WO2022061651A1 - Network handovers in single link dual subscriber identity module (sim) dual active (dsda) user equipment - Google Patents

Network handovers in single link dual subscriber identity module (sim) dual active (dsda) user equipment Download PDF

Info

Publication number
WO2022061651A1
WO2022061651A1 PCT/CN2020/117443 CN2020117443W WO2022061651A1 WO 2022061651 A1 WO2022061651 A1 WO 2022061651A1 CN 2020117443 W CN2020117443 W CN 2020117443W WO 2022061651 A1 WO2022061651 A1 WO 2022061651A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
handover
sim
rrc
handover request
Prior art date
Application number
PCT/CN2020/117443
Other languages
French (fr)
Inventor
Punyaslok PURKAYASTHA
Gavin Bernard Horn
Ozcan Ozturk
Juan Zhang
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/117443 priority Critical patent/WO2022061651A1/en
Publication of WO2022061651A1 publication Critical patent/WO2022061651A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/005Multiple registrations, e.g. multihoming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/34Selective release of ongoing connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • H04W8/183Processing at user equipment or user record carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present disclosure relates generally to communication systems, and more particularly, to connected-mode handover techniques for dual-SIM UEs, including in disparate networks.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • 5G New Radio is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements.
  • 3GPP Third Generation Partnership Project
  • 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • URLLC ultra-reliable low latency communications
  • Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard.
  • LTE Long Term Evolution
  • Dual-SIM Dual Active (DSDA) user equipments have recently been proposed for single-link implementations.
  • the SIMs can each be associated with disparate networks. Access to network diversity is beneficial in many cases to users, and numerous applications including, such as distinct voice and data network access, have become available.
  • key details relating to protocols, interoperability and network procedures in general remain unaddressed, with virtually no literature or prototypes available to propose merging operations of the dual-SIM UE with existing devices across the different networks.
  • Handover is another set of operations pivotal to the successful implementation of modern networks.
  • handover procedures have essentially been left unaddressed with respect to dual-SIM devices, particularly where, as in this disclosures, both SIMs are in connected mode.
  • the success of the dual-SIM implementation remains dependent on seamless handover protocols, particularly with plural networks communicating wirelessly with one unit in the mix.
  • a method of wireless communications at a base station includes supporting a first protocol data unit (PDU) session for a first subscriber identity module (SIM) associated with a user equipment (UE) , supporting a second PDU session for a second SIM associated with the UE, and handing-over the UE to a target base station while attempting to maintain the first and the second PDU sessions.
  • PDU protocol data unit
  • SIM subscriber identity module
  • UE user equipment
  • Another method of wireless communication at a base station includes receiving a handover of a user equipment (UE) from a source base station, wherein the base station supports a first protocol data unit (PDU) session for a first subscriber identity module (SIM) and a second PDU session for a second SIM, each of the first and the second SIMSs being associated with the UE, and performing admission control to determine whether to maintain the first and second PDU sessions during handover.
  • PDU protocol data unit
  • SIM subscriber identity module
  • SIM subscriber identity module
  • a method of wireless communication at a user equipment includes supporting a first protocol data unit (PDU) session for a first subscriber identity module (SIM) associated with a user equipment (UE) , supporting a second PDU session for a second SIM associated with the UE, and attempting to maintain the first and the second PDU sessions during a handover from a source base station to a target base station.
  • PDU protocol data unit
  • SIM subscriber identity module
  • UE user equipment
  • a computer-readable medium includes code that, when executed by at least one processor causes the at least one processor to support a first protocol data unit (PDU) session for a first subscriber identity module (SIM) associated with a user equipment (UE) , support a second PDU session for a second SIM associated with the UE; and hand-over the UE to a target base station while attempting to maintain the first and the second PDU sessions.
  • PDU protocol data unit
  • SIM subscriber identity module
  • UE user equipment
  • a base station apparatus includes a memory, and at least one processor coupled to the memory and configured to support a first protocol data unit (PDU) session for a first subscriber identity module (SIM) associated with a user equipment (UE) , support a second PDU session for a second SIM associated with the UE; and hand-over the UE to a target base station while attempting to maintain the first and the second PDU sessions.
  • PDU protocol data unit
  • SIM subscriber identity module
  • UE user equipment
  • a base station includes at least one processor configured to receive a handover of a user equipment (UE) from a source base station, wherein the base station supports a first protocol data unit (PDU) session for a first subscriber identity module (SIM) and a second PDU session for a second SIM, each of the first and the second SIMSs being associated with the UE and perform admission control to determine whether to maintain the first and second PDU sessions during handover.
  • PDU protocol data unit
  • SIM subscriber identity module
  • SIM subscriber identity module
  • a user equipment includes at least one processing system configured to support a first protocol data unit (PDU) session for a first subscriber identity module (SIM) associated with a user equipment (UE) , support a second PDU session for a second SIM associated with the UE, and attempt to maintain the first and the second PDU sessions during a handover from a source base station to a target base station.
  • PDU protocol data unit
  • SIM subscriber identity module
  • UE user equipment
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
  • FIG. 2A is a diagram illustrating an example of a first frame, in accordance with various aspects of the present disclosure.
  • FIG. 2B is a diagram illustrating an example of DL channels within a subframe, in accordance with various aspects of the present disclosure.
  • FIG. 2C is a diagram illustrating an example of a second frame, in accordance with various aspects of the present disclosure.
  • FIG. 2D is a diagram illustrating an example of UL channels within a subframe, in accordance with various aspects of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
  • UE user equipment
  • FIG. 4 is a timing diagram illustrating a first part of a dual-SIM connected-mode Xn handover.
  • FIG. 5 is a timing diagram illustrating a second part of the dual-SIM connected-mode Xn handover.
  • FIG. 6 is a timing diagram illustrating a first part of a dual-SIM connected-mode NG handover.
  • FIG. 7 is a timing diagram illustrating a second part of a dual-SIM connected-mode NG handover.
  • FIG. 8 is a flowchart of a method of wireless communication by a DSDA UE.
  • FIG. 9 is a flowchart of a method of wireless communication by a base station.
  • FIG. 10 is a flowchart of a method of wireless communication by a base station.
  • FIG. 11 is a diagram illustrating an example of a hardware implementation for an example apparatus including a UE.
  • FIG. 12 is a diagram illustrating an example of a hardware implementation for an example apparatus including a base station.
  • processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • processors in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • optical disk storage magnetic disk storage
  • magnetic disk storage other magnetic storage devices
  • combinations of the aforementioned types of computer-readable media or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • the present disclosure relates to single link Dual-SIM Dual Active (DSDA) UEs for performing handover.
  • DSDA Dual-SIM Dual Active
  • a single SIM is present in the UE and as a result there may be little ambiguity about the nature of the connection,
  • These UE may be used in different networks and/or for completely different purposes.
  • One SIM may be relegated to data, for example, while another supports voice.
  • the SIMs may be partitioned into a large variety of different functions enabled by the user. Different SIMs may be associated with different networks (e.g., 3G, 4G, 5G) , different e-mails or contacts, and other privileges.
  • the use of a DSDA or dual SIM system can add significant versatility and variety to your UE.
  • connected mode dual-SIM UEs has its challenges.
  • One such challenge is the implementation of handover. If the subscriber is transiting to a different territory where another cell is present and the former cell becomes progressively farther away, the network may need to hand the UE –and both its cells –over to another network, such as the cell.
  • One problem that may be encountered is whether the network supports one or both of the SIMs being used.
  • Another problem is that the PDUs of one or both of the connected mode SIMs may, in part or in whole, be unsupported.
  • the steps to be taken by the UE may become a critical factor in maximizing the likelihood of maintaining a connection, for example, or of maximizing the data rate, or in the case of handovers, in making decisions as to which SIMs have priority in a dual-SIM system and what types of procedures should take place in order to effect those priorities to the benefit of the user.
  • the present disclosure addresses these and other shortcomings in the art.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100.
  • the wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) .
  • the base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) .
  • the macrocells include base stations.
  • the small cells include femtocells, picocells, and microcells.
  • the base stations 102 configured for 4G LTE may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) .
  • the base stations 102 configured for 5G NR may interface with core network 190 through second backhaul links 184.
  • the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • NAS non-access stratum
  • RAN radio access network
  • MBMS multimedia broadcast multicast service
  • RIM RAN information management
  • the base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) .
  • the first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
  • the base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102.
  • a network that includes both small cell and macrocells may be known as a heterogeneous network.
  • a heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
  • eNBs Home Evolved Node Bs
  • HeNBs Home Evolved Node Bs
  • CSG closed subscriber group
  • the communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104.
  • the communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links may be through one or more carriers.
  • the base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc.
  • the component carriers may include a primary component carrier and one or more secondary component carriers.
  • a primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
  • D2D communication link 158 may use the DL/UL WWAN spectrum.
  • the D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia, Bluetooth, ZigBe
  • the wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154, e.g., in a 5 GHz unlicensed frequency spectrum or the like.
  • AP Wi-Fi access point
  • STAs Wi-Fi stations
  • communication links 154 e.g., in a 5 GHz unlicensed frequency spectrum or the like.
  • the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • the small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same unlicensed frequency spectrum (e.g., 5 GHz, or the like) as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • the small cell 102' employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • the electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc.
  • two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) .
  • the frequencies between FR1 and FR2 are often referred to as mid-band frequencies.
  • FR1 is often referred to (interchangeably) as a “sub-6 GHz” band in various documents and articles.
  • FR2 which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • sub-6 GHz or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies.
  • millimeter wave or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, or may be within the EHF band.
  • a base station 102 may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station.
  • Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave frequencies, and/or near millimeter wave frequencies in communication with the UE 104.
  • the gNB 180 may be referred to as a millimeter wave base station.
  • the millimeter wave base station 180 may utilize beamforming 182 with the UE 104 to compensate for the path loss and short range.
  • the base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
  • the base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'.
  • the UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182”.
  • the UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions.
  • the base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions.
  • the base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104.
  • the transmit and receive directions for the base station 180 may or may not be the same.
  • the transmit and receive directions for the UE 104 may or may not be the same.
  • the EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172.
  • MME Mobility Management Entity
  • MBMS Multimedia Broadcast Multicast Service
  • BM-SC Broadcast Multicast Service Center
  • PDN Packet Data Network
  • the MME 162 may be in communication with a Home Subscriber Server (HSS) 174.
  • HSS Home Subscriber Server
  • the MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160.
  • the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172.
  • IP Internet protocol
  • the PDN Gateway 172 provides UE IP address allocation as well as other functions.
  • the PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176.
  • the IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • the BM-SC 170 may provide functions for MBMS user service provisioning and delivery.
  • the BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions.
  • PLMN public land mobile network
  • the MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
  • MMSFN Multicast Broadcast Single Frequency Network
  • the core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195.
  • the AMF 192 may be in communication with a Unified Data Management (UDM) 196.
  • the AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190.
  • the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195.
  • the UPF 195 provides UE IP address allocation as well as other functions.
  • the UPF 195 is connected to the IP Services 197.
  • the IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
  • IMS IP Multimedia Subsystem
  • PS Packet Switch
  • PSS Packe
  • the base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology.
  • the base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104.
  • Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) .
  • the UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • the DSDA PDU component 198 may be configured to support handovers of the UE including maintaining UE information such as which SIM has a primary versus a secondary connection, which PDUs and connections are valid, etc.
  • the component 198 also assists the dual connected-mode UE in performing various configuration, reconfiguration, random access channel, establishment and reestablishment procedures in conjunction with handovers.
  • brief reference is made to DSDA handover component 199. Whether it is on the source or target handover side, and whether it is assisting with Xn or NG handovers, for example.
  • Component 199 works in conjunction with the dual-SIMs, UE and component 198 to optimize handover and to perform the steps detailed in the following disclosure.
  • component 199 may act as an intelligent intermediary between the dual-SIM UE and the upper network layers.
  • component 199 may act as an intelligent intermediary between the dual-SIM UE and the upper network layers.
  • 5G NR the concepts described herein may be applicable to other similar areas, such as LTE, LTE-A, CDMA, GSM, and other wireless technologies. This is particularly true in light of the fact that the disclosure may extend to other networks supported by the SIMs in the UEs described herein.
  • FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G NR frame structure.
  • FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G NR subframe.
  • FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G NR frame structure.
  • FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G NR subframe.
  • the 5G NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL.
  • FDD frequency division duplexed
  • TDD time division duplexed
  • the 5G NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 34 (with mostly UL) . While subframes 3, 4 are shown with slot formats 34, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols.
  • UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) .
  • DCI DL control information
  • RRC radio resource control
  • SFI received slot format indicator
  • a frame (10 ms) may be divided into 10 equally sized subframes (1 ms) .
  • Each subframe may include one or more time slots.
  • Subframes may also include mini-slots, which may include 7, 4, or 2 symbols.
  • Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols.
  • the symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols.
  • the symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) .
  • the number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies ⁇ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology ⁇ , there are 14 symbols/slot and 2 ⁇ slots/subframe.
  • the subcarrier spacing and symbol length/duration are a function of the numerology.
  • the subcarrier spacing may be equal to 2 ⁇ *15 kHz, where ⁇ is the numerology 0 to 4.
  • the symbol length/duration is inversely related to the subcarrier spacing.
  • the slot duration is 0.25 ms
  • the subcarrier spacing is 60 kHz
  • the symbol duration is approximately 16.67 ⁇ s.
  • Each BWP may have a particular numerology.
  • a resource grid may be used to represent the frame structure.
  • Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers.
  • RB resource block
  • PRBs physical RBs
  • the resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
  • the RS may include demodulation RS (DM-RS) (indicated as R x for one particular configuration, where 100x is the port number, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE.
  • DM-RS demodulation RS
  • CSI-RS channel state information reference signals
  • the RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
  • BRS beam measurement RS
  • BRRS beam refinement RS
  • PT-RS phase tracking RS
  • FIG. 2B illustrates an example of various DL channels within a subframe of a frame.
  • the physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) , each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol.
  • a PDCCH within one BWP may be referred to as a control resource set (CORESET) . Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth.
  • a primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity.
  • a secondary synchronization signal may be within symbol 4 of particular subframes of a frame.
  • the SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS.
  • the physical broadcast channel (PBCH) which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) .
  • MIB master information block
  • the MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) .
  • the physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
  • SIBs system information blocks
  • some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station.
  • the UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) .
  • the PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH.
  • the PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used.
  • the UE may transmit sounding reference signals (SRS) .
  • the SRS may be transmitted in the last symbol of a subframe.
  • the SRS may have a comb structure, and a UE may transmit SRS on one of the combs.
  • the SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
  • FIG. 2D illustrates an example of various UL channels within a subframe of a frame.
  • the PUCCH may be located as indicated in one configuration.
  • the PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) ACK/NACK feedback.
  • UCI uplink control information
  • the PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
  • BSR buffer status report
  • PHR power headroom report
  • FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network.
  • IP packets from the EPC 160 may be provided to a controller/processor 375.
  • the controller/processor 375 implements layer 3 and layer 2 functionality.
  • Layer 3 includes a radio resource control (RRC) layer
  • layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • the controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDU
  • the transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions.
  • Layer 1 which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing.
  • the TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) .
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • M-PSK M-phase-shift keying
  • M-QAM M-quadrature amplitude modulation
  • the coded and modulated symbols may then be split into parallel streams.
  • Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream.
  • IFFT Inverse Fast Fourier Transform
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing.
  • the channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350.
  • Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318TX.
  • Each transmitter 318TX may modulate an RF carrier with a respective spatial stream for transmission.
  • each receiver 354RX receives a signal through its respective antenna 352.
  • Each receiver 354RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356.
  • the TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions.
  • the RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream.
  • the RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) .
  • FFT Fast Fourier Transform
  • the frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal.
  • the symbols on each subcarrier, and the reference signal are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358.
  • the soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel.
  • the data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
  • the controller/processor 359 can be associated with a memory 360 that stores program codes and data.
  • the memory 360 may be referred to as a computer-readable medium.
  • the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160.
  • the controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
  • RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting
  • PDCP layer functionality associated with
  • Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing.
  • the spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
  • the UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350.
  • Each receiver 318RX receives a signal through its respective antenna 320.
  • Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
  • the controller/processor 375 can be associated with a memory 376 that stores program codes and data.
  • the memory 376 may be referred to as a computer-readable medium.
  • the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160.
  • the controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with 198 of FIG. 1.
  • At least one of the TX processor 316, the RX processor 370, and the controller/processor 375 may be configured to perform aspects in connection with 198 of FIG. 1.
  • a target gNB may support PDU sessions belonging to both SIMs in the same UE in a DSDA configuration.
  • the target gNB supports PDU sessions belong to only one SIM.
  • the target gNB does not support PDU sessions of any SIM.
  • handover preparation fails and handover is not performed.
  • Xn Handover One type of handover is Xn handover.
  • the Xn User plane (Xn-U) is defined between two NG-RAN nodes. While the UE sends the measurement reports and the Source gNB detects that a handover is required, then it connects with the Target gNB to initiate the process. The UE performs a handover and connects to the Target gNB.
  • case 1 Various configurations of case 1 are now described, after which a formal call flow associated with the configurations is illustrated.
  • the described configurations are for example purposes only, and other configurations may be contemplate without departing from the spirit and scope of the present disclosure.
  • the configurations described herein generally attempt to describe different aspects of the handover procedures at different points in the procedure for ease of explanation. However, it will be appreciated that the configurations may overlap in time, and are not necessarily intended to be independent or dependent on one another.
  • Each request may be transmitted on a separate UE-specific signaling connection from the source to the target over Xn.
  • Each Xn handover request includes various information including, for example, a list of PDU sessions to be set up for the SIM.
  • the handover request further includes a target cell ID; however, in one implementation, the target cell ID request is transmitted only for the primary connection for optimizing the signaling.
  • the handover request also includes the Source RRC context, which in turn may include the HandoverPreparationInformation message. Further included in the Source RRC context is the RRC Reconfiguration information.
  • the RRC Reconfiguration may have one or more additional features described below.
  • the Source RRC context may additionally include items such as the AS Security information, the Re-establishment information, the UE capabilities (the UE capabilities may again transmitted on for the primary connection only for the purpose of optimizing the signaling) .
  • a correlation ID may be provided with each handover request message. Since two SIMs in the same UE may be participating in the handover, the correlation ID indicates that the message is being provided for a particular UE. This information can advantageously preserved by the target gNB, for example, to keep track of the UE involved in the handover.
  • the RRC configuration provided as part of the Source RRC context further provides an indication if the information is being provided for the primary connection.
  • This information allows the target gNB to identify the primary connection and utilize specific information sent over the primary connection (e.g., target cell ID and UE capabilities) for the benefit of the secondary connection as well.
  • This indication obviates the need for the target gNB and network to separately and independently manage two SIMs by treating them as originating from separate UEs, for example. Instead, with the information of the primary connection, the target gNB can reduce the total amount of information it needs to retain if it were to assume the primary and secondary connections were separate from each other. That is to say, the indication of the primary SIM enables the target gNB to store the target cell ID and UE capabilities only once for both SIMs, and to optimize only one connection between the UE and target gNB.
  • the target gNB may perform admission control after receiving both HANDOVER REQUEST messages.
  • Admission control is a messaging scheme that is used to optimize the usage of radio resources while maintaining some specified level of Quality of Service (QoS) associated with the SIMs involved in the handover. (This procedure also holds for case 2, even though only one SIM is supported) .
  • the target gNB Upon receiving the dual HANDOVER REQUEST, then the target gNB will transmit HANDOVER REQUEST ACKNOLEDGMENT responses ( “HRAs” ) to the source gNB.
  • HRAs HANDOVER REQUEST ACKNOLEDGMENT responses
  • the target gNB indicate to the corresponding SIM an identification of the PDU sessions that are admitted or not admitted for that SIM.
  • the HRA also includes the Handover command message.
  • the handover command includes a target RRC configuration, and information regarding AS security to be used after the handover. AS security enables the UE and gNB to securely deliver messages in the control plane and IP packets in the user plane using AS
  • the handover commands also referred to herein as the RRC reconfiguration with sync messages, are transmitted over the respective RRC connections associated with each SIM to the UE.
  • the handover commands are also known as RRC reconfiguration messages because they prepare the SIMs for network reconfiguration onto the next connection.
  • the handover command forwarded to the UE also provides an indication whether or not the command is for the primary connection. Therefore, from the handover commands themselves, the SIMs can each determine whether the message is intended for the primary connection. This enables all devices involved in the handover to keep track of which connections are the primary ones, e.g., for the purposes of optimizing the connection and applying the optimization to the secondary connection without having to duplicate the scheme, and for other purposes.
  • the UE may perform the following procedures:
  • RRC configurations both valid If the configurations in both RRC reconfiguration messages are found to be valid for both SIMs, the SIM having the primary connection may perform RACH (random-access channel) messaging and thereafter, may transmit the RRCReconfigurationComplete message.
  • RACH is generally an initial access procedure for a UE and a gNB to initial access to an RRC connection.
  • the primary SIM may perform a sequence of procedures that occur between a UE and the target gNB that enable the UE to acquire uplink synchronization and to obtain a specified ID for radio access. Thereafter, the SIM having the secondary connection need not perform RACH, but instead can simply use the timing and identifier information obtained by the first SIM. Thus, the SIM having the secondary connection simply transmits an RRCReconfigurationComplete message without having to perform RACH.
  • Both RRC Connections Invalid If the configurations for both SIMs are determined to be invalid, the primary connection initiates RACH and performs RRC establishment. This configuration is similar to (2) above, except that the primary connection instead of the valid connection is the one that performs RACH. Assuming the primary connection successfully establishes a connection, the secondary connection thereupon selects the same cell as the primary connection and performs an RRC re-establishment (without RACH) . If the re-establishment is successful, then in this configuration, two time consuming and bandwidth-intensive RACH procedures may be eliminated in favor of (1) , as in (2) above, and successful re-establishment of both SIMs allows for their successful configuration without any unnecessary additional messaging procedures.
  • FIG. 4 is a timing diagram 400 illustrating a first part of a dual-SIM connected-mode Xn handover, as in the above-described configurations.
  • the second part of the handover is shown in FIG. 5.
  • the entities involved in a dual-SIM handover include the UE, the source and target gNB, the first and second Core Access and Mobility Management Function (AMF1 and AMF2) , and the first and second user plane function (UPF1 and UPF2) .
  • the first and second parts of the dual-SIM connected-mode handover may be performed by the UE 104 of FIG, 1 (in some implementations including the DSDA PDU Component 198) , the UE 350 of FIG, 3, and/or the UE of FIG. 11.
  • the target or source base stations (gNBs) of FIG. 4 and 5 may be performed by the base station 180 of FIG. 1 (in some implementations including DSDA Handover component 198) , the base station 310 of FIG. 3, or the base station of FIG. 12.
  • the AMF and UPF components of FIGS. 4 and 5 may be performed by the corresponding AMF and UPF components of FIG. 1, in some configurations.
  • the UE in step 1 sends a measurement report in 414 to the source gNB.
  • Measurement reports enable the UE to maintain different signal strength measurements and to report them to the source gNB if certain prerequisites are met.
  • the source gNB can use these reports to make handover decisions, as in 412. It is assumed that the source gNB determines in 412 that the UE is presently closer to the target gNB and is conversely moving away from the source gNB. As a result, the source gNB may perform a first HANDOVER REQUEST for SIM1 in 408, and a second HANDOVER request for SIM2 in 406. It will be appreciated by those skilled in the art that in some occasions, one of the handovers may be omitted. For example, this disclosure relates to Connected-Mode handovers, and one SIM may be determined to be in idle.
  • the target gNB performs admission control 418 for the UE making the request, as this procedure is described in more detail above.
  • the target gNB may perform HANDOVER REQUEST ACKNOWLEDGE_SIM1 to the source gNB at 404, and HANDOVER_REQUEST ACKNOWLEDGE_SIM2 in 402. As noted above, these signals include the Handover Request command.
  • the source gNB may perform an RRCReconfiguration_SIM1 (i.e., ReconfigWithSync) message (416) to the first SIM at 416, and an RRCReconfiguration_SIM2 (ReconfigWithSync) to the second SIM at 420.
  • RRCReconfiguration_SIM1 i.e., ReconfigWithSync
  • RRCReconfiguration_SIM2 ReconfigWithSync
  • UE SIMs may detach at 422 from the source cell to perform synchronization with the target cell at 422. As shown, the timing diagram at this instance moves to FIG. 5.
  • FIG. 5 is a timing diagram 500 illustrating a second part of a dual-SIM connected-mode Xn handover, with continued reference to the above-described configurations.
