLC module in the device, the device can communicate with other devices through power line carrier through the PLC device.
  • the communication link between the BBU and the RRU is exemplified by an optical fiber communication link, that is, it includes optical fibers and optical modules.
  • the communication link between the BBU and the RRU may also be other types of communication links, which are not limited in this application.
  • the RRU is provided with a PLC module, and different RRUs are connected through a power line, so that different RRUs in the base station can perform PLC through the PLC module.
  • the RRU can still communicate with the BBU through other RRUs, so that the BBU can determine the fault information of the link in time, so that the faulty link can be obtained in time Maintenance, improving the efficiency of base station maintenance.
  • FIG. 1A is an architectural diagram of a base station according to an embodiment of the present application. Referring to FIG. 1A , it includes a BBU, N RRUs, and a power supply, where N is an integer greater than or equal to 1.
  • N optical modules are set on the BBU, and one optical module is set on each of the N RRUs.
  • the optical module can be set on the BBU or RRU by plugging.
  • the RRU and the BBU are connected through an optical fiber, and the two ends of the optical fiber are respectively connected with the BBU and the optical modules provided on the RRU, so that the communication between the RRU and the BBU can be realized through the optical fiber.
  • a PLC module is provided on each of the N RRUs.
  • the power supply is connected to N RRUs through power lines. The power supply can supply power to N RRUs through the power line, and PLC can also be performed between different RRUs through the power line and the PLC module.
  • the optical module can convert the electrical signal to be sent by the device (RRU or BBU) into an optical signal, and transmit it to the other end device (BBU or RRU) through an optical fiber.
  • the optical module in the device at the other end can convert the received optical signal into an electrical signal for subsequent processing.
  • the optical module A in the BBU converts the electrical signal to be sent by the BBU into an optical signal, and sends the optical signal through the optical fiber.
  • the optical module B Convert the optical signal into an electrical signal, and transmit the electrical signal to the RRU1 for subsequent processing.
  • FIG. 1B is an architectural diagram of another base station provided by an embodiment of the present application. Please refer to FIG. 1B , including the BBU, N RRUs, and a power supply, where N is an integer greater than or equal to 1. Multiple (greater than N) optical modules are set on the BBU, and at least one optical module is set on each RRU. For example, two optical modules are set on RRU1, one optical module is set on RRU2, and two optical modules are set on RRU N. optical module.
  • the optical module can be set on the BBU or RRU by plugging.
  • the number of optical modules set on the BBU may be the sum of the numbers of optical modules set in the N RRUs.
  • the RRU and the BBU are connected by at least one optical fiber, and two ends of the optical fiber are respectively connected to the optical modules provided on the BBU and the RRU.
  • the RRU is connected to the BBU through two optical fibers, and the two ends of each optical fiber are respectively connected to the optical module in the BBU and the optical module in the RRU.
  • Different optical fibers are connected with different optical modules.
  • the number of optical modules set in the RRU may also be three, four, etc., which is not limited in this embodiment of the present application.
  • a PLC module is provided on each of the N RRUs.
  • the power supply is connected to N RRUs through power lines.
  • the power supply can supply power to each RRU through the power line.
  • PLC can be performed between different RRUs through power lines and PLC modules.
  • FIG. 1B by arranging multiple optical modules in the RRU, the communication capacity between the BBU and the RRU can be improved.
  • FIG. 1C is an architectural diagram of another base station provided by an embodiment of the present application.
  • the power supply can also be arranged outside the base station, that is, the base station does not include the power supply.
  • the power supply may be set outside the base station, which will not be repeated in this embodiment of the present application.
  • FIG. 1D is an architectural diagram of still another base station provided by an embodiment of the present application. See Figure 1D, including the BBU, multiple RRUs, and power supplies.
  • the RRUs directly connected to the BBU may be defined as directly connected RRUs
  • the RRUs indirectly connected to the BBUs may be defined as cascaded RRUs.
  • RRU11 and RRU21 are directly connected RRUs
  • RRU12, RRU13, RRU22 and RRU23 are cascaded RRUs.
  • RRU and BBU are respectively provided with at least one optical module, for example, BBU, RRU11, RRU12, RRU21 and RRU22 are respectively provided with two optical modules, and RRU13 and RRU23 are respectively provided with one optical module.
  • One end of the directly connected RRU is connected to the BBU through an optical fiber, and the other end is connected to at least one cascaded RRU through an optical fiber.
  • the adjacent cascaded RRUs are connected by optical fibers. Both ends of each optical fiber are respectively connected with the optical module.
  • Multiple RRUs are provided with PLC modules.
  • the power supply is connected to multiple RRUs through power lines. The power supply can supply power to multiple RRUs through the power line. PLC can be performed between different RRUs through power lines and PLC modules.
  • the message sent by the BBU to the cascaded RRU needs to be forwarded by the directly connected RRU.
  • the BBU sends a message to the RRU12
  • it needs to be forwarded by the RRU11.
  • the BBU may need to forward it through the RRU11 and the RRU12.
  • FIG. 1E is an architectural diagram of another base station according to an embodiment of the present application.
  • the directly connected RRU is connected to the BBU through a plurality of optical fibers (two are used as an example in FIG. 1E ), so that the communication capacity between the BBU and the RRU can be improved.
  • FIG. 1E For the structure description and communication process of the base station shown in FIG. 1E , reference may be made to FIG. 1B and FIG. 1D , and details are not repeated here.
  • FIG. 1F is an architectural diagram of another base station provided by an embodiment of the present application. See Figure 1F, including the BBU, multiple RRUs, and power supplies.
  • the multiple RRUs include a directly connected RRU11, a cascaded RRU12, a cascaded RRU13, and a cascaded RRU14.
  • One end of the directly connected RRU11 is connected to the BBU through an optical fiber, and the other end is connected to the three cascaded RRUs through an optical fiber.
  • the directly connected RRU 11 may forward the message sent by the BBU to the cascaded RRU.
  • PLC modules are arranged on multiple RRUs.
  • the power supply is connected to multiple RRUs through power lines.
  • the power supply can supply power to multiple RRUs through the power line.
  • PLC can also be performed between different RRUs through power lines and PLC modules.
  • some RRUs may be provided with PLC modules, and some RRUs may not be provided with PLC modules.
  • Figs. 1A-1F merely illustrate the architecture diagrams of several possible base stations in the form of examples, and are not intended to limit the architecture of the base stations.
  • the number of RRUs, the number of optical modules, the location of the power supply, and the like may be set according to actual needs, which are not specifically limited in this embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the method 200 may include:
  • the first RRU determines that the link between the first RRU and the BBU is in an abnormal state.
  • the base station includes a BBU and multiple RRUs, and the first RRU is any one of the multiple RRUs.
  • the architecture of the base station may be any one of the architectures in FIGS. 1A-1F .
  • the first RRU may detect the link between the first RRU and the BBU in real time or periodically to determine that the link between the first RRU and the BBU is in a normal state or an abnormal state. If the link is in an abnormal state, it can be considered that the link is faulty.
  • the link between the first RRU and the BBU is in an abnormal state:
  • the first RRU failure may include software failure and/or hardware failure.
  • the optical module connected to the first RRU may include: an optical module used for communication between the first RRU and the BBU, that is, an optical module through which data transmitted between the first RRU and the BBU passes.
  • the optical module connected to the first RRU may be different:
  • the optical module connected to the first RRU may include at least one of the following: An optical module communicating with the BBU, and an optical module disposed on the BBU for communicating with the first RRU.
  • the optical module connected to the RRU1 may include: at least one of the optical module A or the optical module B. That is, any one or more failures of the optical module A or the optical module B may cause the link between the RRU1 and the BBU to be in an abnormal state.
  • FIG. 1A the optical module connected to the RRU1 may include: at least one of the optical module A or the optical module B. That is, any one or more failures of the optical module A or the optical module B may cause the link between the RRU1 and the BBU to be in an abnormal state.
  • the optical modules connected to the RRU1 may include at least one of: optical module A, optical module B, optical module C, or optical module D. That is, any one or more failures of the optical module A, the optical module B, the optical module C, or the optical module D may cause at least one link between the RRU1 and the BBU to be in an abnormal state.
  • the optical module connected to the RRU1 may include at least one of the optical module A or the optical module B. That is, any one or more failures of the optical module A or the optical module B may cause the link between the RRU1 and the BBU to be in an abnormal state.
  • the optical module connected to the first RRU may include at least one of the following: For the optical module communicating with the BBU, the optical module arranged on the BBU and used for communicating with the first RRU, and the optical module arranged on the intermediate RRU.
  • the intermediate RRU may refer to an RRU for forwarding data between the BBU and the first RRU.
  • RRU11 is an intermediate RRU of RRU12
  • RRU11 and RRU12 are intermediate RRUs of RRU13 .
  • FIG. 1D RRU11 is an intermediate RRU of RRU12
  • RRU11 and RRU12 are intermediate RRUs of RRU13 .
  • the optical modules connected to the RRU 12 may include at least one of: optical module A, optical module B, optical module C, or optical module D. That is, any one or more failures of optical module A, optical module B, optical module C or optical module D may cause at least one link between the RRU12 and the BBU to be in an abnormal state.
  • the optical modules connected to the RRU 13 may include at least one of: optical module A, optical module B, optical module C, optical module D, optical module E, or optical module F. That is, any one or more failures of optical module A, optical module B, optical module C, optical module D, optical module E or optical module F may cause at least one link between the RRU13 and the BBU to be in an abnormal state .
  • the optical fiber between the first RRU and the BBU includes: the optical fiber used for communication between the first RRU and the BBU, that is, the optical fiber through which the data transmitted between the first RRU and the BBU passes.
  • the optical fiber between the RRU1 and the BBU includes: the optical fiber between the optical module A and the optical module B.
  • the optical fibers between the RRU1 and the BBU include: the optical fibers between the optical module A and the optical module B, and the optical fibers between the optical module C and the optical module D.
  • the optical fibers between the RRU12 and the BBU include: the optical fibers between the optical module A and the optical module B, and the optical fibers between the optical module C and the optical module D.
  • the first RRU may determine whether the link between the first RRU and the BBU is in an abnormal state in the following manner:
  • the first RRU determines whether a heartbeat packet from the BBU is received within the first time period, and if so, determines that the link between the first RRU and the BBU is in a normal state, and if not, determines that the link between the first RRU and the BBU is in a normal state.
  • the road is in normal state.
  • the start time of the first duration is the time when the first RRU received the heartbeat packet from the BBU last time.
  • the first RRU receives a heartbeat packet from the BBU
  • the heartbeat packet from the BBU is received within the first time period
  • the first RRU sends the first information to at least one second RRU through the PLC module in the first RRU.
  • the first RRU is connected to at least one second RRU through a power line.
  • PLC modules are respectively provided in the first RRU and at least one second RRU.
  • the second RRU and the first RRU may be located in the same base station.
  • the first RRU may send the first information to the power line through the PLC module in the first RRU, and the second RRU may receive the first information from the power line through the PLC module in the second RRU.
  • the first RRU may send the first information to the at least one second RRU in the following manner:
  • the first RRU broadcasts the first information on the power line through the PLC module in the first RRU.
  • each of the second RRUs can receive the first information.
  • the RRUs communicate in a broadcast manner, and there is no need to add a relay device in the existing power supply system (including power supply and power line), which is highly implementable.
  • the first RRU sends the first information to the relay device through the PLC module in the first RRU, and the relay device sends the first information to at least one second RRU.
  • the relay device can be installed in the power supply or outside the power supply.
  • the relay device is connected to each RRU through power lines.
  • the first information sent by the first RRU to the relay device may carry address information of at least one second RRU, so that the relay device can forward the first information to at least one second RRU according to the address information of the at least one second RRU .
  • the address information of the second RRU may be a high-level data link control (high-level data link control, HDLC) address of the second RRU, an internet protocol (internet protocol, IP) address, and a media access control (media access control) address. control, MAC) address, hop number, etc.
  • the first information can be selectively sent to some second RRUs, and the signaling overhead can be flexibly controlled.
  • the first information includes information of the first RRU, and/or information of an optical module connected to the first RRU.
  • the information of the first RRU includes at least one of the following information:
  • the identifier of the first RRU may be at least one of the following: the address of the first RRU or the number of the first RRU, and the like.
  • Information 2 Information about the radio frequency module of the first RRU.
  • the information of the radio frequency module of the first RRU may include at least one of the following: software failure information or hardware failure information of the first RRU.
  • the software failure information is software alarm information
  • the hardware failure information is hardware alarm information.
  • the bit error rate of a communication link may refer to the bit error rate of data transmitted over the communication link.
  • the first RRU may perform statistical analysis on the received data to determine the bit error rate of the communication link.
  • the running duration of the first RRU may refer to the running duration of the first RRU after the last power-on.
  • the first time period may refer to a period of time before the current time, for example, the first time period may be within 1 day before the current time, within 1 hour before the current time, and so on.
  • the first period may be a period between the time after the first RRU is powered on and the current moment.
  • the information of the first RRU may also include other information, for example,
  • the information of the first RRU may further include device information (eg, manufacturer, model, etc.) of the first RRU, a deployment location of the first RRU, and the like.
  • the information of the optical module connected to the first RRU may include at least one of the following information:
  • the optical power of the optical module may include at least one of the following: optical transmission power or optical reception power of the optical module.
  • the device information of the optical module may include at least one of the following information: manufacturer, model, installation time and other information of the optical module.
  • the fault information of the optical module connected to the first RRU may include at least one of the following: abnormal reception of the optical module, abnormal transmission of the optical module, hardware failure of the optical module, and abnormal operation of the optical module.
  • the first RRU may actively send the first information to the second RRU, or may send the first information to the second RRU after receiving the request message, which may include the following two cases:
  • Case 1 The first RRU actively sends the first information to the second RRU.
  • the first RRU determines that the link between the first RRU and the BBU is in an abnormal state
  • the first RRU actively sends the first information to at least one second RRU, so that the second RRU sends the first information to the BBU.
  • the BBU can timely determine that the link between the first RRU and the BBU is abnormal.
  • Case 2 After receiving the request message, the first RRU sends the first information to the second RRU.
  • the BBU can send a request message to the RRU periodically or at a predetermined time or when the link between the BBU and RRU1 is found to be faulty, so as to request to obtain the first information.
  • the RRU sends the first information to the BBU.
  • the BBU may send the request message to multiple RRUs, and after the RRU receives the request message, the RRU may broadcast the request message to other RRUs through the PLC module, so that all RRUs can receive the request message.
  • the request message may carry the identifier of the RRU1, so that only the RRU1 needs to parse the received request message.
  • the first RRU may send the first information in the manner described in the above two cases at the same time. That is, the first RRU may actively send the first information to the second RRU, and in order to avoid missing to receive the first information, the BBU may also actively request the RRU to obtain the first information. In this case, if the BBU acquires the duplicate first information, the BBU may discard the duplicate first information.
  • the second RRU sends the first information to the BBU.
  • the second RRU may send the first information to the BBU through the optical fiber.
  • the second RRU shown in S203 may represent all the second RRUs that have received the first information, or may be a part of the second RRUs that have received the first information.
  • the two cases will be described respectively.
  • the second RRUs shown in S203 are all the second RRUs that have received the first information.
  • all the second RRUs that have received the first information send the first information to the BBU. In this way, the probability of the BBU receiving the first information can be increased.
  • the second RRU shown in S203 is a part of the second RRU that has received the first information.
  • the part of the second RRU may be an assisting RRU of the first RRU.
  • the assisting RRU of the first RRU is used to forward the first information of the first RRU to the BBU, that is, when the link between the first RRU and the BBU is in an abnormal state, the assisting RRU of the first RRU forwards the information of the first RRU to the BBU.
  • the first information so that the BBU learns the fault information of the first RRU.
  • the topology relationship between the two RRUs may be called a parallel relationship.
  • the assisting RRU of the first RRU is in a parallel relationship with the first RRU, so that the probability of simultaneous failure of the link between the RRU and the BBU and the link between the assisting RRU and the BBU can be reduced.
  • each RRU in the base station is in a parallel relationship.
  • RRU11, RRU12 and RRU13 are in a series relationship
  • RRU21, RRU22 and RRU23 are in a series relationship
  • any one of RRU11, RRU12 and RRU13 and any one of RRU21, RRU22 and RRU23 are in a parallel relationship.
  • the assisting RRU of RRU1 may be any one or more other RRUs in the base station except RRU1.
  • the assisting RRU of RRU11 may generally be one or more of RRU21, RRU22 or RRU23.
  • the second RRU will determine whether it is the assisting RRU of the first RRU, and only sends the first RRU to the BBU when the second RRU determines that it is the assisting RRU of the first RRU. a message. If the second RRU determines that it is not an assisting RRU of the first RRU, the second RRU will not send the first information to the BBU, and further, the first information may be discarded.
  • the second RRU may determine whether it is the assisting RRU of the first RRU by:
  • the second RRU acquires second information, where the second information includes the identifier of the RRU that the second RRU needs to assist. If the second information includes the identifier of the first RRU, the second information determines that it is the assisting RRU of the first RRU .
  • the second RRU may obtain the second information in the following manner:
  • the second RRU may receive the second information from the BBU.
  • the BBU may determine the assisting RRU of the first RRU, and then generate the second information according to the assisting RRU of the first RRU.
  • the second information includes two fields, wherein one field is the identifier of the first RRU, and the other field is the identifier of the assisting RRU of the first RRU.
  • the BBU may generate the second information according to the identifier of the first RRU and the identifier of the assisting RRU of the first RRU.
  • the identifier of the RRU may be address information of the RRU.
  • the second information may include: ⁇ RRU1> ⁇ RRU2, RRU3>.
  • the BBU may determine that the second RRU is an assisting RRU of the first RRU, and then generate the second information according to the second RRU.
  • the BBU sends the second information to the second RRU.
  • the BBU may send the second information to all RRUs served by the BBU.
  • the second RRU may receive the second information from the first RRU.
  • the BBU may determine the assisting RRU of the first RRU, send the second information to the first RRU according to the second information generated by the assisting RRU of the first RRU. After the first RRU receives the second information, the second information may be sent to the second RRU. For example, the first RRU may broadcast the second information.
  • the first RRU may determine the second information and send the second information to the second RRU.
  • the first RRU may broadcast the second information.
  • the second RRU may acquire the second information from a preset storage space.
  • the second information may be pre-configured into a preset storage space, and when the second RRU needs to determine whether it is an assisting RRU of the first RRU, the second RRU obtains the second information from the preset storage space.
  • the second RRU may receive the second information from the BBU or the first RRU in advance, and store the second information in a preset storage space, or configure the second RRU in the storage space of the second RRU when the second RRU leaves the factory.
  • the second RRU obtains the second information from a preset storage space.
  • the BBU determines fault information according to the first information.
  • the fault information includes at least one of the following information:
  • the first RRU is faulty.
  • the optical module connected to the first RRU is faulty.
  • the optical module failure may include at least one of the following: the optical power of the optical module is abnormal or the bias current of the optical module is abnormal.
  • the optical fiber between the first RRU and the BBU is faulty.
  • the communication link between the RRU's cascaded RRU and the BBU usually also fails. For example, referring to FIG. 1D , if the link between the RRU11 and the BBU fails, the link between the RRU12 and the BBU and the link between the RRU13 and the BBU also fail. Alternatively, if the link between the RRU12 and the BBU fails, the link between the RRU13 and the BBU also fails.
  • the BBU may determine the software failure of the first RRU.
  • the BBU may determine that the optical module 1 in the first RRU is faulty according to the first information.
  • the BBU can determine that the optical power of the optical module 1 in the first RRU is abnormal according to the first information.
  • the BBU determines, according to the first information, that the optical module connected to the first RRU is not faulty and the first RRU is not faulty, it may be determined that the optical fiber between the first RRU and the BBU is faulty.
  • a PLC module is set in the RRU, and different RRUs are connected through power lines, so that different RRUs in the base station can perform PLC through the PLC module.
  • the link between the BBU and the first RRU is After the link fails, the first RRU can send the information of the first RRU and/or the information of the optical module connected to the first RRU to the BBU through at least one second RRU, so that the BBU can determine the fault information of the link in time, so as to realize Quickly locate link faults, and enable faulty links to be maintained in a timely manner, thereby improving the efficiency of base station maintenance.
  • FIG. 3 is a schematic diagram of a communication process provided by an embodiment of the present application.
  • the base station includes one BBU and four RRUs, which are denoted as RRU1, RRU2, RRU3, and RRU4, respectively.
  • the four RRUs are connected to the BBU through optical modules and optical fibers, respectively, and the four RRUs are respectively connected to the BBU through optical modules and optical fibers.
  • the power line is connected to the power supply, and the four RRUs are also connected to each other through the power line.
  • Each RRU is provided with a PLC module.
  • the links between the four RRUs and the BBU are all in a normal state.
  • the power supply supplies power to each RRU through the power line.
  • RRU1 can obtain the bit error rate of the communication link between RRU1 and BBU, and when the bit error rate is less than the preset threshold, RRU1 determines that the link between RRU1 and BBU is faulty, and passes the error rate in RRU1
  • the PLC module broadcasts the first information (hereinafter referred to as information 1), and the information 1 includes the bit error rate of the communication link between the RRU1 and the BBU. Since RRU1 , RRU2 , RRU3 and RRU4 are connected to each other through a power line, RRU2 , RRU3 and RRU4 can receive information 1 broadcast by RRU1 through their respective PLC modules. At this time, the power line is used for power supply to each RRU and PLC between RRUs.
  • the BBU can determine the link quality of the link between the BBU and the RRU1 according to the bit error rate in the information 1, so as to determine whether the link between the BBU and the RRU1 is caused by poor link quality.
  • Link failure Exemplarily, if the BBU finds that the bit error rate reported by RRU1 is high, it can be determined that the quality of the link between the BBU and RRU1 is very poor, and the BBU determines that the link is not caused by the optical module of RRU1 according to other information reported by RRU1. If the fault occurs, it can be determined that the link between the BBU and the RRU1 is faulty due to the fault of the optical fiber between the BBU and the RRU1.
  • RRU1 can report information 1 to BBU through other RRUs (RRU2, RRU3 and RRU4) in the base station, so that BBU can determine the fault information in time. Since all other RRUs in the base station except RRU1 can report the information 1 to the BBU, the probability that the BBU cannot receive the information 1 can be reduced.
  • FIG. 4 is a schematic diagram of another communication process provided by an embodiment of the present application.
  • the base station includes one BBU and four RRUs, which are denoted as RRU1, RRU2, RRU3, and RRU4, respectively.
  • the four RRUs are connected to the BBU through optical modules and optical fibers, respectively.
  • the power line is connected to the power supply, and the four RRUs are also connected to each other through the power line.
  • Each RRU is provided with a PLC module.
  • the BBU may configure the assisting RRU for each RRU.
  • the assisting RRUs configured by the BBU for RRU1 are RRU2 and RRU3, and send second information to RRU2-RRU4, where the second information is used to indicate that the assisting RRUs of RRU1 are RRU2 and RRU3.
  • the BBU may also send the second information to the RRU1, so that the RRU1 may determine that it assists the RRU.
  • the second information includes two fields
  • field 1 is used to store the identifier of the assisted RRU
  • field 2 is used to store the identifier of the assisting RRU
  • the field 1 is the identifier of RRU1
  • the field 2 is the identifier of RRU2
  • the links between the four RRUs and the BBU are all in a normal state.
  • the power supply supplies power to each RRU through the power line.
  • the link between RRU1 and BBU fails.
  • RRU1 detects that the link between RRU1 and BBU fails, RRU1 broadcasts the first information (hereinafter referred to as information 1) through the PLC module in RRU1.
  • the information 1 includes the information of the RRU1 and/or the information of the optical module connected to the RRU1. Since RRU1, RRU2, RRU3, and RRU4 are connected to each other through a power line, RRU2, RRU3, and RRU4 can all receive information 1 broadcast by RRU1.
  • the power line is used for the power supply to supply power to each RRU and for the RRU to perform PLC.
  • RRU2 determines that it is an assisting RRU of RRU1, and then RRU2 sends information 1 to the BBU through the optical fiber.
  • the RRU3 receives the message 1
  • the RRU3 determines that it is an assisting RRU of the RRU1, and the RRU3 sends the message 1 to the BBU through the optical fiber.
  • the RRU4 receives the message 1, the RRU4 determines that it is not an assisting RRU of the RRU1, and then does not send the message 1 to the BBU. Further, the RRU4 may discard the message 1.
  • the BBU receives the information 1, the BBU can determine the fault information according to the information 1.
  • the RRU1 can report the first information to the BBU by assisting the RRU, so that the BBU can determine the fault information in time. Only the RRU1 needs to assist the RRU to report the first information to the BBU, so that the signaling overhead is small.
  • the present application improves the architecture of the base station, and the improved architecture of the base station may be shown in FIG. 1A to FIG. 1F .
  • an optical fiber link is set between the BBU and each RRU, and different RRUs are connected through a power line, so that the BBU can make another RRU exit the current sleep state through one RRU.
  • the interface between the RRU and the BBU can be turned off, thereby saving power consumption.
  • the method for the BBU to cause the RRU to exit the current sleep state will be described with reference to the embodiments shown in FIG. 5 to FIG. 7 .
  • FIG. 5 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • the method 500 may include:
  • the first RRU determines to enter a sleep state.
  • the first RRU may determine to enter the sleep state under the following conditions:
  • the BBU sends a sleep notification message to the first RRU.
  • the BBU may send a sleep notification message to the first RRU, and the first RRU enters the sleep state according to the sleep notification message.
  • the BBU may determine the state of the first RRU according to the traffic volume corresponding to the first RRU. For example, when the traffic volume corresponding to the first RRU is less than the preset threshold, the first RRU may enter a sleep state.
  • Condition 2 The first RRU enters a sleep state according to the preconfigured information.
  • the pre-configured information includes the sleep time.
  • the first RRU may enter the dormancy state.
  • the pre-configuration information may be pre-configured by the BBU, or may be agreed in the protocol.
  • the sleep state involved in the embodiment of the present application refers to a deep sleep state.
  • the BBU cannot cause the first RRU to exit the current sleep state through the optical fiber link.
  • the first RRU may enter the sleep state in at least one of the following manners, and the sleep state entered in the following manner is the deep sleep state:
  • Mode 1 Turn off the laser of the optical module connected to the first RRU.
