WO2022060049A1 - Method and device for performing sensing in power saving mode in wireless lan system - Google Patents

Method and device for performing sensing in power saving mode in wireless lan system Download PDF

Info

Publication number
WO2022060049A1
WO2022060049A1 PCT/KR2021/012478 KR2021012478W WO2022060049A1 WO 2022060049 A1 WO2022060049 A1 WO 2022060049A1 KR 2021012478 W KR2021012478 W KR 2021012478W WO 2022060049 A1 WO2022060049 A1 WO 2022060049A1
Authority
WO
WIPO (PCT)
Prior art keywords
twt
sensing
sta
wlan
data transmission
Prior art date
Application number
PCT/KR2021/012478
Other languages
French (fr)
Korean (ko)
Inventor
김상국
김정기
최진수
임동국
장인선
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2022060049A1 publication Critical patent/WO2022060049A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This specification relates to a technique for performing sensing in a wireless LAN system, and more particularly, to a procedure and a signaling method for performing sensing in a power saving mode.
  • a wireless local area network has been improved in various ways.
  • IEEE 802.11bf wireless LAN sensing is the first standard that converges communications and radar technologies.
  • FMCW Frequency Modulated Continuous Wave
  • a millimeter band eg, 60 GHz
  • Wireless LAN sensing technology can be applied to a wide range of real life applications such as motion detection, breathing monitoring, positioning/tracking, fall detection, in-vehicle infant detection, appearance/proximity recognition, personal identification, body motion recognition, and behavior recognition, thereby promoting the growth of related new businesses and It is expected to contribute to enhancing the competitiveness of the company.
  • the transmitting STA may generate a negotiation frame.
  • the negotiation frame may include information related to a target wake-up time (TWT) service period (SP).
  • the TWT SP may include a first TWT SP for data transmission and WLAN sensing and a second TWT SP used only for WLAN sensing.
  • the transmitting STA may transmit the negotiation frame to the receiving STA.
  • the first TWT SP may include a first time interval for data transmission and a second time interval for WLAN sensing.
  • the information related to the TWT SP may further include period information of the first TWT SP and period information of the second TWT SP.
  • the period of the first TWT SP may be an integer multiple of the second TWT SP.
  • Target Wake Time As a method for data transmission in power save mode, Target Wake Time (TWT) is defined in IEEE 802.11ax, IEEE 802.11ah, etc.
  • TWT Target Wake Time
  • the definition of additional TWT for sensing is a frequent STA State (“Awake”, “Doze ”), it may be difficult to achieve the desired power save due to conversion.
  • sensing can be performed in connection with the TWT defined for data transmission. Accordingly, it is possible to obtain a reduction in power loss that can be consumed by WLAN sensing.
  • FIG. 1 shows an example of a transmitting apparatus and/or a receiving apparatus of the present specification.
  • FIG. 2 shows an example of a wireless LAN sensing scenario using a multi-sensing transmission device.
  • FIG. 3 shows an example of a wireless LAN sensing scenario using a multi-sensing receiving device.
  • 5 is an example of classification of wireless LAN sensing.
  • FIG. 8 is a diagram briefly illustrating a PPDU structure supported by an 802.11ay wireless LAN system.
  • FIG 9 shows a modified example of a transmitting apparatus and/or a receiving apparatus of the present specification.
  • FIG. 10 is a diagram illustrating an embodiment of a communication network.
  • FIG. 11 is a diagram illustrating an example of a sensing method.
  • FIG. 12 is a diagram illustrating an example of a sensing method.
  • FIG. 13 is a diagram illustrating an example of a sensing method.
  • FIG. 14 is a diagram illustrating an example of a sensing method.
  • 15 is a diagram illustrating an example of a sensing method.
  • 16 is a diagram illustrating an embodiment of a method of operating a transmitting STA.
  • 17 is a diagram illustrating an embodiment of a method of operating a receiving STA.
  • 'A or B (A or B)' may mean 'only A', 'only B', or 'both A and B'.
  • 'A or B (A or B)' in the present specification may be interpreted as 'A and/or B (A and/or B)'.
  • 'A, B or C(A, B or C)' as used herein means 'only A', 'only B', 'only C', or 'any and any combination of A, B and C ( It may mean any combination of A, B and C).
  • a slash (/) or a comma (comma) used in this specification may mean 'and/or'.
  • 'A/B' may mean 'A and/or B'.
  • 'A/B' may mean 'only A', 'only B', or 'both A and B'.
  • 'A, B, C' may mean 'A, B, or C'.
  • 'at least one of A and B' may mean 'only A', 'only B', or 'both A and B'.
  • the expression 'at least one of A or B' or 'at least one of A and/or B' means 'at least one It can be interpreted the same as 'A and B (at least one of A and B)'.
  • 'at least one of A, B and C' means 'only A', 'only B', 'only C', or 'A, B and C' It may mean any combination of A, B and C'.
  • 'at least one of A, B or C' or 'at least one of A, B and/or C' means It may mean 'at least one of A, B and C'.
  • parentheses used in this specification may mean 'for example'.
  • 'control information (EHT-Signal)' when 'control information (EHT-Signal)' is displayed, 'EHT-Signal' may be proposed as an example of 'control information'.
  • 'control information' of the present specification is not limited to 'EHT-Signal', and 'EHT-Signal' may be proposed as an example of 'control information'.
  • 'control information' ie, EHT-signal
  • 'EHT-signal' may be proposed as an example of 'control information'.
  • the following examples of the present specification may be applied to various wireless communication systems.
  • the following example of the present specification may be applied to a wireless local area network (WLAN) system.
  • the present specification may be applied to the IEEE 802.11a/g/n/ac standard or the IEEE 802.11ax standard.
  • this specification may be applied to the newly proposed EHT standard or IEEE 802.11be standard.
  • an example of the present specification may be applied to the EHT standard or a new wireless LAN standard that is an enhancement of IEEE 802.11be.
  • an example of the present specification may be applied to a mobile communication system.
  • LTE Long Term Evolution
  • 3GPP 3rd Generation Partnership Project
  • an example of the present specification may be applied to a communication system of the 5G NR standard based on the 3GPP standard.
  • FIG. 1 shows an example of a transmitting apparatus and/or a receiving apparatus of the present specification.
  • the example of FIG. 1 may perform various technical features described below.
  • 1 relates to at least one STA (station).
  • the STAs 110 and 120 of the present specification are a mobile terminal, a wireless device, a wireless transmit/receive unit (WTRU), a user equipment (UE), It may also be called by various names such as a mobile station (MS), a mobile subscriber unit, or simply a user.
  • the STAs 110 and 120 in the present specification may be referred to by various names such as a network, a base station, a Node-B, an access point (AP), a repeater, a router, and a relay.
  • the STAs 110 and 120 may be referred to by various names such as a receiving device (apparatus), a transmitting device, a receiving STA, a transmitting STA, a receiving device, and a transmitting device.
  • the STAs 110 and 120 may perform an access point (AP) role or a non-AP role. That is, the STAs 110 and 120 of the present specification may perform AP and/or non-AP functions.
  • the AP may also be indicated as an AP STA.
  • the STAs 110 and 120 of the present specification may support various communication standards other than the IEEE 802.11 standard.
  • a communication standard eg, LTE, LTE-A, 5G NR standard
  • the STA of the present specification may be implemented in various devices such as a mobile phone, a vehicle, and a personal computer.
  • the STA of the present specification may support communication for various communication services such as voice call, video call, data communication, and autonomous driving (Self-Driving, Autonomous-Driving).
  • the STAs 110 and 120 may include a medium access control (MAC) conforming to the IEEE 802.11 standard and a physical layer interface for a wireless medium.
  • MAC medium access control
  • the STAs 110 and 120 will be described based on the sub-view (a) of FIG. 1 as follows.
  • the first STA 110 may include a processor 111 , a memory 112 , and a transceiver 113 .
  • the illustrated processor, memory, and transceiver may each be implemented as separate chips, or at least two or more blocks/functions may be implemented through one chip.
  • the transceiver 113 of the first STA performs a signal transmission/reception operation. Specifically, IEEE 802.11 packets (eg, IEEE 802.11a/b/g/n/ac/ax/be, etc.) may be transmitted/received.
  • IEEE 802.11 packets eg, IEEE 802.11a/b/g/n/ac/ax/be, etc.
  • the first STA 110 may perform an intended operation of the AP.
  • the processor 111 of the AP may receive a signal through the transceiver 113 , process the received signal, generate a transmission signal, and perform control for signal transmission.
  • the memory 112 of the AP may store a signal (ie, a received signal) received through the transceiver 113 , and may store a signal to be transmitted through the transceiver (ie, a transmission signal).
  • the second STA 120 may perform an intended operation of a non-AP STA.
  • the transceiver 123 of the non-AP performs a signal transmission/reception operation.
  • IEEE 802.11 packets eg, IEEE 802.11a/b/g/n/ac/ax/be, etc.
  • IEEE 802.11a/b/g/n/ac/ax/be, etc. may be transmitted/received.
  • the processor 121 of the non-AP STA may receive a signal through the transceiver 123 , process the received signal, generate a transmission signal, and perform control for signal transmission.
  • the memory 122 of the non-AP STA may store a signal (ie, a received signal) received through the transceiver 123 and may store a signal to be transmitted through the transceiver (ie, a transmission signal).
  • an operation of a device indicated as an AP in the following specification may be performed by the first STA 110 or the second STA 120 .
  • the operation of the device marked as AP is controlled by the processor 111 of the first STA 110 , and is controlled by the processor 111 of the first STA 110 .
  • Relevant signals may be transmitted or received via the controlled transceiver 113 .
  • control information related to an operation of the AP or a transmission/reception signal of the AP may be stored in the memory 112 of the first STA 110 .
  • the operation of the device indicated by the AP is controlled by the processor 121 of the second STA 120 and controlled by the processor 121 of the second STA 120 .
  • a related signal may be transmitted or received via the transceiver 123 that is used.
  • control information related to an operation of the AP or a transmission/reception signal of the AP may be stored in the memory 122 of the second STA 110 .
  • an operation of a device indicated as a non-AP in the following specification may be performed by the first STA 110 or the second STA 120 .
  • the operation of the device marked as non-AP is controlled by the processor 121 of the second STA 120, and the processor ( A related signal may be transmitted or received via the transceiver 123 controlled by 121 .
  • control information related to the operation of the non-AP or the AP transmit/receive signal may be stored in the memory 122 of the second STA 120 .
  • the operation of the device marked as non-AP is controlled by the processor 111 of the first STA 110 , and the processor ( Related signals may be transmitted or received via transceiver 113 controlled by 111 .
  • control information related to the operation of the non-AP or the AP transmission/reception signal may be stored in the memory 112 of the first STA 110 .
  • transmission / reception STA, first STA, second STA, STA1, STA2, AP, first AP, second AP, AP1, AP2, (transmission / reception) Terminal, (transmission / reception) device , (transmitting/receiving) apparatus, a device called a network, etc. may refer to the STAs 110 and 120 of FIG. 1 .
  • a device indicated by a /receiver) device, a (transmit/receive) apparatus, and a network may also refer to the STAs 110 and 120 of FIG. 1 .
  • an operation in which various STAs transmit and receive signals may be performed by the transceivers 113 and 123 of FIG. 1 .
  • an example of an operation of generating a transmission/reception signal or performing data processing or operation in advance for a transmission/reception signal is 1) Determining bit information of a subfield (SIG, STF, LTF, Data) field included in a PPDU /Acquisition/configuration/computation/decoding/encoding operation, 2) time resource or frequency resource (eg, subcarrier resource) used for the subfield (SIG, STF, LTF, Data) field included in the PPDU, etc.
  • a specific sequence eg, pilot sequence, STF / LTF sequence, SIG
  • SIG subfield
  • SIG subfield
  • STF subfield
  • LTF LTF
  • Data subfield
  • an operation related to determination / acquisition / configuration / operation / decoding / encoding of the ACK signal may include
  • various information eg, field/subfield/control field/parameter/power related information used by various STAs for determination/acquisition/configuration/computation/decoding/encoding of transmit/receive signals is may be stored in the memories 112 and 122 of FIG. 1 .
  • the device/STA of the sub-view (a) of FIG. 1 described above may be modified as shown in the sub-view (b) of FIG. 1 .
  • the STAs 110 and 120 of the present specification will be described based on the sub-drawing (b) of FIG. 1 .
  • the transceivers 113 and 123 illustrated in (b) of FIG. 1 may perform the same function as the transceivers illustrated in (a) of FIG. 1 .
  • the processing chips 114 and 124 illustrated in (b) of FIG. 1 may include processors 111 and 121 and memories 112 and 122 .
  • the processors 111 and 121 and the memories 112 and 122 illustrated in (b) of FIG. 1 are the processors 111 and 121 and the memories 112 and 122 illustrated in (a) of FIG. ) can perform the same function.
  • a technical feature in which a transmitting STA transmits a control signal is that the control signals generated by the processors 111 and 121 shown in the sub-drawings (a)/(b) of FIG. 1 are (a) of FIG. ) / (b) can be understood as a technical feature transmitted through the transceivers 113 and 123 shown in (b).
  • the technical feature in which the transmitting STA transmits the control signal is a technical feature in which a control signal to be transmitted to the transceivers 113 and 123 is generated from the processing chips 114 and 124 shown in the sub-view (b) of FIG. can be understood
  • the technical feature in which the receiving STA receives the control signal may be understood as the technical feature in which the control signal is received by the transceivers 113 and 123 shown in the sub-drawing (a) of FIG. 1 .
  • the technical feature that the receiving STA receives the control signal is that the control signal received by the transceivers 113 and 123 shown in the sub-drawing (a) of FIG. 1 is the processor shown in (a) of FIG. 111, 121) can be understood as a technical feature obtained by.
  • the technical feature for the receiving STA to receive the control signal is that the control signal received by the transceivers 113 and 123 shown in the sub-view (b) of FIG. 1 is the processing chip shown in the sub-view (b) of FIG. It can be understood as a technical feature obtained by (114, 124).
  • software codes 115 and 125 may be included in the memories 112 and 122 .
  • the software codes 115 and 125 may include instructions for controlling the operations of the processors 111 and 121 .
  • Software code 115, 125 may be included in a variety of programming languages.
  • SNAPDRAGON TM series processors manufactured by Qualcomm®, EXYNOS TM series processors manufactured by Samsung®, and Apple® It may be an A series processor manufactured by MediaTek®, a HELIO TM series processor manufactured by MediaTek®, an ATOM TM series processor manufactured by INTEL®, or an enhanced processor.
  • uplink may mean a link for communication from a non-AP STA to an AP STA, and an uplink PPDU/packet/signal may be transmitted through the uplink.
  • downlink may mean a link for communication from an AP STA to a non-AP STA, and a downlink PPDU/packet/signal may be transmitted through the downlink.
  • the wireless LAN sensing technology is a kind of radar technology that can be implemented without a standard, it is judged that stronger performance can be obtained through standardization.
  • the IEEE 802.11bf standard defines devices participating in wireless LAN sensing by function as shown in the table below. According to its function, it can be divided into a device that initiates wireless LAN sensing and a device that participates, and a device that transmits and receives a sensing PPDU (Physical Layer Protocol Data Unit).
  • PPDU Physical Layer Protocol Data Unit
  • Sensing Initiator device that initiates sensing Sensing Responder Devices participating in sensing Sensing Transmitter A device that transmits a sensing PPDU Sensing Receiver A device that receives a sensing PPDU
  • the subject of signal transmission for wireless LAN sensing is an initiator, it is defined as initiator-based sensing, and if the subject of signal transmission is a responder, it is defined as responder-based sensing.
  • 2 shows an example of a wireless LAN sensing scenario using a multi-sensing receiving device.
  • 3 shows an example of a wireless LAN sensing scenario using a multi-sensing transmission device.
  • 2 and 3 show sensing scenarios according to the function and arrangement of the wireless LAN sensing device. In an environment assuming one sensing start device and multiple sensing participating devices, FIG. 2 is a scenario using multiple sensing PPDU receiving devices, and FIG.
  • FIG. 3 is a method for feeding back sensing results using a transmitting device after receiving multiple sensing PPDUs. It's a scenario Assuming that the sensing PPDU receiving device includes the sensing measurement signal processing device, in the case of FIG. 3 , a procedure for transmitting (feedback) the sensing measurement result to the sensing start device STA 5 is additionally required.
  • 4 shows an example of a wireless LAN sensing procedure. Looking at the procedure of wireless LAN sensing, discovery, negotiation, measurement exchange, and tear down are performed between the wireless LAN sensing start device and the participating device.
  • Discovery is a process of identifying the sensing capabilities of WLAN devices
  • negotiation is a process of determining a sensing parameter between a sensing start device and a participating device
  • measurement value exchange is a process of transmitting a sensing PPDU and transmitting a sensing measurement result
  • connection Release is the process of terminating the sensing procedure.
  • the process of transmitting the sensing measurement result may be omitted.
  • 5 is an example of classification of wireless LAN sensing.
  • Wireless LAN sensing can be classified into CSI-based sensing, which uses channel state information of a signal that arrives at the receiver through a channel, from the transmitter, and radar-based sensing, which uses a signal received after a transmitted signal is reflected by an object.
  • each sensing technology includes a method in which a sensing transmitter directly participates in the sensing process (coordinated CSI, active radar) and a method in which the sensing transmitter does not participate in the sensing process, that is, there is no dedicated transmitter participating in the sensing process (un -coordinated CSI, passive radar).
  • FIG. 6 is a diagram that utilizes CSI-based wireless LAN sensing for indoor positioning.
  • CSI to obtain an angle of arrival and a time of arrival, and converting these into orthogonal coordinates, indoor positioning information can be obtained. .
  • FIG. 7 shows a wireless LAN sensing device implemented by using the MATLAB toolbox, Zynq, and USRP.
  • MATLAB toolbox an IEEE 802.11ax wireless LAN signal is generated, and an RF signal is generated using Zynq Software Defined Radio (SDR).
  • SDR Software Defined Radio
  • the signal passing through the channel is received by USRP SDR and sensing signal processing is performed in the MATLAB toolbox.
  • one reference channel a channel directly receivable from the sensing transmitter
  • one surveillance channel a channel receivable by reflection from an object
  • IEEE 802.11bf wireless LAN sensing standardization is in the early development stage, and cooperative sensing technology to improve sensing accuracy is expected to be treated as important in the future. It is expected that standardization core topics include synchronization technology of sensing signals for cooperative sensing, CSI management and use technology, sensing parameter negotiation and sharing technology, and scheduling technology for CSI generation. In addition, long-distance sensing technology, low-power sensing technology, sensing security and privacy protection technology will also be considered as major agenda items.
  • IEEE 802.11bf wireless LAN sensing is a kind of radar technology that uses a wireless LAN signal that is commonly present anywhere at any time.
  • the table below shows typical IEEE 802.11bf use cases, which can be used in a wide range of real-life situations, such as indoor sensing, motion recognition, health care, 3D vision, and in-vehicle sensing. Because it is mainly used indoors, the operating range is usually within 10 to 20 meters, and the maximum error of distance does not exceed 2 meters.
  • IEEE 802.11 a technology for sensing the motion or gesture of an object (person or thing) using a wi-fi signal of 60 GHz (eg, 802.11ad or 802.11ay signal) is being discussed.
  • a method of configuring a frame format used for wi-fi sensing and a wi-fi sensing sequence are proposed.
  • 8 is a diagram briefly illustrating a PPDU structure supported by an 802.11ay wireless LAN system.
  • the PPDU format applicable to the 802.11ay system is L-STF, L-CEF, L-Header, EDMG-Header-A, EDMG-STF, EDMG-CEF, EDMG-Header-B, Data , TRN field, and the fields may be selectively included according to the type of PPDU (eg, SU PPDU, MU PPDU, etc.).
  • a portion including the L-STF, L-CEF, and L-Header fields may be referred to as a non-EDMG portion, and the remaining portion may be referred to as an EDMG area.
  • the L-STF, L-CEF, L-Header, and EDMG-Header-A fields may be named pre-EDMG modulated fields, and the remaining parts may be named EDMG modulated fields.
  • the EDMG-Header-A field includes information required to demodulate an EDMG PPDU.
  • the definition of the EDMG-Header-A field is the same as that of the EDMG SC mode PPDU and the EDMG OFDM mode PPDU, but is different from the definition of the EDMG control mode PPDU.
  • the structure of the EDMG-STF depends on the number of consecutive 2.16 GHz channels through which the EDMG PPDU is transmitted and the index i STS of the i STS -th space-time stream.
  • the EDMG-STF field does not exist.
  • the EDMG-STF field shall be modulated using pi/2 BPSK.
  • the structure of the EDMG-CEF depends on the number of consecutive 2.16GHz channels through which the EDMG PPDU is transmitted and the number of space-time streams i STSs .
  • the EDMG-CEF field does not exist.
  • the EDMG-CEF field should be modulated using pi/2 BPSK.
  • the (legacy) preamble portion of the PPDU as described above includes packet detection, automatic gain control (AGC), frequency offset estimation, synchronization, modulation (SC or OFDM) indication and channel measurement. (channel estimation) can be used.
  • the format of the preamble may be common for OFDM packet and SC packet.
  • the preamble may include a Short Training Field (STF) and a Channel Estimation (CE) field located after the STF field.
  • STF Short Training Field
  • CE Channel Estimation
  • FIG 9 shows a modified example of a transmitting apparatus and/or a receiving apparatus of the present specification.
  • Each device/STA of the sub-drawings (a)/(b) of FIG. 1 may be modified as shown in FIG. 9 .
  • the transceiver 930 of FIG. 9 may be the same as the transceivers 113 and 123 of FIG. 9 .
  • the transceiver 930 of FIG. 9 may include a receiver and a transmitter.
  • the processor 910 of FIG. 9 may be the same as the processors 111 and 121 of FIG. 1 . Alternatively, the processor 910 of FIG. 9 may be the same as the processing chips 114 and 124 of FIG. 1 .
  • the memory 150 of FIG. 9 may be the same as the memories 112 and 122 of FIG. 1 .
  • the memory 150 of FIG. 9 may be a separate external memory different from the memories 112 and 122 of FIG. 1 .
  • the power management module 911 manages power for the processor 910 and/or the transceiver 930 .
  • the battery 912 supplies power to the power management module 911 .
  • the display 913 outputs the result processed by the processor 910 .
  • Keypad 914 receives input to be used by processor 910 .
  • a keypad 914 may be displayed on the display 913 .
  • SIM card 915 may be an integrated circuit used to securely store an international mobile subscriber identity (IMSI) used to identify and authenticate subscribers in mobile phone devices, such as mobile phones and computers, and keys associated therewith. .
  • IMSI international mobile subscriber identity
  • the speaker 940 may output a sound related result processed by the processor 910 .
  • Microphone 941 may receive sound related input to be used by processor 910 .
  • IEEE802.11bf considers the signal transmission/reception methods of 802.11ad and 802.11ay, which are 60GHz Wi-Fi technologies, in order to sense a motion or gesture of an STA or a person using a 60GHz Wi-Fi signal.
  • a sensing start frame, a transmission start frame, and a method for configuring a sensing signal for channel estimation between an AP and an STA or an STA and an STA we propose a sensing sequence that transmits and receives .
  • the STA described below may be the apparatus of FIGS. 1 and/or 9 , and the PPDU may be the PPDU of FIG. 7 .
  • a device may be an AP or a non-AP STA.
  • WLAN Wireless Local Area Network
  • IEEE 802.11 MAC/PHY-based WLAN eg, Wi-Fi
  • Wi-Fi Wi-Fi
  • WLAN eg. Wi-Fi
  • Wi-Fi Wireless Fidelity
  • a WLAN (eg, Wi-Fi) signal transmitted from the transmitter to the receiver may include information on a transmission channel environment between the two transmitters and receivers.
  • WLAN sensing refers to a technology for obtaining cognitive information about various surrounding environments by processing information about a transmission channel environment acquired through a WLAN signal.
  • cognitive information includes gesture recognition, fall detection by elder people, intrusion detection, human motion detection, health monitoring, It may include information obtained through a technology such as pet movement detection.
  • WLAN sensing may be applied and used in various forms in real life.
  • devices having one or more WLAN sensing functions may be used for WLAN sensing.
  • WLAN sensing using a plurality of devices can use multiple pieces of information about the channel environment compared to a method using a single device (ie, a transceiver end), so more accurate sensing information can be obtained.
  • TWT Target Wake Time
  • the present invention proposes a method capable of reducing power consumption during WLAN sensing.
  • a method to prevent power consumption that may be caused by frequent switching to the awake state during individual TWT operations of data transmission and sensing through the TWT method designed for data transmission and operation in conjunction with the operation.
  • Sensing Session A period for transmitting and receiving signals for sensing.
  • the sensing session may be allocated periodically or as needed.
  • a sensing session may consist of a number of sub-sessions. In this specification, a sub-session may be referred to as a “sensing burst”.
  • WLAN Sensing Initiator A STA (station) that instructs devices having one or more sensing functions (ie, a WLAN Sensing responder) to initiate a sensing session using a WLAN signal.
  • the WLAN sensing initiator may transmit a signal (eg, NDP) for sensing, and may request other STAs to transmit a signal for sensing. That is, the initiator can be either a transmitter or a receiver.
  • WLAN Sensing Responder An STA capable of participating in WLAN sensing under the instruction of the WLAN sensing initiator and performing the indicated sensing, transmitting a signal to the initiator, or transmitting a signal for sensing under the instruction of the initiator.
  • WLAN Sensing Transmitter STA that transmits a signal for WLAN sensing during a sensing session (or burst).
  • the sensing transmitter may be the same for all bursts, different for some bursts, or different for every burst.
  • WLAN Sensing Receiver STA that receives a signal for WLAN sensing during a sensing session (or burst).
  • the sensing receiver may be the same for all bursts, different for some bursts, or different for every burst.
  • the WLAN initiator may play the role of a WLAN sensing transmitter (“initiator-based sensing”) or a WLAN sensing receiver (“responder-based sensing”).
  • the WLAN responder may perform the role of the WLAN sensing transmitter (“responder-based sensing”) or the role of the WLAN sensing receiver (“initiator-based sensing”).
  • TWT Requesting (initiating) STA A STA that requests a TWT agreement for data transmission from another STA.
  • TWT Responding STA STA that has received a TWT agreement request for data transmission from another STA.
  • the TWT Requesting STA may act as an initiator or responder in WLAN sensing, and may play a role as a sensing transmitter or receiver depending on whether a sensing measurement signal is transmitted.
  • the TWT Responding STA can act as an initiator or responder in WLAN sensing, and can play a role as a sensing transmitter or receiver depending on whether a sensing measurement signal is transmitted.
  • FIG. 10 is a diagram illustrating an embodiment of a communication network.
  • STA1 and STA2 may operate as TWT Requesting STAs or TWT Responding STAs. STA1 and STA2 may exchange data and perform sensing.
  • TWT service period SP
  • the TWT Period defined for data transmission may mean a period during which data transmission is performed, and the TWT Period for supporting a sensing application may mean a period during which sensing is performed.
  • TWT for sensing can be supported in connection with TWT for data transmission is provided in addition to existing information (eg, TWT element, field, subfield, Capability element, Operation element, Extended Capability element, etc.), or newly It may be provided as defined information (eg, New element, field, subfield, etc.).
  • existing information eg, TWT element, field, subfield, Capability element, Operation element, Extended Capability element, etc.
  • the TWT Initiating STA and the TWT Responding STA may proceed with the TWT Negotiation process for supporting sensing.
  • the TWT initiating STA and the TWT responding STA may separately perform the TWT negotiation process for supporting sensing.
  • the period and duration of TWT for sensing support can be defined.
  • the TWT SP used in conjunction may consist of two parts. For example, one may be configured as a TWT part for supporting data transmission, and the other may be configured as a TWT part for supporting sensing.
  • the TWT part for data transmission may be temporally located first in the TWT SP, and the TWT part for supporting sensing may be located first.
  • the TWT Requesting STA may act as a Sensing Initiator or a Sensing Responder in the Sensing TWT part.
  • the TWT Requesting STA may transmit a signal for sensing (Sensing Transmitter) or receive (Sensing Receiver) while serving as a sensing initiator or sensing responder.
  • the TWT Responding STA may act as a Sensing Initiator or a Sensing Responder in the Sensing TWT part.
  • the TWT Responding STA may transmit (Sensing Transmitter) or receive (Sensing Receiver) signals for sensing while acting as a sensing initiator or sensing responder.
  • TWT-related information for sensing (eg, duration, period, etc.) is additionally provided to the existing data TWT information (eg, TWT element, field, subfield, etc.), or new information (eg, New TWT element) , field, subfield, etc.).
  • existing data TWT information eg, TWT element, field, subfield, etc.
  • new information eg, New TWT element, field, subfield, etc.
  • the duration field of the existing TWT element indicates the TWT duration for data transmission and sensing, and may additionally inform the start time of the TWT for sensing.
  • the TWT operation for sensing may be started with an exchange of a control frame (eg, RTS-CTS exchange) in order to secure a stable channel.
  • a control frame eg, RTS-CTS exchange
  • This exchange of control frames may proceed after a predetermined time (eg, short inter-frame space (SIFS)) after the TWT duration for data transmission ends.
  • a predetermined time eg, short inter-frame space (SIFS)
  • SIFS short inter-frame space
  • Resources (time, frequency, and/or spatial resources, etc.) used during TWT duration for data transmission may be the same as or different from Resources used during TWT duration for sensing.
  • the TWT agreement established for data transmission is teared down
  • the TWT agreement for sensing can be teared down or maintained.
  • the STA can perform sensing through channel access or negotiate a TWT agreement for new sensing.
  • FIG. 11 is a diagram illustrating an example of a sensing method.
  • TWT negotiation for data transmission and TWT negotiation for sensing may be performed together.
  • the TWT SP service period
  • the TWT SP may be composed of two parts. One is for data communication and the other is for sensing.
  • a TWT part for supporting data communication is located first.
  • the TWT part for supporting data communication may be located at the rear.
  • TWT negotiation for sensing may be performed.
  • FIG. 12 is a diagram illustrating an example of a sensing method.
  • TWT negotiation for data transmission and TWT negotiation for sensing may be separately performed.
  • TWT SP where TWT for data transmission and sensing overlap can be composed of 2 parts. One is for data communication and the other is for sensing.
  • the TWT part for supporting data communication is located first in the TWT SP where the TWT for data transmission and sensing overlap.
  • the TWT part for supporting data communication may be located at the rear.
  • TWT negotiation process TWT negotiation for sensing may be performed.
  • TWT to support sensing.
  • the TWT period for data transmission can be an integer multiple of the TWT period for sensing.
  • TWT for data transmission and sensing can overlap regularly on the time axis.
  • an indication that TWT for sensing can be supported is additionally provided to existing information (eg, TWT element, field, subfield, Capability element, Operation element, Extended Capability element, etc.), or newly It can be provided as defined information (eg, New element, field, subfield, etc.).
  • existing information eg, TWT element, field, subfield, Capability element, Operation element, Extended Capability element, etc.
  • defined information eg, New element, field, subfield, etc.
  • the TWT initiating STA and the TWT responding STA may perform the TWT negotiation process to support sensing.
  • the TWT initiating STA and the TWT responding STA may separately perform the TWT negotiation process for supporting sensing in addition to the TWT negotiation process for data transmission in Power Save Mode.
  • the TWT initiating STA and the TWT responding STA may define the period and duration of the TWT for sensing support in the negotiation process.
  • the TWT duration for sensing used in the non-overlapping part on the time axis may be the same as or different from the TWT duration used in the overlapping part.
  • the TWT SP used in overlapping may be composed of two parts. For example, one may be configured as a TWT part for supporting data transmission, and the other may be configured as a TWT part for supporting sensing.
  • the TWT part for supporting data communication may be located first in the TWT service period (SP), and the TWT part for supporting sensing may be located first.
  • SP TWT service period
  • the TWT Requesting STA may act as a Sensing Initiator or a Sensing Responder in the Sensing TWT part.
  • the TWT Requesting STA may transmit a signal for sensing (Sensing Transmitter) or receive (Sensing Receiver) while serving as a sensing initiator or sensing responder.
  • the TWT Responding STA may act as a Sensing Initiator or a Sensing Responder in the Sensing TWT part.
  • the TWT Responding STA may transmit (Sensing Transmitter) or receive (Sensing Receiver) signals for sensing while acting as a sensing initiator or sensing responder.
  • TWT-related information for sensing (eg, duration, period, etc.) is additionally provided to the existing data TWT information (eg, TWT element, field, subfield, etc.), or new information (eg, New TWT element) , field, subfield, etc.).
  • existing data TWT information eg, TWT element, field, subfield, etc.
  • new information eg, New TWT element, field, subfield, etc.
  • the duration field of the existing TWT element represents the sum of the TWT durations for data transmission and sensing, and is related to the start time of the TWT for sensing. Additional information may be included.
  • the period of TWT for sensing and TWT for data transmission may have an integer multiple relationship.
  • the TWT operation for sensing may be started with an exchange of a control frame (eg, RTS-CTS exchange) in order to secure a stable channel.
  • a control frame eg, RTS-CTS exchange
  • This exchange of control frames may proceed after a predetermined time (eg, short inter-frame space (SIFS)) after the TWT duration for data transmission ends.
  • a predetermined time eg, short inter-frame space (SIFS)
  • SIFS short inter-frame space
  • Resources (time, frequency, and/or spatial resources, etc.) used during TWT duration for data transmission may be the same as or different from Resources used during TWT duration for sensing.
  • FIG. 13 is a diagram illustrating an example of a sensing method.
  • the TWT SP in which the TWT for data transmission and sensing overlap may be composed of two parts.
  • one of the two parts of the TWT SP where the TWT for data transmission and sensing overlaps may be a part for data communication, and the other part may be a part for sensing.
  • the TWT part for supporting data communication is located first, but the TWT part for supporting data communication may be located later.
  • TWT negotiation for data transmission TWT negotiation for sensing may be performed. That is, TWT negotiation for data transmission and sensing may be performed together.
  • the TWT period for data transmission may be twice the TWT period for sensing. That is, while sensing is performed twice, data transmission may be performed once.
  • the TWT SP after the TWT SP for sensing may be a TWT SP for both data transmission and sensing. For example, if data transmission is performed once while sensing is performed n times, the TWT SP for sensing may be repeated n-1 times, and then the TWT for 1 time may be a TWT for both data transmission and sensing.
  • FIG. 14 is a diagram illustrating an example of a sensing method.
  • the TWT SP in which the TWT for data transmission and sensing overlap may be composed of two parts.
  • one of the two parts of the TWT SP where the TWT for data transmission and sensing overlaps may be a part for data communication, and the other part may be a part for sensing.
  • the TWT part for supporting data communication is located first, but the TWT part for supporting data communication may be located later.
  • TWT negotiation for additional sensing may be performed.
  • TWT negotiation for data transmission and TWT negotiation for sensing may be separately performed.
  • the TWT period for data transmission may be twice the TWT period for sensing. That is, while sensing is performed twice, data transmission may be performed once.
  • the TWT SP after the TWT SP for sensing may be a TWT SP for both data transmission and sensing. For example, if data transmission is performed once while sensing is performed n times, the TWT SP for sensing may be repeated n-1 times, and then the TWT for 1 time may be a TWT for both data transmission and sensing.
  • STAs scheduled for broadcast TWT by the AP may support sensing in conjunction with the TWT SP defined for data transmission.
  • TWT for sensing can be supported in connection with Broadcast TWT for data transmission is provided in addition to existing information (eg, TWT element, field, subfield, Capability element, Operation element, Extended Capability element, etc.), It may be provided as newly defined information (eg, New element, field, subfield, etc.).
  • existing information eg, TWT element, field, subfield, Capability element, Operation element, Extended Capability element, etc.
  • It may be provided as newly defined information (eg, New element, field, subfield, etc.).
  • Broadcast TWT SP used in conjunction may consist of two parts. One may be a TWT part for supporting data transmission (“Broadcast TWT”), and the other may be a TWT part for supporting sensing (“Sensing TWT”).
  • Broadcast TWT a TWT part for supporting data transmission
  • Sensing TWT a TWT part for supporting sensing
  • the TWT part for data transmission may be located first in the TWT SP, and the TWT part for supporting sensing may be located first.
  • a Broadcast TWT Responding STA may act as a Sensing Initiator or a Sensing Responder in the Sensing TWT part. It can transmit (Sensing Transmitter) or receive (Sensing Receiver) signals for sensing while acting as a Sensing Initiator or Sensing Responder.
  • All or some of the STAs performing data transmission (transmission/reception) during the broadcast TWT SP can perform sensing during the TWT SP defined for sensing. STAs that do not participate in sensing may switch to the Doze state after the TWT SP for data transmission is terminated.
  • TWT-related information for sensing eg, duration, period, etc.
  • TWT element, field, subfield, etc. is provided in addition to the existing data TWT information (TWT element, field, subfield, etc.) or provided as new information (New TWT element, field, subfield, etc.) can be provided.
  • the duration field of the existing TWT element indicates the TWT duration for data transmission and sensing, and may additionally inform the start time of the TWT for sensing.
  • the TWT operation for sensing may start with an exchange of a control frame (eg, RTS-CTS exchange) to secure a stable channel.
  • a control frame eg, MU-RTS-CTS exchange
  • MU-RTS-CTS exchange a control frame to secure a stable channel.
  • This exchange of control frames may be performed after a predetermined time (eg, short inter-frame space (SIFS)) after the broadcast TWT duration for data transmission ends.
  • a predetermined time eg, short inter-frame space (SIFS)
  • the operation of the TWT for sensing may be started by transmission of a trigger frame.
  • Resources used during the Broadcast TWT duration for data transmission may be the same as or different from Resources used during the TWT duration for sensing.
  • 15 is a diagram illustrating an example of a sensing method.
  • the TWT SP in which the TWT for data transmission and sensing overlap may be composed of two parts.
  • one of the two parts of the TWT SP where the TWT for data transmission and sensing overlaps may be a part for data communication, and the other part may be a part for sensing.
  • the TWT part for supporting data communication is located first, but the TWT part for supporting data communication may be located later.
  • Target Wake Time As a method for data transmission in power save mode, Target Wake Time (TWT) is defined in IEEE 802.11ax, IEEE 802.11ah, etc.
  • TWT Target Wake Time
  • the definition of additional TWT for sensing is a frequent STA State (“Awake”, “Doze ”), it may be difficult to achieve the desired power save due to conversion.
  • sensing can be performed in connection with the TWT defined for data transmission. Accordingly, it is possible to obtain a reduction in power loss that can be consumed by WLAN sensing.
  • 16 is a diagram illustrating an embodiment of a method of operating a transmitting STA.
  • an operation of a transmitting STA may be based on technical features described in at least one of FIGS. 1 to 15 .
  • the transmitting STA may generate a negotiation frame (S1610).
  • the negotiation frame may include information related to a target wake-up time (TWT) service period (SP).
  • TWT target wake-up time
  • SP service period
  • the TWT SP may include a first TWT SP for data transmission and WLAN sensing and a second TWT SP used only for WLAN sensing.
  • the first TWT SP may include a first time interval for data transmission and a second time interval for WLAN sensing.
  • the information related to the TWT SP may further include period information of the first TWT SP and period information of the second TWT SP.
  • the period of the first TWT SP may be an integer multiple of the second TWT SP.
  • the negotiation frame may further include capability information related to whether the transmitting STA can use the TWT SP for the WLAN sensing.
  • the information related to the TWT SP may further include information related to the duration of the TWT SP.
  • the transmitting STA may transmit a negotiation frame (S1620). For example, the transmitting STA may transmit the negotiation frame to the receiving STA.
  • 17 is a diagram illustrating an embodiment of a method of operating a receiving STA.
  • an operation of a receiving STA may be based on technical features described in at least one of FIGS. 1 to 15 .
  • the receiving STA may receive a negotiation frame (S1710).
  • a negotiation frame may be received from the transmitting STA.
  • the negotiation frame may include information related to a target wake-up time (TWT) service period (SP).
  • TWT target wake-up time
  • SP target wake-up time service period
  • the TWT SP may include a first TWT SP for data transmission and WLAN sensing and a second TWT SP used only for WLAN sensing.
  • the first TWT SP may include a first time interval for data transmission and a second time interval for WLAN sensing.
  • the information related to the TWT SP may further include period information of the first TWT SP and period information of the second TWT SP.
  • the period of the first TWT SP may be an integer multiple of the second TWT SP.
  • the negotiation frame may further include capability information related to whether the transmitting STA can use the TWT SP for the WLAN sensing.
  • the information related to the TWT SP may further include information related to the duration of the TWT SP.
  • the transmitting STA and the receiving STA may decode the negotiation frame (S1720).
  • Some of the detailed steps shown in the examples of FIGS. 16 and 17 may not be essential steps and may be omitted. In addition to the steps shown in FIGS. 16 and 17 , other steps may be added, and the order of the steps may vary. Some of the above steps may have their own technical meaning.
  • the technical features of the present specification described above may be applied to various devices and methods.
  • the above-described technical features of the present specification may be performed/supported through the apparatus of FIGS. 1 and/or 9 .
  • the technical features of the present specification described above may be applied only to a part of FIGS. 1 and/or 9 .
  • the technical features of the present specification described above are implemented based on the processing chips 114 and 124 of FIG. 1 , or implemented based on the processors 111 and 121 and the memories 112 and 122 of FIG. 1 , or , may be implemented based on the processor 910 and the memory 920 of FIG. 9 .
  • the apparatus includes: a memory; and a processor operatively coupled to the memory, wherein the processor generates a negotiation frame, wherein the negotiation frame includes information related to a target wake-up time (TWT) service period (SP).
  • TWT target wake-up time
  • SP service period
  • the TWT SP includes a first TWT SP for data transmission and WLAN sensing and a second TWT SP used only for WLAN sensing; And it may be configured to transmit the negotiation frame to the receiving STA.
  • CRM computer readable medium
  • CRM proposed by the present specification includes an instruction based on being executed by at least one processor of a transmitting STA (station) of a wireless local area network (Wireless Local Area Network) system.
  • a negotiation frame is generated, wherein the negotiation frame includes information related to a target wake-up time (TWT) and a service period (SP), , wherein the TWT SP includes a first TWT SP for data transmission and WLAN sensing and a second TWT SP used only for WLAN sensing; and an instruction for performing an operation including transmitting the negotiation frame to the receiving STA.
  • TWT target wake-up time
  • SP service period
  • the instructions stored in the CRM of the present specification may be executed by at least one processor.
  • At least one processor related to CRM in the present specification may be the processors 111 and 121 or the processing chips 114 and 124 of FIG. 1 , or the processor 910 of FIG. 9 .
  • the CRM of the present specification may be the memories 112 and 122 of FIG. 1 , the memory 920 of FIG. 9 , or a separate external memory/storage medium/disk.
  • Machine learning refers to a field that defines various problems dealt with in the field of artificial intelligence and studies methodologies to solve them. do.
  • Machine learning is also defined as an algorithm that improves the performance of a certain task through constant experience.
  • An artificial neural network is a model used in machine learning, and may refer to an overall model having problem-solving ability, which is composed of artificial neurons (nodes) that form a network by combining synapses.
  • An artificial neural network may be defined by a connection pattern between neurons of different layers, a learning process that updates model parameters, and an activation function that generates an output value.
  • the artificial neural network may include an input layer, an output layer, and optionally one or more hidden layers. Each layer includes one or more neurons, and the artificial neural network may include neurons and synapses connecting neurons. In the artificial neural network, each neuron may output a function value of an activation function for input signals, weights, and biases input through synapses.
  • Model parameters refer to parameters determined through learning, and include the weight of synaptic connections and the bias of neurons.
  • the hyperparameter refers to a parameter that must be set before learning in a machine learning algorithm, and includes a learning rate, the number of iterations, a mini-batch size, an initialization function, and the like.
  • the purpose of learning the artificial neural network can be seen as determining the model parameters that minimize the loss function.
  • the loss function may be used as an index for determining optimal model parameters in the learning process of the artificial neural network.
  • Machine learning can be classified into supervised learning, unsupervised learning, and reinforcement learning according to a learning method.
  • Supervised learning refers to a method of training an artificial neural network in a state in which a label for the training data is given, and the label is the correct answer (or result value) that the artificial neural network should infer when the training data is input to the artificial neural network.
  • Unsupervised learning may refer to a method of training an artificial neural network in a state where no labels are given for training data.
  • Reinforcement learning can refer to a learning method in which an agent defined in an environment learns to select an action or sequence of actions that maximizes the cumulative reward in each state.
  • machine learning implemented as a deep neural network (DNN) including a plurality of hidden layers is also called deep learning (deep learning), and deep learning is a part of machine learning.
  • DNN deep neural network
  • deep learning deep learning
  • machine learning is used in a sense including deep learning.
  • a robot can mean a machine that automatically handles or operates a task given by its own capabilities.
  • a robot having a function of recognizing an environment and performing an operation by self-judgment may be referred to as an intelligent robot.
  • Robots can be classified into industrial, medical, home, military, etc. depending on the purpose or field of use.
  • the robot may be provided with a driving unit including an actuator or a motor to perform various physical operations such as moving the robot joints.
  • the movable robot includes a wheel, a brake, a propeller, and the like in the driving unit, and may travel on the ground or fly in the air through the driving unit.
  • the extended reality is a generic term for virtual reality (VR), augmented reality (AR), and mixed reality (MR).
  • VR technology provides only CG images of objects or backgrounds in the real world
  • AR technology provides virtual CG images on top of images of real objects
  • MR technology is a computer that mixes and combines virtual objects in the real world. graphic technology.
  • MR technology is similar to AR technology in that it shows both real and virtual objects. However, there is a difference in that in AR technology, a virtual object is used in a form that complements a real object, whereas in MR technology, a virtual object and a real object are used with equal characteristics.
  • HMD Head-Mount Display
  • HUD Head-Up Display
  • mobile phone tablet PC, laptop, desktop, TV, digital signage, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

