WO2022059945A1 - Method, system and computer program for designing high voltage direct current transmission system based on modular multi-level converter - Google Patents

Method, system and computer program for designing high voltage direct current transmission system based on modular multi-level converter Download PDF

Info

Publication number
WO2022059945A1
WO2022059945A1 PCT/KR2021/011195 KR2021011195W WO2022059945A1 WO 2022059945 A1 WO2022059945 A1 WO 2022059945A1 KR 2021011195 W KR2021011195 W KR 2021011195W WO 2022059945 A1 WO2022059945 A1 WO 2022059945A1
Authority
WO
WIPO (PCT)
Prior art keywords
mmc
arm
calculating
hvdc
modular
Prior art date
Application number
PCT/KR2021/011195
Other languages
French (fr)
Korean (ko)
Inventor
강재식
강대욱
박영주
유동욱
이상중
이종필
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Publication of WO2022059945A1 publication Critical patent/WO2022059945A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/23Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Definitions

  • the present invention relates to a method, system, and computer program for designing a modular multilevel converter-based high voltage direct current transmission system, and more particularly, to reflect dynamic analysis in a state in which the modular multilevel converter operates in conjunction with a power system and
  • the present invention relates to a method, system, and computer program for designing a modular multi-level converter-based high-voltage DC power transmission system that can effectively design by comprehensively considering the characteristics of various parameters at the system level.
  • HVDC high voltage direct current transmission
  • High-voltage direct-current transmission refers to a transmission method in which a power transmission station converts AC power produced at a power plant into DC power, transmits it, and then reconverts it to AC power at a power receiving station to supply power.
  • Modular Multi-Level Converter is a device that converts DC power into AC power using a plurality of sub-modules, and charges, discharges, and bypasses each sub-module. to operate under control.
  • the present invention is to solve the problems of the prior art as described above, and in designing a modular multi-level converter-based high voltage direct current transmission system (MMC-HVDC), the modular multi-level converter operates in connection with the power system Provides a modular multi-level converter-based high-voltage direct-current transmission system (MMC-HVDC) design method, system and computer program that reflects the dynamic analysis in aim to do
  • MMC-HVDC modular multi-level converter-based high voltage direct current transmission system
  • a modular multilevel converter (MMC)-based high voltage direct current transmission (HVDC) system design method for solving the above problems, a modular multilevel converter based high voltage direct current transmission (MMC-HVDC) system
  • a design method comprising: a DC voltage calculation step of calculating, by a design system, a DC voltage (V dc ) in a DC cable of the MMC-HVDC system; Sub-module power device voltage calculating step of calculating the power device voltage (V IGBT ) of the sub-module (SM) in the modular multi-level converter (MMC) in consideration of the DC voltage (V dc ); Transformer output voltage calculating step of calculating the MMC side output voltage (V c ) in the transformer of the MMC-HVDC system; MAMI calculation step of calculating a maximum allowable modulation index (MAMI) value for the modular multi-level converter (MMC); and a dark current and power device current capacity calculation step of calculating the dark current (I arm ) and the
  • the sub-module (SM) capacitor capacity estimation step of calculating the capacitor capacity (C sm ) of the sub-module (SM) is further included; in the system loss verification step, the system When the loss does not meet the second predetermined reference value, the sub-module SM capacitor capacity calculation step of the iteration may be performed again.
  • active power (P s ), reactive power (Q s ), AC voltage (V s ) and DC power ( P dc ) of the design information acquisition step of acquiring one or more information may further include.
  • the iteration period is an initial value of obtaining one or more information among the initial values of the capacitance capacitance (C sm ), the female inductance (L arm ), and the transformer leakage inductance (L Tr ) of the sub-module (SM) Acquisition step; may further include.
  • the iteration interval (iteration), the arm inductance (L arm ) calculating step of calculating the arm inductance (L arm ) of the sub-module (SM) further comprises;
  • the arm inductance (L arm ) calculating step includes , determining whether a circulating current suppression mode is set; When the circulating current suppression mode is set to ON, calculating a compensation signal U 2f for circulating current in the modular multilevel converter (MMC) and calculating the arm inductance L arm ; may be included.
  • the arm inductance (L arm ) calculating step when the circulating current suppression mode is set to OFF, the second harmonic circulating current (I 2f ) in the modular multi-level converter (MMC) is calculated and , calculating the arm inductance (L arm ); may be further included.
  • the step of calculating the arm inductance L arm may be performed again.
  • a switching frequency evaluation step of evaluating the switching frequency of the modular multi-level converter (MMC); further comprising, a system loss for the modular multi-level converter (MMC) ) can be calculated and verified.
  • the capacitor voltage ripple of the sub-module SM in the modular multi-level converter MMC may also be evaluated.
  • the DC current (I dc ) in the DC cable can also be calculated.
  • the voltage V SM of the sub-module SM in the modular multi-level converter MMC may also be calculated.
  • HVDC high voltage direct current transmission
  • FIG. 1 is an exemplary diagram of a high voltage direct current transmission system based on a modular multilevel converter according to an embodiment of the present invention.
  • FIG. 2 is an exemplary diagram of a modular multilevel converter according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for designing a modular multi-level converter-based high voltage direct current transmission system according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for designing a detailed modular multi-level converter-based high voltage direct current transmission system according to an embodiment of the present invention.
  • V dc DC voltage
  • first, second, etc. may be used to describe various components, but the components are not limited by the terms, and the terms are for the purpose of distinguishing one component from other components. is used only as
  • FIG. 1 illustrates a Modular Multilevel Converter (MMC)-based High Voltage Direct Current (HVDC) system 100 according to an embodiment of the present invention.
  • MMC-HVDC Modular Multilevel Converter
  • the transformer 130 is connected to the power system 120 .
  • the alternating current (AC) supplied through the first modular multi-level converter 110a is converted to direct current (DC) and transmitted through the DC cable 140, and the second modular multi-level converter 110b is again AC It is converted into (AC) and supplied to the power system 120 again.
  • AC alternating current
  • the modular multi-level converter-based high voltage direct current transmission (MMC-HVDC) system 100 AC power is converted into DC power, transmitted, and then converted back into AC power to supply power over a long distance. It has advantages such as power transmission, asynchronous grid connection, and the use of submarine cables.
  • FIG. 2 shows an exemplary diagram of a modular multi-level converter (MMC) 110 according to an embodiment of the present invention.
  • MMC modular multi-level converter
  • the modular multi-level converter (MMC) 110 may be configured to include a plurality of sub-modules (SM) 111 . At this time, the modular multi-level converter (MMC) 110 converts DC power into AC power or converts DC power to AC while controlling the plurality of sub-modules (SM) 111 to charge, discharge, and bypass states, respectively. converted to power.
  • SM sub-modules
  • MMC-HVDC modular multilevel converter-based high voltage direct current transmission
  • FIG. 3 illustrates a flowchart of a method for designing a modular multilevel converter-based high voltage direct current transmission (MMC-HVDC) system 100 according to an embodiment of the present invention.
  • MMC-HVDC modular multilevel converter-based high voltage direct current transmission
  • the design system is the MMC-HVDC system 100 .
  • the DC voltage calculation step S110 in the DC voltage calculation step S110 , the DC cable 140 Along with the DC voltage (V dc ), the DC current (I dc ) can also be calculated.
  • the voltage V SM of the sub-module SM in the modular multi-level converter (MMC) 110 may also be calculated.
  • the capacitor capacity of the sub-module SM ( A sub-module (SM) capacitor capacity calculation step of calculating C sm ) may be further included, and in this case, in the system loss verification step S170 , if the system loss does not meet the second predetermined reference value, the repetition period (iteration) may be performed again from the step of calculating the capacitor capacity of the sub-module (SM).
  • the power system of the MMC-HVDC system may further include a design information acquisition step of acquiring one or more of active power (P s ), reactive power (Q s ), AC voltage (V s ), and DC power (P dc ) at the connection point. .
  • the iteration period is, the capacitance capacity of the sub-module SM ( C sm ), the arm inductance (L arm ), the transformer leakage inductance (L Tr ) may further include an initial value acquisition step of acquiring information about one or more of the initial values.
  • the iteration period is, the female inductance of the sub-module SM (
  • the method may further include calculating an arm inductance (L arm ) for calculating L arm ).
  • the step of calculating the arm inductance (L arm ) the step of determining whether a circulating current suppression mode is set, and when the circulating current suppression mode is set to ON, in the modular multi-level converter (MMC) Calculating the compensation signal U 2f for the circulating current and calculating the arm inductance L arm may be included.
  • the arm inductance (L arm ) calculating step when the circulating current suppression mode is set to OFF, the second harmonic circulating current (I 2f ) in the modular multi-level converter (MMC) is calculated and , calculating the arm inductance L arm may be further included.
  • the step of calculating the arm inductance L arm may be performed again.
  • the system loss verification step includes switching of the modular multilevel converter (MMC) By evaluating the frequency, the method may further include a switching frequency evaluation step of calculating and verifying a system loss for the modular multi-level converter (MMC).
  • the modular multilevel converter (MMC) 110 is the power system 120 . It is possible to effectively design by reflecting the dynamic analysis in the operating state in conjunction with and comprehensively considering the characteristics of various parameters at the overall system level.
  • FIG. 4 exemplifies a flowchart of a method for designing a detailed modular multilevel converter-based high voltage direct current transmission (MMC-HVDC) system 100 according to an embodiment of the present invention.
  • MMC-HVDC modular multilevel converter-based high voltage direct current transmission
  • MMC-HVDC modular multi-level converter-based high voltage direct current transmission
  • step S1010 active power (P s ), reactive power (Q s ), AC voltage (V s ) and DC power (P dc ) at the power grid connection point of the MMC-HVDC system 100 ) to obtain one or more of the information.
  • the active power (P s ), reactive power (Q s ), and AC voltage (V s ) at the power grid connection point are parameters defined before the determination process of the main parameters, and the power grid (grid) It may be predetermined during the planning process.
  • step S1020 the DC voltage (V dc ) and DC current (I dc ) in the DC cable 140 of the MMC-HVDC system 100 can be calculated.
  • the DC voltage (V dc ) may be determined by loss-cost optimization, and the DC current (I dc ) may be determined in consideration of the cable cost over a long distance.
  • the DC voltage (V dc ) is optimized according to the transmission distance in the high voltage direct current transmission (HVDC)
  • the parameters of the other modular converter (MMC) 110 may be calculated according to the design process of FIG. 4 .
  • the DC voltage (V dc ) can be calculated in a state in which the cost estimate is selected as the maximum value as shown in FIG. 5 , and also in step 9 of FIG. It can be re-established in consideration of the rated current (I IGBT ). Also, as shown in FIG. 5 , a DC voltage (V dc ) and a DC current (I dc ) for satisfying the DC power required are inversely proportional to each other. Accordingly, in a state in which the DC voltage V dc is fixed, the design process is repeated as shown in FIG. 4 to verify the required design conditions and to calculate the DC current I DC .
  • step S1030 the power device voltage (V IGBT ) of the sub-module (SM) 111 in the modular multi-level converter (MMC) 110 is calculated in consideration of the DC voltage (V dc ). .
  • V SM voltage of the sub-module (SM) 111 in the modular multi-level converter (MMC) 110 may also be calculated.
  • the voltage of the individual sub-modules (SM) 111 in the modular multi-level converter (MMC) 110 is the rated voltage of the power device (switching device) and the modular multi-level converter (MMC)
  • the number of sub-modules (SM) 111 is determined according to the DC voltage (V dc ) of 110, which is related to the rated voltage of the power device (switching device), so each sub-module (SM) 111
  • the magnitude of the voltage (V SM ) can be applied as an optimization target in economic evaluation.
  • Equation 1 a recommended voltage utilization value ( ⁇ v ) of 60% of the rating of the power device is recommended according to product specifications of the power device, such as can be used
  • ⁇ v a recommended voltage utilization value of 60% of the rating of the power device
  • V dc is the DC voltage of the modular multilevel converter (MMC) 110
  • N 0 is the number of sub-modules (SM) 111
  • V sm is the nominal voltage of the sub-modules (SM) 111 .
  • ⁇ v is a voltage utilization factor
  • V IGBT is a voltage rating of the power device (IGBT).
  • step S1040 one or more of the initial values of the capacitance capacitance (C sm ), the female inductance (L arm ), and the transformer leakage inductance (L Tr ) of the sub-module (SM) 111 are acquired and updated.
  • step S1040 the initial values of parameters necessary to obtain the secondary voltage of the transformer in step S1050 below are set.
  • the initial capacitance capacitance C 0 of the sub-module (SM) 111 may be calculated using Equation 2 below.
  • C 0 is the initial value of the capacitance capacity of the sub-module (SM) 111 and is a value that can be updated during the design process
  • EP 0 is the capacitance that allows the normal operation of the modular multi-level converter (MMC) 110.
  • energy per power ratio eg 20-50 [kJ/MVA] or 10-100 [ kJ / MVA ]
  • S n is the apparent power ( apparent power).
  • this is only one example, and the present invention is not necessarily limited thereto.
  • the initial value of the arm inductance L arm may be calculated using Equation 3 below on the assumption that the second harmonic circulating current I2f is a specific value.
  • L 0 is the initial value of the arm inductance (L arm ), which can be updated during the design process
  • I 2f is the second harmonic circulating current
  • ⁇ 0 is the nominal angular frequency
  • X Lpu is an empirically an estimate due to the reactive power consumption of the dark reactance, a constant chosen by the designer as a requirement early in the design phase, for example approximately 0.1 [ pu] can be used.
  • a constant chosen by the designer as a requirement early in the design phase for example approximately 0.1 [ pu] can be used.
  • this is only one example, and the present invention is not necessarily limited thereto.
  • the per unit value of the female inductance may be defined as in Equation 4 below.
  • Z base is an impedance base value
  • V LL is a line to line AC voltage
  • m is a modulation index
  • the second harmonic circulating current I 2f may be calculated through Equation 5 below.
  • this is only one example, and the present invention is not necessarily limited thereto.
  • the initial value of the secondary high-frequency circulating current (I2f) can be selected as a simple value, but then has a profound effect on PQ capability, stability, and fault current rising limitation It is recalculated to a more appropriate value taking into account.
  • leakage inductance Ltr of the transformer 130 may use a value provided by a transformer manufacturer, but the present invention is not limited thereto, and other suitable values may be used.
  • step S1050 the MMC-side output voltage (secondary voltage, V c ) in the transformer 130 of the MMC-HVDC system 100 is calculated.
  • the secondary-side voltage (secondary) of the transformer 130 is within a limited range that meets the modulation index operable in the modular multi-level converter (MMC) 110 while providing the necessary active and reactive power (modulation index) should be decided in At this time, in order to calculate the secondary-side voltage, using a PQ capability curve formula, the maximum value in the available range of the modular multi-level converter (MMC) 110 voltage may be selected.
  • the capacity curve formula may be defined as in Equation 6 below.
  • the secondary-side voltage also has a limited voltage range.
  • the secondary voltage may have a range in which the AC voltage is regulated, for example, from 0.95 to 1.05 [pu], which is a voltage according to the grid code It may be selected in consideration of the stability range.
  • STATCOM mode pure reactive power compensation
  • the present invention is not necessarily limited thereto.
  • V cpu is the AC voltage of the transformer 130 side
  • X eqpu is the equivalent total reactance
  • Q maxpu is the maximum reactive power requirement
  • V spu is the value per unit of AC voltage on the power grid side (grid side AC voltage at per unit value).
  • the secondary voltage is associated with the DC voltage providing the AC terminal voltage of the modular multilevel converter (MMC) 110, and the activated sub-module (SM) 111 ) and the product of the individual sub-module (SM) 111 voltage can be calculated.
  • the DC voltage of the modular multi-level converter (MMC) 110 may be calculated as in Equation 8 below.
  • Equation 9 the value calculated in Equation 7 becomes 1 [pu], so the maximum transformer-side AC voltage for the Line-to-Line RMS value can be calculated as Equation 10 below. there is.
  • step S1060 the voltage change rate and capacitor capacity C sm of the sub-module SM 111 may be calculated.
  • the capacitor capacity (energy storage capacity) of the sub-module (SM) 111 may be calculated using the previously calculated parameter and an appropriate voltage ripple coefficient.
  • the initial capacitor capacitance C 0 of the sub-module (SM) 111 may be conservatively determined so as to be within a stable operating condition range.
  • the voltage ripple may be determined by the initial design value, but the voltage ripple is reduced by the Circulation Current Suppression Control (CCSC) algorithm that affects the internal operation of the modular multi-level converter (MMC) 110 . can be reduced Conversely, a voltage balancing algorithm for voltage ripple may exacerbate voltage ripple while causing forced ripple.
  • CCSC Circulation Current Suppression Control
  • the voltage ripple is related to the switching frequency affected by the system loss of the modular multilevel converter (MMC) 110, which is adopted by the developer of the modular multilevel converter (MMC) 110 . It is desirable to consider the specific switching principle.
  • step S1070 the arm inductance L arm of the sub-module SM 111 is calculated.
  • the step S1070 is a step of determining whether the circulating current suppression mode is set (S1071), when the circulating current suppression mode is set to ON, the circulating current in the modular multi-level converter (MMC) It may include calculating the compensation signal U 2f for this (S1072a) and calculating the arm inductance L arm (S1073a).
  • step S1070 when the circulating current suppression mode is set to OFF, the second harmonic circulating current I 2f in the modular multi-level converter (MMC) is calculated (S1072b), and the arm It may include calculating the inductance L arm ( S1073b ).
  • step S1080 when the reactive power loss (Q Loss ) does not meet a predetermined third reference value, the step S1080 of performing the calculating step of the arm inductance (L arm ) again may be further included.
  • the arm inductance L arm may be determined by selecting the second harmonic circulating current value described in step S1040.
  • the arm inductance (L arm ) must be calculated in consideration of whether the circulating current suppression control (CCSC) is activated or deactivated. do.
  • I 2f Second harmonic circulating current calculation (I 2f ): I 2f can be calculated using Equation 5 and the above-described EP 0 (energy power ratio).
  • Equation 3 provides a method of calculating female inductance in a state in which the circulating current suppression control (CCSC) is deactivated. However, it is also possible to calculate the second harmonic voltage across the arm inductor, assuming that the second harmonic current is included in the arm current, and calculate the arm inductance. Furthermore, when the circulating current suppression control (CCSC) is activated, the second harmonic circulating current item is removed to be derived as shown in Equation 11 below.
  • step S1090 a Maximum Allowable Modulation Index (MAMI) value for the modular multi-level converter (MMC) 110 is calculated.
  • MAMI Maximum Allowable Modulation Index
  • the initial value (m max0 ) of the maximum allowable modulation index may be calculated based on Equation (10) with respect to the secondary voltage when the circulating current suppression control (CCSC) is deactivated.
  • the compensation signal (m U2f ) (Equation 11) obtained due to the voltage ripple naturally generated by the sub-module (SM) 111 capacitor
  • the maximum allowable modulation index MAMI is obtained by the following Equation 12 can be calculated.
  • m max0 is a maximum allowable modulation index (MAMI) when the circulating current suppression control (CCSC) is deactivated
  • m U2f is a compensation signal index
  • step S1100 the dark current I arm and the power device current capacity I IGBT for the modular multi-level converter (MMC) 110 are calculated.
  • the current capacity (I IGBT ) of the power device (switching device) of the modular multi-level converter (MMC) 110 is a voltage calculation in consideration of the heat generated in each sub-module (SM) 111 (Equation 1), including a current utilization factor, it can be expressed as Equation 13 below.
  • the ratio k of the AC current and the DC current may be expressed as in Equation 14 below.
  • Equation 15 assuming that DC power and AC power are the same as in a lossless system, it can be expressed as Equation 15 below.
  • Equation 16 can be derived using Equations 5 and 15 above.
  • the dark current I arm may be expressed as in Equation 17 below.
  • ⁇ 0 may be used as an arm current rating factor of the modular multi-level converter (MMC) 110 as shown in Equation 18 below, wherein the dark current
  • MMC modular multi-level converter
  • Equation 19 the operating angle under the above conditions may be calculated using Equation 19 below.
  • Equation 20 the dark current
  • the current capacity of the power device can be determined through optimization in consideration of various products of various semiconductor manufacturers, verified in economic terms, and considering the current capacity and economy.
  • the current capacity I IGBT of the power device can be finally expressed as Equation 21 below using Equations 18 and 20.
  • step S1110 it is determined whether the previously calculated power device current capacity I IGBT satisfies a predetermined first reference value.
  • step S1020 when the power device current capacity (I IGBT ) does not meet the first predetermined reference value, the process returns to step S1020 and the design process is performed again, and the power device current capacity (I IGBT ) is the first If the reference value is satisfied, the process proceeds to step S1120.
  • step S1120 a system loss for the modular multi-level converter (MMC) 110 is calculated and verified.
  • the system loss is affected by the capacitance of the sub-module (SM) 111 having a voltage ripple factor that limits the switching frequency that can be changed according to various modulation schemes.
  • the voltage fluctuation of the sub-module (SM) 111 capacitor may be calculated as a natural voltage ripple and a forced voltage ripple.
  • the voltage ripple coefficient k max when calculating the energy storage capacity in step S1060 may be regarded as the natural voltage ripple.
  • voltage ripple by various modulation techniques may be additionally generated, which may correspond to a forced voltage ripple generated by an external factor.
  • the voltage ripple may be determined according to a capacitor capacity and a modulation method. Furthermore, a switching frequency capable of satisfying the system loss is also calculated.
  • step S1130 it is determined whether the system loss meets a predetermined second reference value.
  • step S1060 when the system loss does not meet the second predetermined reference value, the process proceeds again from step S1060, and when the power device current capacity I IGBT meets the first reference value, It proceeds to step S1140.
  • step S1140 the finally calculated design parameters may be verified and confirmed.
  • the calculated parameters are verified by PSCAD/EMTDC time domain simulation, but the present invention is not necessarily limited thereto.
  • the above salpin modular multi-level converter (MMC)-based high voltage direct current transmission (HVDC) system design method is implemented as a program stored in a computer readable recording medium for executing a series of steps in a computer it might be
  • the computer program may be a computer program including a high-level language code that can be executed in a computer using an interpreter as well as a computer program including a machine language code generated by a compiler.
  • the computer is not limited to a personal computer (PC) or a notebook computer, and includes a central processing unit (CPU) such as a server, smart phone, tablet PC, PDA, mobile phone, etc. to process any information that can execute a computer program. includes the device.
  • PC personal computer
  • CPU central processing unit
  • the computer-readable recording medium includes all types of recording media in which programs and data can be stored so as to be read by a computer system. Examples thereof include ROM (Read Only Memory), RAM (Random Access Memory), CD (Compact Disk), DVD (Digital Video Disk)-ROM, magnetic tape, floppy disk, optical data storage device, etc. Included.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • CD Compact Disk
  • DVD Digital Video Disk-ROM
  • magnetic tape magnetic tape
  • floppy disk optical data storage device, etc.
  • optical data storage device etc.
  • such a recording medium may be distributed in a computer system connected through a network, and computer-readable codes may be stored and executed in a distributed manner.
  • the modular multi-level converter (MMC)-based high-voltage direct-current transmission (HVDC) system 100 design method, system, and computer program according to an embodiment of the present invention
  • the modular multi-level converter-based high-voltage direct-current transmission system In designing 100, the modular multi-level converter 110 reflects the dynamic analysis in a state in which it operates in conjunction with the power system 120 and comprehensively considers the characteristics of various parameters at the overall system level to effectively design be able to proceed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

