WO2022059752A1 - Monitoring system, cardiac function inspection system, monitoring method, and program - Google Patents

Monitoring system, cardiac function inspection system, monitoring method, and program Download PDF

Info

Publication number
WO2022059752A1
WO2022059752A1 PCT/JP2021/034188 JP2021034188W WO2022059752A1 WO 2022059752 A1 WO2022059752 A1 WO 2022059752A1 JP 2021034188 W JP2021034188 W JP 2021034188W WO 2022059752 A1 WO2022059752 A1 WO 2022059752A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
value
pressure value
aortic
left ventricular
Prior art date
Application number
PCT/JP2021/034188
Other languages
French (fr)
Japanese (ja)
Inventor
知紀 八田
知樹 櫨田
慶春 江指
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2022059752A1 publication Critical patent/WO2022059752A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/0215Measuring pressure in heart or blood vessels by means inserted into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers

Definitions

  • This disclosure relates to monitoring systems, cardiac function testing systems, monitoring methods, and programs.
  • Patent Document 1 discloses a technique for estimating left intracranial pressure from heart sounds, brachial cuff pressure, and K sound.
  • K is an abbreviation for Korotkoff.
  • LVEDP is known as an index showing a sign of exacerbation at an early stage.
  • LVEDP is the terminal pressure of left ventricular dilatation.
  • Patent Document 1 relates to an algorithm for estimating left ventricular pressure, but it is known that there are individual differences in the state of blood vessels and cardiac function, and the estimation accuracy of left ventricular pressure is known. It is thought that it affects.
  • Non-Patent Document 1 As shown in FIGS. 3, 5, and 6, in a triangle 41 which is a right triangle, one of the two sides sandwiching the right angle is PEP, and the other is the difference obtained by subtracting LVEDP from AoDP. Then, the inclination of the hypotenuse corresponds to the contractility of the left ventricle.
  • PEP is the prodromal time, that is, the time from the end of left ventricular diastole to the aortic diastole.
  • AoDP is the diastolic pressure of the aorta, that is, the ascending aortic pressure when the aortic valve is opened.
  • the purpose of this disclosure is to follow minimal invasion of ascending aortic pressure.
  • the monitoring system as one aspect of the present disclosure is an individual obtained from the relationship between the aortic pressure value obtained by measuring the ascending aortic pressure and the first blood pressure value obtained for the arterial pressure downstream of the ascending aorta. It is a monitoring system that can access the storage that stores the difference coefficient, and when it receives the input of the second blood pressure value newly obtained for the arterial pressure downstream of the ascending aorta, the individual difference coefficient is acquired from the storage. , A control unit for estimating the ascending aortic pressure from the second blood pressure value using the individual difference coefficient.
  • the individual difference coefficient is the ratio of the aortic pressure value to the first blood pressure value
  • the control unit sets the product of the second blood pressure value and the individual difference coefficient as the ascending aortic pressure. Calculated as an estimated value of.
  • the aortic pressure value is the aortic diastolic pressure.
  • the arterial pressure downstream of the ascending aorta is any of brachial artery pressure, radial artery pressure, femoral artery pressure, carotid artery pressure, and ankle dorsal artery pressure.
  • the storage stores the individual difference coefficient for each individual, and when the control unit receives the input of the individual identifier together with the input of the second blood pressure value, the individual difference coefficient is input as the individual difference coefficient. Obtain the coefficient corresponding to the identifier.
  • the storage is obtained from the relationship between the aortic pressure value, the left ventricular pressure value obtained by measuring the left ventricular pressure, and the first time value obtained by measuring the precursor time. Further storing the contractile ability parameter, when the control unit receives the input of the newly obtained data by measuring the heart, the value of the precursor time is used as the second time value from the input data. At the same time, the contractility parameter is acquired from the storage, and the contractility parameter is used to estimate the left ventricular pressure from the estimated value of the ascending aorta pressure and the second time value.
  • the contractility parameter is a parameter showing the relationship between the first time value and the difference between the aortic pressure value and the left ventricular pressure value.
  • the contractility parameter is the ratio of the difference between the aortic pressure value and the left ventricular pressure value to the first time value
  • the control unit has the estimated value of the ascending aortic pressure and the said.
  • the difference between the product of the second time value and the contractility parameter is calculated as the estimated value of the left ventricular pressure.
  • the left ventricular pressure value is the left ventricular end-diastolic pressure.
  • the data includes the results of electrocardiographic measurement and cardiac sound measurement.
  • the data includes the result of echocardiographic measurement.
  • the storage further stores the result of the echocardiographic measurement, and when the control unit receives the input of the new echocardiographic measurement result, the input result is stored in the storage. The comparison is made, and the contractility parameter is corrected according to the comparison result.
  • the aortic pressure value and the left ventricular pressure value are values obtained by performing a catheter examination.
  • the monitoring system further includes a storage unit corresponding to the storage.
  • the cardiac function test system as one aspect of the present disclosure is acquired by an aortic pressure waveform acquisition device that acquires an aortic pressure waveform, a blood pressure measuring device that measures an arterial pressure downstream of the ascending aorta, and the aortic pressure waveform acquisition device.
  • a calculation that calculates the aortic pressure value from the aortic pressure waveform calculates the ratio of the aortic pressure value to the blood pressure value obtained as the measurement result of the blood pressure measuring device as an individual difference coefficient, and stores the individual difference coefficient in the storage. Equipped with a device.
  • the cardiac function test system further includes a left ventricular pressure waveform acquisition device for acquiring a left ventricular pressure waveform, and the arithmetic unit is obtained from the left ventricular pressure waveform acquired by the left ventricular pressure waveform acquisition device.