In a wireless local area network (WLAN) system, a transmitting STA may generate a negotiation frame. The negotiation frame may include information related to a target wake-up time (TWT) service period (SP). The TWT SP may include a first TWT SP for data transmission and WLAN sensing and a second TWT SP used only for WLAN sensing. The transmitting STA may transmit the negotiation frame to a receiving STA. The first TWT SP may include a first time interval for data transmission and a second time interval for WLAN sensing. The information related to the TWT SP may further include period information of the first TWT SP and period information of the second TWT SP. The period of the first TWT SP may be an integer multiple of the second TWT SP.

Description

무선랜 시스템에서 절전 모드로 센싱을 수행하는 방법 및 장치Method and device for sensing in power saving mode in wireless LAN system
본 명세서는 무선랜 시스템에서 센싱을 수행하는 기법에 관한 것으로, 보다 상세하게는, 절전 모드에서 센싱을 수행하기 위한 절차 및 시그널링 방법에 관한 것이다.This specification relates to a technique for performing sensing in a wireless LAN system, and more particularly, to a procedure and a signaling method for performing sensing in a power saving mode.
WLAN(wireless local area network)은 다양한 방식으로 개선되어왔다. 예를 들어, IEEE 802.11bf 무선랜 센싱은 통신과 레이더 기술이 융합된 최초의 표준이다. 일상생활과 산업 전반에 걸쳐 비면허 주파수 수요가 급증하고 있지만 주파수 신규 공급에는 한계가 있기 때문에 통신과 레이다의 융합 기술 개발은 주파수 이용 효율을 증대하는 측면에서 매우 바람직한 방향이다. 기존에도 무선랜 신호를 이용하여 벽 뒤의 움직임을 감지하는 센싱 기술이나 밀리미터 대역에서(예를 들어, 60 GHz) FMCW(Frequency Modulated Continuous Wave) 신호를 이용하여 차량 내 움직임을 감지하는 레이다 기술 등이 개발되고 있으나 IEEE 802.11bf 표준화와 연계하여 센싱 성능을 한 단계 끌어올릴 수 있다는 점에서 큰 의미를 둘 수 있다. 특히, 현대사회는 사생활 보호의 중요성이 점점 강조되고 있어 CCTV와 달리 사생활 침해 문제에 법적으로 보다 자유로운 무선랜 센싱 기술 개발이 더 기대되고 있다.A wireless local area network (WLAN) has been improved in various ways. For example, IEEE 802.11bf wireless LAN sensing is the first standard that converges communications and radar technologies. Although the demand for unlicensed frequencies is rapidly increasing in daily life and industry, there is a limit to the new supply of frequencies. In the past, sensing technology that detects movement behind a wall using a wireless LAN signal or radar technology that detects movement in a vehicle using a Frequency Modulated Continuous Wave (FMCW) signal in a millimeter band (eg, 60 GHz) has been developed. Although it is being developed, it can be of great significance in that it can raise the sensing performance to one level in connection with the IEEE 802.11bf standardization. In particular, as the importance of privacy protection is increasingly emphasized in modern society, the development of wireless LAN sensing technology that is legally free from the issue of privacy infringement is expected more unlike CCTV.
한편, 자동차, 국방, 산업, 생활 등 전반에 걸쳐 레이더 전체 시장은 2025년까지 연평균 성장률 약 5% 수준까지 성장할 것으로 예측되고, 특히, 생활 센서의 경우 연평균 성장률은 70% 수준까지 급성장할 것으로 전망된다. 무선랜 센싱 기술은 움직임 감지, 호흡 모니터링, 측위/추적, 낙상 감지, 차량 내 유아 감지, 출현/근접 인식, 개인 식별, 몸동작 인식, 행동 인식 등의 광범위한 실생활 적용이 가능하여 관련 신사업 성장을 촉진하고 기업의 경쟁력 제고에 기여할 수 있을 것으로 기대한다.Meanwhile, the overall radar market across automobiles, defense, industry, and life is expected to grow at a CAGR of about 5% by 2025, and in particular, in the case of living sensors, the CAGR is expected to grow rapidly to 70%. . Wireless LAN sensing technology can be applied to a wide range of real life applications such as motion detection, breathing monitoring, positioning/tracking, fall detection, in-vehicle infant detection, appearance/proximity recognition, personal identification, body motion recognition, and behavior recognition, thereby promoting the growth of related new businesses and It is expected to contribute to enhancing the competitiveness of the company.
다양한 실시 예들에 따른 무선랜(Wireless Local Area Network) 시스템에서 송신 STA은 협상(negotiation) 프레임을 생성할 수 있다. 상기 협상 프레임은 TWT(target wake-up time) SP(service period)에 관련된 정보를 포함할 수 있다. 상기 TWT SP는 데이터 전송 및 WLAN 센싱을 위한 제1 TWT SP 및 WLAN 센싱만을 위해 사용되는 제2 TWT SP를 포함할 수 있다. 송신 STA은 수신 STA에게 상기 협상 프레임을 전송할 수 있다. 상기 제1 TWT SP는 데이터 전송을 위한 제1 시간 구간과 WLAN 센싱을 위한 제2 시간 구간을 포함할 수 있다. 상기 TWT SP에 관련된 정보는, 상기 제1 TWT SP의 주기 정보 및 상기 제2 TWT SP의 주기 정보를 더 포함할 수 있다. 상기 제1 TWT SP의 주기는 상기 제2 TWT SP의 정수 배일 수 있다.In a wireless local area network (WLAN) system according to various embodiments, the transmitting STA may generate a negotiation frame. The negotiation frame may include information related to a target wake-up time (TWT) service period (SP). The TWT SP may include a first TWT SP for data transmission and WLAN sensing and a second TWT SP used only for WLAN sensing. The transmitting STA may transmit the negotiation frame to the receiving STA. The first TWT SP may include a first time interval for data transmission and a second time interval for WLAN sensing. The information related to the TWT SP may further include period information of the first TWT SP and period information of the second TWT SP. The period of the first TWT SP may be an integer multiple of the second TWT SP.
Power save mode에서 데이터 전송을 위한 방법으로 Target Wake Time (TWT) 가 IEEE 802.11ax, IEEE 802.11ah 등에서 정의되어 있는데, 이에 더해 sensing을 위한 추가 TWT의 정의는 빈번한 STA의 State (“Awake”, “Doze”) 전환으로 인해 목적한 power save를 이루기 어려울 수 있다.As a method for data transmission in power save mode, Target Wake Time (TWT) is defined in IEEE 802.11ax, IEEE 802.11ah, etc. In addition, the definition of additional TWT for sensing is a frequent STA State (“Awake”, “Doze ”), it may be difficult to achieve the desired power save due to conversion.
본 명세서의 일례에 따르면 데이터 전송을 위해 정의된 TWT에 연계해서 sensing을 수행할 수 있다. 따라서, WLAN sensing에 의해 소모될 수 있는 전력 손실의 감소를 얻을 수 있다.According to an example of this specification, sensing can be performed in connection with the TWT defined for data transmission. Accordingly, it is possible to obtain a reduction in power loss that can be consumed by WLAN sensing.
도 1은 본 명세서의 송신 장치 및/또는 수신 장치의 일례를 나타낸다. 1 shows an example of a transmitting apparatus and/or a receiving apparatus of the present specification.
도 2는 다중 센싱 송신 장치를 이용한 무선랜 센싱 시나리오 일례를 나타낸다.2 shows an example of a wireless LAN sensing scenario using a multi-sensing transmission device.
도 3는 다중 센싱 수신 장치를 이용한 무선랜 센싱 시나리오 일례를 나타낸다.3 shows an example of a wireless LAN sensing scenario using a multi-sensing receiving device.
도 4은 무선랜 센싱 절차의 일례를 나타낸다.4 shows an example of a wireless LAN sensing procedure.
도 5는 무선랜 센싱을 분류한 일례이다.5 is an example of classification of wireless LAN sensing.
도 6는 CSI 기반 무선랜 센싱을 이용한 실내 측위를 나타낸다.6 shows indoor positioning using CSI-based WLAN sensing.
도 7은 무선랜 센싱 장치를 구현한 일례이다.7 is an example of an implementation of a wireless LAN sensing device.
도 8은 802.11ay 무선랜 시스템에서 지원하는 PPDU 구조를 간단히 도시한 도면이다.8 is a diagram briefly illustrating a PPDU structure supported by an 802.11ay wireless LAN system.
도 9는 본 명세서의 송신 장치 및/또는 수신 장치의 변형된 일례를 나타낸다. 9 shows a modified example of a transmitting apparatus and/or a receiving apparatus of the present specification.
도 10은 통신 네트워크의 일 실시예를 도시한 도면이다.10 is a diagram illustrating an embodiment of a communication network.
도 11은 센싱 방법의 일례를 도시한 도면이다.11 is a diagram illustrating an example of a sensing method.
도 12는 센싱 방법의 일례를 도시한 도면이다.12 is a diagram illustrating an example of a sensing method.
도 13은 센싱 방법의 일례를 도시한 도면이다.13 is a diagram illustrating an example of a sensing method.
도 14는 센싱 방법의 일례를 도시한 도면이다.14 is a diagram illustrating an example of a sensing method.
도 15는 센싱 방법의 일례를 도시한 도면이다.15 is a diagram illustrating an example of a sensing method.
도 16는 송신 STA 동작 방법의 일 실시예를 도시한 도면이다.16 is a diagram illustrating an embodiment of a method of operating a transmitting STA.
도 17은 수신 STA 동작 방법의 일 실시예를 도시한 도면이다.17 is a diagram illustrating an embodiment of a method of operating a receiving STA.
본 명세서에서 'A 또는 B(A or B)'는 '오직 A', '오직 B' 또는 'A와 B 모두'를 의미할 수 있다. 달리 표현하면, 본 명세서에서 'A 또는 B(A or B)'는 'A 및/또는 B(A and/or B)'으로 해석될 수 있다. 예를 들어, 본 명세서에서 'A, B 또는 C(A, B or C)'는 '오직 A', '오직 B', '오직 C', 또는 'A, B 및 C의 임의의 모든 조합(any combination of A, B and C)'를 의미할 수 있다.In this specification, 'A or B (A or B)' may mean 'only A', 'only B', or 'both A and B'. In other words, 'A or B (A or B)' in the present specification may be interpreted as 'A and/or B (A and/or B)'. For example, 'A, B or C(A, B or C)' as used herein means 'only A', 'only B', 'only C', or 'any and any combination of A, B and C ( It may mean any combination of A, B and C).
본 명세서에서 사용되는 슬래쉬(/)나 쉼표(comma)는 '및/또는(and/or)'을 의미할 수 있다. 예를 들어, 'A/B'는 'A 및/또는 B'를 의미할 수 있다. 이에 따라서 'A/B'는 '오직 A', '오직 B', 또는 'A와 B 모두'를 의미할 수 있다. 예를 들어, 'A, B, C'는 'A, B 또는 C'를 의미할 수 있다.A slash (/) or a comma (comma) used in this specification may mean 'and/or'. For example, 'A/B' may mean 'A and/or B'. Accordingly, 'A/B' may mean 'only A', 'only B', or 'both A and B'. For example, 'A, B, C' may mean 'A, B, or C'.
본 명세서에서 '적어도 하나의 A 및 B(at least one of A and B)'는, '오직 A', '오직 B' 또는 'A와 B 모두'를 의미할 수 있다. 또한, 본 명세서에서 '적어도 하나의 A 또는 B(at least one of A or B)'나 '적어도 하나의 A 및/또는 B(at least one of A and/or B)'라는 표현은 '적어도 하나의 A 및 B(at least one of A and B)'와 동일하게 해석될 수 있다. In the present specification, 'at least one of A and B' may mean 'only A', 'only B', or 'both A and B'. In addition, in this specification, the expression 'at least one of A or B' or 'at least one of A and/or B' means 'at least one It can be interpreted the same as 'A and B (at least one of A and B)'.
또한, 본 명세서에서 '적어도 하나의 A, B 및 C(at least one of A, B and C)'는, '오직 A', '오직 B', '오직 C', 또는 'A, B 및 C의 임의의 모든 조합(any combination of A, B and C)'를 의미할 수 있다. 또한, '적어도 하나의 A, B 또는 C(at least one of A, B or C)'나 '적어도 하나의 A, B 및/또는 C(at least one of A, B and/or C)'는 '적어도 하나의 A, B 및 C(at least one of A, B and C)'를 의미할 수 있다. Also, in this specification, 'at least one of A, B and C' means 'only A', 'only B', 'only C', or 'A, B and C' It may mean any combination of A, B and C'. In addition, 'at least one of A, B or C' or 'at least one of A, B and/or C' means It may mean 'at least one of A, B and C'.
또한, 본 명세서에서 사용되는 괄호는 '예를 들어(for example)'를 의미할 수 있다. 구체적으로, '제어 정보(EHT-Signal)'로 표시된 경우, '제어 정보'의 일례로 'EHT-Signal'이 제안된 것일 수 있다. 달리 표현하면 본 명세서의 '제어 정보'는 'EHT-Signal'로 제한(limit)되지 않고, 'EHT-Signal'이 '제어 정보'의 일례로 제안될 것일 수 있다. 또한, '제어 정보(즉, EHT-signal)'로 표시된 경우에도, '제어 정보'의 일례로 'EHT-signal'가 제안된 것일 수 있다. In addition, parentheses used in this specification may mean 'for example'. Specifically, when 'control information (EHT-Signal)' is displayed, 'EHT-Signal' may be proposed as an example of 'control information'. In other words, 'control information' of the present specification is not limited to 'EHT-Signal', and 'EHT-Signal' may be proposed as an example of 'control information'. Also, even when displayed as 'control information (ie, EHT-signal)', 'EHT-signal' may be proposed as an example of 'control information'.
본 명세서에서 하나의 도면 내에서 개별적으로 설명되는 기술적 특징은, 개별적으로 구현될 수도 있고, 동시에 구현될 수도 있다.In this specification, technical features that are individually described within one drawing may be implemented individually or simultaneously.
본 명세서의 이하의 일례는 다양한 무선 통신시스템에 적용될 수 있다. 예를 들어, 본 명세서의 이하의 일례는 무선랜(wireless local area network, WLAN) 시스템에 적용될 수 있다. 예를 들어, 본 명세서는 IEEE 802.11a/g/n/ac의 규격이나, IEEE 802.11ax 규격에 적용될 수 있다. 또한 본 명세서는 새롭게 제안되는 EHT 규격 또는 IEEE 802.11be 규격에도 적용될 수 있다. 또한 본 명세서의 일례는 EHT 규격 또는 IEEE 802.11be를 개선(enhance)한 새로운 무선랜 규격에도 적용될 수 있다. 또한 본 명세서의 일례는 이동 통신 시스템에 적용될 수 있다. 예를 들어, 3GPP(3rd Generation Partnership Project) 규격에 기반하는 LTE(Long Term Evolution) 및 그 진화(evolution)에 기반하는 이동 통신 시스템에 적용될 수 있다. 또한, 본 명세서의 일례는 3GPP 규격에 기반하는 5G NR 규격의 통신 시스템에 적용될 수 있다. The following examples of the present specification may be applied to various wireless communication systems. For example, the following example of the present specification may be applied to a wireless local area network (WLAN) system. For example, the present specification may be applied to the IEEE 802.11a/g/n/ac standard or the IEEE 802.11ax standard. In addition, this specification may be applied to the newly proposed EHT standard or IEEE 802.11be standard. In addition, an example of the present specification may be applied to the EHT standard or a new wireless LAN standard that is an enhancement of IEEE 802.11be. Also, an example of the present specification may be applied to a mobile communication system. For example, it may be applied to a mobile communication system based on Long Term Evolution (LTE) and its evolution based on the 3rd Generation Partnership Project (3GPP) standard. In addition, an example of the present specification may be applied to a communication system of the 5G NR standard based on the 3GPP standard.
이하 본 명세서의 기술적 특징을 설명하기 위해 본 명세서가 적용될 수 있는 기술적 특징을 설명한다. Hereinafter, technical features to which the present specification can be applied in order to describe the technical features of the present specification will be described.
도 1은 본 명세서의 송신 장치 및/또는 수신 장치의 일례를 나타낸다. 1 shows an example of a transmitting apparatus and/or a receiving apparatus of the present specification.
도 1의 일례는 이하에서 설명되는 다양한 기술적 특징을 수행할 수 있다. 도 1은 적어도 하나의 STA(station)에 관련된다. 예를 들어, 본 명세서의 STA(110, 120)은 이동 단말(mobile terminal), 무선 기기(wireless device), 무선 송수신 유닛(Wireless Transmit/Receive Unit; WTRU), 사용자 장비(User Equipment; UE), 이동국(Mobile Station; MS), 이동 가입자 유닛(Mobile Subscriber Unit) 또는 단순히 유저(user) 등의 다양한 명칭으로도 불릴 수 있다. 본 명세서의 STA(110, 120)은 네트워크, 기지국(Base Station), Node-B, AP(Access Point), 리피터, 라우터, 릴레이 등의 다양한 명칭으로 불릴 수 있다. 본 명세서의 STA(110, 120)은 수신 장치(apparatus), 송신 장치, 수신 STA, 송신 STA, 수신 Device, 송신 Device 등의 다양한 명칭으로 불릴 수 있다. The example of FIG. 1 may perform various technical features described below. 1 relates to at least one STA (station). For example, the STAs 110 and 120 of the present specification are a mobile terminal, a wireless device, a wireless transmit/receive unit (WTRU), a user equipment (UE), It may also be called by various names such as a mobile station (MS), a mobile subscriber unit, or simply a user. The STAs 110 and 120 in the present specification may be referred to by various names such as a network, a base station, a Node-B, an access point (AP), a repeater, a router, and a relay. In the present specification, the STAs 110 and 120 may be referred to by various names such as a receiving device (apparatus), a transmitting device, a receiving STA, a transmitting STA, a receiving device, and a transmitting device.
예를 들어, STA(110, 120)은 AP(access Point) 역할을 수행하거나 non-AP 역할을 수행할 수 있다. 즉, 본 명세서의 STA(110, 120)은 AP 및/또는 non-AP의 기능을 수행할 수 있다. 본 명세서에서 AP는 AP STA으로도 표시될 수 있다. For example, the STAs 110 and 120 may perform an access point (AP) role or a non-AP role. That is, the STAs 110 and 120 of the present specification may perform AP and/or non-AP functions. In this specification, the AP may also be indicated as an AP STA.
본 명세서의 STA(110, 120)은 IEEE 802.11 규격 이외의 다양한 통신 규격을 함께 지원할 수 있다. 예를 들어, 3GPP 규격에 따른 통신 규격(예를 들어, LTE, LTE-A, 5G NR 규격)등을 지원할 수 있다. 또한 본 명세서의 STA은 휴대 전화, 차량(vehicle), 개인용 컴퓨터 등의 다양한 장치로 구현될 수 있다. 또한, 본 명세서의 STA은 음성 통화, 영상 통화, 데이터 통신, 자율 주행(Self-Driving, Autonomous-Driving) 등의 다양한 통신 서비스를 위한 통신을 지원할 수 있다. The STAs 110 and 120 of the present specification may support various communication standards other than the IEEE 802.11 standard. For example, a communication standard (eg, LTE, LTE-A, 5G NR standard) according to the 3GPP standard may be supported. In addition, the STA of the present specification may be implemented in various devices such as a mobile phone, a vehicle, and a personal computer. In addition, the STA of the present specification may support communication for various communication services such as voice call, video call, data communication, and autonomous driving (Self-Driving, Autonomous-Driving).
본 명세서에서 STA(110, 120)은 IEEE 802.11 표준의 규정을 따르는 매체 접속 제어(medium access control, MAC)와 무선 매체에 대한 물리 계층(Physical Layer) 인터페이스를 포함할 수 있다. In this specification, the STAs 110 and 120 may include a medium access control (MAC) conforming to the IEEE 802.11 standard and a physical layer interface for a wireless medium.
도 1의 부도면 (a)를 기초로 STA(110, 120)을 설명하면 이하와 같다. The STAs 110 and 120 will be described based on the sub-view (a) of FIG. 1 as follows.
제1 STA(110)은 프로세서(111), 메모리(112) 및 트랜시버(113)를 포함할 수 있다. 도시된 프로세서, 메모리 및 트랜시버는 각각 별도의 칩으로 구현되거나, 적어도 둘 이상의 블록/기능이 하나의 칩을 통해 구현될 수 있다. The first STA 110 may include a processor 111 , a memory 112 , and a transceiver 113 . The illustrated processor, memory, and transceiver may each be implemented as separate chips, or at least two or more blocks/functions may be implemented through one chip.
제1 STA의 트랜시버(113)는 신호의 송수신 동작을 수행한다. 구체적으로, IEEE 802.11 패킷(예를 들어, IEEE 802.11a/b/g/n/ac/ax/be 등)을 송수신할 수 있다. The transceiver 113 of the first STA performs a signal transmission/reception operation. Specifically, IEEE 802.11 packets (eg, IEEE 802.11a/b/g/n/ac/ax/be, etc.) may be transmitted/received.
예를 들어, 제1 STA(110)은 AP의 의도된 동작을 수행할 수 있다. 예를 들어, AP의 프로세서(111)는 트랜시버(113)를 통해 신호를 수신하고, 수신 신호를 처리하고, 송신 신호를 생성하고, 신호 송신을 위한 제어를 수행할 수 있다. AP의 메모리(112)는 트랜시버(113)를 통해 수신된 신호(즉, 수신 신호)를 저장할 수 있고, 트랜시버를 통해 송신될 신호(즉, 송신 신호)를 저장할 수 있다. For example, the first STA 110 may perform an intended operation of the AP. For example, the processor 111 of the AP may receive a signal through the transceiver 113 , process the received signal, generate a transmission signal, and perform control for signal transmission. The memory 112 of the AP may store a signal (ie, a received signal) received through the transceiver 113 , and may store a signal to be transmitted through the transceiver (ie, a transmission signal).
예를 들어, 제2 STA(120)은 Non-AP STA의 의도된 동작을 수행할 수 있다. 예를 들어, non-AP의 트랜시버(123)는 신호의 송수신 동작을 수행한다. 구체적으로, IEEE 802.11 패킷(예를 들어, IEEE 802.11a/b/g/n/ac/ax/be 등)을 송수신할 수 있다. For example, the second STA 120 may perform an intended operation of a non-AP STA. For example, the transceiver 123 of the non-AP performs a signal transmission/reception operation. Specifically, IEEE 802.11 packets (eg, IEEE 802.11a/b/g/n/ac/ax/be, etc.) may be transmitted/received.
예를 들어, Non-AP STA의 프로세서(121)는 트랜시버(123)를 통해 신호를 수신하고, 수신 신호를 처리하고, 송신 신호를 생성하고, 신호 송신을 위한 제어를 수행할 수 있다. Non-AP STA의 메모리(122)는 트랜시버(123)를 통해 수신된 신호(즉, 수신 신호)를 저장할 수 있고, 트랜시버를 통해 송신될 신호(즉, 송신 신호)를 저장할 수 있다. For example, the processor 121 of the non-AP STA may receive a signal through the transceiver 123 , process the received signal, generate a transmission signal, and perform control for signal transmission. The memory 122 of the non-AP STA may store a signal (ie, a received signal) received through the transceiver 123 and may store a signal to be transmitted through the transceiver (ie, a transmission signal).
예를 들어, 이하의 명세서에서 AP로 표시된 장치의 동작은 제1 STA(110) 또는 제2 STA(120)에서 수행될 수 있다. 예를 들어 제1 STA(110)이 AP인 경우, AP로 표시된 장치의 동작은 제1 STA(110)의 프로세서(111)에 의해 제어되고, 제1 STA(110)의 프로세서(111)에 의해 제어되는 트랜시버(113)를 통해 관련된 신호가 송신되거나 수신될 수 있다. 또한, AP의 동작에 관련된 제어 정보나 AP의 송신/수신 신호는 제1 STA(110)의 메모리(112)에 저장될 수 있다. 또한, 제2 STA(110)이 AP인 경우, AP로 표시된 장치의 동작은 제2 STA(120)의 프로세서(121)에 의해 제어되고, 제2 STA(120)의 프로세서(121)에 의해 제어되는 트랜시버(123)를 통해 관련된 신호가 송신되거나 수신될 수 있다. 또한, AP의 동작에 관련된 제어 정보나 AP의 송신/수신 신호는 제2 STA(110)의 메모리(122)에 저장될 수 있다.For example, an operation of a device indicated as an AP in the following specification may be performed by the first STA 110 or the second STA 120 . For example, when the first STA 110 is an AP, the operation of the device marked as AP is controlled by the processor 111 of the first STA 110 , and is controlled by the processor 111 of the first STA 110 . Relevant signals may be transmitted or received via the controlled transceiver 113 . In addition, control information related to an operation of the AP or a transmission/reception signal of the AP may be stored in the memory 112 of the first STA 110 . In addition, when the second STA 110 is an AP, the operation of the device indicated by the AP is controlled by the processor 121 of the second STA 120 and controlled by the processor 121 of the second STA 120 . A related signal may be transmitted or received via the transceiver 123 that is used. In addition, control information related to an operation of the AP or a transmission/reception signal of the AP may be stored in the memory 122 of the second STA 110 .