The present invention relates to a method, a system, and a computer program for designing a high voltage direct current transmission system based on a modular multi-level converter and, more specifically, to a method, a system, and a computer program for designing a high voltage direct current transmission system based on a modular multi-level converter, the method, the system, and the computer program reflecting dynamic analysis in a state in which a modular multi-level converter operates in connection with a power system and comprehensively considering the characteristics of various parameters in terms of the overall system, and thus enable a design to progress effectively.

Description

모듈형 멀티레벨 컨버터 기반 고전압 직류 송전 시스템 설계 방법, 시스템 및 컴퓨터 프로그램Modular multilevel converter-based high voltage direct current transmission system design method, system and computer program
본 발명은 모듈형 멀티레벨 컨버터 기반 고전압 직류 송전 시스템 설계 방법, 시스템 및 컴퓨터 프로그램에 관한 것으로서, 보다 구체적으로는 모듈형 멀티레벨 컨버터가 전력 계통과 연계하여 동작하는 상태에서의 동적 분석을 반영하고 전체 시스템 차원에서 다양한 파라미터들의 특성을 종합적으로 고려하여 효과적으로 설계를 진행할 수 있는 모듈형 멀티레벨 컨버터 기반 고전압 직류 송전 시스템 설계 방법, 시스템 및 컴퓨터 프로그램에 관한 것이다.The present invention relates to a method, system, and computer program for designing a modular multilevel converter-based high voltage direct current transmission system, and more particularly, to reflect dynamic analysis in a state in which the modular multilevel converter operates in conjunction with a power system and The present invention relates to a method, system, and computer program for designing a modular multi-level converter-based high-voltage DC power transmission system that can effectively design by comprehensively considering the characteristics of various parameters at the system level.
최근 대규모 전력 계통의 전력 제어 및 안정도 개선을 위하여 고전압 직류 송전(High Voltage Direct Current transmission, HVDC) 시스템에 대한 연구 개발이 폭넓게 이루어지고 있다.Recently, research and development of high voltage direct current transmission (HVDC) systems have been widely conducted to improve power control and stability of large-scale power systems.
고전압 직류 송전(HVDC)은 송전소가 발전소에서 생산되는 교류 전력을 직류 전력으로 변환시켜서 송전한 후, 수전소에서 교류로 재변환시켜 전력을 공급하는 송전 방식을 말하며 장거리 송전, 비동기 계통 연계, 해저 케이블 사용 가능 등의 장점을 가진다.High-voltage direct-current transmission (HVDC) refers to a transmission method in which a power transmission station converts AC power produced at a power plant into DC power, transmits it, and then reconverts it to AC power at a power receiving station to supply power. Long-distance transmission, asynchronous grid connection, submarine It has the advantage of being able to use a cable.
한편, 고전압 직류 송전(HVDC) 시스템에 이용되는 전압형 컨버터는 다양한 종류가 있으나, 최근 모듈형 멀티 레벨 컨버터(Modular Multi-Level Converter, MMC)가 크게 주목받고 있다.On the other hand, there are various types of voltage converters used in high voltage direct current transmission (HVDC) systems, but recently, modular multi-level converters (MMCs) are receiving great attention.
모듈형 멀티레벨 컨버터(Modular Multi-Level Converter, MMC)는 다수의 서브 모듈(Sub-Module)을 이용하여 직류 전력을 교류 전력으로 변환하는 장치이며, 각각의 서브 모듈을 충전, 방전, 바이패스 상태로 제어하여 동작한다.Modular Multi-Level Converter (MMC) is a device that converts DC power into AC power using a plurality of sub-modules, and charges, discharges, and bypasses each sub-module. to operate under control.
그런데, 종래에는 모듈형 멀티레벨 컨버터에 기반하여 고전압 직류 송전 시스템을 설계함에 있어서, 단순히 모듈형 멀티레벨 컨버터(MMC) 내부 파라미터에 국한된 설계 프로시저 정도가 제안되고 있어, 개별 파라미터에 대한 특성 및 동작에 대해서만 설계 조건을 만족시키는 정도에 그치고 있으며, 전력 계통과 연계하여 동작하는 상태에서의 동적 분석 및 이를 고려한 전체 시스템 차원에서의 종합적인 설계가 이루어지지 못하고 있다.However, in the prior art, when designing a high-voltage DC power transmission system based on a modular multi-level converter, a design procedure degree limited to only the internal parameters of a modular multi-level converter (MMC) has been proposed, and characteristics and operation of individual parameters It only satisfies the design conditions for the system, and a dynamic analysis in the state of operation in connection with the power system and a comprehensive design at the overall system level in consideration of this have not been made.
이에 따라, 모듈형 멀티레벨 컨버터가 전력 계통과 연계하여 동작하는 상태에서의 동적 분석을 반영하고 전체 시스템 차원에서 다양한 파라미터들의 특성을 종합적으로 고려하여 효과적으로 설계를 진행할 수 있는 설계 방안이 지속적으로 요구되고 있으나, 아직 이에 대한 적절한 대안이 제시되지 못하고 있다.Accordingly, there is a continuous need for a design method that can effectively design a modular multi-level converter that reflects the dynamic analysis in the state in which it operates in connection with the power system and comprehensively considers the characteristics of various parameters at the overall system level. However, an appropriate alternative to this has not yet been proposed.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로서, 모듈형 멀티레벨 컨버터 기반 고전압 직류 송전 시스템(MMC-HVDC)을 설계함에 있어서, 모듈형 멀티레벨 컨버터가 전력 계통과 연계하여 동작하는 상태에서의 동적 분석을 반영하고 전체 시스템 차원에서 다양한 파라미터들의 특성을 종합적으로 고려하여 효과적으로 설계를 진행할 수 있는 모듈형 멀티레벨 컨버터 기반 고전압 직류 송전 시스템(MMC-HVDC) 설계 방법, 시스템 및 컴퓨터 프로그램을 제공하는 것을 목적으로 한다.The present invention is to solve the problems of the prior art as described above, and in designing a modular multi-level converter-based high voltage direct current transmission system (MMC-HVDC), the modular multi-level converter operates in connection with the power system Provides a modular multi-level converter-based high-voltage direct-current transmission system (MMC-HVDC) design method, system and computer program that reflects the dynamic analysis in aim to do
그 외 본 발명의 세부적인 목적은 이하에 기재되는 구체적인 내용을 통하여 이 기술 분야의 전문가나 연구자에게 자명하게 파악되고 이해될 것이다.Other detailed objects of the present invention will be clearly grasped and understood by experts or researchers in the technical field through the detailed contents described below.
상기한 과제를 해결하기 위한 본 발명의 한 측면에 따른 모듈형 멀티레벨 컨버터(MMC) 기반 고전압 직류 송전(HVDC) 시스템 설계 방법은, 모듈형 멀티레벨 컨버터 기반 고전압 직류 송전(MMC-HVDC) 시스템을 설계하는 방법으로서, 설계 시스템이, 상기 MMC-HVDC 시스템의 DC 케이블에서의 DC 전압(Vdc)을 산정하는 DC 전압 산정 단계; 상기 DC 전압(Vdc)을 고려하여 상기 모듈형 멀티레벨 컨버터(MMC)에서 서브 모듈(SM)의 전력 소자 전압(VIGBT)을 산정하는 서브 모듈 전력 소자 전압 산정 단계; 상기 MMC-HVDC 시스템의 변압기에서의 MMC 측 출력 전압(Vc)을 산정하는 변압기 출력 전압 산정 단계; 상기 모듈형 멀티레벨 컨버터(MMC)에 대한 최대 허용 모듈레이션 인덱스(MAMI) 값을 산정하는 MAMI 산정 단계; 및 상기 모듈형 멀티레벨 컨버터(MMC)에 대한 암 전류(Iarm)와 전력 소자 전류 용량(IIGBT)을 산정하는 암 전류 및 전력 소자 전류 용량 산정 단계;를 포함하는 반복 구간(iteration)을 포함하고, 상기 반복 구간에서 산정된 상기 전력 소자 전류 용량(IIGBT)이 미리 정해진 제1 기준치를 충족하지 못하는 경우에는 상기 반복 구간(iteration)을 다시 수행하며, 상기 전력 소자 전류 용량(IIGBT)이 상기 제1 기준치를 충족하는 경우에는, 상기 모듈형 멀티레벨 컨버터(MMC)에 대한 시스템 손실(system loss)을 산출하고 검증하는 시스템 손실 검증 단계;를 수행하는 것을 특징으로 한다.A modular multilevel converter (MMC)-based high voltage direct current transmission (HVDC) system design method according to an aspect of the present invention for solving the above problems, a modular multilevel converter based high voltage direct current transmission (MMC-HVDC) system A design method comprising: a DC voltage calculation step of calculating, by a design system, a DC voltage (V dc ) in a DC cable of the MMC-HVDC system; Sub-module power device voltage calculating step of calculating the power device voltage (V IGBT ) of the sub-module (SM) in the modular multi-level converter (MMC) in consideration of the DC voltage (V dc ); Transformer output voltage calculating step of calculating the MMC side output voltage (V c ) in the transformer of the MMC-HVDC system; MAMI calculation step of calculating a maximum allowable modulation index (MAMI) value for the modular multi-level converter (MMC); and a dark current and power device current capacity calculation step of calculating the dark current (I arm ) and the power device current capacity (I IGBT ) for the modular multi-level converter (MMC); And, when the power device current capacity (I IGBT ) calculated in the iteration period does not meet the first predetermined reference value, the iteration period (iteration) is performed again, and the power element current capacity (I IGBT ) is When the first reference value is satisfied, a system loss verification step of calculating and verifying a system loss for the modular multi-level converter (MMC) is performed.
이때, 상기 반복 구간(iteration)에는, 상기 서브 모듈(SM)의 캐패시터 용량(Csm)을 산정하는 서브 모듈(SM) 캐패시터 용량 산정 단계;가 더 포함되며, 상기 시스템 손실 검증 단계에서는, 상기 시스템 손실이 미리 정해진 제2 기준치를 충족하지 못하는 경우, 상기 반복 구간(iteration)의 상기 서브 모듈(SM) 캐패시터 용량 산정 단계부터 다시 진행할 수 있다.At this time, in the iteration period, the sub-module (SM) capacitor capacity estimation step of calculating the capacitor capacity (C sm ) of the sub-module (SM) is further included; in the system loss verification step, the system When the loss does not meet the second predetermined reference value, the sub-module SM capacitor capacity calculation step of the iteration may be performed again.
또한, 상기 반복 구간(iteration)에 앞서, 상기 MMC-HVDC 시스템의 전력 계통(grid) 연결 지점에서의 유효 전력(Ps), 무효 전력(Qs), AC 전압(Vs) 및 DC 전력(Pdc) 중 하나 이상의 정보를 획득하는 설계 정보 획득 단계;를 더 포함할 수 있다.In addition, prior to the iteration, active power (P s ), reactive power (Q s ), AC voltage (V s ) and DC power ( P dc ) of the design information acquisition step of acquiring one or more information; may further include.
또한, 상기 반복 구간(iteration)은, 상기 서브 모듈(SM)의 캐패시턴스 용량(Csm), 암 인덕턴스(Larm), 변압기 누설 인덕턴스(LTr)의 초기값 중 하나 이상의 정보를 획득하는 초기값 획득 단계;를 더 포함할 수 있다.In addition, the iteration period is an initial value of obtaining one or more information among the initial values of the capacitance capacitance (C sm ), the female inductance (L arm ), and the transformer leakage inductance (L Tr ) of the sub-module (SM) Acquisition step; may further include.
또한, 상기 반복 구간(iteration)은, 상기 서브 모듈(SM)의 암 인덕턴스(Larm)를 산출하는 암 인덕턴스(Larm) 산출 단계;를 더 포함하며, 상기 암 인덕턴스(Larm) 산출 단계에는, 순환 전류 억제 모드의 설정 여부를 판단하는 단계; 상기 순환 전류 억제 모드가 온(ON)으로 설정된 경우, 상기 모듈형 멀티레벨 컨버터(MMC)에서의 순환 전류에 대한 보상 신호(U2f)를 산출하고, 상기 암 인덕턴스(Larm)를 산출하는 단계;가 포함될 수 있다.In addition, the iteration interval (iteration), the arm inductance (L arm ) calculating step of calculating the arm inductance (L arm ) of the sub-module (SM) further comprises; The arm inductance (L arm ) calculating step includes , determining whether a circulating current suppression mode is set; When the circulating current suppression mode is set to ON, calculating a compensation signal U 2f for circulating current in the modular multilevel converter (MMC) and calculating the arm inductance L arm ; may be included.
여기서, 상기 암 인덕턴스(Larm) 산출 단계에는, 상기 순환 전류 억제 모드가 오프(OFF)로 설정된 경우, 상기 모듈형 멀티레벨 컨버터(MMC)에서의 2차 고조파 순환 전류(I2f)를 산출하고, 상기 암 인덕턴스(Larm)를 산출하는 단계;가 더 포함될 수 있다.Here, in the arm inductance (L arm ) calculating step, when the circulating current suppression mode is set to OFF, the second harmonic circulating current (I 2f ) in the modular multi-level converter (MMC) is calculated and , calculating the arm inductance (L arm ); may be further included.
또한, 상기 암 인덕턴스(Larm) 산출 단계를 거친 후, 무효 전력 손실(QLoss)이 미리 정해진 제3 기준치를 충족하지 못하는 경우 상기 암 인덕턴스(Larm) 산출 단계를 다시 수행할 수 있다.In addition, after the step of calculating the arm inductance L arm , when the reactive power loss Q Loss does not meet the third predetermined reference value, the step of calculating the arm inductance L arm may be performed again.
또한, 상기 시스템 손실 검증 단계는, 상기 모듈형 멀티레벨 컨버터(MMC)의 스위칭 주파수를 평가하는 스위칭 주파수 평가 단계;를 더 포함하여, 상기 모듈형 멀티레벨 컨버터(MMC)에 대한 시스템 손실(system loss)을 산출하고 검증할 수 있다.In addition, the system loss verification step, a switching frequency evaluation step of evaluating the switching frequency of the modular multi-level converter (MMC); further comprising, a system loss for the modular multi-level converter (MMC) ) can be calculated and verified.
여기서, 상기 스위칭 주파수 평가 단계에서는, 상기 모듈형 멀티레벨 컨버터(MMC)에서 서브 모듈(SM)의 캐패시터 전압 리플도 함께 평가할 수 있다.Here, in the switching frequency evaluation step, the capacitor voltage ripple of the sub-module SM in the modular multi-level converter MMC may also be evaluated.
또한, 상기 DC 전압 산정 단계에서는, 상기 DC 케이블에서의 DC 전류(Idc)도 산정할 수 있다.In addition, in the DC voltage calculation step, the DC current (I dc ) in the DC cable can also be calculated.
또한, 상기 서브 모듈 전력 소자 전압 산정 단계에서는, 상기 모듈형 멀티레벨 컨버터(MMC)에서 서브 모듈(SM)의 전압(VSM)도 산정할 수 있다.In addition, in the sub-module power device voltage calculation step, the voltage V SM of the sub-module SM in the modular multi-level converter MMC may also be calculated.
또한, 본 발명의 다른 측면에 따른 컴퓨터 프로그램은, 컴퓨터에서 제1항 내지 제11항 중 어느 한 항에 기재된 모듈형 컨버터(MMC) 기반 고전압 직류 송전(HVDC) 시스템 설계 방법의 각 단계를 실행시키기 위한 컴퓨터로 판독 가능한 매체에 저장된 것을 특징으로 한다.In addition, the computer program according to another aspect of the present invention executes each step of the modular converter (MMC)-based high voltage direct current transmission (HVDC) system design method according to any one of claims 1 to 11 in the computer It is characterized in that it is stored in a computer-readable medium for