  • the optical module connected to the first RRU includes at least one of the following:
  • the optical module provided on the first RRU.
  • An optical module provided on the BBU for communicating with the first RRU.
  • An optical module disposed on the cascaded RRUs of the first RRU.
  • the optical module connected to the first RRU is provided on the front RRU of the first RRU.
  • the concatenated RRUs of the first RRU may be: RRUs located after the first RRU in the base station.
  • the first RRU may forward messages between the first RRU's concatenated RRUs and the BBU.
  • FIG. 1A to FIG. 1C there is no cascaded RRU among the RRUs in the base station.
  • the cascaded RRU of RRU11 includes RRU12 and RRU13
  • the cascaded RRU of RRU12 is RRU13 .
  • the pre-RRU of the first RRU may be: an RRU located in the base station before the first RRU and directly connected to the first RRU.
  • the preceding RRU of the first RRU may forward the message between the first RRU and the BBU.
  • none of the RRUs in the base station has a pre-RRU.
  • the front RRU of RRU12 is RRU11
  • the front RRU of RRU13 is RRU12 .
  • the optical modules connected to the first RRU may be different, which may include the following situations:
  • Case 1 The first RRU does not have a concatenated RRU and a preceding RRU.
  • the optical modules connected to the first RRU include: an optical module arranged on the first RRU and an optical module arranged on the BBU for communicating with the first RRU.
  • the optical modules connected to RRU1 include: optical module A and optical module B, wherein optical module B is the optical module arranged on RRU1, and optical module A is arranged on the Optical module on the BBU used to communicate with RRU1.
  • the optical modules connected to RRU1 include: optical module A, optical module B, optical module C, and optical module D, wherein optical module B and optical module D are located in RRU1
  • the optical modules on the BBU, the optical module A and the optical module C are the optical modules arranged on the BBU for communicating with the RRU1.
  • Case 2 The first RRU has a cascaded RRU, and there is no preceding RRU.
  • the optical modules connected to the first RRU include: an optical module arranged on the first RRU, an optical module arranged on the BBU for communicating with the first RRU, and a cascaded RRU arranged on the first RRU on the optical module.
  • the optical modules connected to RRU11 include: optical module A, optical module B, optical module C, optical module D, and optical module E and optical module F.
  • the optical module B and the optical module C are optical modules arranged on the RRU 11
  • the optical module A is an optical module arranged on the BBU for communicating with the RRU 11 .
  • the optical module D and the optical module E are optical modules arranged on the cascaded RRU12 of the optical module RRU11
  • the optical module F is the optical module arranged on the cascaded RRU13 of the optical module RRU11.
  • Case 3 A cascaded RRU exists in the first RRU, and a preceding RRU exists.
  • the optical modules connected to the first RRU include: an optical module arranged on the first RRU, an optical module arranged on a cascaded RRU of the first RRU, and an optical module arranged on a front RRU of the first RRU an optical module connected to the first RRU.
  • the optical modules connected to RRU12 include: optical module C, optical module D, optical module E and optical module F.
  • the optical module D and the optical module E are the optical modules arranged on the RRU12
  • the optical module F is the optical module arranged on the cascaded RRU13 of the RRU12
  • the optical module C is the optical module arranged on the front RRU11 of the RRU12 and connected to the RRU12. module.
  • Case 4 The first RRU has a pre-RRU, and there is no cascaded RRU.
  • the optical module connected to the first RRU includes: an optical module arranged on the first RRU and an optical module arranged on a front RRU of the first RRU and connected to the first RRU.
  • the first RRU is RRU13
  • the RRU13 has a pre-RRU12
  • the optical modules connected to the RRU13 include: an optical module E and an optical module F.
  • the optical module F is an RRU arranged on the RRU13
  • the optical module E is an optical module arranged on the front RRU12 of the RRU13 and connected to the RRU13.
  • Mode 2 Stop the power supply of the optical module connected to the first RRU.
  • the power consumption of the optical module connected to the first RRU can be saved.
  • Mode 3 Close the circuit between the optical module connected to the first RRU and the first RRU.
  • the circuit between the optical module connected to the first RRU and the first RRU may include: a high-speed communication interface (serdes high-speed communication interface) composed of a serial transceiver (SERializer and DESerializer, serdes) between the optical module and the interface chip of the first RRU. Communication Interface). Closing the circuit between the optical module connected to the first RRU and the first RRU may refer to closing the serdes high-speed communication interface.
  • the BBU determines that the first RRU exits the dormant state.
  • the BBU may determine that the first RRU exits the sleep state in various ways. For example, the BBU may determine that the first RRU exits the sleep state according to the traffic volume corresponding to the first RRU. For example, when the traffic volume corresponding to the first RRU is greater than or equal to the preset threshold, the BBU determines that the first RRU exits the sleep state.
  • the BBU sends third information to the second RRU, where the third information instructs the first RRU to exit the dormant state.
  • the second RRU may be any RRU in the base station except the first RRU, or may be an assisting RRU of the first RRU.
  • assisting the RRU reference may be made to Case 2 in S203.
  • the BBU may send the third information to all or part of the RRUs except the first RRU. If the first RRU is configured with an assisting RRU, the BBU may first determine that the assisting RRU of the first RRU is the second RRU, and then send the third information to the second RRU.
  • the second RRU and the first RRU are usually in a parallel relationship.
  • the second RRU may be one or more of RRU21, RRU22 or RRU23.
  • the second RRU may be a directly connected RRU.
  • the BBU may send the third information to the second RRU through the optical fiber.
  • the third information may include the identifier of the first RRU.
  • the second RRU sends the third information to the first RRU.
  • the second RRU and the first RRU may be located in the same base station.
  • PLC modules are respectively disposed in the second RRU and the first RRU, and the first RRU and the second RRU are connected through a power line.
  • the second RRU sends the third information to the first RRU through the PLC module in the second RRU.
  • the second RRU determines that there is no optical fiber link between the second RRU and the first RRU, or when the optical fiber link between the second RRU and the first RRU is abnormal, the second RRU passes the PLC in the second RRU The module sends the third information to the first RRU.
  • RRU2 sends third information to RRU1 through the PLC module in RRU2.
  • RRU11 sends a message to RRU12 through the PLC module in RRU11 third information.
  • the second RRU may broadcast the third information to the first RRU, and after the second RRU broadcasts the third information, all RRUs (including the first RRU) connected to the power line of the second RRU may receive the third information.
  • the second RRU may send the third information to the relay device, and the relay device may send the third information to the first RRU.
  • the first RRU exits the sleep state.
  • the second RRU sends the third information by broadcasting, multiple RRUs will receive the third information.
  • the first RRU receives the third information, it can determine whether the third information is in the third information. Whether the identifier of the first RRU is included, if so, the first RRU exits the dormant state, and if not, the first RRU discards the third information.
  • the first RRU can exit the dormant state in the following manner:
  • the laser of the optical module connected to the first RRU is off, the laser is turned on.
  • the circuit between the optical module connected to the first RRU and the first RRU is in a closed state, the circuit between the optical module connected to the first RRU and the first RRU is opened.
  • an RRU is in a dormant state
  • the cascaded RRUs of the RRU are usually also in a dormant state.
  • RRU11 is in a sleep state
  • RRU12 and RRU13 are usually also in a sleep state.
  • the RRU can enter a deep sleep state according to actual needs to save power consumption.
  • the BBU can send third information to the second RRU through the optical fiber (the third information is used to make the first RRU exit the current sleep state), and the second RRU can send the first RRU to the first RRU through the power line.
  • the RRU sends the third information to make the first RRU exit the sleep state.
  • the first RRU may enter a deep sleep state, so that the interface between the RRU and the BBU is turned off, thereby saving power consumption.
  • FIG. 6 is a schematic diagram of a communication process provided by an embodiment of the present application.
  • the base station includes one BBU and four RRUs, which are denoted as RRU1, RRU2, RRU3, and RRU4, respectively.
  • the four RRUs are connected to the BBU through optical modules and optical fibers, and the four RRUs are respectively connected to the BBU through optical modules and optical fibers.
  • the power line is connected to the power supply, and the four RRUs are also connected to each other through the power line.
  • Each RRU is provided with a PLC module.
  • the links between the four RRUs and the BBU are all in a normal state.
  • the power supply supplies power to each RRU through the power line.
  • the RRU1 can enter a deep sleep state.
  • the power line is used for the power supply to supply power to each RRU. Since the RRU1 enters a deep sleep state, the interfaces in the RRU and the BBU are turned off, so that the power supply of the power supply to the RRU1 is reduced.
  • the BBU can send information 2 (third information) to RRU2 through the optical fiber.
  • the information 2 includes the identifier of the RRU1.
  • the RRU2 receives the information 2, it broadcasts the information 2 to other RRUs in the base station through the power line.
  • the RRU1 receives the information 2, since the information 2 includes the identifier of the RRU1, the RRU1 exits the sleep state according to the information 2.
  • the RRU2-RRU4 receive the information 2, since the information 2 includes the identifier of the RRU1 and the RRU2-RRU4 are in a non-sleep state, the RRU2-RRU4 can discard the information 2.
  • FIG. 7 is a schematic diagram of a communication process provided by an embodiment of the present application.
  • the base station includes one BBU and four RRUs, which are denoted as RRU1, RRU2, RRU3, and RRU4, respectively.
  • the four RRUs are connected to the BBU through optical modules and optical fibers, and the four RRUs are respectively connected to the BBU through optical modules and optical fibers.
  • the power line is connected to the power supply, and the four RRUs are also connected to each other through the power line.
  • Each RRU is provided with a PLC module.
  • the links between the four RRUs and the BBU are all in a normal state.
  • the power line is used for the power supply to supply power to each RRU.
  • both RRU1 and RRU4 can enter a deep sleep state.
  • the power line is used for the power supply to supply power to each RRU. Since RRU1 and RRU4 enter a deep sleep state, at this time, the power supply amount of the power supply to RRU1 and RRU4 is reduced.
  • the BBU can send information 2 (third information) to RRU2 through the optical fiber, and the information 2 includes the identifier of RRU1.
  • the RRU2 receives the information 2, it broadcasts the information 2 to other RRUs in the base station through the power line.
  • the RRU1 receives the information 2, since the information 2 includes the identifier of the RRU1, the RRU1 exits the sleep state according to the information 2.
  • RRU2-RRU3 receives the information 2, since RRU2-RRU3 is in a non-sleep state, RRU2-RRU3 may discard the information 2.
  • the RRU4 may not exit the sleep state, and may further discard the information 2.
  • FIG. 8 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • the communication apparatus 800 may be provided in the first RRU.
  • the communication apparatus 800 may include a processing module 801 and a sending module 802, wherein,
  • the processing module 801 is configured to determine that the link between the first RRU and the baseband unit BBU is in an abnormal state
  • the sending module 802 is configured to send first information to at least one second RRU through a power line carrier communication PLC module in the first RRU, where the first information includes information and/or connection of the first RRU information to the optical module of the first RRU;
  • the first RRU is connected to the at least one second RRU through a power line, and a PLC module is provided in the at least one second RRU.
  • the processing module 801 may execute S201 in the embodiment of FIG. 2 .
  • the sending module 802 may execute S202 in the embodiment of FIG. 2 .
  • the communication apparatus 800 provided by the embodiments of the present application can implement the technical solutions shown in the foregoing method embodiments, and the implementation principles and beneficial effects thereof are similar, which will not be repeated here.
  • the sending module 802 is specifically configured to:
  • the first information is broadcast to the at least one second RRU through the PLC module in the first RRU.
  • processing module 801 is specifically configured to:
  • the first RRU does not receive a heartbeat packet from the BBU within a first time period, it is determined that the link is in an abnormal state.
  • the information of the first RRU includes at least one of the following information: the identifier of the first RRU, the information of the radio frequency module of the first RRU, the first RRU and the The bit error rate of the communication link between the BBUs, the running duration of the first RRU, or the reset times of the first RRU within the first period of time.
  • the information of the optical module includes at least one of the following information:
  • the identification of the optical module the optical power of the optical module, the bias current of the optical module, the device information of the optical module, or the fault information of the optical module.
  • the communication apparatus 800 provided by the embodiments of the present application can implement the technical solutions shown in the foregoing method embodiments, and the implementation principles and beneficial effects thereof are similar, which will not be repeated here.
  • FIG. 9 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 900 may be provided in the second RRU.
  • the communication apparatus 900 may include: a receiving module 901 and a sending module 902, wherein,
  • the receiving module 901 is configured to receive first information from the first RRU through the power line carrier communication PLC module in the second RRU, where the first information includes the information of the first RRU and/or is connected to the first RRU. Describe the information of the optical module of the first RRU;
  • the sending module 902 is configured to send the first information to the baseband unit BBU;
  • the first RRU is connected to the second RRU through a power line, and a PLC module is arranged in the second RRU.
  • the receiving module 901 may execute S202 in the embodiment of FIG. 2 .
  • the sending module 902 may perform S203 in the embodiment of FIG. 2 .
  • the communication apparatus 900 provided in the embodiments of the present application can implement the technical solutions shown in the foregoing method embodiments, and the implementation principles and beneficial effects thereof are similar, which will not be repeated here.
  • the sending module 902 is specifically configured to:
  • the first information is sent to the BBU.
  • FIG. 10 is a schematic structural diagram of still another communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 900 may further include a processing module 903, wherein the processing module 903 is used for:
  • the second RRU is an assisting RRU of the first RRU, and the second information includes an identifier of the first RRU.
  • the receiving module 901 is further configured to receive the second information from the BBU or the first RRU; or,
  • the processing module 903 is further configured to acquire the second information from a preset storage space.
  • the information of the first RRU includes at least one of the following information: the identifier of the first RRU, the information of the radio frequency module of the first RRU, the information of the first RRU The running time, or the reset times of the first RRU within the first period.
  • the information of the optical module includes at least one of the following information: the identifier of the optical module, the optical power of the optical module, the bit error rate of the optical module, the optical module bias current, device information of the optical module, or fault information of the optical module.
  • the communication apparatus 900 provided in the embodiments of the present application can implement the technical solutions shown in the foregoing method embodiments, and the implementation principles and beneficial effects thereof are similar, which will not be repeated here.
  • FIG. 11 is a schematic structural diagram of still another communication apparatus according to an embodiment of the present application.
  • the communication device 1100 may be provided in the BBU.
  • the communication apparatus 1100 may include: a receiving module 1101 and a processing module 1102, wherein,
  • the receiving module 1101 is configured to receive first information sent by a second remote radio unit RRU, where the first information includes information of the first RRU and/or information of an optical module connected to the first RRU ;
  • the processing module 1102 is configured to, according to the first information, determine fault information
  • the first RRU is connected to the second RRU through a power line
  • a power line carrier communication PLC module is respectively set in the first RRU and the second RRU.
  • the receiving module 1101 may execute S203 in the embodiment of FIG. 2 .
  • the processing module 1102 may execute S204 in the embodiment of FIG. 2 .
  • the communication apparatus 1100 may implement the technical solutions shown in the foregoing method embodiments, and the implementation principles and beneficial effects thereof are similar, and details are not described herein again.
  • the fault information includes at least one of the following information: the first RRU is faulty, the optical module connected to the first RRU is faulty, or the relationship between the first RRU and the BBU is faulty. fiber failure in between.
  • FIG. 12 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 1100 may further include a sending module 1103, wherein:
  • the processing module 1102 is further configured to determine that the assisting RRU of the first RRU is the second RRU;
  • the sending module 1103 is configured to send second information to the second RRU, where the second information includes an identifier of the first RRU.
  • the information of the first RRU includes at least one of the following information: the identifier of the first RRU, the information of the radio frequency module of the first RRU, the information of the first RRU The running time, or the reset times of the first RRU within the first period.
  • the information of the optical module includes at least one of the following information: the identifier of the optical module, the optical power of the optical module, the bit error rate of the optical module, the optical module bias current, device information of the optical module, or fault information of the optical module connected to the first RRU.
  • the communication apparatus 1100 may implement the technical solutions shown in the foregoing method embodiments, and the implementation principles and beneficial effects thereof are similar, and details are not described herein again.
  • FIG. 13 is a schematic structural diagram of still another communication apparatus provided by an embodiment of the present application.
  • the communication device 1300 may be provided in the BBU.
  • the communication apparatus 1300 may include: a processing module 1301 and a sending module 1302, wherein,
  • the processing module 1301 is configured to determine that the first remote radio unit RRU exits the sleep state
  • the sending module 1302 is configured to send third information to the second RRU, where the third information is used to instruct the first RRU to exit the sleep state;
  • the first RRU is connected to the second RRU through a power line, and a power line carrier communication PLC module is respectively set in the first RRU and the second RRU;
  • the first RRU entering the sleep state includes at least one of the following: turning off the laser of the optical module connected to the first RRU, stopping the power supply of the optical module connected to the first RRU, or turning off the power supply of the optical module connected to the first RRU A circuit between the optical module of the RRU and the first RRU.
  • the processing module 1301 may execute S502 in the embodiment of FIG. 5 .
  • the sending module 1302 may perform S503 in the embodiment of FIG. 5 .
  • the communication apparatus 1300 may implement the technical solutions shown in the foregoing method embodiments, and the implementation principles and beneficial effects thereof are similar, which will not be repeated here.
  • the third information is used to instruct the second RRU to cause the first RRU to exit the sleep state through a PLC module in the second RRU.
  • the optical module connected to the first RRU includes at least one of the following: an optical module arranged on the first RRU, and arranged on the BBU for communicating with the first RRU.
  • the optical module for RRU communication is an optical module arranged on the cascaded RRU of the first RRU, or an optical module arranged on the front RRU of the first RRU and connected to the first RRU.
  • the communication apparatus 1300 may implement the technical solutions shown in the foregoing method embodiments, and the implementation principles and beneficial effects thereof are similar, which will not be repeated here.
  • FIG. 14 is a schematic structural diagram of still another communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 1400 may be provided in the second RRU.
  • the communication apparatus 1400 may include: a receiving module 1401 and a sending module 1402, wherein,
  • the receiving module 1401 is configured to receive third information from the baseband unit BBU, where the third information is used to instruct the first RRU to exit the sleep state;
  • the sending module 1402 is configured to send the third information to the first RRU through the PLC module in the second RRU;
  • the first RRU is connected to the second RRU through a power line
  • a power line carrier communication PLC module is respectively set in the first RRU and the second RRU.
  • the receiving module 1401 may perform S503 in the embodiment of FIG. 5 .
  • the sending module 1402 may perform S504 in the embodiment of FIG. 5 .
  • the communication apparatus 1400 provided in the embodiments of the present application can implement the technical solutions shown in the foregoing method embodiments, and the implementation principles and beneficial effects thereof are similar, and details are not described herein again.
  • FIG. 15 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 1400 may further include a processing module 1403, wherein:
  • the processing module 1403 is configured to determine that there is no optical fiber link between the second RRU and the first RRU, or that the optical fiber link between the second RRU and the first RRU is abnormal;
  • the sending module 1402 is specifically configured to send the third information to the first RRU through the PLC module in the second RRU.
  • the first RRU in the dormant state satisfies at least one of the following conditions: a laser of an optical module connected to the first RRU is in an off state and connected to the first RRU The power supply state of the optical module is not powered, or the circuit between the optical module connected to the first RRU and the first RRU is in a closed state.
  • the optical module connected to the first RRU includes at least one of the following: an optical module arranged on the first RRU, and arranged on the BBU for communicating with the first RRU.
  • the optical module for RRU communication is an optical module arranged on the cascaded RRU of the first RRU, or an optical module arranged on the front RRU of the first RRU and connected to the first RRU.
  • the communication apparatus 1400 provided in the embodiments of the present application can implement the technical solutions shown in the foregoing method embodiments, and the implementation principles and beneficial effects thereof are similar, and details are not described herein again.
  • FIG. 16 is a schematic structural diagram of still another communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 1600 may be provided in the first RRU.
  • the communication apparatus 1600 may include: a processing module 1601 and a receiving module 1602, wherein,
  • the processing module 1601 is used to determine to enter a dormant state
  • the receiving module 1602 is configured to receive the third information from the second RRU through the power line carrier communication PLC module in the first RRU;
  • the processing module 1601 is further configured to determine to exit the sleep state
  • the first RRU is connected to the second RRU through a power line, and a PLC module is arranged in the second RRU.
  • the processing module 1601 may execute S501 and S505 in the embodiment of FIG. 5 .
  • the receiving module 1602 may perform S504 in the embodiment of FIG. 5 .
  • the communication apparatus 1600 provided by the embodiments of the present application can implement the technical solutions shown in the foregoing method embodiments, and the implementation principles and beneficial effects thereof are similar, and details are not repeated here.
  • entering the sleep state includes at least one of the following:
  • the laser connected to the optical module of the first RRU is turned off, the power supply of the optical module connected to the first RRU is stopped, and the circuit between the optical module connected to the first RRU and the first RRU is closed.
  • the first RRU in the dormant state satisfies at least one of the following conditions: a laser of an optical module connected to the first RRU is in an off state and connected to the first RRU The power supply state of the optical module is not powered, or the circuit between the optical module connected to the first RRU and the first RRU is in a closed state.
  • the optical module connected to the first RRU includes at least one of the following: an optical module arranged on the first RRU, and arranged on the BBU for communicating with the first RRU.
  • the optical module for RRU communication is an optical module arranged on the cascaded RRU of the first RRU, or an optical module arranged on the front RRU of the first RRU and connected to the first RRU.
  • the communication apparatus 1600 provided by the embodiments of the present application can implement the technical solutions shown in the foregoing method embodiments, and the implementation principles and beneficial effects thereof are similar, and details are not repeated here.
  • FIG. 17 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • the communication device 1700 may include: at least one processor 1701 and an interface circuit 1702, the interface circuit 1701 is configured to receive signals from other communication devices other than the communication device and transmit to the processor Or send the signal from the processor to another communication device other than the communication device, and the processor is used to implement the method described in the above method embodiments by using a logic circuit or executing code instructions.
  • the communication apparatus 1700 may be provided in the first RRU, or in the second RRU, or in the BBU.
  • the communication apparatus 1700 When the communication apparatus 1700 is set in the first RRU, the communication apparatus may implement the function of the first RRU in the foregoing method embodiments. When the communication apparatus 1700 is set in the second RRU, the communication apparatus can implement the function of the second RRU in the above method embodiments. When the communication apparatus 1700 is set in the BBU, the communication apparatus can implement the functions of the BBU in the above method embodiments.
  • the communication apparatus shown in the embodiment of FIG. 1700 can implement the technical solutions shown in the foregoing method embodiments, and the implementation principles and beneficial effects thereof are similar, which will not be repeated here.
  • FIG. 18 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 1800 may include: at least one processor 1801 and a memory 1802, the processor 1801 and the memory 1802 are coupled, and the memory 1802 includes a computer program, and the computer program is executed in the at least one Executed in a processor 1801 to implement the functions of the first RRU, the second RRU or the BBU.
  • the communication apparatus 1800 may be provided in the first RRU, or in the second RRU, or in the BBU.
  • the communication apparatus 1800 When the communication apparatus 1800 is set in the first RRU, the communication apparatus can implement the function of the first RRU in the foregoing method embodiment.
  • the communication apparatus 1800 When the communication apparatus 1800 is set in the second RRU, the communication apparatus can implement the function of the second RRU in the above method embodiment.
  • the communication device 18000 When the communication device 18000 is set in the BBU, the communication device can implement the functions of the BBU in the above method embodiments.
  • the communication apparatus shown in the embodiment of FIG. 1800 can implement the technical solutions shown in the foregoing method embodiments, and the implementation principles and beneficial effects thereof are similar, and will not be repeated here.
  • FIG. 19 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • the communication system 1900 includes a first communication device 1901 , a second communication device 1902 and a third communication device 1903 .
  • the first communication device 1901 may be the communication device 1700 provided in the first RRU.
  • the second communication device 1902 may be the communication device 1700 provided in the second RRU.
  • the third communication device 1903 may be the communication device 1700 provided in the BBU.
  • An embodiment of the present application further provides a communication device, where the communication device is configured to execute the technical solutions shown in any of the foregoing method embodiments.
  • Embodiments of the present application further provide a computer-readable storage medium, where computer programs or instructions are stored in the computer-readable storage medium, and when the computer programs or instructions are executed by a communication device, any of the above-mentioned method embodiments can be implemented. technical solution.
  • Embodiments of the present application further provide a computer program product, including a computer program, which, when run on a computer device, enables the computer device to execute the technical solutions shown in any of the foregoing method embodiments.
  • the aforementioned program can be stored in a readable memory.
  • the steps including the above method embodiments are executed; and the aforementioned memory (storage medium) includes: read-only memory (English: read-only memory, abbreviation: ROM), RAM, flash memory, hard disk, Solid state drive, magnetic tape (English: magnetic tape), floppy disk (English: floppy disk), optical disc (English: optical disc) and any combination thereof.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
  • the term "when” does not necessarily refer to the concept of time, but may indicate a concept of a scene or a concept of a condition or the like.
  • the term “comprising” and its variants may mean inclusive without limitation; the term “or” and its variants may mean “and/or”.
  • the terms “first”, “second” and the like in this application are used to distinguish similar objects and are not necessarily used to describe a specific order or sequence.
  • “plurality” means two or more.
  • “And/or”, which describes the association relationship of the associated objects means that there can be three kinds of relationships, for example, A and/or B, which can mean that A exists alone, A and B exist at the same time, and B exists alone.
  • the character “/" generally indicates that the associated objects are an "or” relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请实施例提供一种通信方法、装置及系统,该方法包括:第一射频拉远单元(remote radio unit,RRU)确定自己与基带单元(baseband unit,BBU)之间的链路为异常状态后,会通过第一RRU中的电力线载波通信(power line communication,PLC)模组向至少一个第二RRU发送第一RRU的信息,和/或,连接到第一RRU的光模块的信息,其中,第一RRU通过电力线与至少一个第二RRU连接,并且至少一个第二RRU中也设置有PLC模组。通过实施本方法,可以实现RRU与BBU之间链路故障的精准定位,从而提高了对基站的维护效率。

