WO2022061430A1 - Non-polymeric cylindrical tubular prosthetic device - Google Patents

Non-polymeric cylindrical tubular prosthetic device Download PDF

Info

Publication number
WO2022061430A1
WO2022061430A1 PCT/BR2021/050361 BR2021050361W WO2022061430A1 WO 2022061430 A1 WO2022061430 A1 WO 2022061430A1 BR 2021050361 W BR2021050361 W BR 2021050361W WO 2022061430 A1 WO2022061430 A1 WO 2022061430A1
Authority
WO
WIPO (PCT)
Prior art keywords
release
stent
prosthetic device
cells
vascular
Prior art date
Application number
PCT/BR2021/050361
Other languages
French (fr)
Portuguese (pt)
Inventor
Christiane Dias MAUÉS
Original Assignee
Maues Christiane Dias
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maues Christiane Dias filed Critical Maues Christiane Dias
Publication of WO2022061430A1 publication Critical patent/WO2022061430A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6862Stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0024Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system for multiple sensor units attached to the patient, e.g. using a body or personal area network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0031Implanted circuitry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L33/00Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment

Definitions

  • the present invention refers to medical devices implantable in the human body, and, more precisely, to intravascular prosthetic devices, called “stents", expandable, of usual shape, of metallic constitution, or biocompatible organic resin, with anatomical properties , physiological (pharmacological) and favorable mechanics, used in the correction of stenosis or narrowing of the vascular wall or body ducts, aiming to maintain their support for a longer period of time, in addition to promoting an ideal remodeling process due to balanced healing activity of the affected vascular wall.
  • Such a device required a cooling technique prior to its insertion, and the subsequent administration of local heat (electrical heating) until its complete expansion, with recovery of its initial configuration, unlike the current balloon catheters that are widely used for its insufflation; this process was reflected in a great disadvantage, causing serious injury to the surrounding vascular tissues and increasing blood thrombogenic potential.
  • the release balloon catheters have a smaller profile, which allows the use of smaller guide catheters, being able to reach higher pressures, in addition to the conventional guide ropes for coronary angioplasty, with 0.014 inches. Radiopaque gold markings have been added to the ends of this latest generation of Gianturco prostheses for safer and more accurate positioning.
  • stents by themselves, can prevent the phenomenon of post-intervention vascular elastic recoil and seem to also act in adverse remodeling, but in preventing in-stent restenosis, the additional use of an agent release strategy antiproliferative drugs of the stent itself, acting to synergistically reduce the restenotic lesion, was necessary.
  • endoprostheses have current applicability both in acute ischemic syndromes (unstable angina and myocardial infarction) and in stable chronic coronary artery disease.
  • acute myocardial infarction its use has ranged from the primary interventional condition, such as rescue circumstances after failure of fibrinolytic treatment, and still the elective indication, when the presence of severe residual stenosis is verified.
  • the first stents were developed with the aim of increasing short and long-term results in coronary angioplasty procedures, but with the introduction of the first drug-eluting stents, the immediate results showed a significant reduction in restenosis rates, but these concomitantly caused a chemical sweep of the subendothelial and neointimal layers of the vascular wall, rather than preventing a balanced tissue neoformation. Later effects related to polymeric biodegradation, involving the phenomenon of late thrombosis, inevitably emerged.
  • the ideal stent is the one that offers a biocompatible platform of polymeric material or, when absent, provides effective and safe rates and concentrations of drug release at the affected site, in addition to electrochemical properties and biomolecular, and high absorption capacity of the vascular wall.
  • PI 0317150-7 A Publication Date: 11/01/2005
  • PI0213279-6 A Publication Date: 10/26/2004
  • PI 0503201-6 A Publication Date: 03/13/2007
  • US 20100191323 A1 Publication Date: 07/29/2010
  • US 20090182404 Al Publication Date: 07/16/2009.
  • the primary objective of the invention is the development of a biocompatible, non-polymeric intracoronary device for the release of multiple drugs, in a gradual and controlled manner, through extrinsic factors, such as precursor drugs released via implants organic - intradermal microchips (which would have the function of releasing in a controlled, gradual and pre- programmed, via remote central, by a software, device or cell phone, the precursor drugs, responsible for, through the bloodstream, reaching the prosthesis and acting in the mechanism of release of specific medications in the target site of the stent), or via matrices slow drug release organics, of polymeric constitution, or biological films, or even subdermal resins (release systems); and when that is the case, these microchips still contain nanochips and biosensors in their own structure, in order to optimize the control and the in-stent drug release pulse, in addition to providing real-time measurements of hemodynamic, chemical and homeostatic variables, aiming at this type of prosthesis to fill the gap of biases and clinical complications, through the
  • the objective through the control of vascular proliferative response or intimal hyperplasia, is to significantly reduce the rates of late restenosis and complications emerging from the post-drug stent era, whether thromboses intra- or peri-stent acute episodes.
  • this privilege has a non-polymeric biological matrix constituting a release coating on its inner part, and which has the function of elution of biomolecules of chemical substances, with anti-atherogenic, antiproliferative, antithrombotic, antichemotactic and vascular wall restructuring agents, providing the storage and multi-release function of drugs, stored and grouped in microcapsules or microspheres (liposomes), involved in a network (matrix) of macromolecular protein composition, or a biological film that has chemical compatibility reaction with the various types of medication to be delivered extrinsically (such as a subdermal implanted precursor medication delivery biochip).
  • Such a mechanism would be responsible for minimizing the late effects resulting from the degradation of polymers, since the first stents were introduced in 2001, with monotherapy-type delivery platforms (a single drug), eventually generating the fearsome long-term complications related to the necessary and massive oral antithrombotic prophylaxis (anticoagulation), as well as acute late in-stent thrombosis.
  • the skeleton of the prosthetic drug delivery system with a non-polymeric matrix say cylindrical tubular prosthetic device or stenter-type prosthetic device itself, consists of a fenestrated tubular diagram, with a regular cylindrical shape, multifilament, without presenting, however, median joint; characterized by having an initial diameter, which allows its release intravascular or in any organic duct containing a lumen, and a final diameter, expanded, through the application of radial and centrifugal force, via balloon catheter, or simply being self-expanding.
  • Nitinol is composed of a nickel-titanium metal alloy, with thermal memory properties, often used in medical prostheses and orthotics; shows good biocompatibility: minimal inflammatory response in adjacent tissues, without corrosion of the material.
  • the first intravascular stents described by Dotter and subsequent authors were nitinol stents.
  • the objective is the elaboration of prostheses in diameters of 4.0 mm and 5.0 mm, with lengths ranging from 12 mm, 18 mm and 24 mm, not discarding a posteriori a smaller diameter and/or longer length molding.
  • the thickness of the stem cells can range from 0.08 to 0.12 mm, an important fact to reduce the tendency to thrombosis and trauma to the vascular wall, which is also a consequence of the prosthesis finishing process, which includes the chemical polishing of the rods and laser cutting for the configuration of the material and its spatial structure.
  • the internal matrix of release is represented by an artificial biological membrane, biocompatible, and may consist of phospholipids and/or macroproteins, or similar substrate, and may or may not be microporous, as long as it allows good capacity for diffusion and release of drugs.
  • the spatial geometric design is arranged in hexagonal cells that come from the extension of the supporting prosthesis, that is, from the cells that compose the spatial conformation of the "stent" itself, open, on the entire internal surface of the stent, that is, in towards the vascular lumen.
  • This inner layer will also follow the format compatible with the "design" of the mesh of the stent to be chosen, whether with pure hexagonal cells, hexagonal cells coapted at the lower and upper ends by diamond cells, or intercepted by hexagonal cells in a more cylindrical shape, largest longitudinal diameter, interposed between standard hexagonal cells.
  • microcapsules or groups of liposomes contained within the hexagonal cells that form the supporting biological membrane, are arranged in aggregate and sustained, immersed in a matrix that forms chains or networks of protein macromolecules, or these conjugated to other molecules organic compounds such as phospholipids, in the form of a biological film or gel, so that they provide sufficient sustainability and an ideal fixation rate.
  • the microcapsules/liposomes (which in this space would be grouped into morulae) will be gradually and selectively released through a combination action and pharmacological reaction (from precursor drugs released in a controlled and programmed way by an implanted intradermal microchip, subject to the control of any modality of external central, or even from electrical stimuli or release of the same types of pharmacological precursors from nanochips on the internal surface of the stent, arranged in the proper intervals, corridors separating the hexagonal cells of the "coating" internal), responsible for the rupture of connection bridges and stabilization of macromolecular protein chains, a process that occurs via enzymatic degradation.
  • a biologically compatible resin contained in porous or non-porous surface, such as the use of albumin, with the objective of increasing the matrix porosity coefficient.
  • the drugs released from the encapsulated structure or from the liposomal group will be gradually and protocolarily submitted to an investigation process in an experimental model, computational analysis, pre-clinical and clinical studies, in order to evaluate with effectiveness and certainty the compatible pharmacological type to be used, the ideal concentration to be reached in the vessel lumen, the best diffusion coefficient, the speed and intervals of release, half-life at the vascular locus, metabolism and toxicity, among other aspects; emphasizing that, during all phases of the elaboration, evaluation, production, "in vitro” and "in vivo” scientific feasibility tests, it will be possible to modify, eliminate, add or merge whatever types of drugs, according to the necessary formalities, as well as obliterating or reconstructing pertinent elements, provided that there are no profound changes in the previously idealized global set.
  • the present invention is objectively established to attenuate or eliminate the occurrence of restenosis (recurrent atheromatous plaque growth), later on, and still prevent late acute thrombosis, even after balloon angioplasty and/or prosthesis placement stenting type of the vascular wall, which arise from a variety of factors, namely:
  • Myointimal hyperplasia or proliferation of neointimal tissue, is one of the main mechanisms responsible for in-stent restenosis.
  • micro or nanochips in conjunction with intravascular or organic devices: much has been reported about the innovative possibility of incorporating drugs into medical implants, thus using multiple reservoirs containing small doses of these drugs.
  • microchips represent a new type of technology capable of releasing different drugs for long periods of time.
  • IDDS Industrial Drug Delivery Systems
  • biodegradable and non-biodegradable physiological pump systems of microfluids
  • micromanufacturing of controlled release systems endowed with an intelligent and programmable microelectronic capacity, which microchips consist of.
  • Implantable microchips solved the need for a controlled release system, being mostly made of silicone, containing multiple drug reservoirs, in a possibility of different forms and presentations, usually hermetically sealed, and covered by a metallic membrane, to be dissolved by electrical stimulation, allowing the release of its constituents (drugs) to the environment.
  • Microchips are manufactured using the same technology developed in microelectronic integrated circuits and systems of microelectromechanical origin, a process used for the manufacture of microdevices, such as flow and pressure sensors, ink printer heads, etc. Still, it is noteworthy that the manufacture of this technology involves the use of surface substrate, ceramic, and more often silicone, combining photolithography techniques, aiming at the creation of desired geometric shapes to be applied to the reservoirs. Then, anode-cationic dipoles are created, and, after that, complementation with the drugs of choice.
  • FIGURE 1 is a perspective illustration of a cylindrical tubular prosthetic device, standardized stent type, intraluminally expandable, balloon-catheter or self-expanding, in metallic support or in biocompatible resin, isolated from its internal matrix of release, "coating" as described (FIGURE IA and FIGURE 1B), where the conformational pattern of its mesh, support or support of the internal biological coating can be observed, and in the complete presentation showing its internal "coating” (FIGURE 1C), and also a peripheral intradermal microchip, working together with the stent; the one with its spatial structure arranged in hexagonal cells, coapted together, in a regular polyhedral geometric conformation (FIGURE 1B), or in the pattern of hexagonal cells coapted by lozenge cells, arranged in the longitudinal direction of the prosthesis (FIGURE IA), emphasizing the direction of arrangement of the hexagonal mesh can be alternative, if in a transverse arrangement (sides of the hexagon make up the edges of the prosthesis), FIGURE 2
  • Such a prosthetic device will be responsible for the gradual, regulated and continuous release of different drugs, in order to prevent coronary restenosis and induce early regeneration of the previously affected vascular wall, from the release of precursor drugs, coming from this peripheral intradermal biochip, which at released into the bloodstream, after a certain period of time, reach the vascular prosthetic device, drug-eluting stent, in its inner layer, and through a conjugation with the internal matrix of the hexagonal cells (combination and pharmacological reaction, mainly by enzymatic hydrolysis, or other alternative types of chemical reaction compatible with the medium), are responsible for carrying out the release of in-stent medications, whether microcapsules, or unified groups of liposomes, contained and housed in specific superimposed layers in which constitute the hexagonal cells of the internal coating of the stent.
  • precursor drugs released in a controlled and programmed manner by this intradermal microchip, present their pulse of release into the bloodstream, as well as intervals, concentration, and other potentially measurable pharmacological variables, subject to control over this microchip implant from any external central modality. , software or mobile communication device. Presence of supporting nanosensors in the structure of the releasing biochip is possible to introduce, with the function of measuring the volume of release pulses, hemodynamic and serum biochemical variables, control of intervals, concentrations, etc.
  • FIGURE 2 indicates a perspective illustration of the same standardized stent-type cylindrical tubular prosthetic device, intraluminally expandable, by balloon-catheter or self-expanding, in metallic support or in biocompatible resin (FIGURE 2A), stripped of its internal matrix of release, internal coating as described, revealing that the incorporation of nanosensors/nanochips is feasible not only in this implantable biochip in the skin, but can even be represented and located on the internal surface of the stent (FIGURE 2B), or arranged in the proper intervals between cells, separating corridors of the hexagonal cells of the internal coating of the prosthesis, able to regulate and compulsorily measure the concentration rates of intra-stent drugs, serum medication half-life, sequential metabolism rate, and drug elimination time , among several other pharmacological and metabolic variables, as well as biochemical markers.
  • FIGURE 3 is a different perspective illustration of a cylindrical tubular prosthetic device, standardized stent type, intraluminally expandable, balloon-catheter or self-expanding, in metallic support or in biocompatible resin, isolated from its internal matrix of release ( FIGURE 3A), internal coating as described, where the conformational pattern of its mesh can be observed, different from the the former, as a support or support of the internal biological coating, and the global prototype with the aforementioned "coating" (FIGURE 3B), and a peripheral intradermal microchip, in joint action; the one with its spatial structure arranged in hexagonal cells, coapted laterally to each other, in a regular polyhedral geometric conformation, and intercepted at their upper and lower ends, that is, sides that make up the acute internal angle of the hexagonal cells, by cells in the shape of a diamond, in complete contiguity, arranged in the longitudinal direction of the prosthesis.
  • Such a prosthetic device will also be responsible for the gradual, regulated and continuous release of several drugs, in order to prevent coronary restenosis and induce early regeneration of the previously affected vascular wall, from the release by precursor drugs, coming from this peripheral intradermal biochip, which when released into the bloodstream, after a certain period of time, they reach the vascular prosthetic device, drug-eluting stent, in its inner layer, and through a conjugation with the internal matrix contained in both hexagonal and diamond cells (combination and pharmacological reaction, primarily by enzymatic hydrolysis, or other alternative types of chemical reaction compatible with the medium), are responsible for executing the release of in-stent medications, whether microcapsules, or unified groups of liposomes, contained and housed in specific layers superimposed on that make up the hexagonal and rhombus cells es of the internal stent coating.
  • Nanosensors/nanochips can also be present in this implantable biochip in association, which constitutes the delivery system in its complexity, or even be represented by nanochips or nanosensors, located on the inner surface of the stent, or arranged in the very intervals between cells, corridors for separating hexagonal and diamond cells from the internal coating of the prosthesis, capable of regulating and compulsorily measuring the concentration rates of in-stent drugs, drug serum half-life, sequential metabolism rate, and drug elimination time , among several other pharmacological, metabolic, and biochemical markers.
  • FIGURE 4 and FIGURE 5 represent a perspective illustration of the same prosthetic device of FIGURES 1 and 2, now together with its internal release matrix, described internal "coating”, which is represented by artificial biological membrane, biocompatible, It can be produced by tissue engineering techniques and consist of phospholipids and proteins, or similar substrate of organic constitution or synthesized in tissue engineering, and can be microporous or not, as long as it allows good diffusion and drug release capacity.
  • internal "coating” which is represented by artificial biological membrane, biocompatible, It can be produced by tissue engineering techniques and consist of phospholipids and proteins, or similar substrate of organic constitution or synthesized in tissue engineering, and can be microporous or not, as long as it allows good diffusion and drug release capacity.
  • the spatial geometric design of the internal coating is arranged in hexagonal cells, as shown in FIGURE 1B and FIGURE 1C, which come from the extension of the support prosthesis, that is, from the cells that make up the spatial conformation of the stent itself, open , on the entire internal surface of the stentor, that is, towards the vascular lumen (FIGURE 4A, 4B and 4C), or it is arranged in alternating hexagonal cells with lozenge cells intercepted to the last ones, according to the "design" shown of the metallic mesh in FIGURE IA, which also come from the extension of the supporting prosthesis, that is, from the cells that make up the spatial conformation of the stent itself, open, on the entire internal surface of the stent, that is, towards the vascular lumen (FIGURE 5A and 5B ).
  • FIGURE 6 shows, from an approximate focus, the microcapsules or group of liposomes, contained within the hexagonal cells, since referenced specifically, the first type of stent, with a conformational pattern of its "design" of mesh continued between hexagonal cells, as already highlighted in the epigraph, these then form the biological support membrane, and which are arranged in aggregates and sustained, in specific layers , immersed in a matrix that forms chains or networks of protein macromolecules, or these conjugated to other organic molecules such as phospholipids, in the form of a biological film or gel, in a way that provides sufficient sustainability and an ideal fixation rate.
  • FIGURES 6 and 7 are perspective illustrations of said cylindrical tubular prosthetic device, standardized stent type, intraluminally expandable, with its internal drug delivery matrix, in an approximate section that shows how this matrix is arranged, whether in cells also hexagonal, in a universal conformational pattern (FIGURE 6), or according to the diverse model with hexagonal cells coapted laterally, intercepted superiorly and inferiorly by lozenge cells, thus forming a conformational pattern of its mesh "design” alternating between hexagonal cells and lozenge, as already mentioned in the title (FIGURE 7); that come from the extension of the supporting prosthesis, that is, from the cells that compose the spatial conformation of the prosthesis, according to its reference "design-model", properly speaking, open, on the entire internal surface of the stent, that is, towards the to vascular light.
  • microcapsules or groups of liposomes contained within the hexagonal cells, or hexagonal cells + diamond cells, which form the biological support membrane, are arranged in aggregates and supported, in homogeneous layers, one on top of the other (in the figures , represented by different colors, that is, each layer shown in a certain color, representing a modality of liposome/microcapsule group, containing a different type of drug), immersed in a matrix that forms chains or networks of protein macromolecules, or others types of biomolecules, in a way that provides sufficient sustainability and an ideal fixation rate.
  • Each layer will be formed by a support matrix of different chemical composition, one from the other, aiming to provide the specificity and selectivity of release of a certain in-stent drug, contained in liposomes/microcapsules, according to the type of medication. released by the intradermal microchip implant, this release being fully optimized by a remote control center, regarding the release pulse interval, concentration, doses, pharmacological specificity, etc.
  • This precursor drug released via intradermal microchip implantation, when falling into the bloodstream, reaching the internal surface of the stent, will be responsible for interacting with the specific support matrix of a certain layer, for which it is programmed, dissolving and releasing it, selectively and specifically, a particular type of drug, aiming not only to control vascular restenosis, but also to modulate the inflammatory and proliferative response of the myointimal wall, adversity that frequently occurred in the implantation of polymeric drug-eluting stents, in general.
  • FIGURES 8 and 9 are perspective illustrations of said cylindrical tubular prosthetic device, standardized stent type, intraluminally expandable, with its internal drug delivery matrix, and the schematic representation of the substance released via intradermal implant of any constitution (precursor drugs ), represented by polymeric matrices for remote release, microfluids, but mainly by a biochip for releasing pharmacological substances, remotely programmed and controlled, among others.
  • Biochip that may have an inorganic or organic constitution, polymer or silicone, or any other compatible resin.
  • FIGURES 10 and 11 are a new perspective illustration of the same prosthetic device as FIGURES 1, 2, 3 and 4 in which they portray the arrival of substances/medications released by subdermal implants, those with a different biochemical constitution from the previous one, mainly in the with regard to the application of a subdermal implanted biochip, whose release of these precursor drugs must be controlled, quantified and monitored by a remote external central, reaching the light of the vessel in which the prosthetic device is located, and interact with the support matrix of the layers that form and fill the internal cavity of each hexagonal cell, or hexagonal and diamond-shaped, of the delivery platform.
  • these substances will interact with the first layers of the support matrix located towards the vessel light, that is, only and specifically with those layers whose chemical constituents are reactive to the action of these substances, thus providing the release of microcapsules/groups of liposomes stored and supported by this matrix.
  • the possibility of effecting a selectivity and diversity in the release mechanism of drugs applied intra-stent or intra-prosthetic device In schematic color presentations, the different representations of each type of medication administered are differentiated by each color, and this is also applied to the microcapsules/groups of liposomes programmed to be released, from the specific layer (hexagonal or lozenge cell support matrix) .
  • FIGURES 12 to 16 sequentially represent the perspective illustration of the mechanism of interaction of the precursor substance/medication, released by the intradermal biochip, which reaches the stent, with its internal surface where it combines the support layers of the liposomes/microcapsules, and these are progressively released to act on the vascular wall.
  • FIGURES 17 to 24 also represent, in perspective view through the vascular prosthetic device, a new process of arrival of a different administered substance released by any other route, whether it is an intradermal implant of chemical or electronic constitution (biochip with reservoir drug release, controlled by an external central), that is, an intradermal biochip, reaching the inner surface of the stent, culminating, in the same way as described in the last paragraph, with the release of other types of in-stent drugs, compatible and programmed for release according to the action of the substance released by the intradermal implant.
  • an intradermal implant of chemical or electronic constitution biochip with reservoir drug release, controlled by an external central