이에 따라, 본 발명의 일 실시예에 따른 모듈형 멀티레벨 컨버터 기반 고전압 직류 송전 시스템 설계 방법, 시스템 및 컴퓨터 프로그램에서는, 모듈형 멀티레벨 컨버터 기반 고전압 직류 송전 시스템(MMC-HVDC)을 설계함에 있어서, 모듈형 멀티레벨 컨버터가 전력 계통과 연계하여 동작하는 상태에서의 동적 분석을 반영하고 전체 시스템 차원에서 다양한 파라미터들의 특성을 종합적으로 고려하여 효과적으로 설계를 진행할 수 있게 된다.Accordingly, in the method, system, and computer program for designing a modular multi-level converter-based high-voltage DC power transmission system according to an embodiment of the present invention, in designing a modular multi-level converter-based high-voltage DC power transmission system (MMC-HVDC), It is possible to effectively design a modular multi-level converter by reflecting the dynamic analysis in the state in which it operates in connection with the power system and comprehensively considering the characteristics of various parameters at the overall system level.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are included as a part of the detailed description to help the understanding of the present invention, provide embodiments of the present invention, and together with the detailed description, explain the technical spirit of the present invention.
도 1은 본 발명의 일 실시예에 따른 모듈형 멀티레벨 컨버터 기반 고전압 직류 송전 시스템의 예시도이다.1 is an exemplary diagram of a high voltage direct current transmission system based on a modular multilevel converter according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 모듈형 멀티레벨 컨버터의 예시도이다.2 is an exemplary diagram of a modular multilevel converter according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 모듈형 멀티레벨 컨버터 기반 고전압 직류 송전 시스템 설계 방법의 순서도이다.3 is a flowchart of a method for designing a modular multi-level converter-based high voltage direct current transmission system according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따든 구체화된 모듈형 멀티레벨 컨버터 기반 고전압 직류 송전 시스템 설계 방법의 순서도이다.4 is a flowchart of a method for designing a detailed modular multi-level converter-based high voltage direct current transmission system according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 DC 케이블에서의 DC 전압(Vdc)의 산정을 설명하는 도면이다.5 is a view for explaining the calculation of the DC voltage (V dc ) in the DC cable according to an embodiment of the present invention.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 이하에서는 특정 실시예들을 첨부된 도면을 기초로 상세히 설명하고자 한다.The present invention can apply various transformations and can have various embodiments. Hereinafter, specific embodiments will be described in detail based on the accompanying drawings.
이하의 실시예는 본 명세서에서 기술된 방법, 시스템 및/또는 시스템에 대한 포괄적인 이해를 돕기 위해 제공된다. 그러나 이는 예시에 불과하며 본 발명은 이에 제한되지 않는다.The following examples are provided to provide a comprehensive understanding of the methods, systems and/or systems described herein. However, this is merely an example, and the present invention is not limited thereto.
본 발명의 실시예들을 설명함에 있어서, 본 발명과 관련된 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 상세한 설명에서 사용되는 용어는 단지 본 발명의 실시 예들을 기술하기 위한 것이며, 결코 제한적이어서는 안 된다. 명확하게 달리 사용되지 않는 한, 단수 형태의 표현은 복수 형태의 의미를 포함한다. 본 설명에서, "포함" 또는 "구비"와 같은 표현은 어떤 특성들, 숫자들, 단계들, 동작들, 요소들, 이들의 일부 또는 조합을 가리키기 위한 것이며, 기술된 것 이외에 하나 또는 그 이상의 다른 특성, 숫자, 단계, 동작, 요소, 이들의 일부 또는 조합의 존재 또는 가능성을 배제하도록 해석되어서는 안 된다. In describing the embodiments of the present invention, if it is determined that the detailed description of the known technology related to the present invention may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted. And, the terms to be described later are terms defined in consideration of functions in the present invention, which may vary according to intentions or customs of users and operators. Therefore, the definition should be made based on the content throughout this specification. The terminology used in the detailed description is for the purpose of describing embodiments of the present invention only, and should not be limiting in any way. Unless explicitly used otherwise, expressions in the singular include the meaning of the plural. In this description, expressions such as “comprising” or “comprising” are intended to indicate certain features, numbers, steps, acts, elements, some or a combination thereof, one or more other than those described. It should not be construed to exclude the presence or possibility of other features, numbers, steps, acts, elements, or any part or combination thereof.
또한, 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되는 것은 아니며, 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.In addition, terms such as first, second, etc. may be used to describe various components, but the components are not limited by the terms, and the terms are for the purpose of distinguishing one component from other components. is used only as
이하에서는, 본 발명에 따른 모듈형 멀티레벨 컨버터 기반 고전압 직류 송전 시스템 설계 방법, 시스템 및 컴퓨터 프로그램의 예시적인 실시 형태들을 첨부된 도면을 참조하여 상세히 설명한다.Hereinafter, exemplary embodiments of a modular multi-level converter-based high voltage direct current transmission system design method, system, and computer program according to the present invention will be described in detail with reference to the accompanying drawings.
먼저, 도 1에서는 본 발명의 일 실시예에 따른 모듈형 멀티레벨 컨버터(Modular Multilevel Converter, MMC) 기반 고전압 직류 송전(High Voltage Direct Current, HVDC) 시스템(100)을 예시하고 있다. 도 1에서 볼 수 있는 바와 같이, 본 발명의 일 실시예에 따른 모듈형 멀티레벨 컨버터 기반 고전압 직류 송전(MMC-HVDC) 시스템(100)에서는, 전력 계통(120)과 연계되어 변압기(130)를 거쳐 공급받은 교류(AC)를 제1 모듈형 멀티레벨 컨버터(110a)에서 직류(DC)로 변환하여 DC 케이블(140)을 통해 거쳐 전송하고, 제2 모듈형 멀티레벨 컨버터(110b)에서 다시 교류(AC)로 변환하여 다시 전력 계통(120)으로 공급하게 된다.First, FIG. 1 illustrates a Modular Multilevel Converter (MMC)-based High Voltage Direct Current (HVDC) system 100 according to an embodiment of the present invention. As can be seen in FIG. 1 , in the modular multi-level converter-based high voltage direct current transmission (MMC-HVDC) system 100 according to an embodiment of the present invention, the transformer 130 is connected to the power system 120 . The alternating current (AC) supplied through the first modular multi-level converter 110a is converted to direct current (DC) and transmitted through the DC cable 140, and the second modular multi-level converter 110b is again AC It is converted into (AC) and supplied to the power system 120 again.
이에 따라, 본 발명에서 상기 모듈형 멀티레벨 컨버터 기반 고전압 직류 송전(MMC-HVDC) 시스템(100)에서는, 교류 전력을 직류 전력으로 변환시켜서 송전한 후 다시 교류로 재변환시켜 전력을 공급하여 줌으로써 장거리 송전, 비동기 계통 연계, 해저 케이블 사용 가능 등의 장점을 가지게 된다.Accordingly, in the present invention, in the modular multi-level converter-based high voltage direct current transmission (MMC-HVDC) system 100, AC power is converted into DC power, transmitted, and then converted back into AC power to supply power over a long distance. It has advantages such as power transmission, asynchronous grid connection, and the use of submarine cables.
또한, 도 2에서는 본 발명의 일 실시예에 따른 모듈형 멀티레벨 컨버터(MMC)(110)에 대한 예시도를 도시하고 있다.In addition, FIG. 2 shows an exemplary diagram of a modular multi-level converter (MMC) 110 according to an embodiment of the present invention.
도 2에서 볼 수 있는 바와 같이, 본 발명에서 상기 모듈형 멀티레벨 컨버터(MMC)(110)는 복수의 서브 모듈(Sub-Module, SM)(111)을 포함하여 구성될 수 있다. 이때, 상기 모듈형 멀티레벨 컨버터(MMC)(110)는 상기 복수의 서브 모듈(SM)(111)을 각각 충전, 방전, 바이패스 상태로 제어하면서 직류 전력을 교류 전력으로 변환하거나 직류 전력을 교류 전력으로 변환하게 된다.As can be seen in FIG. 2 , in the present invention, the modular multi-level converter (MMC) 110 may be configured to include a plurality of sub-modules (SM) 111 . At this time, the modular multi-level converter (MMC) 110 converts DC power into AC power or converts DC power to AC while controlling the plurality of sub-modules (SM) 111 to charge, discharge, and bypass states, respectively. converted to power.
그런데, 종래에는 상기 모듈형 멀티레벨 컨버터 기반 고전압 직류 송전(MMC-HVDC) 시스템(100)을 설계함에 있어서, 단순히 모듈형 멀티레벨 컨버터(MMC)(110)의 내부 파라미터에 국한하여 개별적으로 설계 규격을 만족시키는 정도에 그치고 있어, 전력 계통(120)과 연계하여 동작하는 상태에서의 동적 분석 및 이를 고려한 전체 시스템 차원에서 종합적인 설계를 수행하기에는 어려움이 따랐다.However, in the prior art, when designing the modular multilevel converter-based high voltage direct current transmission (MMC-HVDC) system 100 , it is simply limited to the internal parameters of the modular multilevel converter (MMC) 110 and individually design standards , it was difficult to perform a dynamic analysis in a state of operation in connection with the power system 120 and a comprehensive design in consideration of this at the overall system level.
이에 대하여, 도 3에서는 본 발명의 일 실시예에 따른 모듈형 멀티레벨 컨버터 기반 고전압 직류 송전(MMC-HVDC) 시스템(100) 설계 방법의 순서도를 예시하고 있다.In contrast, FIG. 3 illustrates a flowchart of a method for designing a modular multilevel converter-based high voltage direct current transmission (MMC-HVDC) system 100 according to an embodiment of the present invention.
도 3에서 볼 수 있는 바와 같이, 본 발명의 일 실시예에 따른 모듈형 멀티레벨 컨버터 기반 고전압 직류 송전(MMC-HVDC) 시스템(100) 설계 방법은, 설계 시스템이 상기 MMC-HVDC 시스템(100)의 DC 케이블(140)에서의 DC 전압(Vdc)을 산정하는 DC 전압 산정 단계(S110), 상기 DC 전압(Vdc)을 고려하여 상기 모듈형 멀티레벨 컨버터(MMC)(110)에서 서브 모듈(SM)(111)의 전력 소자 전압(VIGBT)을 산정하는 서브 모듈 전력 소자 전압 산정 단계(S120), 상기 MMC-HVDC 시스템(100)의 변압기(130)에서의 MMC 측 출력 전압(Vc)을 산정하는 변압기 출력 전압 산정 단계(S130), 상기 모듈형 멀티레벨 컨버터(MMC)(110)에 대한 최대 허용 모듈레이션 인덱스(MAMI) 값을 산정하는 MAMI 산정 단계(S140) 및 상기 모듈형 멀티레벨 컨버터(MMC)(110)에 대한 암 전류(Iarm)와 전력 소자 전류 용량(IIGBT)을 산정하는 암 전류 및 전력 소자 전류 용량 산정 단계(S150);를 포함하는 반복 구간(iteration)을 포함하고, 상기 반복 구간에서 산정된 상기 전력 소자 전류 용량(IIGBT)이 미리 정해진 제1 기준치를 충족하지 못하는 경우에는(S160) 상기 반복 구간(iteration)을 다시 수행하며, 상기 전력 소자 전류 용량(IIGBT)이 상기 제1 기준치를 충족하는 경우에는(S160) 상기 모듈형 멀티레벨 컨버터(MMC)(110)에 대한 시스템 손실(system loss)을 산출하고 검증하는 시스템 손실 검증 단계(S170)를 수행하는 것을 특징으로 한다.As can be seen in FIG. 3 , in the method for designing a modular multilevel converter-based high voltage direct current transmission (MMC-HVDC) system 100 according to an embodiment of the present invention, the design system is the MMC-HVDC system 100 . DC voltage calculation step (S110) of calculating the DC voltage (V dc ) in the DC cable 140 of the sub-module in the modular multi-level converter (MMC) 110 in consideration of the DC voltage (V dc ) Sub-module power device voltage calculation step (S120) for calculating the power device voltage (V IGBT ) of the (SM) 111, the MMC side output voltage (V c ) in the transformer 130 of the MMC-HVDC system 100 ) of the transformer output voltage calculation step (S130), the MAMI calculation step (S140) of calculating the maximum allowable modulation index (MAMI) value for the modular multi-level converter (MMC) 110, and the modular multi-level The dark current (I arm ) and the power device current capacity (I IGBT ) for the converter (MMC) 110 , the dark current and power device current capacity calculation step (S150) for calculating; And, if the power device current capacity (I IGBT ) calculated in the iteration period does not meet the first predetermined reference value (S160), the iteration period (iteration) is performed again, and the power element current capacity (I) When the IGBT ) meets the first reference value (S160), a system loss verification step (S170) of calculating and verifying a system loss for the modular multi-level converter (MMC) 110 is performed. characterized in that
또한, 본 발명의 일 실시예에 따른 모듈형 멀티레벨 컨버터 기반 고전압 직류 송전(MMC-HVDC) 시스템(100) 설계 방법에서, 상기 DC 전압 산정 단계(S110)에서는, 상기 DC 케이블(140)에서의 DC 전압(Vdc)과 함께 DC 전류(Idc)도 산정할 수 있다.In addition, in the modular multi-level converter-based high voltage direct current transmission (MMC-HVDC) system 100 design method according to an embodiment of the present invention, in the DC voltage calculation step S110 , the DC cable 140 Along with the DC voltage (V dc ), the DC current (I dc ) can also be calculated.
또한, 상기 서브 모듈 전력 소자 전압 산정 단계(S120)에서는, 상기 모듈형 멀티레벨 컨버터(MMC)(110)에서 서브 모듈(SM)의 전압(VSM)도 함께 산정할 수 있다.In addition, in the sub-module power device voltage calculation step S120 , the voltage V SM of the sub-module SM in the modular multi-level converter (MMC) 110 may also be calculated.
나아가, 본 발명의 일 실시예에 따른 모듈형 멀티레벨 컨버터 기반 고전압 직류 송전(MMC-HVDC) 시스템(100) 설계 방법에서, 상기 반복 구간(iteration)에는, 상기 서브 모듈(SM)의 캐패시터 용량(Csm)을 산정하는 서브 모듈(SM) 캐패시터 용량 산정 단계가 더 포함될 수 있으며, 이때 상기 시스템 손실 검증 단계(S170)에서는, 상기 시스템 손실이 미리 정해진 제2 기준치를 충족하지 못하는 경우, 상기 반복 구간(iteration)의 상기 서브 모듈(SM) 캐패시터 용량 산정 단계부터 다시 진행하도록 할 수 있다.Furthermore, in the method for designing a modular multi-level converter-based high voltage direct current transmission (MMC-HVDC) system 100 according to an embodiment of the present invention, in the iteration period, the capacitor capacity of the sub-module SM ( A sub-module (SM) capacitor capacity calculation step of calculating C sm ) may be further included, and in this case, in the system loss verification step S170 , if the system loss does not meet the second predetermined reference value, the repetition period (iteration) may be performed again from the step of calculating the capacitor capacity of the sub-module (SM).
또한, 본 발명의 일 실시예에 따른 모듈형 멀티레벨 컨버터 기반 고전압 직류 송전(MMC-HVDC) 시스템(100) 설계 방법에서는, 상기 반복 구간(iteration)에 앞서, 상기 MMC-HVDC 시스템의 전력 계통(grid) 연결 지점에서의 유효 전력(Ps), 무효 전력(Qs), AC 전압(Vs) 및 DC 전력(Pdc) 중 하나 이상의 정보를 획득하는 설계 정보 획득 단계를 더 포함할 수도 있다.In addition, in the modular multi-level converter-based high voltage direct current transmission (MMC-HVDC) system 100 design method according to an embodiment of the present invention, prior to the iteration, the power system of the MMC-HVDC system ( grid) may further include a design information acquisition step of acquiring one or more of active power (P s ), reactive power (Q s ), AC voltage (V s ), and DC power (P dc ) at the connection point. .
