WO2022061485A1 - Molecular dynamics method for simulating microstructure interface formation of silica and silanes - Google Patents

Molecular dynamics method for simulating microstructure interface formation of silica and silanes Download PDF

Info

Publication number
WO2022061485A1
WO2022061485A1 PCT/CN2020/116670 CN2020116670W WO2022061485A1 WO 2022061485 A1 WO2022061485 A1 WO 2022061485A1 CN 2020116670 W CN2020116670 W CN 2020116670W WO 2022061485 A1 WO2022061485 A1 WO 2022061485A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
model
silane
molecular dynamics
simulation
Prior art date
Application number
PCT/CN2020/116670
Other languages
French (fr)
Inventor
Changru MA
Raphael Johannes WISCHERT
Laurent Guy
Natalia GAJOS
Original Assignee
Rhodia Operations
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Operations filed Critical Rhodia Operations
Priority to PCT/CN2020/116670 priority Critical patent/WO2022061485A1/en
Publication of WO2022061485A1 publication Critical patent/WO2022061485A1/en

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/10Analysis or design of chemical reactions, syntheses or processes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C10/00Computational theoretical chemistry, i.e. ICT specially adapted for theoretical aspects of quantum chemistry, molecular mechanics, molecular dynamics or the like
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C60/00Computational materials science, i.e. ICT specially adapted for investigating the physical or chemical properties of materials or phenomena associated with their design, synthesis, processing, characterisation or utilisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling

Definitions

  • the invention relates to a method for simulating microstructure interface formation of silica and silanes by reactive molecular dynamics.
  • Silanes are popularly available with silyl groups including long alkyl chains, amines and thiols.
  • the compatibility of silica, and more generally of inorganic oxides, with polymers is quite weak.
  • Silanes have been used as coupling agents to modify the surface of inorganic fillers, such as silica, to improve the compatibility between the inorganic filler and polymers.
  • the research methods are mostly established on the macro scale, and the qualitative or quantitative analysis of the reaction performance of the interface between silane and silica can be given. Due to the very complex reaction mechanism, including the embedded force between the particles, the van der Waals force between the atoms, the interface temperature, crystal orientation, etc. will have an impact on the combination of silane and silica, macro research methods are difficult to accurately measure the bonding strength of silane and silica.
  • the molecular dynamics method can build a bridge between the macro and micro characteristics. Using the molecular dynamics theory as a guide and the molecular dynamics simulation software, such as LAMMPS, as a platform, the reaction performance of the interface between silane and silica can be explored microscopically.
  • Amorphous silica surfaces and silica/silane interface have been studied, using both classical force fields and first principles (quantum-chemical) models.
  • Tielens et al. F. Tielens, C. Gervais, J.F. Lambert, F. Mauri, D. Costa. Ab Initio Study of the Hydroxylated Surface of Amorphous Silica: A Representative Model. Chemistry of Materials 2008, 20, 3336–3344
  • Emami et al. F.S. Emami, V. Puddu, R.J. Berry, V. Varshney, S.V. Patwardhan, C.C. Perry, H. Heinz. Force Field and a Surface Model Database for Silica to Simulate Interfacial Properties in Atomic Resolution. Chemistry of Materials 2014, 26, 2647–2658) introduced and compared numerical silica force fields and developed a silica surface database to compute interfacial properties.
  • the present invention concerns a method for simulating microstructure interfacial formation of silica and silanes by reactive molecular dynamics modeling, in order to evaluate the interaction between different types of silane and different types of silica, predict the dosage of silane, the physical and chemical properties of silane enhanced silica.
  • the present invention concerns a method for simulating the formation of a microstructure interface between silica and silane by reactive molecular dynamics simulations, comprising the conduction of a molecular model of said silica and silane, by means of experimental characterizations of said silica and silane, experimental characterization comprising reacting said silica and silane with a solvent to form the interface, and the quantification of the obtained silanols of Q2/Q3/Q4 type (geminal silanol groups/isolated silanol groups/siloxane bridges) by NMR spectroscopy, characterized by:
  • ReaxFF reactive force field
  • step 2) defining a microstructure model of water molecules, part of water molecules split into -OH groups attached to–Si group and-H groups attached to–OSi groups in the model of said silica to form silanol, and adding water molecules onto the microstructure model obtained in step 1) to obtain specific silanol concentrations in said silica model;
  • step 4) defining a microstructure model of silane molecules and attaching the silane molecules to the surface of said silica model obtained after step 3) , and performing equilibrium dynamic relaxation at a given temperature, employing molecular dynamics calculations to simulate the reaction mechanism of silane molecules attached to the silica slab to form the interface between them.
  • silicon is used herein to refer to any inorganic compound comprising at least 80%by weight of SiO 2 , preferably comprising at least 90%by weight of SiO 2 , and at most 20%by weight, preferably at most 10%by weight of another inorganic oxide.
  • the inorganic oxide is selected from the group consisting of aluminum oxide, cerium oxide, zirconium oxide, titanium oxide, gallium oxide, boron oxide or mixture thereof.
  • silane refers to compounds of general formula (I) :
  • each R can be a saturated or unsaturated, substituted or non-substituted, hydrocarbon radical.
  • Each R can be, for example, an alkyl radical such as methyl, ethyl, t-butyl, hexyl, heptyl, octyl, decyl, and dodecyl; an alkenyl radical such as vinyl, allyl, and hexenyl; a substituted alkyl radical such as chloromethyl, 3, 3, 3-trifluoropropyl, and 6-chlorohexyl; and an aryl radical such as phenyl, naphthyl, and tolyl.
  • Each R can be an organofunctional hydrocarbon radical comprising 1 to 12 carbon atoms where, for example, the functionality is mercapto, disulfide, polysulfide, amino, carboxylic acid, carbinol, ester, or amido.
  • a preferred organofunctional hydrocarbon radical is one having disulfide or polysulfide functionality.
  • alkoxy radicals are methoxy, ethoxy, propoxy and or butoxy radicals.
  • X is selected from the group consisting of methoxy, ethoxy or propoxy radicals.
  • Suitable –O- (Y-O) m -Z radicals can be selected as ethoxypolyether.
  • water is used herewith referred to a substance composed of the elements of hydrogen and oxygen and existing in gaseous or liquid.
  • the sources of water can come from the solvents or water molecules in the surroundings.
  • reaction mechanism is understood to describe all the elementary reactions through which a chemical change pathways, useful for highlighting which are the major and minor channels within the scheme.
  • Reactive force field is a set of parameterized equations describing the various contributions to the total energy of a chemical system, notably Van der Waals, Coulomb, torsional energies, and bond orders.
  • the equilibrium state is preferably performed by calculating sufficient time length, such as 1-100 nano seconds, of molecular dynamics trajectory of each model subjected to the force field, then by successive assessments in order to quantify the relation between model properties (e.g. temperature) change and the coordinates of models.
  • sufficient time length such as 1-100 nano seconds
  • Fig. 1 shows sketches of the 5x5 nm 2 silica Z1165MP model (left: top view; right: side view) .
  • Fig. 2 illustrates the sketch of the 5x5 nm 2 silica Z1165MP model with 0.8 Si/nm 2 OCTEO and sketch of the silica model with 1.6 Si/nm 2 OCTEO.
  • Fig. 3 shows the histogram of the minimal distance between Si (OCTEO) and Si (silica) in the MD simulations.
  • Fig. 4 shows the water assisted reaction, EtOH formed right after grafting (left) and direct grafting reaction without water (right) .
  • Fig. 5 shows the model of OCTEO grafted Z1165MP (Si, O, H and C in the figure) : top view sketch of 20 OCTEO grafted Z1165MP, on the top left; minimal Si (OCTEO) -Si (silica) distance as a function of numbers of silane grafted, on bottom left; 20 further ungrafted OCTEO molecules added to the 20 silanes grafted model, on the top right; minimal Si (OCTEO) -Si (silica) distances, on the bottom right.
  • Temperatures, concentrations, amounts, and other numerical data may be presented herein in a range format. It is to be understood that such range format is used merely for convenience and brevity and should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited.
  • a temperature range of 300K to 500K should be interpreted to include not only the explicitly recited limits of 300K to 500K, but also to include sub-ranges, such as 300K to 400K, and so forth, as well as individual amounts, including fractional amounts, within the specified ranges, such as 300.5K, 350.8 K, and 485.5K, for example.
  • Interface formation i.e. the addition or attachment of organic groups of silane onto a surface of silica by covalent bonds, is an important step to make silane reinforced silica compatible with the polymers, especially rubbers.
  • silica is modified, for instance, with n-octyltriethoxysilane (OCTEO) .
  • OTEO n-octyltriethoxysilane
  • ReaxFF is a bond order based method widely used to simulating silica and it allows simulating the breaking and formation of chemical bonds–essential in studying the kinetics of the hydrolysis, interface formation, and poly-condensation reactions, with the models of silica and different types of silanes.
  • ReaxFF simulations can be done within the LAMMPS Molecular Dynamics Simulator.
  • the charge equilibration (QEq) method can be used in conjunction with the ReaxFF force field model.
  • Molecular Dynamics (MD) simulations can be run with ensembles (such as NVT, NVE or NPT) , using equations of motion which are designed to generate positions and velocities.
  • Specific algorithm and process can be referred to “ReaxFF: A Reactive Force Field for Hydrocarbons” (A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard. The Journal of Physical Chemistry A 2001, 105, 9396–9409) .
  • the three-dimensional periodic simulation box has a length (Y-axis) , a width (X-axis) or a height (Z-axis) ranging from 0.5 to 100 nm.
  • the time step of the MD simulations was set to 0.5 femto second.
  • the width (X-axis) and length (Y-axis) of the simulation box were both 5 nm, while the height (Z-axis) was 5 nm for the box without silane and 10 nm for the box with silane molecules.