  • the source gNB may provide SN STATUS TRANSFER_SIM1 messages relating to SIM1 and SN STATUS TRANSFER_SIM2 to the target GNB at 502 and 504.
  • the SN STATUS TRANSFER messages may be used to convey the uplink and downlink packet data convergence protocol (PDCP) sequence number (SN) receiver and transmitter statuses, respectively, of the E-UTRA Radio Access Bearers (E-RABs) for which PDCP status preservation applies.
  • PDCP packet data convergence protocol
  • SN sequence number
  • E-RABs E-UTRA Radio Access Bearers
  • Data forwarding for the two connections begins from the source gNB to the user plane functions UPF2 and UPF1 at 506 and 508, respectively, and to the target gNB at 510 and 512.
  • RACH is initiated on the target cell followed by RRCReconfigurationComplete, as also described with reference to the above configurations.
  • the UE only issues (from SIM2) an RRCReconfigurationComplete.
  • SIM2 SIM2
  • the target gNB undergoes a path switch procedures for UPF1 and UPF2.
  • the source gNB performs a UE CONTEXT RELEASE for the target gNB, and the handover is complete.
  • a handover command (e.g., step 402 of FIG. 4) is generated by the target gNB for the SIM for which the target gNB supports PDU sessions.
  • the procedures of FIG, 4 and 5 generally are used (if applicable) for this configuration as well.
  • the supported SIM may also be based on either the primary or secondary connections, but neither configuration is relevant to the identity of the SIM for which a handover command is supported.
  • handover request acknowledgment (along with the handover command) may be generated at 402 or 404, depending on which SIM is supported by the target gNB.
  • the source gNB Upon receiving the handover response acknowledgment from the target gNB, the source gNB does the following, depending on whether or not the SIM at issue is supported by the target gNB. For the SIM for which the target gNB does not support PDU sessions, the RRC configuration sent to the UUE (e.g., FIG. 4, 416 or 420) specifies that that the DRBs of the unsupported SIM are to be released. Conversely, for the SIM for which the PDU sessions are supported, the handover command is forwarded to the UE.
  • the RRC configuration sent to the UUE e.g., FIG. 4, 416 or 420
  • the target gNB responds the handover request (s) (FIG. 4, 408, 406) with HANDOVER PREPARATION FAILURE, and handover is unsuccessful.
  • the NG-RAN architecture is now considered.
  • One distinction of the NG handover from the Xn handover that is relevant to the considerations herein is that the NG-handover does not perform handover request off the backhaul Xn connections. Rather, the NG handovers send the handover-required messages directly from the source gNB to the AMF.
  • the HANDOVER REQUIRED messages include the same information HANDOVER REQUEST ACKNOWLEDGE messages used in the Xn handover.
  • the source gNB waits for a sufficient time to receive both HANDOVER COMMAND messages before forwarding the handover command messages to the UE.
  • the forwarding time is set to equal the maximum value of the timers TNG RELOCprep that were started when the handover preparations were initiated. These timers may track the handover preparation procedures.
  • FIG. 6 is a timing diagram 600 illustrating a first part of a dual-SIM connected-mode NG handover.
  • the first and second parts of the dual-SIM connected-mode NG handover may be performed by the UE 104 of FIG, 1 (in some implementations including the DSDA PDU Component 198) , the UE 350 of FIG, 3, and/or the UE of FIG. 11.
  • the target or source base stations (gNBs) of FIG. 6 and 7 may be performed by the base station 180 of FIG. 1 (in some implementations including DSDA Handover component 199) , the base station 310 of FIG. 3, or the base station of FIG. 12.
  • the UE sends a measurement report to the source gNB.
  • the source gNB uses the information in the RRC handover report to make a handover decision 604.
  • the source gNB sends at 606 a HANDOVER_REQUIRED_SIM1 message to the 5G Core Access and Mobility Management Function (AMF1) .
  • the message to the AMF1 may include the target ID, the PDU session resource list, and the Container (e.g., the RRC context, target cell ID, and the like) .
  • the source gNB then transmits at 608 a HANDOVER REQUIRED_SIM2 message to the AM2, which message includes similar information as the first handover required message (606) but this time for SIM2.
  • the AMF1 may issue a HANDOVER REQUEST_SIM1 message to an appropriate target gNB.
  • the content of this message may include the PDU session of SIM1, a setup list, security context, and a container (e.g., including the RRC context, etc. ) .
  • AMF2 sends at 612 a HANDOVER REQUEST_SIM2 to the target gNB with generally the same information but this time pertinent to SIM2.
  • the target node Having received the handover requests from AMF1 and AMF2, the target node performs admission control procedures (as earlier described with respect to the Xn handover) at 614. Next, if the handover is achievable, the target gNB issues a HANDOVER REQUEST ACK_SIM1 at 616 back to AMF1, and a HANDOVER_REQUEST ACK_SIM2 at 618 back to AMF2.
  • FIG. 7 is a timing diagram 700 illustrating a second part of a dual-SIM connected-mode NG handover.
  • the source gNB at 702 sends a HANDOVER COMMAND_SIM1 message (including PDU session admitted/failed lists, containers including handover command for the UE, etc. ) to AMF1.
  • the source node gNB sends a HANDOVER COMMAND_SIM2 at 704 to AMF2.
  • the source node gNB then sends at 706 an RRCReconfiguration_SIM1 message to the UE, which includes the ReconfigWithSync.
  • the source node gNB sends at 708 an RRCReconfiguration_SIM2, which includes the ReconfigWithSync for SIM2.
  • the UE at 710 detaches from the source cell and the SIMs use ReconfigWithSync along with other information to synchronize with the target node gNB and perform the next operations.
  • the primary connection between the two connections may perform the RACH using SRB1 between the UE and the target gNB at 712.
  • the RRCReconfigurationComplete follows the RACH procedure.
  • the secondary connection need not go through RACH (similar to the Xn embodiment) , and instead SIM2 can rely on the parameters from the RACH of the primary connection and can send an RRCReconfigurationComplete over SRB1to the target node gNB.
  • FIG. 8 is a flowchart of wireless communication.
  • the method may be performed by a UE (e.g., the UE 104 (in some implementations including the DSDA PDU Component 198) ; the apparatus 1102) .
  • the UE supports a first protocol data unit (PDU) session for a first subscriber identity module (SIM) associated with the user equipment.
  • the UE supports a second PDU session for a second SIM associated with the UE.
  • the UE attempts to maintain the first and the second PDU sessions during a handover from a source base station to a target base station.
  • PDU protocol data unit
  • SIM subscriber identity module
  • FIG. 9 is a flowchart 900 of a method of wireless communication at a base station.
  • the method may be performed by a base station (e.g., the base station 102/180 (in some implementations, with the DSDA handover component 199) ; the apparatus 1202.
  • the base station supports a first protocol data unit (PDU) session for a first subscriber identity module (SIM) associated with a user equipment (UE) .
  • SIM subscriber identity module
  • UE user equipment
  • the base stations supports a second PDU session for a second SIM associated with the UE.
  • the base station hands over the UE to a target base station while attempting to maintain the first and second PDU sessions.
  • the base station attempts to maintain these sessions because in some configurations, one, more or all of the PDUs of the session, or the session itself may be invalid.
  • the base station accordingly can adjust its behavior in an optimal manner to concentrate on the valid session (or portions of the session) .
  • the hand over procedure may include other procedures that add features to the invention disclosed herein, but that may be optional features.
  • steps 908, 910 and 912 show some exemplary, albeit optional, features of hand over step 906.
  • the step 914 may also be an optional portion of 916.
  • the base station may generate a first handover request associated with the first SIM and a second handover request associated with the second SIM.
  • the base station may transmit the first and second handover requests to the target base station, wherein each of the first and the second handover requests are transmitted over a separate connection with the target base station.
  • the base station may transmit the first handover request to a first access and mobility management function (AMF1) and transmit the second handover request to a second AMF (AMF2) .
  • AMF1 access and mobility management function
  • AMMF2 second AMF
  • the base station may transmit the handover commands to the UE, wherein each of the handover commands are transmitted to the UE over a different radio resource control (RRC) connection.
  • RRC radio resource control
  • the handover commands in some configurations may be embedded in an RRCReconfiguration message, as is shown for example by the messages 706 and 708.
  • the handover commands of 702 and 704 for SIMs 1 and 2 were forwarded, in whole or in relevant part, to the UE via the RRCReconfiguration messages in 706 and 708, This procedures provides the UE and SIMs with upstream knowledge of the network configuration (e.g., at AMF1 (the current AMF function) and AMF2 (the AMF function to which the UE is switching) .
  • FIG. 10 is a flow diagram of wireless communications of a base station.
  • the method may be performed by a base station (e.g., the base station 102/180 (in some implementations, with the DSDA handover component 199) ; the apparatus 1202.
  • the base station receives a handover of a UE from a source base station, wherein the base station supports a first PDU session for a first SIM and a second PDU session for a second SIM, each of the first and the second SIMSs being associated with the UE.
  • the base station performs admission control to determine whether to maintain the first and second PDU sessions during handover.
  • the base station may follow on 1004 by transmitting a handover request acknowledgement associated with the first SIM and a handover failure message associated with the second SIM.
  • the base station may generate a first handover request acknowledgement associated with the first SIM and a second handover request acknowledgement associated with the second SIM. Then, the base station and UE may collectively exchange signals for a random access channel (RACH) procedure associated with the first SIM.
  • RACH random access channel
  • the base station may receive a first handover request associated with the first SIM and a second handover request associated with the second SIM.
  • the base station may receive the first and the second handover requests from the source base station, wherein each of the first and the second handover requests are received over a separate connection with the source base station
  • FIG. 11 is a diagram 1100 illustrating an example of a hardware implementation for an apparatus 1102.
  • the apparatus 1102 is a UE and includes a cellular baseband processor 1104 (also referred to as a modem) coupled to a cellular RF transceiver 1122 and one or more subscriber identity modules (SIM) cards 1120, an application processor 1106 coupled to a secure digital (SD) card 1108 and a screen 1110, a Bluetooth module 1112, a wireless local area network (WLAN) module 1114, a Global Positioning System (GPS) module 1116, and a power supply 1118.
  • the cellular baseband processor 1104 communicates through the cellular RF transceiver 1122 with the UE 104 and/or BS 102/180.
  • the cellular baseband processor 1104 may include a computer-readable medium /memory.
  • the computer-readable medium /memory may be non-transitory.
  • the cellular baseband processor 1104 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory.
  • the software when executed by the cellular baseband processor 1104, causes the cellular baseband processor 1104 to perform the various functions described supra.
  • the computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 1104 when executing software.
  • the cellular baseband processor 1104 further includes a reception component 1130, a communication manager 1132, and a transmission component 1134.
  • the communication manager 1132 includes the one or more illustrated components.
  • the components within the communication manager 1132 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 1104.
  • the cellular baseband processor 1104 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359.
  • the apparatus 1102 may be a modem chip and include just the baseband processor 1104, and in another configuration, the apparatus 1102 may be the entire UE (e.g., see 350 of FIG. 3) and include the aforediscussed additional modules of the apparatus 1102.
  • the communication manager 1132 includes a component 1140 that is configured to support PDU sessions on the first and the second SIM and associate the SIMs with the first and the second connections, e.g., as described in connection with steps 802 and 804 of FIG. 8.
  • the communication manager 1132 further includes a component 1142 that receives input in the form of RRC connection and configuration information from the component 1140 and is configured to perform one or more steps necessary for the UE to effect handover, including attempting to maintain the PDU sessions during a handover from a source to a target base station, e.g., as described in connection with step 806 of FIG. 8.
  • the communication manager 1132 further includes a component 1144 that receives input in the form of configuration information from the components 1140 and 1142 and is configured to determine whether it is controlling the primary or the secondary connection, e.g., as described in connection with the handover timing diagrams of FIGS. 4-8.
  • the communication manager 1132 further includes a component 1146 for processing configuration instructions for the RRC connections as shown in the handover timing diagrams of FIGS. 4-8.
  • the communication manager 1132 also includes a RACH component which is configured to perform RACH procedures as necessary for initial access to the network, as described in step 1012 in FIG. 10.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts and timing diagrams of FIGs. 4-10. As such, each block in the aforementioned flowcharts of FIGs. 4-10 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • FIG. 12 is a diagram 1200 illustrating an example of a hardware implementation for an apparatus 1202.
  • the apparatus 1202 is a BS and includes a baseband unit 1204.
  • the baseband unit 1204 may communicate through a cellular RF transceiver with the UE 104.
  • the baseband unit 1204 may include a computer-readable medium /memory.
  • the baseband unit 1204 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory.
  • the software when executed by the baseband unit 1204, causes the baseband unit 1204 to perform the various functions described supra.
  • the computer-readable medium /memory may also be used for storing data that is manipulated by the baseband unit 1204 when executing software.
  • the baseband unit 1204 further includes a reception component 1230, a communication manager 1232, and a transmission component 1234.
  • the communication manager 1232 includes the one or more illustrated components.
  • the components within the communication manager 1232 may be stored in the computer-readable medium /memory and/or configured as hardware within the baseband unit 1204.
  • the baseband unit 1204 may be a component of the BS 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
  • the communication manager 1232 includes a component 1240 that is configured to perform one or more handover related procedures, e.g., admission control, handover decisions, and the like, as described in connection with 906, 908, 910, 912, 914 and 916 of FIG. 9.
  • the communication manager 1232 further includes a component 1242 that is configured to support PDU sessions over connections to SIMs at a UE, e.g., as described in connection with 904 and 906 of FIG. 9 and 1000 of FIG. 10.
  • the communication manager 1232 further includes a target component 1244 that handles many of the base station functions of the target node, e.g., as described in connection with the timing diagrams of FIGS. 8 and the target node steps of FIGS. 9 and 10.
  • a source component 1246 may perform the functions but from the source node as described in the same illustrations. Respective Xn and NG components 1248 and 1250 enable the handling of the different types of handovers as shown in FIGS. 4-5 for Xn and FIGS. 6-7 for NG.
  • the communications manager further includes a configuration component 1252, which is used for processing the RRC commands and the RRC component 1254 which is responsible for establishing and maintaining the respective RRC connections and for enabling the handovers to occur.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts of FIGs. 8-10. As such, each block in the aforementioned flowcharts of FIGs. 8-10 and handover timing diagrams in FIGS. 4-8 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.