또한, 본 발명의 일 실시예에 따른 모듈형 멀티레벨 컨버터 기반 고전압 직류 송전(MMC-HVDC) 시스템(100) 설계 방법에서, 상기 반복 구간(iteration)은, 상기 서브 모듈(SM)의 캐패시턴스 용량(Csm), 암 인덕턴스(Larm), 변압기 누설 인덕턴스(LTr)의 초기값 중 하나 이상의 정보를 획득하는 초기값 획득 단계를 더 포함할 수도 있다.In addition, in the method for designing a modular multi-level converter-based high voltage direct current transmission (MMC-HVDC) system 100 according to an embodiment of the present invention, the iteration period is, the capacitance capacity of the sub-module SM ( C sm ), the arm inductance (L arm ), the transformer leakage inductance (L Tr ) may further include an initial value acquisition step of acquiring information about one or more of the initial values.
또한, 본 발명의 일 실시예에 따른 모듈형 멀티레벨 컨버터 기반 고전압 직류 송전(MMC-HVDC) 시스템(100) 설계 방법에서, 상기 반복 구간(iteration)은, 상기 서브 모듈(SM)의 암 인덕턴스(Larm)를 산출하는 암 인덕턴스(Larm) 산출 단계를 더 포함할 수 있다. 이때, 상기 암 인덕턴스(Larm) 산출 단계에는, 순환 전류 억제 모드의 설정 여부를 판단하는 단계 및 상기 순환 전류 억제 모드가 온(ON)으로 설정된 경우, 상기 모듈형 멀티레벨 컨버터(MMC)에서의 순환 전류에 대한 보상 신호(U2f)를 산출하고, 상기 암 인덕턴스(Larm)를 산출하는 단계가 포함될 수 있다.In addition, in the method for designing the modular multi-level converter-based high voltage direct current transmission (MMC-HVDC) system 100 according to an embodiment of the present invention, the iteration period is, the female inductance of the sub-module SM ( The method may further include calculating an arm inductance (L arm ) for calculating L arm ). At this time, in the step of calculating the arm inductance (L arm ), the step of determining whether a circulating current suppression mode is set, and when the circulating current suppression mode is set to ON, in the modular multi-level converter (MMC) Calculating the compensation signal U 2f for the circulating current and calculating the arm inductance L arm may be included.
나아가, 상기 암 인덕턴스(Larm) 산출 단계에는, 상기 순환 전류 억제 모드가 오프(OFF)로 설정된 경우, 상기 모듈형 멀티레벨 컨버터(MMC)에서의 2차 고조파 순환 전류(I2f)를 산출하고, 상기 암 인덕턴스(Larm)를 산출하는 단계가 더 포함될 수도 있다.Furthermore, in the arm inductance (L arm ) calculating step, when the circulating current suppression mode is set to OFF, the second harmonic circulating current (I 2f ) in the modular multi-level converter (MMC) is calculated and , calculating the arm inductance L arm may be further included.
더 나아가, 본 발명의 일 실시예에 따른 모듈형 멀티레벨 컨버터 기반 고전압 직류 송전(MMC-HVDC) 시스템(100) 설계 방법에서는, 상기 암 인덕턴스(Larm) 산출 단계를 거친 후, 무효 전력 손실(QLoss)이 미리 정해진 제3 기준치를 충족하지 못하는 경우 상기 암 인덕턴스(Larm) 산출 단계를 다시 수행하도록 할 수 있다.Furthermore, in the modular multilevel converter-based high voltage direct current transmission (MMC-HVDC) system 100 design method according to an embodiment of the present invention, after the arm inductance (L arm ) calculating step, reactive power loss ( When Q Loss ) does not satisfy the third predetermined reference value, the step of calculating the arm inductance L arm may be performed again.
또한, 본 발명의 일 실시예에 따른 모듈형 멀티레벨 컨버터 기반 고전압 직류 송전(MMC-HVDC) 시스템(100) 설계 방법에서, 상기 시스템 손실 검증 단계는, 상기 모듈형 멀티레벨 컨버터(MMC)의 스위칭 주파수를 평가하여, 상기 모듈형 멀티레벨 컨버터(MMC)에 대한 시스템 손실(system loss)을 산출하고 검증하는 스위칭 주파수 평가 단계를 더 포함할 수 있다.In addition, in the method for designing a modular multilevel converter-based high voltage direct current transmission (MMC-HVDC) system 100 according to an embodiment of the present invention, the system loss verification step includes switching of the modular multilevel converter (MMC) By evaluating the frequency, the method may further include a switching frequency evaluation step of calculating and verifying a system loss for the modular multi-level converter (MMC).
이때, 상기 스위칭 주파수 평가 단계에서는, 상기 모듈형 멀티레벨 컨버터(MMC)에서 서브 모듈(SM)의 캐패시터 전압 리플도 함께 평가하는 것도 가능하다.In this case, in the switching frequency evaluation step, it is also possible to evaluate the capacitor voltage ripple of the sub-module SM in the modular multi-level converter MMC.
이에 따라, 본 발명의 일 실시예에 따른 모듈형 멀티레벨 컨버터 기반 고전압 직류 송전(MMC-HVDC) 시스템(100) 설계 방법에서는, 모듈형 멀티레벨 컨버터(MMC)(110)가 전력 계통(120)과 연계하여 동작하는 상태에서의 동적 분석을 반영하고 전체 시스템 차원에서 다양한 파라미터들의 특성을 종합적으로 고려하여 효과적으로 설계를 진행할 수 있게 된다.Accordingly, in the modular multilevel converter-based high voltage direct current transmission (MMC-HVDC) system 100 design method according to an embodiment of the present invention, the modular multilevel converter (MMC) 110 is the power system 120 . It is possible to effectively design by reflecting the dynamic analysis in the operating state in conjunction with and comprehensively considering the characteristics of various parameters at the overall system level.
또한, 도 4에서는 본 발명의 일 실시예에 따든 구체화된 모듈형 멀티레벨 컨버터 기반 고전압 직류 송전(MMC-HVDC) 시스템(100) 설계 방법의 순서도를 예시하고 있다.In addition, FIG. 4 exemplifies a flowchart of a method for designing a detailed modular multilevel converter-based high voltage direct current transmission (MMC-HVDC) system 100 according to an embodiment of the present invention.
이하, 도 4를 참조하여 본 발명의 일 실시예에 따른 모듈형 멀티레벨 컨버터 기반 고전압 직류 송전(MMC-HVDC) 시스템(100) 설계 방법을 보다 구체적으로 살핀다.Hereinafter, a method for designing a modular multi-level converter-based high voltage direct current transmission (MMC-HVDC) system 100 according to an embodiment of the present invention will be described in more detail with reference to FIG. 4 .
먼저, S1010 단계에서는, 상기 MMC-HVDC 시스템(100)의 전력 계통(grid) 연결 지점에서의 유효 전력(Ps), 무효 전력(Qs), AC 전압(Vs) 및 DC 전력(Pdc) 중 하나 이상의 정보를 획득하게 된다. 이때 상기 전력 계통(grid) 연결 지점에서의 유효 전력(Ps), 무효 전력(Qs), AC 전압(Vs)은 주 매개 변수의 결정 프로세스 이전에 정의되는 매개 변수로서 전력 계통(grid) 계획 과정에서 미리 결정될 수 있다. First, in step S1010, active power (P s ), reactive power (Q s ), AC voltage (V s ) and DC power (P dc ) at the power grid connection point of the MMC-HVDC system 100 ) to obtain one or more of the information. At this time, the active power (P s ), reactive power (Q s ), and AC voltage (V s ) at the power grid connection point are parameters defined before the determination process of the main parameters, and the power grid (grid) It may be predetermined during the planning process.
다음으로, S1020 단계에서는, 상기 MMC-HVDC 시스템(100)의 DC 케이블(140)에서의 DC 전압(Vdc)과 DC 전류(Idc)를 산정할 수 있다.Next, in step S1020, the DC voltage (V dc ) and DC current (I dc ) in the DC cable 140 of the MMC-HVDC system 100 can be calculated.
일반적으로 DC 전압(Vdc)은 손실-비용 최적화(loss-cost optimization)에 의해 결정될 수 있으며, DC 전류(Idc)는 장거리에서의 케이블 비용을 고려하여 결정될 수 있다. 먼저 고전압 직류 송전(HVDC)에서의 송전 거리에 따라 DC 전압(Vdc)이 최적화되면, 다른 모듈형 컨버터(MMC)(110)의 매개 변수는 도 4의 설계 프로세스를 따라 산출될 수 있다. In general, the DC voltage (V dc ) may be determined by loss-cost optimization, and the DC current (I dc ) may be determined in consideration of the cable cost over a long distance. First, if the DC voltage (V dc ) is optimized according to the transmission distance in the high voltage direct current transmission (HVDC), the parameters of the other modular converter (MMC) 110 may be calculated according to the design process of FIG. 4 .
또한, 본 발명에서 상기 DC 전압(Vdc)은 도 5에 도시된 바와 같이 비용 추정치를 최대치로 선택한 상태에서 산출될 수 있으며, 또한 도 5의 9 단계(Step 9)에서 전력 소자(switching device)의 정격 전류(IIGBT)를 고려하여 재정립될 수 있다. 또한, 도 5에 도시된 바와 같이 요구되는 DC 전력을 충족하기 위한 DC 전압(Vdc)과 DC 전류(Idc)는 반비례하게 된다. 이에 따라, 상기 DC 전압(Vdc)이 고정된 상태에서, 도 4와 같이 설계 프로세스가 반복(interation)되면서 요구되는 설계 조건을 검증하고 DC 전류(IDC)를 산출하게 된다.In addition, in the present invention, the DC voltage (V dc ) can be calculated in a state in which the cost estimate is selected as the maximum value as shown in FIG. 5 , and also in step 9 of FIG. It can be re-established in consideration of the rated current (I IGBT ). Also, as shown in FIG. 5 , a DC voltage (V dc ) and a DC current (I dc ) for satisfying the DC power required are inversely proportional to each other. Accordingly, in a state in which the DC voltage V dc is fixed, the design process is repeated as shown in FIG. 4 to verify the required design conditions and to calculate the DC current I DC .
다음으로, S1030 단계에서는, 상기 DC 전압(Vdc)을 고려하여 상기 모듈형 멀티레벨 컨버터(MMC)(110)에서 서브 모듈(SM)(111)의 전력 소자 전압(VIGBT)을 산정하게 된다. Next, in step S1030, the power device voltage (V IGBT ) of the sub-module (SM) 111 in the modular multi-level converter (MMC) 110 is calculated in consideration of the DC voltage (V dc ). .
이때, 상기 모듈형 멀티레벨 컨버터(MMC)(110)에서 서브 모듈(SM)(111)의 전압(VSM)도 함께 산정할 수 있다.At this time, the voltage (V SM ) of the sub-module (SM) 111 in the modular multi-level converter (MMC) 110 may also be calculated.
보다 구체적인 예를 들어, 상기 모듈형 멀티레벨 컨버터(MMC)(110)에서 상기 개별 서브 모듈(SM)(111)의 전압은 전력 소자(switching device)의 정격 전압과 모듈형 멀티레벨 컨버터(MMC)(110)의 DC 전압(Vdc)에 따른 서브 모듈(SM)(111)의 수를 결정하게 되며, 이는 상기 전력 소자(switching device)의 정격 전압과 연관되므로 각 서브 모듈(SM)(111)의 전압(VSM) 크기는 경제성 평가에서의 최적화 대상으로 적용될 수 있다. For a more specific example, the voltage of the individual sub-modules (SM) 111 in the modular multi-level converter (MMC) 110 is the rated voltage of the power device (switching device) and the modular multi-level converter (MMC) The number of sub-modules (SM) 111 is determined according to the DC voltage (V dc ) of 110, which is related to the rated voltage of the power device (switching device), so each sub-module (SM) 111 The magnitude of the voltage (V SM ) can be applied as an optimization target in economic evaluation.
이에 따라, 본 발명에서는 아래 수학식 1에서 전력 소자(switching device)의 정격 대비 60 %의 권장 전압 사용값(recommended voltage utilization value) (λv) 등 전력 소자의 제품 규격(specification)에 따른 권장 사양을 사용할 수 있다. 그러나, 이는 하나의 실시예에 불과하고, 본 발명이 반드시 이에 한정되는 것은 아니다. Accordingly, in the present invention, in Equation 1 below, a recommended voltage utilization value (λ v ) of 60% of the rating of the power device is recommended according to product specifications of the power device, such as can be used However, this is only one example, and the present invention is not necessarily limited thereto.
[수학식 1][Equation 1]
Figure PCTKR2021011195-appb-I000001
Figure PCTKR2021011195-appb-I000001
여기서 Vdc는 모듈형 멀티레벨 컨버터(MMC)(110)의 DC 전압, N0은 서브 모듈(SM)(111)의 수, Vsm은 서브 모듈(SM)(111)의 공칭 전압(nominal voltage), λv는 전압 이용률(voltage utilization factor), VIGBT는 전력 소자(IGBT)의 정격 전압(voltage rating)을 의미한다.where V dc is the DC voltage of the modular multilevel converter (MMC) 110 , N 0 is the number of sub-modules (SM) 111 , V sm is the nominal voltage of the sub-modules (SM) 111 . ), λ v is a voltage utilization factor, and V IGBT is a voltage rating of the power device (IGBT).
다음으로, S1040 단계에서는, 상기 서브 모듈(SM)(111)의 캐패시턴스 용량(Csm), 암 인덕턴스(Larm), 변압기 누설 인덕턴스(LTr)의 초기값 중 하나 이상의 정보를 획득하고 업데이트할 수 있다.Next, in step S1040, one or more of the initial values of the capacitance capacitance (C sm ), the female inductance (L arm ), and the transformer leakage inductance (L Tr ) of the sub-module (SM) 111 are acquired and updated. can
보다 구체적으로, S1040 단계에서는 아래 S1050 단계에서 변압기의 2차 전압을 얻기 위하여 필요한 매개 변수의 초기값을 설정하게 됩니다. More specifically, in step S1040, the initial values of parameters necessary to obtain the secondary voltage of the transformer in step S1050 below are set.
이때, 상기 서브 모듈(SM)(111)의 캐패시턴스 용량 초기값(C0)은 아래 수학식 2를 사용하여 산출될 수 있다. In this case, the initial capacitance capacitance C 0 of the sub-module (SM) 111 may be calculated using Equation 2 below.
[수학식 2][Equation 2]
Figure PCTKR2021011195-appb-I000002
Figure PCTKR2021011195-appb-I000002
여기서 C0는 서브 모듈(SM)(111)의 캐패시턴스 용량 초기값으로 설계 프로세스 중에 업데이트될 수 있는 값이고, EP0은 모듈형 멀티레벨 컨버터(MMC)(110)의 정상 작동이 가능한 커패시턴스에 대한 에너지 전력비(energy per power ratio) (예를 들어, 20~50 [kJ/MVA] 혹은 10~100 [kJ/MVA])이며, Sn은 VdcIdc/cos(φ)에 기반한 피상 전력(apparent power)이다. 그러나, 이는 하나의 실시예에 불과하고, 본 발명이 반드시 이에 한정되는 것은 아니다.Here, C 0 is the initial value of the capacitance capacity of the sub-module (SM) 111 and is a value that can be updated during the design process, and EP 0 is the capacitance that allows the normal operation of the modular multi-level converter (MMC) 110. energy per power ratio (eg 20-50 [kJ/MVA] or 10-100 [ kJ / MVA ]), where S n is the apparent power ( apparent power). However, this is only one example, and the present invention is not necessarily limited thereto.
또한, 암 인덕턴스(Larm) 초기값은, 두 번째 고조파 순환 전류 (I2f)가 특정 값이라는 가정하에 아래 수학식 3을 사용하여 산출될 수 있다.In addition, the initial value of the arm inductance L arm may be calculated using Equation 3 below on the assumption that the second harmonic circulating current I2f is a specific value.
[수학식 3][Equation 3]
Figure PCTKR2021011195-appb-I000003
Figure PCTKR2021011195-appb-I000003
여기서, L0은 암 인덕턴스(Larm) 초기값으로 설계 프로세스 중에 업데이트될 수 있는 값이며, I2f는 2차 고조파 순환 전류이고 ω0은 공칭 각주파수(nominal angular frequency)이다.Here, L 0 is the initial value of the arm inductance (L arm ), which can be updated during the design process, I 2f is the second harmonic circulating current and ω 0 is the nominal angular frequency.
또한, 2차 고조파 순환 전류 값을 특정하기 위해, XLpu는 경험적으로 암 리액턴스의 무효 전력 소비로 인한 예측치로서, 설계 단계 초기에 요구 조건으로서 설계자에 의해 선택되는 상수이며, 예를 들어 대략 0.1 [p.u]의 값이 사용될 수 있다. 그러나, 이는 하나의 실시예에 불과하고, 본 발명이 반드시 이에 한정되는 것은 아니다. 이에 따라, 암 인덕턴스의 단위당 값(per unit value)은 아래 수학식 4와 같이 정의될 수 있다.In addition, to specify the value of the second harmonic circulating current, X Lpu is an empirically an estimate due to the reactive power consumption of the dark reactance, a constant chosen by the designer as a requirement early in the design phase, for example approximately 0.1 [ pu] can be used. However, this is only one example, and the present invention is not necessarily limited thereto. Accordingly, the per unit value of the female inductance may be defined as in Equation 4 below.
[수학식 4][Equation 4]