  • the left ventricular pressure value is acquired, and the value of the precursor time is calculated as a time value from the aortic pressure waveform acquired by the aortic pressure waveform acquisition device, and the time value, the aortic pressure value, and the left ventricular pressure value are calculated.
  • a parameter indicating the relationship with the difference between the above is calculated as a contractility parameter, and the contractility parameter is stored in the storage.
  • the monitoring method as one aspect of the present disclosure is an individual obtained from the relationship between the aortic pressure value obtained by measuring the ascending aortic pressure and the first blood pressure value obtained for the arterial pressure downstream of the ascending aorta. It is a monitoring method using a computer that can access a storage that stores the difference coefficient, and when the computer receives an input of a newly obtained second blood pressure value for an arterial pressure downstream of the ascending aorta, the storage is used. The individual difference coefficient is acquired, and the computer estimates the ascending aortic pressure from the second blood pressure value using the individual difference coefficient.
  • the program as one aspect of the present disclosure is an individual difference obtained from the relationship between the aortic pressure value obtained by measuring the ascending aortic pressure and the first blood pressure value obtained for the arterial pressure downstream of the ascending aorta.
  • a computer accessible to the storage for storing the coefficient receives an input of a second blood pressure value newly obtained for the arterial pressure downstream of the ascending aorta
  • the process of acquiring the individual difference coefficient from the storage and the process of acquiring the individual difference coefficient are performed.
  • the process of estimating the ascending aortic pressure from the second blood pressure value is executed.
  • the system 10 includes a cardiac function test system 20 and a monitoring system 30.
  • the cardiac function test system 20 includes a blood pressure measuring device 21, an aortic pressure waveform acquisition device 22, a left ventricular pressure waveform acquisition device 23, a waveform data acquisition device 24, and a calculation device 25.
  • the blood pressure measuring device 21 is a device that measures the arterial pressure downstream of the ascending aorta.
  • any method may be used, but in the present embodiment, a non-invasive method using a cuff or an invasive method using an A-line is used.
  • "A" is an abbreviation for arterial.
  • the blood pressure measuring device 21 measures the brachial artery pressure or the radial artery pressure as the arterial pressure downstream of the ascending aorta, but the femoral artery pressure, the carotid artery pressure, the dorsalis pedis artery pressure, or other central artery. External blood pressure may be measured.
  • Extracentral arterial blood pressure such as brachial artery pressure, radial artery pressure, femoral artery pressure, carotid artery pressure, and dorsalis pedis pressure corresponds to so-called "peripheral blood pressure".
  • the aortic pressure waveform acquisition device 22 is a device that acquires an aortic pressure waveform. Any method may be used as the acquisition method, but in the present embodiment, an open blood method using a pressure sensor catheter is used.
  • the left ventricular pressure waveform acquisition device 23 is a device that acquires a left ventricular pressure waveform. Any method may be used as the acquisition method, but in the present embodiment, an open blood method using a pressure sensor catheter is used.
  • the waveform data collecting device 24 collects the aortic pressure waveform acquired by the aortic pressure waveform acquisition device 22 and the left ventricular pressure waveform acquired by the left ventricular pressure waveform acquisition device 23 as waveform data, and outputs the waveform data. It is a device.
  • the arithmetic unit 25 is a computer that executes processing such as data analysis, cardiac function calculation, and individual difference coefficient calculation.
  • the arithmetic unit 25 is, for example, a dedicated device, a general-purpose device such as a PC, or a server device belonging to a cloud computing system or other computing system.
  • PC is an abbreviation for personal computer.
  • the arithmetic unit 25 can communicate with the blood pressure measuring device 21, the waveform data collecting device 24, and the monitoring system 30 directly or via a network such as a LAN or the Internet.
  • LAN is an abbreviation for local area network.
  • the data analysis executed by the arithmetic unit 25 is a process of analyzing the waveform data output from the waveform data acquisition device 24.
  • the cardiac function calculation executed by the calculation device 25 calculates the aortic pressure value, the left ventricular pressure value, and the prodromal time value based on the result of data analysis, and the contractility parameter is calculated from the relationship between the calculated three values. Is the process of finding.
  • the aortic pressure value is specifically the aortic diastolic pressure, that is, AoDP.
  • the left ventricular pressure value is specifically the left ventricular end-diastolic pressure, that is, LVEDP.
  • the prodromal time i.e., PEP
  • PEP is calculated as the time from the point corresponding to the LVEDP to the onset of the onset of the aortic pressure waveform by synchronizing the left ventricular pressure waveform with the aortic pressure waveform.
  • the left ventricular pressure and the aortic pressure are measured simultaneously by the dual pressure sensor catheter, but the left ventricular pressure and the aortic pressure are measured separately, and then another ECG, A line, or PPG is used. It may be synchronized with reference to the pulse wave.
  • ECG is an abbreviation for electrocardiogram.
  • PPG is an abbreviation for photoplethysmogram. In the triangle 41 shown in FIG. 3, FIG. 5, or FIG.
  • the contractility parameter is a parameter representing this inclination, but may be a parameter representing an approximate curve from the time point corresponding to the LVEDP to the rising point of the start of the aortic pressure waveform in the left ventricular pressure waveform.
  • the individual difference coefficient calculation executed by the arithmetic unit 25 is a process of obtaining the individual difference coefficient from the relationship between the aortic pressure value calculated by the cardiac function calculation and the blood pressure value obtained as the measurement result of the blood pressure measuring device 21. ..