Abstract

A dual-SIM dual access (DSDA) user equipment and associated base station and network handover procedures are disclosed. In various aspects of the disclosure, different types of handovers are used to provide optimal techniques for handing-over devices in connected mode. A base station may receive a handover of a user equipment (UE) from a source base station, wherein the base station supports a first protocol data unit (PDU) session for a first subscriber identity module (SIM) and a second PDU session for a second SIM, each of the first and the second SIMSs being associated with the UE. The base station may perform admission control to determine whether to maintain the first and second PDU sessions during handover.

Description

NETWORK HANDOVERS IN SINGLE LINK DUAL SUBSCRIBER IDENTITY MODULE (SIM) DUAL ACTIVE (DSDA) USER EQUIPMENT BACKGROUND Technical Field
The present disclosure relates generally to communication systems, and more particularly, to connected-mode handover techniques for dual-SIM UEs, including in disparate networks.
Introduction
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example telecommunication standard is 5G New Radio (NR) . 5G NR is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements. 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) . Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard. There exists a need for further improvements in 5G NR technology. These improvements may also be applicable to other multi- access technologies and the telecommunication standards that employ these technologies.
SUMMARY
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
Dual-SIM Dual Active (DSDA) user equipments (UEs) have recently been proposed for single-link implementations. The SIMs can each be associated with disparate networks. Access to network diversity is beneficial in many cases to users, and numerous applications including, such as distinct voice and data network access, have become available. To date, however, key details relating to protocols, interoperability and network procedures in general remain unaddressed, with virtually no literature or prototypes available to propose merging operations of the dual-SIM UE with existing devices across the different networks.
Handover is another set of operations pivotal to the successful implementation of modern networks. However, handover procedures have essentially been left unaddressed with respect to dual-SIM devices, particularly where, as in this disclosures, both SIMs are in connected mode. Regardless, the success of the dual-SIM implementation remains dependent on seamless handover protocols, particularly with plural networks communicating wirelessly with one unit in the mix.
Accordingly, in an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided.
A method of wireless communications at a base station includes supporting a first protocol data unit (PDU) session for a first subscriber identity module (SIM) associated with a user equipment (UE) , supporting a second PDU session for a second SIM associated with the UE, and handing-over the UE to a target base station while attempting to maintain the first and the second PDU sessions.
Another method of wireless communication at a base station includes receiving a handover of a user equipment (UE) from a source base station, wherein the base station supports a first protocol data unit (PDU) session for a first subscriber identity module (SIM) and a second PDU session for a second SIM, each of the first and the second SIMSs being associated with the UE, and performing admission control to determine whether to maintain the first and second PDU sessions during handover.
A method of wireless communication at a user equipment includes supporting a first protocol data unit (PDU) session for a first subscriber identity module (SIM) associated with a user equipment (UE) , supporting a second PDU session for a second SIM associated with the UE, and attempting to maintain the first and the second PDU sessions during a handover from a source base station to a target base station.
A computer-readable medium includes code that, when executed by at least one processor causes the at least one processor to support a first protocol data unit (PDU) session for a first subscriber identity module (SIM) associated with a user equipment (UE) , support a second PDU session for a second SIM associated with the UE; and hand-over the UE to a target base station while attempting to maintain the first and the second PDU sessions.
A base station apparatus includes a memory, and at least one processor coupled to the memory and configured to support a first protocol data unit (PDU) session for a first subscriber identity module (SIM) associated with a user equipment (UE) , support a second PDU session for a second SIM associated with the UE; and hand-over the UE to a target base station while attempting to maintain the first and the second PDU sessions.
A base station includes at least one processor configured to receive a handover of a user equipment (UE) from a source base station, wherein the base station supports a first protocol data unit (PDU) session for a first subscriber identity module (SIM) and a second PDU session for a second SIM, each of the first and the second SIMSs being associated with the UE and perform admission control to determine whether to maintain the first and second PDU sessions during handover.
A user equipment includes at least one processing system configured to support a first protocol data unit (PDU) session for a first subscriber identity module (SIM) associated with a user equipment (UE) , support a second PDU session for a second  SIM associated with the UE, and attempt to maintain the first and the second PDU sessions during a handover from a source base station to a target base station.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
FIG. 2A is a diagram illustrating an example of a first frame, in accordance with various aspects of the present disclosure.
FIG. 2B is a diagram illustrating an example of DL channels within a subframe, in accordance with various aspects of the present disclosure.
FIG. 2C is a diagram illustrating an example of a second frame, in accordance with various aspects of the present disclosure.
FIG. 2D is a diagram illustrating an example of UL channels within a subframe, in accordance with various aspects of the present disclosure.
FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
FIG. 4 is a timing diagram illustrating a first part of a dual-SIM connected-mode Xn handover.
FIG. 5 is a timing diagram illustrating a second part of the dual-SIM connected-mode Xn handover.
FIG. 6 is a timing diagram illustrating a first part of a dual-SIM connected-mode NG handover.
FIG. 7 is a timing diagram illustrating a second part of a dual-SIM connected-mode NG handover.
FIG. 8 is a flowchart of a method of wireless communication by a DSDA UE.
FIG. 9 is a flowchart of a method of wireless communication by a base station.
FIG. 10 is a flowchart of a method of wireless communication by a base station.
FIG. 11 is a diagram illustrating an example of a hardware implementation for an example apparatus including a UE.
FIG. 12 is a diagram illustrating an example of a hardware implementation for an example apparatus including a base station.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, processes, algorithms, etc. (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented as a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware  configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
Accordingly, in one or more example embodiments, the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
The present disclosure relates to single link Dual-SIM Dual Active (DSDA) UEs for performing handover. Conventionally, in a handover procedure, a single SIM is present in the UE and as a result there may be little ambiguity about the nature of the connection, As described herein, multiple SIMs –namely two –may be present in a UE. These UE may be used in different networks and/or for completely different purposes. One SIM may be relegated to data, for example, while another supports voice. The SIMs may be partitioned into a large variety of different functions enabled by the user. Different SIMs may be associated with different networks (e.g., 3G, 4G, 5G) , different e-mails or contacts, and other privileges. The use of a DSDA or dual SIM system can add significant versatility and variety to your UE.
The implementation of connected mode dual-SIM UEs has its challenges. One such challenge is the implementation of handover. If the subscriber is transiting to a different territory where another cell is present and the former cell becomes  progressively farther away, the network may need to hand the UE –and both its cells –over to another network, such as the cell. One problem that may be encountered is whether the network supports one or both of the SIMs being used. Another problem is that the PDUs of one or both of the connected mode SIMs may, in part or in whole, be unsupported. The steps to be taken by the UE may become a critical factor in maximizing the likelihood of maintaining a connection, for example, or of maximizing the data rate, or in the case of handovers, in making decisions as to which SIMs have priority in a dual-SIM system and what types of procedures should take place in order to effect those priorities to the benefit of the user. There are no currently no conventional protocols in place that attempt to answer, much less provide a solution to, these problems. The present disclosure addresses these and other shortcomings in the art.
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100. The wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) . The base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) . The macrocells include base stations. The small cells include femtocells, picocells, and microcells.
The base stations 102 configured for 4G LTE (collectively referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) ) may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) . The base stations 102 configured for 5G NR (collectively referred to as Next Generation RAN (NG-RAN) ) may interface with core network 190 through second backhaul links 184. In addition to other functions, the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages. The  base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) . The first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
The base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102. A network that includes both small cell and macrocells may be known as a heterogeneous network. A heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) . The communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links may be through one or more carriers. The base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc. MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Yx MHz (x component carriers) used for transmission in each direction. The carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or fewer carriers may be allocated for DL than for UL) . The component carriers may include a primary component carrier and one or more secondary component carriers. A primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
Certain UEs 104 may communicate with each other using device-to-device (D2D) communication link 158. The D2D communication link 158 may use the DL/UL WWAN spectrum. The D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel  (PSSCH) , and a physical sidelink control channel (PSCCH) . D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia, Bluetooth, ZigBee, Wi-Fi based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard, LTE, or NR.
The wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154, e.g., in a 5 GHz unlicensed frequency spectrum or the like. When communicating in an unlicensed frequency spectrum, the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same unlicensed frequency spectrum (e.g., 5 GHz, or the like) as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
The electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc. In 5G NR, two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . The frequencies between FR1 and FR2 are often referred to as mid-band frequencies. Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “sub-6 GHz” band in various documents and articles. A similar nomenclature issue sometimes occurs with regard to FR2, which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
With the above aspects in mind, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies. Further, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like if used herein may  broadly represent frequencies that may include mid-band frequencies, may be within FR2, or may be within the EHF band.
base station 102, whether a small cell 102' or a large cell (e.g., macro base station) , may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station. Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave frequencies, and/or near millimeter wave frequencies in communication with the UE 104. When the gNB 180 operates in millimeter wave or near millimeter wave frequencies, the gNB 180 may be referred to as a millimeter wave base station. The millimeter wave base station 180 may utilize beamforming 182 with the UE 104 to compensate for the path loss and short range. The base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
The base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'. The UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182”. The UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions. The base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions. The base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104. The transmit and receive directions for the base station 180 may or may not be the same. The transmit and receive directions for the UE 104 may or may not be the same.
The EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172. The MME 162 may be in communication with a Home Subscriber Server (HSS) 174. The MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160. Generally, the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172. The PDN Gateway 172 provides UE IP address allocation as well as other functions. The PDN Gateway 172 and the  BM-SC 170 are connected to the IP Services 176. The IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services. The BM-SC 170 may provide functions for MBMS user service provisioning and delivery. The BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions. The MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
The core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195. The AMF 192 may be in communication with a Unified Data Management (UDM) 196. The AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190. Generally, the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195. The UPF 195 provides UE IP address allocation as well as other functions. The UPF 195 is connected to the IP Services 197. The IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
The base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology. The base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104. Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other  similar functioning device. Some of the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) . The UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
Referring again to FIG. 1, in certain aspects, the DSDA PDU component 198 may be configured to support handovers of the UE including maintaining UE information such as which SIM has a primary versus a secondary connection, which PDUs and connections are valid, etc. The component 198 also assists the dual connected-mode UE in performing various configuration, reconfiguration, random access channel, establishment and reestablishment procedures in conjunction with handovers. In addition, brief reference is made to DSDA handover component 199. Whether it is on the source or target handover side, and whether it is assisting with Xn or NG handovers, for example. Component 199 works in conjunction with the dual-SIMs, UE and component 198 to optimize handover and to perform the steps detailed in the following disclosure. For example, depending on whether it is the component from the source or target base station, component 199 may act as an intelligent intermediary between the dual-SIM UE and the upper network layers. “Although the following description may be focused on 5G NR, the concepts described herein may be applicable to other similar areas, such as LTE, LTE-A, CDMA, GSM, and other wireless technologies. This is particularly true in light of the fact that the disclosure may extend to other networks supported by the SIMs in the UEs described herein.
FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G NR frame structure. FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G NR subframe. FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G NR frame structure. FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G NR subframe. The 5G NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed  (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL. In the examples provided by FIGs. 2A, 2C, the 5G NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 34 (with mostly UL) . While  subframes  3, 4 are shown with slot formats 34, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols. UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) . Note that the description infra applies also to a 5G NR frame structure that is TDD.
Other wireless communication technologies may have a different frame structure and/or different channels. A frame (10 ms) may be divided into 10 equally sized subframes (1 ms) . Each subframe may include one or more time slots. Subframes may also include mini-slots, which may include 7, 4, or 2 symbols. Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols. The symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols. The symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) . The number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies μ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology μ, there are 14 symbols/slot and 2 μ slots/subframe. The subcarrier spacing and symbol length/duration are a function of the numerology. The subcarrier spacing may be equal to 2 μ*15 kHz, where μ is the numerology 0 to 4. As such, the numerology μ=0 has a subcarrier spacing of 15 kHz and the numerology μ=4 has a subcarrier  spacing of 240 kHz. The symbol length/duration is inversely related to the subcarrier spacing. FIGs. 2A-2D provide an example of slot configuration 0 with 14 symbols per slot and numerology μ=2 with 4 slots per subframe. The slot duration is 0.25 ms, the subcarrier spacing is 60 kHz, and the symbol duration is approximately 16.67 μs. Within a set of frames, there may be one or more different bandwidth parts (BWPs) (see FIG. 2B) that are frequency division multiplexed. Each BWP may have a particular numerology.