Description

一种通信方法、装置及系统 技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法、装置及系统。
背景技术
基站可以包括基带单元(baseband unit,BBU)和至少一个射频拉远单元(remote radio unit,RRU),BBU和至少一个RRU通过光纤连接,BBU可以通过光纤通信对至少一个RRU进行管理。
在实际应用过程中,BBU和RRU之间的光纤通信链路上会涉及BBU,光纤,光模块以及RRU。当BBU和RRU之间的通信链路出现故障,一般需要进行故障的定位通常BBU和RRU之间的通信链路出现故障可能是由于以下原因导致的:BBU设备故障,BBU光模块故障,BBU和RRU之间的光纤故障,RRU侧的光模块故障、RRU设备故障等。
然而,由于BBU和RRU之间的通信链路出现故障,此时BBU和RRU之间的链路已断,所以对于由于BBU和RRU之间的光纤故障,RRU侧的光模块故障、RRU设备故障等导致的BBU和RRU之间的通信链路故障的情况,由于BBU无法自动获得RRU的信息,所以需要人工参与故障的定位,操作费时费力,无法高效地对基站进行维护。
现有技术没有提供解决以上问题的解决方案。
发明内容
有鉴于此,本申请提供了一种通信方法、装置及系统,使得即使在BBU和RRU之间的光纤通信链路出现故障后,BBU和RRU之间仍然可以进行通信,从而实现链路故障的快速定位。
第一方面,本申请实施例提供一种通信方法,应用于第一RRU,该方法包括:确定第一RRU与BBU之间的链路为异常状态;第一RRU通过第一RRU中的电力线载波通信(power line communication,PLC)模组向至少一个第二RRU发送第一信息。其中,第一信息包括第一RRU的信息和/或连接到第一RRU的光模块的信息,第一RRU通过电力线与至少一个第二RRU连接,至少一个第二RRU中设置有PLC模组。
在上述过程中,RRU中设置PLC模组,不同RRU通过电力线连接,使得不同RRU之间可以通过PLC模组进行PLC,这样,在BBU与第一RRU之间的链路故障之后,第一RRU可以通过至少一个第二RRU向BBU发送第一RRU的信息和/或连接到第一RRU的光模块的信息,以使BBU可以快速确定该链路的故障信息,实现了链路故障的快速定位,并且使得故障链路可以得到及时的维护,提高了对基站维护的效率。
在一种可能的实施方式中,第一RRU可以通过如下方式向至少一个第二RRU发送第一信息:第一RRU通过第一RRU中的PLC模组向至少一个第二RRU广播第一信息。
在该种实施方式中,RRU之间以广播的方式进行通信,无需在现有的供电系统(包括电源和电力线)基础上增设中继设备,成本低,可实施性高。
在一种可能的实施方式中,第一RRU可以通过如下方式确定第一RRU与BBU之间的链路为异常状态:若第一RRU在第一时长内未接收到来自BBU的心跳包,则确定链路为异常状态。
在该种实施方式中,第一RRU根据心跳包可以方便准确的确定得到第一RRU与BBU之间的链路状态。
在一种可能的实施方式中,第一RRU的信息包括如下信息中的至少一种:第一RRU的标识,第一RRU的射频模块的信息,第一RRU与BBU之间的通信链路的误码率,第一RRU的运行时长,或者第一RRU在第一时段内的复位次数。
在该种实施方式中,BBU根据上述第一RRU的信息,可以快速准确的定位出第一RRU出现何种故障,使得故障定位的效率较高且准确性较高。
在一种可能的实施方式中,光模块的信息包括如下信息中的至少一种:光模块的标识,光模块的光功率,光模块的偏置电流,光模块的设备信息,或者光模块的故障信息。
在该种实施方式中,BBU根据上述光模块的信息,可以快速准确的定位出光模块出现何种故障,使得故障定位的效率较高且准确性较高。
第二方面,本申请实施例提供一种通信方法,应用于第二RRU,该方法包括:通过第二RRU中的电力线载波通信PLC模块接收来自第一RRU的第一信息,向基带单元BBU发送第一信息。其中,第一信息包括第一RRU的信息和/或连接到第一RRU的光模块的信息;第一RRU通过电力线与第二RRU连接,第二RRU中设置有PLC模组。
在上述过程中,RRU中设置PLC模组,不同RRU通过电力线连接,使得不同RRU之间可以通过PLC模组进行PLC,这样,在BBU与第一RRU之间的链路故障之后,第一RRU可以通过至少一个第二RRU向BBU发送第一RRU的信息和/或连接到第一RRU的光模块的信息,以使BBU可以及时确定该链路的故障信息,实现了链路故障的快速定位,并且使得故障链路可以得到及时的维护,提高了对基站维护的效率。
在一种可能的实施方式中,当确定第二RRU为第一RRU的协助RRU时,第二RRU向BBU发送第一信息。
在该种实施方式中,在第二RRU为第一RRU的协助RRU时,第二RRU才向BBU发送第一信息,这样,可以避免过多的RRU向BBU发送第一信息,进而节省信令开销。
在一种可能的实施方式中,第二RRU可以通过如下方式确定第二RRU为第一RRU的协助RRU:获取第二信息,根据第二信息,确定第二RRU为第一RRU的协助RRU,第二信息包括第一RRU的标识。
在该种实施方式中,第二RRU根据第二信息可以快速的确定其是否为第一RRU的协助RRU,使得通信效率较高。
在一种可能的实施方式中,第二RRU可以通过如下方式获取第二信息:接收来自BBU或者第一RRU的第二信息;或者,从预设存储空间获取第二信息。
在该种实施方式中,第二RRU从预设存储空间中可以快速获取第二信息。
在一种可能的实施方式中,第一RRU的信息包括如下信息中的至少一种:第一RRU的标识,第一RRU的射频模块的信息,第一RRU的运行时长,或者第一RRU在第一时段内的复位次数。
在该种实施方式中,BBU根据上述第一RRU的信息,可以快速准确的定位出第一RRU 出现何种故障,使得故障定位的效率较高且准确性较高。
在一种可能的实施方式中,光模块的信息包括如下信息中的至少一种:光模块的标识,光模块的光功率,光模块的误码率,光模块的偏置电流,光模块的设备信息,或者光模块的故障信息。
在该种实施方式中,BBU根据上述光模块的信息,可以快速准确的定位出光模块出现何种故障,使得故障定位的效率较高且准确性较高。
第三方面,本申请实施例提供一种通信方法,应用于BBU,该方法包括:接收第二RRU发送的第一信息,根据第一信息,确定故障信息;其中,第一信息包括第一RRU的信息和/或连接到第一RRU的光模块的信息;第一RRU通过电力线与第二RRU连接,第一RRU和第二RRU中分别设置有电力线载波通信PLC模组。
在上述过程中,RRU中设置PLC模组,不同RRU通过电力线连接,使得不同RRU之间可以通过PLC模组进行PLC,这样,在BBU与第一RRU之间的链路故障之后,第一RRU可以通过至少一个第二RRU向BBU发送第一RRU的信息和/或连接到第一RRU的光模块的信息,以使BBU可以及时确定该链路的故障信息,实现了链路故障的快速定位,并且使得故障链路可以得到及时的维护,提高了对基站维护的效率。
在一种可能的实施方式中,故障信息包括如下信息中的至少一种:第一RRU故障,连接到第一RRU的光模块故障,或者第一RRU与BBU之间的光纤故障。
在一种可能的实施方式中,BBU还确定第一RRU的协助RRU为第二RRU;向第二RRU发送第二信息,第二信息包括第一RRU的标识。
在该种实施方式中,由BBU确定RRU的协助RRU,BBU可以根据当前各RRU的协助RRU分配情况,为第一RRU确定协助RRU,进而使得BBU确定得到的协助RRU的合理性较高,避免某些RRU需要协助多个RRU,或者某些RRU没有需要协助的RRU。
在一种可能的实施方式中,第一RRU的信息包括如下信息中的至少一种:第一RRU的标识,第一RRU的射频模块的信息,第一RRU的运行时长,或者第一RRU在第一时段内的复位次数。
在该种实施方式中,BBU根据上述第一RRU的信息,可以快速准确的定位出第一RRU出现何种故障,使得故障定位的效率较高且准确性较高。
在一种可能的实施方式中,光模块的信息包括如下信息中的至少一种:光模块的标识,光模块的光功率,光模块的误码率,光模块的偏置电流,光模块的设备信息,或者连接到第一RRU的光模块的故障信息。
在该种实施方式中,BBU根据上述光模块的信息,可以快速准确的定位出光模块出现何种故障,使得故障定位的效率较高且准确性较高。
在相关技术中,随着通信技术的快速发展,对应的功率消耗也随之增长。目前基站关断类节能特性的设计,主要是关断RRU模块的功率放大器甚至直接关断RRU模块,之后按照实际需要再通过BBU和RRU之间的光纤通信链路使得被休眠的RRU模块退出当前的休眠状态。然而,为了避免BBU无法使得RRU退出当前的休眠状态,在RRU休眠时,通常不关闭BBU和RRU中的接口,然而,上述接口的功耗仍然较高,所以希望可以进一步关断BBU和RRU中的接口,以实现基站的进一步节能。但是,如果关断BBU和RRU中的接口,会导致RRU模块无法按需退出当前的休眠状态。为此,本申请实施例提出如下通信方法,以解 决RRU进入深度的休眠状态时无法按需退出当前的休眠状态的问题。
由于基站的休眠状态可能分为多级休眠,所以退出当前的休眠状态可以指的是恢复正常工作状态,也可以指的是只是退出当前的休眠状态,仍然会进入另外一种节能效果相对差一些的休眠状态。
第四方面,本申请实施例提供一种通信方法,应用于BBU,该方法包括:确定第一射频拉远单元RRU退出休眠状态;向第二RRU发送第三信息,第三信息用于指示第一RRU退出休眠状态;其中,第一RRU通过电力线与第二RRU连接,第一RRU和第二RRU中分别设置有电力线载波通信PLC模组;第一RRU进入休眠状态包括如下至少一种:关闭连接到第一RRU的光模块的激光器,停止连接到第一RRU的光模块的供电,或者关闭连接到第一RRU的光模块与第一RRU之间的电路。
在上述过程中,第一RRU可以根据实际需要进入深度的休眠状态,以节省功耗。当BBU需要第一RRU退出休眠状态时,BBU可以通过光纤向第二RRU发送第三信息(该第三信息用于指示第一RRU退出当前的休眠状态),第二RRU可以通过电力线向第一RRU发送该第三信息,以使第一RRU退出休眠状态。在上述过程中,第一RRU可以进入深度的休眠状态,使得RRU和BBU的接口为关断状态,进而节省功耗。
在一种可能的实施方式中,第三信息用于指示第二RRU通过第二RRU中的PLC模组使得第一RRU退出当前的休眠状态。
在一种可能的实施方式中,连接到第一RRU的光模块包括如下至少一种:设置在第一RRU上的光模块,设置在BBU上用于与第一RRU通信的光模块,设置在第一RRU的级联RRU上的光模块,或者设置在第一RRU的前置RRU上与第一RRU连接的光模块。
第五方面,本申请实施例提供一种通信方法,应用于第二RRU,该方法包括:接收来自基带单元BBU的第三信息,第三信息用于指示第一RRU退出休眠状态;通过第二RRU中的PLC模组向第一RRU发送第三信息;其中,第一RRU通过电力线与第二RRU连接,第一RRU和第二RRU中分别设置有电力线载波通信PLC模组。
在上述过程中,第一RRU可以根据实际需要进入深度的休眠状态,以节省功耗。当BBU需要第一RRU退出休眠状态时,BBU可以通过光纤向第二RRU发送第三信息(该第三信息用于指示第一RRU退出当前的休眠状态),第二RRU可以通过电力线向第一RRU发送该第三信息,以使第一RRU退出休眠状态。在上述过程中,第一RRU可以进入深度的休眠状态,使得RRU和BBU的接口为关断状态,进而节省功耗。
在一种可能的实施方式中,通过第二RRU中的PLC模组向第一RRU发送第三信息,包括:确定第二RRU与第一RRU之间不存在光纤链路,或者,第二RRU与第一RRU之间的光纤链路异常;通过第二RRU中的PLC模组向第一RRU发送第三信息。
在该种实施方式中,在第二RRU无法通过光纤向第一RRU发送第三信息时,第二RRU可以通过第二RRU中的PLC模组向第一RRU发送第三信息,使得向第一RRU发送第三信息的可靠性较高。
在一种可能的实施方式中,处于休眠状态的第一RRU满足如下条件中的至少一种:连接到第一RRU的光模块的激光器为关闭状态,连接到第一RRU的光模块的供电状态为未供电,或者连接到第一RRU的光模块与第一RRU之间的电路为关闭状态。
在该种实现方式中,在第一RRU满足上述条件时,第一RRU为深度的休眠状态,进而 节省功耗。
在一种可能的实施方式中,连接到第一RRU的光模块包括如下至少一种:设置在第一RRU上的光模块,设置在BBU上用于与第一RRU通信的光模块,设置在第一RRU的级联RRU上的光模块,或者设置在第一RRU的前置RRU上与第一RRU连接的光模块。
第六方面,本申请实施例提供一种通信方法,应用于第一RRU,该方法包括:确定进入休眠状态;通过第一RRU中的电力线载波通信PLC模组接收来自第二RRU的第三信息;确定退出休眠状态;其中,第一RRU通过电力线与第二RRU连接,第二RRU中设置有PLC模组。
在上述过程中,第一RRU可以根据实际需要进入深度的休眠状态,以节省功耗。当BBU需要第一RRU退出休眠状态时,BBU可以通过光纤向第二RRU发送第三信息(该第三信息用于指示第一RRU退出当前的休眠状态),第二RRU可以通过电力线向第一RRU发送该第三信息,以使第一RRU退出休眠状态。在上述过程中,第一RRU可以进入深度的休眠状态,使得RRU和BBU的接口为关断状态,进而节省功耗。
在一种可能的实施方式中,进入休眠状态包括如下至少一种:关闭连接到第一RRU的光模块的激光器,停止连接到第一RRU的光模块的供电,关闭连接到第一RRU的光模块与第一RRU之间的电路。
在该种实施方式中,第一RRU通过上述方法进入休眠状态后,可以使得第一RRU和BBU上的接口处于关闭状态,进而可以节省较多的功耗。
在一种可能的实施方式中,处于休眠状态的第一RRU满足如下条件中的至少一种:连接到第一RRU的光模块的激光器为关闭状态,连接到第一RRU的光模块的供电状态为未供电,或者连接到第一RRU的光模块与第一RRU之间的电路为关闭状态。
在该种实施方式中,第一RRU通过上述方法进入休眠状态后,可以使得第一RRU和BBU上的接口处于关闭状态,进而可以节省较多的功耗。
在一种可能的实施方式中,连接到第一RRU的光模块包括如下至少一种:设置在第一RRU上的光模块,设置在BBU上用于与第一RRU通信的光模块,设置在第一RRU的级联RRU上的光模块,或者设置在第一RRU的前置RRU上与第一RRU连接的光模块。
第七方面,本申请实施例提供一种通信装置,包括:至少一个处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如第一方面任一项所述的方法。
第八方面,本申请实施例提供一种通信装置,包括:至少一个处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如第二方面任一项所述的方法。
第九方面,本申请实施例提供一种通信装置,包括:至少一个处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如第三方面任一项所述的方法。
第十方面,本申请实施例提供一种通信装置,包括:至少一个处理器和接口电路,所 述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如第四方面任一项所述的方法。
第十一方面,本申请实施例提供一种通信装置,包括:至少一个处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如第五方面任一项所述的方法。
第十二方面,本申请实施例提供一种通信装置,包括:至少一个处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如第六方面任一项所述的方法。
第十三方面,本申请实施例提供一种通信装置,所述通信装置包括:至少一个处理器和存储器,所述处理器和所述存储器耦合,所述存储器中包括计算机程序,所述计算机程序在所述至少一个处理器中执行,以实现根据第一方面任一所述方法中的所述第一RRU的功能。
第十四方面,本申请实施例提供一种通信装置,所述通信装置包括:至少一个处理器和存储器,所述处理器和所述存储器耦合,所述存储器中包括计算机程序,所述计算机程序在所述至少一个处理器中执行,以实现根据第二方面任一所述方法中的所述第二RRU的功能。
第十五方面,本申请实施例提供一种通信装置,所述通信装置包括:至少一个处理器和存储器,所述处理器和所述存储器耦合,所述存储器中包括计算机程序,所述计算机程序在所述至少一个处理器中执行,以实现根据第三方面任一所述方法中的所述BBU的功能。
第十六方面,本申请实施例提供一种通信装置,所述通信装置包括:至少一个处理器和存储器,所述处理器和所述存储器耦合,所述存储器中包括计算机程序,所述计算机程序在所述至少一个处理器中执行,以实现根据第四方面任一所述方法中的所述BBU的功能。
第十七方面,本申请实施例提供一种通信装置,所述通信装置包括:至少一个处理器和存储器,所述处理器和所述存储器耦合,所述存储器中包括计算机程序,所述计算机程序在所述至少一个处理器中执行,以实现根据第五方面任一所述方法中的所述第二RRU的功能。
第十八方面,本申请实施例提供一种通信装置,所述通信装置包括:至少一个处理器和存储器,所述处理器和所述存储器耦合,所述存储器中包括计算机程序,所述计算机程序在所述至少一个处理器中执行,以实现根据第六方面任一所述方法中的所述第一RRU的功能。
第十九方面,本申请实施例提供一种通信系统,包括如第七方面或者所述的通信装置,如第八方面所述的通信装置,以及如第九方面所述的通信装置。
第二十方面,本申请实施例提供一种通信系统,包括如第十方面或者所述的通信装置,如第十一方面所述的通信装置,以及如第十二方面所述的通信装置。
第二十一方面,本申请实施例提供一种通信装置,所述装置用于执行第一方面至第六方面任一项所述的方法。
第二十二方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如第一方面至第六方面任一项所述的方法。
第二十三方面,本申请实施例提供一种计算机程序产品,包括计算机程序,当其在计算机设备上运行时,使得所述计算机设备执行如第一方面至第六方面中任一项所述的方法。
本申请实施例提供的通信方法、装置及系统,RRU中设置PLC模组,不同RRU通过电力线连接,使得不同RRU之间可以通过PLC模组进行PLC,这样,在BBU与第一RRU之间的链路故障之后,第一RRU可以通过至少一个第二RRU向BBU发送第一RRU的信息和/或连接到第一RRU的光模块的信息,以使BBU可以及时确定该链路的故障信息,实现了链路故障的快速定位,并且使得故障链路可以得到及时的维护,提高了对基站维护的效率。
附图说明
图1A为本申请实施例提供的一种基站的架构图;
图1B为本申请实施例提供的另一种基站的架构图;
图1C为本申请实施例提供的又一种基站的架构图;
图1D为本申请实施例提供的再一种基站的架构图;
图1E为本申请实施例提供的另一种基站的架构图;
图1F为本申请实施例提供的又一种基站的架构图;