  • the individual difference coefficient is specifically the ratio of AoDP divided by the blood pressure value.
  • the aortic pressure value, left ventricular pressure value, contractility parameter, blood pressure value, and individual difference coefficient are stored in the storage as test data.
  • the storage is provided in the monitoring system 30 in this embodiment, but may be connected to the monitoring system 30 as external storage.
  • the monitoring system 30 is a computer that executes afterload calculation and LVEDP calculation.
  • the monitoring system 30 is, for example, a dedicated device, a general-purpose device such as a PC, or a server device belonging to a cloud computing system or other computing system.
  • the afterload calculation executed by the monitoring system 30 is a process of estimating the ascending aortic pressure from the blood pressure value newly obtained by the blood pressure measurement using the individual difference coefficient stored in the storage.
  • the blood pressure measurement the arterial pressure downstream of the ascending aorta is measured in the same manner as the measurement by the blood pressure measuring device 21.
  • the measuring method any method may be used, but in the present embodiment, a non-invasive method using a cuff or an invasive method using an A-line is used. A measurement method different from that of the blood pressure measuring device 21 may be used.
  • the brachial artery pressure or the radial artery pressure is measured as the arterial pressure downstream of the ascending aorta according to the blood pressure measuring device 21, but the femoral artery pressure, the carotid artery pressure, the dorsalis pedis artery pressure, or the like. Extracentral arterial blood pressure may be measured. Instead of measuring the arterial pressure downstream of the ascending aorta, the arterial pressure downstream of the ascending aorta may be estimated to obtain a blood pressure value.
  • any method such as a method by PPG, a method by face image analysis, or a method by millimeter wave radar may be used.
  • the afterload calculation is a process of calculating the product of the individual difference coefficient multiplied by the blood pressure value as the estimated value of AoDP.
  • the LVEDP calculation performed by the monitoring system 30 identifies the PEP value from the newly obtained data from the preload measurement and estimates the left ventricular pressure from the identified value using the contractility parameter stored in the storage. It is a process to do.
  • the preload measurement is specifically an electrocardiographic measurement and a heart sound measurement, or an echocardiographic measurement.
  • a known method may be used as for the method of specifying the PEP value from the electrocardiogram and the heart sound, and the method of specifying the PEP value from the echocardiography.
  • a known method may be used.
  • a method of specifying the value of PEP from the electrocardiogram may be used.
  • the LVEDP calculation is a process of calculating the difference obtained by subtracting the product of the contractility parameter by the PEP value from the estimated value of AoDP calculated by the afterload calculation as the estimated value of LVEDP.
  • the monitoring system 30 includes a control unit 31, a storage unit 32, a communication unit 33, an input unit 34, and an output unit 35.
  • the control unit 31 includes at least one processor, at least one programmable circuit, at least one dedicated circuit, or any combination thereof.
  • the processor is a general-purpose processor such as a CPU or GPU, or a dedicated processor specialized for a specific process.
  • CPU is an abbreviation for central processing unit.
  • GPU is an abbreviation for graphics processing unit.
  • the programmable circuit is, for example, an FPGA.
  • FPGA is an abbreviation for field-programmable gate array.
  • the dedicated circuit is, for example, an ASIC.
  • ASIC is an abbreviation for application specific integrated circuit.
  • the control unit 31 executes processing related to the operation of the monitoring system 30 while controlling each unit of the monitoring system 30.
  • the control unit 31 executes afterload calculation and LVEDP calculation.
  • the storage unit 32 includes at least one semiconductor memory, at least one magnetic memory, at least one optical memory, or any combination thereof.
  • the semiconductor memory is, for example, RAM or ROM.
  • RAM is an abbreviation for random access memory.
  • ROM is an abbreviation for read only memory.
  • the RAM is, for example, an SRAM or a DRAM.
  • SRAM is an abbreviation for static random access memory.
  • DRAM is an abbreviation for dynamic random access memory.
  • the ROM is, for example, EEPROM.
  • EEPROM is an abbreviation for electrically erasable programmable read only memory.
  • the storage unit 32 functions as, for example, a main storage device, an auxiliary storage device, or a cache memory.
  • the storage unit 32 stores data used for the operation of the monitoring system 30 and data obtained by the operation of the monitoring system 30.
  • the storage unit 32 corresponds to storage in this embodiment.
  • the communication unit 33 includes at least one communication interface.
  • the communication interface is, for example, a LAN interface, an interface compatible with mobile communication standards such as LTE, 4G standard, or 5G standard, or an interface compatible with short-range wireless communication such as Bluetooth (registered trademark).
  • LTE is an abbreviation for Long Term Evolution.
  • 4G is an abbreviation for 4th generation.
  • 5G is an abbreviation for 5th generation.
  • the communication unit 33 receives the data used for the operation of the monitoring system 30, and also transmits the data obtained by the operation of the monitoring system 30.
  • the input unit 34 includes at least one input interface.
  • the input interface is, for example, a physical key, a capacitance key, a pointing device, a touch screen integrally provided with a display, a photographing device such as a camera, or a microphone.
  • the input unit 34 receives an operation for inputting data used for the operation of the monitoring system 30.
  • the input unit 34 may be connected to the monitoring system 30 as an external input device instead of being provided in the monitoring system 30.
  • any method such as USB, HDMI (registered trademark), or Bluetooth (registered trademark) can be used.
  • USB is an abbreviation for Universal Serial Bus.
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • HDMI registered trademark
  • the output unit 35 includes at least one output interface.
  • the output interface is, for example, a display or a speaker.
  • the display is, for example, an LCD or an organic EL display.
  • LCD is an abbreviation for liquid crystal display.