A resource grid may be used to represent the frame structure. Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers. The resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
As illustrated in FIG. 2A, some of the REs carry reference (pilot) signals (RS) for the UE. The RS may include demodulation RS (DM-RS) (indicated as R x for one particular configuration, where 100x is the port number, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE. The RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
FIG. 2B illustrates an example of various DL channels within a subframe of a frame. The physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) , each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol. A PDCCH within one BWP may be referred to as a control resource set (CORESET) . Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth. A primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity. A secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS. The physical broadcast channel (PBCH) , which carries a master information block  (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) . The MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) . The physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
As illustrated in FIG. 2C, some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station. The UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) . The PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH. The PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used. The UE may transmit sounding reference signals (SRS) . The SRS may be transmitted in the last symbol of a subframe. The SRS may have a comb structure, and a UE may transmit SRS on one of the combs. The SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
FIG. 2D illustrates an example of various UL channels within a subframe of a frame. The PUCCH may be located as indicated in one configuration. The PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) ACK/NACK feedback. The PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network. In the DL, IP packets from the EPC 160 may be provided to a controller/processor 375. The controller/processor 375 implements layer 3 and layer 2 functionality. Layer 3 includes a radio resource control (RRC) layer, and layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer. The controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC  connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
The transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions. Layer 1, which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing. The TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) . The coded and modulated symbols may then be split into parallel streams. Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350. Each spatial stream may then be provided to a different antenna 320 via  a separate transmitter 318TX. Each transmitter 318TX may modulate an RF carrier with a respective spatial stream for transmission.
At the UE 350, each receiver 354RX receives a signal through its respective antenna 352. Each receiver 354RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356. The TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions. The RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream. The RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) . The frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358. The soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel. The data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
The controller/processor 359 can be associated with a memory 360 that stores program codes and data. The memory 360 may be referred to as a computer-readable medium. In the UL, the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160. The controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
Similar to the functionality described in connection with the DL transmission by the base station 310, the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity  protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
The UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350. Each receiver 318RX receives a signal through its respective antenna 320. Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
The controller/processor 375 can be associated with a memory 376 that stores program codes and data. The memory 376 may be referred to as a computer-readable medium. In the UL, the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160. The controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with 198 of FIG. 1.
At least one of the TX processor 316, the RX processor 370, and the controller/processor 375 may be configured to perform aspects in connection with 198 of FIG. 1.
Various aspects of connected mode handover are described herein. In a first case, a target gNB may support PDU sessions belonging to both SIMs in the same UE in a DSDA configuration. In a second case, the target gNB supports PDU sessions belong to only one SIM. In a third case, the target gNB does not support PDU sessions of any SIM. In the third case, handover preparation fails and handover is not performed.
Xn Handover. One type of handover is Xn handover. The Xn User plane (Xn-U) is defined between two NG-RAN nodes. While the UE sends the measurement reports and the Source gNB detects that a handover is required, then it connects with the Target gNB to initiate the process. The UE performs a handover and connects to the Target gNB.
Different cases specific to the configuration at issue may militate which handover procedure (if any) is to be invoked. In general, in one configuration ( “case 1” ) , it is assumed that the target gNB supports protocol data unit (PDU) sessions belonging to both SIMs (in the same UE) . Other configurations may be encountered, such as “case 2” in which the target gNB supports PDU sessions belonging only to one of the two SIMs in the UE. In still other configurations categorized as “case 3” , the target gNB does not support PDU sessions belonging to any SIM. Thus in case 3, handover preparation fails altogether and handover is not performed.
Various configurations of case 1 are now described, after which a formal call flow associated with the configurations is illustrated. The described configurations are for example purposes only, and other configurations may be contemplate without departing from the spirit and scope of the present disclosure. The configurations described herein generally attempt to describe different aspects of the handover procedures at different points in the procedure for ease of explanation. However, it will be appreciated that the configurations may overlap in time, and are not necessarily intended to be independent or dependent on one another.
Beginning with a first configuration that involves case 1, two HANDOVER REQUEST message are generated by the respective SIMs in a DSDA UE. Each request may be transmitted on a separate UE-specific signaling connection from the source to the target over Xn. Each Xn handover request includes various information including, for example, a list of PDU sessions to be set up for the SIM.  The handover request further includes a target cell ID; however, in one implementation, the target cell ID request is transmitted only for the primary connection for optimizing the signaling. The handover request also includes the Source RRC context, which in turn may include the HandoverPreparationInformation message. Further included in the Source RRC context is the RRC Reconfiguration information. The RRC Reconfiguration may have one or more additional features described below. The Source RRC context may additionally include items such as the AS Security information, the Re-establishment information, the UE capabilities (the UE capabilities may again transmitted on for the primary connection only for the purpose of optimizing the signaling) .
In one aspect of the disclosure, in addition to the information identified above, a correlation ID may be provided with each handover request message. Since two SIMs in the same UE may be participating in the handover, the correlation ID indicates that the message is being provided for a particular UE. This information can advantageously preserved by the target gNB, for example, to keep track of the UE involved in the handover.
In another aspect of the disclosure, the RRC configuration provided as part of the Source RRC context further provides an indication if the information is being provided for the primary connection. This information, among other benefits, allows the target gNB to identify the primary connection and utilize specific information sent over the primary connection (e.g., target cell ID and UE capabilities) for the benefit of the secondary connection as well. This indication obviates the need for the target gNB and network to separately and independently manage two SIMs by treating them as originating from separate UEs, for example. Instead, with the information of the primary connection, the target gNB can reduce the total amount of information it needs to retain if it were to assume the primary and secondary connections were separate from each other. That is to say, the indication of the primary SIM enables the target gNB to store the target cell ID and UE capabilities only once for both SIMs, and to optimize only one connection between the UE and target gNB.
In a second exemplary configuration of the Xn handover for case 1, the target gNB may perform admission control after receiving both HANDOVER REQUEST  messages. Admission control is a messaging scheme that is used to optimize the usage of radio resources while maintaining some specified level of Quality of Service (QoS) associated with the SIMs involved in the handover. (This procedure also holds for case 2, even though only one SIM is supported) . Upon receiving the dual HANDOVER REQUEST, then the target gNB will transmit HANDOVER REQUEST ACKNOLEDGMENT responses ( “HRAs” ) to the source gNB. In each HRA, the target gNB indicate to the corresponding SIM an identification of the PDU sessions that are admitted or not admitted for that SIM. The HRA also includes the Handover command message. The handover command includes a target RRC configuration, and information regarding AS security to be used after the handover. AS security enables the UE and gNB to securely deliver messages in the control plane and IP packets in the user plane using AS security keys.
The handover commands, also referred to herein as the RRC reconfiguration with sync messages, are transmitted over the respective RRC connections associated with each SIM to the UE. The handover commands are also known as RRC reconfiguration messages because they prepare the SIMs for network reconfiguration onto the next connection.
In another aspect of the disclosure, the handover command forwarded to the UE also provides an indication whether or not the command is for the primary connection. Therefore, from the handover commands themselves, the SIMs can each determine whether the message is intended for the primary connection. This enables all devices involved in the handover to keep track of which connections are the primary ones, e.g., for the purposes of optimizing the connection and applying the optimization to the secondary connection without having to duplicate the scheme, and for other purposes.
Referring now to a third exemplary configuration involving case 1, upon receiving the RRC reconfiguration messages described above, the UE may perform the following procedures:
(1)  RRC configurations both valid. If the configurations in both RRC reconfiguration messages are found to be valid for both SIMs, the SIM having the primary connection may perform RACH (random-access channel) messaging and thereafter, may transmit the RRCReconfigurationComplete message. RACH is generally an initial access procedure for a UE and a gNB to initial access to an RRC  connection. In general, the primary SIM may perform a sequence of procedures that occur between a UE and the target gNB that enable the UE to acquire uplink synchronization and to obtain a specified ID for radio access. Thereafter, the SIM having the secondary connection need not perform RACH, but instead can simply use the timing and identifier information obtained by the first SIM. Thus, the SIM having the secondary connection simply transmits an RRCReconfigurationComplete message without having to perform RACH.
(2)  One RRC Configuration Valid. If the configuration for one SIM is found to be valid and for the other SIM, invalid, the connection with the valid SIM (whether primary or otherwise) may perform RACH and upon success, the SIM transmits the RRCReconfigurationComplete message. Thereafter, the connection with the invalid configuration performs RRC re-establishment. The target cell is used, and as noted, RACH is not required. Instead, in an implementation, the signaling radio bearer SRB0 is used (SRB0 is generally used for RRC messages over the CCCH logical channel) . In the case where the RRC connection for the invalid configuration is successfully established, this configuration obviates the need for a second RACH and enables quick recovery of the connection.
(3)  Both RRC Connections Invalid. If the configurations for both SIMs are determined to be invalid, the primary connection initiates RACH and performs RRC establishment. This configuration is similar to (2) above, except that the primary connection instead of the valid connection is the one that performs RACH. Assuming the primary connection successfully establishes a connection, the secondary connection thereupon selects the same cell as the primary connection and performs an RRC re-establishment (without RACH) . If the re-establishment is successful, then in this configuration, two time consuming and bandwidth-intensive RACH procedures may be eliminated in favor of (1) , as in (2) above, and successful re-establishment of both SIMs allows for their successful configuration without any unnecessary additional messaging procedures.
FIG. 4 is a timing diagram 400 illustrating a first part of a dual-SIM connected-mode Xn handover, as in the above-described configurations. The second part of the handover is shown in FIG. 5. The entities involved in a dual-SIM handover include the UE, the source and target gNB, the first and second Core Access and Mobility Management Function (AMF1 and AMF2) , and the first and second user  plane function (UPF1 and UPF2) . The first and second parts of the dual-SIM connected-mode handover may be performed by the UE 104 of FIG, 1 (in some implementations including the DSDA PDU Component 198) , the UE 350 of FIG, 3, and/or the UE of FIG. 11. In addition, the target or source base stations (gNBs) of FIG. 4 and 5 may be performed by the base station 180 of FIG. 1 (in some implementations including DSDA Handover component 198) , the base station 310 of FIG. 3, or the base station of FIG. 12. The AMF and UPF components of FIGS. 4 and 5 may be performed by the corresponding AMF and UPF components of FIG. 1, in some configurations.
Referring to FIG. 4, the UE in step 1 sends a measurement report in 414 to the source gNB. Measurement reports enable the UE to maintain different signal strength measurements and to report them to the source gNB if certain prerequisites are met. The source gNB can use these reports to make handover decisions, as in 412. It is assumed that the source gNB determines in 412 that the UE is presently closer to the target gNB and is conversely moving away from the source gNB. As a result, the source gNB may perform a first HANDOVER REQUEST for SIM1 in 408, and a second HANDOVER request for SIM2 in 406. It will be appreciated by those skilled in the art that in some occasions, one of the handovers may be omitted. For example, this disclosure relates to Connected-Mode handovers, and one SIM may be determined to be in idle.
At 418, the target gNB performs admission control 418 for the UE making the request, as this procedure is described in more detail above. Upon making a favorable determination for the UE, the target gNB may perform HANDOVER REQUEST ACKNOWLEDGE_SIM1 to the source gNB at 404, and HANDOVER_REQUEST ACKNOWLEDGE_SIM2 in 402. As noted above, these signals include the Handover Request command.
Thereupon, the source gNB may perform an RRCReconfiguration_SIM1 (i.e., ReconfigWithSync) message (416) to the first SIM at 416, and an RRCReconfiguration_SIM2 (ReconfigWithSync) to the second SIM at 420. Under the appropriate conditions, UE SIMs may detach at 422 from the source cell to perform synchronization with the target cell at 422. As shown, the timing diagram at this instance moves to FIG. 5.
FIG. 5 is a timing diagram 500 illustrating a second part of a dual-SIM connected-mode Xn handover, with continued reference to the above-described configurations. The source gNB may provide SN STATUS TRANSFER_SIM1 messages relating to SIM1 and SN STATUS TRANSFER_SIM2 to the target GNB at 502 and 504. The SN STATUS TRANSFER messages may be used to convey the uplink and downlink packet data convergence protocol (PDCP) sequence number (SN) receiver and transmitter statuses, respectively, of the E-UTRA Radio Access Bearers (E-RABs) for which PDCP status preservation applies.
Data forwarding for the two connections begins from the source gNB to the user plane functions UPF2 and UPF1 at 506 and 508, respectively, and to the target gNB at 510 and 512. Back at the UE, for the primary connection on the SRB1 radio bearer, RACH is initiated on the target cell followed by RRCReconfigurationComplete, as also described with reference to the above configurations. As for the secondary connection SRB1, the UE only issues (from SIM2) an RRCReconfigurationComplete. Thus, as illustrated in FIG. 5, only the one RACH procedure need be effected for both SIMs, effectively doubling the efficiency of the channels for that time period.