  • FIGURE 25 demonstrates, in essence or scope, the novelty and pioneering spirit on which this privilege is based, with the introduction of a new modality of drug release in vascular stent, through the remote action of a biochip implantable, containing one or more activation-reception boards, operated by any modality of central/external command, be it automated control, telephony devices, PC unit, etc. support of the precursor drugs, these will then be released via the bloodstream, reaching the vascular stent, and acting locally in the specific pharmacological release, arranged in its internal cover, under temporal control pulses, concentration and specific type of in-stent medication.
  • a biochip implantable containing one or more activation-reception boards, operated by any modality of central/external command, be it automated control, telephony devices, PC unit, etc. support of the precursor drugs, these will then be released via the bloodstream, reaching the vascular stent, and acting locally in the specific pharmacological release, arranged in its internal cover, under temporal control
  • FIGURE 26 emphasizes that it is feasible and opportune to consider the alternative production of this organic or vascular prosthetic device in a variant of this second model, with hexagonal cells, coapted at their lower and upper ends by diamond cells, and these, in turn, are fenestrated. , not coated internally in their area by the drug release coating, which is an advantage and an indication property for the introduction of vascular prosthesis in situations of lesions in collateral branches.
  • FIGURES 27 to 30 demonstrate in perspective view the same intraluminal drug delivery system of the previous figures, in which, in a next step of new administration of another type of substance, it already reaches, interacts and releases another type of intraluminal medication - stent, contained in aggregated microcapsules/liposomes and supported in a different layer, consisting of a compatible support matrix.
  • FIGURES 1, 2, 3 and 4 illustrate a first and second embodiment of an expandable intraluminal cylindrical tubular prosthetic device, or stent type prosthetic device, or simply a prosthesis, or even a stent, built in accordance with the standards of the present invention.
  • the aforementioned terms "expandable intraluminal cylindrical tubular prosthetic device”, “stent type prosthetic device”, “stent” or simply “prosthesis” are applied simultaneously to name the present invention, as the latter may have its use attributed to vascular segments in a general, as well as to organic ducts, with the aim of correcting stenosis or narrowing and sustaining their tonus.
  • FIGURE 1 presents the prosthetic device type stenter 41 (FIGURE IA), in metallic support or in biocompatible resin, with its spatial structure arranged in hexagonal cells, coapted laterally to each other, in regular polyhedral geometric conformation, and intercepted in its upper and lower ends, that is, sides that make up the internal acute angle of the hexagonal cells, by diamond-shaped cells, in complete contiguity, arranged in the longitudinal direction of the prosthesis.
  • FIGURE 1B shows the same stent type prosthetic device 31, in metallic support or biocompatible resin, whose spatial structure configures the conformational alternative modality of hexagonal cells, coapted together, arranged in the longitudinal direction of the prosthesis, isolated from its internal matrix of release , internal "coating" as described above 32, where the conformational pattern of its mesh, support or support of the internal biological coating can be observed, this increased to FIGURE 1C, which defines the global structure of the stent (intravascular prosthetic device) 50 , already associated or together with its internal release matrix, described internal “coating", which is represented by an artificial biological membrane, biocompatible, which may consist of phospholipids and proteins, or similar substrate, and may or may not be microporous, as long as allow good diffusion capacity and drug release 32.
  • FIGURE 1 a microc peripheral intradermal implanted hip 43, acting together with the stent, causing the release of precursor drugs 36, contained in plate(s) 44 that are located inside, arranged in groups of micro-reservoirs, surrounded by peculiar circuits 45, each which contains a specific type of precursor drug 36, which will be released into the bloodstream, which, after a certain time interval, reaches the vascular prosthetic device 50, drug-eluting stent, in its inner layer, and through a conjugation with the matrix of the cells that constitute their "coating" (internal coating) 32, stratified in layers with specific intra-stent medications 33, will be responsible for carrying out the release of these, either the microcapsules 33 or unified groups of liposomes, contained and housed in specific superimposed layers that constitute the hexagonal or diamond-shaped cells of the stent's internal coating 32.
  • precursor drugs 36 contained in plate(s) 44 that are located inside, arranged in groups of micro-reservoirs, surrounded by peculiar circuits 45
  • these precursor drugs 36 released in a controlled and programmed manner by this intradermal microchip 43, present their release pulse in the bloodstream, as well as ranges, concentration, and other potentially measurable pharmacological variables, subject to control over this microchip implant from any form of external switch, software, or mobile communication device.
  • nanosensor(s) 46 adjunct(s) in the structure of the releasing biochip is subject to introduction, as also shown in FIGURE 1, with the function of measuring the volume of release pulses, hemodynamic and serum biochemical variables , control of intervals, concentrations, etc.
  • FIGURE 2 is a different perspective illustration of a cylindrical tubular prosthetic device, standardized stenter type 41, intraluminally expandable, by balloon-catheter or self-expanding, in metallic support or in biocompatible resin (FIGURE 2A), proving to be feasible the incorporation of nanosensors/nanochips 49 not only in this skin implantable biochip 43, but they can even be represented and located on the inner surface of the "stent" (FIGURE 2A and FIGURE 2B), whose functions are described above.
  • the cylindrical tubular prosthetic device standardized stenter type 41
  • the cylindrical tubular prosthetic device is accompanied by its internal release matrix, internal "coating" as described 42, see FIGURE 3A and FIGURE 3C, whose spatial conformation ("design") follows the geometric spatial pattern of the metallic support stent 41, detailed in this one, where the conformational pattern of its mesh, different from the previous one, as support or support of the internal biological coating 42, and a peripheral intradermal implanted microchip 43, in joint action; the one with its spatial structure arranged in hexagonal cells 47, coapted laterally to each other, in polyhedral regular geometric conformation, and intercepted at their upper and lower ends, that is, sides that make up the internal acute angle of the hexagonal cells, by rhombus-shaped cells 48, in complete contiguity, arranged in the longitudinal direction of the prosthesis.
  • design follows the geometric spatial pattern of the metallic support stent 41, detailed in this one, where the conformational pattern of its mesh, different from the previous one, as support or
  • Such a prosthetic device will also be responsible for the gradual, regulated and continuous release of different drugs via microcapsules or a group of liposomes 33, in the sense of preventing coronary restenosis and inducing early regeneration of the previously affected vascular wall, from the release by precursor drugs, coming from this peripheral intradermal biochip 43, which, when released into the bloodstream, after a certain time interval, reach the vascular prosthetic device, drug-eluting stent 51, in this example of a different modality from the precursor 50, in its inner layer, and through a conjugation with the internal matrix 35 contained in both hexagonal and lozenge cells (combination and pharmacological reaction, mainly by enzymatic hydrolysis, or other alternative types of chemical reaction compatible with the medium), are responsible for executing the in-stent medication release, either namely, microcapsules, or unified groups of liposomes 33 , contained and housed in specific superimposed layers that make up the hexagonal 47 and lozenge 48 cells of the stent's internal coating 42
  • These precursor drugs 36 released in a controlled and programmed manner by this intradermal microchip 43 present their release pulse in the current blood, as well as ranges, concentration, and other potentially measurable pharmacological variables, subject to control over this microchip implant from any form of external central, software or mobile communication device, through the use of radiofrequency waves or any other transmission/ compatible energy transformation.
  • Nanosensors/nanochips 46 can also be present in this implantable biochip in association, which constitutes the delivery system in its complexity, or even be represented by nanochips or nanosensors 49, located on the inner surface of the stent 51, see letters (B) and (C), in any of their modalities, or arranged in the intervals between cells, separating corridors of hexagonal 47 and lozenge 48 cells of the internal coating of the prosthesis 42, as explicit in FIGURE 2, capable of regulating and compulsorily measuring the concentration rates of in-stent drugs , serum medication half-life, sequential metabolism rate, and drug elimination time, among several other pharmacological, metabolic, and biochemical markers.
  • the stenter-type prosthetic devices 50 and 51 are constituted on their surface by a fenestrated tubular diagram 31 and 41, without presenting median articulation, with a regular cylindrical shape, multifilament, associated with internal coating for drug delivery, which can be a self-expanding or balloon-expandable device.
  • FIGURE 4 illustrates the stent-type prosthetic device 50, showing, from an approximate focus, the microcapsules or liposomes 33, contained within the hexagonal cells 34 that form the biological support membrane , and which are arranged in aggregate and sustained, immersed in a matrix that forms chains or networks of protein macromolecules 35, or these conjugated to other organic molecules such as phospholipids, in the form of a biological film or gel, in a way that provides sufficient sustainability and a ideal fixation rate.
  • FIGURE 3 refers to a different perspective illustration of a cylindrical tubular prosthetic device, standardized stenter type 41, as shown in FIGURE 3A, intraluminally expandable, by balloon-catheter or self-expandable, in metallic support or in resin biocompatible, unaccompanied by its internal release matrix, and in FIGURE 3B, this matrix in question is already accompanied, internal "coating" as described 42, whose spatial conformation ("design") follows the geometric spatial pattern of the metallic support stent 41, where the conformational pattern of its mesh can be observed, different from the previous one, as support or support of this internal biological coating 42, and a microchip implanted peripheral intradermal 43, working together; the one with its spatial structure arranged in hexagonal cells 47, coapted laterally to each other, in regular polyhedral geometric conformation, and intercepted at their upper and lower ends, that is, sides that make up the acute internal angle of the hexagonal cells, by cells in the form of of diamond 48, in complete contiguity, arranged in the longitudinal
  • Such a prosthetic device will also be responsible for the gradual, regulated and continuous release of different drugs via microcapsules or a group of liposomes 33, in the sense of preventing coronary restenosis and inducing early regeneration of the previously affected vascular wall, from the release by precursor drugs 36 , arising from this peripheral intradermal biochip 43, which reach the vascular prosthetic device, drug-eluting stent 51, in its inner layer, and through a conjugation with the internal matrix 35 contained in both hexagonal and lozenge cells, these being precursor drugs 36 responsible for perform the release of in-stent medications, whether microcapsules or unified groups of liposomes 33, contained and housed in specific superimposed layers in which the hexagonal 47 and lozenge 48 cells of the stent's internal coating 42 are constituted.
  • Nanosensors/nanochips 46 can also be present in this implantable biochip in association, which constitutes the delivery system in its complexity, or even be represented by nanochips or nanosensors 49, located on the inner surface of the stent 51, in any of its modalities , or arranged in the intervals between cells, separating corridors of the hexagonal 47 and lozenge 48 cells of the internal coating of the prosthesis 42, as explicit in FIGURE 2, capable of regulating and compulsorily measuring the concentration rates of in-stent drugs, drug serum half-life, sequential metabolism rate, and drug elimination time, among several other pharmacological, metabolic, and biochemical markers.
  • FIGURES 5 and 6 are perspective illustrations of said cylindrical tubular prosthetic device, standardized stent type, intraluminally expandable 51, as seen in FIGURE 5A, in an alternative geometric pattern, with its internal drug delivery matrix 42, in a section approximation that shows how this matrix is arranged, either in hexagonal cells 47 and lozenge 48, which come from the extension of the supporting prosthesis 41, that is, from the cells that make up the spatial conformation of the prosthesis, properly speaking, open, on the entire internal surface of the stentor 51, that is, towards the vascular lumen.
  • microcapsules or liposomes 33 contained within the hexagonal cells 47 and adjacent and coapted rhombus cells 48, which form the biological support membrane 42, are arranged aggregated and supported, in homogeneous layers, one on top of the other (in the figures, represented by different colors, that is, each layer shown in a certain color, representing a modality of liposome/microcapsule 33, containing a different type of drug), immersed in a matrix that forms chains or networks of protein macromolecules 35 (matrix support), or other types of biomolecules, in a way that provides sufficient sustainability and an ideal rate of fixation.
  • Each layer will be formed by a support matrix of different chemical composition, one from the other, aiming to provide the specificity and selectivity of release of a given drug, contained in the groups of liposomes/microcapsules 33, according to the type of medication remotely selected and released 36 by the implanted biochip 43, which, when it falls into the bloodstream, reaching the surface of the stent, will be responsible for interacting with the specific support matrix of a certain layer 35, for which it is programmed, dissolving and releasing it, selectively and specific type of drug 33, aiming not only to control vascular restenosis, but also to modulate the inflammatory and proliferative response of the myointimal wall, an adversity that frequently occurred in the implantation of first and second-generation drug-eluting stents, polymers in general.
  • FIGURE 5B shows the microcapsules or group of liposomes 33, contained within the hexagonal 47 and lozenge 48 cells (specifically in the second conformational modality of the stent) that form the biological support membrane 42, and which are arranged aggregated and sustained, in specific layers, immersed in a matrix that forms chains or networks of protein macromolecules, or these conjugated to other organic molecules such as phospholipids, in the form of a biological film or gel, in a way that provides sufficient sustainability and an ideal rate. of fixation.
  • FIGURE 6 shows a perspective illustration in section/section of a certain area of the internal intra-stent drug delivery matrix 32 of said cylindrical tubular prosthetic device, standardized stent type, intraluminally expandable 50, showing how this matrix is arranged , that is, in hexagonal cells 34, which come from the extension of the support prosthesis 31, that is, from the cells that make up the spatial conformation of the prosthesis, itself, open, on the entire internal surface of the stent 50, that is, towards the vascular lumen.
  • microcapsules or liposomes 33 contained within the hexagonal cells 34, which form the biological support membrane 32, are arranged in aggregate and supported, in homogeneous layers, one on top of the other, ditto immersed in a matrix that forms chains or networks of protein macromolecules 35, or other types of biomolecules, in such a way that they provide sufficient sustainability and an ideal fixation rate.
  • Each layer will be formed by a matrix of support of different chemical composition, one from the other, aiming to provide the specificity and selectivity of release of a certain drug, contained in liposomes/microcapsules 33, according to the type of medication released 36 by the intradermal implant - biochip 43, which, when falling in the bloodstream, gradually reaching the surface of the stent 50, will be responsible for interacting at specific sites with the given support matrix 35 of a given layer, for which it is programmed, dissolving it and releasing, selectively and specifically, a given type of drug, a process that occurs from the highest (external) to the lowest (deep) layers, encompassing the same therapeutic efficacy objectives of the aforementioned alternative standard.
  • FIGURES 7, 8, 9, 10, 11 are a perspective illustration of the same prosthetic device as FIGURES 1, 2, 3, 4 and 5 with its internal drug delivery matrix 32 (of the stent in hexagon geometry only ) and 42 (of the stent in geometry of intercepted hexagons and diamonds), in an approximate section that shows how this matrix is arranged, either in hexagonal cells 34 or hexagonal/lozenge 47 and 48, which come from the extension of the prosthesis of support 31 (model with hexagonal geometric pattern only) and 41 (model with hexagonal and diamond geometric pattern), that is, of the metallic base cells or biological resin material as previously described, which make up the spatial conformation of the prosthesis itself , open, on the entire internal surface of the stentor, that is, towards the vascular lumen, with microcapsules or groups of liposomes 33, contained within the hexagonal cells that form the biological support membrane 32 and 42, and are arranged aggregated and supported, in homogeneous layers, one on top of the other; so that FIGURE 7A shows a perspective view of
  • these substances will interact with the first layers of the support matrix 35 located towards the light of the vessel, that is, only and specifically with those layers whose chemical constituents are reactive to the action of these substances, thus providing the release of microcapsules/ liposomes stored and supported by this matrix.
  • the possibility of effecting a selectivity and diversity in the release mechanism of drugs applied intra-stent or intra-prosthetic device In schematic color presentations, the different representations of each type of medication administered are differentiated by each color used, and this is also applied to the microcapsules/liposomes programmed to be released, from the specific layer (support matrix of each hexagonal or lozenge cell) 35.
  • FIGURE 8A defines a standard initial stent 50, obeying a metallic geometric conformation 41, in a blood vessel 60, and the arrival of a precursor medication 36, eliminated from a subdermal intra-chip plate 44 43, as well as FIGURE 8B defines this stent in close-up focus, with the sectional view of the drug delivery system 32, the parent drug 36, and the in-stent medication 33 (microcapsules/liposomes).
  • FIGURE 8C shows an approximate 3D section of the biological coverage of medication release 32, constituting the in-stent cells 34, and the effect produced by the precursor drug 36 when it reaches the interior of the prosthesis, precipitating the release of in-stent medications 33 , represented by microcapsules.
  • FIGURE 9A demonstrates, in approximate focus, the process of releasing the precursor medication from the microcapsule/liposomal groups 36, coming from the plate 44, from the implanted microchip 43, through its microreservoirs.
  • FIGURE 9B shows a sequential moment of release of in-stent medications, contained in the microcapsules/liposomes 33, in a sense that can occur both for the vessel lumen and for the face of the vascular wall, if it is delimited or indicated that the immersion of the microcapsules 33 is carried out in a single type or pharmacological species, in all layers, and with only one type of support matrix, of a single biochemical nature.
  • FIGURE 9C indicates a later moment of release of these intra-capsulated medications 33 in the vessel lumen, in a standard stentor 50.
  • FIGURES 12 to 16 represent in perspective view the same drug delivery system 33, intraluminal, of the previous figures, as a new process of arrival of a different substance released by the organic implant (precursor drug) 36, said implantable biochip intradermally 43, to the inner surface of the stent, which reaches, interacts and releases another type of in-stent medication 33, compatible and programmed for release according to the action of the substance released 36 by the implanted biochip, culminating, in the same way as described in last paragraph, with the release of other types of in-stent drugs, contained in aggregated microcapsules/liposomes 33 and supported in different layers, consisting of a compatible support matrix 35.
  • FIGURE 12A relates to a new 3D view perspective of a standard stent 50, and its internal drug delivery system 32, with the arrival of a new precursor drug 36, in the vessel lumen 60, and its moment of release of its drug content responsible for releasing the in-stent medications 33, either represented by microcapsules.
  • FIGURE 12B Sequentially, in approximate focus, in FIGURE 12B, this precursor drug 36, coming from the microreservoirs of the plate 44, contained in the microchip 43, dissolving and acting on the intracellular matrix of support 35 of the microcapsules 33, releasing them to the vessel lumen and , according to the single-drug method, to the affected vascular wall.
  • FIGURE 12C shows a further moment of release of the in-stent medications, represented and encapsulated in structure 33.
  • FIGURE 13A shows a schematic 3D section of the hexagonal cells 34, delimiting the various superimposed layers in which the microcapsules 33 are constituted, housing the in-stent medications, and the arrival of precursor drugs 36, coming from plate 44, attached to the microchip implanted in the organism 43, in a continuous process of controlled, pulsatile, and intelligent release.
  • An external switch which can be represented by a cell phone, an application or any other type of software 55 sends the signal to the microchip, aiming to trigger this process.
  • FIGURE 13B depicts a later moment of release of these microcapsules 33, with the in situ action of the precursor drug 36.
  • FIGURE 13C confirms the dissolution of the internal matrix 35, intracellular of the stent, through these precursor drugs 36, releasing in-stent medications 33, in microcapsule content.
  • FIGURES 17 to 24 represent in perspective view the same drug delivery system 33, intraluminal, of the previous figures, as a new process of arrival of a different substance released by the organic implant (precursor drug) 36, said implantable biochip intradermally 43, up to the internal surface of the stent, which reaches, interacts and releases another type of in-stent medication 33, compatible and programmed for release according to the action of the substance released 36 by the implanted biochip, culminating, in the same way as described in last paragraph, with the release of other types of in-stent drugs 33.
  • FIGURE 25 refers to the perspective demonstration of the structure of the plate 44, inside the implanted biochip 43, containing reservoirs that differ according to the type of medication remotely selected and released 36 by it, which when falling into the current blood, reaching the inner surface of the stent 50 or 51, will be responsible for interacting with the certain support matrix of a certain layer 35, for which it is programmed, dissolving it and releasing, in a selective and specific way, the certain type of drug 33, aiming not only to control vascular restenosis, but also to modulate the inflammatory and proliferative response of the myointimal wall, an adversity that frequently occurred in the implantation of first and second-generation, drug-eluting, polymeric stents of a generally.
  • FIGURES 1, 2 and 3 in perspective illustration shown together with its internal release matrix, internal coating described 32 and 42, according to the prosthesis modality, which is represented by an artificial, biocompatible biological membrane, arranged in hexagonal cells or hexagonal + lozenge cells, which come from the extension of the supporting prosthesis, that is, from the cells that make up the spatial conformation of the stent itself, containing the microcapsules or liposomes 33, and these aggregates are sustained, immersed in a matrix that forms chains or networks of protein macromolecules 35, in such a way that they provide sufficient sustainability and an ideal fixation rate.
  • the prosthesis modality which is represented by an artificial, biocompatible biological membrane, arranged in hexagonal cells or hexagonal + lozenge cells, which come from the extension of the supporting prosthesis, that is, from the cells that make up the spatial conformation of the stent itself, containing the microcapsules or liposomes 33, and these aggregates are sustained, immersed in a matrix that forms chains or networks of protein macromolecules 35, in such
  • FIGURE 26 in an exceptional way, shows the possibility of the mesh design of the intravascular prosthetic device 51 to be fenestrated, since the alternative production of this organic or vascular prosthetic device in derivation of the second model, of cells hexagonal 47, coapted at their lower and upper ends by diamond cells 48, and these, in turn, remain fenestrated, not coated internally in their area by the drug release coating 42, consisting of an advantage and indication property for the introduction of vascular prosthesis in situations of lesions in bifurcations/trifurcations, collateral vessels emerging from the lesion site, among other indications.
  • FIGURE 26A composes the metallic geometric pattern 41 of the stent 51, in axial spatial arrangement along the cut of a patterned organic vessel 60, in a "design" of hexagonal cells 47 alternating with diamond cells 48.
  • the fenestrated mesh as already described, is a favorable factor in certain types of coronary angioplasty procedure indication.
  • FIGURE 26B shows, in close focus, the fenestrated mesh of the stent 51, with emphasis on the release system - biocompatible coating 42, and the in-stent cells 47 and 48.
  • Bio coating has its acceptable application as a coating for artificial and natural aac valves, intravascular filters, and intraorganic devices;
  • Interventional Cardiology has developed greatly, and the application of percutaneous transluminal coronary angioplasty has become increasingly routine.
  • the first drug-eluting, drug-eluting stents were primarily designed to reduce in-stent neointimal proliferation, thereby preventing the early or late occurrence of vascular restenosis.
  • implantable devices consisting of controlled drug delivery systems
  • implantable microchips programmable microelectronic function and intelligent, called implantable microchips
  • the scope of this invention privilege resides in the application of these intelligent microelectronic implantable devices, able to be programmed by any command source or remote central, and may contain hundreds of micro-reservoirs that bring together different modalities of drugs (in this case , called precursor drugs), which, when released in the body, will reach the inner surface of the vascular stent and, acting directly on the constituents of its organic matrix, which make up the internal biological cover of the stent, will be responsible for the dissolution and release of a certain in-stent drug.
  • precursor drugs drugs
  • these implantable microchips are capable of exhibiting highly complex release patterns, simultaneously at constant intervals and controlled pulses, demonstrating greater accuracy, as well as maintaining drug isolation from the external environment.