  • EL is an abbreviation for electroluminescence.
  • the output unit 35 outputs the data obtained by the operation of the monitoring system 30.
  • the output unit 35 may be connected to the monitoring system 30 as an external output device instead of being provided in the monitoring system 30.
  • any method such as USB, HDMI (registered trademark), or Bluetooth (registered trademark) can be used.
  • the function of the monitoring system 30 is realized by executing the program according to the present embodiment on the processor as the control unit 31. That is, the function of the monitoring system 30 is realized by software.
  • the program causes the computer to function as the monitoring system 30 by causing the computer to perform the operation of the monitoring system 30. That is, the computer functions as the monitoring system 30 by executing the operation of the monitoring system 30 according to the program.
  • the program can be stored on a non-temporary computer-readable medium.
  • the non-temporary computer readable medium is, for example, a flash memory, a magnetic recording device, an optical disk, a photomagnetic recording medium, or a ROM.
  • the distribution of the program is performed, for example, by selling, transferring, or renting a portable medium such as an SD card, DVD, or CD-ROM in which the program is stored.
  • SD is an abbreviation for Secure Digital.
  • DVD is an abbreviation for digital versatile disc.
  • CD-ROM is an abbreviation for compact disc read only memory.
  • the program may be distributed by storing the program in the storage of the server and transferring the program from the server to another computer.
  • the program may be provided as a program product.
  • the computer temporarily stores the program stored in the portable medium or the program transferred from the server in the main storage device, for example. Then, the computer reads the program stored in the main storage device by the processor, and executes the processing according to the read program by the processor.
  • the computer may read the program directly from the portable medium and perform processing according to the program.
  • the computer may sequentially execute processing according to the received program each time the program is transferred from the server to the computer.
  • the process may be executed by a so-called ASP type service that realizes the function only by the execution instruction and the result acquisition without transferring the program from the server to the computer. "ASP" is an abbreviation for application service provider.
  • the program includes information used for processing by a computer and equivalent to the program. For example, data that is not a direct command to the computer but has the property of defining the processing of the computer corresponds to "a program-like data".
  • a part or all the functions of the monitoring system 30 may be realized by a programmable circuit or a dedicated circuit as the control unit 31. That is, some or all the functions of the monitoring system 30 may be realized by hardware.
  • the operation of the cardiac function test system 20 according to the present embodiment will be described with reference to FIG. This operation corresponds to the cardiac function test method according to the present embodiment.
  • the blood pressure measuring device 21 measures the arterial pressure downstream of the ascending aorta. Specifically, the blood pressure measuring device 21 measures the blood pressure non-invasively by a cuff attached to the upper arm or the wrist. Alternatively, the blood pressure measuring device 21 measures the blood pressure invasively by the A line.
  • step S102 a catheter examination is performed.
  • the left ventricular pressure waveform acquisition device 23 acquires the left ventricular pressure waveform as shown in FIG.
  • the aortic pressure waveform acquisition device 22 acquires an aortic pressure waveform as shown in FIG.
  • step S103 the arithmetic unit 25 acquires the left ventricular pressure value from the left ventricular pressure waveform acquired by the left ventricular pressure waveform acquisition device 23. That is, the arithmetic unit 25 acquires the left ventricular pressure value obtained by performing the catheter examination in step S102. Specifically, the arithmetic unit 25 acquires the LVEDP value from the left ventricular pressure waveform invasively acquired by the pressure sensor catheter. In the example of FIG. 3, the point A is extracted as the point corresponding to the LVEDP.
  • step S104 the arithmetic unit 25 calculates the aortic pressure value from the aortic pressure waveform acquired by the aortic pressure waveform acquisition device 22. That is, the arithmetic unit 25 calculates the aortic pressure value obtained by performing the catheter examination in step S102. Further, the arithmetic unit 25 calculates the value of the precursor time from the aortic pressure waveform acquired by the aortic pressure waveform acquisition device 22 as the first time value. Specifically, the arithmetic unit 25 calculates PEP and AoDP by time-synchronizing the left ventricular pressure waveform and the aortic pressure waveform obtained invasively by the pressure sensor catheter, respectively. In the example of FIG. 3, the point B is extracted as the point corresponding to AoDP. The line segment AC is extracted as the line segment corresponding to PEP.
  • step S105 the arithmetic unit 25 calculates a parameter indicating the relationship between the first time value and the difference between the aortic pressure value and the left ventricular pressure value as the contractility parameter.
  • the arithmetic unit 25 calculates the ratio of the difference between the aortic pressure value and the left ventricular pressure value with respect to the first time value as the contractility parameter.
  • the arithmetic unit 25 calculates Ctr by the following equation when Ctr is used as a contractility parameter.
  • Ctr (AoDP-LVEDP) / PEP
  • the slope of the hypotenuse of the triangle 41 corresponding to the right triangle ABC is calculated as Ctr.
  • Ctr is calculated as a curve that approximates the left ventricular pressure waveform in the time from the time point corresponding to the LVEDP to the rising point of the beginning of the aortic pressure waveform, as in the curve AB before linearization in FIG. May be done.
  • step S106 the arithmetic unit 25 calculates the ratio of the aortic pressure value to the first blood pressure value obtained as the measurement result of the blood pressure measuring device 21 as an individual difference coefficient.
  • the first blood pressure value may be the highest value, the lowest value, or another value such as an intermediate value of the blood pressure obtained as a measurement result.
  • the arithmetic unit 25 calculates AoDP / pBPRef as an individual difference coefficient when pBPRef is the first blood pressure value.