예를 들어, 이하의 명세서에서 non-AP(또는 User-STA)로 표시된 장치의 동작은 제1 STA(110) 또는 제2 STA(120)에서 수행될 수 있다. 예를 들어 제2 STA(120)이 non-AP인 경우, non-AP로 표시된 장치의 동작은 제2 STA(120)의 프로세서(121)에 의해 제어되고, 제2 STA(120)의 프로세서(121)에 의해 제어되는 트랜시버(123)를 통해 관련된 신호가 송신되거나 수신될 수 있다. 또한, non-AP의 동작에 관련된 제어 정보나 AP의 송신/수신 신호는 제2 STA(120)의 메모리(122)에 저장될 수 있다. 예를 들어 제1 STA(110)이 non-AP인 경우, non-AP로 표시된 장치의 동작은 제1 STA(110)의 프로세서(111)에 의해 제어되고, 제1 STA(120)의 프로세서(111)에 의해 제어되는 트랜시버(113)를 통해 관련된 신호가 송신되거나 수신될 수 있다. 또한, non-AP의 동작에 관련된 제어 정보나 AP의 송신/수신 신호는 제1 STA(110)의 메모리(112)에 저장될 수 있다. For example, an operation of a device indicated as a non-AP (or User-STA) in the following specification may be performed by the first STA 110 or the second STA 120 . For example, when the second STA 120 is a non-AP, the operation of the device marked as non-AP is controlled by the processor 121 of the second STA 120, and the processor ( A related signal may be transmitted or received via the transceiver 123 controlled by 121 . In addition, control information related to the operation of the non-AP or the AP transmit/receive signal may be stored in the memory 122 of the second STA 120 . For example, when the first STA 110 is a non-AP, the operation of the device marked as non-AP is controlled by the processor 111 of the first STA 110 , and the processor ( Related signals may be transmitted or received via transceiver 113 controlled by 111 . In addition, control information related to the operation of the non-AP or the AP transmission/reception signal may be stored in the memory 112 of the first STA 110 .
이하의 명세서에서 (송신/수신) STA, 제1 STA, 제2 STA, STA1, STA2, AP, 제1 AP, 제2 AP, AP1, AP2, (송신/수신) Terminal, (송신/수신) device, (송신/수신) apparatus, 네트워크 등으로 불리는 장치는 도 1의 STA(110, 120)을 의미할 수 있다. 예를 들어, 구체적인 도면 부호 없이 (송신/수신) STA, 제1 STA, 제2 STA, STA1, STA2, AP, 제1 AP, 제2 AP, AP1, AP2, (송신/수신) Terminal, (송신/수신) device, (송신/수신) apparatus, 네트워크 등으로 표시된 장치도 도 1의 STA(110, 120)을 의미할 수 있다. 예를 들어, 이하의 일례에서 다양한 STA이 신호(예를 들어, PPDU)를 송수신하는 동작은 도 1의 트랜시버(113, 123)에서 수행되는 것일 수 있다. 또한, 이하의 일례에서 다양한 STA이 송수신 신호를 생성하거나 송수신 신호를 위해 사전에 데이터 처리나 연산을 수행하는 동작은 도 1의 프로세서(111, 121)에서 수행되는 것일 수 있다. 예를 들어, 송수신 신호를 생성하거나 송수신 신호를 위해 사전에 데이터 처리나 연산을 수행하는 동작의 일례는, 1) PPDU 내에 포함되는 서브 필드(SIG, STF, LTF, Data) 필드의 비트 정보를 결정/획득/구성/연산/디코딩/인코딩하는 동작, 2) PPDU 내에 포함되는 서브 필드(SIG, STF, LTF, Data) 필드를 위해 사용되는 시간 자원이나 주파수 자원(예를 들어, 서브캐리어 자원) 등을 결정/구성/획득하는 동작, 3) PPDU 내에 포함되는 서브 필드(SIG, STF, LTF, Data) 필드를 위해 사용되는 특정한 시퀀스(예를 들어, 파일럿 시퀀스, STF/LTF 시퀀스, SIG에 적용되는 엑스트라 시퀀스) 등을 결정/구성/획득하는 동작, 4) STA에 대해 적용되는 전력 제어 동작 및/또는 파워 세이빙 동작, 5) ACK 신호의 결정/획득/구성/연산/디코딩/인코딩 등에 관련된 동작을 포함할 수 있다. 또한, 이하의 일례에서 다양한 STA이 송수신 신호의 결정/획득/구성/연산/디코딩/인코딩을 위해 사용하는 다양한 정보(예를 들어, 필드/서브필드/제어필드/파라미터/파워 등에 관련된 정보)는 도 1의 메모리(112, 122)에 저장될 수 있다. In the following specification (transmission / reception) STA, first STA, second STA, STA1, STA2, AP, first AP, second AP, AP1, AP2, (transmission / reception) Terminal, (transmission / reception) device , (transmitting/receiving) apparatus, a device called a network, etc. may refer to the STAs 110 and 120 of FIG. 1 . For example, without specific reference numerals (transmitting/receiving) STA, first STA, second STA, STA1, STA2, AP, first AP, second AP, AP1, AP2, (transmitting/receiving) Terminal, (transmitting) A device indicated by a /receiver) device, a (transmit/receive) apparatus, and a network may also refer to the STAs 110 and 120 of FIG. 1 . For example, in the following example, an operation in which various STAs transmit and receive signals (eg, PPDUs) may be performed by the transceivers 113 and 123 of FIG. 1 . In addition, in the following example, the operations of the various STAs generating transmission/reception signals or performing data processing or calculation in advance for the transmission/reception signals may be performed by the processors 111 and 121 of FIG. 1 . For example, an example of an operation of generating a transmission/reception signal or performing data processing or operation in advance for a transmission/reception signal is 1) Determining bit information of a subfield (SIG, STF, LTF, Data) field included in a PPDU /Acquisition/configuration/computation/decoding/encoding operation, 2) time resource or frequency resource (eg, subcarrier resource) used for the subfield (SIG, STF, LTF, Data) field included in the PPDU, etc. operation of determining / configuring / obtaining, 3) a specific sequence (eg, pilot sequence, STF / LTF sequence, SIG) used for the subfield (SIG, STF, LTF, Data) field included in the PPDU operation of determining / configuring / obtaining an extra sequence), etc., 4) a power control operation and / or a power saving operation applied to the STA, 5) an operation related to determination / acquisition / configuration / operation / decoding / encoding of the ACK signal may include In addition, in the following example, various information (eg, field/subfield/control field/parameter/power related information) used by various STAs for determination/acquisition/configuration/computation/decoding/encoding of transmit/receive signals is may be stored in the memories 112 and 122 of FIG. 1 .
상술한 도 1의 부도면 (a)의 장치/STA는 도 1의 부도면 (b)와 같이 변형될 수 있다. 이하 도 1의 부도면 (b)을 기초로, 본 명세서의 STA(110, 120)을 설명한다. The device/STA of the sub-view (a) of FIG. 1 described above may be modified as shown in the sub-view (b) of FIG. 1 . Hereinafter, the STAs 110 and 120 of the present specification will be described based on the sub-drawing (b) of FIG. 1 .
예를 들어, 도 1의 부도면 (b)에 도시된 트랜시버(113, 123)는 상술한 도 1의 부도면 (a)에 도시된 트랜시버와 동일한 기능을 수행할 수 있다. 예를 들어, 도 1의 부도면 (b)에 도시된 프로세싱 칩(114, 124)은 프로세서(111, 121) 및 메모리(112, 122)를 포함할 수 있다. 도 1의 부도면 (b)에 도시된 프로세서(111, 121) 및 메모리(112, 122)는 상술한 도 1의 부도면 (a)에 도시된 프로세서(111, 121) 및 메모리(112, 122)와 동일한 기능을 수행할 수 있다. For example, the transceivers 113 and 123 illustrated in (b) of FIG. 1 may perform the same function as the transceivers illustrated in (a) of FIG. 1 . For example, the processing chips 114 and 124 illustrated in (b) of FIG. 1 may include processors 111 and 121 and memories 112 and 122 . The processors 111 and 121 and the memories 112 and 122 illustrated in (b) of FIG. 1 are the processors 111 and 121 and the memories 112 and 122 illustrated in (a) of FIG. ) can perform the same function.
이하에서 설명되는, 이동 단말(mobile terminal), 무선 기기(wireless device), 무선 송수신 유닛(Wireless Transmit/Receive Unit; WTRU), 사용자 장비(User Equipment; UE), 이동국(Mobile Station; MS), 이동 가입자 유닛(Mobile Subscriber Unit), 유저(user), 유저 STA, 네트워크, 기지국(Base Station), Node-B, AP(Access Point), 리피터, 라우터, 릴레이, 수신 장치, 송신 장치, 수신 STA, 송신 STA, 수신 Device, 송신 Device, 수신 Apparatus, 및/또는 송신 Apparatus는, 도 1의 부도면 (a)/(b)에 도시된 STA(110, 120)을 의미하거나, 도 1의 부도면 (b)에 도시된 프로세싱 칩(114, 124)을 의미할 수 있다. 즉, 본 명세서의 기술적 특징은, 도 1의 부도면 (a)/(b)에 도시된 STA(110, 120)에 수행될 수도 있고, 도 1의 부도면 (b)에 도시된 프로세싱 칩(114, 124)에서만 수행될 수도 있다. 예를 들어, 송신 STA가 제어 신호를 송신하는 기술적 특징은, 도 1의 부도면 (a)/(b)에 도시된 프로세서(111, 121)에서 생성된 제어 신호가 도 1의 부도면 (a)/(b)에 도시된 트랜시버(113, 123)을 통해 송신되는 기술적 특징으로 이해될 수 있다. 또는, 송신 STA가 제어 신호를 송신하는 기술적 특징은, 도 1의 부도면 (b)에 도시된 프로세싱 칩(114, 124)에서 트랜시버(113, 123)로 전달될 제어 신호가 생성되는 기술적 특징으로 이해될 수 있다. As described below, a mobile terminal, a wireless device, a wireless transmit/receive unit (WTRU), a user equipment (UE), a mobile station (MS), a mobile Mobile Subscriber Unit, user, user STA, network, base station, Node-B, access point (AP), repeater, router, relay, receiving device, transmitting device, receiving STA, transmitting STA, Receiving Device, Transmitting Device, Receiving Apparatus, and/or Transmitting Apparatus means the STAs 110 and 120 shown in the sub-drawings (a)/(b) of FIG. ) may mean the processing chips 114 and 124 shown in FIG. That is, the technical features of the present specification may be performed on the STAs 110 and 120 shown in (a)/(b) of FIG. 1, and the processing chip ( 114 and 124). For example, a technical feature in which a transmitting STA transmits a control signal is that the control signals generated by the processors 111 and 121 shown in the sub-drawings (a)/(b) of FIG. 1 are (a) of FIG. ) / (b) can be understood as a technical feature transmitted through the transceivers 113 and 123 shown in (b). Alternatively, the technical feature in which the transmitting STA transmits the control signal is a technical feature in which a control signal to be transmitted to the transceivers 113 and 123 is generated from the processing chips 114 and 124 shown in the sub-view (b) of FIG. can be understood
예를 들어, 수신 STA가 제어 신호를 수신하는 기술적 특징은, 도 1의 부도면 (a)에 도시된 트랜시버(113, 123)에 의해 제어 신호가 수신되는 기술적 특징으로 이해될 수 있다. 또는, 수신 STA가 제어 신호를 수신하는 기술적 특징은, 도 1의 부도면 (a)에 도시된 트랜시버(113, 123)에 수신된 제어 신호가 도 1의 부도면 (a)에 도시된 프로세서(111, 121)에 의해 획득되는 기술적 특징으로 이해될 수 있다. 또는, 수신 STA가 제어 신호를 수신하는 기술적 특징은, 도 1의 부도면 (b)에 도시된 트랜시버(113, 123)에 수신된 제어 신호가 도 1의 부도면 (b)에 도시된 프로세싱 칩(114, 124)에 의해 획득되는 기술적 특징으로 이해될 수 있다. For example, the technical feature in which the receiving STA receives the control signal may be understood as the technical feature in which the control signal is received by the transceivers 113 and 123 shown in the sub-drawing (a) of FIG. 1 . Alternatively, the technical feature that the receiving STA receives the control signal is that the control signal received by the transceivers 113 and 123 shown in the sub-drawing (a) of FIG. 1 is the processor shown in (a) of FIG. 111, 121) can be understood as a technical feature obtained by. Alternatively, the technical feature for the receiving STA to receive the control signal is that the control signal received by the transceivers 113 and 123 shown in the sub-view (b) of FIG. 1 is the processing chip shown in the sub-view (b) of FIG. It can be understood as a technical feature obtained by (114, 124).
도 1의 부도면 (b)을 참조하면, 메모리(112, 122) 내에 소프트웨어 코드(115, 125)가 포함될 수 있다. 소프트웨어 코드(115, 125)는 프로세서(111, 121)의 동작을 제어하는 instruction이 포함될 수 있다. 소프트웨어 코드(115, 125)는 다양한 프로그래밍 언어로 포함될 수 있다. Referring to (b) of FIG. 1 , software codes 115 and 125 may be included in the memories 112 and 122 . The software codes 115 and 125 may include instructions for controlling the operations of the processors 111 and 121 . Software code 115, 125 may be included in a variety of programming languages.
도 1에 도시된 프로세서(111, 121) 또는 프로세싱 칩(114, 124)은 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 프로세서는 AP(application processor)일 수 있다. 예를 들어, 도 1에 도시된 프로세서(111, 121) 또는 프로세싱 칩(114, 124)은 DSP(digital signal processor), CPU(central processing unit), GPU(graphics processing unit), 모뎀(Modem; modulator and demodulator) 중 적어도 하나를 포함할 수 있다. 예를 들어, 도 1에 도시된 프로세서(111, 121) 또는 프로세싱 칩(114, 124)은 Qualcomm®에 의해 제조된 SNAPDRAGONTM 시리즈 프로세서, Samsung®에 의해 제조된 EXYNOSTM 시리즈 프로세서, Apple®에 의해 제조된 A 시리즈 프로세서, MediaTek®에 의해 제조된 HELIOTM 시리즈 프로세서, INTEL®에 의해 제조된 ATOMTM 시리즈 프로세서 또는 이를 개선(enhance)한 프로세서일 수 있다. The processors 111 and 121 or the processing chips 114 and 124 shown in FIG. 1 may include an application-specific integrated circuit (ASIC), other chipsets, logic circuits, and/or data processing devices. The processor may be an application processor (AP). For example, the processors 111 and 121 or the processing chips 114 and 124 shown in FIG. 1 may include a digital signal processor (DSP), a central processing unit (CPU), a graphics processing unit (GPU), and a modem (Modem). and demodulator). For example, the processors 111, 121 or processing chips 114, 124 shown in FIG. 1 are SNAPDRAGON TM series processors manufactured by Qualcomm®, EXYNOS TM series processors manufactured by Samsung®, and Apple® It may be an A series processor manufactured by MediaTek®, a HELIO TM series processor manufactured by MediaTek®, an ATOM TM series processor manufactured by INTEL®, or an enhanced processor.
본 명세서에서 상향링크는 non-AP STA로부터 AP STA으로의 통신을 위한 링크를 의미할 수 있고 상향링크를 통해 상향링크 PPDU/패킷/신호 등이 송신될 수 있다. 또한, 본 명세서에서 하향링크는 AP STA로부터 non-AP STA으로의 통신을 위한 링크를 의미할 수 있고 하향링크를 통해 하향링크 PPDU/패킷/신호 등이 송신될 수 있다.In this specification, uplink may mean a link for communication from a non-AP STA to an AP STA, and an uplink PPDU/packet/signal may be transmitted through the uplink. In addition, in this specification, downlink may mean a link for communication from an AP STA to a non-AP STA, and a downlink PPDU/packet/signal may be transmitted through the downlink.
무선랜 센싱 기술은 표준이 없이도 구현 가능한 일종의 레이더 기술이지만 표준화를 통해 더 강력한 성능을 얻을 수 있을 것으로 판단된다. IEEE 802.11bf 표준에서는 무선랜 센싱에 참여하는 장치를 기능별로 아래 표와 같이 정의하고 있다. 그 기능에 따라 무선랜 센싱을 시작하는 장치와 참여하는 장치, 센싱 PPDU(Physical Layer Protocol Data Unit)를 송신하는 장치와 수신하는 장치 등으로 구분할 수 있다.Although the wireless LAN sensing technology is a kind of radar technology that can be implemented without a standard, it is judged that stronger performance can be obtained through standardization. The IEEE 802.11bf standard defines devices participating in wireless LAN sensing by function as shown in the table below. According to its function, it can be divided into a device that initiates wireless LAN sensing and a device that participates, and a device that transmits and receives a sensing PPDU (Physical Layer Protocol Data Unit).
용어Terms 기능function
Sensing InitiatorSensing Initiator 센싱을 시작하는 장치device that initiates sensing
Sensing ResponderSensing Responder 센싱에 참여하는 장치Devices participating in sensing
Sensing TransmitterSensing Transmitter 센싱 PPDU를 송신하는 장치A device that transmits a sensing PPDU
Sensing ReceiverSensing Receiver 센싱 PPDU를 수신하는 장치A device that receives a sensing PPDU
또한 본 발명에서는 무선랜 센싱을 위한 신호 전송의 주체가 initiator이면 initiator 기반의 센싱, 신호 전송의 주체가 responder이면 responder 기반의 센싱이라 정의한다. 도 2는 다중 센싱 수신 장치를 이용한 무선랜 센싱 시나리오 일례를 나타낸다. 도 3은 다중 센싱 송신 장치를 이용한 무선랜 센싱 시나리오 일례를 나타낸다. 도 2 및 도 3은 무선랜 센싱 장치의 기능과 배치에 따른 센싱 시나리오를 나타낸 것이다. 1개의 센싱 시작 장치와 여러 개의 센싱 참여 장치를 가정한 환경에서, 도 2는 여러 개의 센싱 PPDU 수신 장치를 이용하는 시나리오이고, 도 3은 여러 개의 센싱 PPDU 수신 후 송신 장치를 이용하여 센싱 결과를 피드백하는 시나리오이다. 센싱 PPDU 수신 장치에 센싱 측정 신호처리 장치가 포함되어 있다고 가정하면, 도 3의 경우 센싱 측정 결과를 센싱 시작 장치(STA 5)에 전송(피드백)하는 절차가 추가로 필요하다. 도 4는 무선랜 센싱 절차의 일례를 나타낸다. 무선랜 센싱이 진행되는 절차를 살펴보면, 무선랜 센싱 시작 장치와 참여 장치 간에 탐색(discovery), 협상(negotiation), 측정값 교환(measurement exchange), 연결 해제(tear down) 등으로 진행된다. 탐색은 무선랜 장치들의 센싱 능력을 파악하는 과정이고, 협상은 센싱 시작 장치와 참여 장치 간의 센싱 파라미터를 결정하는 과정이고, 측정값 교환은 센싱 PPDU를 송신하고 센싱 측정 결과를 전송하는 과정이고, 연결 해제는 센싱 절차를 종료하는 과정이다. Responder 기반의 센싱의 경우, 센싱 측정 결과를 전송하는 과정은 생략될 수도 있다.Also, in the present invention, if the subject of signal transmission for wireless LAN sensing is an initiator, it is defined as initiator-based sensing, and if the subject of signal transmission is a responder, it is defined as responder-based sensing. 2 shows an example of a wireless LAN sensing scenario using a multi-sensing receiving device. 3 shows an example of a wireless LAN sensing scenario using a multi-sensing transmission device. 2 and 3 show sensing scenarios according to the function and arrangement of the wireless LAN sensing device. In an environment assuming one sensing start device and multiple sensing participating devices, FIG. 2 is a scenario using multiple sensing PPDU receiving devices, and FIG. 3 is a method for feeding back sensing results using a transmitting device after receiving multiple sensing PPDUs. it's a scenario Assuming that the sensing PPDU receiving device includes the sensing measurement signal processing device, in the case of FIG. 3 , a procedure for transmitting (feedback) the sensing measurement result to the sensing start device STA 5 is additionally required. 4 shows an example of a wireless LAN sensing procedure. Looking at the procedure of wireless LAN sensing, discovery, negotiation, measurement exchange, and tear down are performed between the wireless LAN sensing start device and the participating device. Discovery is a process of identifying the sensing capabilities of WLAN devices, negotiation is a process of determining a sensing parameter between a sensing start device and a participating device, measurement value exchange is a process of transmitting a sensing PPDU and transmitting a sensing measurement result, and connection Release is the process of terminating the sensing procedure. In the case of responder-based sensing, the process of transmitting the sensing measurement result may be omitted.
도 5는 무선랜 센싱을 분류한 일례이다.5 is an example of classification of wireless LAN sensing.
무선랜 센싱은 송신기를 출발하여 채널을 거쳐 수신기에 도달한 신호의 채널상태정보(channel state information)를 이용하는 CSI 기반 센싱과 송신신호가 물체에 반사되어 수신된 신호를 이용하는 레이더 기반 센싱으로 분류할 수 있다. 또한, 각 센싱 기술은 센싱용 송신기가 센싱 과정에 직접 참여하는 방식(coordinated CSI, active radar)과 센싱용 송신기가 센싱 과정에 참여하지 않는, 즉, 센싱 과정에 참여하는 전용 송신기가 없는 방식(un-coordinated CSI, passive radar)으로 다시 나뉜다.Wireless LAN sensing can be classified into CSI-based sensing, which uses channel state information of a signal that arrives at the receiver through a channel, from the transmitter, and radar-based sensing, which uses a signal received after a transmitted signal is reflected by an object. there is. In addition, each sensing technology includes a method in which a sensing transmitter directly participates in the sensing process (coordinated CSI, active radar) and a method in which the sensing transmitter does not participate in the sensing process, that is, there is no dedicated transmitter participating in the sensing process (un -coordinated CSI, passive radar).
도 6는 CSI 기반 무선랜 센싱을 이용한 실내 측위를 나타낸다.6 shows indoor positioning using CSI-based WLAN sensing.
도 6는 CSI 기반 무선랜 센싱을 실내 측위에 활용한 것으로, CSI를 이용하여 도달각(Angle of Arrival) 및 도달시간(Time of Arrival)을 구하고 이를 직교좌표로 변환하면 실내 측위 정보를 구할 수 있다.6 is a diagram that utilizes CSI-based wireless LAN sensing for indoor positioning. By using CSI to obtain an angle of arrival and a time of arrival, and converting these into orthogonal coordinates, indoor positioning information can be obtained. .
도 7은 무선랜 센싱 장치를 구현한 일례이다.7 is an example of an implementation of a wireless LAN sensing device.
도 7은 매트랩 툴박스, Zynq, USRP를 이용하여 무선랜 센싱 장치를 구현한 것으로, 매트랩 툴박스에서 IEEE 802.11ax 무선랜 신호를 생성하고, Zynq SDR(Software Defined Radio)을 이용하여 RF 신호를 발생한다. 채널을 통과한 신호는 USRP SDR로 수신하고 매트랩 툴박스에서 센싱 신호처리를 수행한다. 여기서 1개의 참조채널(reference channel, 센싱 송신기로부터 직접 수신 가능한 채널)과 1개의 감시채널(surveillance channel, 물체에 반사되어 수신 가능한 채널)을 가정하였다. 무선랜 센싱 장치를 이용하여 분석한 결과, 움직임이나 몸동작을 구별할 수 있는 고유한 특성을 얻을 수 있었다.FIG. 7 shows a wireless LAN sensing device implemented by using the MATLAB toolbox, Zynq, and USRP. In the MATLAB toolbox, an IEEE 802.11ax wireless LAN signal is generated, and an RF signal is generated using Zynq Software Defined Radio (SDR). The signal passing through the channel is received by USRP SDR and sensing signal processing is performed in the MATLAB toolbox. Here, one reference channel (a channel directly receivable from the sensing transmitter) and one surveillance channel (a channel receivable by reflection from an object) are assumed. As a result of analysis using a wireless LAN sensing device, a unique characteristic that can distinguish movement or body movement was obtained.
현재 IEEE 802.11bf 무선랜 센싱 표준화는 초기 개발 단계로 향후 센싱 정확도를 향상시키기 위한 협력 센싱 기술이 중요하게 다뤄질 예정이다. 협력 센싱을 위한 센싱 신호의 동기 기술, CSI 관리 및 이용 기술, 센싱 파라미터 협상 및 공유 기술, CSI 생성을 위한 스케줄링 기술 등이 표준화 핵심 주제가 될 것으로 예상한다. 이외에도 원거리 센싱 기술, 저전력 센싱 기술, 센싱 보안 및 사생활 보호 기술 등도 주요 의제로 검토될 예정이다.Currently, IEEE 802.11bf wireless LAN sensing standardization is in the early development stage, and cooperative sensing technology to improve sensing accuracy is expected to be treated as important in the future. It is expected that standardization core topics include synchronization technology of sensing signals for cooperative sensing, CSI management and use technology, sensing parameter negotiation and sharing technology, and scheduling technology for CSI generation. In addition, long-distance sensing technology, low-power sensing technology, sensing security and privacy protection technology will also be considered as major agenda items.
IEEE 802.11bf 무선랜 센싱은 언제 어디서나 흔하게 존재하는 무선랜 신호를 이용하는 일종의 레이더 기술이다. 아래 표는 대표적인 IEEE 802.11bf 이용 사례를 나타낸 것으로, 실내 감지, 동작 인식, 건강관리, 3D 비전, 차량 내 감지 등 광범위한 실생활에 활용될 수 있다. 주로 실내에서 사용하기 때문에 대체로 동작 범위는 10~20미터 이내이고 거리 정확도는 최대 오차가 2미터를 넘지 않는다.IEEE 802.11bf wireless LAN sensing is a kind of radar technology that uses a wireless LAN signal that is commonly present anywhere at any time. The table below shows typical IEEE 802.11bf use cases, which can be used in a wide range of real-life situations, such as indoor sensing, motion recognition, health care, 3D vision, and in-vehicle sensing. Because it is mainly used indoors, the operating range is usually within 10 to 20 meters, and the maximum error of distance does not exceed 2 meters.
NameName detailsdetails Max range (m)Max range (m) Key Performance IndicatorKey Performance Indicator Range Accuracy (m)Range Accuracy (m) Max Velocity (m/s)/Velocity AccuracyMax Velocity (m/s)/Velocity Accuracy angular Accuracy (deg)angular Accuracy (deg)
Room SensingRoom Sensing presence detection, counting the number of people in the roompresence detection, counting the number of people in the room 1515 Number of Persons in RoomNumber of Persons in Room 0.5-20.5-2 2/0.12/0.1
Smart meeting roomSmart meeting room presence detection, counting the number of people in the room, localization of active peoplepresence detection, counting the number of people in the room, localization of active people 1010 Location of persons in roomLocation of persons in room 0.5-20.5-2 1/0.1-0.31/0.1-0.3
Motion detection in a roomMotion detection in a room Detection of motion of in a room (of Human)Detection of motion of in a room (of Human) 1010