Abstract

The invention relates to a non-polymeric, biocompatible, expandable intravascular or organic prosthetic device (50, 51) for releasing multiple drugs (33), by extrinsic factors, such as precursor drugs (36), released via organic implants, namely intradermal microchips (43) (for the controlled, gradual release, pre-programmed via a remote central unit, by software, a device or a mobile device, of these precursor drugs, which reach the prosthesis and act on the release mechanism of the specific medications at the target site of the stent). The structure of these microchips can contain nanochips and biosensors (46) in order to optimize the control and release rate of the in-stent drugs, and can provide measurements of hemodynamic, chemical and homeostatic variables, to provide information about biases and clinical complications. The device is coupled to its internal release matrix, represented by an artificial biological membrane, the geometric spatial arrangement of which originates from the cells that form the stent itself, said cells being open on the entire internal surface.

Description

DISPOSITIVO PROTÉTICO TUBULAR CILÍNDRICO NÃO-POLIMÉRICO NON-POLYMERIC CYLINDRICAL TUBULAR PROSTHETIC DEVICE
CAMPO DA INVENÇÃO FIELD OF THE INVENTION
[001] A presente invenção refere-se a dispositivos médicos implantáveis no corpo humano, e, mais precisamente, a dispositivos protéticos intravasculares, ditos "stents", expansíveis, de formato usual, de constituição metálica, ou resina orgânica biocompatível, com propriedades anatômicas, fisiológicas (farmacológicas) e mecânicas favoráveis, utilizados na correção de estenoses ou estreitamentos da parede vascular ou duetos corporais, objetivando manter a sustentação destes por mais prolongado período de tempo, além de promover um processo de remodelamento ideal em função de atividade de cicatrização equilibrada da parede vascular acometida. De início, as propriedades mecânicas conferidas por estas próteses, pela obtenção da simples dilatação do segmento do vaso acometido e a função de sustentação da parede vascular (remodelamento), se mostravam como uma característica estática, ou seja, não eram capazes de modificar o estado bioquímico e hemostático da parede vascular acometida, onde se fazem presentes as reações inflamatórias típicas do processo de aterosclerose vascular, quer sejam, a reação imediata ou tardia à manipulação terapêutica dada pelo próprio processo interventivo com o cateter balão e o consecutivo implante do stent intravascular, denominada reestenose vascular. A complexidade deste tipo de processo somente poderia ser abordada por ação local de fármacos, o que se deu com a inovação dos stents farmacológicos, desde 2001. Entretanto, após várias metanálises clínicas em todo o mundo, verificou- se que tais stents apresentavam uma propriedade deletéria à própria parede vascular, visto que a forma pela qual o fármaco, juntamente com o polímero, era aderido e fixado na estrutura do stent importava em potencializar os efeitos colaterais destas coberturas duráveis de polímeros, acarretando a perpetuação das fontes de inflamação, com baixo potencial de cicatrização da parede vascular e aumento do risco de trombose local. Desta noção, afirma-se que os stents farmacológicos abarcavam as buscadas propriedades mecânicas e farmacológicas, no entanto foram apontados estatisticamente como alvo de complicações e insucesso clínico, como a trombose aguda tardia. [001] The present invention refers to medical devices implantable in the human body, and, more precisely, to intravascular prosthetic devices, called "stents", expandable, of usual shape, of metallic constitution, or biocompatible organic resin, with anatomical properties , physiological (pharmacological) and favorable mechanics, used in the correction of stenosis or narrowing of the vascular wall or body ducts, aiming to maintain their support for a longer period of time, in addition to promoting an ideal remodeling process due to balanced healing activity of the affected vascular wall. At first, the mechanical properties conferred by these prostheses, by obtaining the simple dilation of the segment of the affected vessel and the function of supporting the vascular wall (remodeling), were shown to be a static characteristic, that is, they were not capable of modifying the state of the vessel. biochemical and hemostatic of the affected vascular wall, where the inflammatory reactions typical of the vascular atherosclerosis process are present, either the immediate or late reaction to the therapeutic manipulation given by the interventional process itself with the balloon catheter and the consecutive implantation of the intravascular stent, called vascular restenosis. The complexity of this type of process could only be addressed by the local action of drugs, which occurred with the innovation of drug-eluting stents, since 2001. However, after several clinical meta-analyses around the world, it was found that such stents had a property deleterious to the vascular wall itself, since the way in which the drug, together with the polymer, was adhered and fixed to the stent structure was important in potentiating the side effects of these durable polymer coatings, leading to the perpetuation of the sources of inflammation, with low healing potential of the vascular wall and increased risk of local thrombosis. From this notion, it is stated that drug-eluting stents encompassed the sought after mechanical and pharmacological properties, however, they were statistically identified as a target of complications and clinical failure, such as late acute thrombosis.
[002] Neste sentido, objetivando solucionar este viés, alguns centros de pesquisa, em parceria com indústrias do ramo, desenvolveram os stents bioabsorvíveis, os quais também não trouxeram os resultados que os médicos imaginavam, e a eficácia da técnica tem sido, cada vez mais, questionada, tendo em vista as dificuldades que se relacionam com o preparo do procedimento, e a necessidade de avaliação prévia da parede do vaso por técnicas de imagem cada vez mais sofisticadas, como a tomografia de coerência óptica, segundo alguns respeitáveis pesquisadores brasileiros e internacionais. Da mesma forma, foram publicados os dados de [002] In this sense, aiming to solve this bias, some centers of research, in partnership with industry, developed bioabsorbable stents, which also did not bring the results that doctors imagined, and the effectiveness of the technique has been increasingly questioned, in view of the difficulties related to the preparation of the procedure, and the need for prior evaluation of the vessel wall using increasingly sophisticated imaging techniques, such as optical coherence tomography, according to some respected Brazilian and international researchers. Likewise, data from
2 anos de seguimento do Estudo ABSORB III, mostrando taxas de falência da lesão alvo de 11% com este stent bioabsorvível e de 7,9% com o stent farmacólogico primário, com p = 0,03. Isso fez com que o FDA ("Food and Drug Administration"), órgão norte- americano de fiscalização e certificação de tratamentos médicos, emitisse, em 18/03/17, um comunicado a todos os médicos, alertando para o risco aumentado de eventos cardiovasculares com este stent bioabsorvível, reforçando o uso apenas para casos aprovados nos estudos (lesões mais simples) e não implantar em vasos de pequeno calibre (< 2,5 mm). 2-year follow-up of the ABSORB III Study, showing target lesion failure rates of 11% with this bioabsorbable stent and 7.9% with the primary drug-eluting stent, with p = 0.03. This made the FDA ("Food and Drug Administration"), an American body for the inspection and certification of medical treatments, issue, on 03/18/17, a statement to all physicians, warning of the increased risk of adverse events. cardiovascular diseases with this bioabsorbable stent, reinforcing its use only for cases approved in the studies (simpler lesions) and not to implant in small-caliber vessels (< 2.5 mm).
[003] De sorte que, mais uma vez, esta tão consagrada técnica terapêutica se encontra à deriva, na prontidão de novas emergentes inovações de stents vasculares mais confiáveis, mais eficazes e que atinjam ótimos resultados estatísticos. [003] So, once again, this long-established therapeutic technique is adrift, in readiness for new emerging innovations for more reliable, more effective vascular stents that achieve optimal statistical results.
FUNDAMENTO DA INVENÇÃO BACKGROUND OF THE INVENTION
[004] Nos últimos vinte e cinco anos, vários dispositivos protéticos coronários têm sido produzidos e aplicados em larga escala, com o objetivo de promover uma razoável expansão ou dilatação de um estreitamento localizado no sistema vascular, ou de manter a esmerada patência em um dueto vascular, representando também uma possível alternativa à cirurgia de revascularização convencional. Em certas circunstâncias patológicas como a aterosclerose coronária, onde tem-se o crescimento de um tumor de células musculares lisas, associadas à impregnação de gorduras, colágeno, fibrina e células do sistema hematopoiético, acometendo várias camadas da parede arterial e produzindo uma restrição ao fluxo sanguíneo local, o emprego de técnicas terapêuticas intervencionistas percutâneas, representadas pela angioplastia coronária, associada a outros métodos, tem sido assimilado receptiva e favoravelmente nas mais diversas instituições médico- científicas de todo o mundo. [004] In the last twenty-five years, several coronary prosthetic devices have been produced and applied on a large scale, with the aim of promoting a reasonable expansion or dilation of a localized narrowing in the vascular system, or to maintain the neat patency in a duct. vascular system, also representing a possible alternative to conventional revascularization surgery. In certain pathological circumstances such as coronary atherosclerosis, where there is the growth of a tumor of smooth muscle cells, associated with the impregnation of fats, collagen, fibrin and cells of the hematopoietic system, affecting several layers of the arterial wall and producing a flow restriction. local blood flow, the use of percutaneous interventional therapeutic techniques, represented by coronary angioplasty, associated with other methods, has been receptively and favorably assimilated. in the most diverse medical-scientific institutions around the world.
[005] Nestas situações, a utilização de próteses metálicas coronárias expansíveis é de grande importância na complementação da técnica terapêutica inicial para a obtenção de um melhor resultado pós-procedimento, no controle do crescimento da placa aterosclerótica e restauração definitiva do fluxo sanguíneo vascular; assim como prevenir a reobstrução do vaso tratado ou descartar o perigo dos fenômenos de oclusão aguda ou tardia, causados por dissecções da parede arterial durante o procedimento ou complicações inerentes à própria placa de gordura. [005] In these situations, the use of expandable metallic coronary prostheses is of great importance in complementing the initial therapeutic technique to obtain a better post-procedure result, in controlling the growth of atherosclerotic plaque and definitive restoration of vascular blood flow; as well as preventing re-obstruction of the treated vessel or ruling out the danger of acute or late occlusion phenomena, caused by arterial wall dissections during the procedure or complications inherent to the fatty plaque itself.
[006] Das diversas próteses aplicáveis atualmente, algumas sofrem diferenciação tanto quanto ao padrão geométrico espacial, visto que podem se apresentar com configuração em espiral, em treliça, em escamas de células interconectadas, em grupos de anéis circunferenciais unidos por articulações, entre outros, quanto à constituição de drogas e polímeros em sua superfície, tais como os stents farmacológicos; como também em relação às diversas formas de aplicabilidade médica, a saber: manter aberturas nos tratos urinário, respiratório e biliar, sustentar tônus de órgãos do aparelho digestivo, utilização de filtros na veia cava inferior como prevenção de episódios de embolia pulmonar, etc. [006] Of the various prostheses currently applicable, some undergo differentiation as far as the spatial geometric pattern is concerned, since they can be presented with a spiral configuration, in a lattice, in interconnected cell scales, in groups of circumferential rings joined by joints, among others, regarding the constitution of drugs and polymers on its surface, such as drug-eluting stents; as well as in relation to the different forms of medical applicability, namely: maintaining openings in the urinary, respiratory and biliary tracts, sustaining digestive system organ tone, using filters in the inferior vena cava to prevent episodes of pulmonary embolism, etc.
[007] Os pródromos da técnica de implante destes dispositivos protéticos reportam de 1.969, quando Dr. Charles Dotter e colaboradores investigaram o benefício da utilização experimental de um dispositivo protético vascular espiralado, constituído de aço inoxidável, aplicado em artérias poplíteas de modelo experimental animal canino; o qual apresentou patência estrutural temporalmente compatível, porém com estreitamento inevitável do lúmen vascular. Conservando-se nesta mesma frente de pesquisa, conseguiu o desenvolvimento posterior de uma bioprótese espiralada, moldada em nitinol, uma liga metálica que apresenta propriedades de memória térmica. Tal dispositivo requisitava uma técnica de resfriamento prévia à sua inserção, e a administração posterior de calor local (aquecimento elétrico) até a sua expansão por completo, com recuperação da sua configuração inicial, diferentemente dos cateteres- balão atuais que são largamente utilizados para a sua insuflação; tal processo refletia-se em grande desvantagem, causando séria injúria aos tecidos circunjacentes vasculares e aumentando o potencial trombogênico sanguíneo. [007] The prodromes of the technique of implantation of these prosthetic devices go back to 1969, when Dr. Charles Dotter et al. investigated the benefit of the experimental use of a spiral-shaped vascular prosthetic device, made of stainless steel, applied to popliteal arteries in an experimental canine animal model; which presented temporally compatible structural patency, but with inevitable narrowing of the vascular lumen. Keeping on this same research front, he managed to develop a spiral bioprosthesis, molded in nitinol, a metallic alloy that has thermal memory properties. Such a device required a cooling technique prior to its insertion, and the subsequent administration of local heat (electrical heating) until its complete expansion, with recovery of its initial configuration, unlike the current balloon catheters that are widely used for its insufflation; this process was reflected in a great disadvantage, causing serious injury to the surrounding vascular tissues and increasing blood thrombogenic potential.
[008] A aquisição do estado da arte teve seus primórdios com a divulgação da endoprótese precursora de Cesare Gianturco, referenciada na Patente U.S. N
Figure imgf000006_0001
º 4.580.568, de 1.986, cujo aperfeiçoamento deu-se três anos mais tarde, pormenorizado na Patente 4.800.882, onde a configuração inicial em zigue-zague, constituída de aço inoxidável e monofilamentar, foi substituída por outra de configuração espiralada, em serpentina, também monofilamentar, constituída por aço inoxidável, de baixo perfil e baixa radiopacidade. A primeira era implantada por uma bainha de retração e apresentava dimensões compatíveis de utilização em grandes vasos de cães, visto que a última necessitava de deformação de material plástico para a sua expansão (cateter- balão), e admitia extensões disponíveis em doze e vinte milímetros, com diâmetros variáveis de 2.5 (dois e meio) a 4 (quatro) milímetros.
[008] The acquisition of the state of the art had its beginnings with the disclosure of Cesare Gianturco's precursor endoprosthesis, referenced in US Patent No.
Figure imgf000006_0001
4,580,568, of 1986, whose improvement took place three years later, detailed in Patent 4,800,882, where the initial zigzag configuration, made of stainless steel and monofilament, was replaced by another with a spiral configuration, in serpentine, also monofilament, made of stainless steel, of low profile and low radiopacity. The former was implanted by a retraction sheath and had dimensions compatible with use in large dog vessels, since the latter required deformation of plastic material for its expansion (balloon-catheter), and allowed extensions available in twelve and twenty millimeters. , with variable diameters from 2.5 (two and a half) to 4 (four) millimeters.
[009] Nesta nova geração, havia necessidade mandatória do uso de cateteres guia 8F, de grande luz interna (maior que 0.86 polegadas), e uso de corda guia metálica de 0.018 polegadas ou 0.014 com suporte interno reforçado, ao passo de que a endoprótese posteriormente disponível sofreu, em 1.995, novos incrementos no que diz respeito à sua configuração, com a adição de uma barra longitudinal de aço inoxidável ao longo de toda a sua extensão, visando impedir deformação da prótese, afastamento ou acordeamento das hastes e a ocorrência de retração elástica após sua liberação. Ainda neste mais moderno padrão, os cateteres-balão de liberação são de menor perfil, o que propicia o uso de cateteres guia menores, sendo capazes de atingir mais altas pressões, além do que se pode dispor de cordas guia convencionais de angioplastia coronária, com 0.014 polegadas. Marcas douradas radiopacas foram adicionadas nas extremidades desta última geração de próteses de Gianturco, visando um posicionamento mais seguro e preciso. [009] In this new generation, there was a mandatory need for the use of 8F guide catheters, with a large internal lumen (greater than 0.86 inches), and the use of a 0.018 inch or 0.014 metallic guide rope with reinforced internal support, while the endoprosthesis later available, it underwent, in 1995, new increments with regard to its configuration, with the addition of a stainless steel longitudinal bar along its entire length, in order to prevent deformation of the prosthesis, displacement or alignment of the rods and the occurrence of elastic retraction after its release. Even in this more modern standard, the release balloon catheters have a smaller profile, which allows the use of smaller guide catheters, being able to reach higher pressures, in addition to the conventional guide ropes for coronary angioplasty, with 0.014 inches. Radiopaque gold markings have been added to the ends of this latest generation of Gianturco prostheses for safer and more accurate positioning.
[0010] Entre uma grande variedade de dispositivos protéticos largamente utilizados, reporta-se a primariamente utilizada endoprótese de Palmaz-Schatz. Expansível através de deformação mecânica plástica, as Patentes U.S. N
Figure imgf000006_0002
º 4.776.337 e U.S. N Nº24.733.665, de Palmaz, datando de 1.988, demonstram uma prótese intraluminal tubular constituída de monofilamentos de aço inoxidável, ou tecido, em sua superfície, configurando uma pluralidade de constituintes alongados, em interseção uns com outros, até atingir as bordas limite de começo e fim da endoprótese tubular. São observadas em duas formas distintas quanto ao padrão de distribuição geométrica da malha, tanto na fase pré quanto na pós-expansão. Esta vindo a apresentar uma forma inicial não expansível, o que possibilita a sua passagem através de tubos radiopacos de suporte e posição, denominados catéteres guia, e uma forma final expandida, que é adquirida através da aplicação de uma pressão centrífuga e radialmente direcionada, cuja intensidade determinará diretamente o potencial de expansibilidade da endoprótese, localizada através do dueto corporal. Outra referência digna de observação é a Patente U.S. Nº 5.102.417, de Palmaz e Schatz, complementada pela Patente U.S. Nº 5.195.984, que determina uma diferenciação nos modelos anteriores, pois as junções tubulares expansíveis são conectadas por uma ponte (articulação) de 1 mm, flexível, geralmente helicoidal. As junções apresentam discreta rigidez, porém com a articulação flexível, a prótese pode vir a apresentar dobramentos, principalmente quando acoplada em vasos sanguíneos curvos. Tal articulação é algo limitada quanto à amplitude de movimento, mas a prótese possuía grande força radial, exibindo elevada resistência à retração elástica e proporcionando um bom suporte à estrutura vascular. A sua flexibilidade global e sua radiopacidade eram um tanto reduzidas, caracterizando uma desvantagem, assim como sua similaridade a outras próteses de aço inoxidável, pois somente através das técnicas fluoroscópicas, era permitida a visualização, a certeza de uma deliberação precisa da prótese através do dueto ou vaso, o que se faz vital para a obtenção de um resultado terapêutico bem sucedido.
[0010] Among a wide variety of prosthetic devices widely used, the primarily used Palmaz-Schatz endoprosthesis is reported. Expandable through plastic mechanical deformation, US Patents No.
Figure imgf000006_0002
4,776,337 and US No. 24,733,665, from Palmaz, dating from 1988, demonstrate a tubular intraluminal prosthesis consisting of stainless steel monofilaments, or tissue, on its surface, configuring a plurality of elongated constituents, intersecting with each other, until reaching the boundary edges of the beginning and end of the tubular endoprosthesis. They are observed in two different ways regarding the geometric distribution pattern of the mesh, both in the pre- and post-expansion phases. It is coming to present a non-expandable initial shape, which allows its passage through radiopaque support and position tubes, called guide catheters, and an expanded final shape, which is acquired through the application of a centrifugal and radially directed pressure, whose intensity will directly determine the expandability potential of the endoprosthesis, located through the body duct. Another noteworthy reference is US Patent No. 5,102,417, by Palmaz and Schatz, complemented by US Patent No. 5,195,984, which differentiates from previous models, as the expandable tubular joints are connected by a bridge (articulation) of 1 mm, flexible, usually helical. The joints present slight rigidity, however, with the flexible joint, the prosthesis may present folds, especially when attached to curved blood vessels. Such a joint is somewhat limited in terms of range of motion, but the prosthesis had great radial strength, exhibiting high resistance to elastic retraction and providing good support to the vascular structure. Its global flexibility and radiopacity were somewhat reduced, characterizing a disadvantage, as well as its similarity to other stainless steel prostheses, since only through fluoroscopic techniques, visualization was allowed, the certainty of a precise deliberation of the prosthesis through the duct. or vessel, which is vital for obtaining a successful therapeutic result.
[0011] Da mesma forma, observamos a Patente U.S. Nº 4.886.062, de Wiktor, que demonstra um dispositivo protético expansível por balão, constituído de aço inoxidável, liga de cobre, titânio ou ouro. Nesta era remota, outros vários exemplos de patentes de dispositivos protéticos intravasculares podem ser referenciados como a seguir: Patente U.S. Nº 5.019.090, de Pinchuk; Patente U.S. Nº 5.161.547, de Tower; Patente U.S. Nº 4.969.458, de Wiktor, Patente U.S. Nº 4.655.771, de Wallstent; Patente Nº 5.195.984, de Schatz; Patente PI 9508353-7 A, de Israel; entre outros. [0011] Likewise, we note the U.S. Patent Wiktor No. 4,886,062 demonstrating a balloon-expandable prosthetic device made of stainless steel, copper alloy, titanium or gold. In this remote era, several other examples of intravascular prosthetic device patents can be referenced as follows: U.S. No. 5,019,090 to Pinchuk; U.S. Patent No. 5,161,547, to Tower; U.S. Patent No. 4,969,458, to Wiktor, U.S. Patent No. 4,655,771, to Wallstent; Patent No. 5,195,984 to Schatz; Israel Patent PI 9508353-7 A; among others.
[0012] Até o início do século atual, apesar do soberbo esforço para criação e desenvolvimento industrial de todos estes tipos de próteses coronárias citadas anteriormente, a reestenose (estreitamento por placa de ateroma "de novo") do vaso tratado, com este tipo de advento, ainda se mostrava em taxas razoáveis, e, porque não se dizer, inaceitáveis, variando na faixa de 14% a 60%, nos primeiros seis meses após o implante da prótese, dependendo da população estudada, configuração e constituição do material, número de próteses implantadas, vaso tratado, localização da lesão, comprimento da lesão, diâmetro luminal mínimo do vaso após o procedimento e seu ganho luminal mínimo, etc. Tal fato se sustenta relevantemente sobre a ocorrência da hiperplasia ou hiperproliferação intimai da parede do vaso tratado, pois trivialmente existe uma proliferação endotelial que incorpora a prótese à parede vascular até de uma semana após o procedimento a três meses decorrentes do mesmo; fato que muitos afirmam reduzir a trombogenicidade da prótese. [0012] Until the beginning of the current century, despite the superb effort to create and industrial development of all these types of coronary prostheses mentioned above, restenosis (narrowing by atheromatous plaque "again") of the treated vessel, with this type of advent, still showed up at reasonable and, why not say, unacceptable rates. , ranging from 14% to 60%, in the first six months after implantation of the prosthesis, depending on the population studied, configuration and constitution of the material, number of implanted prostheses, treated vessel, lesion location, lesion length, luminal diameter vessel after the procedure and its minimum luminal gain, etc. This fact is relevantly supported by the occurrence of hyperplasia or intimal hyperproliferation of the treated vessel wall, as there is trivially an endothelial proliferation that incorporates the prosthesis into the vascular wall from one week after the procedure to three months following the procedure; fact that many claim to reduce the thrombogenicity of the prosthesis.
[0013] Na realidade, com o desenvolvimento primário das endopróteses coronárias, a partir de 1.986, buscava-se como objetivos relevantes a melhora dos resultados a curto e longo prazos da angioplastia coronária com balão, reduzir a incidência de oclusão aguda e reestenose tardia. Vários estudos randomizados, entre os principais o STRESS e o BENESTENT, ao comparar a utilização deste tipo de prótese coronária ("stent") com a angioplastia convencional, demonstraram a eficácia da primeira alternativa, no caso a prótese de PALMAZ-SCHATZ, em reduzir os índices de reestenose pós-angioplastia coronária. A partir destes trabalhos, entre outros, abriu-se um campo para a investigação de diversos tipos de próteses coronárias, ou "stents". [0013] In fact, with the primary development of coronary endoprostheses, from 1986, relevant objectives were sought to improve the short and long-term results of coronary balloon angioplasty, reduce the incidence of acute occlusion and late restenosis. Several randomized studies, the main ones being STRESS and BENESTENT, when comparing the use of this type of coronary prosthesis ("stent") with conventional angioplasty, demonstrated the effectiveness of the first alternative, in this case the PALMAZ-SCHATZ prosthesis, in reducing the rates of restenosis after coronary angioplasty. From these works, among others, a field was opened for the investigation of different types of coronary prostheses, or "stents".
[0014] O sucesso imediato pós-procedimento mostrava-se em níveis satisfatórios (98%), e a trombose sub- aguda intraprótese, de ocorrência nas três primeiras semanas, revelava-se em 3% dos casos. Apesar do reconhecimento deste fato, não há relatos formais sobre o tipo de lesão que responde às várias alternativas terapêuticas. Até esta época, a angioplastia por balão havia sido considerada a terapia de escolha para o tratamento de reestenose vascular nesta situação, com alta taxa de sucesso primário, mas também de reobstrução do vaso, apesar da literatura mundial já ter preconizado à época inovações tecnológicas, como a braquiterapia por radiação, laser e técnicas de replicação virai (terapêutica coadjuvante genética), vide o estudo multicêntrico ITALICS; ainda necessitando de maiores evidências científicas. [0014] Immediate post-procedure success was shown to be satisfactory (98%), and subacute intraprosthesis thrombosis, occurring in the first three weeks, was revealed in 3% of cases. Despite the recognition of this fact, there are no formal reports on the type of injury that responds to the various therapeutic alternatives. Until that time, balloon angioplasty had been considered the therapy of choice for the treatment of vascular restenosis in this situation, with a high rate of primary success, but also of vessel re-obstruction, despite the fact that the world literature had already advocated technological innovations at the time, such as radiation brachytherapy, laser and viral replication techniques (genetic adjuvant therapy), see the study multicenter ITALICS; still needing more scientific evidence.
[0015] Como dito anteriormente, a reestenose após a colocação do stent ainda se fazia presente em níveis consideráveis, nos idos de 1999 a 2000, pois tratavam-se de dispositivos metálicos com propriedades mecânicas que poderiam propiciar fluxo TIMI III (completa revascularização), com total sucesso angiográfico imediato pós-procedimento, porém a longo prazo, havia diminuição do sucesso clínico, devido à reestenose vascular, em índices de 15%-20% naquele período. [0015] As previously stated, restenosis after stent placement was still present at considerable levels from 1999 to 2000, as they were metallic devices with mechanical properties that could provide TIMI III flow (complete revascularization), with immediate post-procedure angiographic success, but in the long term, there was a decrease in clinical success, due to vascular restenosis, at rates of 15%-20% in that period.
[0016] Tais dispositivos somente apresentavam-se limitados como uma característica estática, pois não interagiam, modificando as propriedades da parede vascular afetada, o que somente seria possível com ação local de drogas, até o momento, testadas no controle do processo evolutivo aterosclerótico. Desde o início de sua utilização, em 1.987, os stents coronários comuns vinham sendo empregados crescentemente no tratamento de condições patológicas cada vez mais complexas, porém frustrando as expectativas de que seriam capazes de coibir a proliferação neointimal da parede vascular. De sua aplicabilidade, os stents, por si só, podem prevenir o fenômeno de "recoil" elástico vascular pós- intervenção e parecem atuar também no remodelamento adverso, porém na coibição da reestenose intra-stent a utilização adicional de uma estratégia de liberação de agentes antiproliferativos do próprio stent, atuando na redução sinergicamente da lesão reestenótica, se fazia necessária. [0016] Such devices were only limited as a static characteristic, as they did not interact, modifying the properties of the affected vascular wall, which would only be possible with the local action of drugs, so far, tested in the control of the atherosclerotic evolutionary process. Since the beginning of their use, in 1987, common coronary stents have been increasingly used to treat increasingly complex pathological conditions, however frustrating expectations that they would be able to curb neointimal proliferation of the vascular wall. From their applicability, stents, by themselves, can prevent the phenomenon of post-intervention vascular elastic recoil and seem to also act in adverse remodeling, but in preventing in-stent restenosis, the additional use of an agent release strategy antiproliferative drugs of the stent itself, acting to synergistically reduce the restenotic lesion, was necessary.
[0017] A partir de 1.992, a aprovação de dois dos mais importantes stents até hoje empregados, Gianturco- Roubin (Cook) e Palmaz-Schatz, viabilizou universalmente, com grande credibilidade, a utilização deste tipo de endoprótese, visto que, só o modelo de Palmaz-Schatz, até 1.996, alcançou 1.000.000 de pacientes tratados, em todo o mundo. [0017] From 1992, the approval of two of the most important stents used to date, Gianturco-Roubin (Cook) and Palmaz-Schatz, made universally feasible, with great credibility, the use of this type of endoprosthesis, since only the Palmaz-Schatz model, until 1996, reached 1,000,000 treated patients worldwide.
[0018] Quanto ao contexto clínico, as endopróteses apresentam aplicabilidade corrente tanto em síndromes isquêmicas agudas (angina instável e infarto do miocárdio), como na coronariopatia crônica estável. No que tange ao infarto agudo do miocárdio, a sua utilização tem abrangido desde a condição intervencionista primária, como as circunstâncias de resgate após insucesso do tratamento com fibrinolítico, e ainda a indicação eletiva, quando se constata a vigência de estenose residual grave. [0018] Regarding the clinical context, endoprostheses have current applicability both in acute ischemic syndromes (unstable angina and myocardial infarction) and in stable chronic coronary artery disease. With regard to acute myocardial infarction, its use has ranged from the primary interventional condition, such as rescue circumstances after failure of fibrinolytic treatment, and still the elective indication, when the presence of severe residual stenosis is verified.
[0019] Portanto, os primeiros stents foram desenvolvidos com o objetivo de incrementar os resultados de curto e longo prazos nos procedimentos de angioplastia coronária, porém com a introdução dos primeiros stents farmacológicos, os resultados imediatos demonstraram uma significativa redução nas taxas de reestenose, mas estes concomitantemente causaram uma varredura química das camadas subendoteliais e neointimais da parede vascular, ao invés de prevenir uma balanceada neoformação tecidual. Efeitos mais tardios relacionados à biodegradação polimérica, envolvendo o fenômeno da trombose tardia, emergiram inevitavelmente. [0019] Therefore, the first stents were developed with the aim of increasing short and long-term results in coronary angioplasty procedures, but with the introduction of the first drug-eluting stents, the immediate results showed a significant reduction in restenosis rates, but these concomitantly caused a chemical sweep of the subendothelial and neointimal layers of the vascular wall, rather than preventing a balanced tissue neoformation. Later effects related to polymeric biodegradation, involving the phenomenon of late thrombosis, inevitably emerged.