  • the arithmetic unit 25 may store the contractility parameter and the individual difference coefficient in the storage, respectively, but in the present embodiment, in step S106, the arithmetic unit 25 has the contractility parameter and the individual difference. Store the coefficients together in the storage. Specifically, the arithmetic unit 25 uses the Ctr calculated in step S105 and the individual difference coefficient calculated in step S106 as inspection data together with the LVEDP value acquired in step S103 and the PEP and AoDP calculated in step S104. Collectively send to the monitoring system 30.
  • the communication unit 33 of the monitoring system 30 receives the inspection data.
  • the storage unit 32 of the monitoring system 30 stores the inspection data received by the communication unit 33.
  • the storage unit 32 of the monitoring system 30 is an individual obtained from the relationship between the aortic pressure value obtained by measuring the ascending aorta pressure and the first blood pressure value obtained for the arterial pressure downstream of the ascending aorta. Store the difference coefficient.
  • the storage unit 32 has a contractility parameter obtained from the relationship between the aortic pressure value, the left ventricular pressure value obtained by measuring the left ventricular pressure, and the first time value obtained by measuring the precursor time. Further memorize.
  • the operation of the monitoring system 30 according to the present embodiment will be described with reference to FIG. This operation corresponds to the monitoring method according to the present embodiment.
  • step S107 when the control unit 31 measures the heart and receives the input of the newly obtained data, the control unit 31 specifies the value of the precursor time from the input data as the second time value, and the storage unit 32.
  • the input data includes the results of electrocardiographic and heart sound measurements, or the results of echocardiographic measurements.
  • the data may be input by being received by the communication unit 33, or may be input via the input unit 34.
  • the control unit 31 acquires the PEP value from the electrocardiogram and the heart sound obtained by the non-invasive measurement.
  • the control unit 31 acquires the PEP value from the echocardiography obtained by the non-invasive measurement.
  • the control unit 31 acquires the Ctr included in the inspection data stored in the storage unit 32.
  • step S108 when the control unit 31 receives the input of the newly obtained second blood pressure value for the arterial pressure downstream of the ascending aorta, the control unit 31 acquires the individual difference coefficient from the storage unit 32.
  • the second blood pressure value may be input by being received by the communication unit 33, or may be input via the input unit 34.
  • the second blood pressure value may be the highest value, the lowest value, or another value such as an intermediate value of the blood pressure obtained as a measurement result, but which value is applied as the second blood pressure value is the second. 1 Determined according to blood pressure value.
  • the control unit 31 acquires a blood pressure value non-invasively measured by a cuff attached to the upper arm or wrist.
  • the control unit 31 acquires the blood pressure value measured invasively by the A line.
  • the control unit 31 acquires the individual difference coefficient included in the inspection data stored in the storage unit 32.
  • the control unit 31 may output an estimated value of the ascending aortic pressure.
  • the control unit 31 may display tAoDP on a display as an output unit 35.
  • the control unit 31 may output the tAoDP by voice from the speaker as the output unit 35.
  • the control unit 31 may transmit tAoDP to the communication unit 33.
  • the communication unit 33 may transmit tAoDP directly or to another device via a network such as a LAN or the Internet.
  • the contractility is constant and the LVEDP is also constant, as shown in FIG. 5
  • the increase in blood pressure appears in the form of a longer PEP in the changed triangle 42.
  • the contractile ability is constant and the blood pressure is also constant, as shown in FIG. 6, the shortening of PEP appears in the form of an increase in LVEDP in the changed triangle 43.
  • the control unit 31 may output an estimated value of the left ventricular pressure.
  • the control unit 31 may display the estimated value of LVEDP on the display as the output unit 35.
  • the control unit 31 may output the estimated value of the LVEDP by voice from the speaker as the output unit 35.
  • the control unit 31 may cause the communication unit 33 to transmit the estimated value of the LVEDP.
  • the communication unit 33 may transmit the estimated value of LVEDP directly or via a network such as LAN or the Internet to another device.
  • the flow shown in FIG. 2 may be carried out when performing a catheter examination in a hospital, and the flow shown in FIG. 4 may be carried out when performing daily monitoring inside or outside the hospital.
  • the flow shown in FIG. 2 is performed before the patient with heart failure is discharged and the test data is stored in the storage, and the test data is used to perform the flow shown in FIG. 4 after discharge, one invasive test can be performed.
  • the implementation result of the flow of FIG. 4 may be analyzed as trend data, and the prescription of the drug may be adjusted according to the analysis result.
  • the data may be monitored and an alarm may be notified when an abnormality is detected.
  • the inspection data may be updated by periodically carrying out the flow of FIG. 2 such as one year.
  • the aortic pressure waveform acquisition device 22 of the cardiac function test system 20 acquires the aortic pressure waveform.
  • the blood pressure measuring device 21 of the cardiac function test system 20 measures the arterial pressure downstream of the ascending aorta.
  • the arithmetic unit 25 of the cardiac function test system 20 calculates the aortic pressure value from the aortic pressure waveform acquired by the aortic pressure waveform acquisition device 22.
  • the arithmetic unit 25 calculates the ratio of the aortic pressure value to the blood pressure value obtained as the measurement result of the blood pressure measuring device 21 as an individual difference coefficient.
  • the arithmetic unit 25 stores the individual difference coefficient in the storage.
  • the monitoring system 30 is a storage that stores an individual difference coefficient obtained from the relationship between the aortic pressure value obtained by measuring the ascending aorta pressure and the first blood pressure value obtained for the arterial pressure downstream of the ascending aorta. It is accessible.