Home securityhome security Detection of presence of intruders in a homeDetection of presence of intruders in a home 1010 Detection of a person in a roomDetection of a person in a room 0.5-20.5-2 3/0.1-0.33/0.1-0.3 mediummedium
Audio with user trackingAudio with user tracking Tracking persons in a room and pointing the sound of an audio system at those peopleTracking persons in a room and pointing the sound of an audio system at those people 66 Localization of persons to within 0.2mLocalization of persons to within 0.2m 0.20.2 0.5/0.050.5/0.05 33
Store SensingStore Sensing Counting number of people in a store, their location, speed of movement. Accuracy less importantCounting number of people in a store, their location, speed of movement. Accuracy less important 2020 Number and location of persons in storeNumber and location of persons in store 0.5-20.5-2 1/0.1-0.31/0.1-0.3 33
Home Appliance ControlHome Appliance Control Tracking person and motion/ gesture detectionTracking person and motion/ gesture detection 1010 Gesture DetectionGesture Detection <1<1
Gesture recognition - short range (finger movement)
Gesture recognition - short range (finger movement)
Identification of a gesture from a set of gestures - range < 0.5mIdentification of a gesture from a set of gestures - range < 0.5m 0.50.5 Gesture DetectionGesture Detection 77 33
Gesture recognition - medium range (hand movement)Gesture recognition - medium range (hand movement) Indentification of a gesture from a set of gestures - range > 0.5mIndentification of a gesture from a set of gestures - range > 0.5m 22 Gesture DetectionGesture Detection
Gesture recognition - large range (full body movement)Gesture recognition - large range (full body movement) Indentification of a gesture from a set of gestures - range > 2mIndentification of a gesture from a set of gestures - range > 2m 77 Gesture DetectionGesture Detection 0.20.2 2/0.12/0.1 55
Aliveliness detectionAliveliness detection Determination whether a close by object is alive or notDetermination whether a close by object is alive or not 1One Aliveliness DetectionAliveliness Detection 0.050.05
Face/Body RecognitionFace/Body Recognition Selection of the identity of a person from a set of known personsSelection of the identity of a person from a set of known persons 1One Identity detectionIdentity detection 0.020.02
Proximity DetectionProximity Detection Detection of object in close proximity of deviceDetection of object in close proximity of device 0.50.5 Object DetectionObject Detection 0.02-20.02-2 1.5/0.21.5/0.2 nonenone
Home Appliance ControlHome Appliance Control Gesture DetectionGesture Detection 33 Gesture DetectionGesture Detection <1<1 3/0.13/0.1
health care - Fall detectionhealth care - Fall detection Fall detection - abnormal position detectionFall detection - abnormal position detection 1010 0.20.2 3/0.13/0.1
Health case - remote diagnosticsHealth case - remote diagnostics measurements of breathing rate, heart rate etc.measurements of breathing rate, heart rate etc. 55 Breating rate accuracy/Pulse AccuracyBreating rate accuracy/Pulse Accuracy 0.50.5 2/0.12/0.1
Surveillance/Monitoring of elder people and/or childrenSurveillance/Monitoring of elder people and/or children Tracking person and presence detectionTracking person and presence detection 1010 Detection and localization of personDetection and localization of person 0.2-20.2-2 3/0.13/0.1
Sneeze sensingSneeze sensing Detecting and localizing the target human and sneeze droplet volumeDetecting and localizing the target human and sneeze droplet volume 1010 Detection and localization of person and sneeze droplet volumeDetection and localization of person and sneeze droplet volume 0.2-0.50.2-0.5 20/0.120/0.1
3d vision3d vision building a 3d picture of an environment, using multiple STAbuilding a 3d picture of an environment, using multiple STAs 1010 accuracy of 3d map (range, angle)accuracy of 3d map (range, angle) 0.010.01 5/0.15/0.1 22
In car sensing - detectionIn car sensing - detection detection of humans in cardetection of humans in car 55 Presence of Human in carPresence of Human in car 0.10.1 1/0.11/0.1 33
In car sensingIn car sensing Driver sleepiness detection/detection aidDriver sleepiness detection/detection aid 33 Fast detection of driver sleepinessFast detection of driver sleepiness 0.010.01 1/0.11/0.1 33
IEEE 802.11에서는 60GHz의 wi-fi 신호(예를 들어, 802.11ad 혹은 802.11ay 신호)를 이용하여 object(사람 혹은 사물)의 움직임이나 제스처를 sensing하는 기술에 대해서 논의가 진행되고 있다. 본 명세서에서 wi-fi sensing을 위해서 사용되는 frame format을 구성하는 방법 및 wi-fi sensing sequence에 대해서 제안한다. 도 8은 802.11ay 무선랜 시스템에서 지원하는 PPDU 구조를 간단히 도시한 도면이다. 도 8에 도시된 바와 같이, 802.11ay 시스템에 적용 가능한 PPDU 포맷은 L-STF, L-CEF, L-Header, EDMG-Header-A, EDMG-STF, EDMG-CEF, EDMG-Header-B, Data, TRN 필드를 포함할 수 있으며, 상기 필드들은 PPDU의 형태(예: SU PPDU, MU PPDU 등)에 따라 선택적으로 포함될 수 있다. 여기서, L-STF, L-CEF, L-Header 필드를 포함하는 부분은 비 EDMG 영역 (Non-EDMG portion)이라 명명할 수 있고, 나머지 부분은 EDMG 영역이라 명명할 수 있다. 또한, L-STF, L-CEF, L-Header, EDMG-Header-A 필드들은 pre-EDMG modulated fields라 명명될 수 있고, 나머지 부분은 EDMG modulated fields라 명명될 수 있다. 상기 EDMG-Header-A 필드는 EDMG PPDU를 복조하기 위해 요구되는 정보를 포함한다. 상기 EDMG-Header-A 필드의 정의는 EDMG SC mode PPDU와 EDMG OFDM mode PPDU의 그것과 동일하나, EDMG control mode PPDU의 정의와는 다르다. EDMG-STF의 구조는 EDMG PPDU가 전송되는 연속적인 2.16GHz 채널의 개수 및 iSTS번째 공간-시간 스트림의 인덱스 iSTS에 의존한다. 하나의 2.16GHz 채널을 통해 EDMG SC mode를 사용한 단일 공간-시간 스트림 EDMG PPDU 전송에 대해, EDMG-STF 필드는 존재하지 않는다. EDMG SC 전송에 대해, EDMG-STF 필드는 pi/2 BPSK를 사용하여 변조되어야 한다.In IEEE 802.11, a technology for sensing the motion or gesture of an object (person or thing) using a wi-fi signal of 60 GHz (eg, 802.11ad or 802.11ay signal) is being discussed. In this specification, a method of configuring a frame format used for wi-fi sensing and a wi-fi sensing sequence are proposed. 8 is a diagram briefly illustrating a PPDU structure supported by an 802.11ay wireless LAN system. As shown in Figure 8, the PPDU format applicable to the 802.11ay system is L-STF, L-CEF, L-Header, EDMG-Header-A, EDMG-STF, EDMG-CEF, EDMG-Header-B, Data , TRN field, and the fields may be selectively included according to the type of PPDU (eg, SU PPDU, MU PPDU, etc.). Here, a portion including the L-STF, L-CEF, and L-Header fields may be referred to as a non-EDMG portion, and the remaining portion may be referred to as an EDMG area. In addition, the L-STF, L-CEF, L-Header, and EDMG-Header-A fields may be named pre-EDMG modulated fields, and the remaining parts may be named EDMG modulated fields. The EDMG-Header-A field includes information required to demodulate an EDMG PPDU. The definition of the EDMG-Header-A field is the same as that of the EDMG SC mode PPDU and the EDMG OFDM mode PPDU, but is different from the definition of the EDMG control mode PPDU. The structure of the EDMG-STF depends on the number of consecutive 2.16 GHz channels through which the EDMG PPDU is transmitted and the index i STS of the i STS -th space-time stream. For single space-time stream EDMG PPDU transmission using EDMG SC mode through one 2.16 GHz channel, the EDMG-STF field does not exist. For EDMG SC transmission, the EDMG-STF field shall be modulated using pi/2 BPSK.
EDMG-CEF의 구조는 EDMG PPDU가 전송되는 연속적인 2.16GHz 채널의 개수 및 공간-시간 스트림 iSTS의 개수에 의존한다. 하나의 2.16GHz 채널을 통해 EDMG SC mode를 사용한 단일 공간-시간 스트림 EDMG PPDU 전송에 대해, EDMG-CEF 필드는 존재하지 않는다. EDMG SC 전송에 대해, EDMG-CEF 필드는 pi/2 BPSK를 사용하여 변조되어야 한다.The structure of the EDMG-CEF depends on the number of consecutive 2.16GHz channels through which the EDMG PPDU is transmitted and the number of space-time streams i STSs . For single space-time stream EDMG PPDU transmission using EDMG SC mode through one 2.16 GHz channel, the EDMG-CEF field does not exist. For EDMG SC transmission, the EDMG-CEF field should be modulated using pi/2 BPSK.
상기와 같은 PPDU의 (레거시) 프리앰블 부분은 패킷 검출 (packet detection), AGC (Automatic Gain Control), 주파수 오프셋 측정 (frequency offset estimation), 동기화 (synchronization), 변조 (SC 또는 OFDM)의 지시 및 채널 측정 (channel estimation)에 사용될 수 있다. 프리앰블의 포맷은 OFDM 패킷 및 SC 패킷에 대해 공통될 수 있다. 이때, 상기 프리앰블은 STF (Short Training Field) 및 상기 STF 필드 이후에 위치한 CE (Channel Estimation) 필드로 구성될 수 있다.The (legacy) preamble portion of the PPDU as described above includes packet detection, automatic gain control (AGC), frequency offset estimation, synchronization, modulation (SC or OFDM) indication and channel measurement. (channel estimation) can be used. The format of the preamble may be common for OFDM packet and SC packet. In this case, the preamble may include a Short Training Field (STF) and a Channel Estimation (CE) field located after the STF field.
도 9는 본 명세서의 송신 장치 및/또는 수신 장치의 변형된 일례를 나타낸다. 9 shows a modified example of a transmitting apparatus and/or a receiving apparatus of the present specification.
도 1의 부도면 (a)/(b)의 각 장치/STA은 도 9와 같이 변형될 수 있다. 도 9의 트랜시버(930)는 도 9의 트랜시버(113, 123)와 동일할 수 있다. 도 9의 트랜시버(930)는 수신기(receiver) 및 송신기(transmitter)를 포함할 수 있다. Each device/STA of the sub-drawings (a)/(b) of FIG. 1 may be modified as shown in FIG. 9 . The transceiver 930 of FIG. 9 may be the same as the transceivers 113 and 123 of FIG. 9 . The transceiver 930 of FIG. 9 may include a receiver and a transmitter.
도 9의 프로세서(910)는 도 1의 프로세서(111, 121)과 동일할 수 있다. 또는, 도 9의 프로세서(910)는 도 1의 프로세싱 칩(114, 124)과 동일할 수 있다.The processor 910 of FIG. 9 may be the same as the processors 111 and 121 of FIG. 1 . Alternatively, the processor 910 of FIG. 9 may be the same as the processing chips 114 and 124 of FIG. 1 .
도 9의 메모리(150)는 도 1의 메모리(112, 122)와 동일할 수 있다. 또는, 도 9의 메모리(150)는 도 1의 메모리(112, 122)와는 상이한 별도의 외부 메모리일 수 있다. The memory 150 of FIG. 9 may be the same as the memories 112 and 122 of FIG. 1 . Alternatively, the memory 150 of FIG. 9 may be a separate external memory different from the memories 112 and 122 of FIG. 1 .
도 9를 참조하면, 전력 관리 모듈(911)은 프로세서(910) 및/또는 트랜시버(930)에 대한 전력을 관리한다. 배터리(912)는 전력 관리 모듈(911)에 전력을 공급한다. 디스플레이(913)는 프로세서(910)에 의해 처리된 결과를 출력한다. 키패드(914)는 프로세서(910)에 의해 사용될 입력을 수신한다. 키패드(914)는 디스플레이(913) 상에 표시될 수 있다. SIM 카드(915)는 휴대 전화 및 컴퓨터와 같은 휴대 전화 장치에서 가입자를 식별하고 인증하는 데에 사용되는 IMSI(international mobile subscriber identity) 및 그와 관련된 키를 안전하게 저장하기 위하여 사용되는 집적 회로일 수 있다. Referring to FIG. 9 , the power management module 911 manages power for the processor 910 and/or the transceiver 930 . The battery 912 supplies power to the power management module 911 . The display 913 outputs the result processed by the processor 910 . Keypad 914 receives input to be used by processor 910 . A keypad 914 may be displayed on the display 913 . SIM card 915 may be an integrated circuit used to securely store an international mobile subscriber identity (IMSI) used to identify and authenticate subscribers in mobile phone devices, such as mobile phones and computers, and keys associated therewith. .
도 9를 참조하면, 스피커(940)는 프로세서(910)에 의해 처리된 소리 관련 결과를 출력할 수 있다. 마이크(941)는 프로세서(910)에 의해 사용될 소리 관련 입력을 수신할 수 있다.Referring to FIG. 9 , the speaker 940 may output a sound related result processed by the processor 910 . Microphone 941 may receive sound related input to be used by processor 910 .
IEEE802.11bf는 60GHz Wi-Fi 신호를 이용하여 STA 혹은 사람의 움직임이나 제스처를 sensing하기 위하여 60GHz wi-fi 기술인 802.11ad 및 802.11ay의 신호 송수신 방법이 고려되고 있다. 본 명세서에서는 효율적인 Wi-Fi sensing을 위하여, AP와 STA 혹은 STA와 STA 간의 채널 추정을 하기 위한 센싱 개시 프레임, 전송 개시 프레임, 및 센싱 신호를 구성하는 방법 센싱 개시 프레임, 전송 개시 프레임, 및 센싱 신호를 송수신 하는 sensing sequence에 대해서 제안한다.IEEE802.11bf considers the signal transmission/reception methods of 802.11ad and 802.11ay, which are 60GHz Wi-Fi technologies, in order to sense a motion or gesture of an STA or a person using a 60GHz Wi-Fi signal. In this specification, for efficient Wi-Fi sensing, a sensing start frame, a transmission start frame, and a method for configuring a sensing signal for channel estimation between an AP and an STA or an STA and an STA. A sensing start frame, a transmission start frame, and a sensing signal We propose a sensing sequence that transmits and receives .
이하에서 설명되는 STA은 도 1 및/또는 도 9의 장치일 수 있고, PPDU는 도 7의 PPDU일 수 있다. 디바이스는 AP 또는 non-AP STA일 수 있다.The STA described below may be the apparatus of FIGS. 1 and/or 9 , and the PPDU may be the PPDU of FIG. 7 . A device may be an AP or a non-AP STA.
WLAN (Wireless Local Area Network)은 비면허 대역을 이용하여 근거리 데이터 전송을 목적으로 도입되었다. IEEE 802.11 MAC/PHY 기반의 WLAN(예를 들어, Wi-Fi)는 현재 거의 모든 곳에 전개되어 있을 정도로 대표적인 기술이 되었다.WLAN (Wireless Local Area Network) was introduced for the purpose of short-distance data transmission using an unlicensed band. IEEE 802.11 MAC/PHY-based WLAN (eg, Wi-Fi) has become such a representative technology that it is now deployed almost everywhere.
WLAN(예를 들어, Wi-Fi)는 데이터 신호의 전송을 위하여 설계되었지만, 최근 데이터 전송 이외의 용도로 그 쓰임이 확장되고 있다.Although WLAN (eg, Wi-Fi) is designed for data signal transmission, its use has recently been expanded for purposes other than data transmission.
송신단으로부터 전송되어 수신단에 전달되는 WLAN(예를 들어, Wi-Fi) 신호는 두 송수신단 사이의 전송 채널환경에 대한 정보를 포함할 수 있다. WLAN 센싱(Sensing)은 WLAN 신호를 통해 획득한 전송 채널 환경에 대한 정보를 처리하여 다양한 주변 환경에 대한 인지 정보를 얻는 기술을 말한다.A WLAN (eg, Wi-Fi) signal transmitted from the transmitter to the receiver may include information on a transmission channel environment between the two transmitters and receivers. WLAN sensing refers to a technology for obtaining cognitive information about various surrounding environments by processing information about a transmission channel environment acquired through a WLAN signal.
예를 들어, 인지 정보는 동작 인식(Gesture recognition), 노인의 낙상 감지(fall detection by elder people), 침입 감지(intrusion detection), 인간의 움직임 감지(human motion detection), 건강 모니터링(health monitoring), 애완동물 움직임 감지(pet movement detection) 등의 기술을 통해 획득되는 정보를 포함할 수 있다.For example, cognitive information includes gesture recognition, fall detection by elder people, intrusion detection, human motion detection, health monitoring, It may include information obtained through a technology such as pet movement detection.
인지 정보를 통해 부가적인 서비스가 제공될 수 있고, WLAN 센싱은 실생활에서 다양한 형태로 응용되어 이용될 수 있다. WLAN Sensing의 정확도를 높이기 위한 방법으로 하나 이상의 WLAN Sensing 기능이 있는 기기들이 WLAN Sensing에 이용될 수 있다. 복수의 기기를 이용한 WLAN sensing은 하나의 기기(즉, 송수신단)을 이용하는 방법 대비, 채널 환경에 대한 다중의 정보를 이용할 수 있어, 보다 정확한 Sensing의 정보를 얻을 수 있다.Additional services may be provided through cognitive information, and WLAN sensing may be applied and used in various forms in real life. As a method for increasing the accuracy of WLAN sensing, devices having one or more WLAN sensing functions may be used for WLAN sensing. WLAN sensing using a plurality of devices can use multiple pieces of information about the channel environment compared to a method using a single device (ie, a transceiver end), so more accurate sensing information can be obtained.
Target Wake Time (TWT) 방법은 데이터 전송을 위해 정해진 시간에만 STA를 Awake 상태로 전환하고, 그 이외의 시간엔 Doze 상태를 유지시켜 전력 감소를 얻을 수 있는 방법으로 IEEE 802.11ah, IEEE 802.11ax에 제안되어 채택된 기술이다. WLAN sensing 동작에도 이와 유사한 방식으로 전력 소모 감소의 이득을 얻을 수 있다.The Target Wake Time (TWT) method is proposed to IEEE 802.11ah and IEEE 802.11ax as a method to obtain power reduction by switching the STA to the awake state only for a set time for data transmission and maintaining the doze state at other times. It is a technology that has been adopted. In WLAN sensing operation, power consumption reduction can be obtained in a similar way.
본 발명에서는 WLAN sensing 시 전력 소모를 감소시켜 줄 수 있는 방법을 제안한다. 특히 데이터 전송을 위해 설계된 TWT 방법 및 동작과의 연계 동작을 통해, 데이터 전송과 sensing의 개별적인 TWT 동작시 빈번한 Awake 상태로의 전환을 통해 야기될 수 있는 전력 소모를 방지할 수 있는 방법을 제안한다.The present invention proposes a method capable of reducing power consumption during WLAN sensing. In particular, we propose a method to prevent power consumption that may be caused by frequent switching to the awake state during individual TWT operations of data transmission and sensing through the TWT method designed for data transmission and operation in conjunction with the operation.
Sensing Session: Sensing을 위한 신호의 송수신을 진행할 수 있는 period. Sensing session은 주기적으로 혹은 필요에 따라서 할당될 수 있다. Sensing session은 다수의 sub-session으로 구성될 수 있다. 본 명세서에서는 sub-session을 “sensing burst”라 칭할 수 있다. Sensing Session : A period for transmitting and receiving signals for sensing. The sensing session may be allocated periodically or as needed. A sensing session may consist of a number of sub-sessions. In this specification, a sub-session may be referred to as a “sensing burst”.
WLAN Sensing 개시자(Initiator): WLAN 신호를 이용하여 하나 이상의 Sensing 기능을 갖는 기기들(즉, WLAN Sensing responder)에 Sensing Session 개시를 지시하는 STA(station). WLAN Sensing initiator는 Sensing을 위한 신호(예를 들어, NDP)를 보낼 수도 있고, 다른 STA 들에게 Sensing을 위한 신호 전송을 요구할 수도 있다. 즉, initiator는 transmitter가 될 수도 있고, receiver가 될 수도 있다. WLAN Sensing Initiator : A STA (station) that instructs devices having one or more sensing functions (ie, a WLAN Sensing responder) to initiate a sensing session using a WLAN signal. The WLAN sensing initiator may transmit a signal (eg, NDP) for sensing, and may request other STAs to transmit a signal for sensing. That is, the initiator can be either a transmitter or a receiver.
WLAN Sensing 응답자(Responder): WLAN Sensing initiator의 지시로 WLAN Sensing에 참여하여 지시된 Sensing을 수행하거나, initiator에게 신호를 전달하거나, 혹은 Initiator의 지시로 Sensing을 위한 신호를 전송할 수 있는 STA. WLAN Sensing Responder : An STA capable of participating in WLAN sensing under the instruction of the WLAN sensing initiator and performing the indicated sensing, transmitting a signal to the initiator, or transmitting a signal for sensing under the instruction of the initiator.
WLAN Sensing Transmitter: Sensing session (혹은 burst) 동안 WLAN sensing을 위한 신호를 전송하는 STA. Sensing session이 다수의 sensing burst로 구성되어 있을 시, 전체 burst 내에서 sensing transmitter는 동일할 수도, 일부 burst에서 다를 수도, 혹은 매 burst 마다 다를 수 있다. WLAN Sensing Transmitter : STA that transmits a signal for WLAN sensing during a sensing session (or burst). When a sensing session consists of multiple sensing bursts, the sensing transmitter may be the same for all bursts, different for some bursts, or different for every burst.
WLAN Sensing Receiver: Sensing session(혹은 burst) 동안 WLAN sensing을 위한 신호를 수신하는 STA. Sensing session이 다수의 sensing burst 로 구성되어 있을 시, 전체 burst 내에서 sensing receiver는 동일할 수도, 일부 burst에서 다를 수도, 혹은 매 burst 마다 다를 수 있다. WLAN Sensing Receiver : STA that receives a signal for WLAN sensing during a sensing session (or burst). When a sensing session consists of multiple sensing bursts, the sensing receiver may be the same for all bursts, different for some bursts, or different for every burst.
Sensing session 내에서 WLAN initiator는 WLAN sensing transmitter의 역할 (“initiator-based sensing”) 혹은 WLAN sensing receiver (“responder-based sensing”)의 역할을 수행할 수 있다.In the sensing session, the WLAN initiator may play the role of a WLAN sensing transmitter (“initiator-based sensing”) or a WLAN sensing receiver (“responder-based sensing”).
Sensing session 내에서 WLAN responder는 WLAN sensing transmitter의 역할 (“responder-based sensing”) 혹은 WLAN sensing receiver의 역할을 (“initiator-based sensing”) 수행할 수 있다.In the sensing session, the WLAN responder may perform the role of the WLAN sensing transmitter (“responder-based sensing”) or the role of the WLAN sensing receiver (“initiator-based sensing”).
TWT Requesting(initiating) STA: 데이터 전송을 위한 TWT agreement를 다른 STA에게 요청하는 STA. TWT Requesting (initiating) STA: A STA that requests a TWT agreement for data transmission from another STA.
TWT Responding STA: 다른 STA로부터 데이터 전송을 위한 TWT agreement 요청을 받은 STA. TWT Responding STA: STA that has received a TWT agreement request for data transmission from another STA.
TWT Requesting STA는 WLAN sensing에서 Initiator 혹은 Responder의 역할을 할 수 있고, sensing measurement 신호 전송 여부에 따라 sensing transmitter 혹은 receiver로서의 역할을 수행할 수 있다.The TWT Requesting STA may act as an initiator or responder in WLAN sensing, and may play a role as a sensing transmitter or receiver depending on whether a sensing measurement signal is transmitted.
TWT Responding STA는 WLAN sensing에서 Initiator 혹은 Responder의 역할을 할 수 있고, sensing measurement 신호 전송 여부에 따라 sensing transmitter 혹은 receiver로서의 역할을 수행할 수 있다.The TWT Responding STA can act as an initiator or responder in WLAN sensing, and can play a role as a sensing transmitter or receiver depending on whether a sensing measurement signal is transmitted.
도 10은 통신 네트워크의 일 실시예를 도시한 도면이다.10 is a diagram illustrating an embodiment of a communication network.
도 10을 참조하면, STA1 및 STA2는 TWT Requesting STA 또는 TWT Responding STA으로 동작할 수 있다. STA1과 STA2는 데이터를 주고 받을 수 있고, 센싱을 수행할 수도 있다.Referring to FIG. 10 , STA1 and STA2 may operate as TWT Requesting STAs or TWT Responding STAs. STA1 and STA2 may exchange data and perform sensing.
Case 1: 데이터 전송을 위해 정의된 TWT Period 가 Sensing Application을 지원하기 위한 Period 보다 짧거나 같은 경우.Case 1: When the TWT Period defined for data transmission is shorter than or equal to the Period for supporting the sensing application.