[0020] A nível acadêmico-científico, preconiza-se como o stent ideal aquele que ofereça uma plataforma biocompatível de material polimérico ou, este quando ausente, propiciar taxas e concentrações efetivas e seguras de liberação de fármacos no local acometido, além de propriedades eletroquímicas e biomoleculares, e alta capacidade de absorção da parede vascular. Como referência de registros acerca de stents farmacológicos, citam-se a PI 0317150-7 A (Data de Publicação: 01/11/2005); PI0213279-6 A (Data da Publicação: 26/10/2004); PI 0503201-6 A (Data de Publicação: 13/03/2007); US 20100191323 Al (Data de Publicação: 29/07/2010); US 20090182404 Al (Data de Publicação: 16/07/2009). Reporta-se também ao documento PI 0103255-0, de 16/05/2001, complementado pelo documento W002/091956 Al (PCT/BR01/00105), de 22/08/2001, no qual se fazem presentes também microcápsulas/lipossomas, envolvidos em uma matriz de sustentação polimérica, contidos em uma capa biológica artificial externa, biocompatível, em conjunto com suporte de estentor metálico interno, em padrão geométrico espacial de tijolos-espelho ("mirror bricks"), peculiar a este registro de propriedade intelectual, visando outrossim a liberação de medicações intra- stent a longo prazo, de forma gradual e controlada. [0020] At the academic-scientific level, the ideal stent is the one that offers a biocompatible platform of polymeric material or, when absent, provides effective and safe rates and concentrations of drug release at the affected site, in addition to electrochemical properties and biomolecular, and high absorption capacity of the vascular wall. As a reference for records on drug-eluting stents, PI 0317150-7 A (Publication Date: 11/01/2005) is cited; PI0213279-6 A (Publication Date: 10/26/2004); PI 0503201-6 A (Publication Date: 03/13/2007); US 20100191323 A1 (Publication Date: 07/29/2010); US 20090182404 Al (Publication Date: 07/16/2009). Reference is also made to document PI 0103255-0, of 05/16/2001, supplemented by document W002/091956 Al (PCT/BR01/00105), of 08/22/2001, in which microcapsules/liposomes are also present, involved in a polymeric support matrix, contained in an external, biocompatible, artificial biological layer, together with an internal metallic stent support, in a spatial geometric pattern of mirror bricks ("mirror bricks"), peculiar to this intellectual property registration, also aiming at the long-term release of in-stent medications, in a gradual and controlled manner.
[0021] Trata-se, portanto, de objetivo primordial da invenção o desenvolvimento de dispositivo intracoronário, biocompatível, não-polimérico, para a liberação de múltiplos fármacos, de forma gradual e controlada, através de fatores extrínsecos, como drogas precursoras liberadas via implantes orgânicos - microchips intradérmicos (que teriam a função de liberar de forma controlada, gradual e pré- programada, via central remota, por um software, dispositivo ou telefone celular, os fármacos precursores, responsáveis por, através da corrente sanguínea, atingirem a prótese e atuarem no mecanismo de liberação das medicações específicas no sítio- alvo do stent), ou via matrizes orgânicas de liberação lenta de fármacos, de constituição polimérica, ou filmes biológicos, ou ainda resinas subdérmicas (sistemas de liberação); e quando for o caso, estes microchips ainda contendo nanochips e biossensores em sua própria estrutura, a fim de otimizar o controle e o pulso de liberação de fármacos intra- stent, além de propiciar medidas em tempo real de variáveis hemodinâmicas, químicas e homeostáticas, objetivando este tipo de prótese preencher a lacuna de vieses e complicações clínicos, mediante a análise de sua viabilidade científica e produção industrial, e que possua as seguintes peculiaridades: [0021] Therefore, the primary objective of the invention is the development of a biocompatible, non-polymeric intracoronary device for the release of multiple drugs, in a gradual and controlled manner, through extrinsic factors, such as precursor drugs released via implants organic - intradermal microchips (which would have the function of releasing in a controlled, gradual and pre- programmed, via remote central, by a software, device or cell phone, the precursor drugs, responsible for, through the bloodstream, reaching the prosthesis and acting in the mechanism of release of specific medications in the target site of the stent), or via matrices slow drug release organics, of polymeric constitution, or biological films, or even subdermal resins (release systems); and when that is the case, these microchips still contain nanochips and biosensors in their own structure, in order to optimize the control and the in-stent drug release pulse, in addition to providing real-time measurements of hemodynamic, chemical and homeostatic variables, aiming at this type of prosthesis to fill the gap of biases and clinical complications, through the analysis of its scientific feasibility and industrial production, and that has the following peculiarities:
[0022] Propriedades mecânicas e fisiológicas: [0022] Mechanical and physiological properties:
• expansibilidade; • expandability;
• flexibilidade; • flexibility;
• força radial; • radial force;
• radiopacidade; • radiopacity;
• complacência; • complacency;
• alto perfil; • high profile;
• adaptabilidade à anatomia vascular; • adaptability to vascular anatomy;
• baixo percentual de cobertura metálica. • low percentage of metallic coverage.
[0023] Propriedades eletroquímicas e biomoleculares: [0023] Electrochemical and biomolecular properties:
• antitrombogenicidade; • antithrombogenicity;
• antiquimiotaxia; • antichemotaxis;
• alta absorção pela parede vascular (bom coeficiente de difusão do sistema de envoltório); • high absorption by the vascular wall (good diffusion coefficient of the envelope system);
• atividade antiproliferativa e antimitógena; • antiproliferative and antimitogenic activity;
• alta biocompatibilidade. • high biocompatibility.
[0024] Na realidade, objetiva-se, através do controle da resposta proliferativa vascular ou hiperplasia intimal, a redução significativa das taxas de reestenose tardia e das complicações emergentes da era pós-stent farmacológico, quer sejam as tromboses agudas tardias intra ou peri-stents. Como um projeto pioneiro, este privilégio detém uma matriz biológica não-polimérica constituindo um "coating"(cobertura) de liberação na sua parte interna, e que apresenta a função de eluição de biomoléculas de substâncias químicas, com propriedades anti-aterogênicas, antiproliferativas, antitrombóticas, antiquimiotáxicas e reestruturadoras da parede vascular, propiciando a função de armazenamento e multiliberação de fármacos, armazenados e agrupados em microcápsulas ou microesferas (lipossomas), envolvidas em uma rede (matriz) de composição proteica macromolecular, ou um filme biológico que tenha compatibilidade química reacional com os vários tipos de medicação a serem liberados por via extrínseca (como um biochip liberador de medicação precursora implantado subdérmico). Tal mecanismo seria responsável por minimizar os efeitos tardios provenientes da degradação dos polímeros, visto que os primeiros stents foram introduzidos em 2001, com plataformas de liberação tipo monoterapia (um só fármaco), acabando por gerar as temíveis complicações de longo prazo, relacionadas à necessária e massiva profilaxia antitrombótica via oral (anticoagulação), assim como a trombose aguda tardia intra- stent. [0024] In fact, the objective, through the control of vascular proliferative response or intimal hyperplasia, is to significantly reduce the rates of late restenosis and complications emerging from the post-drug stent era, whether thromboses intra- or peri-stent acute episodes. As a pioneering project, this privilege has a non-polymeric biological matrix constituting a release coating on its inner part, and which has the function of elution of biomolecules of chemical substances, with anti-atherogenic, antiproliferative, antithrombotic, antichemotactic and vascular wall restructuring agents, providing the storage and multi-release function of drugs, stored and grouped in microcapsules or microspheres (liposomes), involved in a network (matrix) of macromolecular protein composition, or a biological film that has chemical compatibility reaction with the various types of medication to be delivered extrinsically (such as a subdermal implanted precursor medication delivery biochip). Such a mechanism would be responsible for minimizing the late effects resulting from the degradation of polymers, since the first stents were introduced in 2001, with monotherapy-type delivery platforms (a single drug), eventually generating the fearsome long-term complications related to the necessary and massive oral antithrombotic prophylaxis (anticoagulation), as well as acute late in-stent thrombosis.
SUMÁRIO DA INVENÇÃO SUMMARY OF THE INVENTION
[0025] O esqueleto do sistema protético de liberação de fármacos com matriz não-polimérica, diga-se dispositivo protético tubular cilíndrico ou dispositivo protético tipo estentor em si, é constituído por diagrama tubular fenestrado, de formato regular cilíndrico, multifilamentar, sem apresentar, no entanto, articulação mediana; caracterizado por ter um diâmetro inicial, que permita a sua liberação intravascular ou em qualquer dueto orgânico contendo um lúmen, e um diâmetro final, expandido, através da aplicação de força radial e centrífuga, via cateter balão, ou simplesmente ser auto-expansível. Esta força é conseguida pela insuflação do citado balão, porção dilatada do cateter que envolve o guia, e sua intensidade vai determinar a sustentação do diâmetro final da prótese, e esta expandida, então, determinará a dilatação permanente do lúmen vascular ou dueto orgânico. Pode ser moldado em ligas de aço inoxidável, nitinol, revestidas ou não de elementos químicos inorgânicos (polimento), como também de resinas orgânicas biocompatíveis, como a cartilagem artificial, silicone orgânico ou saponáceos. O nitinol é composto de uma liga metálica de níquel-titânio, com propriedades de memória térmica, usado frequentemente em próteses e órteses médicas; apresenta boa biocompatibilidade: mínima resposta inflamatória em tecidos adjacentes, sem corrosão do material. Os primeiros "stents" intravasculares descritos por Dotter e subsequentes autores eram de nitinol. [0025] The skeleton of the prosthetic drug delivery system with a non-polymeric matrix, say cylindrical tubular prosthetic device or stenter-type prosthetic device itself, consists of a fenestrated tubular diagram, with a regular cylindrical shape, multifilament, without presenting, however, median joint; characterized by having an initial diameter, which allows its release intravascular or in any organic duct containing a lumen, and a final diameter, expanded, through the application of radial and centrifugal force, via balloon catheter, or simply being self-expanding. This force is achieved by the inflation of the aforementioned balloon, the dilated portion of the catheter that surrounds the guide, and its intensity will determine the support of the final diameter of the prosthesis, and this expanded, then, will determine the permanent dilation of the vascular lumen or organic duct. It can be molded in stainless steel alloys, nitinol, coated or not with inorganic chemical elements (polishing), as well as biocompatible organic resins, such as artificial cartilage, silicone organic or soapy. Nitinol is composed of a nickel-titanium metal alloy, with thermal memory properties, often used in medical prostheses and orthotics; shows good biocompatibility: minimal inflammatory response in adjacent tissues, without corrosion of the material. The first intravascular stents described by Dotter and subsequent authors were nitinol stents.
[0026] No entanto, apesar de todas estas vantagens, terá de ser observada a possibilidade de utilização de material inorgânico como cobertura que aumente a biocompatibilidade da prótese, assim como sua antitrombogenicidade, o que será discutido a posteriori. [0026] However, despite all these advantages, the possibility of using inorganic material as a cover that increases the biocompatibility of the prosthesis, as well as its antithrombogenicity, will have to be observed, which will be discussed later.
[0027] Sua estrutura espacial dispõe-se em células tipo hexagonais, coaptadas umas às outras, dispostas em sentido longitudinal da prótese. De maneira global, visualmente observando-se, obtemos uma estrutura com distribuição espacial de uma parede em favo de mel, com células que crescem em sentido axial da prótese. Um segundo modelo pode apresentar este "design" de células hexagonais, coaptadas em suas extremidades inferior e superior por células em losango, ou células hexagonais com altura mais fina e estreitas, interceptando as células hexagonais triviais (primárias). Há de se considerar a produção alternativa deste dispositivo protético orgânico ou vascular em derivação deste segundo modelo, de células hexagonais, coaptadas em suas extremidades inferior e superior por células em losango, e estas, por sua vez, fenestradas, não revestidas internamente em sua área pelo "coating" de liberação de fármacos, consistindo em uma vantagem e propriedade de indicação para a introdução da prótese vascular em situações de lesões em bifurcações/trifurcações, vasos colaterais emergentes do local da lesão, entre outras indicações. [0027] Its spatial structure is arranged in hexagonal cells, coapted together, arranged in the longitudinal direction of the prosthesis. Overall, visually observing, we obtain a structure with spatial distribution of a honeycomb wall, with cells that grow in the axial direction of the prosthesis. A second model may present this "design" of hexagonal cells, coapted at their lower and upper ends by diamond cells, or thinner and narrower hexagonal cells, intersecting the trivial (primary) hexagonal cells. The alternative production of this organic or vascular prosthetic device should be considered in derivation of this second model, of hexagonal cells, coapted at their lower and upper ends by diamond cells, and these, in turn, fenestrated, not internally coated in their area. by the "coating" of drug release, consisting of an advantage and property of indication for the introduction of vascular prosthesis in situations of lesions in bifurcations/trifurcations, collateral vessels emerging from the lesion site, among other indications.
[0028] Inicialmente, a nível de produção experimental, objetiva-se a elaboração das próteses em diâmetros de 4,0 mm e 5,0 mm, com comprimentos que variam de 12 mm, 18 mm e 24 mm, não descartando a posteriori a moldagem em menor diâmetro e/ou maior comprimento. A espessura de hastes das células poderá oscilar entre 0,08 até 0,12 mm, fato importante para reduzir a tendência à trombose e o traumatismo da parede vascular, o que também é consequência do processo de acabamento da prótese, onde incluem-se o polimento químico das hastes e o corte a laser para a configuração do material e sua estrutura espacial. [0028] Initially, at the level of experimental production, the objective is the elaboration of prostheses in diameters of 4.0 mm and 5.0 mm, with lengths ranging from 12 mm, 18 mm and 24 mm, not discarding a posteriori a smaller diameter and/or longer length molding. The thickness of the stem cells can range from 0.08 to 0.12 mm, an important fact to reduce the tendency to thrombosis and trauma to the vascular wall, which is also a consequence of the prosthesis finishing process, which includes the chemical polishing of the rods and laser cutting for the configuration of the material and its spatial structure.
[0029] A matriz interna de liberação, "coating" interno, é representado por membrana biológica artificial, biocompatível, podendo ser constituída de fosfolipídeos e/ou macroproteínas, ou semelhante substrato, podendo ser microporosa, ou não, contanto que permita boa capacidade de difusão e liberação de drogas. O projeto geométrico espacial se dispõe em células também hexagonais que advêm do prolongamento da prótese de sustentação, ou seja, das próprias células que compõem a conformação espacial do "stent" propriamente dito, abertas, em toda superfície interna do estentor, ou seja, em direção à luz vascular. Esta capa interna também seguirá o formato compatível com o "design" da malha do stent a ser escolhida, se com células hexagonais puras, células hexagonais coaptadas em extremidades inferior e superior por células em losango, ou interceptadas por células hexagonais em formato mais cilíndrico, maior diâmetro longitudinal, interpostas entre as células hexagonais padrão. [0029] The internal matrix of release, "internal coating", is represented by an artificial biological membrane, biocompatible, and may consist of phospholipids and/or macroproteins, or similar substrate, and may or may not be microporous, as long as it allows good capacity for diffusion and release of drugs. The spatial geometric design is arranged in hexagonal cells that come from the extension of the supporting prosthesis, that is, from the cells that compose the spatial conformation of the "stent" itself, open, on the entire internal surface of the stent, that is, in towards the vascular lumen. This inner layer will also follow the format compatible with the "design" of the mesh of the stent to be chosen, whether with pure hexagonal cells, hexagonal cells coapted at the lower and upper ends by diamond cells, or intercepted by hexagonal cells in a more cylindrical shape, largest longitudinal diameter, interposed between standard hexagonal cells.
[0030] As microcápsulas ou grupos de lipossomas, contidos no interior das células hexagonais que formam a membrana biológica de sustentação, se dispõem agregadas e sustentadas, imersas em uma matriz que forma cadeias ou redes de macromoléculas de proteínas, ou estas conjugadas a outras moléculas orgânicas como fosfolipídeos, em forma de filme biológico ou gel, de forma que propiciem suficiente sustentabilidade e uma ideal taxa de fixação. [0030] The microcapsules or groups of liposomes, contained within the hexagonal cells that form the supporting biological membrane, are arranged in aggregate and sustained, immersed in a matrix that forms chains or networks of protein macromolecules, or these conjugated to other molecules organic compounds such as phospholipids, in the form of a biological film or gel, so that they provide sufficient sustainability and an ideal fixation rate.
[0031] Neste sentido, as microcápsulas/lipossomas (que neste espaço seriam agrupados em mórulas) serão gradualmente e seletivamente liberados através de uma ação de combinação e reação farmacológicas (a partir de fármacos precursores liberados de forma controlada e programada por microchip intradérmico implantado, sujeito a controle de qualquer modalidade de central externa, ou até mesmo a partir de estímulos elétricos ou liberação dos mesmos tipos de precursores farmacológicos oriundos de nanochips na superfície interna do stent, dispostos nos próprios intervalos, corredores de separação das células hexagonais do "coating" interno), responsáveis pela ruptura das pontes de conexão e estabilização das cadeias de proteínas macromoleculares, processo ocorrido via degradação enzimática. Processo também conhecido por fixação de proteínas a resina biologicamente compatível, contida em superfície porosa ou não-porosa, tal qual a utilização de albumina, com o objetivo de incrementar o coeficiente de porosidade da matriz. [0031] In this sense, the microcapsules/liposomes (which in this space would be grouped into morulae) will be gradually and selectively released through a combination action and pharmacological reaction (from precursor drugs released in a controlled and programmed way by an implanted intradermal microchip, subject to the control of any modality of external central, or even from electrical stimuli or release of the same types of pharmacological precursors from nanochips on the internal surface of the stent, arranged in the proper intervals, corridors separating the hexagonal cells of the "coating" internal), responsible for the rupture of connection bridges and stabilization of macromolecular protein chains, a process that occurs via enzymatic degradation. Process also known for attaching proteins to a biologically compatible resin, contained in porous or non-porous surface, such as the use of albumin, with the objective of increasing the matrix porosity coefficient.
[0032] A expressiva eficiência apresentada em macromoléculas biocompatíveis na seleção de reagentes e mecanismos de interação de alta especificidade nos sítios de reação química vem promovendo um crescente interesse no campo de pesquisa que envolve filmes de macromoléculas de mais baixa espessura em associação com materiais otimizados e depurados, assim como macromoléculas biológicas de proteínas. [0032] The expressive efficiency presented in biocompatible macromolecules in the selection of reagents and mechanisms of interaction of high specificity in the chemical reaction sites has been promoting a growing interest in the field of research that involves films of macromolecules of thinner in association with optimized materials and purified, as well as biological protein macromolecules.
[0033] Na forma líquida, sólida de rápida dissolução, gel ou de cristais, os fármacos liberados da estrutura encapsulada ou de grupo lipossomial serão gradual e protocolarmente submetidos a processo de investigação em modelo experimental, análise computacional, estudos pré- clínicos e clínicos, no intuito de avaliar com eficácia e certeza o tipo farmacológico compatível a ser empregado, a concentração ideal a ser atingida na luz do vaso, o melhor coeficiente de difusão, a velocidade e os intervalos de liberação, meia-vida no locus vascular, metabolização e toxicidade, entre outros aspectos; ressaltando-se que, durante todas as fases do processo de elaboração, avaliação, produção, testes de viabilidade científica "in vitro" e "in vivo", poder-se-á modificar, eliminar, acrescentar ou fundir quaisquer que sejam os tipos de drogas, de acordo com as formalidades necessárias, assim como obliterar ou reconstruir elementos pertinentes, desde que não haja alterações profundas no conjunto global idealizado anteriormente. [0033] In liquid form, fast-dissolving solid, gel or crystals, the drugs released from the encapsulated structure or from the liposomal group will be gradually and protocolarily submitted to an investigation process in an experimental model, computational analysis, pre-clinical and clinical studies, in order to evaluate with effectiveness and certainty the compatible pharmacological type to be used, the ideal concentration to be reached in the vessel lumen, the best diffusion coefficient, the speed and intervals of release, half-life at the vascular locus, metabolism and toxicity, among other aspects; emphasizing that, during all phases of the elaboration, evaluation, production, "in vitro" and "in vivo" scientific feasibility tests, it will be possible to modify, eliminate, add or merge whatever types of drugs, according to the necessary formalities, as well as obliterating or reconstructing pertinent elements, provided that there are no profound changes in the previously idealized global set.
[0034] A presente invenção vem se estabelecer objetivamente para atenuar ou eliminar a ocorrência de reestenose (crescimento recorrente da placa de ateroma), mais tardiamente, e ainda prevenir a trombose aguda tardia, mesmo após a angioplastia por balão e/ou colocação de prótese tipo estentor da parede vascular, os quais advêm de uma variedade de fatores a saber: [0034] The present invention is objectively established to attenuate or eliminate the occurrence of restenosis (recurrent atheromatous plaque growth), later on, and still prevent late acute thrombosis, even after balloon angioplasty and/or prosthesis placement stenting type of the vascular wall, which arise from a variety of factors, namely:
1 . A hiperplasia miointimal, ou proliferação de tecido neointimal, vem a ser um dos principais mecanismos responsáveis pela reestenose intra-stent.(*) 1 . Myointimal hyperplasia, or proliferation of neointimal tissue, is one of the main mechanisms responsible for in-stent restenosis.(*)
2 . Certas doenças crônicas como diabetes, angina instável, entre outras. two . Certain chronic diseases such as diabetes, unstable angina, among others.
3 . Em relação a aspectos da própria anatomia vascular: lesões crônicas reestenóticas, menores diâmetros de referência do vaso tratado, ou seja, o calibre basal vascular a partir do qual se otimiza um resultado pós-procedimento, extensão da placa abordada (placas maiores que 15 mm de comprimento cursam com risco mais elevado de reestenose pós-stent e trombose aguda tardia). 3 . Regarding aspects of the vascular anatomy itself: chronic restenotic lesions, smaller reference diameters of the treated vessel, that is, the basal caliber from which a post-procedure result is optimized, extension of the plaque addressed (plaques greater than 15 mm in length are associated with a higher risk of post-stent restenosis and late acute thrombosis).
4 . Mensuração do diâmetro mínimo da luz ao final da intervenção e o cálculo do ganho imediato do diâmetro do local tratado (diâmetro mínimo da luz pós- procedimento menos o diâmetro mínimo da luz pré-procedimento). 4 . Measurement of the minimum diameter of the lumen at the end of the intervention and the calculation of the immediate gain in the diameter of the treated site (minimum diameter of the post-procedure lumen minus the minimum diameter of the pre-procedure lumen).
(*) Acredita-se que a presença da prótese farmacológica no interior do vaso sob tensão desencadeie uma reação inflamatória em decorrência do confinamento de trombo plaquetário. A inflamação inerente ao processo estimula a migração de células musculares lisas que se dirigem para a região sub-intimal, proliferando-se com intensidade variável ao lado da secreção de células da matriz extracelular, no qual pode resultar na formação de uma nova íntima obstrutiva. Esta prótese "in situ", portanto, estimula a hiperplasia e a formação de uma nova íntima através da injúria do vaso, pois há acometimento da sua lâmina elástica interna. Em resumo, a primeira geração desses stents bioabsorvíveis apresentou maiores taxas de eventos cardiovasculares e de trombose a longo prazo, sendo retirados do mercado pelo fabricante, em setembro de 2017. Outros estão sendo desenvolvidos com outros materiais e outras drogas, e aguardam-se os resultados dos estudos clínicos com maior número de pacientes e com seguimento mais prolongado, visando obter a segurança e eficácia no tratamento da doença coronariana. (*) It is believed that the presence of the pharmacological prosthesis inside the vessel under tension triggers an inflammatory reaction as a result of the confinement of a platelet thrombus. The inflammation inherent to the process stimulates the migration of smooth muscle cells towards the subintimal region, proliferating with variable intensity alongside the secretion of cells from the extracellular matrix, which can result in the formation of a new obstructive intima. This "in situ" prosthesis, therefore, stimulates hyperplasia and the formation of a new intima through vessel injury, as its internal elastic lamina is affected. In summary, the first generation of these bioabsorbable stents had higher rates of cardiovascular events and long-term thrombosis, being withdrawn from the market by the manufacturer in September 2017. Others are being developed with other materials and other drugs, and the results are awaited. results of clinical studies with a greater number of patients and with a longer follow-up, aiming to obtain safety and efficacy in the treatment of coronary disease.
[0035] Do uso de micro ou nanochips em conjunto com dispositivos intravasculares ou orgânicos: muito tem sido divulgado acerca da possibilidade inovadora de incorporação de fármacos em implantes médicos, desta forma se utilizando múltiplos reservatórios contendo pequenas doses destes fármacos. Nesta linha, os microchips vêm representar um novo tipo de tecnologia capaz de realizar a liberação de diversos fármacos, por longos períodos de tempo. [0035] The use of micro or nanochips in conjunction with intravascular or organic devices: much has been reported about the innovative possibility of incorporating drugs into medical implants, thus using multiple reservoirs containing small doses of these drugs. In this line, microchips represent a new type of technology capable of releasing different drugs for long periods of time.
[0036] Neste sentido, o desenvolvimento de sistemas de liberação controlados tem emergido como uma promessa na solução de antigos dilemas referentes à obtenção de eficácia de dose ideal e a crescente complexidade de vias otimizadas de tratamento medicamentoso, na demanda de atingir sítios específicos. [0037] Inicialmente, o desenvolvimento de sistemas de liberação de medicações era direcionado para apresentar uma liberação sustentada de um determinado fármaco durante um certo intervalo de tempo, com a utilização prioritária de componentes poliméricos, os quais permaneciam no sistema até sua degradação tardia; entretanto, aliada à função de liberação controlada, algumas situações clínicas exigiam pulsos de liberação farmacológica em variáveis intervalos de tempo. [0036] In this sense, the development of controlled delivery systems has emerged as a promise in the solution of old dilemmas regarding the achievement of optimal dose efficacy and the increasing complexity of optimized drug treatment routes, in the demand to reach specific sites. [0037] Initially, the development of drug delivery systems was directed to present a sustained release of a given drug during a certain period of time, with the priority use of polymeric components, which remained in the system until its late degradation; however, combined with the controlled release function, some clinical situations required pulses of pharmacological release at variable time intervals.
[0038] O avanço tecnológico veio a propiciar o surgimento dos sistemas de liberação prolongado de medicações, sigla IDDS em inglês ("Implantable Drug Delivery Systems"), de início classificados em três grupos: biodegradáveis e não-biodegradáveis, sistemas de bomba fisiológica de microfluidos, e a mais nova classe, a microfabricação de sistemas de liberação controlada, dotados de uma capacidade microeletrônica inteligente e programável, em que consistem os microchips. Estes são viáveis de serem produzidos em diversos padrões e formatos, com função simultaneamente pulsátil, propiciando maiores índices de acurácia, e isolamento do fármaco do meio externo. [0038] Technological advancement led to the emergence of prolonged drug delivery systems, acronym IDDS ("Implantable Drug Delivery Systems"), initially classified into three groups: biodegradable and non-biodegradable, physiological pump systems of microfluids, and the newest class, the micromanufacturing of controlled release systems, endowed with an intelligent and programmable microelectronic capacity, which microchips consist of. These are viable to be produced in different patterns and formats, with a simultaneously pulsatile function, providing higher rates of accuracy, and isolation of the drug from the external environment.
[0039] Diversas descrições literárias dispõem que os microchips implantáveis sanearam a necessidade de um sistema de liberação controlada, sendo em sua maioria constituídos de silicone, contendo múltiplos reservatórios de fármacos, em uma possibilidade de diversas formas e apresentações, geralmente hermeticamente selados, e recobertos por uma membrana metálica, a ser dissolvida por estímulo elétrico, permitindo a liberação dos seus constituintes (fármacos) para o meio. [0039] Several literary descriptions state that implantable microchips solved the need for a controlled release system, being mostly made of silicone, containing multiple drug reservoirs, in a possibility of different forms and presentations, usually hermetically sealed, and covered by a metallic membrane, to be dissolved by electrical stimulation, allowing the release of its constituents (drugs) to the environment.
[0040] Microchips são fabricados mediante o uso da mesma tecnologia desenvolvida em circuitos integrados microeletrônicos e sistemas de origem microeletromecânica, processo este utilizado para fabricação de microdispositivos, tais como sensores de fluxo e pressão, cabeças de impressoras a tinta, etc. Ainda, ressalta- se que a fabricação desta tecnologia envolve o uso de substrato de superfície, de cerâmica, e mais frequentemente de silicone, aliando-se técnicas de fotolitografia, visando a criação de formatos geométricos desejados a serem aplicados aos reservatórios. A seguir, são criados dipolos ânodo- catiônicos, e, após, a complementação com os fármacos de escolha. [0040] Microchips are manufactured using the same technology developed in microelectronic integrated circuits and systems of microelectromechanical origin, a process used for the manufacture of microdevices, such as flow and pressure sensors, ink printer heads, etc. Still, it is noteworthy that the manufacture of this technology involves the use of surface substrate, ceramic, and more often silicone, combining photolithography techniques, aiming at the creation of desired geometric shapes to be applied to the reservoirs. Then, anode-cationic dipoles are created, and, after that, complementation with the drugs of choice.
[0041] A liberação medicamentosa do interior destes reservatórios se daria com um estímulo elétrico entre a fina camada de metal anódico em que consiste a membrana de cobertura do reservatório e o catódio, perfazendo uma liberação por via eletromecânica por dissolução desta membrana. Tal estímulo elétrico pode ser ativado por uma central remota, com o circuito de controle no interior do microchip, o qual pode conter um "timer"-temporizador, microprocessador ou fontes de energia, como biossensores, por exemplo, dotados de função de liberação farmacológica controlada e pré-ajustada conforme a indicação e necessidade demonstradas, por meses até anos. [0041] The drug release from the interior of these reservoirs would take place with an electrical stimulus between the thin anodic metal layer comprising the membrane covering the reservoir and the cathode, resulting in an electromechanical release by dissolving this membrane. Such an electrical stimulus can be activated by a remote central, with the control circuit inside the microchip, which can contain a "timer"-timer, microprocessor or energy sources, such as biosensors, for example, with a pharmacological release function. controlled and pre-adjusted according to the indication and need demonstrated, for months to years.