  • the control unit 31 of the monitoring system 30 Upon receiving the input of the newly obtained second blood pressure value for the arterial pressure downstream of the ascending aorta, the control unit 31 of the monitoring system 30 acquires the individual difference coefficient from the storage.
  • the control unit 31 estimates the ascending aortic pressure from the second blood pressure value using the individual difference coefficient.
  • the left ventricular pressure waveform acquisition device 23 of the cardiac function test system 20 acquires the left ventricular pressure waveform.
  • the arithmetic unit 25 acquires the left ventricular pressure value from the left ventricular pressure waveform acquired by the left ventricular pressure waveform acquisition device 23, and obtains the value of the precursor time from the aortic pressure waveform acquired by the aortic pressure waveform acquisition device 22. Calculated as a time value.
  • the arithmetic unit 25 calculates a parameter indicating the relationship between the time value and the difference between the aortic pressure value and the left ventricular pressure value as a contractility parameter.
  • the arithmetic unit 25 stores the contractility parameter in the storage.
  • the storage further includes the contractility parameter obtained from the relationship between the aortic pressure value, the left ventricular pressure value obtained by measuring the left ventricular pressure, and the first time value obtained by measuring the precursor time.
  • the control unit 31 measures the heart and receives the input of the newly obtained data, the control unit 31 specifies the value of the precursor time as the second time value from the input data and acquires the contractility parameter from the storage. do.
  • the control unit 31 estimates the left ventricular pressure from the estimated value of the ascending aorta pressure and the second time value using the contractility parameter.
  • the LVEDP and related numerical values are calculated by the individual difference coefficient using the open blood test information.
  • tAoDP is obtained from the central extraarterial blood pressure value measured daily using the individual difference coefficient obtained from the relationship between the AoDP obtained by catheterization and the central extraarterial blood pressure value measured at that time.
  • AoDP is a value indicating afterload.
  • LVEDP is calculated from the value of PEP by non-invasive sensing, the value of tAoDP, and the contractility parameter obtained by catheterization.
  • the extracentral arterial blood pressure value may be a blood pressure value obtained by a non-open blood measurement with a cuff, or an arterial pressure value obtained by an open blood measurement from the A line.
  • the extracentral arterial blood pressure value and the PEP value may be the average value of the values obtained by a plurality of measurements. Contractility may be measured by echo instead of catheterization.
  • AoDP can be calculated accurately only by the blood pressure value outside the central artery and the individual difference coefficient. Since LVEDP can be calculated from tAoDP, the PEP value obtained by sensing such as electrocardiogram and cardiac sound, and the contractility parameter obtained at the time of examination, complicated calculation is not required and accuracy can be expected to be improved. ..
  • the storage may store the individual difference coefficient for each individual.
  • the control unit 31 of the monitoring system 30 receives the input of the individual identifier together with the input of the second blood pressure value, the control unit 31 acquires the coefficient corresponding to the input identifier as the individual difference coefficient.
  • the monitoring system 30 can be commonly used for a plurality of patients.
  • the storage may further store the result of echocardiography measurement.
  • the control unit 31 of the monitoring system 30 receives the input of the new echocardiographic measurement result, the input result is compared with the result stored in the storage. The control unit 31 corrects the contractility parameter according to the comparison result.
  • the present disclosure is not limited to the above-described embodiment.
  • two or more blocks described in the block diagram may be integrated, or one block may be divided.
  • they may be executed in parallel or in a different order according to the processing power of the device that executes each step, or as necessary. good.
  • Other changes are possible without departing from the spirit of this disclosure.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Ophthalmology & Optometry (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

This monitoring system can access a storage that stores an individual difference coefficient obtained from the relationship between an aortic pressure value obtained by measuring the ascending aorta pressure and a first blood pressure value obtained for the arterial pressure downstream of the ascending aorta. The monitoring system comprises a controlling part that acquires, upon receiving input of a second blood pressure value newly obtained for the arterial pressure downstream of the ascending aorta, the individual difference coefficient from the storage and estimates the ascending aorta pressure from the second blood pressure value using the individual difference coefficient.

Description

モニタリングシステム、心機能検査システム、モニタリング方法、及びプログラムMonitoring system, cardiac function test system, monitoring method, and program
 本開示は、モニタリングシステム、心機能検査システム、モニタリング方法、及びプログラムに関する。 This disclosure relates to monitoring systems, cardiac function testing systems, monitoring methods, and programs.
 特許文献1には、心音、上腕カフ圧、及びK音から左心内圧を推定する技術が開示されている。「K」は、Korotkoffの略語である。 Patent Document 1 discloses a technique for estimating left intracranial pressure from heart sounds, brachial cuff pressure, and K sound. "K" is an abbreviation for Korotkoff.
米国特許出願公開第2015/0265163号明細書U.S. Patent Application Publication No. 2015/0265163
 心不全患者について、急性増悪が問題となる。増悪の予兆を早期に示す指標としてLVEDPが知られている。LVEDPとは、左心室拡張終末期圧のことである。 Acute exacerbations are a problem for patients with heart failure. LVEDP is known as an index showing a sign of exacerbation at an early stage. LVEDP is the terminal pressure of left ventricular dilatation.
 左心室圧の測定方法としては、ピッグテールカテーテルによるもの、及び埋込みデバイスによるものがあるが、いずれも侵襲的である。よって、患者負担が大きい。 There are two methods for measuring left ventricular pressure, one is by a pigtail catheter and the other is by an implantable device, both of which are invasive. Therefore, the burden on the patient is large.