- 데이터 전송을 위해 정의된 TWT service period (SP) 중 일부 혹은 전부를 Sensing을 위한 TWT 동작과 연계하여 사용.- Some or all of the TWT service period (SP) defined for data transmission is used in connection with the TWT operation for sensing.
데이터 전송을 위해 정의된 TWT Period는 데이터 전송이 수행되는 주기를 의미하고, Sensing Application을 지원하기 위한 TWT Period는 센싱이 수행되는 주기를 의미할 수 있다.The TWT Period defined for data transmission may mean a period during which data transmission is performed, and the TWT Period for supporting a sensing application may mean a period during which sensing is performed.
데이터 전송을 위한 TWT와 연계해서 Sensing을 위한 TWT를 지원할 수 있다는 Indication은 기존의 정보에 추가적으로 제공되거나(예를 들어, TWT element, field, subfield, Capability element, Operation element, Extended Capability element 등), 새로 정의된 정보(예를 들어, New element, field, subfield 등)로 제공될 수 있다.Indication that TWT for sensing can be supported in connection with TWT for data transmission is provided in addition to existing information (eg, TWT element, field, subfield, Capability element, Operation element, Extended Capability element, etc.), or newly It may be provided as defined information (eg, New element, field, subfield, etc.).
Power Save Mode에서 데이터 전송을 위한 TWT Negotiation 과정에서 TWT Initiating STA 와 TWT Responding STA는 Sensing을 지원하기 위한 TWT Negotiation 과정을 진행할 수 있다.In the TWT Negotiation process for data transmission in Power Save Mode, the TWT Initiating STA and the TWT Responding STA may proceed with the TWT Negotiation process for supporting sensing.
Power Save Mode에서 데이터 전송을 위한 TWT Negotiation 과정에 추가적으로 TWT Initiating STA 와 TWT Responding STA는 Sensing을 지원하기 위한 TWT Negotiation 과정을 별도로 진행할 수 있다.In addition to the TWT negotiation process for data transmission in Power Save Mode, the TWT initiating STA and the TWT responding STA may separately perform the TWT negotiation process for supporting sensing.
Negotiation 과정에서 Sensing 지원을 위한 TWT의 주기 및 Duration 을 정의할 수 있다.In the negotiation process, the period and duration of TWT for sensing support can be defined.
Individual TWT:Individual TWT:
연계되어 사용되는 TWT SP는 두 부분으로 구성될 수 있다. 예를 들어, 하나는 데이터 전송을 지원하기 위한 TWT 부분으로, 다른 하나는 Sensing을 지원하기 위한 TWT 부분으로 구성될 수 있다.The TWT SP used in conjunction may consist of two parts. For example, one may be configured as a TWT part for supporting data transmission, and the other may be configured as a TWT part for supporting sensing.
데이터 전송을 위한 TWT 부분이 TWT SP 내에 시간적으로 먼저 위치할 수도 있고, Sensing을 지원하기 위한 TWT 부분이 먼저 위치할 수도 있다.The TWT part for data transmission may be temporally located first in the TWT SP, and the TWT part for supporting sensing may be located first.
TWT Requesting STA은 Sensing TWT 부분에서 Sensing Initiator 혹은 Sensing Responder 로 역할 할 수 있다. TWT Requesting STA은 Sensing Initiator 혹은 Sensing Responder로 역할을 하면서 Sensing을 위한 신호의 전송 (Sensing Transmitter) 혹은 수신 (Sensing Receiver)을 수행할 수 있다.The TWT Requesting STA may act as a Sensing Initiator or a Sensing Responder in the Sensing TWT part. The TWT Requesting STA may transmit a signal for sensing (Sensing Transmitter) or receive (Sensing Receiver) while serving as a sensing initiator or sensing responder.
TWT Responding STA은 Sensing TWT 부분에서 Sensing Initiator 혹은 Sensing Responder 로 역할 할 수 있다. TWT Responding STA은 Sensing Initiator 혹은 Sensing Responder 로 역할을 하면서 Sensing을 위한 신호의 전송 (Sensing Transmitter) 혹은 수신 (Sensing Receiver)을 수행할 수 있다.The TWT Responding STA may act as a Sensing Initiator or a Sensing Responder in the Sensing TWT part. The TWT Responding STA may transmit (Sensing Transmitter) or receive (Sensing Receiver) signals for sensing while acting as a sensing initiator or sensing responder.
Sensing을 위한 TWT 관련 정보 (예를 들어, duration, period 등)는 기존의 데이터 TWT 정보에 추가적으로 제공되거나 (예를 들어, TWT element, field, subfield 등), 새로운 정보(예를 들어, New TWT element, field, subfield 등)로 제공될 수 있다. TWT-related information for sensing (eg, duration, period, etc.) is additionally provided to the existing data TWT information (eg, TWT element, field, subfield, etc.), or new information (eg, New TWT element) , field, subfield, etc.).
예를 들어, sensing을 위한 TWT 가 뒤에 위치하는 경우, 기존의 TWT element의 duration field는 데이터 전송과 sensing을 위한 TWT duration을 나타내고, sensing을 위한 TWT 의 start time을 추가적으로 알려 줄 수 있다.For example, when the TWT for sensing is located behind, the duration field of the existing TWT element indicates the TWT duration for data transmission and sensing, and may additionally inform the start time of the TWT for sensing.
Sensing을 위한 TWT 동작은 채널의 안정적인 확보를 위해 control frame의 exchange(예를 들어, RTS-CTS exchange)로 시작될 수 있다. The TWT operation for sensing may be started with an exchange of a control frame (eg, RTS-CTS exchange) in order to secure a stable channel.
이러한 control frame 의 exchange 는 데이터 전송을 위한 TWT duration 이 끝나고 일정 시간(예를 들어, short inter-frame space (SIFS)) 이후에 진행될 수 있다. 데이터 전송을 위한 TWT duration 이 끝나고 일정 시간(예를 들어, SIFS) 이후, sensing을 위한 TWT 의 동작은 Trigger frame의 전송으로 시작될 수 있다. This exchange of control frames may proceed after a predetermined time (eg, short inter-frame space (SIFS)) after the TWT duration for data transmission ends. After the TWT duration for data transmission ends and after a certain time (eg, SIFS), the operation of the TWT for sensing may start with transmission of a trigger frame.
데이터 전송을 위한 TWT duration 동안 사용하는 Resources (시간, 주파수, 및/또는 공간 자원 등)는 sensing을 위한 TWT duration 동안 사용하는 Resources와 같을 수도 있고, 혹은 다를 수도 있다.Resources (time, frequency, and/or spatial resources, etc.) used during TWT duration for data transmission may be the same as or different from Resources used during TWT duration for sensing.
데이터 전송을 위해 설정된 TWT agreement 가 Teardown 될 때, sensing을 위한 TWT agreement 는 같이 Teardown 되거나, 유지될 수 있다.When the TWT agreement established for data transmission is teared down, the TWT agreement for sensing can be teared down or maintained.
Sensing을 위한 TWT agreement 가 Teardown 될 경우, STA는 channel access를 통한 sensing을 진행하거나, 새로운 sensing을 위한 TWT agreement 를 negotiation 할 수 있다.When the TWT agreement for sensing tears down, the STA can perform sensing through channel access or negotiate a TWT agreement for new sensing.
도 11은 센싱 방법의 일례를 도시한 도면이다.11 is a diagram illustrating an example of a sensing method.
도 11을 참조하면, 데이터 전송을 위한 TWT negotiation과 Sensing을 위한 TWT negotiation은 함께 수행될 수 있다. TWT SP(service period)는 2 Part로 구성될 수 있다. 하나는 data communication을 위한 부분이고, 다른 하나는 sensing을 위한 부분이다. 예를 들어, 도 11에서는 데이터 통신을 지원하기 위한 TWT 부분이 먼저 위치한다. 하지만, 데이터 통신을 지원하기 위한 TWT 부분이 뒷부분에 위치할 수도 있음. 예를 들어, TWT Negotiation 과정에서 Sensing을 위한 TWT Negotiation을 진행할 수 있다.Referring to FIG. 11 , TWT negotiation for data transmission and TWT negotiation for sensing may be performed together. The TWT SP (service period) may be composed of two parts. One is for data communication and the other is for sensing. For example, in FIG. 11 , a TWT part for supporting data communication is located first. However, the TWT part for supporting data communication may be located at the rear. For example, in the TWT negotiation process, TWT negotiation for sensing may be performed.
도 12는 센싱 방법의 일례를 도시한 도면이다.12 is a diagram illustrating an example of a sensing method.
도 12를 참조하면, 데이터 전송을 위한 TWT negotiation과 Sensing을 위한 TWT negotiation은 별도로 수행될 수 있다. 데이터 전송과 Sensing을 위한 TWT가 Overlap 되는 TWT SP는 2 Part로 구성될 수 있다. 하나는 data communication을 위한 부분이고, 다른 하나는 sensing을 위한 부분이다.12, TWT negotiation for data transmission and TWT negotiation for sensing may be separately performed. TWT SP where TWT for data transmission and sensing overlap can be composed of 2 parts. One is for data communication and the other is for sensing.
도 12에서는 데이터 전송과 Sensing을 위한 TWT가 Overlap 되는 TWT SP 내에서 데이터 통신을 지원하기 위한 TWT 부분이 먼저 위치한다. 하지만, 데이터 통신을 지원하기 위한 TWT 부분이 뒷부분에 위치할 수도 있음. 예를 들어, TWT Negotiation 과정에서 Sensing을 위한 TWT Negotiation을 진행할 수 있다.In FIG. 12 , the TWT part for supporting data communication is located first in the TWT SP where the TWT for data transmission and sensing overlap. However, the TWT part for supporting data communication may be located at the rear. For example, in the TWT negotiation process, TWT negotiation for sensing may be performed.
Case 2: 데이터 전송을 위해 정의된 TWT Period 가 Sensing Application 을 지원하기 위한 Period 보다 긴 경우.Case 2: When the TWT Period defined for data transmission is longer than the Period to support the sensing application.
- Sensing을 지원하기 위한 TWT 를 정의. 데이터 전송을 위한 TWT 주기는 Sensing을 위한 TWT 주기의 정수배로 할 수 있음. 이 경우 데이터 전송과 Sensing 을 위한 TWT 는 시간 축에서 규칙적으로 Overlap 할 수 있음.- Define TWT to support sensing. The TWT period for data transmission can be an integer multiple of the TWT period for sensing. In this case, TWT for data transmission and sensing can overlap regularly on the time axis.
데이터 전송을 위한 TWT 와 연계해서 Sensing을 위한 TWT를 지원할 수 있다는 Indication 을 기존의 정보에 추가적으로 제공하거나(예를 들어, TWT element, field, subfield, Capability element, Operation element, Extended Capability element 등), 새로 정의된 정보(예를 들어, New element, field, subfield 등)로 제공 할 수 있다.In connection with TWT for data transmission, an indication that TWT for sensing can be supported is additionally provided to existing information (eg, TWT element, field, subfield, Capability element, Operation element, Extended Capability element, etc.), or newly It can be provided as defined information (eg, New element, field, subfield, etc.).
Power Save Mode 에서 데이터 전송을 위한 TWT Negotiation 과정에서 TWT Initiating STA 와 TWT Responding STA는 Sensing 을 지원하기 위한 TWT Negotiation 과정을 진행 할 수 있다.In the TWT negotiation process for data transmission in Power Save Mode, the TWT initiating STA and the TWT responding STA may perform the TWT negotiation process to support sensing.
TWT Initiating STA 와 TWT Responding STA는 Power Save Mode에서의 데이터 전송을 위한 TWT Negotiation 과정에 추가적으로 Sensing을 지원하기 위한 TWT Negotiation 과정을 별도로 진행 할 수 있다.The TWT initiating STA and the TWT responding STA may separately perform the TWT negotiation process for supporting sensing in addition to the TWT negotiation process for data transmission in Power Save Mode.
TWT Initiating STA 와 TWT Responding STA는 Negotiation 과정에서 Sensing 지원을 위한 TWT의 주기 및 Duration 을 정의할 수 있다.The TWT initiating STA and the TWT responding STA may define the period and duration of the TWT for sensing support in the negotiation process.
Individual TWT:Individual TWT:
시간축상에서 서로 Overlap 되지 않는 부분에서 사용되는 sensing을 위한 TWT duration 은 Overlap 되는 부분에서 사용하는 TWT duration 과 같을 수도 있고, 다를 수도 있다.The TWT duration for sensing used in the non-overlapping part on the time axis may be the same as or different from the TWT duration used in the overlapping part.
연계되어 (overlap) 사용되는 TWT SP는 두 부분으로 구성될 수 있다. 예를 들어, 하나는 데이터 전송을 지원하기 위한 TWT 부분으로, 다른 하나는 Sensing을 지원하기 위한 TWT 부분으로 구성될 수 있다.The TWT SP used in overlapping may be composed of two parts. For example, one may be configured as a TWT part for supporting data transmission, and the other may be configured as a TWT part for supporting sensing.
TWT SP(service period) 내에서 데이터 통신을 지원하기 위한 TWT 부분이 먼저 위치할 수도 있고, Sensing을 지원하기 위한 TWT 부분이 먼저 위치할 수도 있다.The TWT part for supporting data communication may be located first in the TWT service period (SP), and the TWT part for supporting sensing may be located first.
TWT Requesting STA은 Sensing TWT 부분에서 Sensing Initiator 혹은 Sensing Responder 로 역할 할 수 있다. TWT Requesting STA은 Sensing Initiator 혹은 Sensing Responder로 역할을 하면서 Sensing을 위한 신호의 전송 (Sensing Transmitter) 혹은 수신 (Sensing Receiver) 을 수행할 수 있다.The TWT Requesting STA may act as a Sensing Initiator or a Sensing Responder in the Sensing TWT part. The TWT Requesting STA may transmit a signal for sensing (Sensing Transmitter) or receive (Sensing Receiver) while serving as a sensing initiator or sensing responder.
TWT Responding STA은 Sensing TWT 부분에서 Sensing Initiator 혹은 Sensing Responder 로 역할 할 수 있다. TWT Responding STA은 Sensing Initiator 혹은 Sensing Responder 로 역할을 하면서 Sensing을 위한 신호의 전송 (Sensing Transmitter) 혹은 수신 (Sensing Receiver) 을 수행할 수 있다.The TWT Responding STA may act as a Sensing Initiator or a Sensing Responder in the Sensing TWT part. The TWT Responding STA may transmit (Sensing Transmitter) or receive (Sensing Receiver) signals for sensing while acting as a sensing initiator or sensing responder.
Sensing 을 위한 TWT 관련 정보 (예를 들어, duration, period 등)는 기존의 데이터 TWT 정보에 추가적으로 제공되거나 (예를 들어, TWT element, field, subfield 등), 새로운 정보(예를 들어, New TWT element, field, subfield 등)로 제공될 수 있다. TWT-related information for sensing (eg, duration, period, etc.) is additionally provided to the existing data TWT information (eg, TWT element, field, subfield, etc.), or new information (eg, New TWT element) , field, subfield, etc.).
예를 들어, 연계된 TWT SP의 경우 sensing을 위한 TWT 가 뒤에 위치할 때, 기존의 TWT element 의 duration field 는 데이터 전송과 sensing을 위한 TWT duration의 합을 나타내고, sensing을 위한 TWT 의 start time에 관련된 정보를 추가적으로 포함할 수 있다. Sensing을 위한 TWT 와 데이터 전송을 위한 TWT의 period는 정수배의 관계를 가질 수 있다.For example, in the case of a linked TWT SP, when the TWT for sensing is located behind, the duration field of the existing TWT element represents the sum of the TWT durations for data transmission and sensing, and is related to the start time of the TWT for sensing. Additional information may be included. The period of TWT for sensing and TWT for data transmission may have an integer multiple relationship.
Sensing을 위한 TWT 동작은 채널의 안정적인 확보를 위해 control frame의 exchange(예를 들어, RTS-CTS exchange)로 시작될 수 있다.The TWT operation for sensing may be started with an exchange of a control frame (eg, RTS-CTS exchange) in order to secure a stable channel.
이러한 control frame 의 exchange 는 데이터 전송을 위한 TWT duration 이 끝나고 일정 시간(예를 들어, short inter-frame space (SIFS)) 이후에 진행될 수 있다. 데이터 전송을 위한 TWT duration 이 끝나고 일정 시간(예를 들어, SIFS) 이후, sensing을 위한 TWT 의 동작은 Trigger frame의 전송으로 시작될 수 있다. This exchange of control frames may proceed after a predetermined time (eg, short inter-frame space (SIFS)) after the TWT duration for data transmission ends. After the TWT duration for data transmission ends and after a certain time (eg, SIFS), the operation of the TWT for sensing may start with transmission of a trigger frame.
데이터 전송을 위한 TWT duration 동안 사용하는 Resources (시간, 주파수, 및/또는 공간 자원 등)는 sensing을 위한 TWT duration 동안 사용하는 Resources와 같을 수도 있고, 혹은 다를 수도 있다.Resources (time, frequency, and/or spatial resources, etc.) used during TWT duration for data transmission may be the same as or different from Resources used during TWT duration for sensing.
도 13은 센싱 방법의 일례를 도시한 도면이다.13 is a diagram illustrating an example of a sensing method.
도 13을 참조하면, 데이터 전송과 Sensing을 위한 TWT가 Overlap 되는 TWT SP는 2 Part로 구성될 수 있다. 예를 들어, 데이터 전송과 Sensing을 위한 TWT가 Overlap 되는 TWT SP의 2 부분 중 한 부분은 data communication을 위한 부분이고, 다른 부분은 sensing을 위한 부분일 수 있다. 도 13에서는 데이터 통신을 지원하기 위한 TWT 부분이 먼저 위치하지만, 데이터 통신을 지원하기 위한 TWT 부분이 뒷부분에 위치할 수도 있다. 예를 들어, 데이터 전송을 위한 TWT Negotiation 과정에서 Sensing을 위한 TWT Negotiation이 수행될 수 있다. 즉, 데이터 전송과 센싱을 위한 TWT negotiation이 함께 수행될 수 있다.Referring to FIG. 13 , the TWT SP in which the TWT for data transmission and sensing overlap may be composed of two parts. For example, one of the two parts of the TWT SP where the TWT for data transmission and sensing overlaps may be a part for data communication, and the other part may be a part for sensing. In FIG. 13 , the TWT part for supporting data communication is located first, but the TWT part for supporting data communication may be located later. For example, in the TWT negotiation process for data transmission, TWT negotiation for sensing may be performed. That is, TWT negotiation for data transmission and sensing may be performed together.
예를 들어, 데이터 전송을 위한 TWT period는 센싱을 위한 TWT period의 2배일 수 있다. 즉, 센싱이 2번 수행될 동안 데이터 전송은 1번 수행될 수 있다. 예를 들어, 센싱을 위한 TWT SP 이후의 TWT SP는 데이터 전송과 센싱 모두를 위한 TWT SP일 수 있다. 예를 들어, 센싱이 n번 수행될 동안 데이터 전송이 1번 수행되는 경우, 센싱을 위한 TWT SP가 n-1번 반복되고 이후 1번의 TWT는 데이터 전송과 센싱 모두를 위한 TWT일 수 있다.For example, the TWT period for data transmission may be twice the TWT period for sensing. That is, while sensing is performed twice, data transmission may be performed once. For example, the TWT SP after the TWT SP for sensing may be a TWT SP for both data transmission and sensing. For example, if data transmission is performed once while sensing is performed n times, the TWT SP for sensing may be repeated n-1 times, and then the TWT for 1 time may be a TWT for both data transmission and sensing.
도 14는 센싱 방법의 일례를 도시한 도면이다.14 is a diagram illustrating an example of a sensing method.
도 14를 참조하면, 데이터 전송과 Sensing을 위한 TWT가 Overlap 되는 TWT SP는 2 Part로 구성될 수 있다. 예를 들어, 데이터 전송과 Sensing을 위한 TWT가 Overlap 되는 TWT SP의 2 부분 중 한 부분은 data communication을 위한 부분이고, 다른 부분은 sensing을 위한 부분일 수 있다. 도 14에서는 데이터 통신을 지원하기 위한 TWT 부분이 먼저 위치하지만, 데이터 통신을 지원하기 위한 TWT 부분이 뒷부분에 위치할 수도 있다. 데이터 전송을 위한 TWT Negotiation 뿐만 아니라 추가적으로 Sensing을 위한 TWT Negotiation이 수행될 수 있다. 데이터 전송을 위한 TWT Negotiation과 센싱을 위한 TWT Negotiation은 별도로 수행될 수 있다.Referring to FIG. 14 , the TWT SP in which the TWT for data transmission and sensing overlap may be composed of two parts. For example, one of the two parts of the TWT SP where the TWT for data transmission and sensing overlaps may be a part for data communication, and the other part may be a part for sensing. In FIG. 14 , the TWT part for supporting data communication is located first, but the TWT part for supporting data communication may be located later. In addition to TWT negotiation for data transmission, TWT negotiation for additional sensing may be performed. TWT negotiation for data transmission and TWT negotiation for sensing may be separately performed.
예를 들어, 데이터 전송을 위한 TWT period는 센싱을 위한 TWT period의 2배일 수 있다. 즉, 센싱이 2번 수행될 동안 데이터 전송은 1번 수행될 수 있다. 예를 들어, 센싱을 위한 TWT SP 이후의 TWT SP는 데이터 전송과 센싱 모두를 위한 TWT SP일 수 있다. 예를 들어, 센싱이 n번 수행될 동안 데이터 전송이 1번 수행되는 경우, 센싱을 위한 TWT SP가 n-1번 반복되고 이후 1번의 TWT는 데이터 전송과 센싱 모두를 위한 TWT일 수 있다.For example, the TWT period for data transmission may be twice the TWT period for sensing. That is, while sensing is performed twice, data transmission may be performed once. For example, the TWT SP after the TWT SP for sensing may be a TWT SP for both data transmission and sensing. For example, if data transmission is performed once while sensing is performed n times, the TWT SP for sensing may be repeated n-1 times, and then the TWT for 1 time may be a TWT for both data transmission and sensing.
Broadcast TWT:Broadcast TWT:
AP 에 의해 Broadcast TWT로 Scheduling 된 STA 들은 데이터 전송을 위해 정의된 TWT SP 와 연계해서 sensing 을 지원할 수도 있다.STAs scheduled for broadcast TWT by the AP may support sensing in conjunction with the TWT SP defined for data transmission.
데이터 전송을 위한 Broadcast TWT 와 연계해서 Sensing을 위한 TWT를 지원할 수 있다는 Indication은 기존의 정보에 추가적으로 제공되거나(예를 들어, TWT element, field, subfield, Capability element, Operation element, Extended Capability element 등), 새로 정의된 정보(예를 들어, New element, field, subfield 등)로 제공될 수 있다.Indication that TWT for sensing can be supported in connection with Broadcast TWT for data transmission is provided in addition to existing information (eg, TWT element, field, subfield, Capability element, Operation element, Extended Capability element, etc.), It may be provided as newly defined information (eg, New element, field, subfield, etc.).
연계되어 사용되는 Broadcast TWT SP는 두 부분으로 구성될 수 있다. 하나는 데이터 전송을 지원하기 위한 TWT 부분(“Broadcast TWT”)이고, 다른 하나는 Sensing을 지원하기 위한 TWT 부분("Sensing TWT”)일 수 있다.Broadcast TWT SP used in conjunction may consist of two parts. One may be a TWT part for supporting data transmission (“Broadcast TWT”), and the other may be a TWT part for supporting sensing (“Sensing TWT”).
연계되어 사용되는 Broadcast TWT SP 내에서 데이터 전송을 위한 TWT 부분이 TWT SP 내에 시간적으로 먼저 위치할 수도 있고, Sensing을 지원하기 위한 TWT 부분이 먼저 위치 할 수도 있다.In the broadcast TWT SP used in association, the TWT part for data transmission may be located first in the TWT SP, and the TWT part for supporting sensing may be located first.
Broadcast TWT Responding STA 가 Sensing TWT 부분에서 Sensing Initiator 혹은 Sensing Responder 로 역할 할 수 있다. Sensing Initiator 혹은 Sensing Responder 로 역할을 하면서 Sensing을 위한 신호의 전송 (Sensing Transmitter) 혹은 수신 (Sensing Receiver) 을 수행할 수 있다.A Broadcast TWT Responding STA may act as a Sensing Initiator or a Sensing Responder in the Sensing TWT part. It can transmit (Sensing Transmitter) or receive (Sensing Receiver) signals for sensing while acting as a Sensing Initiator or Sensing Responder.
Broadcast TWT SP 동안 데이터 전송(송/수신)을 진행하는 STA들 중 전부 혹은 일부의 STA가 sensing을 위해 정의된 TWT SP 동안 sensing을 수행할 수 있다. Sensing에 참여하지 않는 STA 들은 데이터 전송을 위한 TWT SP 종료 후 Doze 상태로 전환할 수 있다.All or some of the STAs performing data transmission (transmission/reception) during the broadcast TWT SP can perform sensing during the TWT SP defined for sensing. STAs that do not participate in sensing may switch to the Doze state after the TWT SP for data transmission is terminated.
Sensing을 위한 TWT 관련 정보(예를 들어, duration, period 등)는 기존의 데이터 TWT 정보에 추가적으로 제공되거나(TWT element, field, subfield 등), 새로운 정보(New TWT element, field, subfield 등)로 제공될 수 있다. TWT-related information for sensing (eg, duration, period, etc.) is provided in addition to the existing data TWT information (TWT element, field, subfield, etc.) or provided as new information (New TWT element, field, subfield, etc.) can be