Figure PCTKR2021011195-appb-I000004
Figure PCTKR2021011195-appb-I000004
Figure PCTKR2021011195-appb-I000005
Figure PCTKR2021011195-appb-I000005
Figure PCTKR2021011195-appb-I000006
Figure PCTKR2021011195-appb-I000006
여기서, Zbase는 임피던스 베이스(impedance base) 값이고, VLL은 선로간 AC 전압(line to line AC voltage)이며, m은 변조 지수(modulation index)이다.Here, Z base is an impedance base value, V LL is a line to line AC voltage, and m is a modulation index.
이에 따라, 예를 들어 XLpu의 단위당 값이 0.1 [p.u]이고 변조 지수가 1이라고 가정하면, 2차 고조파 순환 전류(I2f)는 아래 수학식 5를 통해 산출될 수 있다. 그러나, 이는 하나의 실시예에 불과하고, 본 발명이 반드시 이에 한정되는 것은 아니다. Accordingly, for example, assuming that the value per unit of X Lpu is 0.1 [pu] and the modulation index is 1, the second harmonic circulating current I 2f may be calculated through Equation 5 below. However, this is only one example, and the present invention is not necessarily limited thereto.
[수학식 5][Equation 5]
Figure PCTKR2021011195-appb-I000007
Figure PCTKR2021011195-appb-I000007
본 발명에서 2차 고주파 순환 전류(I2f)의 초기값은 간단한 값으로 선택될 수 있으나, 이어서 PQ 용량(PQ capability), 안정성(stability) 및 고장 전류 상승 제한(fault current rising limitation)에 대한 심대한 영향을 고려하여 보다 적절한 값으로 재계산하게 된다.In the present invention, the initial value of the secondary high-frequency circulating current (I2f) can be selected as a simple value, but then has a profound effect on PQ capability, stability, and fault current rising limitation It is recalculated to a more appropriate value taking into account.
또한, 변압기(130)의 누설 인덕턴스 (Ltr)는 변압기 제조 업체에서 제공하는 값을 사용할 수 있으나, 본 발명이 이에 한정되는 것은 아니며 이외에 보다 다른 적절한 값을 사용하는 것도 가능하다.In addition, the leakage inductance Ltr of the transformer 130 may use a value provided by a transformer manufacturer, but the present invention is not limited thereto, and other suitable values may be used.
다음으로, S1050 단계에서는, 상기 MMC-HVDC 시스템(100)의 변압기(130)에서의 MMC 측 출력 전압(secondary voltage, Vc)을 산정하게 된다.Next, in step S1050, the MMC-side output voltage (secondary voltage, V c ) in the transformer 130 of the MMC-HVDC system 100 is calculated.
보다 구체적으로, 변압기(130)의 2차측 전압(secondary)은 필요한 유효 및 무효 전력을 제공하면서 모듈형 멀티레벨 컨버터(MMC)(110)에서 동작 가능한 변조 지수(modulation index)를 충족하는 제한된 범위 내에서 결정되어야 한다. 이때, 상기 2차측 전압을 산출하기 위해서, PQ 용량 곡선 공식(PQ capability curve formula)을 사용하여, 모듈형 멀티레벨 컨버터(MMC)(110) 전압의 가용 범위에서 최대치를 선택할 수 있다. More specifically, the secondary-side voltage (secondary) of the transformer 130 is within a limited range that meets the modulation index operable in the modular multi-level converter (MMC) 110 while providing the necessary active and reactive power (modulation index) should be decided in At this time, in order to calculate the secondary-side voltage, using a PQ capability curve formula, the maximum value in the available range of the modular multi-level converter (MMC) 110 voltage may be selected.
이때, 상기 용량 곡선 공식은 아래의 수학식 6과 같이 정의될 수 있다. In this case, the capacity curve formula may be defined as in Equation 6 below.
[수학식 6][Equation 6]
Figure PCTKR2021011195-appb-I000008
Figure PCTKR2021011195-appb-I000008
그런데, 본 발명에서는 Lf = 0으로 가정할 수 있고(변압기가 모듈형 멀티레벨 컨버터(MMC)에 근접하여 설치되어 있으므로), 따라서 이들 사이의 라인 임피던스는 무시할 수 있으며, Vc도 Vt와 같은 값을 가지게 된다. However, in the present invention, it can be assumed that L f = 0 (since the transformer is installed close to the modular multilevel converter (MMC)), and therefore the line impedance between them is negligible, and V c is also V t and will have the same value.
나아가, 변압기(130)의 1차측 전압은 연결된 전력 계통(120)에서 허용되는 제한 범위에 있으므로, 2차측 전압도 제한된 전압 범위를 가지게 된다.Furthermore, since the primary-side voltage of the transformer 130 is in a limited range allowed by the connected power system 120 , the secondary-side voltage also has a limited voltage range.
이에 따라, 모듈형 멀티레벨 컨버터(MMC)(110)가 순수 무효 전력 보상(pure reactive power compensation)(STATCOM 모드)을 수행하기만 하면(이때, 모듈형 멀티레벨 컨버터(MMC)(110)의 정격 전력 내에서 Qmax를 공급하면서 최대 전압을 가지게 됨), 2차 전압은 예를 들어 0.95 내지 1.05 [p.u]에서 AC 전압이 조절되는 범위를 가질 수 있으며, 이는 그리드 코드(grid code)에 따른 전압 안정도 범위를 고려하여 선택될 수 있다. 그러나, 이는 하나의 실시예에 불과하고 본 발명이 반드시 이에 한정되는 것은 아니다.Accordingly, as long as the modular multilevel converter (MMC) 110 performs pure reactive power compensation (STATCOM mode) (at this time, the rating of the modular multilevel converter (MMC) 110 ) It has a maximum voltage while supplying Q max in the power), the secondary voltage may have a range in which the AC voltage is regulated, for example, from 0.95 to 1.05 [pu], which is a voltage according to the grid code It may be selected in consideration of the stability range. However, this is only an example, and the present invention is not necessarily limited thereto.
또한, 수학식 6에서 Ps = 0, Qmax 및 Vspu = 1.05 [p.u]의 조건에서 2차 전압은 아래 수학식 7과 같이 산출될 수 있다. In addition, in Equation 6, under the conditions of P s = 0, Q max and V spu = 1.05 [pu], the secondary voltage may be calculated as in Equation 7 below.
[수학식 7][Equation 7]
Figure PCTKR2021011195-appb-I000009
Figure PCTKR2021011195-appb-I000009
여기서, Vcpu는 변압기(130) 측 AC 전압, Xeqpu는 총 리액턴스 등가치(equivalent total reactance), Qmaxpu는 최대 무효 전력 요구치(maximum reactive power requirement), Vspu는 전력 계통측 AC 전압 단위당 값(grid side AC voltage at per unit value)이다.Here, V cpu is the AC voltage of the transformer 130 side, X eqpu is the equivalent total reactance, Q maxpu is the maximum reactive power requirement, V spu is the value per unit of AC voltage on the power grid side (grid side AC voltage at per unit value).
또한, 2차 전압을 변조 지수와 고려해 보면, 상기 2차 전압은 모듈형 멀티레벨 컨버터(MMC)(110)의 AC 단자 전압을 제공하는 DC 전압과 연관되며, 활성화된 서브 모듈(SM)(111)의 숫자와 개별 서브 모듈(SM)(111) 전압의 곱을 합산하여 산출될 수 있다. 따라서, 모듈형 멀티레벨 컨버터(MMC)(110)의 DC 전압은 아래 수학식 8과 같이 산출될 수 있다. Also, considering the secondary voltage with the modulation index, the secondary voltage is associated with the DC voltage providing the AC terminal voltage of the modular multilevel converter (MMC) 110, and the activated sub-module (SM) 111 ) and the product of the individual sub-module (SM) 111 voltage can be calculated. Accordingly, the DC voltage of the modular multi-level converter (MMC) 110 may be calculated as in Equation 8 below.
[수학식 8][Equation 8]
Figure PCTKR2021011195-appb-I000010
Figure PCTKR2021011195-appb-I000010
여기서, kmax는 전압 리플 계수(voltage ripple factor)이고, △Vripple은 kmax·Vsm이다. 상기 수학식 8로부터, 최소 DC 전압은 아래 수학식 9와 같이 산출될 수 있다(kmax = -kmin이므로). Here, k max is a voltage ripple factor, and ΔV ripple is k max ·V sm . From Equation 8, the minimum DC voltage can be calculated as in Equation 9 below (because k max = -k min ).
[수학식 9][Equation 9]
Figure PCTKR2021011195-appb-I000011
Figure PCTKR2021011195-appb-I000011
상기 수학식 9의 조건하에서 상기 수학식 7에서 산출되는 값은 1 [p.u]가 되므로 선로간(Line-to-Line) RMS 값에 대한 최대 변압기측 AC 전압은 아래 수학식 10과 같이 산출될 수 있다. Under the condition of Equation 9, the value calculated in Equation 7 becomes 1 [pu], so the maximum transformer-side AC voltage for the Line-to-Line RMS value can be calculated as Equation 10 below. there is.
[수학식 10][Equation 10]
Figure PCTKR2021011195-appb-I000012
Figure PCTKR2021011195-appb-I000012
다음으로, S1060 단계에서는, 상기 서브 모듈(SM)(111)의 전압 변동률과 캐패시터 용량(Csm)을 산정할 수 있다.Next, in step S1060 , the voltage change rate and capacitor capacity C sm of the sub-module SM 111 may be calculated.
보다 구체적으로, 서브 모듈(SM)(111)의 캐패시터 용량(energy storage capacity)은 앞서 산출된 매개 변수와 적절한 전압 리플 계수를 이용하여 산정될 수 있다. 이때, 서브 모듈(SM)(111)의 캐패시터 용량 초기값 (C0)은 안정적인 작동 조건 범위에 있도록 보수적으로 정할 수 있다. More specifically, the capacitor capacity (energy storage capacity) of the sub-module (SM) 111 may be calculated using the previously calculated parameter and an appropriate voltage ripple coefficient. In this case, the initial capacitor capacitance C 0 of the sub-module (SM) 111 may be conservatively determined so as to be within a stable operating condition range.
나아가, 전압 리플은 설계치 초기값에 의해 결정될 수 있으나, 모듈형 멀티레벨 컨버터(MMC)(110)의 내부 동작에 영향을 미치는 순환 전류 억제 컨트롤(Circulation Current Suppression Control, CCSC) 알고리즘에 의하여 전압 리플을 줄일 수 있다. 반대로, 전압 리플에 대한 전압 균형 알고리즘(voltage valancing algorithm)은 강제 리플을 유발하면서 전압 리플을 악화시킬 수도 있다. Furthermore, the voltage ripple may be determined by the initial design value, but the voltage ripple is reduced by the Circulation Current Suppression Control (CCSC) algorithm that affects the internal operation of the modular multi-level converter (MMC) 110 . can be reduced Conversely, a voltage balancing algorithm for voltage ripple may exacerbate voltage ripple while causing forced ripple.
따라서, 전압 리플은 모듈형 멀티레벨 컨버터(MMC)(110)의 시스템 손실(system loss)에 영향을 받는 스위칭 주파수와 연관이 있으며, 이는 모듈형 멀티레벨 컨버터(MMC)(110)의 개발자가 채택한 특정 스위칭 방식(switching principle)을 고려해 검토되는 것이 바람직하다.Therefore, the voltage ripple is related to the switching frequency affected by the system loss of the modular multilevel converter (MMC) 110, which is adopted by the developer of the modular multilevel converter (MMC) 110 . It is desirable to consider the specific switching principle.
다음으로, S1070 단계에서는 상기 서브 모듈(SM)(111)의 암 인덕턴스(Larm)를 산출하게 된다.Next, in step S1070, the arm inductance L arm of the sub-module SM 111 is calculated.
이때, 상기 S1070 단계는, 순환 전류 억제 모드의 설정 여부를 판단하는 단계(S1071), 상기 순환 전류 억제 모드가 온(ON)으로 설정된 경우, 상기 모듈형 멀티레벨 컨버터(MMC)에서의 순환 전류에 대한 보상 신호(U2f)를 산출하고(S1072a), 상기 암 인덕턴스(Larm)를 산출하는 단계(S1073a)를 포함할 수 있다.At this time, the step S1070 is a step of determining whether the circulating current suppression mode is set (S1071), when the circulating current suppression mode is set to ON, the circulating current in the modular multi-level converter (MMC) It may include calculating the compensation signal U 2f for this (S1072a) and calculating the arm inductance L arm (S1073a).
또한, 상기 S1070 단계는, 상기 순환 전류 억제 모드가 오프(OFF)로 설정된 경우, 상기 모듈형 멀티레벨 컨버터(MMC)에서의 2차 고조파 순환 전류(I2f)를 산출하고(S1072b), 상기 암 인덕턴스(Larm)를 산출하는 단계(S1073b)를 포함할 수 있다.In addition, in the step S1070, when the circulating current suppression mode is set to OFF, the second harmonic circulating current I 2f in the modular multi-level converter (MMC) is calculated (S1072b), and the arm It may include calculating the inductance L arm ( S1073b ).
나아가, 상기 S1070 단계를 거친 후에, 무효 전력 손실(QLoss)이 미리 정해진 제3 기준치를 충족하지 못하는 경우 상기 암 인덕턴스(Larm) 산출 단계를 다시 수행하도록 하는 S1080 단계를 더 포함할 수도 있다.Furthermore, after the step S1070, when the reactive power loss (Q Loss ) does not meet a predetermined third reference value, the step S1080 of performing the calculating step of the arm inductance (L arm ) again may be further included.
보다 구체적으로, 순환 전류 억제 컨트롤(CCSC)이 비활성화(OFF)된 경우, 암 인덕턴스(Larm)는 상기 S1040 단계에서 설명된 2차 고조파 순환 전류 값을 선택하여 결정될 수 있다. 그런데, 상기 순환 전류 억제 컨트롤(CCSC)은 통상적으로 MMC-HVDC 시스템(100)에서 활성화 가능하므로, 상기 암 인덕턴스(Larm)는 순환 전류 억제 컨트롤(CCSC)의 활성화 또는 비활성화 여부를 고려하여 산정되어야 한다.More specifically, when the circulating current suppression control CCSC is deactivated (OFF), the arm inductance L arm may be determined by selecting the second harmonic circulating current value described in step S1040. However, since the circulating current suppression control (CCSC) can be activated in the MMC-HVDC system 100 in general, the arm inductance (L arm ) must be calculated in consideration of whether the circulating current suppression control (CCSC) is activated or deactivated. do.
(케이스 a) 순환 전류 억제 컨트롤(CCSC)이 비활성화된 경우(Case a) When Circulating Current Suppression Control (CCSC) is Disabled
(a-1) 2차 고조파 순환 전류 계산 (I2f) : I2f는 수학식 5와 앞서 설명된 EP0(에너지 전력비)를 사용하여 산출될 수 있다.(a-1) Second harmonic circulating current calculation (I 2f ): I 2f can be calculated using Equation 5 and the above-described EP 0 (energy power ratio).
(a-2) 암 인덕턴스 계산 (Larm) : 암 인덕턴스는 수학식 3을 이용하여 산출될 수 있으며, 또한 산출된 암 인덕턴스 값이 공진점을 회피했는지도 확인하는 것이 바람직하다.(a-2) Calculation of arm inductance (L arm ): The arm inductance can be calculated using Equation 3, and it is also desirable to check whether the calculated value of the arm inductance avoids the resonance point.
(케이스 b) 순환 전류 억제 컨트롤(CCSC)이 활성화된 경우(Case b) When Circulating Current Suppression Control (CCSC) is Enabled
(b-1) 보상 신호(compensation voltage)를 산출 (U2f) : 상기 수학식 3은 순환 전류 억제 컨트롤(CCSC)이 비활성화된 상태에서 암 인덕턴스를 산출하는 방법을 제공한다. 그런데, 암 전류(arm current)에 2차 고조파 전류가 포함되는 것을 가정하여 암 인덕터 양단의 2차 고조파 전압을 산정하고, 상기 암 인덕턱스를 산출하는 것도 가능하다. 나아가, 순환 전류 억제 컨트롤(CCSC)이 활성화되면 2차 고조파 순환 전류 항목을 제거하여 아래 수학식 11과 같이 도출될 수 있다. (b-1) Calculation of compensation voltage (U 2f ): Equation 3 provides a method of calculating female inductance in a state in which the circulating current suppression control (CCSC) is deactivated. However, it is also possible to calculate the second harmonic voltage across the arm inductor, assuming that the second harmonic current is included in the arm current, and calculate the arm inductance. Furthermore, when the circulating current suppression control (CCSC) is activated, the second harmonic circulating current item is removed to be derived as shown in Equation 11 below.
[수학식 11][Equation 11]
Figure PCTKR2021011195-appb-I000013
Figure PCTKR2021011195-appb-I000013
(b-2) 암 인덕턴스 계산 (Larm) : 순환 전류 억제 컨트롤(CCSC)이 활성화된 경우 암 인덕턴스는 공진 문제를 검토하는 과정에서 게이트 턴-오프 딜레이(gate turn-off delay)에 대한 고장 전류 상승률(fault current rise rate)과 관련하여 산정될 수 있으며, 이는 2차 고조파 순환 전류가 무시할 수 있을 정도로 작기 때문이다.(b-2) Calculation of arm inductance (L arm ): When cyclic current suppression control (CCSC) is enabled, the arm inductance is the fault current for the gate turn-off delay in the process of examining the resonance problem. It can be calculated in relation to the fault current rise rate, since the second harmonic circulating current is negligibly small.