[0042] O desenvolvimento crescente deste tipo inovador de tecnologia e suas indicações na prática clínica são fatores encorajadores de continuidade de diversos estudos, cujo pródromo foi detalhado na patente de Santini Jr. et al, em 1998, US Patent "Microchip Drug Delivery Devices", com progressão para otimização da técnica visando aquisição de informação via central remota em tempo real e unidades de transferência de energia. [0042] The growing development of this innovative type of technology and its indications in clinical practice are encouraging factors for the continuity of several studies, whose prodrome was detailed in the Santini Jr patent. et al, in 1998, US Patent "Microchip Drug Delivery Devices", with progression towards optimization of the technique aiming at acquiring information via remote central in real time and energy transfer units.
[0043] Além disso, alguns estudos pré-clínicos e clínicos evidenciaram que a liberação de fármacos via microchips atingia faixas terapêuticas e níveis séricos semelhantes aos propiciados por outros sistemas padrão de liberação farmacológica intraorgânicos (matrizes poliméricas, por exemplo). [0043] In addition, some preclinical and clinical studies showed that drug delivery via microchips reached therapeutic ranges and serum levels similar to those provided by other standard intraorganic drug delivery systems (polymer matrices, for example).
[0044] O estojo ao qual se acopla o microchip também demonstrou alta taxa de biocompatibilidade, com ausência de resposta imune e de níveis séricos de marcadores inflamatórios, parâmetros verificados na esmagadora maioria dos casos, visto que há um envelopamento do implante (cápsula tecidual) pelo próprio organismo, o que também não afetou a cinética de liberação dos fármacos. [0044] The case to which the microchip is attached also demonstrated a high rate of biocompatibility, with absence of immune response and of serum levels of inflammatory markers, parameters verified in the overwhelming majority of cases, since there is an enveloping of the implant (tissue capsule) by the organism itself, which also did not affect the kinetics of drug release.
[0045] Desta forma, a difusa aplicação deste tipo de tecnologia demonstra-se com potencial disruptivo na atual abordagem clínica e tratamento de várias moléstias, com possibilidade de enorme expansão para uma diversidade de áreas da medicina, e antes inúmeras modalidades terapêuticas consideradas de difícil fracionamento posológico e pouca aderência pelo paciente, passam a ser viáveis quando administradas por esta tecnologia, no sentido de se mostrarem como um novo modo automatizado de tratamento medicamentoso a de indução de liberação de fármacos à distância, incrementando a segurança e eficácia esperadas. BREVE DESCRIÇÃO DOS DESENHOS [0045] In this way, the widespread application of this type of technology demonstrates disruptive potential in the current clinical approach and treatment of various diseases, with the possibility of enormous expansion to a diversity of areas of medicine, and before numerous therapeutic modalities considered difficult dosage fractionation and poor patient adherence, become viable when administered by this technology, in the sense of showing as a new automated way of drug treatment to induce the release of drugs at a distance, increasing the expected safety and efficacy. BRIEF DESCRIPTION OF THE DRAWINGS
[0046] De acordo com as respectivas figuras apresentadas neste relatório, este privilégio de invenção será objeto de apreciação e entendimento, de um modo geral neste tópico, e de modo mais minucioso com as informações descritas adiante. [0046] According to the respective figures presented in this report, this privilege of invention will be object of appreciation and understanding, in a general way in this topic, and in a more detailed way with the information described below.
[0047] A FIGURA 1 é uma ilustração perspectiva de um dispositivo protético tubular cilíndrico, tipo estentor padronizado, expansível intraluminalmente, por cateter- balão ou auto-expansível, em suporte metálico ou em resina biocompatível, isolado de sua matriz interna de liberação, "coating" interno conforme descrito (FIGURA IA e FIGURA 1B), onde se faz observável o padrão conformacional de sua malha, suporte ou sustentação do "coating" biológico interno, e na apresentação completa mostrando seu "coating" interno (FIGURA 1C), e também um microchip implantado intradérmico periférico, em atuação conjunta com o stent; aquele com sua estrutura espacial disposta em células hexagonais, coaptadas umas às outras, em conformação geométrica regular poliédrica (FIGURA 1B), ou no padrão de células hexagonais coaptadas por células losangulares, dispostas em sentido longitudinal da prótese (FIGURA IA), ressaltando-se ser alternativo o sentido de disposição da malha de hexágonos, se em disposição transversa (lados do hexágono compõem os bordos da prótese), FIGURA 2A e 2B, e FIGURA 3A, ou disposição em sentido paralelo ao axial (vértices de ângulos agudos formam os bordos da prótese), FIGURA IA. De maneira global, visualmente observando- se, obtemos uma estrutura com distribuição espacial de uma parede em estrutura plana e contígua de células hexagonais, que crescem em sentido axial da prótese, apresentando um diâmetro inicial pré-dilatação, que propicie seu posicionamento em lúmen intravascular ou dueto orgânico. Tal dispositivo protético será responsável pela liberação gradual, regulada e contínua de fármacos diversos, no sentido de prevenir a reestenose coronária e induzir a regeneração precoce da parede vascular antes acometida, a partir da liberação por fármacos precursores, advindos deste biochip intradérmico periférico, que ao serem liberados na corrente sanguínea, após determinado intervalo de tempo, atingem o dispositivo protético vascular, stent farmacológico, em sua camada interna, e através de uma conjugação com a matriz interna das células hexagonais (combinação e reação farmacológicas, precipuamente por hidrólise enzimática, ou outros tipos alternativos de reação química compatíveis com o meio), são responsáveis por executar a liberação das medicações intra-stent, quer sejam, as microcápsulas, ou grupos unificados de lipossomas, contidas e alojadas em camadas específicas sobrepostas em que constituem as células hexagonais do "coating" interno do stent. Esses fármacos precursores, liberados de forma controlada e programada por este microchip intradérmico, apresentam seu pulso de liberação na corrente sanguínea, assim como intervalos, concentração, e outras variáveis farmacológicas potencialmente mensuráveis, sujeitos a controle sobre este implante microchip de qualquer modalidade de central externa, software ou aparelho de comunicação móvel. Presença de nanossensores coadjuvantes na estrutura do biochip liberador é passível de introdução, com a função de medição de volume de pulsos de liberação, variáveis hemodinâmicas e bioquímicas séricas, controle de intervalos, concentrações, etc. [0047] FIGURE 1 is a perspective illustration of a cylindrical tubular prosthetic device, standardized stent type, intraluminally expandable, balloon-catheter or self-expanding, in metallic support or in biocompatible resin, isolated from its internal matrix of release, "coating" as described (FIGURE IA and FIGURE 1B), where the conformational pattern of its mesh, support or support of the internal biological coating can be observed, and in the complete presentation showing its internal "coating" (FIGURE 1C), and also a peripheral intradermal microchip, working together with the stent; the one with its spatial structure arranged in hexagonal cells, coapted together, in a regular polyhedral geometric conformation (FIGURE 1B), or in the pattern of hexagonal cells coapted by lozenge cells, arranged in the longitudinal direction of the prosthesis (FIGURE IA), emphasizing the direction of arrangement of the hexagonal mesh can be alternative, if in a transverse arrangement (sides of the hexagon make up the edges of the prosthesis), FIGURE 2A and 2B, and FIGURE 3A, or arrangement in a direction parallel to the axial (vertices of acute angles form the edges of the prosthesis), FIGURE IA. Overall, visually observing, we obtain a structure with a spatial distribution of a wall in a flat and contiguous structure of hexagonal cells, which grow in the axial direction of the prosthesis, presenting an initial predilation diameter, which allows its positioning in the intravascular lumen or organic duet. Such a prosthetic device will be responsible for the gradual, regulated and continuous release of different drugs, in order to prevent coronary restenosis and induce early regeneration of the previously affected vascular wall, from the release of precursor drugs, coming from this peripheral intradermal biochip, which at released into the bloodstream, after a certain period of time, reach the vascular prosthetic device, drug-eluting stent, in its inner layer, and through a conjugation with the internal matrix of the hexagonal cells (combination and pharmacological reaction, mainly by enzymatic hydrolysis, or other alternative types of chemical reaction compatible with the medium), are responsible for carrying out the release of in-stent medications, whether microcapsules, or unified groups of liposomes, contained and housed in specific superimposed layers in which constitute the hexagonal cells of the internal coating of the stent. These precursor drugs, released in a controlled and programmed manner by this intradermal microchip, present their pulse of release into the bloodstream, as well as intervals, concentration, and other potentially measurable pharmacological variables, subject to control over this microchip implant from any external central modality. , software or mobile communication device. Presence of supporting nanosensors in the structure of the releasing biochip is possible to introduce, with the function of measuring the volume of release pulses, hemodynamic and serum biochemical variables, control of intervals, concentrations, etc.
[0048] A FIGURA 2 indica uma ilustração perspectiva do mesmo dispositivo protético tubular cilíndrico tipo estentor padronizado, expansível intraluminalmente, por cateter-balão ou auto-expansível, em suporte metálico ou em resina biocompatível (FIGURA 2A), desnudo de sua matriz interna de liberação, "coating" interno conforme descrito, revelando ser factível a incorporação de nanossensores/nanochips não somente neste biochip implantável na pele, mas podendo até mesmo ser representados e localizados na superfície interna do stent (FIGURA 2B), ou dispostos nos próprios intervalos entre células, corredores de separação das células hexagonais do "coating" interno da prótese, aptos a regular e aferir compulsoriamente as taxas de concentração de fármacos intra-stent, meia-vida sérica da medicação, taxa de metabolização sequencial, e tempo de eliminação do fármaco, entre várias outras variáveis farmacológicas, metabólicas, como também marcadores bioquímicos. [0048] FIGURE 2 indicates a perspective illustration of the same standardized stent-type cylindrical tubular prosthetic device, intraluminally expandable, by balloon-catheter or self-expanding, in metallic support or in biocompatible resin (FIGURE 2A), stripped of its internal matrix of release, internal coating as described, revealing that the incorporation of nanosensors/nanochips is feasible not only in this implantable biochip in the skin, but can even be represented and located on the internal surface of the stent (FIGURE 2B), or arranged in the proper intervals between cells, separating corridors of the hexagonal cells of the internal coating of the prosthesis, able to regulate and compulsorily measure the concentration rates of intra-stent drugs, serum medication half-life, sequential metabolism rate, and drug elimination time , among several other pharmacological and metabolic variables, as well as biochemical markers.
[0049] A FIGURA 3 é uma ilustração perspectiva diversa de um dispositivo protético tubular cilíndrico, tipo estentor padronizado, expansível intraluminalmente, por cateter-balão ou auto-expansível, em suporte metálico ou em resina biocompatível, isolado de sua matriz interna de liberação (FIGURA 3A), "coating" interno conforme descrito, onde se faz observável o padrão conformacional de sua malha, diverso do anterior, como suporte ou sustentação do "coating" biológico interno, e o protótipo global com o citado "coating" (FIGURA 3B), e um microchip implantado intradérmico periférico, em atuação conjunta; aquele com sua estrutura espacial disposta em células hexagonais, coaptadas lateralmente umas às outras, em conformação geométrica regular poliédrica, e interceptadas em suas extremidades superior e inferior, isto é, lados que compõem o ângulo agudo interno das células hexagonais, por células em formato de losango, em total contiguidade, dispostas em sentido longitudinal da prótese. De maneira global, visualmente observando-se, obtemos uma perspectiva com distribuição espacial de uma parede em estrutura plana e contígua de células hexagonais, coaptadas em seus lados, de ângulos obtusos, umas às outras, e interceptadas por células losangulares, superior e inferiormente, que crescem em sentido axial da prótese, apresentando um diâmetro inicial pré-dilatação, que propicie seu posicionamento em lúmen intravascular ou dueto orgânico (FIGURA 3C). Tal dispositivo protético também será responsável pela liberação gradual, regulada e contínua de fármacos diversos, no sentido de prevenir a reestenose coronária e induzir a regeneração precoce da parede vascular antes acometida, a partir da liberação por fármacos precursores, advindos deste biochip intradérmico periférico, que ao serem liberados na corrente sanguínea, após determinado intervalo de tempo, atingem o dispositivo protético vascular, stent farmacológico, em sua camada interna, e através de uma conjugação com a matriz interna contida tanto nas células hexagonais como células losangulares (combinação e reação farmacológicas, precipuamente por hidrólise enzimática, ou outros tipos alternativos de reação química compatíveis com o meio), são responsáveis por executar a liberação das medicações intra- stent, quer sejam, as microcápsulas, ou grupos unificados de lipossomas, contidas e alojadas em camadas específicas sobrepostas em que constituem as células hexagonais e losangulares do "coating" interno do stent. Esses fármacos precursores liberados de forma controlada e programada por este microchip intradérmico, apresentam seu pulso de liberação na corrente sanguínea, assim como intervalos, concentração, e outras variáveis farmacológicas potencialmente mensuráveis, sujeitos a controle sobre este implante microchip de qualquer modalidade de central externa, software ou aparelho de comunicação móvel, através do uso de ondas de radiofrequência, ou qualquer outro sistema de transmissão/transformação de energia compatível. Nanossensores/nanochips também podem se fazer presentes neste biochip implantável em associação, que constitui o sistema de liberação em sua complexidade, ou até mesmo estar também representados por nanochips ou nanossensores, localizados na superfície interna do stent, ou dispostos nos próprios intervalos entre células, corredores de separação das células hexagonais e losangulares do "coating" interno da prótese, capazes de regular e aferir compulsoriamente as taxas de concentração de fármacos intra-stent, meia-vida sérica da medicação, taxa de metabolização sequencial, e tempo de eliminação do fármaco, entre várias outras variáveis farmacológicas, metabólicas, e marcadores bioquímicos. [0049] FIGURE 3 is a different perspective illustration of a cylindrical tubular prosthetic device, standardized stent type, intraluminally expandable, balloon-catheter or self-expanding, in metallic support or in biocompatible resin, isolated from its internal matrix of release ( FIGURE 3A), internal coating as described, where the conformational pattern of its mesh can be observed, different from the the former, as a support or support of the internal biological coating, and the global prototype with the aforementioned "coating" (FIGURE 3B), and a peripheral intradermal microchip, in joint action; the one with its spatial structure arranged in hexagonal cells, coapted laterally to each other, in a regular polyhedral geometric conformation, and intercepted at their upper and lower ends, that is, sides that make up the acute internal angle of the hexagonal cells, by cells in the shape of a diamond, in complete contiguity, arranged in the longitudinal direction of the prosthesis. Overall, visually observing, we obtain a perspective with spatial distribution of a wall in a flat and contiguous structure of hexagonal cells, coapted on their sides, at obtuse angles, one to the other, and intercepted by lozenge cells, superior and inferior, that grow in the axial direction of the prosthesis, presenting an initial pre-dilation diameter, which allows its positioning in the intravascular lumen or organic duct (FIGURE 3C). Such a prosthetic device will also be responsible for the gradual, regulated and continuous release of several drugs, in order to prevent coronary restenosis and induce early regeneration of the previously affected vascular wall, from the release by precursor drugs, coming from this peripheral intradermal biochip, which when released into the bloodstream, after a certain period of time, they reach the vascular prosthetic device, drug-eluting stent, in its inner layer, and through a conjugation with the internal matrix contained in both hexagonal and diamond cells (combination and pharmacological reaction, primarily by enzymatic hydrolysis, or other alternative types of chemical reaction compatible with the medium), are responsible for executing the release of in-stent medications, whether microcapsules, or unified groups of liposomes, contained and housed in specific layers superimposed on that make up the hexagonal and rhombus cells es of the internal stent coating. These precursor drugs released in a controlled and programmed manner by this intradermal microchip, present their pulse of release into the bloodstream, as well as intervals, concentration, and other potentially measurable pharmacological variables, subject to control over this microchip implant of any external central modality, software or device mobile communication, through the use of radio frequency waves, or any other compatible energy transmission/transformation system. Nanosensors/nanochips can also be present in this implantable biochip in association, which constitutes the delivery system in its complexity, or even be represented by nanochips or nanosensors, located on the inner surface of the stent, or arranged in the very intervals between cells, corridors for separating hexagonal and diamond cells from the internal coating of the prosthesis, capable of regulating and compulsorily measuring the concentration rates of in-stent drugs, drug serum half-life, sequential metabolism rate, and drug elimination time , among several other pharmacological, metabolic, and biochemical markers.
[0050] A FIGURA 4 e a FIGURA 5 representam uma ilustração perspectiva do mesmo dispositivo protético das FIGURAS 1 e 2, agora em conjunto com sua matriz interna de liberação, "coating" interno descrito, que é representado por membrana biológica artificial, biocompatível, podendo ser produzida por técnicas de engenharia tecidual e ser constituída de fosfolipídeos e proteínas, ou semelhante substrato de constituição orgânica ou sintetizado em engenharia tecidual, podendo ser microporosa, ou não, contanto que permita boa capacidade de difusão e liberação de drogas. O projeto geométrico espacial do "coating" interno se dispõe em células também hexagonais, conforme na FIGURA 1B e FIGURA 1C, que advêm do prolongamento da prótese de sustentação, ou seja, das próprias células que compõem a conformação espacial do stent propriamente dito, abertas, em toda superfície interna do estentor, ou seja, em direção à luz vascular (FIGURA 4A, 4B e 4C), ou se dispõe em células hexagonais alternadas com células losangulares interceptadas às últimas, conforme o "design" demonstrado da malha metálica na FIGURA IA, que também advêm do prolongamento da prótese de sustentação, ou seja, das próprias células que compõem a conformação espacial do stent propriamente dito, abertas, em toda superfície interna do estentor, ou seja, em direção à luz vascular(FIGURA 5A e 5B). [0050] FIGURE 4 and FIGURE 5 represent a perspective illustration of the same prosthetic device of FIGURES 1 and 2, now together with its internal release matrix, described internal "coating", which is represented by artificial biological membrane, biocompatible, It can be produced by tissue engineering techniques and consist of phospholipids and proteins, or similar substrate of organic constitution or synthesized in tissue engineering, and can be microporous or not, as long as it allows good diffusion and drug release capacity. The spatial geometric design of the internal coating is arranged in hexagonal cells, as shown in FIGURE 1B and FIGURE 1C, which come from the extension of the support prosthesis, that is, from the cells that make up the spatial conformation of the stent itself, open , on the entire internal surface of the stentor, that is, towards the vascular lumen (FIGURE 4A, 4B and 4C), or it is arranged in alternating hexagonal cells with lozenge cells intercepted to the last ones, according to the "design" shown of the metallic mesh in FIGURE IA, which also come from the extension of the supporting prosthesis, that is, from the cells that make up the spatial conformation of the stent itself, open, on the entire internal surface of the stent, that is, towards the vascular lumen (FIGURE 5A and 5B ).
[0051] A FIGURA 6 evidencia, de um foco aproximado, as microcápsulas ou grupo de lipossomas, contidos no interior das células hexagonais, visto que referenciado em concreto a primeira modalidade de stent, com padrão conformacional de seu "design" de malha continuado entre células hexagonais, conforme já frisado em epígrafe, estas então que formam a membrana biológica de sustentação, e que se dispõem agregadas e sustentadas, em camadas específicas, imersas em uma matriz que forma cadeias ou redes de macromoléculas de proteínas, ou estas conjugadas a outras moléculas orgânicas como fosfolipídeos, em forma de filme biológico ou gel, de forma que propiciem suficiente sustentabilidade e uma ideal taxa de fixação. [0051] FIGURE 6 shows, from an approximate focus, the microcapsules or group of liposomes, contained within the hexagonal cells, since referenced specifically, the first type of stent, with a conformational pattern of its "design" of mesh continued between hexagonal cells, as already highlighted in the epigraph, these then form the biological support membrane, and which are arranged in aggregates and sustained, in specific layers , immersed in a matrix that forms chains or networks of protein macromolecules, or these conjugated to other organic molecules such as phospholipids, in the form of a biological film or gel, in a way that provides sufficient sustainability and an ideal fixation rate.
[0052] As FIGURAS 6 e 7 são ilustrações perspectivas do referido dispositivo protético tubular cilíndrico, tipo estentor padronizado, expansível intraluminalmente, com sua matriz interna de liberação de fármacos, em um corte aproximado que mostra como esta matriz se dispõe, quer seja, em células também hexagonais, em um padrão conformacional universal (FIGURA 6), ou conforme o modelo diverso com células hexagonais coaptadas lateralmente, interceptadas superior e inferiormente por células losangulares, logo formando um padrão conformacional de seu "design" de malha alternado entre células hexagonais e losangulares, conforme já frisado em epígrafe (FIGURA 7); que advêm do prolongamento da prótese de sustentação, ou seja, das próprias células que compõem a conformação espacial da prótese, segundo seu "design- modelo" de referência, propriamente dita, abertas, em toda superfície interna do estentor, ou seja, em direção à luz vascular. Vê-se que as microcápsulas ou grupos de lipossomas, contidos no interior das células hexagonais, ou células hexagonais + células losangulares, que formam a membrana biológica de sustentação, se dispõem agregadas e sustentadas, em camadas homogêneas, umas sobre as outras (nas figuras, representadas por cores diferentes, ou seja, cada camada mostrada em determinada cor, representando uma modalidade de grupo de lipossoma/microcápsula, contendo um tipo diferente de droga), imersas em uma matriz que forma cadeias ou redes de macromoléculas de proteínas, ou outros tipos de biomoléculas, de forma que propiciem suficiente sustentabilidade e uma ideal taxa de fixação. Cada camada será formada por uma matriz de sustentação de composição química diversa, uma da outra, objetivando propiciar a especificidade e seletividade de liberação de determinado fármaco intra- stent, contido nos lipossomas/microcápsulas, de acordo com o tipo de medicação liberada pelo implante de microchip intradérmico, sendo esta liberação com controle totalmente otimizado por central remota, quanto ao intervalo de pulsos de liberação, concentração, doses, especificidade farmacológica, etc. Este fármaco precursor, liberado via implante de microchip intradérmico, ao cair na corrente sanguínea, atingindo a superfície interna do stent, será responsável por interagir com a determinada matriz de sustentação de determinada camada, para a qual é programada, dissolvendo-a e liberando, de forma seletiva e específica, determinado tipo de fármaco, objetivando não somente o controle da reestenose vascular, mas também modulando a resposta inflamatória e proliferativa da parede miointimal, adversidade que frequentemente ocorria no implante dos stents farmacológicos poliméricos, de um modo geral. [0052] FIGURES 6 and 7 are perspective illustrations of said cylindrical tubular prosthetic device, standardized stent type, intraluminally expandable, with its internal drug delivery matrix, in an approximate section that shows how this matrix is arranged, whether in cells also hexagonal, in a universal conformational pattern (FIGURE 6), or according to the diverse model with hexagonal cells coapted laterally, intercepted superiorly and inferiorly by lozenge cells, thus forming a conformational pattern of its mesh "design" alternating between hexagonal cells and lozenge, as already mentioned in the title (FIGURE 7); that come from the extension of the supporting prosthesis, that is, from the cells that compose the spatial conformation of the prosthesis, according to its reference "design-model", properly speaking, open, on the entire internal surface of the stent, that is, towards the to vascular light. It can be seen that the microcapsules or groups of liposomes, contained within the hexagonal cells, or hexagonal cells + diamond cells, which form the biological support membrane, are arranged in aggregates and supported, in homogeneous layers, one on top of the other (in the figures , represented by different colors, that is, each layer shown in a certain color, representing a modality of liposome/microcapsule group, containing a different type of drug), immersed in a matrix that forms chains or networks of protein macromolecules, or others types of biomolecules, in a way that provides sufficient sustainability and an ideal fixation rate. Each layer will be formed by a support matrix of different chemical composition, one from the other, aiming to provide the specificity and selectivity of release of a certain in-stent drug, contained in liposomes/microcapsules, according to the type of medication. released by the intradermal microchip implant, this release being fully optimized by a remote control center, regarding the release pulse interval, concentration, doses, pharmacological specificity, etc. This precursor drug, released via intradermal microchip implantation, when falling into the bloodstream, reaching the internal surface of the stent, will be responsible for interacting with the specific support matrix of a certain layer, for which it is programmed, dissolving and releasing it, selectively and specifically, a particular type of drug, aiming not only to control vascular restenosis, but also to modulate the inflammatory and proliferative response of the myointimal wall, adversity that frequently occurred in the implantation of polymeric drug-eluting stents, in general.
[0053] As FIGURAS 8 e 9 são ilustrações perspectivas do referido dispositivo protético tubular cilíndrico, tipo estentor padronizado, expansível intraluminalmente, com sua matriz interna de liberação de fármacos, e a representação esquemática da substância liberada via implante intradérmico de qualquer constituição (fármacos precursores), representado por matrizes poliméricas de liberação à distância, microfluidos, mas principalmente por um biochip de liberação de substâncias farmacológicas, remotamente programadas e controladas, entre outras. Biochip que poderá ter constituição inorgânica ou orgânica, de polímero ou silicone, ou qualquer outra resina compatível. Estes fármacos precursores, liberados via microchip intradérmico, atingirão gradativamente a superfície do stent, onde serão responsáveis por interagir nos sítios específicos, para os quais são programados, dissolvendo a matriz de sustentação do determinado fármaco intra-stent a ser liberado, processo este que ocorre das camadas mais altas (externas) para as mais baixas (profundas). [0053] FIGURES 8 and 9 are perspective illustrations of said cylindrical tubular prosthetic device, standardized stent type, intraluminally expandable, with its internal drug delivery matrix, and the schematic representation of the substance released via intradermal implant of any constitution (precursor drugs ), represented by polymeric matrices for remote release, microfluids, but mainly by a biochip for releasing pharmacological substances, remotely programmed and controlled, among others. Biochip that may have an inorganic or organic constitution, polymer or silicone, or any other compatible resin. These precursor drugs, released via an intradermal microchip, will gradually reach the surface of the stent, where they will be responsible for interacting in the specific sites for which they are programmed, dissolving the support matrix of the particular intra-stent drug to be released, a process that occurs from the highest (outer) to the lowest (deep) layers.
[0054] As FIGURAS 10 e 11 são uma nova ilustração perspectiva do mesmo dispositivo protético das FIGURAS 1, 2, 3 e 4 em que retratam a chegada das substâncias/medicações liberadas por implantes subdérmicos, aquelas de constituição bioquímica diversa da anterior, precipuamente no que diz respeito à aplicação de um biochip implantado subdérmico, cuja liberação desses fármacos precursores se deva de forma controlada, quantificada e monitorizada por central externa remota, atingindo a luz do vaso em que se encontra o dispositivo protético, e interajam com a matriz de sustentação das camadas que formam e preenchem a cavidade interna de cada célula hexagonal, ou hexagonal e losangular, da plataforma de liberação. Por óbvio, estas substâncias vão interagir com as primeiras camadas da matriz de sustentação localizadas em direção à luz do vaso, ou seja, somente e especificamente com aquelas camadas cujos constituintes químicos sejam reativos à ação destas substâncias, propiciando assim a liberação das microcápsulas/grupos de lipossomas armazenados e sustentados por esta matriz. Desta forma, é patente a possibilidade de efetuar uma seletividade e diversidade no mecanismo de liberação de fármacos aplicados intra-stent ou intra- dispositivo protético. Em apresentações esquemáticas coloridas, as diversas representações de cada espécie de medicação administrada são diferenciadas por cada cor, e esta também aplicada nas microcápsulas/grupos de lipossomas programados para serem liberados, a partir da camada específica (matriz de sustentação da célula hexagonal ou losangular). [0054] FIGURES 10 and 11 are a new perspective illustration of the same prosthetic device as FIGURES 1, 2, 3 and 4 in which they portray the arrival of substances/medications released by subdermal implants, those with a different biochemical constitution from the previous one, mainly in the with regard to the application of a subdermal implanted biochip, whose release of these precursor drugs must be controlled, quantified and monitored by a remote external central, reaching the light of the vessel in which the prosthetic device is located, and interact with the support matrix of the layers that form and fill the internal cavity of each hexagonal cell, or hexagonal and diamond-shaped, of the delivery platform. Obviously, these substances will interact with the first layers of the support matrix located towards the vessel light, that is, only and specifically with those layers whose chemical constituents are reactive to the action of these substances, thus providing the release of microcapsules/groups of liposomes stored and supported by this matrix. Thus, it is clear the possibility of effecting a selectivity and diversity in the release mechanism of drugs applied intra-stent or intra-prosthetic device. In schematic color presentations, the different representations of each type of medication administered are differentiated by each color, and this is also applied to the microcapsules/groups of liposomes programmed to be released, from the specific layer (hexagonal or lozenge cell support matrix) .
[0055] As FIGURAS 12 a 16 representam sequencialmente a ilustração perspectiva do mecanismo de interação da substância/medicação precursora, liberada pelo biochip intradérmico, que atinge o stent, com a sua superfície interna em que conjuga as camadas de sustentação dos lipossomas/microcápsulas, e estes progressivamente liberados para atuação na parede vascular. Microcápsulas/grupos de lipossomas nos quais drogas anti- mioproliferativas, antiaterogênicas e antitrombogênicas poderão ser embebidas isoladamente ou conjugadas a substrato biológico de sustentação espacial, disperso entre as mesmas microcápsulas, em qualquer apresentação, seja sólida, líquida, gel, etc. [0055] FIGURES 12 to 16 sequentially represent the perspective illustration of the mechanism of interaction of the precursor substance/medication, released by the intradermal biochip, which reaches the stent, with its internal surface where it combines the support layers of the liposomes/microcapsules, and these are progressively released to act on the vascular wall. Microcapsules/groups of liposomes in which antimyoproliferative, antiatherogenic and antithrombogenic drugs may be imbibed alone or conjugated to a biological substrate of spatial support, dispersed among the same microcapsules, in any presentation, whether solid, liquid, gel, etc.