图2为本申请实施例提供的一种通信方法的流程示意图;
图3为本申请实施例提供的一种通信过程示意图;
图4为本申请实施例提供的另一种通信过程示意图;
图5为本申请实施例提供的另一种通信方法的流程示意图;
图6为本申请实施例提供的一种通信过程示意图;
图7为本申请实施例提供的一种通信过程示意图;
图8为本申请实施例提供的一种通信装置的结构示意图;
图9为本申请实施例提供的另一种通信装置的结构示意图;
图10为本申请实施例提供的又一种通信装置的结构示意图;
图11为本申请实施例提供的再一种通信装置的结构示意图;
图12为本申请实施例提供的另一种通信装置的结构示意图;
图13为本申请实施例提供的再一种通信装置的结构示意图;
图14为本申请实施例提供的又一种通信装置的结构示意图;
图15为本申请实施例提供的另一种通信装置的结构示意图;
图16为本申请实施例提供的又一种通信装置的结构示意图;
图17为本申请实施例提供的一种通信装置的结构示意图;
图18为本申请实施例提供的另一种通信装置的结构示意图;
图19为本申请实施例提供的一种通信系统的结构示意图。
具体实施方式
为了便于理解,首先对本申请实施例所涉及的概念进行说明。
基站:基站通常可以包括BBU和至少一个RRU,BBU和至少一个RRU之间可以通过光纤连接。
RRU:可以对信号进行中频处理、射频处理、双工等。中频处理可以包括数字同相正交(In-phase/Quadrature,I/Q)调制解调、上下变频、数模(digital to analog,DA)DA/模数(analog to digital,AD)转换。RRU还可以称为RFU。可选的,RRU中还可以集成有天线,在该种情况下,RRU还可以称为有源天线单元(active antenna unit,AAU)。为了便于描述,下文以RRU为例进行描述,即,下文中所示的RRU还可以为RFU或者AAU。
BBU:可以对信号进行基带处理,BBU还可以为RRU提供传输接口、无线资源、时钟信息等。基带处理可以包括信道编/解码处理、调制/解调处理。
光模块:用于进行光电转换和电光转换。光模块可以插设在设备(例如RRU、BBU等)上,并对设备之间传输的信号进行光电转换和电光转换。例如,在设备发送电信号时,该设备上插设的光模块可以将电信号转换为光信号进行发送。在设备上插设的光模块接收到光信号之后,可以将光信号转换为电信号进行接收。
电力线载波通信(power line communication,PLC):利用电力线传输数据(业务数据或者信令)。通过PLC技术,数据发送端可以将承载有数据信息的高频信号加载于电流并通过电力线进行传输,数据接收端的适配器可以把该高频信号从电流中分离出来,从而获取高频信号中承载的数据信息。
PLC模组:可以提供PLC功能,在设备中设置PLC模组之后,设备可以通过PLC设备与其它设备进行电力线载波通信。
本申请中,BBU和RRU之间的通信链路是以光纤通信链路举例的,即包括光纤和光模块等。BBU和RRU之间的通信链路当然也可以是其他类型的通信链路,本申请对此不限定。
在本申请实施例中,RRU中设置有PLC模组,不同RRU通过电力线连接,使得基站中的不同RRU之间可以通过PLC模组进行PLC。这样,在BBU与某一RRU之间的链路故障之后,该RRU仍然可以通过其它RRU和BBU通信,以使BBU可以及时确定该链路的故障信息,使得该故障的链路可以得到及时的维护,提高了对基站维护的效率。
为了便于理解,下面,结合图1A-图1F,对基站的架构进行说明。
图1A为本申请实施例提供的一种基站的架构图。请参见图1A,包括BBU、N个RRU和电源,N为大于或等于1的整数。BBU上设置有N个光模块,N个RRU中的每个RRU上设置有一个光模块。可以通过插设的方式将光模块设置在BBU或者RRU上。RRU与BBU之间通过光纤连接,光纤的两端分别与BBU和RRU上设置的光模块连接,这样,可以实现RRU与BBU之间通过光纤进行通信。N个RRU中的每个RRU上设置有PLC模组。电源通过电力线与N个RRU连接。电源可以通过电力线向N个RRU供电,不同的RRU之间还可以通过电力线和PLC模组进行PLC。
在实际通信过程中,光模块可以将设备(RRU或者BBU)待发送的电信号转换为光信号,并通过光纤传输至另一端设备(BBU或者RRU)。另一端设备中的光模块可以将接收到的光信号转换为电信号进行后续处理。例如,在BBU向RRU1发送信号的过程中,BBU中的光模块A将BBU待发送的电信号转换为光信号,并通过光纤发送该光信号,在光信号达到光模块B之后,光模块B将光信号转换为电信号,并将电信号传输给RRU1进行后续处 理。
图1B为本申请实施例提供的另一种基站的架构图。请参见图1B,包括BBU、N个RRU和电源,N为大于或等于1的整数。BBU上设置有多个(大于N)光模块,每个RRU上设置有至少一个光模块,例如,RRU1上设置有两个光模块,RRU2上设置有一个光模块,RRU N上设置有两个光模块。可以通过插设的方式将光模块设置在BBU或者RRU上。BBU上设置的光模块的数量可以为N个RRU中设置的光模块的数量之和。RRU与BBU之间通过至少一条光纤连接,光纤的两端分别与BBU和RRU上设置的光模块连接。例如,RRU1上设置两个光模块,则RRU分别通过两条光纤与BBU连接,每条光纤的两端分别与BBU中的光模块和RRU中的光模块连接。不同的光纤与不同的光模块连接。当然,RRU中设置的光模块的数量还可以为3个、4个等,本申请实施例对此不作限定。N个RRU中的每个RRU上设置有PLC模组。电源通过电力线与N个RRU连接。电源可以通过电力线向每个RRU供电。不同的RRU之间可以通过电力线和PLC模组进行PLC。在图1B中,通过在RRU中设置多个光模块,可以提高BBU与RRU之间的通信容量。
图1C为本申请实施例提供的又一种基站的架构图。在图1A的基础上,请参见图1C,电源还可以设置在基站的外部,即,基站不包括电源。当然,在其它任意一种图示基站中,电源均可以设置在基站外部,本申请实施例对此不再一一赘述。
需要说明的是,图1B-图1C所示的基站的通信过程与图1A所示的基站的通信过程类似,此处不再进行赘述
图1D为本申请实施例提供的再一种基站的架构图。请参见图1D,包括BBU、多个RRU和电源。可以将与BBU直接连接的RRU定义为直连RRU,将与BBU间接连接的RRU定义为级联RRU。例如,RRU11和RRU21为直连RRU,RRU12、RRU13、RRU22和RRU23为级联RRU。RRU和BBU中分别设置有至少一个光模块,例如,BBU、RRU11、RRU12、RRU21和RRU22中分别设置有两个光模块,RRU13和RRU23中分别设置有一个光模块。直连RRU的一端与BBU通过光纤连接,另一端通过光纤与至少一个级联RRU连接。相邻的级联RRU之间通过光纤连接。每一条光纤的两端分别与光模块连接。多个RRU上均设置有PLC模组。电源通过电力线与多个RRU连接。电源可以通过电力线向多个RRU供电。不同的RRU之间可以通过电力线和PLC模组进行PLC。
在实际通信过程中,BBU向级联RRU发送消息需要经过直连RRU转发。例如,BBU向RRU12发送消息时,需要经过RRU11转发。例如,BBU向RRU13发送消息时,BBU可需要经过RRU11和RRU12转发。
图1E为本申请实施例提供的另一种基站的架构图。请参见图1E,在图1D的基础上,直连RRU通过多条光纤与BBU连接(图1E中以两条为例进行说明),这样,可以提高BBU与RRU之间的通信容量。图1E所示的基站的结构描述以及通信过程可以参见图1B和图1D,此处不再赘述。
图1F为本申请实施例提供的又一种基站的架构图。请参见图1F,包括BBU、多个RRU和电源。多个RRU中包括直连RRU11、级联RRU12、级联RRU13和级联RRU14。直连RRU11的一端通过光纤与BBU连接,另一端通过光纤分别与3个级联RRU连接。直连RRU11可以转发BBU向级联RRU发送的消息。多个RRU上设置有PLC模组。电源通过电力线与多个RRU连接。电源可以通过电力线向多个RRU供电。不同的RRU之间还可以通过电力线和PLC模 组进行PLC。
可选的,在上述图1A-图1F中,可能部分RRU中设置有PLC模组,部分RRU中不设置PLC模组。
需要说明的是,上述图1A-图1F只是以示例的形式示意几种可能的基站的架构图,并非对基站的架构进行的限定,当然,在图1A-图1F所示的基站中,还可以根据实际需要设置RRU的数量、光模块的数量、电源的位置等,本申请实施例对此不作具体限定。
下面,通过具体实施例对本申请所示的技术方案进行详细说明。需要说明的是,下面几个实施例可以独立存在,也可以相互结合,对于相同或相似的内容,在不同的实施例中不再重复说明。
图2为本申请实施例提供的一种通信方法的流程示意图。请参见图2,该方法200可以包括:
S201、第一RRU确定第一RRU与BBU之间的链路为异常状态。
基站中包括BBU和多个RRU,第一RRU为该多个RRU中的任意一个RRU。示例性的,基站的架构可以为图1A-图1F中任意一种架构。
第一RRU可以实时或者周期性检测第一RRU与BBU之间的链路,以确定第一RRU与BBU之间的链路为正常状态或者异常状态。链路处于异常状态可以认为链路发生了故障。
在如下任意一种或多种情况下,第一RRU与BBU之间的链路为异常状态:
情况1、第一RRU故障。
第一RRU故障可以包括:软件故障和/或硬件故障。
情况2、连接到第一RRU的光模块故障。
连接到第一RRU的光模块可以包括:第一RRU与BBU通信所使用的光模块,即,第一RRU与BBU之间传输的数据所经过的光模块。
当基站的架构不同时,连接到第一RRU的光模块可能不同:
当第一RRU与BBU直接连接时(第一RRU与BBU之间的通信无需其它RRU的中转),连接到第一RRU的光模块可以包括如下至少一种:设置在第一RRU上的用于与BBU通信的光模块、设置在BBU上的用于与第一RRU通信的光模块。例如,请参见图1A,连接到RRU1的光模块可以包括:光模块A或光模块B中的至少一个。即,光模块A或光模块B中的任意一个或多个故障,都可能导致RRU1与BBU之间的链路处于异常状态。又例如,请参见图1B,连接到RRU1的光模块可以包括:光模块A、光模块B、光模块C或光模块D中的至少一个。即,光模块A、光模块B、光模块C或者光模块D中的任意一个或多个故障,都可能导致RRU1与BBU之间的至少一条链路处于异常状态。再例如,请参见图1D,连接到RRU1的光模块可以包括:光模块A或光模块B中的至少一个。即,光模块A或光模块B中的任意一个或多个故障,都可能导致RRU1与BBU之间的链路处于异常状态。
当第一RRU与BBU非直接连接时(第一RRU与BBU之间的通信需要其它RRU的中转),连接到第一RRU的光模块可以包括如下至少一种:设置在第一RRU上的用于与BBU通信的光模块、设置在BBU上的用于与第一RRU通信的光模块、设置在中间RRU上的光模块。中间RRU可以指用于转发BBU与第一RRU之间的数据的RRU,例如,请参见图1D,RRU11为RRU12的中间RRU,RRU11和RRU12为RRU13的中间RRU。例如,请参见图1D,连接到RRU12的光模块可以包括:光模块A、光模块B、光模块C或光模块D中的至少一个。即,光模 块A、光模块B、光模块C或光模块D中的任意一个或多个故障,都可能导致RRU12与BBU之间的至少一条链路处于异常状态。例如,连接到RRU13的光模块可以包括:光模块A、光模块B、光模块C、光模块D、光模块E或光模块F中的至少一个。即,光模块A、光模块B、光模块C、光模块D、光模块E或光模块F中的任意一个或多个故障,都可能导致RRU13与BBU之间的至少一条链路处于异常状态。
情况3、第一RRU与BBU之间的光纤故障。
第一RRU与BBU之间的光纤包括:第一RRU与BBU通信所使用的光纤,即,第一RRU与BBU之间传输的数据所经过的光纤。
例如,请参见图1A,RRU1与BBU之间的光纤包括:光模块A与光模块B之间的光纤。例如,请参见图1B,RRU1与BBU之间的光纤包括:光模块A与光模块B之间的光纤,以及光模块C与光模块D之间的光纤。例如,请参见图1D,RRU12与BBU之间的光纤包括:光模块A与光模块B之间的光纤,以及光模块C与光模块D之间的光纤。
第一RRU可以通过如下方式确定第一RRU与BBU之间的链路是否处于异常状态:
第一RRU判断在第一时长内是否接收到来自BBU的心跳包,若是,则确定第一RRU与BBU之间的链路为正常状态,若否,则确定第一RRU与BBU之间的链路为正常状态。该第一时长的起始时刻为第一RRU上一次接收到来自BBU的心跳包的时刻。例如,在第一RRU接收到一个来自BBU的心跳包之后,若在第一时长内接收到来自BBU的心跳包,则确定第一RRU与BBU之间的链路为正常状态;若在第一时长内未接收到来自BBU的心跳包,则确定第一RRU与BBU之间的链路为异常状态。
S202、第一RRU通过第一RRU中的PLC模组向至少一个第二RRU发送第一信息。
其中,第一RRU通过电力线与至少一个第二RRU连接。第一RRU和至少一个第二RRU中分别设置有PLC模组。该第二RRU与该第一RRU可以位于同一基站中。
第一RRU可以通过第一RRU中的PLC模组将第一信息发送到电力线上,第二RRU可以通过第二RRU中的PLC模组从电力线上接收第一信息。
第一RRU可以通过如下方式向至少一个第二RRU发送第一信息:
①一种可行的实现方式:第一RRU通过第一RRU中的PLC模组在电力线上广播第一信息。
由于第一RRU与各第二RRU之间通过电力线互连,因此,在第一RRU通过PLC模组在电力线上广播第一信息之后,各第二RRU均可以接收到该第一信息。
该种可行的实现方式,RRU之间以广播的方式进行通信,无需在现有的供电系统(包括电源和电力线)中增设中继设备,可实施性高。
②另一种可行的实现方式:第一RRU通过第一RRU中的PLC模组向中继设备发送第一信息,中继设备再向至少一个第二RRU发送第一信息。
中继设备可以设置在电源中或者电源外。中继设备通过电力线与各个RRU连接。
第一RRU向中继设备发送的第一信息中可以携带至少一个第二RRU的地址信息,以使中继设备可以根据至少一个第二RRU的地址信息向至少一个第二RRU转发该第一信息。可选的,第二RRU的地址信息可以为第二RRU的高级数据链路控制(high-level data link control,HDLC)地址、互联网协议(internet protocol,IP)地址、媒体接入控制(media access control,MAC)地址、跳(hop)号等。
该种可行的实现方式可以有选择地向某些第二RRU发送第一信息,并且可以灵活控制信令开销。
其中,第一信息包括第一RRU的信息,和/或,连接到第一RRU的光模块的信息。
可选的,第一RRU的信息包括如下信息中的至少一种:
信息1、第一RRU的标识。
第一RRU的标识可以如下至少一种:第一RRU的地址或者第一RRU的编号等。
信息2、第一RRU的射频模块的信息。
第一RRU的射频模块的信息可以包括如下至少一种:第一RRU的软件故障信息或者硬件故障信息。例如,软件故障信息为软件告警信息,硬件故障信息为硬件告警信息。
信息3、第一RRU与BBU之间的通信链路的误码率。
通信链路的误码率可以是指通过该通信链路传输的数据的误码率。第一RRU可以对接收到的数据进行统计分析,以确定该通信链路的误码率。
信息4、第一RRU的运行时长。
第一RRU的运行时长可以指第一RRU在最近一次上电之后运行的时长。
信息5、第一RRU在第一时段内的复位次数。
第一时段可以指当前时刻之前的一段时长,例如,第一时段可以为当前时刻之前1天内、当前时刻之前1小时内等。又例如,第一时段可以为第一RRU上电之后至当前时刻之间的时段。
需要说明的是,上述只是以示例的形式示意第一RRU的信息中包括的内容,并非对第一RRU的信息中包括的内容进行的限定,第一RRU的信息中还可以包括其它,例如,第一RRU的信息还可以包括第一RRU的设备信息(例如厂家、型号等)、第一RRU的部署位置等。
连接到第一RRU的光模块的解释可以参见S201中情况2中的描述,此处不再赘述。连接到第一RRU的光模块的信息可以包括如下信息中的至少一种:
信息1、连接到第一RRU的光模块的标识。
信息2、连接到第一RRU的光模块的光功率。
光模块的光功率可以包括如下至少一种:光模块的光发射功率或者光接收功率。
信息3、连接到第一RRU的光模块的偏置电流。
信息4、连接到第一RRU的光模块的设备信息。
光模块的设备信息可以包括如下至少一种:光模块的生产厂家、型号、安装时间等信息。
信息5、连接到第一RRU的光模块的故障信息。
连接到第一RRU的光模块的故障信息可以包括如下至少一种:光模块接收异常、光模块发送异常、光模块硬件故障、光模块运行异常。
可选的,第一RRU可以主动向第二RRU发送第一信息,也可以在接收到请求消息再向第二RRU发送第一信息,可以包括如下两种情况:
情况1、第一RRU主动向第二RRU发送第一信息。
在第一RRU确定第一RRU与BBU之间的链路为异常状态时,第一RRU主动向至少一个第二RRU发送第一信息,以使第二RRU向BBU发送第一信息。这样,BBU可以及时确定第 一RRU与BBU之间的链路异常。
情况2、第一RRU在接收到请求消息之后,向第二RRU发送第一信息。
BBU可以周期性地或者在预定时间或者在发现BBU和RRU1之间的链路出现故障时向RRU发送请求消息,以请求获取第一信息,在第一RRU接收到请求消息之后,再通过第二RRU向BBU发送第一信息。
例如,BBU可以向多个RRU发送请求消息,在RRU接收到请求消息之后,RRU可以通过PLC模组向其它RRU广播该请求消息,以使得所有的RRU可以接收到该请求消息。该请求消息中可以携带RRU1的标识,以便于只有RRU1需要解析该接收到的该请求消息。
可选的,为了提高BBU获取第一信息的可靠性,第一RRU可以同时采用上述两种情况所述的方式发送第一信息。即,第一RRU可以主动向第二RRU发送第一信息,BBU为了避免漏接收第一信息,还可以主动向RRU请求获取第一信息。在该种情况下,若BBU获取到重复的第一信息,则BBU可以丢弃重复的第一信息。
S203、第二RRU向BBU发送第一信息。
第二RRU可以通过光纤向BBU发送第一信息。
S203中所示的第二RRU可以代表接收到该第一信息的全部第二RRU,也可以为接收到该第一信息的部分第二RRU。下面,分别对该两种情况进行说明。
情况1、S203中所示的第二RRU为接收到该第一信息的全部第二RRU。
在该种情况下,接收到第一信息的所有第二RRU均向BBU发送第一信息。这样,可以增加BBU接收到第一信息的概率。
情况2、S203中所示的第二RRU为接收到该第一信息的部分第二RRU。
该部分第二RRU可以为第一RRU的协助RRU。第一RRU的协助RRU用于向BBU转发第一RRU的第一信息,即,在第一RRU与BBU之间的链路为异常状态时,第一RRU的协助RRU向BBU转发第一RRU的第一信息,以使BBU获知第一RRU的故障信息。