  • the simulation cell is periodically repeated along the X and Y axes, while at Z direction it is non-periodic, to avoid the interaction between the bottom of the silica slab and the atoms at the top of the box.
  • the equilibrium state of the models of obtained in step 1) being subjected to kinetic relaxation comprises the steps of:
  • step 1) initializing the mass and velocity of the atoms in the microstructure model of silica in step 1) at room temperature, the interaction between atoms being characterized by the ReaxFF potential function, the equilibrium relaxation being performed at a density of 2.0-3.0 g/cm 3 of the silica, selecting NVT, NVE or NPT ensemble, the time step of the molecular dynamics simulation selected to be 0.1-0.5 femto second, the model reaching an equilibrium after 10-100 nano seconds molecular dynamics relaxation;
  • a monolayer of cristobalite silica is placed at the bottom of the simulation box.
  • kinetic relaxation is performed by molecular dynamics simulation of heating the model from 1K to 10000K, preferably from 100K to 7000K, more preferably from 300K to 4000K.
  • kinetic relaxation is performed by molecular dynamics simulation of cooling the model from 10000K to 1K, preferably 7000K to 100K, more preferably from 4000K to 300K.
  • the equilibrium state of the models obtained in step 2) being subjected to kinetic relaxation comprises the steps of:
  • step 2 - calculating the properties of the models obtained after step 2) , such as the concentration or distribution of silanol, adjusting the corresponding atom positions to fit the properties obtained by experimental characterization, such as NMR, DVS, TGA, TEM or MeOH titration;
  • kinetic relaxation is repeated for 1-100 cycles.
  • the silanol concentration in the silica model is set up to match experimental characterizations.
  • the silanol concentration in the silica model is ranged from 0 to 20 OH/nm 2 , preferably 2 to 20 OH/nm 2 , more preferably2 to 17 OH/nm 2 , 4 to 15 OH/nm 2 .
  • the given temperature in step 4) can be set up by means of experimental data from the preparation process of silane reinforced silica in the lab.
  • the given temperature is ranged from 300K to 500K, preferably 300K to 450K.
  • silane molecule attached to the surface of said silica model represents 0.04-5 Si/nm 2 , even 0.04-4 Si/nm 2 , preferably 0.04-3 Si/nm 2 , even more preferably 0.04-2 Si/nm 2 , even more preferably 0.04-2.5 Si/nm 2 , even most preferably 0.04-1.6 Si/nm 2 concentrations.
  • MTD metadynamics
  • Gaussians of height 0.1 kcal/mol and width were added every 500 femto seconds.
  • MTD was run until the reaction event occurred, followed by another 10-20 nano seconds of unbiased MD for the product.
  • simple collective variables were used, namely, the Si (Silane) -Si (silica) distance for the interface formation reactions.
  • the silica is selected from hydroxylated silica, amorphous silica, fumed or pyrogenic silica, cristobalite silica or highly dispersible silica.
  • the silane is a bridged bisilane.
  • the silane contains element sulphur or amino or chloride or thiocyanate.
  • the silane is n-octyltriethoxysilane (OCTEO) .
  • the silane is bis [3- (triethoxysilyl) propyl] tetrasulfide (TESPT) or bis [3- (triethoxysilyl) propyl] disulfide (TESPD) or 3-amino-propyltriethoxysilane or 3-mercapto-propyltriethoxysilane or 3-chloro-propyl-triethoxysilane or 3-thiocyanato-propyl-triethoxysilane.
  • TESPT triethoxysilyl
  • TESPD bis [3- (triethoxysilyl) propyl] disulfide
  • the silane is trialkoxymercaptoalkyl-silane, such as mercaptopropyl-mono-ethoxypolyether-silane.
  • the kinetic study is preferably carried out by varying the temperature of the reaction mechanism.
  • the molecular model and the reaction mechanism are advantageously validated by comparison of the results from the reactive molecular dynamic simulation with experimental characterization data, as obtained from TGA, NMR, TEM, DVS, MeOH titration etc..
  • Interface formation reaction between silica and silanes can be done according to the method described in the state of art. In a preferred embodiment of this invention, it is characterized by the following steps: -add silica and silane to the solvent, stir and mix at a temperature of 100 ⁇ 150°C to obtain a solution system; -maintain the temperature and the reaction is continuously stirred at 100 ⁇ 150°C for 5 minutes to 2 hours.
  • the invention allows predicting the correct amount of a given silane to provide an optimal level of silica modification. Such information could be used to fine tune the amount of silanes in applications such as absorbent, as additive for concrete or paper, or for the treatment of air or water, reinforcing filler in polymeric compositions.
  • BET surface area S BET was determined according to the Brunauer-Emmett-Teller method as detailed in standard NF ISO 5794-1, Appendix E (June 2010) with the following adjustments: the sample was pre-dried at 200°C ⁇ 10°C; the partial pressure used for the measurement P/P0 was between 0.05 and 0.3.
  • the product was characterized by 1D 29Si CP/MAS NMR on a Bruker Avance solid 300 spectrometer working at 7.04 T.
  • a commercial 4 mm high speed probe (DVT4) with a spinning frequency of 4 KHz was used in cross polarization with 90° pulse, a 2 ms contact time and a 2 s recycling time and 10000 transients.
  • the samples were analyzed using ATD-ATG technique on Mettler's LF1100 thermobalance and a Tensor 27 Bruker spectrometer equipped with a gas cell, with the following program: Temperature rise from 25°C to 1100°C at 10°C/min, under air (60 mL/min) , in Al 2 O 3 crucible of 150 ⁇ L.
  • the bulk silanol density is directly related to the loss of mass between 200°C and 800°C.
  • the loss of mass (%) between 2OO°C and 800°C is identified as ⁇ W%this value.
  • the silanol ratio (mmol/g) is defined by:
  • the water content is directly related to the loss of mass between 25 and 200°C.
  • the loss of mass (%) between 25 and 200°C is identified as ⁇ Y%this value.
  • the water ratio (mmol/g) is defined by:
  • Water density (water or H2O/nm 2 ) is calculated by:
  • the number of silanols per nm 2 of surface area is determined by grafting methanol onto the surface of the silica.
  • N SiOH/nm 2 [ (%Cg-%Cr) *6.023*10 23 ] / [S BET x10 18 *12*100]
  • %Cg percent mass of carbon present on the grafted silica
  • %Cr percent mass of carbon present on the raw silica
  • the samples were analyzed using Dynamic Vapor Sorption (or DVS) technique on Advantage 1 from SMS.
  • DVS Dynamic Vapor Sorption
  • the water content is directly related to the uptake water after equilibrium with RM at 50%.
  • the uptake water content (in mass (%) /dry) is identified as ⁇ Y%this value.
  • the water ratio (mmol/g) is defined by:
  • Water density (water or H 2 O/nm 2 ) is calculated by:
  • a solution of o-xylene (9 ml) +silane (80 ⁇ l) is prepared and heats at 100°C and silica (450 mg) is introduced into a reactor block to start the reaction.
  • the reaction time is fixed to 90 min. After that, solution is cooled in an ice water bath and 1 ml of diethyleneglycol monobutylether is added and stirred during 5 min.
  • the quantity of silane in solution (not reacted) is determined by GC/MS. It allows determining the quantity grafted at the silica surface by making the difference between the initial amount of silane introduced and the quantity of silane remained in solution after contact with silica.
  • Z1165MP was characterized both with and without the silane by experimental characterizations like TEM or solid-state NMR.
  • the silanol density of about 12 OH/nm 2 in silica bulk was measured by TGA (thermal gravimetric analysis) , while the concentration on the surface, 9.2 OH/nm 2 , was detected by MeOH dosage.
  • 29Si solid state NMR is also adopted to determine Q2/Q3/Q4 (geminal silanol groups/isolated silanol groups/siloxane bridges) connectivity assessment as shown as following.
  • a silica model simulated by ReaxFF method at atomistic level to represent the Z1165MP sample was established as follows:
  • the model undertook several cycles of heating and cooling processes performed between 300K and 4000K; during the process, an amorphous solid was generated at density 2.2 g/cm 3 by ramping down the height of the simulation box while the length and width were kept fixed;
  • the height of the box (Z direction) was set to 5 nm; the surface was then hydroxylated by 150 water molecules to fit the experimental silanol density of 12 OH/nm 2 ; all water molecules were transferred into-H and-OH groups bonding to the silica slab;
  • the standard recipe to mix Z1165MP and OCTEO uses 0.8 Si/nm 2 silane.
  • the Z1165MP model was first equilibrated without water at 25°C, and then a water layer of the density of 14.54 H 2 O/nm 2 was added to the model according to TGA or DVS results. After equilibration, the following 3 different models were prepared.
  • Silane links the silica surface by the–Si (silica) -O–Si (silane) -bond with the formation of one equivalent of ethanol.
  • This modelling can also find applications in other particular areas in order to understand and/or quantify a multiple process that can be simulated through experiment and explained by complex or unknown chemical reaction mechanisms.
  • Non limitative examples thereof are the surface modification of fillers in polymer composition to increase the reactivity and consequently the dispersion and the coupling of the filler within the polymeric matrix.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Silicon Compounds (AREA)