[0056] As FIGURAS 17 a 24 representam também, em visão perspectiva através do dispositivo protético vascular, um novo processo de chegada de uma diferente substância administrada liberada por qualquer outra via, quer seja um implante intradérmico de constituição química ou eletrônica (biochip com reservatório de liberação de drogas, controlado por central externa), ou seja, um biochip intradérmico, chegando até a superfície interna do stent, culminando, de maneira igual ao descrito no último parágrafo, com a liberação de outros tipos de medicamentos intra-stent, compatíveis e programados para liberação conforme a ação da substância liberada pelo implante intradérmico. [0056] FIGURES 17 to 24 also represent, in perspective view through the vascular prosthetic device, a new process of arrival of a different administered substance released by any other route, whether it is an intradermal implant of chemical or electronic constitution (biochip with reservoir drug release, controlled by an external central), that is, an intradermal biochip, reaching the inner surface of the stent, culminating, in the same way as described in the last paragraph, with the release of other types of in-stent drugs, compatible and programmed for release according to the action of the substance released by the intradermal implant.
[0057] A FIGURA 25 por fim vem demonstrar, em essência ou escopo, a novidade e pioneirismo em que se baseia tal privilégio, com a introdução de uma nova modalidade de liberação de fármacos intra-stent vascular, através de atuação remota de um biochip implantável, contendo uma ou mais placas de ativação-recepção, operada(s) por qualquer modalidade de central/comando externo, seja controle automatizado, aparelhos de telefonia, unidade PC, etc, e que naquelas se observam múltiplos micro- reservatórios de suporte e sustentação dos fármacos precursores, estes serão então liberados via corrente sanguínea, atingindo o stent vascular, e atuando localmente na liberação farmacológica específica, disposta em sua cobertura interna, sob pulsos de controle temporal, de concentração e tipo específico de medicação intra-stent. A FIGURA 26 enfatiza que é factível e oportuno considerar a produção alternativa deste dispositivo protético orgânico ou vascular numa variante deste segundo modelo, de células hexagonais, coaptadas em suas extremidades inferior e superior por células em losango, e estas, por sua vez, serem fenestradas, não revestidas internamente em sua área pelo "coating" de liberação de fármacos, consistindo em uma vantagem e propriedade de indicação para a introdução da prótese vascular em situações de lesões em ramos colaterais. [0057] Finally, FIGURE 25 demonstrates, in essence or scope, the novelty and pioneering spirit on which this privilege is based, with the introduction of a new modality of drug release in vascular stent, through the remote action of a biochip implantable, containing one or more activation-reception boards, operated by any modality of central/external command, be it automated control, telephony devices, PC unit, etc. support of the precursor drugs, these will then be released via the bloodstream, reaching the vascular stent, and acting locally in the specific pharmacological release, arranged in its internal cover, under temporal control pulses, concentration and specific type of in-stent medication. FIGURE 26 emphasizes that it is feasible and opportune to consider the alternative production of this organic or vascular prosthetic device in a variant of this second model, with hexagonal cells, coapted at their lower and upper ends by diamond cells, and these, in turn, are fenestrated. , not coated internally in their area by the drug release coating, which is an advantage and an indication property for the introduction of vascular prosthesis in situations of lesions in collateral branches.
[0058] As FIGURAS 27 a 30 demonstram em visão perspectiva o mesmo sistema de liberação de fármacos intraluminal das figuras anteriores, em que, numa etapa seguinte de nova administração de outro tipo de substância, já atinge, interage e libera outro tipo de medicação intra- stent, contida em microcápsulas/lipossomas agregados e sustentados em diferente camada, constituída por matriz compatível de sustentação. DESCRIÇÃO DETALHADA DA MODALIDADE PREFERIDA [0058] FIGURES 27 to 30 demonstrate in perspective view the same intraluminal drug delivery system of the previous figures, in which, in a next step of new administration of another type of substance, it already reaches, interacts and releases another type of intraluminal medication - stent, contained in aggregated microcapsules/liposomes and supported in a different layer, consisting of a compatible support matrix. DETAILED DESCRIPTION OF THE PREFERRED MODALITY
[0059] De modo mais específico, certas referências são apresentadas a seguir, em relação às FIGURAS 1, 2, 3 e 4, as quais ilustram uma primeira e segunda modalidades de um dispositivo protético tubular cilíndrico intraluminal expansível, ou dispositivo protético tipo estentor, ou simplesmente prótese, ou ainda stent, construído de acordo com as normas da presente invenção. Deve-se entender que os referidos termos "dispositivo protético tubular cilíndrico intraluminal expansível", "dispositivo protético tipo estentor", "stent" ou simplesmente "prótese" são aplicados de maneira simultânea para denominar a presente invenção, assim como esta última pode ter sua utilização atribuída a segmentos vasculares de um modo geral, como também a duetos orgânicos, com o intuito de corrigir estenoses ou estreitamentos e sustentar o tônus dos mesmos. [0059] More specifically, certain references are presented below, in relation to FIGURES 1, 2, 3 and 4, which illustrate a first and second embodiment of an expandable intraluminal cylindrical tubular prosthetic device, or stent type prosthetic device, or simply a prosthesis, or even a stent, built in accordance with the standards of the present invention. It should be understood that the aforementioned terms "expandable intraluminal cylindrical tubular prosthetic device", "stent type prosthetic device", "stent" or simply "prosthesis" are applied simultaneously to name the present invention, as the latter may have its use attributed to vascular segments in a general, as well as to organic ducts, with the aim of correcting stenosis or narrowing and sustaining their tonus.
[0060] A FIGURA 1 apresenta o dispositivo protético tipo estentor 41 (FIGURA IA), em suporte metálico ou em resina biocompatível, com sua estrutura espacial disposta em células hexagonais, coaptadas lateralmente umas às outras, em conformação geométrica regular poliédrica, e interceptadas em suas extremidades superior e inferior, isto é, lados que compõem o ângulo agudo interno das células hexagonais, por células em formato de losango, em total contiguidade, dispostas em sentido longitudinal da prótese. A FIGURA 1B mostra o mesmo dispositivo protético tipo estentor 31, em suporte metálico ou resina biocompatível, cuja estrutura espacial configura a modalidade alternativa conformacional de células hexagonais, coaptadas umas às outras, dispostas em sentido longitudinal da prótese, isolado de sua matriz interna de liberação, "coating" interno conforme supradescrito 32, onde se faz observável o padrão conformacional de sua malha, suporte ou sustentação do "coating" biológico interno, este incrementado à FIGURA 1C, a qual define a estrutura global do stent (dispositivo protético intravascular) 50, já associado ou em conjunto com sua matriz interna de liberação, "coating" interno descrito, que é representado por membrana biológica artificial, biocompatível, podendo ser constituída de fosfolipídeos e proteínas, ou semelhante substrato, podendo ser microporosa, ou não, contanto que permita boa capacidade de difusão e liberação de drogas 32. Além de que, observa-se ainda na FIGURA 1, um microchip implantado intradérmico periférico 43, em atuação conjunta com o stent, provocando a liberação de fármacos precursores 36, contidos em placa(s) 44 que se localizam em seu interior, dispostos em grupos de micro- reservatórios, envolvidos por circuitos peculiares 45, cada qual contendo um tipo específico de fármaco precursor 36, que será liberado na corrente sanguínea, o qual, após determinado intervalo de tempo, atinge o dispositivo protético vascular 50, stent farmacológico, em sua camada interna, e através de uma conjugação com a matriz interna das células que constituem seu "coating" (revestimento interno) 32, estratificadas em camadas com as medicações específicas intra-stent 33, será responsável por executar a liberação destas, quer sejam, as microcápsulas 33, ou grupos unificados de lipossomas, contidas e alojadas em camadas específicas sobrepostas em que constituem as células hexagonais, ou losangulares, do "coating" interno do stent 32. Conforme já aduzido, esses fármacos precursores 36, liberados de forma controlada e programada por este microchip intradérmico 43, apresentam seu pulso de liberação na corrente sanguínea, assim como intervalos, concentração, e outras variáveis farmacológicas potencialmente mensuráveis, sujeitos a controle sobre este implante microchip de qualquer modalidade de central externa, software ou aparelho de comunicação móvel. Conforme já aludido, a presença de nanossensor(es) 46 coadjuvante(s) na estrutura do biochip liberador é passível de introdução, conforme demonstrado também na FIGURA 1, com a função de medição de volume de pulsos de liberação, variáveis hemodinâmicas e bioquímicas séricas, controle de intervalos, concentrações, etc. [0060] FIGURE 1 presents the prosthetic device type stenter 41 (FIGURE IA), in metallic support or in biocompatible resin, with its spatial structure arranged in hexagonal cells, coapted laterally to each other, in regular polyhedral geometric conformation, and intercepted in its upper and lower ends, that is, sides that make up the internal acute angle of the hexagonal cells, by diamond-shaped cells, in complete contiguity, arranged in the longitudinal direction of the prosthesis. FIGURE 1B shows the same stent type prosthetic device 31, in metallic support or biocompatible resin, whose spatial structure configures the conformational alternative modality of hexagonal cells, coapted together, arranged in the longitudinal direction of the prosthesis, isolated from its internal matrix of release , internal "coating" as described above 32, where the conformational pattern of its mesh, support or support of the internal biological coating can be observed, this increased to FIGURE 1C, which defines the global structure of the stent (intravascular prosthetic device) 50 , already associated or together with its internal release matrix, described internal "coating", which is represented by an artificial biological membrane, biocompatible, which may consist of phospholipids and proteins, or similar substrate, and may or may not be microporous, as long as allow good diffusion capacity and drug release 32. In addition, it is also observed in FIGURE 1, a microc peripheral intradermal implanted hip 43, acting together with the stent, causing the release of precursor drugs 36, contained in plate(s) 44 that are located inside, arranged in groups of micro-reservoirs, surrounded by peculiar circuits 45, each which contains a specific type of precursor drug 36, which will be released into the bloodstream, which, after a certain time interval, reaches the vascular prosthetic device 50, drug-eluting stent, in its inner layer, and through a conjugation with the matrix of the cells that constitute their "coating" (internal coating) 32, stratified in layers with specific intra-stent medications 33, will be responsible for carrying out the release of these, either the microcapsules 33 or unified groups of liposomes, contained and housed in specific superimposed layers that constitute the hexagonal or diamond-shaped cells of the stent's internal coating 32. As already mentioned, these precursor drugs 36, released in a controlled and programmed manner by this intradermal microchip 43, present their release pulse in the bloodstream, as well as ranges, concentration, and other potentially measurable pharmacological variables, subject to control over this microchip implant from any form of external switch, software, or mobile communication device. As already alluded to, the presence of nanosensor(s) 46 adjunct(s) in the structure of the releasing biochip is subject to introduction, as also shown in FIGURE 1, with the function of measuring the volume of release pulses, hemodynamic and serum biochemical variables , control of intervals, concentrations, etc.
[0061] A FIGURA 2 é uma ilustração perspectiva diversa de um dispositivo protético tubular cilíndrico, tipo estentor padronizado 41, expansível intraluminalmente, por cateter-balão ou auto-expansível, em suporte metálico ou em resina biocompatível (FIGURA 2A), revelando ser factível a incorporação de nanossensores/nanochips 49 não somente neste biochip implantável na pele 43, mas podendo até mesmo ser representados e localizados na superfície interna do "stent" (FIGURA 2A e FIGURA 2B), cujas funções se fazem supradescritas. Na FIGURA 3, o dispositivo protético tubular cilíndrico, tipo estentor padronizado 41, faz-se acompanhado de sua matriz interna de liberação, "coating" interno conforme descrito 42, vide FIGURA 3A e FIGURA 3C, cuja conformação espacial ("design") acompanha o padrão espacial geométrico do estentor metálico de suporte 41, pormenorizado nesta, onde se faz observável o padrão conformacional de sua malha, diverso do anterior, como suporte ou sustentação do "coating" biológico interno 42, e um microchip implantado intradérmico periférico 43, em atuação conjunta; aquele com sua estrutura espacial disposta em células hexagonais 47, coaptadas lateralmente umas às outras, em conformação geométrica regular poliédrica, e interceptadas em suas extremidades superior e inferior, isto é, lados que compõem o ângulo agudo interno das células hexagonais, por células em formato de losango 48, em total contiguidade, dispostas em sentido longitudinal da prótese. De maneira global, visualmente observando-se, obtemos uma estrutura com distribuição espacial de uma parede em estrutura plana e contígua de células hexagonais 47, coaptadas em seus lados, de ângulos obtusos, umas às outras, e interceptadas por células losangulares 48, superior e inferiormente, que crescem em sentido axial da prótese, apresentando um diâmetro inicial pré-dilatação, que propicie seu posicionamento em lúmen intravascular 60 ou dueto orgânico. Tal dispositivo protético também será responsável pela liberação gradual, regulada e contínua de fármacos diversos via microcápsulas ou grupo de lipossomas 33, no sentido de prevenir a reestenose coronária e induzir a regeneração precoce da parede vascular antes acometida, a partir da liberação por fármacos precursores, advindos deste biochip intradérmico periférico 43, que ao serem liberados na corrente sanguínea, após determinado intervalo de tempo, atingem o dispositivo protético vascular, stent farmacológico 51, neste exemplo de modalidade diversa da precursora 50, em sua camada interna, e através de uma conjugação com a matriz interna 35 contida tanto nas células hexagonais como células losangulares (combinação e reação farmacológicas, precipuamente por hidrólise enzimática, ou outros tipos alternativos de reação química compatíveis com o meio), são responsáveis por executar a liberação das medicações intra-stent, quer sejam, as microcápsulas, ou grupos unificados de lipossomas 33, contidas e alojadas em camadas específicas sobrepostas em que constituem as células hexagonais 47 e losangulares 48 do "coating" interno do stent 42. Esses fármacos precursores 36 liberados de forma controlada e programada por este microchip intradérmico 43, apresentam seu pulso de liberação na corrente sanguínea, assim como intervalos, concentração, e outras variáveis farmacológicas potencialmente mensuráveis, sujeitos a controle sobre este implante microchip de qualquer modalidade de central externa, software ou aparelho de comunicação móvel, através do uso de ondas de radiofrequência ou qualquer outro sistema de transmissão/transformação de energia compatível. Nanossensores/nanochips 46 também podem se fazer presentes neste biochip implantável em associação, que constitui o sistema de liberação em sua complexidade, ou até mesmo estar também representados por nanochips ou nanossensores 49, localizados na superfície interna do stent 51, vide letras (B)e(C), em qualquer de suas modalidades, ou dispostos nos próprios intervalos entre células, corredores de separação das células hexagonais 47 e losangulares 48 do "coating" interno da prótese 42, conforme explícito na FIGURA 2, capazes de regular e aferir compulsoriamente as taxas de concentração de fármacos intra-stent, meia-vida sérica da medicação, taxa de metabolização sequencial, e tempo de eliminação do fármaco, entre várias outras variáveis farmacológicas, metabólicas, e marcadores bioquímicos. [0061] FIGURE 2 is a different perspective illustration of a cylindrical tubular prosthetic device, standardized stenter type 41, intraluminally expandable, by balloon-catheter or self-expanding, in metallic support or in biocompatible resin (FIGURE 2A), proving to be feasible the incorporation of nanosensors/nanochips 49 not only in this skin implantable biochip 43, but they can even be represented and located on the inner surface of the "stent" (FIGURE 2A and FIGURE 2B), whose functions are described above. In FIGURE 3, the cylindrical tubular prosthetic device, standardized stenter type 41, is accompanied by its internal release matrix, internal "coating" as described 42, see FIGURE 3A and FIGURE 3C, whose spatial conformation ("design") follows the geometric spatial pattern of the metallic support stent 41, detailed in this one, where the conformational pattern of its mesh, different from the previous one, as support or support of the internal biological coating 42, and a peripheral intradermal implanted microchip 43, in joint action; the one with its spatial structure arranged in hexagonal cells 47, coapted laterally to each other, in polyhedral regular geometric conformation, and intercepted at their upper and lower ends, that is, sides that make up the internal acute angle of the hexagonal cells, by rhombus-shaped cells 48, in complete contiguity, arranged in the longitudinal direction of the prosthesis. Overall, visually observing, we obtain a structure with spatial distribution of a wall in a flat and contiguous structure of hexagonal cells 47, coaptation on their sides, at obtuse angles, one to the other, and intercepted by lozenge cells 48, superior and inferiorly, which grow in the axial direction of the prosthesis, presenting an initial pre-dilation diameter, which allows its positioning in the intravascular lumen 60 or organic duct. Such a prosthetic device will also be responsible for the gradual, regulated and continuous release of different drugs via microcapsules or a group of liposomes 33, in the sense of preventing coronary restenosis and inducing early regeneration of the previously affected vascular wall, from the release by precursor drugs, coming from this peripheral intradermal biochip 43, which, when released into the bloodstream, after a certain time interval, reach the vascular prosthetic device, drug-eluting stent 51, in this example of a different modality from the precursor 50, in its inner layer, and through a conjugation with the internal matrix 35 contained in both hexagonal and lozenge cells (combination and pharmacological reaction, mainly by enzymatic hydrolysis, or other alternative types of chemical reaction compatible with the medium), are responsible for executing the in-stent medication release, either namely, microcapsules, or unified groups of liposomes 33 , contained and housed in specific superimposed layers that make up the hexagonal 47 and lozenge 48 cells of the stent's internal coating 42. These precursor drugs 36 released in a controlled and programmed manner by this intradermal microchip 43, present their release pulse in the current blood, as well as ranges, concentration, and other potentially measurable pharmacological variables, subject to control over this microchip implant from any form of external central, software or mobile communication device, through the use of radiofrequency waves or any other transmission/ compatible energy transformation. Nanosensors/nanochips 46 can also be present in this implantable biochip in association, which constitutes the delivery system in its complexity, or even be represented by nanochips or nanosensors 49, located on the inner surface of the stent 51, see letters (B) and (C), in any of their modalities, or arranged in the intervals between cells, separating corridors of hexagonal 47 and lozenge 48 cells of the internal coating of the prosthesis 42, as explicit in FIGURE 2, capable of regulating and compulsorily measuring the concentration rates of in-stent drugs , serum medication half-life, sequential metabolism rate, and drug elimination time, among several other pharmacological, metabolic, and biochemical markers.
[0062] Em referência às FIGURAS 1, 2, 3 e 4, os dispositivos protéticos tipo estentor 50 e 51 são constituídos em sua superfície por diagrama tubular fenestrado 31 e 41, sem apresentar articulação mediana, de formato regular cilíndrico, multifilamentar, associado a "coating" interno para liberação de fármacos podendo ser um dispositivo auto-expansível ou balão-expansível. Observando- se agora com maiores detalhes, com referência à FIGURA 4, que ilustra o dispositivo protético tipo estentor 50, evidenciando, de um foco aproximado, as microcápsulas ou lipossomas 33, contidos no interior das células hexagonais 34 que formam a membrana biológica de sustentação, e que se dispõem agregadas e sustentadas, imersas em uma matriz que forma cadeias ou redes de macromoléculas de proteínas 35, ou estas conjugadas a outras moléculas orgânicas como fosfolipídeos, em forma de filme biológico ou gel, de forma que propiciem suficiente sustentabilidade e uma ideal taxa de fixação. [0062] Referring to FIGURES 1, 2, 3 and 4, the stenter-type prosthetic devices 50 and 51 are constituted on their surface by a fenestrated tubular diagram 31 and 41, without presenting median articulation, with a regular cylindrical shape, multifilament, associated with internal coating for drug delivery, which can be a self-expanding or balloon-expandable device. Looking now in more detail, with reference to FIGURE 4, which illustrates the stent-type prosthetic device 50, showing, from an approximate focus, the microcapsules or liposomes 33, contained within the hexagonal cells 34 that form the biological support membrane , and which are arranged in aggregate and sustained, immersed in a matrix that forms chains or networks of protein macromolecules 35, or these conjugated to other organic molecules such as phospholipids, in the form of a biological film or gel, in a way that provides sufficient sustainability and a ideal fixation rate.
[0063] A FIGURA 3 reporta-se a uma ilustração perspectiva diversa de um dispositivo protético tubular cilíndrico, tipo estentor padronizado 41, segundo mostra a FIGURA 3A, expansível intraluminalmente, por cateter- balão ou auto-expansível, em suporte metálico ou em resina biocompatível, desacompanhado de sua matriz interna de liberação, e na FIGURA 3B, já acompanha-se desta matriz em questão, "coating" interno conforme descrito 42, cuja conformação espacial ("design") acompanha o padrão espacial geométrico do estentor metálico de suporte 41, onde se faz observável o padrão conformacional de sua malha, diverso do anterior, como suporte ou sustentação deste "coating" biológico interno 42, e um microchip implantado intradérmico periférico 43, em atuação conjunta; aquele com sua estrutura espacial disposta em células hexagonais 47, coaptadas lateralmente umas às outras, em conformação geométrica regular poliédrica, e interceptadas em suas extremidades superior e inferior, isto é, lados que compõem o ângulo agudo interno das células hexagonais, por células em formato de losango 48, em total contiguidade, dispostas em sentido longitudinal da prótese. Tal dispositivo protético também será responsável pela liberação gradual, regulada e contínua de fármacos diversos via microcápsulas ou grupo de lipossomas 33, no sentido de prevenir a reestenose coronária e induzir a regeneração precoce da parede vascular antes acometida, a partir da liberação por fármacos precursores 36, advindos deste biochip intradérmico periférico 43, que atingem o dispositivo protético vascular, stent farmacológico 51, em sua camada interna, e através de uma conjugação com a matriz interna 35 contida tanto nas células hexagonais como células losangulares, sendo este fármacos precursores 36 responsáveis por executar a liberação das medicações intra- stent, quer sejam, as microcápsulas, ou grupos unificados de lipossomas 33, contidas e alojadas em camadas específicas sobrepostas em que constituem as células hexagonais 47 e losangulares 48 do "coating" interno do stent 42. Esses fármacos precursores 36 liberados de forma controlada e programada por este microchip intradérmico 43, apresentam seu pulso de liberação na corrente sanguínea, assim como intervalos, concentração, e outras variáveis farmacológicas potencialmente mensuráveis, sujeitos a controle, exercido sobre este implante microchip, de qualquer modalidade de central externa, software ou aparelho de comunicação móvel 55, através do uso de ondas de radiofrequência, ou qualquer outro sistema de transmissão/transformação de energia compatível. Nanossensores/nanochips 46 também podem se fazer presentes neste biochip implantável em associação, que constitui o sistema de liberação em sua complexidade, ou até mesmo estar também representados por nanochips ou nanossensores 49, localizados na superfície interna do stent 51, em qualquer de suas modalidades, ou dispostos nos próprios intervalos entre células, corredores de separação das células hexagonais 47 e losangulares 48 do "coating" interno da prótese 42, conforme explícito na FIGURA 2, capazes de regular e aferir compulsoriamente as taxas de concentração de fármacos intra-stent, meia-vida sérica da medicação, taxa de metabolização sequencial, e tempo de eliminação do fármaco, entre várias outras variáveis farmacológicas, metabólicas, e marcadores bioquímicos. [0063] FIGURE 3 refers to a different perspective illustration of a cylindrical tubular prosthetic device, standardized stenter type 41, as shown in FIGURE 3A, intraluminally expandable, by balloon-catheter or self-expandable, in metallic support or in resin biocompatible, unaccompanied by its internal release matrix, and in FIGURE 3B, this matrix in question is already accompanied, internal "coating" as described 42, whose spatial conformation ("design") follows the geometric spatial pattern of the metallic support stent 41, where the conformational pattern of its mesh can be observed, different from the previous one, as support or support of this internal biological coating 42, and a microchip implanted peripheral intradermal 43, working together; the one with its spatial structure arranged in hexagonal cells 47, coapted laterally to each other, in regular polyhedral geometric conformation, and intercepted at their upper and lower ends, that is, sides that make up the acute internal angle of the hexagonal cells, by cells in the form of of diamond 48, in complete contiguity, arranged in the longitudinal direction of the prosthesis. Such a prosthetic device will also be responsible for the gradual, regulated and continuous release of different drugs via microcapsules or a group of liposomes 33, in the sense of preventing coronary restenosis and inducing early regeneration of the previously affected vascular wall, from the release by precursor drugs 36 , arising from this peripheral intradermal biochip 43, which reach the vascular prosthetic device, drug-eluting stent 51, in its inner layer, and through a conjugation with the internal matrix 35 contained in both hexagonal and lozenge cells, these being precursor drugs 36 responsible for perform the release of in-stent medications, whether microcapsules or unified groups of liposomes 33, contained and housed in specific superimposed layers in which the hexagonal 47 and lozenge 48 cells of the stent's internal coating 42 are constituted. 36 precursors released in a controlled and programmed manner by this microchip in 43, present their pulse of release into the bloodstream, as well as intervals, concentration, and other potentially measurable pharmacological variables, subject to control, exercised on this microchip implant, of any external central modality, software or mobile communication device 55, through the use of radio frequency waves, or any other compatible energy transmission/transformation system. Nanosensors/nanochips 46 can also be present in this implantable biochip in association, which constitutes the delivery system in its complexity, or even be represented by nanochips or nanosensors 49, located on the inner surface of the stent 51, in any of its modalities , or arranged in the intervals between cells, separating corridors of the hexagonal 47 and lozenge 48 cells of the internal coating of the prosthesis 42, as explicit in FIGURE 2, capable of regulating and compulsorily measuring the concentration rates of in-stent drugs, drug serum half-life, sequential metabolism rate, and drug elimination time, among several other pharmacological, metabolic, and biochemical markers.
[0064] As FIGURAS 5 e 6 são ilustrações perspectivas do referido dispositivo protético tubular cilíndrico, tipo estentor padronizado, expansível intraluminalmente 51, conforme observado na FIGURA 5A, em padrão geométrico alternativo, com sua matriz interna de liberação de fármacos 42, em um corte aproximado que mostra como esta matriz se dispõe, quer seja, em células também hexagonais 47 e losangulares 48, que advêm do prolongamento da prótese de sustentação 41, ou seja, das próprias células que compõem a conformação espacial da prótese, propriamente dito, abertas, em toda superfície interna do estentor 51, ou seja, em direção à luz vascular. Vê-se que as microcápsulas ou lipossomas 33, contidos no interior das células hexagonais 47 e células losangulares 48 adjacentes e coaptadas, que formam a membrana biológica de sustentação 42, se dispõem agregadas e sustentadas, em camadas homogêneas, umas sobre as outras (nas figuras, representadas por cores diferentes, ou seja, cada camada mostrada em determinada cor, representando uma modalidade de lipossoma/microcápsula 33, contendo um tipo diferente de droga), imersas em uma matriz que forma cadeias ou redes de macromoléculas de proteínas 35 (matriz biológica de sustentação), ou outros tipos de biomoléculas, de forma que propiciem suficiente sustentabilidade e uma ideal taxa de fixação. Cada camada será formada por uma matriz de sustentação de composição química diversa, uma da outra, objetivando propiciar a especificidade e seletividade de liberação de determinado fármaco, contido nos grupos de lipossomas/microcápsulas 33, de acordo com o tipo de medicação remotamente selecionada e liberada 36 pelo biochip implantado 43, que ao cair na corrente sanguínea, atingindo a superfície do stent, será responsável por interagir com a determinada matriz de sustentação de determinada camada 35, para a qual é programada, dissolvendo-a e liberando, de forma seletiva e específica, determinado tipo de fármaco 33, objetivando não somente o controle da reestenose vascular, mas também modulando a resposta inflamatória e proliferativa da parede miointimal, adversidade que frequentemente ocorria no implante dos stents farmacológicos de primeira e segunda gerações, poliméricos, de um modo geral. Ou seja, de acordo com o tipo de medicação liberada pelo implante de microchip intradérmico 43, haverá uma medicação específica a ser liberada também na superfície interna do stent vascular 51, segundo este padrão alternativo de "design", sendo aquela liberação do fármaco precursor 36 com controle totalmente otimizado por central remota 55, quanto ao intervalo de pulsos de liberação, concentração, doses, especificidade farmacológica, etc; este fármaco precursor 33, liberado via implante de microchip intradérmico 43, ao cair na corrente sanguínea, e atingindo a superfície interna do stent 51, assim definindo o processo peculiar de liberação de medicação caracterizado por este sistema inovador. De um foco aproximado, a FIGURA 5B evidencia, as microcápsulas ou grupo de lipossomas 33, contidos no interior das células hexagonais 47 e losangulares 48 (especificamente na segunda modalidade conformacional do stent) que formam a membrana biológica de sustentação 42, e que se dispõem agregadas e sustentadas, em camadas específicas, imersas em uma matriz que forma cadeias ou redes de macromoléculas de proteínas, ou estas conjugadas a outras moléculas orgânicas como fosfolipídeos, em forma de filme biológico ou gel, de forma que propiciem suficiente sustentabilidade e uma ideal taxa de fixação. [0064] FIGURES 5 and 6 are perspective illustrations of said cylindrical tubular prosthetic device, standardized stent type, intraluminally expandable 51, as seen in FIGURE 5A, in an alternative geometric pattern, with its internal drug delivery matrix 42, in a section approximation that shows how this matrix is arranged, either in hexagonal cells 47 and lozenge 48, which come from the extension of the supporting prosthesis 41, that is, from the cells that make up the spatial conformation of the prosthesis, properly speaking, open, on the entire internal surface of the stentor 51, that is, towards the vascular lumen. It can be seen that the microcapsules or liposomes 33, contained within the hexagonal cells 47 and adjacent and coapted rhombus cells 48, which form the biological support membrane 42, are arranged aggregated and supported, in homogeneous layers, one on top of the other (in the figures, represented by different colors, that is, each layer shown in a certain color, representing a modality of liposome/microcapsule 33, containing a different type of drug), immersed in a matrix that forms chains or networks of protein macromolecules 35 (matrix support), or other types of biomolecules, in a way that provides sufficient sustainability and an ideal rate of fixation. Each layer will be formed by a support matrix of different chemical composition, one from the other, aiming to provide the specificity and selectivity of release of a given drug, contained in the groups of liposomes/microcapsules 33, according to the type of medication remotely selected and released 36 by the implanted biochip 43, which, when it falls into the bloodstream, reaching the surface of the stent, will be responsible for interacting with the specific support matrix of a certain layer 35, for which it is programmed, dissolving and releasing it, selectively and specific type of drug 33, aiming not only to control vascular restenosis, but also to modulate the inflammatory and proliferative response of the myointimal wall, an adversity that frequently occurred in the implantation of first and second-generation drug-eluting stents, polymers in general. That is, according to the type of medication released by the intradermal microchip implant 43, there will be a specific medication to be released also on the inner surface of the vascular stent 51, according to this alternative design pattern, being that release of the precursor drug 36 with fully optimized control by remote control 55, regarding the release pulses interval, concentration, doses, pharmacological specificity, etc.; this precursor drug 33, released via intradermal microchip implant 43, when falling into the bloodstream, and reaching the inner surface of the stent 51, thus defining the peculiar process of drug delivery characterized by this innovative system. From an approximate focus, FIGURE 5B shows the microcapsules or group of liposomes 33, contained within the hexagonal 47 and lozenge 48 cells (specifically in the second conformational modality of the stent) that form the biological support membrane 42, and which are arranged aggregated and sustained, in specific layers, immersed in a matrix that forms chains or networks of protein macromolecules, or these conjugated to other organic molecules such as phospholipids, in the form of a biological film or gel, in a way that provides sufficient sustainability and an ideal rate. of fixation.