当两个RRU之间不是级联关系,例如两个RRU之间没有光纤互连,则可以将两个RRU之间的拓扑关系称之为并联关系。优选的,第一RRU的协助RRU与该第一RRU之间为并联关系,这样,可以减少RRU与BBU之间的链路、以及协助RRU与BBU之间的链路同时故障的概率。例如,请参见图1A-图1C,基站中的各个RRU均为并联关系。请参见图1D-图1E,RRU11、RRU12和RRU13为串联关系,RRU21、RRU22和RRU23为串联关系,RRU11、RRU12和RRU13中的任意一个与RRU21、RRU22和RRU23中的任意一个均为并联关系。例如,请参见图1A-图1C,RRU1的协助RRU可以为基站中除RRU1之外的其它任意一个或多个RRU。请参见图1D-图1E,RRU11的协助RRU通常可以为RRU21、RRU22或RRU23中的一个或多个。
针对任意一个接收到第一信息的第二RRU,该第二RRU会判断自己是否为第一RRU的协助RRU,在该第二RRU确定自己为第一RRU的协助RRU时,才向BBU发送第一信息。若第二RRU判断自己不是第一RRU的协助RRU,则第二RRU不会向BBU发送第一信息,进一步的,可以丢弃该第一信息。
第二RRU可以通过如下方式确定其是否为第一RRU的协助RRU:
该第二RRU获取第二信息,第二信息中包括该第二RRU需要协助的RRU的标识,若第二信息中包括第一RRU的标识,则第二信息确定自己为第一RRU的协助RRU。
第二RRU可以通过如下方式获取第二信息:
方式1、第二RRU可以接收来自BBU的第二信息。
BBU可以确定第一RRU的协助RRU,再根据该第一RRU的协助RRU生成第二信息。
可选的,第二信息中包括两个字段,其中一个字段为第一RRU的标识,另一个字段为第一RRU的协助RRU的标识。相应的,BBU可以根据第一RRU的标识和第一RRU的协助RRU的标识生成第二信息。RRU的标识可以为RRU的地址信息。
例如,假设第一RRU的标识为RRU1,第一RRU的协助RRU的标识为RRU2和RRU3,则第二信息可以包括:<RRU1><RRU2,RRU3>。
BBU可以确定第二RRU为第一RRU的协助RRU,再根据该第二RRU生成第二信息。BBU向第二RRU发送第二信息。可选的,在BBU生成第二信息之后,BBU可以向其服务的所有RRU发送该第二信息。
方式2、第二RRU可以接收来自第一RRU的第二信息。
可选的,BBU可以确定第一RRU的协助RRU,根据第一RRU的协助RRU生成的第二信息,并向第一RRU发送第二信息。在第一RRU接收到第二信息之后,可以向第二RRU发送第二信息。例如,第一RRU可以广播第二信息。
可选的,第一RRU可以确定第二信息,并向第二RRU发送第二信息。例如,第一RRU可以广播第二信息。
方式3、第二RRU可以从预设存储空间中获取第二信息。
第二信息可以为预先配置至预设存储空间中,当第二RRU需要判断其是否为第一RRU的协助RRU时,第二RRU从预设存储空间获取该第二信息。
例如,第二RRU可以预先从BBU或者第一RRU接收第二信息,并将第二信息存储至预设存储空间,或者在第二RRU出厂的时候就配置在第二RRU的存储空间中,当第二RRU需要使用第二信息时,第二RRU从预设存储空间获取该第二信息。
S204、BBU根据第一信息,确定故障信息。
可选的,故障信息包括如下信息中的至少一种:
信息1、第一RRU故障。
第一RRU中的软件故障或第一RRU中的硬件故障。
信息2、连接到第一RRU的光模块故障。
连接到第一RRU的光模块的解释可以参见S201中情况2中的描述,此处不再赘述。光模块故障可以包括如下至少一种:光模块的光功率异常或光模块的偏置电流异常。
信息3、第一RRU与BBU之间的光纤故障。
在一个RRU与BBU之间的通信链路故障时,该RRU的级联RRU与BBU之间的通信链路通常也故障。例如,请参见图1D,若RRU11与BBU之间的链路故障,则RRU12与BBU之间的链路、以及RRU13与BBU之间的链路也故障。或者,若RRU12与BBU之间的链路故障,则RRU13与BBU之间的链路也故障。
例如,假设第一信息中包括第一RRU的软件故障信息,则BBU可以确定第一RRU的软件故障。
例如,假设第一信息中包括第一RRU的标识和光模块1的标识,则BBU可以根据该第一信息确定第一RRU中的光模块1故障。
例如,假设第一信息中包括第一RRU的标识和光模块1的光功率,则BBU可以根据该 第一信息确定第一RRU中的光模块1的光功率异常。
例如,假设BBU根据第一信息,确定连接到第一RRU的光模块没有故障,第一RRU没有故障,则可以确定是第一RRU与BBU之间的光纤出现故障。
本申请实施例提供的通信方法,RRU中设置PLC模组,不同RRU通过电力线连接,使得基站中的不同RRU之间可以通过PLC模组进行PLC,这样,在BBU与第一RRU之间的链路故障之后,第一RRU可以通过至少一个第二RRU向BBU发送第一RRU的信息和/或连接到第一RRU的光模块的信息,以使BBU可以及时确定该链路的故障信息,实现了链路故障的快速定位,并且使得故障链路可以得到及时的维护,提高了对基站维护的效率。
下面,结合图3-图4,通过具体示例对图2实施例所示的通信方法进行详细说明。
图3为本申请实施例提供的一种通信过程示意图。请参见图3,基站中包括一个BBU和4个RRU,该4个RRU分别记为RRU1、RRU2、RRU3和RRU4,该4个RRU分别通过光模块和光纤与BBU连接,该4个RRU分别通过电力线与电源连接,该4个RRU之间还通过电力线相互连接。每个RRU中均设置有PLC模组。
在时刻1时,该4个RRU与BBU之间的链路均为正常状态。此时,电源通过电力线向每个RRU进行供电。
在时刻2时,RRU1可以获取RRU1与BBU之间的通信链路的误码率,当该误码率小于预设阈值时,RRU1确定RRU1与BBU之间的链路出现故障,并通过RRU1中的PLC模组广播第一信息(下文简称信息1),信息1中包括RRU1与BBU之间的通信链路的误码率。由于RRU1、RRU2、RRU3和RRU4通过电力线相互连接,因此,RRU2、RRU3和RRU4均可以通过各自的PLC模组接收到RRU1广播的信息1。此时,电力线用于电源向每个RRU供电以及RRU之间进行PLC。
在时刻3时,在RRU2、RRU3和RRU4接收到信息1之后,分别通过光纤向BBU发送信息1。在BBU接收到信息1之后,BBU可以根据信息1中的误码率,确定BBU与RRU1之间的链路的链路质量,从而判断是否是由于链路质量差导致的BBU与RRU1之间的链路故障。示例性的,如果BBU发现RRU1上报的误码率很高,那么可以确定BBU与RRU1之间的链路质量很差,在BBU根据RRU1上报的其他信息判断不是由于RRU1的光模块导致的链路故障,就可以确定是由于BBU与RRU1之间的光纤故障导致的BBU与RRU1之间的链路故障。
在上述过程中,在RRU1与BBU之间的链路故障之后,RRU1可以通过基站中的其它RRU(RRU2、RRU3和RRU4)向BBU上报信息1,以使BBU可以及时确定故障信息。由于基站中除RRU1之外的其它RRU均可以向BBU上报信息1,可以降低BBU接收不到信息1的概率。
图4为本申请实施例提供的另一种通信过程示意图。请参见图4,基站中包括一个BBU和4个RRU,该4个RRU分别记为RRU1、RRU2、RRU3和RRU4,该4个RRU分别通过光模块和光纤与BBU连接,该4个RRU分别通过电力线与电源连接,该4个RRU之间还通过电力线相互连接。每个RRU中均设置有PLC模组。
在基站部署完成之后或者该基站上电之后,BBU可以为每个RRU配置协助RRU。例如,BBU为RRU1配置的协助RRU为RRU2和RRU3,并向RRU2-RRU4发送第二信息,第二信息用于指示RRU1的协助RRU为RRU2和RRU3。可选的,BBU还可以向RRU1发送第二信息,以使RRU1可以确定其协助RRU。
例如,假设第二信息中包括两个字段,字段1用于存储被协助RRU的标识,字段2用 于存储协助RRU的标识,则字段1为RRU1的标识,字段2为RRU2的标识和RRU3的标识第一RRU的协助RRU的标识。
在时刻1时,该4个RRU与BBU之间的链路均为正常状态。此时,电源通过电力线向每个RRU进行供电。
在时刻2时,RRU1与BBU之间的链路出现故障,在RRU1检测到其与BBU之间的链路出现故障时,RRU1通过RRU1中的PLC模组广播第一信息(下文简称信息1),信息1中包括RRU1的信息和/或连接到RRU1的光模块的信息。由于RRU1、RRU2、RRU3和RRU4通过电力线相互连接,因此,RRU2、RRU3和RRU4均可以接收到RRU1广播的信息1。此时,电力线用于电源向每个RRU供电以及RRU进行PLC。
在时刻3时,在RRU2接收到信息1之后,RRU2判断自己为RRU1的协助RRU,则RRU2通过光纤向BBU发送信息1。在RRU3接收到信息1之后,RRU3判断自己为RRU1的协助RRU,则RRU3通过光纤向BBU发送信息1。在RRU4接收到信息1之后,RRU4判断自己不是RRU1的协助RRU,则不向BBU发送信息1,进一步的,RRU4可以丢弃信息1。在BBU接收到信息1之后,BBU可以根据信息1确定故障信息。
在上述过程中,在RRU1与BBU之间的链路故障之后,RRU1可以通过协助RRU向BBU上报第一信息,以使BBU可以及时确定故障信息。只需RRU1的协助RRU向BBU上报第一信息,使得信令开销较小。
由于BBU与RRU之间通常只设置有光纤链路,在相关技术中,为了避免BBU无法使得RRU退出当前的休眠状态,在RRU休眠时,通常不关断BBU和RRU接口,导致基站的功耗较高。为此,本申请对基站的架构进行改进,改进后的基站的架构可以如图1A-图1F所示。在改进后的基站中,BBU与每个RRU之间设置有光纤链路,不同的RRU之间通过电力线连接,使得BBU可以通过一个RRU使得另外一个RRU退出当前的休眠状态。这样,在RRU休眠时,可以关断该RRU和BBU的接口,进而节省功耗。下面,通过图5-图7所示的实施例对BBU使得RRU退出当前的休眠状态的方法进行说明。
图5为本申请实施例提供的另一种通信方法的流程示意图。请参见图5,该方法500可以包括:
S501、第一RRU确定进入休眠状态。
第一RRU可以在如下条件下确定进入休眠状态:
条件1、BBU向第一RRU发送休眠通知消息。
在BBU确定第一RRU可以进入休眠状态时,BBU可以向第一RRU发送休眠通知消息,第一RRU则根据休眠通知消息进入休眠状态。
示例性的,BBU可以根据第一RRU对应的业务量确定第一RRU的状态。例如,当第一RRU对应的业务量小于预设阈值时,则第一RRU可以进入休眠状态。
条件2、第一RRU根据预配置信息进入休眠状态。
可选的,预配置信息中包括进入休眠时刻。在该进入休眠时刻到来时,第一RRU可以进入休眠状态。该预配置信息可以为BBU预配置的,也可以为协议约定的。
本申请实施例所涉及的休眠状态是指深度的休眠状态,在第一RRU为休眠状态时,BBU无法通过光纤链路使得第一RRU退出当前的休眠状态。第一RRU可以通过如下方式中的至少一种进入休眠状态,通过如下方式进入的休眠状态即为深度的休眠状态:
方式1、关闭连接到第一RRU的光模块的激光器。
连接到第一RRU的光模块包括如下至少一种:
设置在第一RRU上的光模块。
设置在BBU上用于与第一RRU通信的光模块。
设置在第一RRU的级联RRU上的光模块。
设置在第一RRU的前置RRU上与所述第一RRU连接的光模块。
第一RRU的级联RRU可以为:基站中位于所述第一RRU之后的RRU。第一RRU可以转发第一RRU的级联RRU与BBU之间的消息。例如,请参见图1A-图1C,基站中的RRU均不存在级联RRU。请参见图1D,RRU11的级联RRU包括RRU12和RRU13,RRU12的级联RRU为RRU13。
第一RRU的前置RRU可以为:基站中位于第一RRU之前且与第一RRU直连的RRU。第一RRU的前置RRU可以转发第一RRU与BBU之间的消息。例如,请参见图1A-图1C,基站中的RRU均不存在前置RRU。请参见图1D,RRU12的前置RRU为RRU11,RRU13的前置RRU为RRU12。
在第一RRU不同时,连接至第一RRU的光模块可能不同,可以包括如下几种情况:
情况1、第一RRU不存在级联RRU和前置RRU。
在该种情况下,连接到第一RRU的光模块包括:设置在第一RRU上的光模块和设置在BBU上用于与第一RRU通信的光模块。
例如,请参见图1A,假设第一RRU为RRU1,则连接到RRU1的光模块包括:光模块A和光模块B,其中,光模块B为设置在RRU1上的光模块,光模块A为设置在BBU上用于与RRU1通信的光模块。例如,请参见图1B,假设第一RRU为RRU1,则连接到RRU1的光模块包括:光模块A、光模块B、光模块C和光模块D,其中,光模块B和光模块D为设置在RRU1上的光模块,光模块A和光模块C为设置在BBU上用于与RRU1通信的光模块。
情况2、第一RRU存在级联RRU,不存在前置RRU。
在该种情况下,连接到第一RRU的光模块包括:设置在第一RRU上的光模块、设置在BBU上用于与第一RRU通信的光模块和设置在第一RRU的级联RRU上的光模块。
例如,请参见图1D,假设第一RRU为RRU11,RRU11存在级联RRU12和级联RRU13,连接到RRU11的光模块包括:光模块A、光模块B、光模块C、光模块D、光模块E和光模块F。其中,光模块B和光模块C为设置在RRU11上的光模块,光模块A为设置在BBU上用于与RRU11通信的光模块。光模块D和光模块E为设置在光模块RRU11的级联RRU12上的光模块,光模块F为设置在光模块RRU11的级联RRU13上的光模块。
情况3、第一RRU存在级联RRU,存在前置RRU。
在该种情况下,连接到第一RRU的光模块包括:设置在第一RRU上的光模块、设置在第一RRU的级联RRU上的光模块和设置在第一RRU的前置RRU上与所述第一RRU连接的光模块。
例如,请参见图1D,假设第一RRU为RRU12,RRU12存在级联RRU13,以及前置RRU11,连接到RRU12的光模块包括:光模块C、光模块D、光模块E和光模块F。其中,光模块D和光模块E为设置在RRU12上的光模块,光模块F为设置在RRU12的级联RRU13上的光模块,光模块C为设置在RRU12的前置RRU11上与RRU12连接的光模块。
情况4、第一RRU存在前置RRU,不存在级联RRU。
在该种情况下,连接到第一RRU的光模块包括:设置在第一RRU上的光模块和设置在第一RRU的前置RRU上与所述第一RRU连接的光模块。
例如,请参见图1D,假设第一RRU为RRU13,RRU13存在前置RRU12,连接到RRU13的光模块包括:光模块E和光模块F。其中,光模块F为设置在RRU13上的RRU,光模块E为设置在RRU13的前置RRU12上与RRU13连接的光模块。
在方式1中,关闭连接到第一RRU的光模块的激光器之后,连接到第一RRU的光模块的激光器停止发光,可以节省功耗。
方式2、停止连接到第一RRU的光模块的供电。
需要说明的是,该种方式中的连接到第一RRU的光模块可以参见方式1中的介绍,此处不再进行赘述。
在停止连接到第一RRU的光模块的供电之后,可以节省连接到第一RRU的光模块的功耗。
方式3、关闭连接到第一RRU的光模块与第一RRU之间的电路。
需要说明的是,该种方式中的连接到第一RRU的光模块可以参见方式1中的介绍,此处不再进行赘述。
连接到第一RRU的光模块与第一RRU之间的电路可以包括:光模块和第一RRU的接口芯片之间的串行收发器(SERializer and DESerializer,serdes)构成的高速通信接口(serdes高速通信接口)。关闭连接到第一RRU的光模块与第一RRU之间的电路可以是指关闭serdes高速通信接口。
S502、BBU确定第一RRU退出该休眠状态。
BBU可以通过多种方式确定第一RRU退出该休眠状态。例如,BBU可以根据第一RRU对应的业务量确定第一RRU退出该休眠状态。例如,当第一RRU对应的业务量大于或等于预设阈值时,则BBU确定第一RRU退出该休眠状态。
S503、BBU向第二RRU发送第三信息,该第三信息指示第一RRU退出该休眠状态。
第二RRU可以为基站中除第一RRU之外的任意RRU,也可以为第一RRU的协助RRU。协助RRU的解释可以参照S203中情况2。若第一RRU未配置协助RRU,则BBU可以向除第一RRU之外的全部RRU或者部分RRU发送第三信息。若第一RRU配置了协助RRU,则BBU可以先确定第一RRU的协助RRU为第二RRU,再向第二RRU发送第三信息。
可选的,为了避免第二RRU和第一RRU同时为休眠状态的概率,第二RRU与第一RRU通常为并联关系。例如,请参见图1D,假设第一RRU为RRU11,则第二RRU可以为RRU21、RRU22或RRU23中的一个或多个。
第二RRU可以为直连RRU。BBU可以通过光纤向第二RRU发送第三信息。第三信息中可以包括第一RRU的标识。
S504、第二RRU向第一RRU发送第三信息。
第二RRU与第一RRU可以位于同一基站。第二RRU和第一RRU中分别设置有PLC模组,且第一RRU与第二RRU通过电力线连接。
可选的,第二RRU通过第二RRU中的PLC模组向第一RRU发送第三信息。例如,第二RRU在确定第二RRU与第一RRU之间不存在光纤链路,或者,第二RRU与第一RRU之间的 光纤链路异常时,第二RRU通过第二RRU中的PLC模组向第一RRU发送第三信息。
例如,请参见图1A,假设第二RRU为RRU2,第一RRU为RRU1,由于RRU2与RRU1之间不存在光纤链路,因此,RRU2通过RRU2中的PLC模组向RRU1发送第三信息。
例如,请参见图1D,假设第二RRU为RRU11,第一RRU为RRU12,假设RRU11与RRU12之间存在光纤链路异常(例如,暂停供电),则RRU11通过RRU11中的PLC模组向RRU12发送第三信息。
可选的,第二RRU可以向第一RRU广播该第三信息,在第二RRU广播该第三信息之后,与该第二RRU电力线连接的RRU(包括第一RRU)均可以收到该第三信息。或者,第二RRU可以向中继设备发送该第三信息,中继设备向第一RRU发送该第三信息。
S505、第一RRU退出休眠状态。
若第二RRU通过广播的方式发送第三信息,则多个RRU会收到该第三信息,为了避免错误退出休眠状态,则在第一RRU接收到第三信息之后,可以判断第三信息中是否包括第一RRU的标识,若是,则第一RRU退出休眠状态,若否,则第一RRU丢弃该第三信息。
可选的,第一RRU可以通过如下方式退出休眠状态:
若连接到第一RRU的光模块的激光器为关闭状态,则将激光器打开。
若未向连接到第一RRU的光模块的供电,则向连接到第一RRU的光模块供电。
若连接到第一RRU的光模块与第一RRU之间的电路为关闭状态,则打开连接到第一RRU的光模块与第一RRU之间的电路。
可选的,若一个RRU为休眠状态,则该RRU的级联RRU通常也为休眠状态。例如,请参见图1D,若RRU11为休眠状态,则RRU12和RRU13通常也为休眠状态。