Abstract

The method according to the invention allows the microstructure interface formation of silica and silane to be modelled. Experimental characterizations of silica are used to establish the molecular model of samples. The interface formation reaction of the molecular models, between different types of silanes and different types of silica interface, are simulated by dynamic molecular computations using ReaxFF (reactive force field) and validated by comparison with experimental data. The method according to the invention can predict the dosage of silane, the physical and chemical properties of silane enhanced silica, establishing a coarse particle model to study its mechanical properties on rubber products.

Description

Molecular dynamics method for simulating microstructure interface formation of silica and silanes TECHNICAL FIELD
The invention relates to a method for simulating microstructure interface formation of silica and silanes by reactive molecular dynamics.
BACKGROUND
The following discussion of the prior art is provided to place the invention in an appropriate technical context and enable the advantages of it to be more fully understood. It should be appreciated, however, that any discussion of the prior art throughout the specification should not be considered as an express or implied admission that such prior art is widely known or forms part of common general knowledge in the field.
Silanes are popularly available with silyl groups including long alkyl chains, amines and thiols. The compatibility of silica, and more generally of inorganic oxides, with polymers is quite weak. Silanes have been used as coupling agents to modify the surface of inorganic fillers, such as silica, to improve the compatibility between the inorganic filler and polymers.
The research methods are mostly established on the macro scale, and the qualitative or quantitative analysis of the reaction performance of the interface between silane and silica can be given. Due to the very complex reaction mechanism, including the embedded force between the particles, the van der Waals force between the atoms, the interface temperature, crystal orientation, etc. will have an impact on the combination of silane and silica, macro research methods are difficult to accurately measure the bonding strength of silane and silica. The molecular dynamics method can build a bridge between the macro and micro characteristics. Using the molecular dynamics theory as a guide and the molecular dynamics simulation software, such as LAMMPS, as a platform, the reaction performance of the interface between silane and silica can be explored microscopically.
Amorphous silica surfaces and silica/silane interface have been studied, using both classical force fields and first principles (quantum-chemical) models. Tielens et al. (F. Tielens, C. Gervais, J.F. Lambert, F. Mauri, D. Costa. Ab Initio Study of the Hydroxylated Surface of Amorphous Silica: A Representative Model. Chemistry of Materials 2008, 20, 3336–3344) constructed a representative model for the hydroxylated surface of amorphous silica by means of periodic DFT (Density Functional Theory) calculations. Their model reproduced the overall silanol group density and distribution. However, due to the limitation of DFT calculations, the size of the model ( (SiO 226· (H 2O)  13, 1.28 nm long, 1.76 nm wide, 0.52 to 0.82 nm thick) was not able to cover the “real life” hydroxylated amorphous surface but rather to propose one possible configuration.
Not only quantum mechanical calculations, but also classical molecular simulations have been employed to tackle the problems in the silica systems. Emami et al. (F.S. Emami, V. Puddu, R.J. Berry, V. Varshney, S.V. Patwardhan, C.C. Perry, H. Heinz. Force Field and a Surface Model Database for Silica to Simulate Interfacial Properties in Atomic Resolution. Chemistry of Materials 2014, 26, 2647–2658) introduced and compared numerical silica force fields and developed a silica surface database to compute interfacial properties.
However, while conventional force fields allow simulating much larger and realistic models, such methods cannot describe the chemical reactions (bond breaking and formation) involved in the silanization process, i.e. the interface formation between silica and silane. The present invention concerns a method for simulating microstructure interfacial formation of silica and silanes by reactive molecular dynamics modeling, in order to evaluate the interaction between different types of silane and different types of silica, predict the dosage of silane, the physical and chemical properties of silane enhanced silica.
SUMMARY OF THE INVENTION
The present invention concerns a method for simulating the formation of a microstructure interface between silica and silane by reactive molecular dynamics simulations, comprising the conduction of a molecular model of said silica and silane, by means of experimental characterizations of said silica and  silane, experimental characterization comprising reacting said silica and silane with a solvent to form the interface, and the quantification of the obtained silanols of Q2/Q3/Q4 type (geminal silanol groups/isolated silanol groups/siloxane bridges) by NMR spectroscopy, characterized by:
1) defining a microstructure model of a silica surface constructed by using a reactive force field (ReaxFF) potential function to characterize the interaction between Si and O atoms of said silica, employing a three-dimensional periodic simulation box having X and Y axis by defining a silica matrix with an infinite length and a width established on the X axis, and Y axis, and a finite thickness established on the Z axis, randomly arranging a certain number of-O-Si-O-microstructure units built in the three-dimensional periodic simulation box, and minimizing the energy;
2) defining a microstructure model of water molecules, part of water molecules split into -OH groups attached to–Si group and-H groups attached to–OSi groups in the model of said silica to form silanol, and adding water molecules onto the microstructure model obtained in step 1) to obtain specific silanol concentrations in said silica model;
3) the equilibrium state of the models obtained in step 1) and 2) being subjected to kinetic relaxation to provide a relationship between the temperature change and the coordinates of molecules of silica and water;
4) defining a microstructure model of silane molecules and attaching the silane molecules to the surface of said silica model obtained after step 3) , and performing equilibrium dynamic relaxation at a given temperature, employing molecular dynamics calculations to simulate the reaction mechanism of silane molecules attached to the silica slab to form the interface between them.
The term “silica” is used herein to refer to any inorganic compound comprising at least 80%by weight of SiO 2, preferably comprising at least 90%by weight of SiO 2, and at most 20%by weight, preferably at most 10%by weight of another inorganic oxide. The inorganic oxide is selected from the group consisting of  aluminum oxide, cerium oxide, zirconium oxide, titanium oxide, gallium oxide, boron oxide or mixture thereof.
The term “silane” refers to compounds of general formula (I) :
R nSiX 4-n    (I)
wherein each R is independently selected from the group consisting of hydrocarbon radicals comprising 1 to 12 carbon atoms and organofunctional hydrocarbon radicals comprising 1 to 12 carbon atoms; each X is independently selected from the group consisting of halogen, the alkoxy radicals comprising 1 to 12 carbon atoms or from –O- (Y-O)  m-Z radicals where Y is a branched or unbranched, saturated or unsaturated divalent hydrogen group, Z is a C1 to C20 alkyl group and m=1–40, preferably 2-30, more preferably 3-25, even more preferably 4-20, most preferably 10-20; and n is 1, 2 or 3, preferably n is 1 or 2, more preferably n is 1.
In formula (I) each R can be a saturated or unsaturated, substituted or non-substituted, hydrocarbon radical. Each R can be, for example, an alkyl radical such as methyl, ethyl, t-butyl, hexyl, heptyl, octyl, decyl, and dodecyl; an alkenyl radical such as vinyl, allyl, and hexenyl; a substituted alkyl radical such as chloromethyl, 3, 3, 3-trifluoropropyl, and 6-chlorohexyl; and an aryl radical such as phenyl, naphthyl, and tolyl. Each R can be an organofunctional hydrocarbon radical comprising 1 to 12 carbon atoms where, for example, the functionality is mercapto, disulfide, polysulfide, amino, carboxylic acid, carbinol, ester, or amido. A preferred organofunctional hydrocarbon radical is one having disulfide or polysulfide functionality.
Notable non-limiting examples of suitable alkoxy radicals are methoxy, ethoxy, propoxy and or butoxy radicals. Preferably X is selected from the group consisting of methoxy, ethoxy or propoxy radicals. Suitable –O- (Y-O)  m-Z radicals can be selected as ethoxypolyether.
The term of “water” is used herewith referred to a substance composed of the elements of hydrogen and oxygen and existing in gaseous or liquid. In the present invention, the sources of water can come from the solvents or water molecules in the surroundings.
Chemical changes that occur within reaction kinetic models are usually depicted by reaction pathways. The “reaction mechanism” is understood to describe all the elementary reactions through which a chemical change pathways, useful for highlighting which are the major and minor channels within the scheme.
Reactive force field is a set of parameterized equations describing the various contributions to the total energy of a chemical system, notably Van der Waals, Coulomb, torsional energies, and bond orders.
The equilibrium state is preferably performed by calculating sufficient time length, such as 1-100 nano seconds, of molecular dynamics trajectory of each model subjected to the force field, then by successive assessments in order to quantify the relation between model properties (e.g. temperature) change and the coordinates of models.
Other characteristics, details and advantages of the invention will emerge even more fully upon reading the description which follows.
BRIEF DESCRIPTION OF THE DRAWINGS
Other features and advantages of the method according to the invention will be clear from reading the description hereafter of a non-limitative embodiment example, with reference to the accompanying figures wherein:
Fig. 1 shows sketches of the 5x5 nm 2 silica Z1165MP model (left: top view; right: side view) .
Fig. 2 illustrates the sketch of the 5x5 nm 2 silica Z1165MP model with 0.8 Si/nm 2 OCTEO and sketch of the silica model with 1.6 Si/nm 2 OCTEO.
Fig. 3 shows the histogram of the minimal distance between Si (OCTEO) and Si (silica) in the MD simulations.
Fig. 4 shows the water assisted reaction, EtOH formed right after grafting (left) and direct grafting reaction without water (right) .