[0065] A FIGURA 6 revela uma ilustração perspectiva em corte/secção de uma determinada área da matriz interna de liberação de fármacos intra-stent 32 do referido dispositivo protético tubular cilíndrico, tipo estentor padronizado, expansível intraluminalmente 50, mostrando como esta matriz se dispõe, quer seja, em células também hexagonais 34, que advêm do prolongamento da prótese de sustentação 31, ou seja, das próprias células que compõem a conformação espacial da prótese, propriamente dito, abertas, em toda superfície interna do estentor 50, ou seja, em direção à luz vascular. Vê-se que as microcápsulas ou lipossomas 33, contidos no interior das células hexagonais 34, que formam a membrana biológica de sustentação 32, se dispõem agregadas e sustentadas, em camadas homogêneas, umas sobre as outras, idem imersas em uma matriz que forma cadeias ou redes de macromoléculas de proteínas 35, ou outros tipos de biomoléculas, de forma que propiciem suficiente sustentabilidade e uma ideal taxa de fixação. Cada camada será formada por uma matriz de sustentação de composição química diversa, uma da outra, objetivando propiciar a especificidade e seletividade de liberação de determinado fármaco, contido nos lipossomas/microcápsulas 33, de acordo com o tipo de medicação liberada 36 pelo implante intradérmico - biochip 43, que, ao cair na corrente sanguínea, atingindo gradativamente a superfície do stent 50, será responsável por interagir nos sítios específicos, com a determinada matriz de sustentação 35 de determinada camada, para a qual é programada, dissolvendo-a e liberando, de forma seletiva e específica, determinado tipo de fármaco, processo este que ocorre das camadas mais altas (externas) para as mais baixas (profundas), abarcando consigo os mesmos objetivos de eficácia terapêutica do padrão alternativo supracitado. [0065] FIGURE 6 shows a perspective illustration in section/section of a certain area of the internal intra-stent drug delivery matrix 32 of said cylindrical tubular prosthetic device, standardized stent type, intraluminally expandable 50, showing how this matrix is arranged , that is, in hexagonal cells 34, which come from the extension of the support prosthesis 31, that is, from the cells that make up the spatial conformation of the prosthesis, itself, open, on the entire internal surface of the stent 50, that is, towards the vascular lumen. It can be seen that the microcapsules or liposomes 33, contained within the hexagonal cells 34, which form the biological support membrane 32, are arranged in aggregate and supported, in homogeneous layers, one on top of the other, ditto immersed in a matrix that forms chains or networks of protein macromolecules 35, or other types of biomolecules, in such a way that they provide sufficient sustainability and an ideal fixation rate. Each layer will be formed by a matrix of support of different chemical composition, one from the other, aiming to provide the specificity and selectivity of release of a certain drug, contained in liposomes/microcapsules 33, according to the type of medication released 36 by the intradermal implant - biochip 43, which, when falling in the bloodstream, gradually reaching the surface of the stent 50, will be responsible for interacting at specific sites with the given support matrix 35 of a given layer, for which it is programmed, dissolving it and releasing, selectively and specifically, a given type of drug, a process that occurs from the highest (external) to the lowest (deep) layers, encompassing the same therapeutic efficacy objectives of the aforementioned alternative standard.
[0066] As FIGURAS 7, 8, 9, 10, 11 são uma ilustração perspectiva do mesmo dispositivo protético das FIGURAS 1, 2, 3, 4 e 5 com sua matriz interna de liberação de fármacos 32 (do stent em geometria de hexágonos somente) e 42 (do stent em geometria de hexágonos e losangos interceptados), em um corte aproximado que mostra como esta matriz se dispõe, quer seja, em células também hexagonais 34 ou hexagonais/ losangulares 47 e 48, que advêm do prolongamento da prótese de sustentação 31 (modelo com padrão geométrico hexagonal somente) e 41 (modelo com padrão geométrico hexagonal e losangular), ou seja, das próprias células de base metálica ou material de resina biológica conforme previamente descrito, que compõem a conformação espacial da prótese, propriamente dita, abertas, em toda superfície interna do estentor, ou seja, em direção à luz vascular, com as microcápsulas ou grupos de lipossomas 33, contidos no interior das células hexagonais que formam a membrana biológica de sustentação 32 e 42, e se dispõem agregadas e sustentadas, em camadas homogêneas, umas sobre as outras; de sorte que a FIGURA 7A mostra uma visão perspectiva da prótese vascular de segundo modelo 41, e visualização interna em todo seu eixo de onde se observam as células hexagonais 47 e losangulares 48. Já consoante à FIGURA 7B, obtém-se uma visão em foco aproximado do interior da prótese 51, com identificação em secção das células hexagonais 47 e losangulares 48, e os seus constituintes internos de microcápsulas/grupos de lipossomas 33, diante da conformação espacial geométrica do segundo modelo de prótese 41, correlata ao estentor 51, implantado no interior de um vaso sanguíneo 60. Tais figuras, principalmente no que se refere de 8 a 11, retratam a chegada das substâncias/medicações liberadas 36 via biochip intradérmico 43 de localização remota, para que, atingindo a luz do vaso em que se encontra o dispositivo protético, interajam com a matriz de sustentação das camadas 35 que formam e preenchem a cavidade interna de cada célula hexagonal ou losangular da plataforma de liberação. Por óbvio, estas substâncias vão interagir com as primeiras camadas da matriz de sustentação 35 localizadas em direção à luz do vaso, ou seja, somente e especificamente com aquelas camadas cujos constituintes químicos sejam reativos à ação destas substâncias, propiciando assim a liberação das microcápsulas/lipossomas armazenados e sustentados por esta matriz. Desta forma, é patente a possibilidade de efetuar uma seletividade e diversidade no mecanismo de liberação de fármacos aplicados intra-stent ou intra-dispositivo protético. Em apresentações esquemáticas coloridas, as diversas representações de cada espécie de medicação administrada são diferenciadas por cada cor empregada, e esta também aplicada nas microcápsulas/lipossomas programados para serem liberados, a partir da camada específica (matriz de sustentação de cada célula hexagonal ou losangular) 35. Analogamente, se faz observar que a FIGURA 8A define um estentor inicial padrão 50, obedecendo uma conformação geométrica metálica 41, num vaso sanguíneo 60, e a chegada de uma medicação precursora 36, eliminada de uma placa 44 intra-chip subdérmico 43, assim como a FIGURA 8B define este estentor em foco aproximado, com a mostra da secção do sistema de liberação medicamentosa 32, o fármaco precursor 36, e a medicação intra-stent 33 (microcápsulas/lipossomas). A FIGURA 8C mostra um corte em 3D aproximado da cobertura biológica de liberação de medicação 32, constituindo às células intra-stent 34, e o efeito produzido pelo fármaco precursor 36 ao chegar no interior da prótese, precipitando a liberação das medicações intra-stent 33, representadas por microcápsulas. Já a FIGURA 9A demonstra, em foco aproximado, o processo de liberação da medicação precursora advinda da microcápsula/grupos de lipossomas 36, advindos da placa 44, do microchip implantado 43, através de seus microreservatórios. A FIGURA 9B traduz um momento sequencial de liberação das medicações intra- stent, contidas nas microcápsulas/lipossomas 33, em um sentido que pode ocorrer tanto para a luz do vaso quanto para a face da parede vascular, caso seja delimitado ou indicado que a imersão das microcápsulas 33 seja feita em um só tipo ou espécie farmacológica, em todas as camadas, e com somente um só tipo de matriz de sustentação, de uma só natureza bioquímica. E por fim a FIGURA 9C indica um momento posterior de liberação destas medicações intra-capsuladas 33 na luz do vaso, em um estentor padrão 50. [0066] FIGURES 7, 8, 9, 10, 11 are a perspective illustration of the same prosthetic device as FIGURES 1, 2, 3, 4 and 5 with its internal drug delivery matrix 32 (of the stent in hexagon geometry only ) and 42 (of the stent in geometry of intercepted hexagons and diamonds), in an approximate section that shows how this matrix is arranged, either in hexagonal cells 34 or hexagonal/lozenge 47 and 48, which come from the extension of the prosthesis of support 31 (model with hexagonal geometric pattern only) and 41 (model with hexagonal and diamond geometric pattern), that is, of the metallic base cells or biological resin material as previously described, which make up the spatial conformation of the prosthesis itself , open, on the entire internal surface of the stentor, that is, towards the vascular lumen, with microcapsules or groups of liposomes 33, contained within the hexagonal cells that form the biological support membrane 32 and 42, and are arranged aggregated and supported, in homogeneous layers, one on top of the other; so that FIGURE 7A shows a perspective view of the second model vascular prosthesis 41, and an internal view along its entire axis from where the hexagonal 47 and lozenge 48 cells are observed. approximated the interior of the prosthesis 51, with identification in section of the hexagonal cells 47 and lozenge 48, and their internal constituents of microcapsules/groups of liposomes 33, in view of the geometric spatial conformation of the second model of prosthesis 41, correlated to the stentor 51, implanted inside a blood vessel 60. Such figures, especially with regard to 8 to 11, depict the arrival of substances/medications released 36 via an intradermal biochip 43 of remote location, so that, reaching the vessel lumen in which the prosthetic device is located, interact with the support matrix of the layers 35 that form and fill the internal cavity of each hexagonal or diamond cell of the delivery platform. Obviously, these substances will interact with the first layers of the support matrix 35 located towards the light of the vessel, that is, only and specifically with those layers whose chemical constituents are reactive to the action of these substances, thus providing the release of microcapsules/ liposomes stored and supported by this matrix. Thus, it is clear the possibility of effecting a selectivity and diversity in the release mechanism of drugs applied intra-stent or intra-prosthetic device. In schematic color presentations, the different representations of each type of medication administered are differentiated by each color used, and this is also applied to the microcapsules/liposomes programmed to be released, from the specific layer (support matrix of each hexagonal or lozenge cell) 35. Similarly, it is noted that FIGURE 8A defines a standard initial stent 50, obeying a metallic geometric conformation 41, in a blood vessel 60, and the arrival of a precursor medication 36, eliminated from a subdermal intra-chip plate 44 43, as well as FIGURE 8B defines this stent in close-up focus, with the sectional view of the drug delivery system 32, the parent drug 36, and the in-stent medication 33 (microcapsules/liposomes). FIGURE 8C shows an approximate 3D section of the biological coverage of medication release 32, constituting the in-stent cells 34, and the effect produced by the precursor drug 36 when it reaches the interior of the prosthesis, precipitating the release of in-stent medications 33 , represented by microcapsules. FIGURE 9A demonstrates, in approximate focus, the process of releasing the precursor medication from the microcapsule/liposomal groups 36, coming from the plate 44, from the implanted microchip 43, through its microreservoirs. FIGURE 9B shows a sequential moment of release of in-stent medications, contained in the microcapsules/liposomes 33, in a sense that can occur both for the vessel lumen and for the face of the vascular wall, if it is delimited or indicated that the immersion of the microcapsules 33 is carried out in a single type or pharmacological species, in all layers, and with only one type of support matrix, of a single biochemical nature. Finally, FIGURE 9C indicates a later moment of release of these intra-capsulated medications 33 in the vessel lumen, in a standard stentor 50.
[0067] As FIGURAS 12 a 16 representam em visão perspectiva o mesmo sistema de liberação de fármacos 33, intraluminal, das figuras anteriores, como um novo processo de chegada de uma diferente substância liberada pelo implante orgânico (fármaco precursor) 36, dito biochip implantável intradermicamente 43, até a superfície interna do stent, a qual atinge, interage e libera outro tipo de medicação intra-stent 33, compatível e programada para liberação conforme a ação da substância liberada 36 pelo biochip implantado, culminando, de maneira igual ao descrito no último parágrafo, com a liberação de outros tipos de medicamentos intra-stent, contidos em microcápsulas/lipossomas 33 agregados e sustentados em diferentes camadas, constituída por matriz compatível de sustentação 35. Esses fármacos precursores 36, liberados de forma controlada e programada por este microchip intradérmico 43, apresentam seu pulso de liberação na corrente sanguínea, assim como intervalos, concentração, e outras variáveis farmacológicas potencialmente mensuráveis, sujeitos a controle por qualquer modalidade de central externa, software ou aparelho de comunicação móvel 55, conforme se faz notar na FIGURA 13. A FIGURA 12A refere-se a uma nova perspectiva de visão 3D de um estentor padrão 50, e seu sistema interno de liberação de fármacos 32, com a chegada de um novo fármaco precursor 36, na luz do vaso 60, e seu momento de liberação de seu conteúdo medicamentoso responsável por liberar as medicações intra-stent 33, quer sejam, representadas por microcápsulas. Sequencialmente, em foco aproximado, na FIGURA 12B, este fármaco precursor 36, advindo dos microreservatórios da placa 44, contida no microchip 43, dissolvendo e atuando sobre a matriz intracelular de sustentação 35 das microcápsulas 33, liberando- as para a luz do vaso e, segundo o modo unimedicamentoso, para a parede vascular acometida. Por fim, a FIGURA 12C expõe um momento ulterior de liberação das medicações intra-stent, representadas e encapsuladas na estrutura 33. A FIGURA 13A se apresenta em um corte esquemático em 3D das células hexagonais 34, delimitando as diversas camadas sobrepostas em que se constituem as microcápsulas 33, albergando as medicações intra-stent, e a chegada dos fármacos precursores 36, advindos da placa 44, adjunta ao microchip implantado no organismo 43, em um processo contínuo de liberação controlada, pulsátil, e inteligente. Um central externa podendo ser representada por um aparelho celular, um aplicativo ou qualquer outro tipo de software 55 emite o sinal para o microchip, objetivando deflagrar tal processo. A FIGURA 13B retrata um momento ulterior de liberação destas microcápsulas 33, com a ação in situ do fármaco precursor 36. Na sequência, a FIGURA 13C ratifica a dissolução da matriz interna 35, intra-celular do stent, através destes fármacos precursores 36, liberando as medicações intra-stent 33, em teor de microcápsulas. [0067] FIGURES 12 to 16 represent in perspective view the same drug delivery system 33, intraluminal, of the previous figures, as a new process of arrival of a different substance released by the organic implant (precursor drug) 36, said implantable biochip intradermally 43, to the inner surface of the stent, which reaches, interacts and releases another type of in-stent medication 33, compatible and programmed for release according to the action of the substance released 36 by the implanted biochip, culminating, in the same way as described in last paragraph, with the release of other types of in-stent drugs, contained in aggregated microcapsules/liposomes 33 and supported in different layers, consisting of a compatible support matrix 35. These precursor drugs 36, released in a controlled and programmed manner by this microchip 43, present their pulse of release into the bloodstream, as well as intervals, concentration, and other variables. potentially measurable pharmacological variables subject to control by any modality of external switch, software or mobile communication device 55, as noted in FIGURE 13. FIGURE 12A relates to a new 3D view perspective of a standard stent 50, and its internal drug delivery system 32, with the arrival of a new precursor drug 36, in the vessel lumen 60, and its moment of release of its drug content responsible for releasing the in-stent medications 33, either represented by microcapsules. Sequentially, in approximate focus, in FIGURE 12B, this precursor drug 36, coming from the microreservoirs of the plate 44, contained in the microchip 43, dissolving and acting on the intracellular matrix of support 35 of the microcapsules 33, releasing them to the vessel lumen and , according to the single-drug method, to the affected vascular wall. Finally, FIGURE 12C shows a further moment of release of the in-stent medications, represented and encapsulated in structure 33. FIGURE 13A shows a schematic 3D section of the hexagonal cells 34, delimiting the various superimposed layers in which the microcapsules 33 are constituted, housing the in-stent medications, and the arrival of precursor drugs 36, coming from plate 44, attached to the microchip implanted in the organism 43, in a continuous process of controlled, pulsatile, and intelligent release. An external switch, which can be represented by a cell phone, an application or any other type of software 55 sends the signal to the microchip, aiming to trigger this process. FIGURE 13B depicts a later moment of release of these microcapsules 33, with the in situ action of the precursor drug 36. Subsequently, FIGURE 13C confirms the dissolution of the internal matrix 35, intracellular of the stent, through these precursor drugs 36, releasing in-stent medications 33, in microcapsule content.
[0068] As FIGURAS 17 a 24 representam em visão perspectiva o mesmo sistema de liberação de fármacos 33, intraluminal, das figuras anteriores, como um novo processo de chegada de uma diferente substância liberada pelo implante orgânico (fármaco precursor) 36, dito biochip implantável intradermicamente 43, até a superfície interna do stent, a qual atinge, interage e libera outro tipo de medicação intra- stent 33, compatível e programada para liberação conforme a ação da substância liberada 36 pelo biochip implantado, culminando, de maneira igual ao descrito no último parágrafo, com a liberação de outros tipos de medicamentos intra-stent 33. [0068] FIGURES 17 to 24 represent in perspective view the same drug delivery system 33, intraluminal, of the previous figures, as a new process of arrival of a different substance released by the organic implant (precursor drug) 36, said implantable biochip intradermally 43, up to the internal surface of the stent, which reaches, interacts and releases another type of in-stent medication 33, compatible and programmed for release according to the action of the substance released 36 by the implanted biochip, culminating, in the same way as described in last paragraph, with the release of other types of in-stent drugs 33.
[0069] A FIGURA 25 remete-se à demonstração perspectiva da estrutura da placa 44, no interior do biochip implantado 43, contendo reservatórios que se diferenciam de acordo com o tipo de medicação remotamente selecionada e liberada 36 por este, que ao caírem na corrente sanguínea, atingindo a superfície interna do stent 50 ou 51, serão responsáveis por interagir com a determinada matriz de sustentação de determinada camada 35, para a qual é programada, dissolvendo-a e liberando, de forma seletiva e específica, o determinado tipo de fármaco 33, objetivando não somente o controle da reestenose vascular, mas também modulando a resposta inflamatória e proliferativa da parede miointimal, adversidade que frequentemente ocorria no implante dos stents farmacológicos de primeira e segunda gerações, poliméricos, de um modo geral. Atua, portanto, sobre o mesmo dispositivo protético das FIGURAS 1, 2 e 3, em ilustração perspectiva demonstrados em conjunto com sua matriz interna de liberação, "coating" interno descrito 32 e 42, de acordo com a modalidade de prótese, que é representado por membrana biológica artificial, biocompatível, disposto em células hexagonais ou células hexagonais + losangulares, que advêm do prolongamento da prótese de sustentação, ou seja, das próprias células que compõem a conformação espacial do stent propriamente dito, contendo as microcápsulas ou lipossomas 33, e estes agregados e sustentados, imersos em uma matriz que forma cadeias ou redes de macromoléculas de proteínas 35, de forma que propiciem suficiente sustentabilidade e uma ideal taxa de fixação. [0069] FIGURE 25 refers to the perspective demonstration of the structure of the plate 44, inside the implanted biochip 43, containing reservoirs that differ according to the type of medication remotely selected and released 36 by it, which when falling into the current blood, reaching the inner surface of the stent 50 or 51, will be responsible for interacting with the certain support matrix of a certain layer 35, for which it is programmed, dissolving it and releasing, in a selective and specific way, the certain type of drug 33, aiming not only to control vascular restenosis, but also to modulate the inflammatory and proliferative response of the myointimal wall, an adversity that frequently occurred in the implantation of first and second-generation, drug-eluting, polymeric stents of a generally. It therefore acts on the same prosthetic device as in FIGURES 1, 2 and 3, in perspective illustration shown together with its internal release matrix, internal coating described 32 and 42, according to the prosthesis modality, which is represented by an artificial, biocompatible biological membrane, arranged in hexagonal cells or hexagonal + lozenge cells, which come from the extension of the supporting prosthesis, that is, from the cells that make up the spatial conformation of the stent itself, containing the microcapsules or liposomes 33, and these aggregates are sustained, immersed in a matrix that forms chains or networks of protein macromolecules 35, in such a way that they provide sufficient sustainability and an ideal fixation rate.
[0070] A FIGURA 26, de forma excepcional, mostra a possibilidade do desenho da malha do dispositivo protético intravascular 51 se mostrar fenestrado, visto que há de se considerar a produção alternativa deste dispositivo protético orgânico ou vascular em derivação do segundo modelo, de células hexagonais 47, coaptadas em suas extremidades inferior e superior por células em losango 48, e estas, por sua vez, permanecerem fenestradas, não revestidas internamente em sua área pelo "coating" de liberação de fármacos 42, consistindo em uma vantagem e propriedade de indicação para a introdução da prótese vascular em situações de lesões em bifurcações/trifurcações, vasos colaterais emergentes do local da lesão, entre outras indicações. A FIGURA 26A compõe o padrão geométrico metálico 41 do estentor 51, em disposição espacial axial ao longo do corte de um vaso orgânico padrão 60, num "design" de células hexagonais 47 alternado com células losangulares 48. A malha fenestrada, conforme já descrito, é um fator favorável em determinados tipos de indicação de procedimento de angioplastia coronária. A FIGURA 26B demonstra em foco aproximado a malha do estentor 51, fenestrada, com o destaque para o sistema de liberação - "coating" biocompatível 42, e as células intra-stent 47 e 48. [0070] FIGURE 26, in an exceptional way, shows the possibility of the mesh design of the intravascular prosthetic device 51 to be fenestrated, since the alternative production of this organic or vascular prosthetic device in derivation of the second model, of cells hexagonal 47, coapted at their lower and upper ends by diamond cells 48, and these, in turn, remain fenestrated, not coated internally in their area by the drug release coating 42, consisting of an advantage and indication property for the introduction of vascular prosthesis in situations of lesions in bifurcations/trifurcations, collateral vessels emerging from the lesion site, among other indications. FIGURE 26A composes the metallic geometric pattern 41 of the stent 51, in axial spatial arrangement along the cut of a patterned organic vessel 60, in a "design" of hexagonal cells 47 alternating with diamond cells 48. The fenestrated mesh, as already described, is a favorable factor in certain types of coronary angioplasty procedure indication. FIGURE 26B shows, in close focus, the fenestrated mesh of the stent 51, with emphasis on the release system - biocompatible coating 42, and the in-stent cells 47 and 48.
[0071] Dezenas de milhões de pacientes em todo o mundo são submetidos anualmente a procedimentos intervencionistas coronarianos, e os "stents" vasculares representam, nesse caso, o maior avanço na área, sendo rotineiramente utilizados em mais de 90% dos casos. Um razoável número de vantagens e aplicabilidade pode ser constatado como: [0071] Tens of millions of patients around the world undergo coronary interventional procedures annually, and vascular "stents" represent, in this case, the greatest advance in the area, being routinely used in more than 90% of cases. A reasonable number of advantages and applicability can be found as:
1 . Tratamento da doença aterosclerótica multivascular; 1 . Treatment of multivascular atherosclerotic disease;
2 . Dilatação de duetos orgânicos, como no sistema urogenital, respiratório e trato biliar, assim como estenoses congênitas de origem vascular; two . Dilation of organic ducts, such as in the urogenital, respiratory and biliary tract, as well as congenital strictures of vascular origin;
3 . O "coating" biológico tem sua aplicação aceitável como revestimento de válvulas íacas artificiais e naturais, de filtros intravasculares, e dispositivos intraorgânicos; 3 . Biological coating has its acceptable application as a coating for artificial and natural aac valves, intravascular filters, and intraorganic devices;
4 . Passível de oferecer uma ideal plataforma de sustentação para depósito e liberação de células-tronco, objetivando a promoção do processo de remodelamento e resolução fisiológica equilibrados da parede vascular acometida. 4 . Able to offer an ideal support platform for the deposit and release of stem cells, aiming to promote the remodeling process and balanced physiological resolution of the affected vascular wall.
[0072] O campo da Cardiologia Intervencionista desenvolveu-se grandemente, e a aplicação da angioplastia coronária transluminal percutânea tem-se revelado cada vez mais rotineira. Os primeiros stents farmacológicos, eluidores de medicação, foram primariamente concebidos no intuito de reduzir a proliferação neointimal intra-stent, e desta forma, prevenir a ocorrência precoce ou tardia de reestenose vascular. Embora a primeira geração destes stents farmacológicos tenham obtido relativa eficácia na redução da reestenose através de todos os grupos e tipos de lesão virtualmente, a sua segurança sofreu limitação em virtude da baixa biocompatibilidade das matrizes poliméricas empregadas, do processo de reendotelização tardia da prótese na camada do vaso, causando um aumento nas chances de ocorrência clínica de trombose tardia intravascular, além da toxicidade local das medicações intra-stent no segmento vascular abordado. [0072] The field of Interventional Cardiology has developed greatly, and the application of percutaneous transluminal coronary angioplasty has become increasingly routine. The first drug-eluting, drug-eluting stents were primarily designed to reduce in-stent neointimal proliferation, thereby preventing the early or late occurrence of vascular restenosis. Although the first generation of these drug-eluting stents were relatively effective in reducing restenosis across virtually all groups and types of lesions, their safety was limited due to the low biocompatibility of the polymeric matrices used, the process of late reendothelization of the prosthesis in the layer of the vessel, causing an increase in the chances of clinical occurrence of late intravascular thrombosis, in addition to the local toxicity of in-stent medications in the vascular segment addressed.
[0073] Assim sendo, como os polímeros de longa duração e considerável espessura, empregados na geração anterior dos stents farmacológicos, foram apontados como os responsáveis na perpetuação da resposta local inflamatória vascular, e por potencialmente induzir a complicação da trombose aguda e sub- aguda, fazia-se imprescindível o desenvolvimento de stents farmacológicos não-poliméricos, e consequentemente, o conceito da criação de um dispositivo que abarcasse a função de carrear, liberar e controlar o processo de eluição dos fármacos intra-stent, durante um predeterminado intervalo de tempo, emerge como uma promissora alternativa. [0074] Neste seguimento, o uso de dispositivos implantáveis constituídos por sistemas de liberação controlada de fármacos vem representando os maiores avanços obtidos na área de pesquisas biotecnológicas, com o surgimento de novas classes de sistemas de liberação controlada de fármacos, dotados de função microeletrônica programável e inteligente, denominados microchips implantáveis. [0073] Therefore, as the polymers of long duration and considerable thickness, used in the previous generation of drug-eluting stents, were identified as responsible for the perpetuation of the local vascular inflammatory response, and for potentially inducing the complication of acute and sub-acute thrombosis. , the development of non-polymeric drug-eluting stents became essential, and consequently, the concept of creating a device that would encompass the function of carrying, releasing and controlling the process of elution of in-stent drugs, during a predetermined period of time. , emerges as a promising alternative. [0074] In this segment, the use of implantable devices consisting of controlled drug delivery systems has been representing the greatest advances obtained in the area of biotechnological research, with the emergence of new classes of controlled drug delivery systems, endowed with programmable microelectronic function and intelligent, called implantable microchips.
[0075] Por fim, o escopo deste privilégio de invenção reside na aplicação destes dispositivos implantáveis microeletrônicos inteligentes, aptos a serem programados por qualquer fonte de comando ou central remota, podendo conter centenas de micro- reservatórios que reúnem diversas modalidades de fármacos (neste caso, chamados fármacos precursores), os quais, ao serem liberados no organismo, atingirão a superfície interna do stent vascular e, atuando diretamente nos constituintes de sua matriz orgânica, que compõem a cobertura biológica interna do stent, serão responsáveis pela dissolução e liberação de determinado fármaco intra-stent. De fato, estes microchips implantáveis são capazes de exibir padrões de liberação de alta complexidade, simultaneamente em intervalos constantes e pulsos controlados, demonstrando uma maior acurácia, assim como mantendo o isolamento do fármaco do ambiente externo. [0075] Finally, the scope of this invention privilege resides in the application of these intelligent microelectronic implantable devices, able to be programmed by any command source or remote central, and may contain hundreds of micro-reservoirs that bring together different modalities of drugs (in this case , called precursor drugs), which, when released in the body, will reach the inner surface of the vascular stent and, acting directly on the constituents of its organic matrix, which make up the internal biological cover of the stent, will be responsible for the dissolution and release of a certain in-stent drug. In fact, these implantable microchips are capable of exhibiting highly complex release patterns, simultaneously at constant intervals and controlled pulses, demonstrating greater accuracy, as well as maintaining drug isolation from the external environment.