다음으로, S1090 단계에서는, 상기 모듈형 멀티레벨 컨버터(MMC)(110)에 대한 최대 허용 모듈레이션 인덱스(Maximum Allowable Modulation Index, MAMI) 값을 산정하게 된다.Next, in step S1090 , a Maximum Allowable Modulation Index (MAMI) value for the modular multi-level converter (MMC) 110 is calculated.
여기서, 상기 최대 허용 모듈레이션 인덱스의 초기값(mmax0)은 순환 전류 억제 컨트롤(CCSC)이 비활성화된 경우의 2차 전압에 대하여 상기 수학식 10에 기반하여 산출될 수 있다. 그런데, 서브 모듈(SM)(111) 커패시터에 의해 자연스럽게 생성되는 전압 리플로 인해 얻어지는 보상 신호 (mU2f) (수학식 11)에 대하여, 상기 최대 허용 모듈레이션 인덱스(MAMI)는 아래 수학식 12에 의하여 산출될 수 있다. Here, the initial value (m max0 ) of the maximum allowable modulation index may be calculated based on Equation (10) with respect to the secondary voltage when the circulating current suppression control (CCSC) is deactivated. However, with respect to the compensation signal (m U2f ) (Equation 11) obtained due to the voltage ripple naturally generated by the sub-module (SM) 111 capacitor, the maximum allowable modulation index MAMI is obtained by the following Equation 12 can be calculated.
[수학식 12][Equation 12]
Figure PCTKR2021011195-appb-I000014
Figure PCTKR2021011195-appb-I000014
여기서, mmax0은 순환 전류 억제 컨트롤(CCSC)이 비활성화된 경우의 최대 허용 모듈레이션 인덱스(MAMI)이고, mU2f는 보상 신호 인덱스(compensation signal index)이다.Here, m max0 is a maximum allowable modulation index (MAMI) when the circulating current suppression control (CCSC) is deactivated, and m U2f is a compensation signal index.
다음으로, S1100 단계에서는, 상기 모듈형 멀티레벨 컨버터(MMC)(110)에 대한 암 전류(Iarm)와 전력 소자 전류 용량(IIGBT)을 산정하게 된다.Next, in step S1100 , the dark current I arm and the power device current capacity I IGBT for the modular multi-level converter (MMC) 110 are calculated.
보다 구체적으로, 모듈형 멀티레벨 컨버터(MMC)(110)의 전력 소자(switching device)의 전류 용량(IIGBT)은, 각 서브 모듈(SM)(111)에서의 발열을 고려한 전압 산출(수학식 1 참조)에서와 같이, 전류 이용 인자(current utilization factor)를 포함하여 아래 수학식 13과 같이 표현될 수 있다.More specifically, the current capacity (I IGBT ) of the power device (switching device) of the modular multi-level converter (MMC) 110 is a voltage calculation in consideration of the heat generated in each sub-module (SM) 111 (Equation 1), including a current utilization factor, it can be expressed as Equation 13 below.
[수학식 13][Equation 13]
Figure PCTKR2021011195-appb-I000015
Figure PCTKR2021011195-appb-I000015
또한, 암 전류(Iarm)를 고려할 때, AC 전류 및 DC 전류의 비율(k)은 아래 수학식 14와 같이 표현될 수 있다. In addition, when the dark current I arm is considered, the ratio k of the AC current and the DC current may be expressed as in Equation 14 below.
[수학식 14][Equation 14]
Figure PCTKR2021011195-appb-I000016
Figure PCTKR2021011195-appb-I000016
여기서, DC 전력 및 AC 전력이 무손실 시스템과 같다고 가정하면 아래의 수학식 15와 같이 표현될 수 있다.Here, assuming that DC power and AC power are the same as in a lossless system, it can be expressed as Equation 15 below.
[수학식 15][Equation 15]
Figure PCTKR2021011195-appb-I000017
Figure PCTKR2021011195-appb-I000017
이때, 상기 수학식 5와 수학식 15를 이용하여 아래 수학식 16을 도출할 수 있다.In this case, the following Equation 16 can be derived using Equations 5 and 15 above.
[수학식 16][Equation 16]
Figure PCTKR2021011195-appb-I000018
Figure PCTKR2021011195-appb-I000018
이에 따라, 상기 암 전류(Iarm)는 아래 수학식 17과 같이 표현될 수 있다.Accordingly, the dark current I arm may be expressed as in Equation 17 below.
[수학식 17][Equation 17]
Figure PCTKR2021011195-appb-I000019
Figure PCTKR2021011195-appb-I000019
상기 정격 전류를 용이하게 산출하기 위하여, 아래 수학식 18과 같이 γ0을 모듈형 멀티레벨 컨버터(MMC)(110)의 암 전류 정격 인수(arm current rating factor)로 사용할 수 있으며, 이때 상기 암 전류 정격 인수는 m = 1 및 φ = 0 인 경우 최소값 1을 가지게 된다. In order to easily calculate the rated current, γ 0 may be used as an arm current rating factor of the modular multi-level converter (MMC) 110 as shown in Equation 18 below, wherein the dark current The rating factor will have a minimum value of 1 for m = 1 and φ = 0.
[수학식 18][Equation 18]
Figure PCTKR2021011195-appb-I000020
Figure PCTKR2021011195-appb-I000020
그런데, 상기 m 과 φ는 수학식 6의 작동점에 따라 달라질 수 있으므로, 본 발명에 따른 MMC-HVDC 시스템(100)이 단일 역률로 작동할 때(PQ 곡선 선형 램프 비율(PQ curve linear ramp rate) 조건을 가정), 상기 S1050 단계에서 얻을 수 있는 변조 지수가 최소값이 된다. 이에 따라, 상기 조건에서 작동 각도는 아래 수학식 19를 이용하여 산출될 수 있다. However, since m and φ may vary depending on the operating point of Equation 6, when the MMC-HVDC system 100 according to the present invention operates with a single power factor (PQ curve linear ramp rate) condition), the modulation index obtainable in step S1050 becomes the minimum value. Accordingly, the operating angle under the above conditions may be calculated using Equation 19 below.
[수학식 19][Equation 19]
Figure PCTKR2021011195-appb-I000021
Figure PCTKR2021011195-appb-I000021
따라서, 수학식 17 및 수학식 18을 이용하면 암 전류는 최종적으로 아래 수학식 20과 같이 표현될 수 있다. Therefore, using Equations 17 and 18, the dark current can be finally expressed as Equation 20 below.
[수학식 20][Equation 20]
Figure PCTKR2021011195-appb-I000022
Figure PCTKR2021011195-appb-I000022
또한, 전력 소자(switching device)의 전류 용량은 여러 반도체 제조 업체의 다양한 제품들을 고려하고, 경제적인 측면에서 검증되며, 상기 전류 용량과 경제성을 고려한 최적화를 통하여 결정될 수 있다. 이때, 상기 전력 소자의 전류 용량(IIGBT)은 상기 수학식 18과 수학식 20을 이용하여 최종적으로 아래 수학식 21과 같이 표현될 수 있다.In addition, the current capacity of the power device (switching device) can be determined through optimization in consideration of various products of various semiconductor manufacturers, verified in economic terms, and considering the current capacity and economy. In this case, the current capacity I IGBT of the power device can be finally expressed as Equation 21 below using Equations 18 and 20.
[수학식 21][Equation 21]
Figure PCTKR2021011195-appb-I000023
Figure PCTKR2021011195-appb-I000023
다음으로, S1110 단계에서는, 앞서 산정된 상기 전력 소자 전류 용량(IIGBT)이 미리 정해진 제1 기준치를 충족하는지 여부를 판단하게 된다.Next, in step S1110 , it is determined whether the previously calculated power device current capacity I IGBT satisfies a predetermined first reference value.
이에 따라, 상기 전력 소자 전류 용량(IIGBT)이 미리 정해진 제1 기준치를 충족하지 못하는 경우에는 상기 S1020 단계로 돌아가 설계 프로세스를 다시 수행하게 되며, 상기 전력 소자 전류 용량(IIGBT)이 상기 제1 기준치를 충족하는 경우에는 S1120 단계로 진행하게 된다.Accordingly, when the power device current capacity (I IGBT ) does not meet the first predetermined reference value, the process returns to step S1020 and the design process is performed again, and the power device current capacity (I IGBT ) is the first If the reference value is satisfied, the process proceeds to step S1120.
이에 따라, S1120 단계에서는, 상기 모듈형 멀티레벨 컨버터(MMC)(110)에 대한 시스템 손실(system loss)을 산출하고 검증하게 된다.Accordingly, in step S1120, a system loss for the modular multi-level converter (MMC) 110 is calculated and verified.
보다 구체적으로, 시스템 손실(system loss)은 다양한 변조 방식에 따라 달라질 수 있는 스위칭 주파수를 제한하게 되는 전압 리플 팩터(voltage ripple factor)를 가지는 서브 모듈(SM)(111) 커패시턴스에 의해 영향을 받게 된다. 일반적으로 서브 모듈(SM)(111) 커패시터의 전압 변동은 자연 전압 리플(natural voltage ripple)과 강제 전압 리플(forced voltage ripple)로 산출될 수 있다. More specifically, the system loss is affected by the capacitance of the sub-module (SM) 111 having a voltage ripple factor that limits the switching frequency that can be changed according to various modulation schemes. . In general, the voltage fluctuation of the sub-module (SM) 111 capacitor may be calculated as a natural voltage ripple and a forced voltage ripple.
상기 S1060 단계에서 캐패시터 용량(energy storage capacity)을 산출할 때의 전압 리플 계수(kmax)는 상기 자연 전압 리플로 간주될 수 있다. 그런데, 모듈형 멀티레벨 컨버터(MMC)(110)의 특성으로 인해 다양한 변조 기술에 의한 전압 리플이 추가적으로 생성될 수 있으며, 이는 외부 요인에 의해 생성된 강제 전압 리플에 해당할 수 있다. The voltage ripple coefficient k max when calculating the energy storage capacity in step S1060 may be regarded as the natural voltage ripple. However, due to the characteristics of the modular multi-level converter (MMC) 110 , voltage ripple by various modulation techniques may be additionally generated, which may correspond to a forced voltage ripple generated by an external factor.
이에 따라, 상기 시스템 손실(system loss)과 관련하여, 전압 리플은 캐패시터 용량과 변조 방식에 따라 결정될 수 있다. 나아가, 상기 시스템 손실(system loss)을 충족시킬 수 있는 스위칭 주파수도 산출하게 된다. Accordingly, in relation to the system loss, the voltage ripple may be determined according to a capacitor capacity and a modulation method. Furthermore, a switching frequency capable of satisfying the system loss is also calculated.
이어서, S1130 단계에서는, 상기 시스템 손실이 미리 정해진 제2 기준치를 충족하는지 여부를 판단하게 된다.Subsequently, in step S1130, it is determined whether the system loss meets a predetermined second reference value.
이에 따라, 상기 시스템 손실(system loss)이 미리 정해진 제2 기준치를 충족하지 못하는 경우, 상기 S1060 단계부터 다시 진행하게 되며, 상기 전력 소자 전류 용량(IIGBT)이 상기 제1 기준치를 충족하는 경우에는 S1140 단계로 진행하게 된다.Accordingly, when the system loss does not meet the second predetermined reference value, the process proceeds again from step S1060, and when the power device current capacity I IGBT meets the first reference value, It proceeds to step S1140.
마지막으로, S1140 단계에서는, 최종적으로 산출된 설계 파라미터들을 검증하고 확정할 수 있다. Finally, in step S1140 , the finally calculated design parameters may be verified and confirmed.
본 발명에서는 산출된 매개 변수(parameter)들을 PSCAD/EMTDC 시간 영역 시뮬레이션에 의해 검증하였으나, 본 발명이 반드시 이에 한정되는 것은 아니다.In the present invention, the calculated parameters are verified by PSCAD/EMTDC time domain simulation, but the present invention is not necessarily limited thereto.
나아가, 본 발명의 일 실시예로서, 앞서 살핀 모듈형 멀티레벨 컨버터(MMC) 기반 고전압 직류 송전(HVDC) 시스템 설계 방법의 일련의 단계들을 컴퓨터에서 실행시키기 위한 컴퓨터 판독 가능한 기록 매체에 저장된 프로그램으로 구현될 수도 있다. 이때, 상기 컴퓨터 프로그램은 컴파일러에 의해 만들어지는 기계어 코드를 포함하는 컴퓨터 프로그램 뿐만 아니라, 인터프리터 등을 사용해서 컴퓨터에서 실행될 수 있는 고급 언어 코드를 포함하는 컴퓨터 프로그램일 수도 있다. 이때, 상기 컴퓨터로서는 퍼스널 컴퓨터(PC)나 노트북 컴퓨터 등에 한정되지 아니하며, 서버, 스마트폰, 태블릿 PC, PDA, 휴대전화 등 중앙처리장치(CPU)를 구비하여 컴퓨터 프로그램을 실행할 수 있는 일체의 정보처리 장치를 포함한다. 또한, 상기 컴퓨터 판독 가능한 기록 매체는 컴퓨터 시스템에 의하여 읽혀질 수 있도록 프로그램 및 데이터가 저장될 수 있는 모든 종류의 기록 매체를 포함한다. 그 예로는, 롬(Read Only Memory), 램(Random Access Memory), CD(Compact Disk), DVD(Digital Video Disk)-ROM, 자기 테이프, 플로피 디스크, 광데이터 저장장치 등의 형태로 구현되는 것도 포함된다. 또한, 이러한 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산 방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수도 있다.Furthermore, as an embodiment of the present invention, the above salpin modular multi-level converter (MMC)-based high voltage direct current transmission (HVDC) system design method is implemented as a program stored in a computer readable recording medium for executing a series of steps in a computer it might be In this case, the computer program may be a computer program including a high-level language code that can be executed in a computer using an interpreter as well as a computer program including a machine language code generated by a compiler. In this case, the computer is not limited to a personal computer (PC) or a notebook computer, and includes a central processing unit (CPU) such as a server, smart phone, tablet PC, PDA, mobile phone, etc. to process any information that can execute a computer program. includes the device. In addition, the computer-readable recording medium includes all types of recording media in which programs and data can be stored so as to be read by a computer system. Examples thereof include ROM (Read Only Memory), RAM (Random Access Memory), CD (Compact Disk), DVD (Digital Video Disk)-ROM, magnetic tape, floppy disk, optical data storage device, etc. Included. In addition, such a recording medium may be distributed in a computer system connected through a network, and computer-readable codes may be stored and executed in a distributed manner.
이에 따라, 본 발명의 일 실시예에 따른 모듈형 멀티레벨 컨버터(MMC) 기반 고전압 직류 송전(HVDC) 시스템(100) 설계 방법, 시스템 및 컴퓨터 프로그램에서는, 모듈형 멀티레벨 컨버터 기반 고전압 직류 송전 시스템(100)을 설계함에 있어서, 모듈형 멀티레벨 컨버터(110)가 전력 계통(120)과 연계하여 동작하는 상태에서의 동적 분석을 반영하고 전체 시스템 차원에서 다양한 파라미터들의 특성을 종합적으로 고려하여 효과적으로 설계를 진행할 수 있게 된다.Accordingly, in the modular multi-level converter (MMC)-based high-voltage direct-current transmission (HVDC) system 100 design method, system, and computer program according to an embodiment of the present invention, the modular multi-level converter-based high-voltage direct-current transmission system ( In designing 100), the modular multi-level converter 110 reflects the dynamic analysis in a state in which it operates in conjunction with the power system 120 and comprehensively considers the characteristics of various parameters at the overall system level to effectively design be able to proceed.
이상에서 본 발명의 대표적인 실시예들을 상세하게 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 상술한 실시예에 대하여 본 발명의 범주에서 벗어나지 않는 한도 내에서 다양한 변형이 가능함을 이해할 것이다. 그러므로 본 발명의 권리범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위 뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.Although representative embodiments of the present invention have been described in detail above, those of ordinary skill in the art to which the present invention pertains will understand that various modifications are possible within the limits without departing from the scope of the present invention with respect to the above-described embodiments. . Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined by the claims described below as well as the claims and equivalents.