在图5所示的实施例中,RRU可以根据实际需要进入深度的休眠状态,以节省功耗。当BBU需要第一RRU退出休眠状态时,BBU可以通过光纤向第二RRU发送第三信息(该第三信息用于使得第一RRU退出当前的休眠状态),第二RRU可以通过电力线向第一RRU发送该第三信息,以使第一RRU退出休眠状态。在上述过程中,第一RRU可以进入深度的休眠状态,使得RRU和BBU的接口为关断状态,进而节省功耗。
下面,结合图6-图7,通过具体示例对图5实施例所示的通信方法进行详细说明。
图6为本申请实施例提供的一种通信过程示意图。请参见图6,基站中包括一个BBU和4个RRU,该4个RRU分别记为RRU1、RRU2、RRU3和RRU4,该4个RRU分别通过光模块和光纤与BBU连接,该4个RRU分别通过电力线与电源连接,该4个RRU之间还通过电力线相互连接。每个RRU中均设置有PLC模组。
在时刻1时,该4个RRU与BBU之间的链路均为正常状态。此时,电源通过电力线向每个RRU进行供电。
在时刻2时,当RRU1对应的业务量较少时,RRU1可以进入深度的休眠状态。此时,电力线用于电源向每个RRU进行供电,由于RRU1进入深度的休眠状态,RRU和BBU中的接口处于关断状态,使得电源向RRU1的供电量减少。
在时刻3时,假设RRU1存在较多的业务数据,则BBU可以通过光纤向RRU2发送信息2(第三信息)。该信息2中包括RRU1的标识。RRU2接收到信息2之后,通过电力线向基站中的其它RRU广播该信息2。在RRU1接收到信息2之后,由于信息2中包括了RRU1的标识,则RRU1根据该信息2退出休眠状态。RRU2-RRU4接收到该信息2之后,由于信息2 中包括了RRU1的标识,且RRU2-RRU4为非休眠状态,则RRU2-RRU4可以丢弃该信息2。
图7为本申请实施例提供的一种通信过程示意图。请参见图6,基站中包括一个BBU和4个RRU,该4个RRU分别记为RRU1、RRU2、RRU3和RRU4,该4个RRU分别通过光模块和光纤与BBU连接,该4个RRU分别通过电力线与电源连接,该4个RRU之间还通过电力线相互连接。每个RRU中均设置有PLC模组。
在时刻1时,该4个RRU与BBU之间的链路均为正常状态。此时,电力线用于电源向每个RRU进行供电。
在时刻2时,当RRU1和RRU4对应的业务数据较少时,RRU1和RRU4均可以进入深度的休眠状态。此时,电力线用于电源向每个RRU进行供电,由于RRU1和RRU4进入深度的休眠状态,此时,电源向RRU1和RRU4的供电量减少。
在时刻3时,假设RRU1存在较多的业务数据,则BBU可以通过光纤向RRU2发送信息2(第三信息),该信息2中包括RRU1的标识。RRU2接收到信息2之后,通过电力线向基站中的其它RRU广播该信息2。在RRU1接收到信息2之后,由于信息2中包括了RRU1的标识,则RRU1根据该信息2退出休眠状态。RRU2-RRU3接收到该信息2之后,由于RRU2-RRU3为非休眠状态,则RRU2-RRU3可以丢弃该信息2。RRU4接收到该信息2之后,由于该信息2中不包括RRU4的标识,则RRU4可以不退出休眠状态,进一步的可以丢弃该信息2。
图8为本申请实施例提供的一种通信装置的结构示意图。该通信装置800可以设置在第一RRU中。请参见图8,该通信装置800可以包括处理模块801和发送模块802,其中,
所述处理模块801用于,确定所述第一RRU与基带单元BBU之间的链路为异常状态;
所述发送模块802用于,通过所述第一RRU中的电力线载波通信PLC模组向至少一个第二RRU发送第一信息,所述第一信息包括所述第一RRU的信息和/或连接到所述第一RRU的光模块的信息;
其中,所述第一RRU通过电力线与所述至少一个第二RRU连接,所述至少一个第二RRU中设置有PLC模组。
可选的,处理模块801可以执行图2实施例中的S201。
可选的,发送模块802可以执行图2实施例中的S202。
需要说明的是,本申请实施例提供的通信装置800可以执行上述方法实施例所示的技术方案,其实现原理及有益效果类似,此处不再进行赘述。
在一种可能的实施方式中,所述发送模块802具体用于:
通过所述第一RRU中的PLC模组向所述至少一个第二RRU广播所述第一信息。
在一种可能的实施方式中,所述处理模块801具体用于:
若所述第一RRU在第一时长内未接收到来自所述BBU的心跳包,则确定所述链路为异常状态。
在一种可能的实施方式中,所述第一RRU的信息包括如下信息中的至少一种:所述第一RRU的标识,所述第一RRU的射频模块的信息,所述第一RRU与所述BBU之间的通信链路的误码率,所述第一RRU的运行时长,或者所述第一RRU在第一时段内的复位次数。
在一种可能的实施方式中,所述光模块的信息包括如下信息中的至少一种:
所述光模块的标识,所述光模块的光功率,所述光模块的偏置电流,所述光模块的设 备信息,或者所述光模块的故障信息。
需要说明的是,本申请实施例提供的通信装置800可以执行上述方法实施例所示的技术方案,其实现原理及有益效果类似,此处不再进行赘述。
图9为本申请实施例提供的另一种通信装置的结构示意图。该通信装置900可以设置在第二RRU中。请参见图9,该通信装置900可以包括:接收模块901和发送模块902,其中,
所述接收模块901用于,通过所述第二RRU中的电力线载波通信PLC模块接收来自第一RRU的第一信息,所述第一信息包括所述第一RRU的信息和/或连接到所述第一RRU的光模块的信息;
所述发送模块902用于,向基带单元BBU发送所述第一信息;
其中,所述第一RRU通过电力线与所述第二RRU连接,所述第二RRU中设置有PLC模组。
可选的,接收模块901可以执行图2实施例中的S202。
可选的,发送模块902可以执行图2实施例中的S203。
需要说明的是,本申请实施例提供的通信装置900可以执行上述方法实施例所示的技术方案,其实现原理及有益效果类似,此处不再进行赘述。
在一种可能的实施方式中,所述发送模块902具体用于:
当确定所述第二RRU为所述第一RRU的协助RRU时,向所述BBU发送所述第一信息。
图10为本申请实施例提供的又一种通信装置的结构示意图。在图9所示实施例的基础上,请参见图10,通信装置900还可以包括处理模块903,其中,所述处理模块903用于:
获取第二信息;
根据所述第二信息,确定所述第二RRU为所述第一RRU的协助RRU,所述第二信息包括所述第一RRU的标识。
在一种可能的实施方式中,所述接收模块901还用于,接收来自所述BBU或者所述第一RRU的所述第二信息;或者,
所述处理模块903还用于,从预设存储空间获取所述第二信息。
在一种可能的实施方式中,所述第一RRU的信息包括如下信息中的至少一种:所述第一RRU的标识,所述第一RRU的射频模块的信息,所述第一RRU的运行时长,或者所述第一RRU在第一时段内的复位次数。
在一种可能的实施方式中,光模块的信息包括如下信息中的至少一种:所述光模块的标识,所述光模块的光功率,所述光模块的误码率,所述光模块的偏置电流,所述光模块的设备信息,或者所述光模块的故障信息。
需要说明的是,本申请实施例提供的通信装置900可以执行上述方法实施例所示的技术方案,其实现原理及有益效果类似,此处不再进行赘述。
图11为本申请实施例提供的再一种通信装置的结构示意图。该通信装置1100可以设置在BBU中。请参见图11,该通信装置1100可以包括:接收模块1101和处理模块1102,其中,
所述接收模块1101用于,接收第二射频拉远单元RRU发送的第一信息,所述第一信 息包括所述第一RRU的信息和/或连接到所述第一RRU的光模块的信息;
所述处理模块1102用于,根据所述第一信息,确定故障信息;
其中,所述第一RRU通过电力线与所述第二RRU连接,所述第一RRU和所述第二RRU中分别设置有电力线载波通信PLC模组。
可选的,接收模块1101可以执行图2实施例中的S203。
可选的,处理模块1102可以执行图2实施例中的S204。
需要说明的是,本申请实施例提供的通信装置1100可以执行上述方法实施例所示的技术方案,其实现原理及有益效果类似,此处不再进行赘述。
在一种可能的实施方式中,故障信息包括如下信息中的至少一种:所述第一RRU故障,连接到所述第一RRU的光模块故障,或者所述第一RRU与所述BBU之间的光纤故障。
图12为本申请实施例提供的另一种通信装置的结构示意图。在图11所示实施例的基础上,请参见图12,通信装置1100还可以包括发送模块1103,其中,
所述处理模块1102还用于,确定第一RRU的协助RRU为所述第二RRU;
所述发送模块1103用于,向所述第二RRU发送第二信息,所述第二信息包括所述第一RRU的标识。
在一种可能的实施方式中,所述第一RRU的信息包括如下信息中的至少一种:所述第一RRU的标识,所述第一RRU的射频模块的信息,所述第一RRU的运行时长,或者所述第一RRU在第一时段内的复位次数。
在一种可能的实施方式中,光模块的信息包括如下信息中的至少一种:所述光模块的标识,所述光模块的光功率,所述光模块的误码率,所述光模块的偏置电流,所述光模块的设备信息,或者连接到所述第一RRU的光模块的故障信息。
需要说明的是,本申请实施例提供的通信装置1100可以执行上述方法实施例所示的技术方案,其实现原理及有益效果类似,此处不再进行赘述。
图13为本申请实施例提供的再一种通信装置的结构示意图。该通信装置1300可以设置在BBU中。请参见图13,该通信装置1300可以包括:处理模块1301和发送模块1302,其中,
所述处理模块1301用于,确定第一射频拉远单元RRU退出休眠状态;
所述发送模块1302用于,向第二RRU发送第三信息,所述第三信息用于指示所述第一RRU退出休眠状态;
其中,所述第一RRU通过电力线与所述第二RRU连接,所述第一RRU和所述第二RRU中分别设置有电力线载波通信PLC模组;
所述第一RRU进入休眠状态包括如下至少一种:关闭连接到所述第一RRU的光模块的激光器,停止连接到所述第一RRU的光模块的供电,或者关闭连接到所述第一RRU的光模块与所述第一RRU之间的电路。
可选的,处理模块1301可以执行图5实施例中的S502。
可选的,发送模块1302可以执行图5实施例中的S503。
需要说明的是,本申请实施例提供的通信装置1300可以执行上述方法实施例所示的技术方案,其实现原理及有益效果类似,此处不再进行赘述。
在一种可能的实施方式中,所述第三信息用于指示所述第二RRU通过所述第二RRU中 的PLC模组使得所述第一RRU退出所述休眠状态。
在一种可能的实施方式中,连接到所述第一RRU的光模块包括如下至少一种:设置在所述第一RRU上的光模块,设置在所述BBU上用于与所述第一RRU通信的光模块,设置在所述第一RRU的级联RRU上的光模块,或者设置在所述第一RRU的前置RRU上与所述第一RRU连接的光模块。
需要说明的是,本申请实施例提供的通信装置1300可以执行上述方法实施例所示的技术方案,其实现原理及有益效果类似,此处不再进行赘述。
图14为本申请实施例提供的又一种通信装置的结构示意图。该通信装置1400可以设置在第二RRU中。请参见图14,该通信装置1400可以包括:接收模块1401和发送模块1402,其中,
所述接收模块1401用于,接收来自基带单元BBU的第三信息,所述第三信息用于指示所述第一RRU退出休眠状态;
所述发送模块1402用于,通过所述第二RRU中的PLC模组向所述第一RRU发送所述第三信息;
其中,所述第一RRU通过电力线与所述第二RRU连接,所述第一RRU和所述第二RRU中分别设置有电力线载波通信PLC模组。
可选的,接收模块1401可以执行图5实施例中的S503。
可选的,发送模块1402可以执行图5实施例中的S504。
需要说明的是,本申请实施例提供的通信装置1400可以执行上述方法实施例所示的技术方案,其实现原理及有益效果类似,此处不再进行赘述。
图15为本申请实施例提供的另一种通信装置的结构示意图。在图14所示实施例的基础上,请参见图15,通信装置1400还可以包括处理模块1403,其中,
所述处理模块1403用于,确定所述第二RRU与所述第一RRU之间不存在光纤链路,或者,所述第二RRU与所述第一RRU之间的光纤链路异常;
所述发送模块1402具体用于,通过所述第二RRU中的PLC模组向所述第一RRU发送所述第三信息。
在一种可能的实施方式中,处于所述休眠状态的第一RRU满足如下条件中的至少一种:连接到所述第一RRU的光模块的激光器为关闭状态,连接到所述第一RRU的光模块的供电状态为未供电,或者连接到所述第一RRU的光模块与所述第一RRU之间的电路为关闭状态。
在一种可能的实施方式中,连接到所述第一RRU的光模块包括如下至少一种:设置在所述第一RRU上的光模块,设置在所述BBU上用于与所述第一RRU通信的光模块,设置在所述第一RRU的级联RRU上的光模块,或者设置在所述第一RRU的前置RRU上与所述第一RRU连接的光模块。
需要说明的是,本申请实施例提供的通信装置1400可以执行上述方法实施例所示的技术方案,其实现原理及有益效果类似,此处不再进行赘述。
图16为本申请实施例提供的又一种通信装置的结构示意图。在通信装置1600可以设置在第一RRU中。请参见图16,该通信装置1600可以包括:处理模块1601和接收模块1602,其中,
所述处理模块1601用于,确定进入休眠状态;
所述接收模块1602用于,通过所述第一RRU中的电力线载波通信PLC模组接收来自第二RRU的第三信息;
所述处理模块1601还用于,确定退出所述休眠状态;
其中,所述第一RRU通过电力线与所述第二RRU连接,所述第二RRU中设置有PLC模组。
可选的,处理模块1601可以执行图5实施例中的S501和S505。
可选的,接收模块1602可以执行图5实施例中的S504。
需要说明的是,本申请实施例提供的通信装置1600可以执行上述方法实施例所示的技术方案,其实现原理及有益效果类似,此处不再进行赘述。
在一种可能的实施方式中,进入休眠状态包括如下至少一种:
关闭连接到所述第一RRU的光模块的激光器,停止连接到所述第一RRU的光模块的供电,关闭连接到所述第一RRU的光模块与所述第一RRU之间的电路。
在一种可能的实施方式中,处于所述休眠状态的第一RRU满足如下条件中的至少一种:连接到所述第一RRU的光模块的激光器为关闭状态,连接到所述第一RRU的光模块的供电状态为未供电,或者连接到所述第一RRU的光模块与所述第一RRU之间的电路为关闭状态。
在一种可能的实施方式中,连接到所述第一RRU的光模块包括如下至少一种:设置在所述第一RRU上的光模块,设置在所述BBU上用于与所述第一RRU通信的光模块,设置在所述第一RRU的级联RRU上的光模块,或者设置在所述第一RRU的前置RRU上与所述第一RRU连接的光模块。
需要说明的是,本申请实施例提供的通信装置1600可以执行上述方法实施例所示的技术方案,其实现原理及有益效果类似,此处不再进行赘述。
图17为本申请实施例提供的一种通信装置的结构示意图。请参见图17,该通信装置1700可以包括:至少一个处理器1701和接口电路1702,所述接口电路1701用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现上述方法实施例所述的方法。
可选的,通信装置1700可以设置在第一RRU中、或者第二RRU中或者BBU中。
当通信装置1700设置在第一RRU中时,通信装置可以实现上述方法实施例中第一RRU的功能。当通信装置1700设置在第二RRU中时,通信装置可以实现上述方法实施例中第二RRU的功能。当通信装置1700设置在BBU中时,通信装置可以实现上述方法实施例中BBU的功能。
需要说明的是,图1700实施例所示的通信装置可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
图18为本申请实施例提供的另一种通信装置的结构示意图。请参见图18,该通信装置1800可以包括:至少一个处理器1801和存储器1802,所述处理器1801和所述存储器1802耦合,所述存储器1802中包括计算机程序,所述计算机程序在所述至少一个处理器1801中执行,以实现上述第一RRU、第二RRU或者BBU的功能。
可选的,通信装置1800可以设置在第一RRU中、或者第二RRU中或者BBU中。
当通信装置1800设置在第一RRU中时,通信装置可以实现上述方法实施例中第一RRU 的功能。当通信装置1800设置在第二RRU中时,通信装置可以实现上述方法实施例中第二RRU的功能。当通信装置18000设置在BBU中时,通信装置可以实现上述方法实施例中BBU的功能。
需要说明的是,图1800实施例所示的通信装置可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
图19为本申请实施例提供的一种通信系统的结构示意图。请参见图19,该通信系统1900包括第一通信装置1901、第二通信装置1902和第三通信装置1903。
第一通信装置1901可以为设置在第一RRU中的通信装置1700。
第二通信装置1902可以为设置在第二RRU中的通信装置1700。
第三通信装置1903可以为设置在BBU中的通信装置1700。
需要说明的是,图19实施例所示的通信系统可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
本申请实施例还提供一种通信装置,该通信装置用于执行上述任意方法实施例所示的技术方案。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现上述任意方法实施例所示的技术方案。
本申请实施例还提供一种计算机程序产品,包括计算机程序,当其在计算机设备上运行时,使得所述计算机设备执行上述任意方法实施例所示的技术方案。
实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一可读取存储器中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储器(存储介质)包括:只读存储器(英文:read-only memory,缩写:ROM)、RAM、快闪存储器、硬盘、固态硬盘、磁带(英文:magnetic tape)、软盘(英文:floppy disk)、光盘(英文:optical disc)及其任意组合。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理单元以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理单元执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
在本申请中,术语“当……时”不一定是指时间概念,可能是指示场景概念或者条件概念等。术语“包括”及其变形可以指非限制性的包括;术语“或”及其变形可以指“和/或”。本本申请中术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。本申请中,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。