예를 들어, sensing을 위한 TWT 가 뒤에 위치하는 경우, 기존의 TWT element 의 duration field 는 데이터 전송과 sensing을 위한 TWT duration 을 나타내고, sensing을 위한 TWT 의 start time을 추가적으로 알려 줄 수 있다.For example, when the TWT for sensing is located behind, the duration field of the existing TWT element indicates the TWT duration for data transmission and sensing, and may additionally inform the start time of the TWT for sensing.
Sensing을 위한 TWT 동작은 채널의 안정적인 확보를 위해 control frame의 exchange(예를 들어, RTS-CTS exchange)로 시작할 수 있다. 다수의 STA 들이 sensing에 참여하는 경우, 채녈의 안정적인 확보를 위해 control frame 의 exchange (예를 들어, MU-RTS-CTS exchange)로 시작할 수 있다.The TWT operation for sensing may start with an exchange of a control frame (eg, RTS-CTS exchange) to secure a stable channel. When multiple STAs participate in sensing, it can start with an exchange of a control frame (eg, MU-RTS-CTS exchange) to secure a stable channel.
이러한 control frame의 exchange는 데이터 전송을 위한 Broadcast TWT duration 이 끝나고 일정 시간(예를 들어, short inter-frame space (SIFS)) 이후에 진행될 수 있다. This exchange of control frames may be performed after a predetermined time (eg, short inter-frame space (SIFS)) after the broadcast TWT duration for data transmission ends.
데이터 전송을 위한 Broadcast TWT duration이 끝나고 일정시간(예를 들어, SIFS) 이후, sensing을 위한 TWT의 동작이 Trigger frame의 전송으로 시작될 수 있다. After the broadcast TWT duration for data transmission ends and after a certain time (eg, SIFS), the operation of the TWT for sensing may be started by transmission of a trigger frame.
데이터 전송을 위한 Broadcast TWT duration 동안 사용하는 Resources(예를 들어, 시간, 주파수, 및/또는 공간 자원 등)는 sensing을 위한 TWT duration 동안 사용하는 Resources 와 같을 수도, 혹은 다를 수도 있다.Resources (eg, time, frequency, and/or spatial resources, etc.) used during the Broadcast TWT duration for data transmission may be the same as or different from Resources used during the TWT duration for sensing.
도 15는 센싱 방법의 일례를 도시한 도면이다.15 is a diagram illustrating an example of a sensing method.
도 15를 참조하면, 데이터 전송과 Sensing을 위한 TWT가 Overlap 되는 TWT SP는 2 Part로 구성될 수 있다. 예를 들어, 데이터 전송과 Sensing을 위한 TWT가 Overlap 되는 TWT SP의 2 부분 중 한 부분은 data communication을 위한 부분이고, 다른 부분은 sensing을 위한 부분일 수 있다. 도 14에서는 데이터 통신을 지원하기 위한 TWT 부분이 먼저 위치하지만, 데이터 통신을 지원하기 위한 TWT 부분이 뒷부분에 위치할 수도 있다.Referring to FIG. 15 , the TWT SP in which the TWT for data transmission and sensing overlap may be composed of two parts. For example, one of the two parts of the TWT SP where the TWT for data transmission and sensing overlaps may be a part for data communication, and the other part may be a part for sensing. In FIG. 14 , the TWT part for supporting data communication is located first, but the TWT part for supporting data communication may be located later.
Power save mode에서 데이터 전송을 위한 방법으로 Target Wake Time (TWT) 가 IEEE 802.11ax, IEEE 802.11ah 등에서 정의되어 있는데, 이에 더해 sensing을 위한 추가 TWT의 정의는 빈번한 STA의 State (“Awake”, “Doze”) 전환으로 인해 목적한 power save를 이루기 어려울 수 있다.As a method for data transmission in power save mode, Target Wake Time (TWT) is defined in IEEE 802.11ax, IEEE 802.11ah, etc. In addition, the definition of additional TWT for sensing is a frequent STA State (“Awake”, “Doze ”), it may be difficult to achieve the desired power save due to conversion.
본 명세서의 일례에 따르면 데이터 전송을 위해 정의된 TWT에 연계해서 sensing을 수행할 수 있다. 따라서, WLAN sensing에 의해 소모될 수 있는 전력 손실의 감소를 얻을 수 있다.According to an example of this specification, sensing can be performed in connection with the TWT defined for data transmission. Accordingly, it is possible to obtain a reduction in power loss that can be consumed by WLAN sensing.
도 16는 송신 STA 동작 방법의 일 실시예를 도시한 도면이다.16 is a diagram illustrating an embodiment of a method of operating a transmitting STA.
도 16을 참조하면, 송신 STA 동작은 도 1 내지 도 15 중 적어도 하나의 도면에서 설명되는 기술적 특징을 기초로 할 수 있다.Referring to FIG. 16 , an operation of a transmitting STA may be based on technical features described in at least one of FIGS. 1 to 15 .
송신 STA은 협상 프레임을 생성할 수 있다(S1610). 예를 들어, 상기 협상 프레임은 TWT(target wake-up time) SP(service period)에 관련된 정보를 포함할 수 있다. 예를 들어, 상기 TWT SP는 데이터 전송 및 WLAN 센싱을 위한 제1 TWT SP 및 WLAN 센싱만을 위해 사용되는 제2 TWT SP를 포함할 수 있다.The transmitting STA may generate a negotiation frame (S1610). For example, the negotiation frame may include information related to a target wake-up time (TWT) service period (SP). For example, the TWT SP may include a first TWT SP for data transmission and WLAN sensing and a second TWT SP used only for WLAN sensing.
예를 들어, 상기 제1 TWT SP는 데이터 전송을 위한 제1 시간 구간과 WLAN 센싱을 위한 제2 시간 구간을 포함할 수 있다.For example, the first TWT SP may include a first time interval for data transmission and a second time interval for WLAN sensing.
예를 들어, 상기 TWT SP에 관련된 정보는 상기 제1 TWT SP의 주기 정보 및 상기 제2 TWT SP의 주기 정보를 더 포함할 수 있다.For example, the information related to the TWT SP may further include period information of the first TWT SP and period information of the second TWT SP.
예를 들어, 상기 제1 TWT SP의 주기는 상기 제2 TWT SP의 정수 배일 수 있다.For example, the period of the first TWT SP may be an integer multiple of the second TWT SP.
예를 들어, 상기 협상 프레임은 상기 송신 STA이 상기 TWT SP를 상기 WLAN 센싱을 위해 사용할 수 있는지에 관련된 캐퍼빌리티 정보를 더 포함할 수 있다.For example, the negotiation frame may further include capability information related to whether the transmitting STA can use the TWT SP for the WLAN sensing.
예를 들어, 상기 TWT SP에 관련된 정보는 상기 TWT SP의 지속시간(duration)에 관련된 정보를 더 포함할 수 있다.For example, the information related to the TWT SP may further include information related to the duration of the TWT SP.
송신 STA은 협상 프레임을 전송할 수 있다(S1620). 예를 들어, 송신 STA은 수신 STA에게 상기 협상 프레임을 전송할 수 있다.The transmitting STA may transmit a negotiation frame (S1620). For example, the transmitting STA may transmit the negotiation frame to the receiving STA.
도 17은 수신 STA 동작 방법의 일 실시예를 도시한 도면이다.17 is a diagram illustrating an embodiment of a method of operating a receiving STA.
도 17을 참조하면, 수신 STA 동작은 도 1 내지 도 15 중 적어도 하나의 도면에서 설명되는 기술적 특징을 기초로 할 수 있다.Referring to FIG. 17 , an operation of a receiving STA may be based on technical features described in at least one of FIGS. 1 to 15 .
수신 STA은 협상 프레임을 수신할 수 있다(S1710). 예를 들어, 송신 STA으로부터 협상(negotiation) 프레임을 수신할 수 있다. 예를 들어, 상기 협상 프레임은 TWT(target wake-up time) SP(service period)에 관련된 정보를 포함할 수 있다. 예를 들어, 상기 TWT SP는 데이터 전송 및 WLAN 센싱을 위한 제1 TWT SP 및 WLAN 센싱만을 위해 사용되는 제2 TWT SP를 포함할 수 있다.The receiving STA may receive a negotiation frame (S1710). For example, a negotiation frame may be received from the transmitting STA. For example, the negotiation frame may include information related to a target wake-up time (TWT) service period (SP). For example, the TWT SP may include a first TWT SP for data transmission and WLAN sensing and a second TWT SP used only for WLAN sensing.
예를 들어, 상기 제1 TWT SP는 데이터 전송을 위한 제1 시간 구간과 WLAN 센싱을 위한 제2 시간 구간을 포함할 수 있다.For example, the first TWT SP may include a first time interval for data transmission and a second time interval for WLAN sensing.
예를 들어, 상기 TWT SP에 관련된 정보는 상기 제1 TWT SP의 주기 정보 및 상기 제2 TWT SP의 주기 정보를 더 포함할 수 있다.For example, the information related to the TWT SP may further include period information of the first TWT SP and period information of the second TWT SP.
예를 들어, 상기 제1 TWT SP의 주기는 상기 제2 TWT SP의 정수 배일 수 있다.For example, the period of the first TWT SP may be an integer multiple of the second TWT SP.
예를 들어, 상기 협상 프레임은 상기 송신 STA이 상기 TWT SP를 상기 WLAN 센싱을 위해 사용할 수 있는지에 관련된 캐퍼빌리티 정보를 더 포함할 수 있다.For example, the negotiation frame may further include capability information related to whether the transmitting STA can use the TWT SP for the WLAN sensing.
예를 들어, 상기 TWT SP에 관련된 정보는 상기 TWT SP의 지속시간(duration)에 관련된 정보를 더 포함할 수 있다.For example, the information related to the TWT SP may further include information related to the duration of the TWT SP.
송신 STA은 수신 STA은 협상 프레임을 복호할 수 있다(S1720).The transmitting STA and the receiving STA may decode the negotiation frame (S1720).
도 16 및 도 17의 일례에 표시된 세부 단계 중 일부는 필수 단계가 아닐 수 있고, 생략될 수 있다. 도 16 및 도 17에 도시된 단계 외에 다른 단계가 추가될 수 있고, 상기 단계들의 순서는 달라질 수 있다. 상기 단계들 중 일부 단계가 독자적 기술적 의미를 가질 수 있다.Some of the detailed steps shown in the examples of FIGS. 16 and 17 may not be essential steps and may be omitted. In addition to the steps shown in FIGS. 16 and 17 , other steps may be added, and the order of the steps may vary. Some of the above steps may have their own technical meaning.
상술한 본 명세서의 기술적 특징은 다양한 장치 및 방법에 적용될 수 있다. 예를 들어, 상술한 본 명세서의 기술적 특징은 도 1 및/또는 도 9의 장치를 통해 수행/지원될 수 있다. 예를 들어, 상술한 본 명세서의 기술적 특징은, 도 1 및/또는 도 9의 일부에만 적용될 수 있다. 예를 들어, 상술한 본 명세서의 기술적 특징은, 도 1의 프로세싱 칩(114, 124)을 기초로 구현되거나, 도 1의 프로세서(111, 121)와 메모리(112, 122)를 기초로 구현되거나, 도 9의 프로세서(910)와 메모리(920)를 기초로 구현될 수 있다. 예를 들어, 본 명세서의 장치에 있어서, 상기 장치는, 메모리; 및 상기 메모리와 동작 가능하게 결합된 프로세서(processor)를 포함하되, 상기 프로세서는, 협상(negotiation) 프레임을 생성하되, 상기 협상 프레임은 TWT(target wake-up time) SP(service period)에 관련된 정보를 포함하고, 상기 TWT SP는 데이터 전송 및 WLAN 센싱을 위한 제1 TWT SP 및 WLAN 센싱만을 위해 사용되는 제2 TWT SP를 포함하고; 그리고 수신 STA에게 상기 협상 프레임을 전송하도록 설정될 수 있다.The technical features of the present specification described above may be applied to various devices and methods. For example, the above-described technical features of the present specification may be performed/supported through the apparatus of FIGS. 1 and/or 9 . For example, the technical features of the present specification described above may be applied only to a part of FIGS. 1 and/or 9 . For example, the technical features of the present specification described above are implemented based on the processing chips 114 and 124 of FIG. 1 , or implemented based on the processors 111 and 121 and the memories 112 and 122 of FIG. 1 , or , may be implemented based on the processor 910 and the memory 920 of FIG. 9 . For example, in the apparatus of the present specification, the apparatus includes: a memory; and a processor operatively coupled to the memory, wherein the processor generates a negotiation frame, wherein the negotiation frame includes information related to a target wake-up time (TWT) service period (SP). wherein the TWT SP includes a first TWT SP for data transmission and WLAN sensing and a second TWT SP used only for WLAN sensing; And it may be configured to transmit the negotiation frame to the receiving STA.
본 명세서의 기술적 특징은 CRM(computer readable medium)을 기초로 구현될 수 있다. 예를 들어, 본 명세서에 의해 제안되는 CRM은, 무선랜(Wireless Local Area Network) 시스템의 송신 STA(station)의 적어도 하나의 프로세서(processor)에 의해 실행됨을 기초로 하는 명령어(instruction)를 포함하는 적어도 하나의 컴퓨터로 읽을 수 있는 기록매체(computer readable medium)에 있어서, 협상(negotiation) 프레임을 생성하되, 상기 협상 프레임은 TWT(target wake-up time) SP(service period)에 관련된 정보를 포함하고, 상기 TWT SP는 데이터 전송 및 WLAN 센싱을 위한 제1 TWT SP 및 WLAN 센싱만을 위해 사용되는 제2 TWT SP를 포함하는, 단계; 및 수신 STA에게 상기 협상 프레임을 전송하는 단계를 포함하는 동작(operation)을 수행하는 명령어(instruction)를 포함할 수 있다.The technical features of the present specification may be implemented based on a CRM (computer readable medium). For example, CRM proposed by the present specification includes an instruction based on being executed by at least one processor of a transmitting STA (station) of a wireless local area network (Wireless Local Area Network) system. In at least one computer readable medium, a negotiation frame is generated, wherein the negotiation frame includes information related to a target wake-up time (TWT) and a service period (SP), , wherein the TWT SP includes a first TWT SP for data transmission and WLAN sensing and a second TWT SP used only for WLAN sensing; and an instruction for performing an operation including transmitting the negotiation frame to the receiving STA.
본 명세서의 CRM 내에 저장되는 명령어는 적어도 하나의 프로세서에 의해 실행(execute)될 수 있다. 본 명세서의 CRM에 관련된 적어도 하나의 프로세서는 도 1의 프로세서(111, 121) 또는 프로세싱 칩(114, 124)이거나, 도 9의 프로세서(910)일 수 있다. 한편, 본 명세서의 CRM은 도 1의 메모리(112, 122)이거나 도 9의 메모리(920)이거나, 별도의 외부 메모리/저장매체/디스크 등일 수 있다.The instructions stored in the CRM of the present specification may be executed by at least one processor. At least one processor related to CRM in the present specification may be the processors 111 and 121 or the processing chips 114 and 124 of FIG. 1 , or the processor 910 of FIG. 9 . Meanwhile, the CRM of the present specification may be the memories 112 and 122 of FIG. 1 , the memory 920 of FIG. 9 , or a separate external memory/storage medium/disk.
상술한 본 명세서의 기술적 특징은 다양한 응용예(application)나 비즈니스 모델에 적용 가능하다. 예를 들어, 인공 지능(Artificial Intelligence: AI)을 지원하는 장치에서의 무선 통신을 위해 상술한 기술적 특징이 적용될 수 있다. The technical features of the present specification described above are applicable to various applications or business models. For example, the above-described technical features may be applied for wireless communication in a device supporting artificial intelligence (AI).
인공 지능은 인공적인 지능 또는 이를 만들 수 있는 방법론을 연구하는 분야를 의미하며, 머신 러닝(기계 학습, Machine Learning)은 인공 지능 분야에서 다루는 다양한 문제를 정의하고 그것을 해결하는 방법론을 연구하는 분야를 의미한다. 머신 러닝은 어떠한 작업에 대하여 꾸준한 경험을 통해 그 작업에 대한 성능을 높이는 알고리즘으로 정의하기도 한다.Artificial intelligence refers to a field that studies artificial intelligence or methodologies that can create it, and machine learning refers to a field that defines various problems dealt with in the field of artificial intelligence and studies methodologies to solve them. do. Machine learning is also defined as an algorithm that improves the performance of a certain task through constant experience.
인공 신경망(Artificial Neural Network; ANN)은 머신 러닝에서 사용되는 모델로써, 시냅스의 결합으로 네트워크를 형성한 인공 뉴런(노드)들로 구성되는, 문제 해결 능력을 가지는 모델 전반을 의미할 수 있다. 인공 신경망은 다른 레이어의 뉴런들 사이의 연결 패턴, 모델 파라미터를 갱신하는 학습 과정, 출력값을 생성하는 활성화 함수(Activation Function)에 의해 정의될 수 있다.An artificial neural network (ANN) is a model used in machine learning, and may refer to an overall model having problem-solving ability, which is composed of artificial neurons (nodes) that form a network by combining synapses. An artificial neural network may be defined by a connection pattern between neurons of different layers, a learning process that updates model parameters, and an activation function that generates an output value.
인공 신경망은 입력층(Input Layer), 출력층(Output Layer), 그리고 선택적으로 하나 이상의 은닉층(Hidden Layer)를 포함할 수 있다. 각 층은 하나 이상의 뉴런을 포함하고, 인공 신경망은 뉴런과 뉴런을 연결하는 시냅스를 포함할 수 있다. 인공 신경망에서 각 뉴런은 시냅스를 통해 입력되는 입력 신호들, 가중치, 편향에 대한 활성 함수의 함숫값을 출력할 수 있다. The artificial neural network may include an input layer, an output layer, and optionally one or more hidden layers. Each layer includes one or more neurons, and the artificial neural network may include neurons and synapses connecting neurons. In the artificial neural network, each neuron may output a function value of an activation function for input signals, weights, and biases input through synapses.
모델 파라미터는 학습을 통해 결정되는 파라미터를 의미하며, 시냅스 연결의 가중치와 뉴런의 편향 등이 포함된다. 그리고, 하이퍼파라미터는 머신 러닝 알고리즘에서 학습 전에 설정되어야 하는 파라미터를 의미하며, 학습률(Learning Rate), 반복 횟수, 미니 배치 크기, 초기화 함수 등이 포함된다.Model parameters refer to parameters determined through learning, and include the weight of synaptic connections and the bias of neurons. In addition, the hyperparameter refers to a parameter that must be set before learning in a machine learning algorithm, and includes a learning rate, the number of iterations, a mini-batch size, an initialization function, and the like.
인공 신경망의 학습의 목적은 손실 함수를 최소화하는 모델 파라미터를 결정하는 것으로 볼 수 있다. 손실 함수는 인공 신경망의 학습 과정에서 최적의 모델 파라미터를 결정하기 위한 지표로 이용될 수 있다.The purpose of learning the artificial neural network can be seen as determining the model parameters that minimize the loss function. The loss function may be used as an index for determining optimal model parameters in the learning process of the artificial neural network.
머신 러닝은 학습 방식에 따라 지도 학습(Supervised Learning), 비지도 학습(Unsupervised Learning), 강화 학습(Reinforcement Learning)으로 분류할 수 있다.Machine learning can be classified into supervised learning, unsupervised learning, and reinforcement learning according to a learning method.
지도 학습은 학습 데이터에 대한 레이블(label)이 주어진 상태에서 인공 신경망을 학습시키는 방법을 의미하며, 레이블이란 학습 데이터가 인공 신경망에 입력되는 경우 인공 신경망이 추론해 내야 하는 정답(또는 결과 값)을 의미할 수 있다. 비지도 학습은 학습 데이터에 대한 레이블이 주어지지 않는 상태에서 인공 신경망을 학습시키는 방법을 의미할 수 있다. 강화 학습은 어떤 환경 안에서 정의된 에이전트가 각 상태에서 누적 보상을 최대화하는 행동 혹은 행동 순서를 선택하도록 학습시키는 학습 방법을 의미할 수 있다.Supervised learning refers to a method of training an artificial neural network in a state in which a label for the training data is given, and the label is the correct answer (or result value) that the artificial neural network should infer when the training data is input to the artificial neural network. can mean Unsupervised learning may refer to a method of training an artificial neural network in a state where no labels are given for training data. Reinforcement learning can refer to a learning method in which an agent defined in an environment learns to select an action or sequence of actions that maximizes the cumulative reward in each state.
인공 신경망 중에서 복수의 은닉층을 포함하는 심층 신경망(DNN: Deep Neural Network)으로 구현되는 머신 러닝을 딥 러닝(심층 학습, Deep Learning)이라 부르기도 하며, 딥 러닝은 머신 러닝의 일부이다. 이하에서, 머신 러닝은 딥 러닝을 포함하는 의미로 사용된다.Among artificial neural networks, machine learning implemented as a deep neural network (DNN) including a plurality of hidden layers is also called deep learning (deep learning), and deep learning is a part of machine learning. Hereinafter, machine learning is used in a sense including deep learning.
또한 상술한 기술적 특징은 로봇의 무선 통신에 적용될 수 있다. In addition, the above-described technical features can be applied to the wireless communication of the robot.
로봇은 스스로 보유한 능력에 의해 주어진 일을 자동으로 처리하거나 작동하는 기계를 의미할 수 있다. 특히, 환경을 인식하고 스스로 판단하여 동작을 수행하는 기능을 갖는 로봇을 지능형 로봇이라 칭할 수 있다.A robot can mean a machine that automatically handles or operates a task given by its own capabilities. In particular, a robot having a function of recognizing an environment and performing an operation by self-judgment may be referred to as an intelligent robot.
로봇은 사용 목적이나 분야에 따라 산업용, 의료용, 가정용, 군사용 등으로 분류할 수 있다. 로봇은 액츄에이터 또는 모터를 포함하는 구동부를 구비하여 로봇 관절을 움직이는 등의 다양한 물리적 동작을 수행할 수 있다. 또한, 이동 가능한 로봇은 구동부에 휠, 브레이크, 프로펠러 등이 포함되어, 구동부를 통해 지상에서 주행하거나 공중에서 비행할 수 있다.Robots can be classified into industrial, medical, home, military, etc. depending on the purpose or field of use. The robot may be provided with a driving unit including an actuator or a motor to perform various physical operations such as moving the robot joints. In addition, the movable robot includes a wheel, a brake, a propeller, and the like in the driving unit, and may travel on the ground or fly in the air through the driving unit.
또한 상술한 기술적 특징은 확장 현실을 지원하는 장치에 적용될 수 있다. In addition, the above-described technical features may be applied to a device supporting extended reality.
확장 현실은 가상 현실(VR: Virtual Reality), 증강 현실(AR: Augmented Reality), 혼합 현실(MR: Mixed Reality)을 총칭한다. VR 기술은 현실 세계의 객체나 배경 등을 CG 영상으로만 제공하고, AR 기술은 실제 사물 영상 위에 가상으로 만들어진 CG 영상을 함께 제공하며, MR 기술은 현실 세계에 가상 객체들을 섞고 결합시켜서 제공하는 컴퓨터 그래픽 기술이다.The extended reality is a generic term for virtual reality (VR), augmented reality (AR), and mixed reality (MR). VR technology provides only CG images of objects or backgrounds in the real world, AR technology provides virtual CG images on top of images of real objects, and MR technology is a computer that mixes and combines virtual objects in the real world. graphic technology.
MR 기술은 현실 객체와 가상 객체를 함께 보여준다는 점에서 AR 기술과 유사하다. 그러나, AR 기술에서는 가상 객체가 현실 객체를 보완하는 형태로 사용되는 반면, MR 기술에서는 가상 객체와 현실 객체가 동등한 성격으로 사용된다는 점에서 차이점이 있다.MR technology is similar to AR technology in that it shows both real and virtual objects. However, there is a difference in that in AR technology, a virtual object is used in a form that complements a real object, whereas in MR technology, a virtual object and a real object are used with equal characteristics.
XR 기술은 HMD(Head-Mount Display), HUD(Head-Up Display), 휴대폰, 태블릿 PC, 랩탑, 데스크탑, TV, 디지털 사이니지 등에 적용될 수 있고, XR 기술이 적용된 장치를 XR 장치(XR Device)라 칭할 수 있다.XR technology can be applied to HMD (Head-Mount Display), HUD (Head-Up Display), mobile phone, tablet PC, laptop, desktop, TV, digital signage, etc. can be called
본 명세서에 기재된 청구항들은 다양한 방식으로 조합될 수 있다. 예를 들어, 본 명세서의 방법 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다. 또한, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다.The claims described herein may be combined in various ways. For example, the technical features of the method claims of the present specification may be combined and implemented as an apparatus, and the technical features of the apparatus claims of the present specification may be combined and implemented as a method. In addition, the technical features of the method claim of the present specification and the technical features of the apparatus claim may be combined to be implemented as an apparatus, and the technical features of the method claim of the present specification and the technical features of the apparatus claim may be combined and implemented as a method.