 特許文献1に開示されている技術は、左心室圧を推定するアルゴリズムに関するものであるが、血管の状態、及び心機能には個人差があることが知られており、左心室圧の推定精度に影響するものと考えられる。 The technique disclosed in Patent Document 1 relates to an algorithm for estimating left ventricular pressure, but it is known that there are individual differences in the state of blood vessels and cardiac function, and the estimation accuracy of left ventricular pressure is known. It is thought that it affects.
 非特許文献1によれば、図3、図5、及び図6に示すように、直角三角形である三角形41において、直角を挟む2辺の一方をPEP、他方をAoDPからLVEDPを引いた差分とすると、斜辺の傾きは左心室の収縮能に相当する。PEPとは、前駆出時間、すなわち、左心室拡張終末期から大動脈拡張期までの時間のことである。AoDPとは、大動脈拡張期圧、すなわち、大動脈弁開放時の上行大動脈圧のことである。 According to Non-Patent Document 1, as shown in FIGS. 3, 5, and 6, in a triangle 41 which is a right triangle, one of the two sides sandwiching the right angle is PEP, and the other is the difference obtained by subtracting LVEDP from AoDP. Then, the inclination of the hypotenuse corresponds to the contractility of the left ventricle. PEP is the prodromal time, that is, the time from the end of left ventricular diastole to the aortic diastole. AoDP is the diastolic pressure of the aorta, that is, the ascending aortic pressure when the aortic valve is opened.
 非特許文献1で提案されている理論により、LVEDPを算出することが考えられるが、日々変化するAoDPに対して、低侵襲に追従する手段が必要となる。ここで、「低侵襲」には、非侵襲も含まれる。 It is conceivable to calculate LVEDP according to the theory proposed in Non-Patent Document 1, but a means for following minimal invasiveness is required for AoDP, which changes daily. Here, "minimally invasive" includes non-invasive.
 本開示の目的は、上行大動脈圧に対して、低侵襲に追従することである。 The purpose of this disclosure is to follow minimal invasion of ascending aortic pressure.
 本開示の一態様としてのモニタリングシステムは、上行大動脈圧を測定して得られた大動脈圧値と、前記上行大動脈の下流の動脈圧について得られた第1血圧値との関係から求められた個人差係数を記憶するストレージにアクセス可能なモニタリングシステムであって、前記上行大動脈の下流の動脈圧について新たに得られた第2血圧値の入力を受けると、前記ストレージから前記個人差係数を取得し、前記個人差係数を用いて、前記第2血圧値から前記上行大動脈圧を推定する制御部を備える。 The monitoring system as one aspect of the present disclosure is an individual obtained from the relationship between the aortic pressure value obtained by measuring the ascending aortic pressure and the first blood pressure value obtained for the arterial pressure downstream of the ascending aorta. It is a monitoring system that can access the storage that stores the difference coefficient, and when it receives the input of the second blood pressure value newly obtained for the arterial pressure downstream of the ascending aorta, the individual difference coefficient is acquired from the storage. , A control unit for estimating the ascending aortic pressure from the second blood pressure value using the individual difference coefficient.
 一実施形態として、前記個人差係数は、前記第1血圧値に対する前記大動脈圧値の比率であり、前記制御部は、前記第2血圧値と前記個人差係数との積を、前記上行大動脈圧の推定値として算出する。 In one embodiment, the individual difference coefficient is the ratio of the aortic pressure value to the first blood pressure value, and the control unit sets the product of the second blood pressure value and the individual difference coefficient as the ascending aortic pressure. Calculated as an estimated value of.
 一実施形態として、前記大動脈圧値は、大動脈拡張期圧である。 As one embodiment, the aortic pressure value is the aortic diastolic pressure.
 一実施形態として、前記上行大動脈の下流の動脈圧は、上腕動脈圧、橈骨動脈圧、大腿動脈圧、頸動脈圧、及び足背動脈圧のいずれかである。 As one embodiment, the arterial pressure downstream of the ascending aorta is any of brachial artery pressure, radial artery pressure, femoral artery pressure, carotid artery pressure, and ankle dorsal artery pressure.
 一実施形態として、前記ストレージは、前記個人差係数を個人ごとに記憶し、前記制御部は、前記第2血圧値の入力とともに個人の識別子の入力を受けると、前記個人差係数として、入力された識別子に対応する係数を取得する。 As one embodiment, the storage stores the individual difference coefficient for each individual, and when the control unit receives the input of the individual identifier together with the input of the second blood pressure value, the individual difference coefficient is input as the individual difference coefficient. Obtain the coefficient corresponding to the identifier.
 一実施形態として、前記ストレージは、前記大動脈圧値と、左心室圧を測定して得られた左心室圧値と、前駆出時間を測定して得られた第1時間値との関係から求められた収縮能パラメータを更に記憶し、前記制御部は、心臓の測定を行って新たに得られたデータの入力を受けると、入力されたデータから前記前駆出時間の値を第2時間値として特定するとともに、前記ストレージから前記収縮能パラメータを取得し、前記収縮能パラメータを用いて、前記上行大動脈圧の推定値、及び前記第2時間値から前記左心室圧を推定する。 As one embodiment, the storage is obtained from the relationship between the aortic pressure value, the left ventricular pressure value obtained by measuring the left ventricular pressure, and the first time value obtained by measuring the precursor time. Further storing the contractile ability parameter, when the control unit receives the input of the newly obtained data by measuring the heart, the value of the precursor time is used as the second time value from the input data. At the same time, the contractility parameter is acquired from the storage, and the contractility parameter is used to estimate the left ventricular pressure from the estimated value of the ascending aorta pressure and the second time value.