Fig. 5 shows the model of OCTEO grafted Z1165MP (Si, O, H and C in the figure) : top view sketch of 20 OCTEO grafted Z1165MP, on the top left; minimal Si (OCTEO) -Si (silica) distance as a function of numbers of silane grafted, on bottom left; 20 further ungrafted OCTEO molecules added to the 20 silanes grafted model, on the top right; minimal Si (OCTEO) -Si (silica) distances, on the bottom right.
DETAILS OF THE INVENTION
Those skilled in the art will be aware that the present disclosure is subject to variations and modifications other than those specifically described. It is to be understood that the present disclosure includes all such variations and modifications. The disclosure also includes all such steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively and any and all combinations of any or more of such steps or features.
Temperatures, concentrations, amounts, and other numerical data may be presented herein in a range format. It is to be understood that such range format is used merely for convenience and brevity and should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. For example, a temperature range of 300K to 500K should be interpreted to include not only the explicitly recited limits of 300K to 500K, but also to include sub-ranges, such as 300K to 400K, and so forth, as well as individual amounts, including fractional amounts, within the specified ranges, such as 300.5K, 350.8 K, and 485.5K, for example.
Interface formation, i.e. the addition or attachment of organic groups of silane onto a surface of silica by covalent bonds, is an important step to make silane reinforced silica compatible with the polymers, especially rubbers. For practical applications, silica is modified, for instance, with n-octyltriethoxysilane  (OCTEO) . In these cases, mainly the silanol groups at the silica surfaces react with the silane agents.
ReaxFF is a bond order based method widely used to simulating silica and it allows simulating the breaking and formation of chemical bonds–essential in studying the kinetics of the hydrolysis, interface formation, and poly-condensation reactions, with the models of silica and different types of silanes.
ReaxFF simulations can be done within the LAMMPS Molecular Dynamics Simulator. The charge equilibration (QEq) method can be used in conjunction with the ReaxFF force field model. Molecular Dynamics (MD) simulations can be run with ensembles (such as NVT, NVE or NPT) , using equations of motion which are designed to generate positions and velocities. Specific algorithm and process can be referred to “ReaxFF: A Reactive Force Field for Hydrocarbons” (A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard. The Journal of Physical Chemistry A 2001, 105, 9396–9409) .
A preferred embodiment of this invention, the three-dimensional periodic simulation box has a length (Y-axis) , a width (X-axis) or a height (Z-axis) ranging from 0.5 to 100 nm.
In a preferred embodiment of this invention, the time step of the MD simulations was set to 0.5 femto second. The width (X-axis) and length (Y-axis) of the simulation box were both 5 nm, while the height (Z-axis) was 5 nm for the box without silane and 10 nm for the box with silane molecules. The simulation cell is periodically repeated along the X and Y axes, while at Z direction it is non-periodic, to avoid the interaction between the bottom of the silica slab and the atoms at the top of the box.
In a preferred embodiment of the invention, the equilibrium state of the models of obtained in step 1) being subjected to kinetic relaxation comprises the steps of:
- initializing the mass and velocity of the atoms in the microstructure model of silica in step 1) at room temperature, the interaction between atoms being characterized by the ReaxFF potential function, the equilibrium relaxation being performed at a density of 2.0-3.0 g/cm 3 of  the silica, selecting NVT, NVE or NPT ensemble, the time step of the molecular dynamics simulation selected to be 0.1-0.5 femto second, the model reaching an equilibrium after 10-100 nano seconds molecular dynamics relaxation;
- performing molecular dynamics simulation of heating the model, setting a temperature change, the temperature-rise rate determined by the accuracy and outputting the coordinates of each model;
- performing molecular dynamics simulation of cooling the model, setting the temperature change, and the temperature-decrease rate determined by the accuracy and outputting the coordinates of each model;
- performing molecular dynamics simulation on the model at constant temperature, such as from 300K to 500K, preferably 300K to 450K, and outputting the coordinates of each model.
In a preferred embodiment of this invention, a monolayer of cristobalite silica is placed at the bottom of the simulation box.
In a preferred embodiment of this invention, kinetic relaxation is performed by molecular dynamics simulation of heating the model from 1K to 10000K, preferably from 100K to 7000K, more preferably from 300K to 4000K.
In a preferred embodiment of this invention, kinetic relaxation is performed by molecular dynamics simulation of cooling the model from 10000K to 1K, preferably 7000K to 100K, more preferably from 4000K to 300K.
In a preferred embodiment of the invention, the equilibrium state of the models obtained in step 2) being subjected to kinetic relaxation comprises the steps of:
- calculating the properties of the models obtained after step 2) , such as the concentration or distribution of silanol, adjusting the corresponding atom positions to fit the properties obtained by experimental characterization, such as NMR, DVS, TGA, TEM or MeOH titration;
- performing molecular dynamics simulation of the model at constant temperature, such as from 300K to 500K, preferably 300K to 450K, and outputting the coordinates of each model.
In a preferred embodiment of this invention, kinetic relaxation is repeated for 1-100 cycles.
In a preferred embodiment of this invention, the silanol concentration in the silica model is set up to match experimental characterizations.
In a preferred embodiment of this invention, the silanol concentration in the silica model is ranged from 0 to 20 OH/nm 2, preferably 2 to 20 OH/nm 2, more preferably2 to 17 OH/nm 2, 4 to 15 OH/nm 2.
In a preferred embodiment of this invention, the given temperature in step 4) can be set up by means of experimental data from the preparation process of silane reinforced silica in the lab.
In a preferred embodiment of this invention, in step 4) , the given temperature is ranged from 300K to 500K, preferably 300K to 450K.
In a preferred embodiment of this invention, silane molecule attached to the surface of said silica model represents 0.04-5 Si/nm 2, even 0.04-4 Si/nm 2, preferably 0.04-3 Si/nm 2, even more preferably 0.04-2 Si/nm 2, even more preferably 0.04-2.5 Si/nm 2, even most preferably 0.04-1.6 Si/nm 2 concentrations.
To simulate the chemical reactions, the PLUMED package-as implemented in the LAMMPS software-are used to drive metadynamics (MTD) simulations. MTD is a method to reconstruct the multidimensional free energy of complex systems based on an artificial dynamics performed in the space defined by a few collective variables (CVs) . MTD is widely applied to study: protein folding, chemical reactions, molecular docking, phase transitions, etc.. In a (standard) metadynamics calculation, Gaussian type potential of constant height and width are added during the simulation to build up the bias potential.
In a preferred embodiment of this invention, Gaussians of height 0.1 kcal/mol and width
Figure PCTCN2020116670-appb-000001
were added every 500 femto seconds. For the simulation of each reaction here studied: after equilibration runs of 10 nano seconds unbiased MD for the reactant, MTD was run until the reaction event occurred, followed by another 10-20 nano seconds of unbiased MD for the product. In the metadynamics simulations, simple collective variables were used, namely, the Si (Silane) -Si (silica) distance for the interface formation reactions.
In a preferred embodiment of this invention, the silica is selected from hydroxylated silica, amorphous silica, fumed or pyrogenic silica, cristobalite silica or highly dispersible silica.
In a preferred embodiment of this invention, the silane is a bridged bisilane.
In a preferred embodiment of this invention, the silane contains element sulphur or amino or chloride or thiocyanate.
In a preferred embodiment of this invention, the silane is n-octyltriethoxysilane (OCTEO) .
In a preferred embodiment of this invention, the silane is bis [3- (triethoxysilyl) propyl] tetrasulfide (TESPT) or bis [3- (triethoxysilyl) propyl] disulfide (TESPD) or 3-amino-propyltriethoxysilane or 3-mercapto-propyltriethoxysilane or 3-chloro-propyl-triethoxysilane or 3-thiocyanato-propyl-triethoxysilane.
In a preferred embodiment of this invention, the silane is trialkoxymercaptoalkyl-silane, such as mercaptopropyl-mono-ethoxypolyether-silane.
The kinetic study is preferably carried out by varying the temperature of the reaction mechanism.
The molecular model and the reaction mechanism are advantageously validated by comparison of the results from the reactive molecular dynamic simulation  with experimental characterization data, as obtained from TGA, NMR, TEM, DVS, MeOH titration etc..
Interface formation reaction between silica and silanes can be done according to the method described in the state of art. In a preferred embodiment of this invention, it is characterized by the following steps: -add silica and silane to the solvent, stir and mix at a temperature of 100~150℃ to obtain a solution system; -maintain the temperature and the reaction is continuously stirred at 100~150℃ for 5 minutes to 2 hours.
The invention allows predicting the correct amount of a given silane to provide an optimal level of silica modification. Such information could be used to fine tune the amount of silanes in applications such as absorbent, as additive for concrete or paper, or for the treatment of air or water, reinforcing filler in polymeric compositions.
EXPERIMENTAL PART
The disclosure will now be illustrated with working examples, which is intended to illustrate the working of disclosure and not intended to take restrictively to imply any limitations on the scope of the present disclosure. Other examples are also possible which are within the scope of the present disclosure.
Example 1
Reference products:
Silica: CAS 7631-86-9, Z1165MP, produced by Solvay n-octyltriethoxysilane (OCTEO) : CAS 2943-75-1
Analytical methods
Determination of BET surface area
BET surface area S BET was determined according to the Brunauer-Emmett-Teller method as detailed in standard NF ISO 5794-1, Appendix E (June 2010) with the following adjustments: the sample was pre-dried at 200℃±10℃; the partial pressure used for the measurement P/P0 was between 0.05 and 0.3.