Claims (16)

  1. 무선랜(wireless local area network, WLAN) 시스템의 송신 STA(station)에서 수행되는 방법에 있어서,A method performed in a transmitting STA (station) of a wireless local area network (WLAN) system, the method comprising:
    협상(negotiation) 프레임을 생성하되,Create a negotiation frame,
    상기 협상 프레임은 TWT(target wake-up time) SP(service period)에 관련된 정보를 포함하고,The negotiation frame includes information related to a target wake-up time (TWT) service period (SP),
    상기 TWT SP는 데이터 전송 및 WLAN 센싱을 위한 제1 TWT SP 및 WLAN 센싱만을 위해 사용되는 제2 TWT SP를 포함하는, 단계; 및wherein the TWT SP includes a first TWT SP for data transmission and WLAN sensing and a second TWT SP used only for WLAN sensing; and
    수신 STA에게 상기 협상 프레임을 전송하는 단계를 포함하는,transmitting the negotiation frame to a receiving STA;
    방법.method.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 TWT SP는 데이터 전송을 위한 제1 시간 구간과 WLAN 센싱을 위한 제2 시간 구간을 포함하는,The first TWT SP includes a first time interval for data transmission and a second time interval for WLAN sensing,
    방법.method.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 TWT SP에 관련된 정보는,Information related to the TWT SP,
    상기 제1 TWT SP의 주기 정보 및 상기 제2 TWT SP의 주기 정보를 더 포함하는,Further comprising period information of the first TWT SP and period information of the second TWT SP,
    방법.method.
  4. 청구항 3에 있어서,4. The method according to claim 3,
    상기 제1 TWT SP의 주기는 상기 제2 TWT SP의 정수 배인,The period of the first TWT SP is an integer multiple of the second TWT SP,
    방법.method.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 협상 프레임은,The negotiation frame is
    상기 송신 STA이 상기 TWT SP를 상기 WLAN 센싱을 위해 사용할 수 있는지에 관련된 캐퍼빌리티 정보를 더 포함하는,Further comprising capability information related to whether the transmitting STA can use the TWT SP for the WLAN sensing,
    방법.method.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 TWT SP에 관련된 정보는,Information related to the TWT SP,
    상기 TWT SP의 지속시간(duration)에 관련된 정보를 더 포함하는,Further comprising information related to the duration (duration) of the TWT SP,
    방법.method.
  7. 무선랜(wireless local area network, WLAN) 시스템의 송신 STA(station)에 있어서,In a transmitting STA (station) of a wireless local area network (WLAN) system,
    무선 신호를 송수신하는 송수신기(transceiver); 및a transceiver for transmitting and receiving a radio signal; and
    상기 송수신기에 연결되는 프로세서를 포함하되, 상기 프로세서는,a processor coupled to the transceiver, the processor comprising:
    협상(negotiation) 프레임을 생성하되,Create a negotiation frame,
    상기 협상 프레임은 TWT(target wake-up time) SP(service period)에 관련된 정보를 포함하고,The negotiation frame includes information related to a target wake-up time (TWT) service period (SP),
    상기 TWT SP는 데이터 전송 및 WLAN 센싱을 위한 제1 TWT SP 및 WLAN 센싱만을 위해 사용되는 제2 TWT SP를 포함하고; 그리고the TWT SP includes a first TWT SP for data transmission and WLAN sensing and a second TWT SP used only for WLAN sensing; And
    수신 STA에게 상기 협상 프레임을 전송하도록 설정된,configured to transmit the negotiation frame to the receiving STA;
    송신 STA.Transmitting STA.
  8. 청구항 7에 있어서,8. The method of claim 7,
    상기 제1 TWT SP는 데이터 전송을 위한 제1 시간 구간과 WLAN 센싱을 위한 제2 시간 구간을 포함하는,The first TWT SP includes a first time interval for data transmission and a second time interval for WLAN sensing,
    송신 STA.Transmitting STA.
  9. 청구항 7에 있어서,8. The method of claim 7,
    상기 TWT SP에 관련된 정보는,Information related to the TWT SP,
    상기 제1 TWT SP의 주기 정보 및 상기 제2 TWT SP의 주기 정보를 더 포함하는,Further comprising period information of the first TWT SP and period information of the second TWT SP,
    송신 STA.Transmitting STA.
  10. 청구항 7에 있어서,8. The method of claim 7,
    상기 제1 TWT SP의 주기는 상기 제2 TWT SP의 정수 배인,The period of the first TWT SP is an integer multiple of the second TWT SP,
    송신 STA.Transmitting STA.
  11. 청구항 7에 있어서,8. The method of claim 7,
    상기 협상 프레임은,The negotiation frame is
    상기 송신 STA이 상기 TWT SP를 상기 WLAN 센싱을 위해 사용할 수 있는지에 관련된 캐퍼빌리티 정보를 더 포함하는,Further comprising capability information related to whether the transmitting STA can use the TWT SP for the WLAN sensing,
    송신 STA.Transmitting STA.
  12. 청구항 7에 있어서,8. The method of claim 7,
    상기 TWT SP에 관련된 정보는,Information related to the TWT SP,
    상기 TWT SP의 지속시간(duration)에 관련된 정보를 더 포함하는,Further comprising information related to the duration (duration) of the TWT SP,
    송신 STA.Transmitting STA.
  13. 무선랜(Wireless Local Area Network) 시스템의 수신 STA(station)에서 수행되는 방법에 있어서,A method performed in a receiving STA (station) of a wireless local area network (WLAN) system, the method comprising:
    송신 STA으로부터 협상(negotiation) 프레임을 수신하되,Receive a negotiation frame from the transmitting STA,
    상기 협상 프레임은 TWT(target wake-up time) SP(service period)에 관련된 정보를 포함하고,The negotiation frame includes information related to a target wake-up time (TWT) service period (SP),
    상기 TWT SP는 데이터 전송 및 WLAN 센싱을 위한 제1 TWT SP 및 WLAN 센싱만을 위해 사용되는 제2 TWT SP를 포함하는, 단계; 및wherein the TWT SP includes a first TWT SP for data transmission and WLAN sensing and a second TWT SP used only for WLAN sensing; and
    상기 협상 프레임을 복호하는 단계를 포함하는,decoding the negotiation frame;
    방법.method.
  14. 무선랜(Wireless Local Area Network) 시스템에서 사용되는 수신 STA(station)에 있어서,In a receiving STA (station) used in a wireless local area network (WLAN) system,
    무선 신호를 송수신하는 송수신기(transceiver); 및a transceiver for transmitting and receiving a radio signal; and
    상기 송수신기에 연결되는 프로세서를 포함하되, 상기 프로세서는,a processor coupled to the transceiver, the processor comprising:
    송신 STA으로부터 협상(negotiation) 프레임을 수신하되,Receive a negotiation frame from the transmitting STA,
    상기 협상 프레임은 TWT(target wake-up time) SP(service period)에 관련된 정보를 포함하고,The negotiation frame includes information related to a target wake-up time (TWT) service period (SP),
    상기 TWT SP는 데이터 전송 및 WLAN 센싱을 위한 제1 TWT SP 및 WLAN 센싱만을 위해 사용되는 제2 TWT SP를 포함하고; 그리고the TWT SP includes a first TWT SP for data transmission and WLAN sensing and a second TWT SP used only for WLAN sensing; And
    상기 협상 프레임을 복호하도록 설정된,configured to decode the negotiation frame;
    수신 STA.Receiving STA.
  15. 무선랜(Wireless Local Area Network) 시스템의 송신 STA(station)의 적어도 하나의 프로세서(processor)에 의해 실행됨을 기초로 하는 명령어(instruction)를 포함하는 적어도 하나의 컴퓨터로 읽을 수 있는 기록매체(computer readable medium)에 있어서,At least one computer readable recording medium including instructions based on being executed by at least one processor of a transmitting STA (station) of a wireless local area network (WLAN) system medium) in
    협상(negotiation) 프레임을 생성하되,Create a negotiation frame,
    상기 협상 프레임은 TWT(target wake-up time) SP(service period)에 관련된 정보를 포함하고,The negotiation frame includes information related to a target wake-up time (TWT) service period (SP),
    상기 TWT SP는 데이터 전송 및 WLAN 센싱을 위한 제1 TWT SP 및 WLAN 센싱만을 위해 사용되는 제2 TWT SP를 포함하는, 단계; 및wherein the TWT SP includes a first TWT SP for data transmission and WLAN sensing and a second TWT SP used only for WLAN sensing; and
    수신 STA에게 상기 협상 프레임을 전송하는 단계를 포함하는 동작(operation)을 수행하는,performing an operation including transmitting the negotiation frame to the receiving STA;
    장치.Device.
  16. 무선랜(Wireless Local Area Network) 시스템 상의 장치에 있어서,A device on a wireless local area network (WLAN) system, comprising:
    상기 장치는,The device is
    메모리; 및Memory; and
    상기 메모리와 동작 가능하게 결합된 프로세서(processor)를 포함하되, 상기 프로세서는:a processor operatively coupled with the memory, the processor comprising:
    협상(negotiation) 프레임을 생성하되,Create a negotiation frame,
    상기 협상 프레임은 TWT(target wake-up time) SP(service period)에 관련된 정보를 포함하고,The negotiation frame includes information related to a target wake-up time (TWT) service period (SP),
    상기 TWT SP는 데이터 전송 및 WLAN 센싱을 위한 제1 TWT SP 및 WLAN 센싱만을 위해 사용되는 제2 TWT SP를 포함하고; 그리고the TWT SP includes a first TWT SP for data transmission and WLAN sensing and a second TWT SP used only for WLAN sensing; And
    수신 STA에게 상기 협상 프레임을 전송하도록 설정된,configured to transmit the negotiation frame to the receiving STA;
    장치.Device.
PCT/KR2021/012478 2020-09-15 2021-09-14 Method and device for performing sensing in power saving mode in wireless lan system WO2022060049A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063078876P 2020-09-15 2020-09-15
US63/078,876 2020-09-15