Claims

REIVINDICAÇÕES
1. Dispositivo protético tubular cilíndrico não-polimérico, caracterizado por ser fenestrado, metálico, multifilamentar, moldado em ligas de aço inoxidável, ou nitinol, revestidas ou não de elementos químicos inorgânicos (polimento), como também de resinas orgânicas flexíveis biológicas, de alta biocompatibilidade, tipo "stent", hábil a ser liberado em vias intravasculares e duetos orgânicos, e por ter um diâmetro inicial, que permita a sua liberação intravascular ou em qualquer dueto orgânico contendo um lúmen, e um diâmetro final, expandido, através da aplicação de força radial e centrífuga, via cateter balão, ou simplesmente ser auto-expansível. 1. Non-polymeric cylindrical tubular prosthetic device, characterized by being fenestrated, metallic, multifilament, molded in stainless steel alloys, or nitinol, coated or not with inorganic chemical elements (polishing), as well as with biological flexible organic resins, of high biocompatibility, "stent" type, able to be released in intravascular routes and organic ducts, and for having an initial diameter, which allows its release intravascular or in any organic duct containing a lumen, and a final diameter, expanded, through the application of radial and centrifugal force, via balloon catheter, or simply being self-expanding.
2. Dispositivo protético tubular cilíndrico não-polimérico de acordo com a reivindicação 1, caracterizado por apresentar, no seu primeiro modelo de malha ou desenho geométrico (31), estrutura espacial disposta em células hexagonais (34), coaptadas umas às outras, em conformação geométrica regular poliédrica, dispostas em sentido longitudinal da prótese; e num segundo modelo de malha ou desenho geométrico (41), apresentar disposição espacial em células hexagonais (47), coaptadas em suas extremidades inferior e superior por células em losango (48), isto é, pelos lados que compõem o ângulo agudo interno das células hexagonais (47), em total contiguidade, dispostas em sentido longitudinal da prótese, ou até mesmo células hexagonais com altura mais fina e alongadas, interceptando as células hexagonais triviais (primárias). 2. Non-polymeric cylindrical tubular prosthetic device according to claim 1, characterized in that it has, in its first mesh model or geometric design (31), a spatial structure arranged in hexagonal cells (34), coapted together, in conformation regular polyhedral geometry, arranged in the longitudinal direction of the prosthesis; and in a second mesh model or geometric design (41), present spatial arrangement in hexagonal cells (47), coapted at their lower and upper ends by diamond cells (48), that is, by the sides that make up the acute internal angle of the hexagonal cells (47), in complete contiguity, arranged in the longitudinal direction of the prosthesis, or even thinner and elongated hexagonal cells, intercepting the trivial (primary) hexagonal cells.
3. Dispositivo protético tubular cilíndrico não-polimérico de acordo com a reivindicação 2, caracterizado por estrutura que contenha plataforma não-polimérica de liberação de drogas, ou seja, matriz interna de liberação (32), "coating" interno, que seja representado por membrana biológica artificial, biocompatível, podendo ser constituída de fosfolipídeos e/ou proteínas, ou semelhante substrato orgânico, podendo ser microporosa, ou não, contanto que permita boa capacidade de difusão e liberação de drogas, e cujo projeto geométrico espacial se dispõe em células também hexagonais (34) que advêm do prolongamento da prótese de sustentação, ou seja, das próprias células que compõem a conformação espacial do dispositivo protético metálico propriamente dito, abertas, em toda superfície interna do estentor (31), ou seja, em direção à luz vascular. 3. Non-polymeric cylindrical tubular prosthetic device according to claim 2, characterized by a structure that contains a non-polymeric drug release platform, that is, internal release matrix (32), internal coating, which is represented by artificial biological membrane, biocompatible, which may consist of phospholipids and/or proteins, or similar organic substrate, and may or may not be microporous, as long as it allows good diffusion and drug release capacity, and whose spatial geometric design is available in cells as well. hexagonal (34) that come from the extension of the supporting prosthesis, that is, from the cells that make up the spatial conformation of the metallic prosthetic device itself, open, on the entire internal surface of the stent (31), that is, towards the light vascular.
4. Dispositivo protético tubular cilíndrico não-polimérico de acordo com a reivindicação 2, caracterizado por apresentar, em seu modelo geométrico alternativo, capa interna (42) que também seguirá o formato compatível com o design da malha do dispositivo protético referido, advindo como um prolongamento da base desta, quer seja, em células hexagonais (47) coaptadas em extremidades inferior e superior por células em losango (48), ou interceptadas por células hexagonais em formato mais cilíndrico, de maior diâmetro longitudinal, interpostas entre as células hexagonais padrão, abertas, em toda a superfície interna do estentor (41), ou seja, em direção à luz vascular. 4. Non-polymeric cylindrical tubular prosthetic device according to claim 2, characterized by presenting, in its alternative geometric model, an internal cover (42) that will also follow the format compatible with the mesh design of the referred prosthetic device, coming as a extension of its base, either in hexagonal cells (47) coapted at the lower and upper ends by diamond cells (48), or intercepted by hexagonal cells in a more cylindrical shape, of greater longitudinal diameter, interposed between the standard hexagonal cells, open, on the entire internal surface of the stentor (41), that is, towards the vascular lumen.
5. Dispositivo protético tubular cilíndrico de acordo com a reivindicações 3 e 4, caracterizado pelo fato de que o revestimento interno, representado pela membrana biológica de sustentação (32, 42), contenha microcápsulas ou grupos de lipossomas (33), dispostos em camadas sequenciais umas sobre outras, no interior das células hexagonais (34), segundo o primeiro modelo, e nas células hexagonais (47) e losangulares (48), no segundo modelo, os quais se dispõem agregados e sustentados, imersos em uma matriz (35) que forma cadeias ou redes de macromoléculas de proteínas, ou estas conjugadas a outras moléculas orgânicas como fosfolipídeos, em forma de filme biológico ou gel, de forma que propiciem suficiente sustentabilidade e uma ideal taxa de fixação. 5. Cylindrical tubular prosthetic device according to claims 3 and 4, characterized in that the inner lining, represented by the biological support membrane (32, 42), contains microcapsules or groups of liposomes (33), arranged in sequential layers one on top of the other, inside the hexagonal cells (34), according to the first model, and in the hexagonal (47) and lozenge cells (48), in the second model, which are arranged in aggregates and supported, immersed in a matrix (35) which forms chains or networks of protein macromolecules, or these conjugated to other organic molecules such as phospholipids, in the form of a biological film or gel, in a way that provides sufficient sustainability and an ideal fixation rate.
6. Dispositivo protético tubular cilíndrico não-polimérico de acordo com a reivindicação 5, caracterizado pelo fato de que os fármacos situados no interior das microcápsulas ou dos grupos de lipossomas (33) apresentem coeficiente de liberação controlada, podendo ser preparados na forma líquida, sólida de rápida dissolução, gel ou de cristais, permitindo boa capacidade de difusão e liberação na luz vascular; e quando liberados da estrutura encapsulada ou de grupo lipossomial (33) serão gradual e protocolarmente submetidos a processo de investigação em modelo experimental, análise computacional, estudos pré-clínicos e clínicos, no intuito de avaliar com eficácia e certeza o tipo farmacológico compatível a ser empregado, a concentração ideal a ser atingida na luz do vaso, o melhor coeficiente de difusão, a velocidade e os intervalos de liberação, meia-vida no locus vascular, metabolização e toxicidade, entre outros aspectos. 6. Non-polymeric cylindrical tubular prosthetic device according to claim 5, characterized in that the drugs located inside the microcapsules or groups of liposomes (33) have a controlled release coefficient, and can be prepared in liquid, solid form of fast dissolution, gel or crystals, allowing good diffusion and release capacity in the vascular lumen; and when released from the encapsulated structure or from the liposomal group (33) they will be gradually and protocolarily submitted to a process of investigation in an experimental model, computational analysis, pre-clinical and clinical studies, in order to evaluate with effectiveness and certainty the compatible pharmacological type to be employed, the ideal concentration to be reached in the vessel lumen, the best diffusion coefficient, the velocity and the intervals of release, half-life at the vascular locus, metabolism and toxicity, among other aspects.
7. Dispositivo protético tubular cilíndrico não-polimérico de acordo com a ainda reivindicação 5, caracterizado pelo fato de que as microcápsulas/lipossomas (33) serão gradual e seletivamente liberados, através de uma ação de combinação e reação farmacológicas, via degradação enzimática (a partir de fármacos precursores (36) liberados de forma controlada e programada por microchip intradérmico (43) implantado, sujeito a controle de qualquer modalidade de central externa (55), ou até mesmo a partir de estímulos elétricos ou liberação dos mesmos tipos de precursores farmacológicos (36) oriundos de nanochips na superfície interna do stent (49), dispostos no interior do revestimento biológico interno (32, 42), de sorte que estes fármacos precursores (36), que serão liberados de forma controlada e programada por este microchip intradérmico (43), apresentam seu pulso de liberação na corrente sanguínea, assim como intervalos, concentração, e outras variáveis farmacológicas potencialmente mensuráveis, através da atuação de nanossensores (46) deste implante microchip (43), e este sujeito a controle de qualquer modalidade de central externa, software ou aparelho de comunicação móvel (55), conhecido como processo de monitoramento remoto ou sem fio, por análise de dados em tempo real, de tal forma que se faça patente a possibilidade de efetuar uma seletividade e diversidade no mecanismo de liberação de fármacos (33) aplicados intra-stent ou intra- dispositivo protético. 7. Non-polymeric cylindrical tubular prosthetic device according to claim 5, characterized in that the microcapsules/liposomes (33) will be gradually and selectively released, through a combination action and pharmacological reaction, via enzymatic degradation (the from precursor drugs (36) released in a controlled and programmed manner by an implanted intradermal microchip (43), subject to the control of any external central modality (55), or even from electrical stimuli or release of the same types of pharmacological precursors (36) originating from nanochips on the internal surface of the stent (49), arranged inside the internal biological coating (32, 42), so that these precursor drugs (36), which will be released in a controlled and programmed manner by this intradermal microchip (43), present their pulse of release into the bloodstream, as well as intervals, concentration, and other potentially lower pharmacological variables. through the action of nanosensors (46) of this microchip implant (43), and it is subject to the control of any modality of external central, software or mobile communication device (55), known as remote or wireless monitoring process, by real-time data analysis, in such a way that the possibility of making a selectivity and diversity in the drug release mechanism (33) applied intra-stent or intra-prosthetic device becomes patent.
8. Dispositivo protético tubular cilíndrico não-polimérico de acordo com as reivindicações 2, 3, 4, 5 e 7 caracterizado pelo fato de representar a novidade, especificidade e pioneirismo na utilização desta modalidade de liberação gradual, programada, de longa duração de fármacos à distância, assumindo ser o único e diferenciado sistema no campo da propriedade intelectual internacional designado a incluir o uso de um biochip orgânico implantável (43), como um sistema inteligente de liberação de fármacos. 8. Non-polymeric cylindrical tubular prosthetic device according to claims 2, 3, 4, 5 and 7, characterized in that it represents the novelty, specificity and pioneering spirit in the use of this modality of gradual, programmed, long-term drug release distance, assuming to be the only and differentiated system in the field of international intellectual property designed to include the use of an implantable organic biochip (43), as an intelligent drug delivery system.
9. Dispositivo protético tubular cilíndrico não-polimérico de acordo com a reivindicação 7 caracterizado por ser parte de sistema interligado a um biochip implantável (43), o qual aliado a técnicas de fotolitografia, permitem a criação de formatos geométricos desejados a serem aplicados aos seus reservatórios presentes em sua placa (44), e sua posterior complementação com os fármacos (36) de escolha. 9. Non-polymeric cylindrical tubular prosthetic device according to claim 7, characterized in that it is part of a system connected to an implantable biochip (43), which combined with photolithography techniques, allow the creation of desired geometric shapes to be applied to its reservoirs present on its plate (44), and its subsequent complementation with the drugs (36) of choice.
10. Dispositivo protético tubular cilíndrico não-polimérico de acordo com as reivindicações 7 e 9 caracterizado por operar juntamente com um biochip implantável (43), cuja liberação medicamentosa do interior dos seus reservatórios se daria com um estímulo elétrico entre a fina camada de metal anódico em que consiste a membrana de cobertura do reservatório e o catódio existente, perfazendo uma liberação por via eletromecânica por dissolução desta membrana, de sorte que o estímulo elétrico pode ser ativado por uma central remota (55), com o circuito de controle no interior do microchip, perfazendo a função de liberação farmacológica controlada e pré-ajustada conforme a indicação e necessidade demonstradas, por meses até anos, além de executar outras funções inteligentes através de seus biossensores (46), como medição de parâmetros metabólicos séricos, taxa de concentração ou meia-vida dos fármacos precursores liberados, interação com nanossensores ou nanochips (49) alternativamente presentes na superfície interna do dispositivo protético (51), objetivando ser factível a medição de índices metabólicos locais, mediadores químicos, hormônios, neuromoduladores, aferir compulsoriamente as taxas de concentração de fármacos intra- stent (33), meia-vida sérica da medicação liberada no locus vascular abordado, taxa de metabolização sequencial, e tempo de eliminação do fármaco, entre várias outras variáveis farmacológicas, metabólicas, e marcadores bioquímicos, etc, como também medição de parâmetros fisiológicos e eletromecânicos da parede vascular. 10. Non-polymeric cylindrical tubular prosthetic device according to claims 7 and 9, characterized by operating together with an implantable biochip (43), whose drug release from the interior of its reservoirs would occur with an electrical stimulus between the thin layer of anodic metal consisting of the membrane covering the reservoir and the existing cathode, resulting in an electromechanical release by dissolving this membrane, so that the electrical stimulus can be activated by a remote control unit (55), with the control circuit inside the microchip, performing the function of controlled and pre-adjusted pharmacological release according to the indication and need demonstrated, for months to years, in addition to performing other intelligent functions through its biosensors (46), such as measuring serum metabolic parameters, concentration rate or half-life of released precursor drugs, interaction with nanosensors or nanochips (49) alternatively present ments on the inner surface of the prosthetic device (51), aiming to make it feasible to measure local metabolic indices, chemical mediators, hormones, neuromodulators, compulsorily measure the concentration rates of in-stent drugs (33), serum half-life of the medication released at the vascular locus addressed, sequential metabolism rate, and drug elimination time, among several other pharmacological, metabolic, and biochemical markers, etc., as well as measurement of physiological and electromechanical parameters of the vascular wall.
11. Dispositivo protético tubular cilíndrico não-polimérico de acordo com as reivindicações 2, 3, 4, 5 e 7, caracterizado pelo fato de constituir-se de um sistema composto integrado de liberação de fármacos intra-stent (33) através da atuação de um biochip (43), implantável sob a pele, contendo uma ou mais placas (44) de ativação- recepção, operada(s) por qualquer modalidade de central/comando externo (55), seja controle automatizado, aparelhos de telefonia, unidade PC, etc, e que naquelas se observam múltiplos micro-reservatórios de suporte e sustentação dos fármacos precursores (36), estes serão então liberados e via corrente sanguínea, atingirão o "stent" vascular (50, 51), isto é, atuando sobre qualquer dispositivo protético vascular à distância, através de liberação programada de fármacos precursores (36) contidos em sua estrutura, responsáveis por interagir com a superfície interna do stent vascular (35), liberando as medicações contidas nas microcápsulas e/ou grupo de lipossomas (33), de função antimioproliferativa, antiaterogênica, antitrombogênica, antiquimiotáxica, antiinflamatória e reestruturadora da parede vascular; dessa forma, atuando localmente na liberação farmacológica específica, disposta na cobertura interna do dispositivo protético vascular ou intraorgânico (32, 42), sob pulsos de controle temporal, de concentração e tipo específico de medicação intra-stent (33). 11. Non-polymeric cylindrical tubular prosthetic device according to claims 2, 3, 4, 5 and 7, characterized by the fact that it consists of an integrated system composed of in-stent drug delivery (33) through the action of a biochip (43), implantable under the skin, containing one or more activation-reception boards (44), operated by any modality of central/external command (55), whether automated control, telephone sets, PC unit , etc., and that multiple micro-reservoirs supporting and sustaining the precursor drugs are observed (36), these will then be released and via the bloodstream, will reach the vascular "stent" (50, 51), that is, acting on any vascular prosthetic device at a distance, through the programmed release of precursor drugs (36) contained in its structure, responsible for interacting with the inner surface of the vascular stent (35) , releasing the medications contained in the microcapsules and/or group of liposomes (33), with antimyoproliferative, antiatherogenic, antithrombogenic, antichemotactic, anti-inflammatory and vascular wall restructuring functions; thus, acting locally in the specific pharmacological release, arranged in the internal cover of the vascular or intraorganic prosthetic device (32, 42), under temporal control pulses, of concentration and specific type of in-stent medication (33).
12. Dispositivo protético tubular cilíndrico não-polimérico de acordo com as reivindicações 5, 6 e 7, caracterizado por apresentar matriz interna de liberação de drogas (32, 42), disposta em células hexagonais (34), ou hexagonais (47) e losangulares (48), contendo microcápsulas ou grupos de lipossomas (33) que, neste sentido, seriam gradualmente e seletivamente liberadas através de uma ação de combinação e reação farmacológicas, em cada camada de sustentação das microcápsulas ou lipossomas, pelas substâncias (36) liberadas pelo implante eletrônico - biochip (43), apresentando, entre outras peculiaridades biocompatíveis, uma matriz interna de liberação de drogas (32, 42), que além de apresentar múltiplas camadas, possa conter orifícios ou lacunas de interconexão entre as suas células, visando permitir uma maior difusão e acessibilidade das drogas liberadas (33) também em relação à parede vascular "protegida" pela prótese. 12. Non-polymeric cylindrical tubular prosthetic device according to claims 5, 6 and 7, characterized by having an internal drug release matrix (32, 42), arranged in hexagonal (34), or hexagonal (47) and lozenge cells (48), containing microcapsules or groups of liposomes (33) that, in this sense, would be gradually and selectively released through a combination action and pharmacological reaction, in each support layer of the microcapsules or liposomes, by the substances (36) released by the electronic implant - biochip (43), presenting, among other biocompatible peculiarities, an internal drug release matrix (32, 42), which, in addition to having multiple layers, may contain interconnection holes or gaps between its cells, aiming to allow a greater diffusion and accessibility of released drugs (33) also in relation to the vascular wall "protected" by the prosthesis.
13. Dispositivo protético tubular cilíndrico não-polimérico de acordo com as reivindicações 2, 3, 4 e 5, caracterizado pelo fato de que cada camada de sustentação das microcápsulas ou grupos lipossomas (33) será formada por uma matriz (35) de sustentação de composição química diversa, uma da outra, objetivando propiciar a especificidade e seletividade de liberação de determinado fármaco, contido nos lipossomas/microcápsulas (33), de acordo com o tipo de medicação (fármaco precursor) (36) liberada pelo biochip implantável (43). 13. Non-polymeric cylindrical tubular prosthetic device according to claims 2, 3, 4 and 5, characterized in that each support layer of the microcapsules or liposome groups (33) will be formed by a matrix (35) of support of different chemical composition, one from the other, aiming to provide the specificity and selectivity of release of a given drug, contained in liposomes/microcapsules (33), according to the type of medication (precursor drug) (36) released by the implantable biochip (43) .
14. Dispositivo protético tubular cilíndrico não-polimérico de acordo com as reivindicações 1, 2, 3 e 4, caracterizado por inicialmente, a nível de produção experimental, permitir a elaboração das próteses em diâmetros de 4,0 mm e 5,0 mm, com comprimentos que variam de 12 mm, 18 mm e 24 mm, não descartando a posteriori a moldagem em menor diâmetro e/ou maior comprimento; a espessura de suas hastes das células poderá oscilar entre 0,08 até 0,12 mm, fato importante para reduzir a tendência à trombose e o traumatismo da parede vascular, o que também é consequência do processo de acabamento da prótese, onde incluem-se o polimento químico das hastes e o corte a laser para a configuração do material e sua estrutura espacial. 14. Non-polymeric cylindrical tubular prosthetic device according to claims 1, 2, 3 and 4, characterized in that initially, at the production level experimental, allow the elaboration of prostheses in diameters of 4.0 mm and 5.0 mm, with lengths that vary from 12 mm, 18 mm and 24 mm, not discarding a posteriori the molding in smaller diameter and/or greater length; the thickness of its stem cells can range from 0.08 to 0.12 mm, an important fact to reduce the tendency to thrombosis and trauma to the vascular wall, which is also a consequence of the prosthesis finishing process, which includes chemical polishing of the rods and laser cutting for the configuration of the material and its spatial structure.
15. Dispositivo protético tubular cilíndrico não-polimérico de acordo com as reivindicações 2 e 4 caracterizado pelo fato de que há de se considerar a produção alternativa deste dispositivo protético orgânico ou vascular (51) em variante deste segundo modelo, de células hexagonais (47), coaptadas em suas extremidades inferior e superior por células em losango (48), e estas, por sua vez, fenestradas, não revestidas internamente em sua área pelo "coating"(revestimento interno) de liberação de fármacos (42), consistindo em uma propriedade de indicação para a introdução da prótese vascular em situações de lesões de bifurcações/trifurcações, vasos colaterais emergentes do local da lesão, entre outras indicações. 15. Non-polymeric cylindrical tubular prosthetic device according to claims 2 and 4, characterized in that the alternative production of this organic or vascular prosthetic device (51) in a variant of this second model, of hexagonal cells (47) must be considered , coapted at their lower and upper ends by diamond cells (48), and these, in turn, are fenestrated, not coated internally in their area by the drug release coating (42), consisting of a indication property for the introduction of vascular prosthesis in situations of bifurcation/trifurcation lesions, collateral vessels emerging from the lesion site, among other indications.
PCT/BR2021/050361 2020-09-27 2021-08-25 Non-polymeric cylindrical tubular prosthetic device WO2022061430A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR102020019674-0 2020-09-27
BR102020019674-0A BR102020019674A2 (en) 2020-09-27 2020-09-27 Cylindrical tubular prosthetic device; and prosthetic device with non-polymeric biological matrix support for drug delivery, induced by microchip and nanosensors for remote operability and monitoring

Publications (1)

Publication Number Publication Date
WO2022061430A1 true WO2022061430A1 (en) 2022-03-31

Family

ID=80844473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2021/050361 WO2022061430A1 (en) 2020-09-27 2021-08-25 Non-polymeric cylindrical tubular prosthetic device

Country Status (2)

Country Link
BR (1) BR102020019674A2 (en)
WO (1) WO2022061430A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR102021015189A2 (en) * 2021-08-01 2023-02-14 Christiane Dias Maués CYLINDRICAL TUBULAR PROSTHETIC DEVICE; AND PROSTHETIC DEVICE WITH A SYSTEM FOR LOCAL RELEASE OF MEDICATION THROUGH FUNCTIONALIZED NANOPARTICLES, MORE PRECISELY LIPOSOMES, OF PASSIVE OR ACTIVE CONTROLLED RELEASE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5797898A (en) * 1996-07-02 1998-08-25 Massachusetts Institute Of Technology Microchip drug delivery devices
WO2004096176A2 (en) * 2003-04-25 2004-11-11 Boston Scientific Scimed Inc. Solid drug formulation and device for storage and controlled delivery thereof
US20080140172A1 (en) * 2004-12-13 2008-06-12 Robert Hunt Carpenter Multi-Wall Expandable Device Capable Of Drug Delivery Related Applications
BR102016012105A2 (en) * 2016-05-27 2017-12-12 Dias Maués Christiane CYLINDRICAL TUBULAR PROTECTIVE DEVICE; AND PROTETIC DEVICE WITH BIOLOGICAL SUPPORT MATRIX FOR DRUG RELEASE; WITH OR WITHOUT POLYMERS
US10485968B2 (en) * 2015-10-20 2019-11-26 The University Of Melbourne Medical device for sensing and or stimulating tissue

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5797898A (en) * 1996-07-02 1998-08-25 Massachusetts Institute Of Technology Microchip drug delivery devices
WO2004096176A2 (en) * 2003-04-25 2004-11-11 Boston Scientific Scimed Inc. Solid drug formulation and device for storage and controlled delivery thereof
US20080140172A1 (en) * 2004-12-13 2008-06-12 Robert Hunt Carpenter Multi-Wall Expandable Device Capable Of Drug Delivery Related Applications
US10485968B2 (en) * 2015-10-20 2019-11-26 The University Of Melbourne Medical device for sensing and or stimulating tissue
BR102016012105A2 (en) * 2016-05-27 2017-12-12 Dias Maués Christiane CYLINDRICAL TUBULAR PROTECTIVE DEVICE; AND PROTETIC DEVICE WITH BIOLOGICAL SUPPORT MATRIX FOR DRUG RELEASE; WITH OR WITHOUT POLYMERS

Also Published As

Publication number Publication date
BR102020019674A2 (en) 2022-04-12

Similar Documents

Publication Publication Date Title
US5980566A (en) Vascular and endoluminal stents with iridium oxide coating
Liermann et al. The Strecker stent: indications and results in iliac and femoropopliteal arteries
ES2476594T3 (en) Drug-releasing endoprosthesis and method of use
US20070288084A1 (en) Implantable Stent with Degradable Portions
JP6853792B2 (en) Multi-factor bioabsorbable intravascular stent
JP2006500996A (en) Apparatus and method for delivering mitomycin via an eluting biocompatible implantable medical device
US20060015170A1 (en) Contrast coated stent and method of fabrication
JP2014511247A (en) Low strain high strength stent
WO2011131115A1 (en) Stent for bifurcated vessel
US20060235504A1 (en) Methods and apparatus for treatment of luminal hyperplasia
EP2908782B1 (en) Method for making topographical features on a surface of a medical device
WO2022061430A1 (en) Non-polymeric cylindrical tubular prosthetic device
Ellis et al. Intracoronary stents: will they fulfill their promise as an adjunct to angioplasty?
US20030055493A1 (en) Enhancement of stent radiopacity using anchors and tags
US20090112307A1 (en) Stent having a base body of a bioinert metallic implant material
US9452243B2 (en) Implant comprising an active-agent-containing coating covering the implant at least in sections
BR102016012105A2 (en) CYLINDRICAL TUBULAR PROTECTIVE DEVICE; AND PROTETIC DEVICE WITH BIOLOGICAL SUPPORT MATRIX FOR DRUG RELEASE; WITH OR WITHOUT POLYMERS
CN202146455U (en) Cardiovascular composite medicine bracket
WO2002091956A1 (en) Stent comprising a drug release coating thereon and delivering system thereof
JP2016510657A (en) Topographic features and patterns on the surface of medical devices and methods of making the same
Galloni et al. Carbon-coated stents implanted in porcine iliac and renal arteries: histologic and histomorphometric study
Alicea et al. Mechanics biomaterials: stents
França et al. Update on vascular endoprostheses (stents): from experimental studies to clinical practice
WO2023010189A1 (en) Cylindrical tubular prosthetic device, and prosthetic device with system for local release of medicaments via functionalised nanoparticles, more specifically liposomes, with controlled passive or active release
Gammon et al. Bioabsorbable endovascular stent prostheses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21870611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21870611

Country of ref document: EP

Kind code of ref document: A1