29Si NMR Spectroscopy
The product was characterized by 1D 29Si CP/MAS NMR on a Bruker Avance solid 300 spectrometer working at 7.04 T. A commercial 4 mm high speed probe (DVT4) with a spinning frequency of 4 KHz was used in cross polarization with 90° pulse, a 2 ms contact time and a 2 s recycling time and 10000 transients.
Bulk silanol density and water content determination
The samples were analyzed using ATD-ATG technique on Mettler's LF1100 thermobalance and a Tensor 27 Bruker spectrometer equipped with a gas cell, with the following program: Temperature rise from 25℃ to 1100℃ at 10℃/min, under air (60 mL/min) , in Al 2O 3 crucible of 150μL.
The bulk silanol density is directly related to the loss of mass between 200℃ and 800℃. The loss of mass (%) between 2OO℃ and 800℃ is identified as ΔW%this value.
The silanol ratio (mmol/g) is defined by:
T SiOH=ΔW*2*1000/ (18.015*100) =1.11*ΔW
Silanol density (OH/nm 2) is calculated by:
D=T SiOH*Na/10 21*S BET=T SiOH*602.2/S BET
wherein Na: Avogadro’s number
The water content is directly related to the loss of mass between 25 and 200℃.
The loss of mass (%) between 25 and 200℃ is identified asΔY%this value.
The water ratio (mmol/g) is defined by:
T H2O=ΔX*1000/ (18.015*100) =1.11*ΔW
Water density (water or H2O/nm 2) is calculated by:
D=T H2O*Na/10 21*S BET=T H2O*602.2/S BET
wherein Na: Avogadro’s number
Surface silanol density determination using Methanol method
The number of silanols per nm 2 of surface area is determined by grafting methanol onto the surface of the silica.
Firstly, 1 gram of raw silica is put into suspension in 10 ml of methanol, in a 125 ml autoclave (Parr) . A bar magnet is introduced and the autoclave, hermetically sealed and thermally insulated, is heated to 200℃ with a magnetic stirrer, heating for 4 hours. The autoclave is then cooled to a temperature of less than 60℃. The grafted silica is recovered by settling and the residual methanol is evaporated in a stream of nitrogen. Finally, the grafted silica is vacuum dried for 12 hours at 35℃. The carbon content is determined by an elemental analyser (NCS 2500 analyser from CE Instruments) on the raw silica and on the grafted silica. This quantitative determination is carried out on the grafted silica within the 2 days following the end of drying-this is because the humidity of the air or heat may cause hydrolysis of the methanol grafting. The number of silanols per nm 2 is then calculated using the following formula:
N SiOH/nm 2= [ (%Cg-%Cr) *6.023*10 23] / [S BETx10 18*12*100]
where:
%Cg: percent mass of carbon present on the grafted silica;
%Cr: percent mass of carbon present on the raw silica;
S BET: BET specific surface area of silica (in m 2/g) .
Case of DVS
Water uptake Kinetic Determination by Dynamic Vapor Sorption
The samples were analyzed using Dynamic Vapor Sorption (or DVS) technique on Advantage 1 from SMS.
Conditions: Each sample (20–40 mg of silica) are previously dried at constant weight at 25℃ with a constant nitrogen gas flow (200ml/min; 500ppb water Max)
Then sample are ready to use at the chosen relative moisture (RM) .
Typical conditions of measurements are
- From 0 to 90%of RM in 10 steps: 0%, 5%, 7,5%, 10%, 20%, 30%, 45%, 60%75%et 90%
- Condition to change the steps: dm/dt=0.0005%or 8 hours for one step
- Temperature: 25℃
- Nitrogen flow rate: 200 ml/mn
The water content is directly related to the uptake water after equilibrium with RM at 50%. The uptake water content (in mass (%) /dry) is identified asΔY%this value.
The water ratio (mmol/g) is defined by:
T H2O=ΔX*1000/ (18.015*100) =1.11*ΔW
Water density (water or H 2O/nm 2) is calculated by:
D=T H2O*Na/10 21*S BET=T H2O*602.2/S BET
wherein Na: Avogadro’s number
Experimental measurement regarding the maximum silane amount grafted on the sílica
A solution of o-xylene (9 ml) +silane (80μl) is prepared and heats at 100℃ and silica (450 mg) is introduced into a reactor block to start the reaction. The reaction time is fixed to 90 min. After that, solution is cooled in an ice water bath and 1 ml of diethyleneglycol monobutylether is added and stirred during 5 min.
The quantity of silane in solution (not reacted) is determined by GC/MS. It allows determining the quantity grafted at the silica surface by making the difference between the initial amount of silane introduced and the quantity of silane remained in solution after contact with silica.
Preparation of Z1165MP model
Z1165MP was characterized both with and without the silane by experimental characterizations like TEM or solid-state NMR. The nitrogen surface area (NSA) measurement based on the Brunauer–Emmett–Teller (B.E.T. ) theory indicated that Z1165MP has a surface area of 156 m 2/g. The silanol density of about 12 OH/nm 2 in silica bulk was measured by TGA (thermal gravimetric analysis) , while the concentration on the surface, 9.2 OH/nm 2, was detected by MeOH dosage. 29Si solid state NMR is also adopted to determine Q2/Q3/Q4 (geminal silanol groups/isolated silanol groups/siloxane bridges) connectivity assessment as shown as following.
Figure PCTCN2020116670-appb-000002
A silica model simulated by ReaxFF method at atomistic level to represent the Z1165MP sample was established as follows:
- at the bottom of a 5x5x2 nm 3 simulation box, a monolayer of cristobalite silica (294 atoms) units was placed to fix their positions to avoid "free" atoms to cross the bottom of the box;
- 682 SiO 2 having–O-Si-O-units were randomly distributed as building blocks in the unit cell;
- after geometry optimization, the model undertook several cycles of heating and cooling processes performed between 300K and 4000K; during the process, an amorphous solid was generated at density 2.2 g/cm 3 by ramping down the height of the simulation box while the length and width were kept fixed;
- the height of the box (Z direction) was set to 5 nm; the surface was then hydroxylated by 150 water molecules to fit the experimental silanol density of 12 OH/nm 2; all water molecules were transferred into-H and-OH groups bonding to the silica slab;
- finally the model were fine-tuned to fit the 29Si NMR spectra of the sample, as summarized in Tab. 1 and Fig. 1.
- The interface between Z1165MP silica and silane molecular were formed.
Tab. 1 Q2: Q3: Q4 ratio and silanol concentration comparison between experimental characterizations and the Z1165MP model
Figure PCTCN2020116670-appb-000003
Preparation of Z1165MP/OCTEO model
In the lab process, the standard recipe to mix Z1165MP and OCTEO uses 0.8 Si/nm 2 silane. The Z1165MP model was first equilibrated without water at 25℃, and then a water layer of the density of 14.54 H 2O/nm 2 was added to the model according to TGA or DVS results. After equilibration, the following 3 different models were prepared.
- One OCTEO silane molecule was added on top of the silica surface, to represent 0.04 Si/nm 2 concentrations so as to study the silane grafting mechanism in the next section.
- As the second model, twenty OCTEO molecules were included to represent 0.8 Si/nm 2 concentrations at the real mixing condition. A sketch of the model is presented in the left panel of the Fig. 2.
- To double the silane concentration, a third model with forty OCTEO was prepared, to study the case of 1.6 Si/nm 2 concentrations. A sketch of the model is presented in the middle panel of the Fig. 2.
All the 3 models were heated to 120℃ in order to simulate the behavior of the samples at lab condition. After 10 nano seconds equilibration MD, all silane molecules in all models were found to be confined close to the silica surface. However, as indicated in Fig. 2, in the case of 0.8 Si/nm 2, all silane molecules were interacting strongly with the silica surface, at an average Si (silica) -Si (silane) distance of
Figure PCTCN2020116670-appb-000004
In the case of 1.6 Si/nm 2, a similar peak at
Figure PCTCN2020116670-appb-000005
was also found, but a second peak between
Figure PCTCN2020116670-appb-000006
appeared. This indicated that about 30%of OCTEO silane had limited interaction with the surface, which could hardly result in an interface formation. By atomistic modeling, the maximum OCTEO silane concentration should be less than 1 Si/nm 2.
Silane-Silica interface formation–ReaxFF
The overall reaction of OCTEO silane attaching to a site of silica surface is illustrated in Fig. 2, Fig. 3 and Fig. 4. Silane links the silica surface by the–Si (silica) -O–Si (silane) -bond with the formation of one equivalent of ethanol.
Figure PCTCN2020116670-appb-000007
It can be seen regarding the MTD simulations of the interface formation reaction: In the simulations, the distance between the silane and a selected site of the silica surface was chosen; the reaction pathway was not pre-defined. The model explored a feasible mechanism by itself from the interaction parameters employed during the simulation. The simulations with different MTD parameters (Gaussian widths, heights, deposit rates) were repeated several times and the same water assisted mechanism was found.
To further validate the prediction of the maximum silane concentration, firstly 20 OCTEO silane molecules were attached to the silica surface, one after another (see Fig. 5, the top and the left bottom) . It can be seen from the minimal distance between silane and silica as a function of number of silane attached, up to 15 OCTEO silane molecules, it is still relatively "easy" for the next OCTEO to find a "free" silanol site. However, after 20 OCTEO were attached to the silica surface, the minimal distance increases while the interaction/reactivity decreases due to steric influence. Therefore, the maximum capacity of OCTEO to be about 0.8 OCTEO/nm 2 in the mixing recipe is verified.
It can be seen in Fig. 5, after about 20 OCTEO (about 0.8 Si/nm 2) molecules attached on the surface of Z1165MP, it is very difficult to react more OCTEO moieties with Z1165MP, which is shown in the bottom right of the figure. When the OCTEO amount is increased from 0 to 1.6 Si/nm 2, a slop change is observed for a concentration of 0.8 Si/nm 2. From the experimental method to measure the maximum of silane grafted on the silica surface, in the case of Z1165MP with OCTEO, a value of 0.74 Si/nm 2 is obtained. We can conclude an excellent prediction using the computer modelling in term of maximum grafting silane on silica surface.
This modelling can also find applications in other particular areas in order to understand and/or quantify a multiple process that can be simulated through experiment and explained by complex or unknown chemical reaction mechanisms. Non limitative examples thereof are the surface modification of  fillers in polymer composition to increase the reactivity and consequently the dispersion and the coupling of the filler within the polymeric matrix.