Claims (62)

  1. 一种通信方法,其特征在于,应用于第一射频拉远单元RRU,包括:
    确定所述第一RRU与基带单元BBU之间的链路为异常状态;
    所述第一RRU通过所述第一RRU中的电力线载波通信PLC模组向至少一个第二RRU发送第一信息,所述第一信息包括所述第一RRU的信息和/或连接到所述第一RRU的光模块的信息;
    其中,所述第一RRU通过电力线与所述至少一个第二RRU连接,所述至少一个第二RRU中设置有PLC模组。
  2. 根据权利要求1所述的方法,其特征在于,所述第一RRU通过所述第一RRU中的PLC模组向至少一个第二RRU发送第一信息,包括:
    所述第一RRU通过所述第一RRU中的PLC模组向所述至少一个第二RRU广播所述第一信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一RRU确定所述第一RRU与BBU之间的链路为异常状态,包括:
    若所述第一RRU在第一时长内未接收到来自所述BBU的心跳包,则确定所述链路为异常状态。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一RRU的信息包括如下信息中的至少一种:所述第一RRU的标识,所述第一RRU的射频模块的信息,所述第一RRU与所述BBU之间的通信链路的误码率,所述第一RRU的运行时长,或者所述第一RRU在第一时段内的复位次数。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述光模块的信息包括如下信息中的至少一种:
    所述光模块的标识,所述光模块的光功率,所述光模块的偏置电流,所述光模块的设备信息,或者所述光模块的故障信息。
  6. 一种通信方法,其特征在于,应用于第二射频拉远单元RRU,包括:
    通过所述第二RRU中的电力线载波通信PLC模块接收来自第一RRU的第一信息,所述第一信息包括所述第一RRU的信息和/或连接到所述第一RRU的光模块的信息;
    向基带单元BBU发送所述第一信息;
    其中,所述第一RRU通过电力线与所述第二RRU连接,所述第二RRU中设置有PLC模组。
  7. 根据权利要求6所述的方法,其特征在于,向BBU发送所述第一信息,包括:
    当确定所述第二RRU为所述第一RRU的协助RRU时,向所述BBU发送所述第一信息。
  8. 根据权利要求7所述的方法,其特征在于,确定所述第二RRU为所述第一RRU的协助RRU,包括:
    获取第二信息;
    根据所述第二信息,确定所述第二RRU为所述第一RRU的协助RRU,所述第二信息包括所述第一RRU的标识。
  9. 根据权利要求8所述的方法,其特征在于,获取第二信息,包括:
    接收来自所述BBU或者所述第一RRU的所述第二信息;或者,
    从预设存储空间获取所述第二信息。
  10. 根据权利要求6-9任一项所述的方法,其特征在于,所述第一RRU的信息包括如下信息中的至少一种:所述第一RRU的标识,所述第一RRU的射频模块的信息,所述第一RRU的运行时长,或者所述第一RRU在第一时段内的复位次数。
  11. 根据权利要求6-10任一项所述的方法,其特征在于,光模块的信息包括如下信息中的至少一种:所述光模块的标识,所述光模块的光功率,所述光模块的误码率,所述光模块的偏置电流,所述光模块的设备信息,或者所述光模块的故障信息。
  12. 一种通信方法,其特征在于,应用于基带单元BBU,包括:
    接收第二射频拉远单元RRU发送的第一信息,所述第一信息包括所述第一RRU的信息和/或连接到所述第一RRU的光模块的信息;
    根据所述第一信息,确定故障信息;
    其中,所述第一RRU通过电力线与所述第二RRU连接,所述第一RRU和所述第二RRU中分别设置有电力线载波通信PLC模组。
  13. 根据权利要求12所述的方法,其特征在于,故障信息包括如下信息中的至少一种:所述第一RRU故障,连接到所述第一RRU的光模块故障,或者所述第一RRU与所述BBU之间的光纤故障。
  14. 根据权利要求12或13所述的方法,其特征在于,所述方法还包括:
    确定第一RRU的协助RRU为所述第二RRU;
    向所述第二RRU发送第二信息,所述第二信息包括所述第一RRU的标识。
  15. 根据权利要求12-14任一项所述的方法,其特征在于,所述第一RRU的信息包括如下信息中的至少一种:所述第一RRU的标识,所述第一RRU的射频模块的信息,所述第一RRU的运行时长,或者所述第一RRU在第一时段内的复位次数。
  16. 根据权利要求12-15任一项所述的方法,其特征在于,光模块的信息包括如下信息中的至少一种:所述光模块的标识,所述光模块的光功率,所述光模块的误码率,所述光模块的偏置电流,所述光模块的设备信息,或者连接到所述第一RRU的光模块的故障信息。
  17. 一种通信方法,其特征在于,应用于基带单元BBU,包括:
    确定第一射频拉远单元RRU退出休眠状态;
    向第二RRU发送第三信息,所述第三信息用于指示所述第一RRU退出休眠状态;
    其中,所述第一RRU通过电力线与所述第二RRU连接,所述第一RRU和所述第二RRU中分别设置有电力线载波通信PLC模组;
    所述第一RRU进入休眠状态包括如下至少一种:关闭连接到所述第一RRU的光模块的激光器,停止连接到所述第一RRU的光模块的供电,或者关闭连接到所述第一RRU的光模块与所述第一RRU之间的电路。
  18. 根据权利要求17所述的方法,其特征在于,所述第三信息用于指示所述第二RRU通过所述第二RRU中的PLC模组使得所述第一RRU退出所述休眠状态。
  19. 根据权利要求17或18所述的方法,其特征在于,连接到所述第一RRU的光模块包括如下至少一种:设置在所述第一RRU上的光模块,设置在所述BBU上用于与所述第一RRU通信的光模块,设置在所述第一RRU的级联RRU上的光模块,或者设置在所述第一RRU 的前置RRU上与所述第一RRU连接的光模块。
  20. 一种通信方法,其特征在于,应用于第二射频拉远单元RRU,包括:
    接收来自基带单元BBU的第三信息,所述第三信息用于指示所述第一RRU退出休眠状态;
    通过所述第二RRU中的PLC模组向所述第一RRU发送所述第三信息;
    其中,所述第一RRU通过电力线与所述第二RRU连接,所述第一RRU和所述第二RRU中分别设置有电力线载波通信PLC模组。
  21. 根据权利要求20所述的方法,其特征在于,通过所述第二RRU中的PLC模组向所述第一RRU发送所述第三信息,包括:
    确定所述第二RRU与所述第一RRU之间不存在光纤链路,或者,所述第二RRU与所述第一RRU之间的光纤链路异常;
    通过所述第二RRU中的PLC模组向所述第一RRU发送所述第三信息。
  22. 根据权利要求20或21所述的方法,其特征在于,处于所述休眠状态的第一RRU满足如下条件中的至少一种:连接到所述第一RRU的光模块的激光器为关闭状态,连接到所述第一RRU的光模块的供电状态为未供电,或者连接到所述第一RRU的光模块与所述第一RRU之间的电路为关闭状态。
  23. 根据权利要求22所述的方法,其特征在于,连接到所述第一RRU的光模块包括如下至少一种:设置在所述第一RRU上的光模块,设置在所述BBU上用于与所述第一RRU通信的光模块,设置在所述第一RRU的级联RRU上的光模块,或者设置在所述第一RRU的前置RRU上与所述第一RRU连接的光模块。
  24. 一种通信方法,其特征在于,应用于第一射频拉远单元RRU,包括:
    确定进入休眠状态;
    通过所述第一RRU中的电力线载波通信PLC模组接收来自第二RRU的第三信息;
    确定退出所述休眠状态;
    其中,所述第一RRU通过电力线与所述第二RRU连接,所述第二RRU中设置有PLC模组。
  25. 根据权利要求24所述的方法,其特征在于,进入休眠状态包括如下至少一种:
    关闭连接到所述第一RRU的光模块的激光器,停止连接到所述第一RRU的光模块的供电,关闭连接到所述第一RRU的光模块与所述第一RRU之间的电路。
  26. 根据权利要求24或25所述的方法,其特征在于,处于所述休眠状态的第一RRU满足如下条件中的至少一种:连接到所述第一RRU的光模块的激光器为关闭状态,连接到所述第一RRU的光模块的供电状态为未供电,或者连接到所述第一RRU的光模块与所述第一RRU之间的电路为关闭状态。
  27. 根据权利要求26所述的方法,其特征在于,连接到所述第一RRU的光模块包括如下至少一种:设置在所述第一RRU上的光模块,设置在所述BBU上用于与所述第一RRU通信的光模块,设置在所述第一RRU的级联RRU上的光模块,或者设置在所述第一RRU的前置RRU上与所述第一RRU连接的光模块。
  28. 一种通信装置,其特征在于,包括:处理模块和发送模块,其中,
    所述处理模块用于,确定所述第一RRU与基带单元BBU之间的链路为异常状态;
    所述发送模块用于,通过所述第一RRU中的电力线载波通信PLC模组向至少一个第二RRU发送第一信息,所述第一信息包括所述第一RRU的信息和/或连接到所述第一RRU的光模块的信息;
    其中,所述第一RRU通过电力线与所述至少一个第二RRU连接,所述至少一个第二RRU中设置有PLC模组。
  29. 根据权利要求28所述的装置,其特征在于,所述发送模块具体用于:
    通过所述第一RRU中的PLC模组向所述至少一个第二RRU广播所述第一信息。
  30. 根据权利要求28或29所述的装置,其特征在于,所述处理模块具体用于:
    若所述第一RRU在第一时长内未接收到来自所述BBU的心跳包,则确定所述链路为异常状态。
  31. 根据权利要求28-30任一项所述的装置,其特征在于,所述第一RRU的信息包括如下信息中的至少一种:所述第一RRU的标识,所述第一RRU的射频模块的信息,所述第一RRU与所述BBU之间的通信链路的误码率,所述第一RRU的运行时长,或者所述第一RRU在第一时段内的复位次数。
  32. 根据权利要求28-31任一项所述的装置,其特征在于,所述光模块的信息包括如下信息中的至少一种:
    所述光模块的标识,所述光模块的光功率,所述光模块的偏置电流,所述光模块的设备信息,或者所述光模块的故障信息。
  33. 一种通信装置,其特征在于,包括:接收模块和发送模块,其中,
    所述接收模块用于,通过所述第二RRU中的电力线载波通信PLC模块接收来自第一RRU的第一信息,所述第一信息包括所述第一RRU的信息和/或连接到所述第一RRU的光模块的信息;
    所述发送模块用于,向基带单元BBU发送所述第一信息;
    其中,所述第一RRU通过电力线与所述第二RRU连接,所述第二RRU中设置有PLC模组。
  34. 根据权利要求33所述的装置,其特征在于,所述发送模块具体用于:
    当确定所述第二RRU为所述第一RRU的协助RRU时,向所述BBU发送所述第一信息。
  35. 根据权利要求34所述的装置,其特征在于,所述装置还包括处理模块,其中,所述处理模块用于:
    获取第二信息;
    根据所述第二信息,确定所述第二RRU为所述第一RRU的协助RRU,所述第二信息包括所述第一RRU的标识。
  36. 根据权利要求35所述的装置,其特征在于,
    所述接收模块还用于,接收来自所述BBU或者所述第一RRU的所述第二信息;或者,
    所述处理模块还用于,从预设存储空间获取所述第二信息。
  37. 根据权利要求34-36任一项所述的装置,其特征在于,所述第一RRU的信息包括如下信息中的至少一种:所述第一RRU的标识,所述第一RRU的射频模块的信息,所述第一RRU的运行时长,或者所述第一RRU在第一时段内的复位次数。
  38. 根据权利要求34-37任一项所述的装置,其特征在于,光模块的信息包括如下信 息中的至少一种:所述光模块的标识,所述光模块的光功率,所述光模块的误码率,所述光模块的偏置电流,所述光模块的设备信息,或者所述光模块的故障信息。
  39. 一种通信装置,其特征在于,包括:接收模块和处理模块,其中,
    所述接收模块用于,接收第二射频拉远单元RRU发送的第一信息,所述第一信息包括所述第一RRU的信息和/或连接到所述第一RRU的光模块的信息;
    所述处理模块用于,根据所述第一信息,确定故障信息;
    其中,所述第一RRU通过电力线与所述第二RRU连接,所述第一RRU和所述第二RRU中分别设置有电力线载波通信PLC模组。
  40. 根据权利要求39所述的装置,其特征在于,故障信息包括如下信息中的至少一种:所述第一RRU故障,连接到所述第一RRU的光模块故障,或者所述第一RRU与所述BBU之间的光纤故障。
  41. 根据权利要求39或40所述的装置,其特征在于,所述装置还包括发送模块,其中,
    所述处理模块还用于,确定第一RRU的协助RRU为所述第二RRU;
    所述发送模块用于,向所述第二RRU发送第二信息,所述第二信息包括所述第一RRU的标识。
  42. 根据权利要求39-41任一项所述的装置,其特征在于,所述第一RRU的信息包括如下信息中的至少一种:所述第一RRU的标识,所述第一RRU的射频模块的信息,所述第一RRU的运行时长,或者所述第一RRU在第一时段内的复位次数。
  43. 根据权利要求39-42任一项所述的装置,其特征在于,光模块的信息包括如下信息中的至少一种:所述光模块的标识,所述光模块的光功率,所述光模块的误码率,所述光模块的偏置电流,所述光模块的设备信息,或者连接到所述第一RRU的光模块的故障信息。
  44. 一种通信装置,其特征在于,包括:处理模块和发送模块,其中,
    所述处理模块用于,确定第一射频拉远单元RRU退出休眠状态;
    所述发送模块用于,向第二RRU发送第三信息,所述第三信息用于指示所述第一RRU退出休眠状态;
    其中,所述第一RRU通过电力线与所述第二RRU连接,所述第一RRU和所述第二RRU中分别设置有电力线载波通信PLC模组;
    所述第一RRU进入休眠状态包括如下至少一种:关闭连接到所述第一RRU的光模块的激光器,停止连接到所述第一RRU的光模块的供电,或者关闭连接到所述第一RRU的光模块与所述第一RRU之间的电路。
  45. 根据权利要求44所述的装置,其特征在于,所述第三信息用于指示所述第二RRU通过所述第二RRU中的PLC模组使得所述第一RRU退出所述休眠状态。
  46. 根据权利要求44或45所述的装置,其特征在于,连接到所述第一RRU的光模块包括如下至少一种:设置在所述第一RRU上的光模块,设置在所述BBU上用于与所述第一RRU通信的光模块,设置在所述第一RRU的级联RRU上的光模块,或者设置在所述第一RRU的前置RRU上与所述第一RRU连接的光模块。
  47. 一种通信装置,其特征在于,包括:接收模块和发送模块,其中,
    所述接收模块用于,接收来自基带单元BBU的第三信息,所述第三信息用于指示所述第一RRU退出休眠状态;
    所述发送模块用于,通过所述第二RRU中的PLC模组向所述第一RRU发送所述第三信息;
    其中,所述第一RRU通过电力线与所述第二RRU连接,所述第一RRU和所述第二RRU中分别设置有电力线载波通信PLC模组。
  48. 根据权利要求47所述的装置,其特征在于,所述装置还包括处理模块,其中,
    所述处理模块用于,确定所述第二RRU与所述第一RRU之间不存在光纤链路,或者,所述第二RRU与所述第一RRU之间的光纤链路异常;
    所述发送模块具体用于,通过所述第二RRU中的PLC模组向所述第一RRU发送所述第三信息。
  49. 根据权利要求47或48所述的装置,其特征在于,处于所述休眠状态的第一RRU满足如下条件中的至少一种:连接到所述第一RRU的光模块的激光器为关闭状态,连接到所述第一RRU的光模块的供电状态为未供电,或者连接到所述第一RRU的光模块与所述第一RRU之间的电路为关闭状态。
  50. 根据权利要求49所述的装置,其特征在于,连接到所述第一RRU的光模块包括如下至少一种:设置在所述第一RRU上的光模块,设置在所述BBU上用于与所述第一RRU通信的光模块,设置在所述第一RRU的级联RRU上的光模块,或者设置在所述第一RRU的前置RRU上与所述第一RRU连接的光模块。
  51. 一种通信装置,其特征在于,包括:处理模块和接收模块,其中,
    所述处理模块用于,确定进入休眠状态;
    所述接收模块用于,通过所述第一RRU中的电力线载波通信PLC模组接收来自第二RRU的第三信息;
    所述处理模块还用于,确定退出所述休眠状态;
    其中,所述第一RRU通过电力线与所述第二RRU连接,所述第二RRU中设置有PLC模组。
  52. 根据权利要求51所述的装置,其特征在于,进入休眠状态包括如下至少一种:
    关闭连接到所述第一RRU的光模块的激光器,停止连接到所述第一RRU的光模块的供电,关闭连接到所述第一RRU的光模块与所述第一RRU之间的电路。
  53. 根据权利要求51或52所述的装置,其特征在于,处于所述休眠状态的第一RRU满足如下条件中的至少一种:连接到所述第一RRU的光模块的激光器为关闭状态,连接到所述第一RRU的光模块的供电状态为未供电,或者连接到所述第一RRU的光模块与所述第一RRU之间的电路为关闭状态。
  54. 根据权利要求53所述的装置,其特征在于,连接到所述第一RRU的光模块包括如下至少一种:设置在所述第一RRU上的光模块,设置在所述BBU上用于与所述第一RRU通信的光模块,设置在所述第一RRU的级联RRU上的光模块,或者设置在所述第一RRU的前置RRU上与所述第一RRU连接的光模块。
  55. 一种通信装置,其特征在于,包括:至少一个处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所 述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1-5任一项所述的方法,或者如权利要求24-27任一项所述的方法。
  56. 一种通信装置,其特征在于,包括:至少一个处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求6-11任一项所述的方法,或者如权利要求20-23任一项所述的方法。
  57. 一种通信装置,其特征在于,包括:至少一个处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求12-16任一项所述的方法,或者如权利要求17-19任一项所述的方法。
  58. 一种通信装置,其特征在于,所述通信装置包括:
    至少一个处理器和存储器,所述处理器和所述存储器耦合,所述存储器中包括计算机程序,所述计算机程序在所述至少一个处理器中执行,以实现根据权利要求1-27中任一所述方法中的所述第一射频拉远单元RRU,所述第二RRU,或者所述基带单元BBU的功能。
  59. 一种通信系统,其特征在于,包括如权利要求55所述的通信装置,如权利要求56所述的通信装置,以及如权利要求57所述的通信装置。
  60. 一种通信装置,其特征在于,所述装置用于执行权利要求1至27中任一项所述的方法。
  61. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至5中任一项所述的方法,或,实现如权利要求6至11中任一项所述的方法,或,实现如权利要求12至16中任一项所述的方法,或,实现如权利要求17至19中任一项所述的方法,或,实现如权利要求20至23中任一项所述的方法,或,实现如权利要求24至27中任一项所述的方法。
  62. 一种计算机程序产品,其特征在于,包括计算机程序,当其在计算机设备上运行时,使得所述计算机设备执行如权利要求1至27中任一项所述的方法。
PCT/CN2020/117590 2020-09-25 2020-09-25 一种通信方法、装置及系统 WO2022061684A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/117590 WO2022061684A1 (zh) 2020-09-25 2020-09-25 一种通信方法、装置及系统
EP20954536.7A EP4210375A4 (en) 2020-09-25 2020-09-25 COMMUNICATION METHOD, APPARATUS AND SYSTEM
CN202080103865.4A CN116325861A (zh) 2020-09-25 2020-09-25 一种通信方法、装置及系统
US18/188,675 US20230224731A1 (en) 2020-09-25 2023-03-23 Communication method, apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/117590 WO2022061684A1 (zh) 2020-09-25 2020-09-25 一种通信方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/188,675 Continuation US20230224731A1 (en) 2020-09-25 2023-03-23 Communication method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2022061684A1 true WO2022061684A1 (zh) 2022-03-31