At 518 and 520, the target gNB undergoes a path switch procedures for UPF1 and UPF2. Finally, at 522 the source gNB performs a UE CONTEXT RELEASE for the target gNB, and the handover is complete.
Another configuration is described below for the case where the target gNB supports PDU sessions for only one of the SIMs in the DSDA UE. In an aspect of the disclosure with reference to this case, a handover command (e.g., step 402 of FIG. 4) is generated by the target gNB for the SIM for which the target gNB supports PDU sessions. The procedures of FIG, 4 and 5 generally are used (if applicable) for this configuration as well. The supported SIM may also be based on either the primary or secondary connections, but neither configuration is relevant to the identity of the SIM for which a handover command is supported. Thus either handover request acknowledgment (along with the handover command) may be generated at 402 or 404, depending on which SIM is supported by the target gNB.
Upon receiving the handover response acknowledgment from the target gNB, the source gNB does the following, depending on whether or not the SIM at issue is supported by the target gNB. For the SIM for which the target gNB does not  support PDU sessions, the RRC configuration sent to the UUE (e.g., FIG. 4, 416 or 420) specifies that that the DRBs of the unsupported SIM are to be released. Conversely, for the SIM for which the PDU sessions are supported, the handover command is forwarded to the UE.
In the final case where the target gNB does not support any PDU sessions from  SIMS  1 or 2, the target gNB responds the handover request (s) (FIG. 4, 408, 406) with HANDOVER PREPARATION FAILURE, and handover is unsuccessful.
NG Handover. The NG-RAN architecture is now considered. One distinction of the NG handover from the Xn handover that is relevant to the considerations herein is that the NG-handover does not perform handover request off the backhaul Xn connections. Rather, the NG handovers send the handover-required messages directly from the source gNB to the AMF. The HANDOVER REQUIRED messages include the same information HANDOVER REQUEST ACKNOWLEDGE messages used in the Xn handover. The source gNB waits for a sufficient time to receive both HANDOVER COMMAND messages before forwarding the handover command messages to the UE. In an aspect of the disclosure, the forwarding time is set to equal the maximum value of the timers TNG RELOCprep that were started when the handover preparations were initiated. These timers may track the handover preparation procedures.
FIG. 6 is a timing diagram 600 illustrating a first part of a dual-SIM connected-mode NG handover. The first and second parts of the dual-SIM connected-mode NG handover may be performed by the UE 104 of FIG, 1 (in some implementations including the DSDA PDU Component 198) , the UE 350 of FIG, 3, and/or the UE of FIG. 11. In addition, the target or source base stations (gNBs) of FIG. 6 and 7 may be performed by the base station 180 of FIG. 1 (in some implementations including DSDA Handover component 199) , the base station 310 of FIG. 3, or the base station of FIG. 12. The AMF and UPF components of FIGS. 4 and 5 may be performed by the corresponding AMF and UPF components of FIG. 1, in some configurations. The UE sends a measurement report to the source gNB. The source gNB uses the information in the RRC handover report to make a handover decision 604. Thereupon, and unlike the Xn handover configuration, the source gNB sends at 606 a HANDOVER_REQUIRED_SIM1 message to the 5G Core Access and Mobility Management Function (AMF1) . The message to the AMF1 may include the target  ID, the PDU session resource list, and the Container (e.g., the RRC context, target cell ID, and the like) . The source gNB then transmits at 608 a HANDOVER REQUIRED_SIM2 message to the AM2, which message includes similar information as the first handover required message (606) but this time for SIM2.
Responsive to the HANDOVER REQUIRED message at 606 for SIM1, the AMF1 may issue a HANDOVER REQUEST_SIM1 message to an appropriate target gNB. The content of this message may include the PDU session of SIM1, a setup list, security context, and a container (e.g., including the RRC context, etc. ) . Similarly, AMF2 sends at 612 a HANDOVER REQUEST_SIM2 to the target gNB with generally the same information but this time pertinent to SIM2.
Having received the handover requests from AMF1 and AMF2, the target node performs admission control procedures (as earlier described with respect to the Xn handover) at 614. Next, if the handover is achievable, the target gNB issues a HANDOVER REQUEST ACK_SIM1 at 616 back to AMF1, and a HANDOVER_REQUEST ACK_SIM2 at 618 back to AMF2.
FIG. 7 is a timing diagram 700 illustrating a second part of a dual-SIM connected-mode NG handover. Continuing from FIG. 6, following the two acknowledgments (616 and 618) from the target node, the source gNB at 702 sends a HANDOVER COMMAND_SIM1 message (including PDU session admitted/failed lists, containers including handover command for the UE, etc. ) to AMF1. Similarly, the source node gNB sends a HANDOVER COMMAND_SIM2 at 704 to AMF2.
The source node gNB then sends at 706 an RRCReconfiguration_SIM1 message to the UE, which includes the ReconfigWithSync. As well, the source node gNB sends at 708 an RRCReconfiguration_SIM2, which includes the ReconfigWithSync for SIM2. At that point, the UE at 710 detaches from the source cell and the SIMs use ReconfigWithSync along with other information to synchronize with the target node gNB and perform the next operations.
In one aspect of the disclosure, the primary connection between the two connections may perform the RACH using SRB1 between the UE and the target gNB at 712. The RRCReconfigurationComplete follows the RACH procedure. Next, the secondary connection need not go through RACH (similar to the Xn embodiment) , and instead SIM2 can rely on the parameters from the RACH of the  primary connection and can send an RRCReconfigurationComplete over SRB1to the target node gNB.
FIG. 8 is a flowchart of wireless communication. The method may be performed by a UE (e.g., the UE 104 (in some implementations including the DSDA PDU Component 198) ; the apparatus 1102) . At step 802, the UE supports a first protocol data unit (PDU) session for a first subscriber identity module (SIM) associated with the user equipment. At step 804, the UE supports a second PDU session for a second SIM associated with the UE. Then. at 806, the UE attempts to maintain the first and the second PDU sessions during a handover from a source base station to a target base station.
FIG. 9 is a flowchart 900 of a method of wireless communication at a base station. The method may be performed by a base station (e.g., the base station 102/180 (in some implementations, with the DSDA handover component 199) ; the apparatus 1202. At 902, the base station supports a first protocol data unit (PDU) session for a first subscriber identity module (SIM) associated with a user equipment (UE) . At 904, the base stations supports a second PDU session for a second SIM associated with the UE. At 906, the base station hands over the UE to a target base station while attempting to maintain the first and second PDU sessions. The base station attempts to maintain these sessions because in some configurations, one, more or all of the PDUs of the session, or the session itself may be invalid. The base station accordingly can adjust its behavior in an optimal manner to concentrate on the valid session (or portions of the session) .
The hand over procedure (step 906) may include other procedures that add features to the invention disclosed herein, but that may be optional features. For example steps 908, 910 and 912 show some exemplary, albeit optional, features of hand over step 906. The step 914 may also be an optional portion of 916. At 908, the base station may generate a first handover request associated with the first SIM and a second handover request associated with the second SIM. Thereupon, at 910, the base station may transmit the first and second handover requests to the target base station, wherein each of the first and the second handover requests are transmitted over a separate connection with the target base station. Then, at 912, the base station may transmit the first handover request to a first access and mobility  management function (AMF1) and transmit the second handover request to a second AMF (AMF2) .
In another configuration, at 914, the base station may transmit the handover commands to the UE, wherein each of the handover commands are transmitted to the UE over a different radio resource control (RRC) connection. The handover commands in some configurations may be embedded in an RRCReconfiguration message, as is shown for example by the  messages  706 and 708. In that case, the handover commands of 702 and 704 for  SIMs  1 and 2, respectively were forwarded, in whole or in relevant part, to the UE via the RRCReconfiguration messages in 706 and 708, This procedures provides the UE and SIMs with upstream knowledge of the network configuration (e.g., at AMF1 (the current AMF function) and AMF2 (the AMF function to which the UE is switching) .
FIG. 10 is a flow diagram of wireless communications of a base station. The method may be performed by a base station (e.g., the base station 102/180 (in some implementations, with the DSDA handover component 199) ; the apparatus 1202. At 1000, the base station receives a handover of a UE from a source base station, wherein the base station supports a first PDU session for a first SIM and a second PDU session for a second SIM, each of the first and the second SIMSs being associated with the UE.
At 1004, the base station performs admission control to determine whether to maintain the first and second PDU sessions during handover. In some optional configurations, at 1002, the base station may follow on 1004 by transmitting a handover request acknowledgement associated with the first SIM and a handover failure message associated with the second SIM. In another implementation, at 1008, the base station may generate a first handover request acknowledgement associated with the first SIM and a second handover request acknowledgement associated with the second SIM. Then, the base station and UE may collectively exchange signals for a random access channel (RACH) procedure associated with the first SIM.
In an alternative configuration after admission control, at 1006 the base station may receive a first handover request associated with the first SIM and a second handover request associated with the second SIM. At 1008 the base station may receive the first and the second handover requests from the source base station,  wherein each of the first and the second handover requests are received over a separate connection with the source base station
FIG. 11 is a diagram 1100 illustrating an example of a hardware implementation for an apparatus 1102. The apparatus 1102 is a UE and includes a cellular baseband processor 1104 (also referred to as a modem) coupled to a cellular RF transceiver 1122 and one or more subscriber identity modules (SIM) cards 1120, an application processor 1106 coupled to a secure digital (SD) card 1108 and a screen 1110, a Bluetooth module 1112, a wireless local area network (WLAN) module 1114, a Global Positioning System (GPS) module 1116, and a power supply 1118. The cellular baseband processor 1104 communicates through the cellular RF transceiver 1122 with the UE 104 and/or BS 102/180. The cellular baseband processor 1104 may include a computer-readable medium /memory. The computer-readable medium /memory may be non-transitory. The cellular baseband processor 1104 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory. The software, when executed by the cellular baseband processor 1104, causes the cellular baseband processor 1104 to perform the various functions described supra. The computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 1104 when executing software. The cellular baseband processor 1104 further includes a reception component 1130, a communication manager 1132, and a transmission component 1134. The communication manager 1132 includes the one or more illustrated components. The components within the communication manager 1132 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 1104. The cellular baseband processor 1104 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359. In one configuration, the apparatus 1102 may be a modem chip and include just the baseband processor 1104, and in another configuration, the apparatus 1102 may be the entire UE (e.g., see 350 of FIG. 3) and include the aforediscussed additional modules of the apparatus 1102.
The communication manager 1132 includes a component 1140 that is configured to support PDU sessions on the first and the second SIM and associate the SIMs with the first and the second connections, e.g., as described in connection with  steps   802 and 804 of FIG. 8. The communication manager 1132 further includes a component 1142 that receives input in the form of RRC connection and configuration information from the component 1140 and is configured to perform one or more steps necessary for the UE to effect handover, including attempting to maintain the PDU sessions during a handover from a source to a target base station, e.g., as described in connection with step 806 of FIG. 8. The communication manager 1132 further includes a component 1144 that receives input in the form of configuration information from the  components  1140 and 1142 and is configured to determine whether it is controlling the primary or the secondary connection, e.g., as described in connection with the handover timing diagrams of FIGS. 4-8. The communication manager 1132 further includes a component 1146 for processing configuration instructions for the RRC connections as shown in the handover timing diagrams of FIGS. 4-8. The communication manager 1132 also includes a RACH component which is configured to perform RACH procedures as necessary for initial access to the network, as described in step 1012 in FIG. 10.
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts and timing diagrams of FIGs. 4-10. As such, each block in the aforementioned flowcharts of FIGs. 4-10 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
FIG. 12 is a diagram 1200 illustrating an example of a hardware implementation for an apparatus 1202. The apparatus 1202 is a BS and includes a baseband unit 1204. The baseband unit 1204 may communicate through a cellular RF transceiver with the UE 104. The baseband unit 1204 may include a computer-readable medium /memory. The baseband unit 1204 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory. The software, when executed by the baseband unit 1204, causes the baseband unit 1204 to perform the various functions described supra. The computer-readable medium /memory may also be used for storing data that is manipulated by the baseband unit  1204 when executing software. The baseband unit 1204 further includes a reception component 1230, a communication manager 1232, and a transmission component 1234. The communication manager 1232 includes the one or more illustrated components. The components within the communication manager 1232 may be stored in the computer-readable medium /memory and/or configured as hardware within the baseband unit 1204. The baseband unit 1204 may be a component of the BS 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
The communication manager 1232 includes a component 1240 that is configured to perform one or more handover related procedures, e.g., admission control, handover decisions, and the like, as described in connection with 906, 908, 910, 912, 914 and 916 of FIG. 9. The communication manager 1232 further includes a component 1242 that is configured to support PDU sessions over connections to SIMs at a UE, e.g., as described in connection with 904 and 906 of FIG. 9 and 1000 of FIG. 10. The communication manager 1232 further includes a target component 1244 that handles many of the base station functions of the target node, e.g., as described in connection with the timing diagrams of FIGS. 8 and the target node steps of FIGS. 9 and 10. A source component 1246 may perform the functions but from the source node as described in the same illustrations. Respective Xn and  NG components  1248 and 1250 enable the handling of the different types of handovers as shown in FIGS. 4-5 for Xn and FIGS. 6-7 for NG. The communications manager further includes a configuration component 1252, which is used for processing the RRC commands and the RRC component 1254 which is responsible for establishing and maintaining the respective RRC connections and for enabling the handovers to occur.
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts of FIGs. 8-10. As such, each block in the aforementioned flowcharts of FIGs. 8-10 and handover timing diagrams in FIGS. 4-8 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated  processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
It is understood that the specific order or hierarchy of blocks in the processes /flowcharts disclosed is an illustration of example approaches. Based upon design preferences, it is understood that the specific order or hierarchy of blocks in the processes /flowcharts may be rearranged. Further, some blocks may be combined or omitted. The accompanying method claims present elements of the various blocks in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Terms such as “if, ” “when, ” and “while” should be interpreted to mean “under the condition that” rather than imply an immediate temporal relationship or reaction. That is, these phrases, e.g., “when, ” do not imply an immediate action in response to or during the occurrence of an action, but simply imply that if a condition is met then an action will occur, but without requiring a specific or immediate time constraint for the action to occur. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more  member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. The words “module, ” “mechanism, ” “element, ” “device, ” and the like may not be a substitute for the word “means. ” As such, no claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”