Claims (19)

  1. A method for simulating the formation of a microstructure interface formation of between silica and silane by reactive molecular dynamics simulations, comprising conducting the conduction of a molecular model of said silica and silane, by means of experimental characterizations of said silica and silane, the experimental characterizations comprising reacting said silica and silane with a solvent to form the interface, determining and the quantification of the obtained silanols of Q2/Q3/Q4 type (geminal silanol groups/isolated silanol groups/siloxane bridges) by NMR spectroscopy,
    characterized by:
    1) defining a microstructure model of a silica surface constructed by using a reactive force field (ReaxFF) potential function to characterize the interaction between Si and O atoms of said silica, employing a three-dimensional periodic simulation box having X and Y axis by defining a silica matrix with an infinite length and a width established on the X axis, and Y axis, and a finite thickness established on the Z axis, randomly arranging a certain number of -O-Si-O- microstructure units built in the three-dimensional periodic simulation box, and minimizing the energy;
    2) defining a microstructure model of water molecules, part of water molecules split into -OH groups attached to–Si group sand-H groups attached to–OSi groups in the model of said silica to form silanol, and adding water molecules onto the microstructure model obtained in step 1) to obtain silanol concentrations in said silica model;
    3) the equilibrium state of the models obtained in step 1) and 2) being subjected to kinetic relaxation to provide a relationship between the temperature change and the coordinates of molecules of silica and water;
    4) defining a microstructure model of silane molecules and attaching the silane molecules to the surface of said silica model obtained after step 3) , and performing equilibrium dynamic relaxation at a given temperature, employing molecular dynamics calculations to simulate the reaction mechanism of silane molecules attached to the silica slab to form the interface between them.
  2. The method according to claim 1, wherein the molecular model and the reaction mechanism are validated by comparison of results from the reactive molecular dynamic simulation with experimental characterizations.
  3. The method according to claim 1, wherein said three-dimensional periodic simulation box has a length, a width or a height ranging from 0.5 to 100 nm.
  4. The method according to claim 1, wherein the equilibrium state of the models obtained in step 1) being subjected to kinetic relaxation comprises the steps of:
    - initializing the mass and velocity of the atoms in the microstructure model of silica in step 1) at room temperature, the interaction between atoms being characterized by the ReaxFF potential function, the equilibrium relaxation being performed at a density of 2.0-3.0 g/cm 3 of the silica, selecting NVT, NVE or NPT ensemble, the time step of the molecular dynamics simulation selected to be 0.1-0.5 femto second, the model reaching an equilibrium after 10-100 nano seconds molecular dynamics relaxation;
    - performing molecular dynamics simulation of heating the model, setting a temperature change, the temperature-rise rate determined by the accuracy and outputting the coordinates of each model;
    - performing molecular dynamics simulation of cooling the model, setting the temperature change, and the temperature-decrease rate determined by the accuracy and outputting the coordinates of each model;
    - performing molecular dynamics simulation on the model at constant temperature and outputting the coordinates of each model.
  5. The method according to claim 4, wherein a monolayer of the silica is placed and fixed at the bottom of the simulation box.
  6. The method according to claim4, wherein performing molecular dynamics simulation of heating the model from 1K to 10000K, preferably from 100K to 7000K, more preferably from 300K to 4000K.
  7. The method according to claim 4, wherein performing molecular dynamics simulation of cooling the model from 10000K to 1K, preferably 7000K to 100K, more preferably from 4000K to 300K.
  8. The method according to claim 4, wherein the constant temperature is selected from the range of 300K to 500K, preferably 300K to 400K.
  9. The method according to claim 1, wherein the equilibrium state of the models of obtained in step 2) being subjected to kinetic relaxation comprises the steps of:
    - calculating the properties of the models obtained after step 2) , such as the concentration or distribution of silanol, adjusting the corresponding atom positions to fit the properties obtained by experimental characterizations, such as NMR, DVS, TGA, TEM or MeOH titration;
    - performing molecular dynamics simulations on the model at constant temperature and outputting the coordinates of each model.
  10. The method according to claim 4 or 9, wherein said steps are repeated for 1-100 cycles.
  11. The method according to claim 4 or 9, wherein said performing molecular dynamics simulations on the model at constant temperature ranging from 300K to 500K, preferably 300K to 450K.
  12. The method according to claim 1, wherein in step 2) , the silanol concentration in said silica model is set up with experimental characterizations.
  13. The method according to claim 1, wherein the silanol concentration in said silica model is 0 to 20 OH/nm 2, preferably 2 to 20 OH/nm 2, more preferably 2 to 17 OH/nm 2, even more preferably 4 to 15 OH/nm 2.
  14. The method according to claim 1, wherein in step 4) , the given temperature is ranged from 300K to 500K, preferably 300K to 450K.
  15. The method according to claim 1, wherein in step 4) , silane molecule attached to the surface of said silica model represents 0.04-5 Si/nm 2, even 0.04-4 Si/nm 2, preferably 0.04-3 Si/nm 2, even more preferably 0.04-2 Si/nm 2, even  more preferably 0.04-2.5 Si/nm 2, even most preferably 0.04-1.6 Si/nm 2 concentrations.
  16. The method according to claim 1, wherein it comprises a step of defining a coarse grained model of interface formation of silica, silane and polymer using coarse grained molecular dynamics simulation.
  17. The method according to claim 1, wherein said silica is selected from the group comprising hydroxylated silica, amorphous silica, fumed or pyrogenic silica, cristobalite silica or highly dispersible silica, fumed silica, pyrogenic silica or colloidal silica.
  18. The method according to claim 1, wherein the silane is a bridged bisilane, can contain element sulphur or amino or chloride or thiocyanate, such as bis [3- (triethoxysilyl) propyl] tetrasulfide (TESPT) or bis [3- (triethoxysilyl) propyl] disulfide (TESPD) or 3-amino-propyltriethoxysilane or 3-mercapto-propyltriethoxysilane or 3-chloro-propyl-triethoxysilane or 3-thiocyanato-propyl-triethoxysilane.
  19. The method according to claim 1, wherein the silane is n-octyltriethoxysilane (OCTEO) .
PCT/CN2020/116670 2020-09-22 2020-09-22 Molecular dynamics method for simulating microstructure interface formation of silica and silanes WO2022061485A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/116670 WO2022061485A1 (en) 2020-09-22 2020-09-22 Molecular dynamics method for simulating microstructure interface formation of silica and silanes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/116670 WO2022061485A1 (en) 2020-09-22 2020-09-22 Molecular dynamics method for simulating microstructure interface formation of silica and silanes