Family

ID=80846013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117590 WO2022061684A1 (zh) 2020-09-25 2020-09-25 一种通信方法、装置及系统

Country Status (4)

Country Link
US (1) US20230224731A1 (zh)
EP (1) EP4210375A4 (zh)
CN (1) CN116325861A (zh)
WO (1) WO2022061684A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4020823A1 (en) * 2020-12-22 2022-06-29 INTEL Corporation A distributed radiohead system
EP4020853A1 (en) * 2020-12-24 2022-06-29 INTEL Corporation A distributed radiohead system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060126617A1 (en) * 2004-12-15 2006-06-15 Cregg Daniel B Mesh network of intelligent devices communicating via powerline and radio frequency
CN103347274A (zh) * 2013-07-04 2013-10-09 北京邮电大学 射频拉远单元的配置方法及分布式基站
CN108541082A (zh) * 2018-03-29 2018-09-14 新华三技术有限公司成都分公司 一种分布式基站

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104955087B (zh) * 2014-03-25 2019-03-01 华为技术有限公司 一种无线基站的控制系统及方法、相关设备
EP3217707B1 (en) * 2014-11-28 2018-09-19 Huawei Technologies Co., Ltd. Information transmitting method, radio equipment controller, radio equipment and base station

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060126617A1 (en) * 2004-12-15 2006-06-15 Cregg Daniel B Mesh network of intelligent devices communicating via powerline and radio frequency
CN103347274A (zh) * 2013-07-04 2013-10-09 北京邮电大学 射频拉远单元的配置方法及分布式基站
CN108541082A (zh) * 2018-03-29 2018-09-14 新华三技术有限公司成都分公司 一种分布式基站

Also Published As

Publication number Publication date
US20230224731A1 (en) 2023-07-13
EP4210375A1 (en) 2023-07-12
EP4210375A4 (en) 2023-11-01
CN116325861A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
US8400912B2 (en) Activating a tunnel upon receiving a control packet
KR100932908B1 (ko) 광 액세스 망에서 광망 종단 장치 및 광 회선 단말의 전력절감 방법
CN100405260C (zh) 减少在联网电池供电设备中的空载功率开销
EP2689545B1 (en) Onu with wireless connectivity capability
WO2022061684A1 (zh) 一种通信方法、装置及系统
CN102084680B (zh) 无线网关装置中的服务监测和断开通知
CN102055525B (zh) 环路检测和控制方法
US8595531B2 (en) Energy efficient ethernet network nodes and methods for use in ethernet network nodes
US20110075584A1 (en) Switch device and loop detection method in a ring network system
CN101420332A (zh) 一种成员端口配置情况的通知方法和网络设备
US8279752B1 (en) Activating tunnels using control packets
US9007228B2 (en) Transmission system using dying gasp
CN104104434A (zh) 一种快速插入告警帧的掉电告警实现方法
US20140050092A1 (en) Load sharing method and apparatus
US8611231B2 (en) Connectivity fault management for ethernet tree (E-Tree) type services
CN102223312A (zh) 一种基于链路状态的流量控制方法和设备
US20150244816A1 (en) Putting a piece of equipment connected to a multi-link network on standby
KR101825030B1 (ko) PoE를 이용한 링 네트워크 장치, 시스템 및 네트워크 장애 복구 방법
EP2472793A1 (en) Method, device and system for transmitting e1 bidirectional looped network data
JP5143913B2 (ja) イーサネットマルチキャストの接続性チェックのための方法およびシステム
US20100312909A1 (en) Method and system for traffic based decisions for energy efficient networking
CN103118387A (zh) 一种主备模式的瘦ap冗余接入控制方法
WO2013023498A1 (zh) 一种基站断电告警处理方法及装置
WO2019098894A1 (en) Method and managing module for enabling management of operation of network node
CN101997724A (zh) 一种更新组播转发条目的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954536

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020954536

Country of ref document: EP

Effective date: 20230404

NENP Non-entry into the national phase

Ref country code: DE