Claims (84)

  1. A method of wireless communication at a base station, comprising:
    supporting a first protocol data unit (PDU) session for a first subscriber identity module (SIM) associated with a user equipment (UE) ;
    supporting a second PDU session for a second SIM associated with the UE; and
    handing-over the UE to a target base station while attempting to maintain the first and the second PDU sessions.
  2. The method of claim 1, wherein the handing-over comprises generating a first handover request associated with the first SIM and a second handover request associated with the second SIM.
  3. The method of claim 2, wherein each of the first and the second handover requests includes an identifier indicating that the request is for the UE.
  4. The method of claim 2, wherein each of the first and the second handover requests identifies a radio resource control (RRC) connection associated with the first SIM for RRC configuration messaging for both the first and the second SIMs.
  5. The method of claim 2, wherein the handing-over further comprises transmitting the first and the second handover requests to the target base station, wherein each of the first and the second handover requests are transmitted over a separate connection with the target base station.
  6. The method of claim 2, wherein the handing-over further comprises transmitting the first handover request to a first access and mobility management function (AMF) and transmitting the second handover request to a second AMF.
  7. The method of claim 6, wherein each of the first and the second handover requests includes messaging related to the target base station.
  8. The method of claim 1, wherein the handing-over comprises receiving a first handover request acknowledgement associated with the first SIM and a second handover request acknowledgement associated with the second SIM.
  9. The method of claim 8, wherein each of the first and the second handover request acknowledgements includes a handover command.
  10. The method of claim 9, wherein the handing-over further comprises transmitting the handover commands to the UE, wherein each of the handover commands are transmitted to the UE over a different radio resource control (RRC) connection.
  11. The method of claim 10, wherein each of the handover commands identifies an RRC connection associated with the first SIM to provide RRC configuration messaging for both the first and the second SIMs.
  12. The method of claim 8, wherein the first and the second handover request acknowledgements are each received over a separate connection with the target base station.
  13. The method of claim 8, wherein the first handover request acknowledgement is received from a first access and mobility management function (AMF) and the second handover request acknowledgement is received from a second AMF.
  14. The method of claim 13, wherein each of the first and the second handover request acknowledgements includes a handover command, and wherein the handing-over further comprises transmitting the handover commands to the UE after waiting for a time that depends on at least one timer.
  15. The method of claim 1, wherein the handing-over comprises receiving a handover request acknowledgement associated with the first SIM and a handover failure message associated with the second SIM.
  16. The method of claim 15, wherein the handover request acknowledgement includes a handover command.
  17. The method of claim 16, wherein the handing-over further comprises transmitting the handover command to the UE.
  18. The method of claim 16, wherein the handing-over further comprises messaging RRC configuration for the second SIM to the UE, wherein the messaging includes an indication to release dedicated radio bearers (DRB) for the second SIM.
  19. A method of wireless communication at a base station, comprising:
    receiving a handover of a user equipment (UE) from a source base station, wherein the base station supports a first protocol data unit (PDU) session for a first subscriber identity module (SIM) and a second PDU session for a second SIM, each of the first and the second SIMSs being associated with the UE; and
    performing admission control to determine whether to maintain the first and second PDU sessions during handover.
  20. The method of claim 19, further comprising receiving a first handover request associated with the first SIM and a second handover request associated with the second SIM.
  21. The method of claim 20, wherein each of the first and the second handover requests includes an identifier indicating that the request is for the UE.
  22. The method of claim 20, wherein each of the first and the second handover requests identifies a radio resource control (RRC) connection associated with the first SIM for RRC configuration messaging for both the first and the second SIMs.
  23. The method of claim 20, further comprising receiving the first and the second handover requests from the source base station, wherein each of the first and the second handover requests are received over a separate connection with the source base station.
  24. The method of claim 20, further comprising receiving the first handover request from a first access and mobility management function (AMF) and receiving the second handover request from a second AMF.
  25. The method of claim 19, further comprising generating a first handover request acknowledgement associated with the first SIM and a second handover request acknowledgement associated with the second SIM.
  26. The method of claim 25, wherein each of the first and the second handover request acknowledgements includes a handover command.
  27. The method of claim 26, wherein each of the handover commands identifies a radio resource control (RRC) connection associated with the first SIM to provide RRC configuration messaging for both the first and the second SIMs.
  28. The method of claim 25, wherein the first and the second handover request acknowledgements are each transmitted over a separate connection with the source base station.
  29. The method of claim 25, wherein the first handover request acknowledgement is transmitted to a first access and mobility management function (AMF) and the second handover request acknowledgement is transmitted to a second AMF.
  30. The method of claim 19, further comprising performing a random access channel (RACH) procedure associated with the first SIM.
  31. The method of claim 19, further comprising transmitting a handover request acknowledgement associated with the first SIM and a handover failure message associated with the second SIM.
  32. The method of claim 31, wherein the handover request acknowledgement includes a handover command.
  33. A method of wireless communication at a user equipment (UE) , comprising:
    supporting a first protocol data unit (PDU) session for a first subscriber identity module (SIM) associated with a user equipment (UE) ;
    supporting a second PDU session for a second SIM associated with the UE; and
    attempting to maintain the first and the second PDU sessions during a handover from a source base station to a target base station.
  34. The method of claim 33, wherein the handover comprises receiving a first handover command associated with the first SIM and a second handover command associated with the second SIM, wherein each of the first and the second handover commands are received by the UE over different radio resource control (RRC) connections.
  35. The method of claim 34, wherein the handover further comprises performing a random access channel (RACH) procedure with the target base station for both the first and the second SIMs over the RRC connection associated with the first SIM.
  36. The method of claim 33, wherein the handover comprises receiving a first handover command associated with the first SIM over a first radio resource control (RRC) connection, and receiving an indication that second PDU session is not supported by the target base station over a second RRC connection.
  37. The method of claim 36, further comprising performing a random access channel (RACH) procedure with the target base station for the first SIM for the first RRC connection.
  38. The method of claim 33, further comprising:
    receiving at the UE from the source base station reconfiguration messages associated with each of the first and second SIMS, the reconfiguration messages comprising an indication of which SIM is the primary connection.
  39. The method of claim 38, further comprising determining from the reconfiguration messages whether configuration provided for the first or second SIM is valid.
  40. The method of claim 39, wherein when both configurations are valid,
    the SIM with the primary connection performs a random access channel (RACH) procedure with the target base station and then sends to the target base station a RRC reconfiguration complete message; and
    the SIM without the primary connection sends to the target base station a RRC reconfiguration complete message without performing a RACH procedure.
  41. The method of claim 39, wherein when only one configuration is valid, a connection with the valid configuration performs a random access channel (RACH) procedure with the target base station and then sends to the target base station a RRC reconfiguration complete message; and
    the connection with the invalid configuration then performs RRC reestablishment with the target base station without performing a RACH procedure.
  42. The method of claim 39, wherein when no configuration is valid, the SIM with the primary connection performs both a random access channel (RACH) procedure and RRC reestablishment with the target base station; and
    the SIM without the primary connection performs RRC reestablishment with the target base station, selects the same cell as the primary connection for the RRC reestablishment procedure and performs the procedure without performing RACH.
  43. A base station, comprising:
    at least one processor configured to:
    support a first protocol data unit (PDU) session for a first subscriber identity module (SIM) associated with a user equipment (UE) ;
    support a second PDU session for a second SIM associated with the UE; and
    hand-over the UE to a target base station while attempting to maintain the first and the second PDU sessions.
  44. The base station of claim 43, wherein the handing-over comprises generating a first handover request associated with the first SIM and a second handover request associated with the second SIM.
  45. The base station of claim 44, wherein each of the first and the second handover requests includes an identifier indicating that the request is for the UE.
  46. The base station of claim 44, wherein each of the first and the second handover requests identifies a radio resource control (RRC) connection associated with the first SIM for RRC configuration messaging for both the first and the second SIMs.
  47. The base station of claim 44, wherein the handing-over further comprises transmitting the first and the second handover requests to the target base station, wherein each of the first and the second handover requests are transmitted over a separate connection with the target base station.
  48. The base station of claim 44, wherein the handing-over further comprises transmitting the first handover request to a first access and mobility management function (AMF) and transmitting the second handover request to a second AMF.
  49. The base station of claim 48, wherein each of the first and the second handover requests includes messaging related to the target base station.
  50. The base station of claim 43, wherein the handing-over comprises receiving a first handover request acknowledgement associated with the first SIM and a second handover request acknowledgement associated with the second SIM.
  51. The base station of claim 50, wherein each of the first and the second handover request acknowledgements includes a handover command.
  52. The base station of claim 51, wherein the handing-over further comprises transmitting the handover commands to the UE, wherein each of the handover  commands are transmitted to the UE over a different radio resource control (RRC) connection.
  53. The base station of claim 52, wherein each of the handover commands identifies an RRC connection associated with the first SIM to provide RRC configuration messaging for both the first and the second SIMs.
  54. The base station of claim 50, wherein the first and the second handover request acknowledgements are each received over a separate connection with the target base station.
  55. The base station of claim 50, wherein the first handover request acknowledgement is received from a first access and mobility management function (AMF) and the second handover request acknowledgement is received from a second AMF.
  56. The base station of claim 55, wherein each of the first and the second handover request acknowledgements includes a handover command, and wherein the handing-over further comprises transmitting the handover commands to the UE after waiting for a time that depends on at least one timer.
  57. The base station of claim 43, wherein the handing-over comprises receiving a handover request acknowledgement associated with the first SIM and a handover failure message associated with the second SIM.
  58. The base station of claim 57, wherein the handover request acknowledgement includes a handover command.
  59. The base station of claim 58, wherein the handing-over further comprises transmitting the handover command to the UE.
  60. The base station of claim 58, wherein the handing-over further comprises messaging RRC configuration for the second SIM to the UE, wherein the messaging includes an indication to release dedicated radio bearers (DRB) for the second SIM.
  61. A base station, comprising:
    at least one processor configured to:
    receive a handover of a user equipment (UE) from a source base station, wherein the base station supports a first protocol data unit (PDU) session for a first subscriber identity module (SIM) and a second PDU session for a second SIM, each of the first and the second SIMSs being associated with the UE; and
    perform admission control to determine whether to maintain the first and second PDU sessions during handover.
  62. The base station of claim 61, wherein the at least one processor is further configured to receive a first handover request associated with the first SIM and a second handover request associated with the second SIM.
  63. The base station of claim 62, wherein each of the first and the second handover requests includes an identifier indicating that the request is for the UE.
  64. The base station of claim 62, wherein each of the first and the second handover requests identifies a radio resource control (RRC) connection associated with the first SIM for RRC configuration messaging for both the first and the second SIMs.
  65. The base station of claim 62, wherein the at least one processor is further configured to receive the first and the second handover requests from the source base station, wherein each of the first and the second handover requests are received over a separate connection with the source base station.
  66. The base station of claim 62, wherein the at least one processor is further configured to receive the first handover request from a first access and mobility management function (AMF) and receiving the second handover request from a second AMF.
  67. The base station of claim 61, wherein the at least one processor is further configured to generate a first handover request acknowledgement associated with the first SIM and a second handover request acknowledgement associated with the second SIM.
  68. The base station of claim 67, wherein each of the first and the second handover request acknowledgements includes a handover command.
  69. The base station of claim 68, wherein each of the handover commands identifies a radio resource control (RRC) connection associated with the first SIM to provide RRC configuration messaging for both the first and the second SIMs.
  70. The base station of claim 67, wherein the first and the second handover request acknowledgements are each transmitted over a separate connection with the source base station.
  71. The base station of claim 61, wherein the first handover request acknowledgement is transmitted to a first access and mobility management function (AMF) and the second handover request acknowledgement is transmitted to a second AMF.
  72. The base station of claim 61, wherein the at least one processor is further configured to perform a random access channel (RACH) procedure associated with the first SIM.
  73. The base station of claim 61, wherein the at least one processor is further configured to transmit a handover request acknowledgement associated with the first SIM and a handover failure message associated with the second SIM.
  74. The base station of claim 73, wherein the handover request acknowledgement includes a handover command.
  75. A user equipment (UE) , comprising:
    at least one processing system configured to:
    support a first protocol data unit (PDU) session for a first subscriber identity module (SIM) associated with a UE;
    support a second PDU session for a second SIM associated with the UE; and
    attempt to maintain the first and the second PDU sessions during a handover from a source base station to a target base station.
  76. The UE of claim 75, wherein the handover comprises receiving a first handover command associated with the first SIM and a second handover command associated with the second SIM, wherein each of the first and the second handover commands are received by the UE over different radio resource control (RRC) connections.
  77. The UE of claim 76, wherein the handover further comprises performing a random access channel (RACH) procedure with the target base station for both the first and the second SIMs over the RRC connection associated with the first SIM.
  78. The UE of claim 77, wherein the handover comprises receiving a first handover command associated with the first SIM over a first radio resource control (RRC) connection, and receiving an indication that second PDU session is not supported by the target base station over a second RRC connection.
  79. The UE of claim 78, wherein the at least one processor is further configured to perform a random access channel (RACH) procedure with the target base station for the first SIM for the first RRC connection.
  80. The UE of claim 75, wherein the at least one processor is further configured to receive at the UE from the source base station reconfiguration messages associated with each of the first and second SIMS, the reconfiguration messages comprising an indication of which SIM is the primary connection.
  81. The UE of claim 80, wherein the at least one processor is further configured to determine from the reconfiguration messages which configuration of the first or second SIM is valid.
  82. The UE of claim 81, wherein when both configurations are valid,
    the SIM with the primary connection performs a random access channel (RACH) procedure with the target base station and then sends to the target base station a reconfiguration complete; and
    the SIM without the primary connection sends to the target base station a reconfiguration complete without performing a RACH procedure.
  83. The UE of claim 82, wherein when only one configuration is valid, a connection with the valid configuration performs a random access channel (RACH) procedure with the target base station and then sends to the target base station a reconfiguration complete; and
    the connection with the invalid configuration then performs RRC reestablishment with the target base station without performing a RACH procedure.
  84. The UE of claim 82, wherein when no configuration is valid, the SIM with the primary connection performs both a random access channel (RACH) procedure and RRC reestablishment with the target base station; and
    the SIM without the primary connection performs RRC reestablishment with the target base station.
PCT/CN2020/117443 2020-09-24 2020-09-24 Network handovers in single link dual subscriber identity module (sim) dual active (dsda) user equipment WO2022061651A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/117443 WO2022061651A1 (en) 2020-09-24 2020-09-24 Network handovers in single link dual subscriber identity module (sim) dual active (dsda) user equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/117443 WO2022061651A1 (en) 2020-09-24 2020-09-24 Network handovers in single link dual subscriber identity module (sim) dual active (dsda) user equipment