Publications (1)

Publication Number Publication Date
WO2022060049A1 true WO2022060049A1 (en) 2022-03-24

Family

ID=80777175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/012478 WO2022060049A1 (en) 2020-09-15 2021-09-14 Method and device for performing sensing in power saving mode in wireless lan system

Country Status (1)

Country Link
WO (1) WO2022060049A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164687A1 (en) * 2016-03-25 2017-09-28 엘지전자 주식회사 Method for power management in wireless lan system and wireless terminal using same
US20180332534A1 (en) * 2016-01-22 2018-11-15 Huawei Technologies Co., Ltd. Method for negotiating target wake time, access point, and station
KR20200006006A (en) * 2018-07-09 2020-01-17 한국전자통신연구원 Method and apparatus for low power communication in communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180332534A1 (en) * 2016-01-22 2018-11-15 Huawei Technologies Co., Ltd. Method for negotiating target wake time, access point, and station
WO2017164687A1 (en) * 2016-03-25 2017-09-28 엘지전자 주식회사 Method for power management in wireless lan system and wireless terminal using same
KR20200006006A (en) * 2018-07-09 2020-01-17 한국전자통신연구원 Method and apparatus for low power communication in communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALFRED ASTERJADHI (QUALCOMM INC.): "Comment resolutions for TWT IE. IEEE 802.11-19/1835r1", IEEE , vol. 802.11ax, no. 1, 13 November 2019 (2019-11-13), Piscataway, NJ USA , pages 1 - 11, XP068164620 *
LAURENT CARIOU (INTEL): "TWT wide range", IEEE DRAFT; 11-20-0913-05-00AX-TWT-WIDE-RANGE, IEEE-SA MENTOR, PISCATAWAY, NJ USA, vol. 802.11ax, no. 5, 18 August 2020 (2020-08-18), Piscataway, NJ USA , pages 1 - 10, XP068172951 *

Similar Documents

Publication Publication Date Title
WO2021246842A1 (en) Method and device for performing sensing in wireless lan system
WO2021246807A1 (en) Method and apparatus for performing sensing in wireless lan system
WO2021256828A1 (en) Method and apparatus for performing sensing in wireless lan system
WO2022092650A1 (en) Method and apparatus for performing sensing in wireless lan system
WO2021246691A1 (en) Method and apparatus for performing sensing in wireless lan system
WO2021256832A1 (en) Method and device for performing sensing in wireless lan system
WO2022139449A1 (en) Improved wireless lan sensing procedure
WO2022055182A1 (en) Method and apparatus for performing sensing in wireless lan system
WO2021256831A1 (en) Method and device for performing sensing in wireless lan system
WO2021215753A1 (en) P2p transmission method
WO2021256838A1 (en) Method and device for performing sensing in wireless lan system
WO2022114468A1 (en) Method and apparatus for transmitting su ppdu to peer sta in txop period allocated by trigger frame in wireless lan system
WO2021246656A1 (en) Method for transmitting preferred link information
WO2021256830A1 (en) Method and device for carrying out sensing in wireless lan system
WO2022005165A1 (en) P2p transmission method in wireless lan system
WO2022010260A1 (en) Multi-link setup in wireless communication system
WO2020231062A1 (en) Link maintenance in multi ap system
WO2021246806A1 (en) Method and device for performing grouping for sensing in wireless lan system
WO2022186635A1 (en) Method and device for performing sensing in wireless lan system
WO2022060049A1 (en) Method and device for performing sensing in power saving mode in wireless lan system
WO2021246690A1 (en) Method and device for classifying sensing frames in wireless lan system
WO2022114716A1 (en) Restricted twt in obss environment
EP4327619A1 (en) Method and apparatus for using aar to support emlsr operation
WO2021235836A1 (en) Trigger frame transmission in wireless communication system
WO2022158801A1 (en) Method and device for signaling ersp in wireless lan system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21869671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21869671

Country of ref document: EP

Kind code of ref document: A1