Claims (12)

  1. 모듈형 멀티레벨 컨버터 기반 고전압 직류 송전(MMC-HVDC) 시스템을 설계하는 방법으로서,A method for designing a modular multilevel converter-based high voltage direct current transmission (MMC-HVDC) system, the method comprising:
    설계 시스템이, 상기 MMC-HVDC 시스템의 DC 케이블에서의 DC 전압(Vdc)을 산정하는 DC 전압 산정 단계;DC voltage calculation step in which the design system calculates the DC voltage (V dc ) in the DC cable of the MMC-HVDC system;
    상기 DC 전압(Vdc)을 고려하여 상기 모듈형 멀티레벨 컨버터(MMC)에서 서브 모듈(SM)의 전력 소자 전압(VIGBT)을 산정하는 서브 모듈 전력 소자 전압 산정 단계;Sub-module power device voltage calculating step of calculating the power device voltage (V IGBT ) of the sub-module (SM) in the modular multi-level converter (MMC) in consideration of the DC voltage (V dc );
    상기 MMC-HVDC 시스템의 변압기에서의 MMC 측 출력 전압(Vc)을 산정하는 변압기 출력 전압 산정 단계;Transformer output voltage calculating step of calculating the MMC side output voltage (V c ) in the transformer of the MMC-HVDC system;
    상기 모듈형 멀티레벨 컨버터(MMC)에 대한 최대 허용 모듈레이션 인덱스(MAMI) 값을 산정하는 MAMI 산정 단계; 및MAMI calculation step of calculating a maximum allowable modulation index (MAMI) value for the modular multi-level converter (MMC); and
    상기 모듈형 멀티레벨 컨버터(MMC)에 대한 암 전류(Iarm)와 전력 소자 전류 용량(IIGBT)을 산정하는 암 전류 및 전력 소자 전류 용량 산정 단계;를 포함하는 반복 구간(iteration)을 포함하고,A dark current and power device current capacity calculation step of calculating the dark current (I arm ) and the power device current capacity (I IGBT ) for the modular multi-level converter (MMC); including an iteration including; ,
    상기 반복 구간에서 산정된 상기 전력 소자 전류 용량(IIGBT)이 미리 정해진 제1 기준치를 충족하지 못하는 경우에는 상기 반복 구간(iteration)을 다시 수행하며,If the power device current capacity (I IGBT ) calculated in the iteration period does not meet the first predetermined reference value, the iteration period is performed again,
    상기 전력 소자 전류 용량(IIGBT)이 상기 제1 기준치를 충족하는 경우에는,When the power device current capacity (I IGBT ) satisfies the first reference value,
    상기 모듈형 멀티레벨 컨버터(MMC)에 대한 시스템 손실(system loss)을 산출하고 검증하는 시스템 손실 검증 단계;를 수행하는 것을 특징으로 하는 모듈형 멀티레벨 컨버터(MMC) 기반 고전압 직류 송전(HVDC) 시스템 설계 방법.A modular multilevel converter (MMC)-based high voltage direct current transmission (HVDC) system, characterized in that performing; a system loss verification step of calculating and verifying a system loss for the modular multilevel converter (MMC) design method.
  2. 제1항에 있어서,According to claim 1,
    상기 반복 구간(iteration)에는,In the iteration period,
    상기 서브 모듈(SM)의 캐패시터 용량(Csm)을 산정하는 서브 모듈(SM) 캐패시터 용량 산정 단계;가 더 포함되며,The sub-module (SM) capacitor capacity calculation step of estimating the capacitor capacity (C sm ) of the sub-module (SM) is further included;
    상기 시스템 손실 검증 단계에서는,In the system loss verification step,
    상기 시스템 손실이 미리 정해진 제2 기준치를 충족하지 못하는 경우,If the system loss does not meet a second predetermined threshold,
    상기 반복 구간(iteration)의 상기 서브 모듈(SM) 캐패시터 용량 산정 단계부터 다시 진행하는 것을 특징으로 하는 모듈형 컨버터(MMC) 기반 고전압 직류 송전(HVDC) 시스템 설계 방법.A modular converter (MMC)-based high voltage direct current transmission (HVDC) system design method, characterized in that it proceeds again from the step of calculating the capacitor capacity of the sub module (SM) of the iteration.
  3. 제1항에 있어서,According to claim 1,
    상기 반복 구간(iteration)에 앞서,Prior to the iteration,
    상기 MMC-HVDC 시스템의 전력 계통(grid) 연결 지점에서의 유효 전력(Ps), 무효 전력(Qs), AC 전압(Vs) 및 DC 전력(Pdc) 중 하나 이상의 정보를 획득하는 설계 정보 획득 단계;를 더 포함하는 것을 특징으로 하는 모듈형 컨버터(MMC) 기반 고전압 직류 송전(HVDC) 시스템 설계 방법.Design to acquire information of at least one of active power (P s ), reactive power (Q s ), AC voltage (V s ), and DC power (P dc ) at the power grid connection point of the MMC-HVDC system Information acquisition step; Modular converter (MMC)-based high voltage direct current transmission (HVDC) system design method comprising further comprising.
  4. 제1항에 있어서,According to claim 1,
    상기 반복 구간(iteration)은,The iteration period is,
    상기 서브 모듈(SM)의 캐패시턴스 용량(Csm), 암 인덕턴스(Larm), 변압기 누설 인덕턴스(LTr)의 초기값 중 하나 이상의 정보를 획득하는 초기값 획득 단계;를 더 포함하는 것을 특징으로 하는 모듈형 컨버터(MMC) 기반 고전압 직류 송전(HVDC) 시스템 설계 방법.An initial value acquisition step of acquiring information about one or more of the initial values of the capacitance capacity (C sm ) of the sub-module (SM), the female inductance (L arm ), and the transformer leakage inductance (L Tr ); characterized by further comprising: A modular converter (MMC) based high voltage direct current transmission (HVDC) system design method.
  5. 제1항에 있어서,According to claim 1,
    상기 반복 구간(iteration)은,The iteration period is,
    상기 서브 모듈(SM)의 암 인덕턴스(Larm)를 산출하는 암 인덕턴스(Larm) 산출 단계;를 더 포함하며,The method further includes; an arm inductance (L arm ) calculating step of calculating the arm inductance (L arm ) of the sub-module (SM);
    상기 암 인덕턴스(Larm) 산출 단계에는,In the step of calculating the arm inductance (L arm ),
    순환 전류 억제 모드의 설정 여부를 판단하는 단계;determining whether a circulating current suppression mode is set;
    상기 순환 전류 억제 모드가 온(ON)으로 설정된 경우,When the circulating current suppression mode is set to ON,
    상기 모듈형 멀티레벨 컨버터(MMC)에서의 순환 전류에 대한 보상 신호(U2f)를 산출하고, 상기 암 인덕턴스(Larm)를 산출하는 단계;가 포함되는 것을 특징으로 하는 모듈형 컨버터(MMC) 기반 고전압 직류 송전(HVDC) 시스템 설계 방법.Calculating the compensation signal (U 2f ) for the circulating current in the modular multi-level converter (MMC), and calculating the arm inductance (L arm ); Modular converter (MMC) characterized in that it is included A method for designing a high-voltage direct current transmission (HVDC) system based on
  6. 제5항에 있어서,6. The method of claim 5,
    상기 암 인덕턴스(Larm) 산출 단계에는,In the step of calculating the arm inductance (L arm ),
    상기 순환 전류 억제 모드가 오프(OFF)로 설정된 경우,When the circulating current suppression mode is set to OFF,
    상기 모듈형 멀티레벨 컨버터(MMC)에서의 2차 고조파 순환 전류(I2f)를 산출하고, 상기 암 인덕턴스(Larm)를 산출하는 단계;가 더 포함되는 것을 특징으로 하는 모듈형 컨버터(MMC) 기반 고전압 직류 송전(HVDC) 시스템 설계 방법.Calculating the second harmonic circulating current (I 2f ) in the modular multi-level converter (MMC), and calculating the arm inductance (L arm ) Modular converter (MMC) characterized in that it further comprises; A method for designing a high-voltage direct current transmission (HVDC) system based on
  7. 제5항에 있어서,6. The method of claim 5,
    상기 암 인덕턴스(Larm) 산출 단계를 거친 후, After the arm inductance (L arm ) calculation step,
    무효 전력 손실(QLoss)이 미리 정해진 제3 기준치를 충족하지 못하는 경우 상기 암 인덕턴스(Larm) 산출 단계를 다시 수행하는 것을 특징으로 하는 모듈형 컨버터(MMC) 기반 고전압 직류 송전(HVDC) 시스템 설계 방법.Modular converter (MMC)-based high voltage direct current transmission (HVDC) system design, characterized in that when the reactive power loss (Q Loss ) does not meet the third predetermined threshold value, the arm inductance (L arm ) calculating step is performed again method.
  8. 제1항에 있어서,The method of claim 1,
    상기 시스템 손실 검증 단계는,The system loss verification step is,
    상기 모듈형 멀티레벨 컨버터(MMC)의 스위칭 주파수를 평가하는 스위칭 주파수 평가 단계;를 더 포함하여,A switching frequency evaluation step of evaluating the switching frequency of the modular multi-level converter (MMC); further comprising,
    상기 모듈형 멀티레벨 컨버터(MMC)에 대한 시스템 손실(system loss)을 산출하고 검증하는 것을 특징으로 하는 모듈형 컨버터(MMC) 기반 고전압 직류 송전(HVDC) 시스템 설계 방법.A modular converter (MMC)-based high voltage direct current transmission (HVDC) system design method, characterized in that calculating and verifying a system loss for the modular multi-level converter (MMC).
  9. 제8항에 있어서,9. The method of claim 8,
    상기 스위칭 주파수 평가 단계에서는,In the switching frequency evaluation step,
    상기 모듈형 멀티레벨 컨버터(MMC)에서 서브 모듈(SM)의 캐패시터 전압 리플도 함께 평가하는 것을 특징으로 하는 모듈형 컨버터(MMC) 기반 고전압 직류 송전(HVDC) 시스템 설계 방법.A modular converter (MMC)-based high voltage direct current transmission (HVDC) system design method, characterized in that the capacitor voltage ripple of the sub module (SM) is also evaluated in the modular multilevel converter (MMC).
  10. 제1항에 있어서,According to claim 1,
    상기 DC 전압 산정 단계에서는, In the DC voltage calculation step,
    상기 DC 케이블에서의 DC 전류(Idc)도 산정하는 것을 특징으로 하는 모듈형 컨버터(MMC) 기반 고전압 직류 송전(HVDC) 시스템 설계 방법.A modular converter (MMC)-based high voltage direct current transmission (HVDC) system design method, characterized in that the DC current (I dc ) in the DC cable is also calculated.
  11. 제1항에 있어서,According to claim 1,
    상기 서브 모듈 전력 소자 전압 산정 단계에서는, In the sub-module power device voltage calculation step,
    상기 모듈형 멀티레벨 컨버터(MMC)에서 서브 모듈(SM)의 전압(VSM)도 산정하는 것을 특징으로 하는 모듈형 컨버터(MMC) 기반 고전압 직류 송전(HVDC) 시스템 설계 방법.A modular converter (MMC)-based high-voltage direct-current transmission (HVDC) system design method, characterized in that the modular multi-level converter (MMC) also calculates the voltage (V SM ) of the sub-module (SM).
  12. 컴퓨터에서 제1항 내지 제11항 중 어느 한 항에 기재된 모듈형 컨버터(MMC) 기반 고전압 직류 송전(HVDC) 시스템 설계 방법의 각 단계를 실행시키기 위한 컴퓨터로 판독 가능한 매체에 저장된 프로그램.A program stored in a computer readable medium for executing each step of the method for designing a modular converter (MMC) based high voltage direct current transmission (HVDC) system according to any one of claims 1 to 11 in a computer.
PCT/KR2021/011195 2020-09-18 2021-08-23 Method, system and computer program for designing high voltage direct current transmission system based on modular multi-level converter WO2022059945A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200120848A KR20220037873A (en) 2020-09-18 2020-09-18 Method, system and computer program for designing modular multilevel converter based high voltage direct current transmission system
KR10-2020-0120848 2020-09-18