Publications (1)

Publication Number Publication Date
WO2022061651A1 true WO2022061651A1 (en) 2022-03-31

Family

ID=80845978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117443 WO2022061651A1 (en) 2020-09-24 2020-09-24 Network handovers in single link dual subscriber identity module (sim) dual active (dsda) user equipment

Country Status (1)

Country Link
WO (1) WO2022061651A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115103464A (en) * 2022-06-22 2022-09-23 Oppo广东移动通信有限公司 Mode switching method, device, computer equipment, storage medium and program product

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162763A (en) * 2015-04-02 2016-11-23 小米科技有限责任公司 SIM changing method and device
US20200068647A1 (en) * 2018-08-27 2020-02-27 Samsung Electronics Co., Ltd. Method and ue for optimizing resources of wireless communication network while providing 5g services
EP3713370A1 (en) * 2019-03-19 2020-09-23 Comcast Cable Communications Management, LLC Wireless communications for communication setup/response

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162763A (en) * 2015-04-02 2016-11-23 小米科技有限责任公司 SIM changing method and device
US20200068647A1 (en) * 2018-08-27 2020-02-27 Samsung Electronics Co., Ltd. Method and ue for optimizing resources of wireless communication network while providing 5g services
EP3713370A1 (en) * 2019-03-19 2020-09-23 Comcast Cable Communications Management, LLC Wireless communications for communication setup/response

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on Support for Multi-USIM Devices (Release 17)", 3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 22.834, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. V17.1.0, 27 September 2019 (2019-09-27), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 16, XP051784933 *
INTEL: "PLMN selection and cell (re-)selection for dual-registration mode", 3GPP DRAFT; C1-181605-REV-OF-181156-DUAL-REGISTRATION-MODE-24501-031-V2, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. CT WG1, no. Montreal (Canada); 20180226 - 20180302, 1 March 2018 (2018-03-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051393166 *
QUALCOMM INCORPORATED: "Coordination of concurrent communication for Multi-SIM", 3GPP DRAFT; R2-2007129, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051911955 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115103464A (en) * 2022-06-22 2022-09-23 Oppo广东移动通信有限公司 Mode switching method, device, computer equipment, storage medium and program product
CN115103464B (en) * 2022-06-22 2024-03-01 Oppo广东移动通信有限公司 Mode switching method, mode switching device, computer device, storage medium, and program product

Similar Documents

Publication Publication Date Title
US11627635B2 (en) Expedited release of a user equipment
US11737001B2 (en) Layer 2 relay user equipment mobility
US11895585B2 (en) Data transfer between an inactive mode user equipment and a wireless network
US11758547B2 (en) Default PDSCH beam selection
WO2021006980A1 (en) System information and paging monitoring for multiple synchronization signal blocks
US20180359660A1 (en) System and method for maintaining a network connection
US11903058B2 (en) RRC timer for layer 2 UE-to-network relay
US11950308B2 (en) Optimized secondary node reporting for multi-radio access technology dual connectivity
WO2022061651A1 (en) Network handovers in single link dual subscriber identity module (sim) dual active (dsda) user equipment
WO2022061633A1 (en) Rrc configuration for single link, dual subscriber identity module dual active (dsda)
US20230276353A1 (en) Fast slicing switching via scg suspension or activation
WO2022077207A1 (en) Assisted connectivity
WO2022077206A1 (en) Protocol stacks and bearer modeling for rsu assisted uu connectivity
US11870589B2 (en) Method and apparatus with multi-configuration HARQ message
WO2022099591A1 (en) Smart internet pdn/pdu connection for msim device
WO2022261799A1 (en) Techniques for handling voice over service fallback
WO2022061698A1 (en) Recover from downlink data transfer failure
WO2022056830A1 (en) Fast retransmission of a pdu session establishment request after a lower layer failure
WO2022061652A1 (en) Fast resend of a protocol data unit session request
WO2021253267A1 (en) Method to handle out of local area data network service area
WO2021226735A1 (en) A method to improve return to a non-standalone mode from an idle mode
WO2021142820A1 (en) Timer based nr 5g service search
WO2022056666A1 (en) Methods and apparatus for video over nr-dc
WO2022000470A1 (en) Method and apparatus for managing inter-rat cell handover

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954503

Country of ref document: EP

Kind code of ref document: A1