Publications (1)

Publication Number Publication Date
WO2022061485A1 true WO2022061485A1 (en) 2022-03-31

Family

ID=80844772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116670 WO2022061485A1 (en) 2020-09-22 2020-09-22 Molecular dynamics method for simulating microstructure interface formation of silica and silanes

Country Status (1)

Country Link
WO (1) WO2022061485A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060106143A1 (en) * 2004-11-12 2006-05-18 Bridgestone Corporation Silica-reinforced rubber compounded with blocked mercaptosilanes and alkyl alkoxysilanes
JP2009216612A (en) * 2008-03-12 2009-09-24 Sumitomo Rubber Ind Ltd Simulation method of rubber material
CN105468840A (en) * 2015-11-20 2016-04-06 长安大学 Molecular dynamics-based asphaltene and silicon dioxide interface energy evaluating method
US20190355642A1 (en) * 2016-09-26 2019-11-21 Intel Corporation Semiconductor device and method of making

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060106143A1 (en) * 2004-11-12 2006-05-18 Bridgestone Corporation Silica-reinforced rubber compounded with blocked mercaptosilanes and alkyl alkoxysilanes
JP2009216612A (en) * 2008-03-12 2009-09-24 Sumitomo Rubber Ind Ltd Simulation method of rubber material
CN105468840A (en) * 2015-11-20 2016-04-06 长安大学 Molecular dynamics-based asphaltene and silicon dioxide interface energy evaluating method
US20190355642A1 (en) * 2016-09-26 2019-11-21 Intel Corporation Semiconductor device and method of making

Similar Documents

Publication Publication Date Title
Jesionowski et al. Influence of silane coupling agents on surface properties of precipitated silicas
Wu et al. Surface modification of nanosilica with 3-mercaptopropyl trimethoxysilane: Experimental and theoretical study on the surface interaction
Jesionowski et al. Preparation of the hydrophilic/hydrophobic silica particles
Wheeler et al. Poly (methyl methacrylate)/laponite nanocomposites: Exploring covalent and ionic clay modifications
Iarlori et al. Dehydroxylation and silanization of the surfaces of β-cristobalite silica: an ab initio simulation
Barabanova et al. Anhydride modified silica nanoparticles: Preparation and characterization
Arantes et al. Synthesis and optimization of colloidal silica nanoparticles and their functionalization with methacrylic acid
McElwee et al. Thermal stability of organic monolayers chemically grafted to minerals
KR102323934B1 (en) Method for producing modified precipitated silica and a composition containing the same
Vennemann et al. Thermoelastic properties and relaxation behavior of S-SBR/silica vulcanizates
US20100233060A1 (en) Method for the production of a nano-scale silicon dioxide
Jia et al. Study on properties and mechanism of organic montmorillonite modified bitumens: View from the selection of organic reagents
WO2022061485A1 (en) Molecular dynamics method for simulating microstructure interface formation of silica and silanes
Hou Molecular simulation on cement-based materials
Duan et al. Synergistically enhanced thermal control ability and mechanical properties of natural rubber for tires through a graphene/silica with a dot-face structure
Liu et al. Preparation of nano-SiO2 modified graphene oxide and its application in polyacrylate emulsion
Krysztafkiewicz et al. Effect of silane coupling agents on properties of precipitated sodium–aluminium silicates
Laurens et al. Competitive adsorption between a polymer and solvents onto silica
Trens et al. Adsorption of (γ-aminopropyl) triethoxysilane and related molecules at the silica/heptane interface
Valentín et al. Characterization of the reactivity of a silica derived from acid activation of sepiolite with silane by 29Si and 13C solid-state NMR
Zeng et al. Effect of organic attapulgite on properties of SBS modified asphalt waterproofing membranes
Ma et al. Waterborne polyurethane/silica nanocomposites based on electrostatic interaction: Interfacial interactions and properties
Meier et al. Relaxation dynamics of hydration water at activated silica interfaces in high-performance elastomer composites
Vargas et al. Effect of ammonium and aminosilane montmorillonites organo-clays on the curing kinetics of unsaturated polyester (UP) resin nanocomposites
CN103492465A (en) Nanostructured organosilicates from thermally curable block copolymers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954339

Country of ref document: EP

Kind code of ref document: A1