Publications (1)

Publication Number Publication Date
WO2022059945A1 true WO2022059945A1 (en) 2022-03-24

Family

ID=80776223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/011195 WO2022059945A1 (en) 2020-09-18 2021-08-23 Method, system and computer program for designing high voltage direct current transmission system based on modular multi-level converter

Country Status (2)

Country Link
KR (1) KR20220037873A (en)
WO (1) WO2022059945A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114825414A (en) * 2022-04-14 2022-07-29 国网湖北省电力有限公司电力科学研究院 High-voltage direct-current fault ride-through control method and system of energy router

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101410731B1 (en) * 2013-02-13 2014-06-24 한국전기연구원 Method for suppressing circulating currents from modular multi-level converter based high voltage direct-current system
CN105006987A (en) * 2015-07-29 2015-10-28 浙江大学 MMC sub-module capacitance value selecting method
KR20150130863A (en) * 2014-05-14 2015-11-24 엘에스산전 주식회사 Modular multi-level converter and controlling method thereof
KR20170110322A (en) * 2016-03-23 2017-10-11 엘에스산전 주식회사 High Voltage Direct Current System having Transformer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101639863B1 (en) 2014-05-13 2016-07-14 엘에스산전 주식회사 Apparatus and method for design of high voltage direct current transmission system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101410731B1 (en) * 2013-02-13 2014-06-24 한국전기연구원 Method for suppressing circulating currents from modular multi-level converter based high voltage direct-current system
KR20150130863A (en) * 2014-05-14 2015-11-24 엘에스산전 주식회사 Modular multi-level converter and controlling method thereof
CN105006987A (en) * 2015-07-29 2015-10-28 浙江大学 MMC sub-module capacitance value selecting method
KR20170110322A (en) * 2016-03-23 2017-10-11 엘에스산전 주식회사 High Voltage Direct Current System having Transformer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KANG JAESIK; KANG DAE-WOOK; LEE JONG-PIL; YOO DONG WOOK; SHIM JAE WOONG: "Design Procedure of MMC-HVDC System: Comprehensive Consideration of Internal and External Dynamics", IEEE ACCESS, IEEE, USA, vol. 8, 21 August 2020 (2020-08-21), USA , pages 157437 - 157450, XP011807267, DOI: 10.1109/ACCESS.2020.3018597 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114825414A (en) * 2022-04-14 2022-07-29 国网湖北省电力有限公司电力科学研究院 High-voltage direct-current fault ride-through control method and system of energy router
CN114825414B (en) * 2022-04-14 2023-12-19 国网湖北省电力有限公司电力科学研究院 High-voltage direct-current fault ride-through control method and system for energy router

Also Published As

Publication number Publication date
KR20220037873A (en) 2022-03-25

Similar Documents

Publication Publication Date Title
WO2013162336A1 (en) Wireless power receiving apparatus and power control method therefor
WO2022059945A1 (en) Method, system and computer program for designing high voltage direct current transmission system based on modular multi-level converter
WO2012161378A1 (en) Method for estimating the status of a power distribution system
EP3031127A1 (en) Apparatus and method for wireless power reception
WO2017034143A1 (en) Wireless power transmission system and driving method therefor
WO2012153890A1 (en) High-speed charging circuit, usb cable device having the high-speed charging circuit, and electronic device having the high-speed charging circuit
US6281602B1 (en) Backup battery recharge controller for a telecommunications power system
WO2017043750A1 (en) Inverter device for microgrid, and method for controlling same
WO2012043938A1 (en) System and method for controlling power flow
WO2017160098A1 (en) Method and apparatus for reducing noise generated by rectification diode located at primary side of switching power supply
WO2020013619A1 (en) Substation asset management method and apparatus based on power system reliability index
WO2018124467A1 (en) Motor control device and control method for motor control device
WO2020116817A1 (en) Power conversion method
WO2024043679A1 (en) Secondary battery charging system and method
WO2020162664A1 (en) Sub-module for conversion of direct current power and method for updating program for sub-module
WO2023219207A1 (en) Arc detection method and system for solar power generation facility
Lin et al. Dq impedance modeling and stability analysis of a three-phase four-wire system with single-phase loads
WO2021040197A1 (en) Independent microgrid system and inverter device
WO2022010066A1 (en) Earth leakage circuit breaker and control method of same earth leakage circuit breaker
WO2021172702A1 (en) Fault detection and system protection method of stand-alone microgrid on basis of power conversion system
WO2024143985A1 (en) Device and method for wireless power transmission in electronic device
Yao Full feedforward of reference powers for the DPC‐SVM grid‐connected inverter
WO2023249222A1 (en) Digital control method for interleaved boost-type power factor correction converter, and device therefor
Nozari et al. A new control method for multiterminal dc transmission
WO2022225376A1 (en) Wireless power transmission apparatus, wireless power reception apparatus, and wireless power transmission system using auxiliary coil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21869568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21869568

Country of ref document: EP

Kind code of ref document: A1