 一実施形態として、前記収縮能パラメータは、前記第1時間値と、前記大動脈圧値及び前記左心室圧値の差との関係を示すパラメータである。 As one embodiment, the contractility parameter is a parameter showing the relationship between the first time value and the difference between the aortic pressure value and the left ventricular pressure value.
 一実施形態として、前記収縮能パラメータは、前記第1時間値に対する前記大動脈圧値と前記左心室圧値との差の比率であり、前記制御部は、前記上行大動脈圧の推定値と、前記第2時間値と前記収縮能パラメータとの積との差を、前記左心室圧の推定値として算出する。 In one embodiment, the contractility parameter is the ratio of the difference between the aortic pressure value and the left ventricular pressure value to the first time value, and the control unit has the estimated value of the ascending aortic pressure and the said. The difference between the product of the second time value and the contractility parameter is calculated as the estimated value of the left ventricular pressure.
 一実施形態として、前記左心室圧値は、左心室拡張終末期圧である。 As one embodiment, the left ventricular pressure value is the left ventricular end-diastolic pressure.
 一実施形態として、前記データは、心電測定及び心音測定の結果を含む。 As one embodiment, the data includes the results of electrocardiographic measurement and cardiac sound measurement.
 一実施形態として、前記データは、心エコー測定の結果を含む。 As an embodiment, the data includes the result of echocardiographic measurement.
 一実施形態として、前記ストレージは、心エコー測定の結果を更に記憶し、前記制御部は、新たな心エコー測定の結果の入力を受けると、入力された結果を前記ストレージに記憶された結果と比較し、比較結果に応じて、前記収縮能パラメータを補正する。 As one embodiment, the storage further stores the result of the echocardiographic measurement, and when the control unit receives the input of the new echocardiographic measurement result, the input result is stored in the storage. The comparison is made, and the contractility parameter is corrected according to the comparison result.
 一実施形態として、前記大動脈圧値及び前記左心室圧値は、カテーテル検査を行って得られた値である。 As one embodiment, the aortic pressure value and the left ventricular pressure value are values obtained by performing a catheter examination.
 一実施形態として、前記モニタリングシステムは、前記ストレージに相当する記憶部を更に備える。 As an embodiment, the monitoring system further includes a storage unit corresponding to the storage.
 本開示の一態様としての心機能検査システムは、大動脈圧波形を取得する大動脈圧波形取得装置と、上行大動脈の下流の動脈圧を測定する血圧測定装置と、前記大動脈圧波形取得装置により取得された大動脈圧波形から大動脈圧値を算出し、前記血圧測定装置の測定結果として得られた血圧値に対する前記大動脈圧値の比率を個人差係数として算出し、前記個人差係数をストレージに記憶させる演算装置とを備える。 The cardiac function test system as one aspect of the present disclosure is acquired by an aortic pressure waveform acquisition device that acquires an aortic pressure waveform, a blood pressure measuring device that measures an arterial pressure downstream of the ascending aorta, and the aortic pressure waveform acquisition device. A calculation that calculates the aortic pressure value from the aortic pressure waveform, calculates the ratio of the aortic pressure value to the blood pressure value obtained as the measurement result of the blood pressure measuring device as an individual difference coefficient, and stores the individual difference coefficient in the storage. Equipped with a device.
 一実施形態として、前記心機能検査システムは、左心室圧波形を取得する左心室圧波形取得装置を更に備え、前記演算装置は、前記左心室圧波形取得装置により取得された左心室圧波形から左心室圧値を取得するとともに、前記大動脈圧波形取得装置により取得された大動脈圧波形から前駆出時間の値を時間値として算出し、前記時間値と、前記大動脈圧値及び前記左心室圧値の差との関係を示すパラメータを収縮能パラメータとして算出し、前記収縮能パラメータを前記ストレージに記憶させる。 As one embodiment, the cardiac function test system further includes a left ventricular pressure waveform acquisition device for acquiring a left ventricular pressure waveform, and the arithmetic unit is obtained from the left ventricular pressure waveform acquired by the left ventricular pressure waveform acquisition device. The left ventricular pressure value is acquired, and the value of the precursor time is calculated as a time value from the aortic pressure waveform acquired by the aortic pressure waveform acquisition device, and the time value, the aortic pressure value, and the left ventricular pressure value are calculated. A parameter indicating the relationship with the difference between the above is calculated as a contractility parameter, and the contractility parameter is stored in the storage.
 本開示の一態様としてのモニタリング方法は、上行大動脈圧を測定して得られた大動脈圧値と、前記上行大動脈の下流の動脈圧について得られた第1血圧値との関係から求められた個人差係数を記憶するストレージにアクセス可能なコンピュータを用いるモニタリング方法であって、前記コンピュータが、前記上行大動脈の下流の動脈圧について新たに得られた第2血圧値の入力を受けると、前記ストレージから前記個人差係数を取得し、前記コンピュータが、前記個人差係数を用いて、前記第2血圧値から前記上行大動脈圧を推定する、というものである。 The monitoring method as one aspect of the present disclosure is an individual obtained from the relationship between the aortic pressure value obtained by measuring the ascending aortic pressure and the first blood pressure value obtained for the arterial pressure downstream of the ascending aorta. It is a monitoring method using a computer that can access a storage that stores the difference coefficient, and when the computer receives an input of a newly obtained second blood pressure value for an arterial pressure downstream of the ascending aorta, the storage is used. The individual difference coefficient is acquired, and the computer estimates the ascending aortic pressure from the second blood pressure value using the individual difference coefficient.
 本開示の一態様としてのプログラムは、上行大動脈圧を測定して得られた大動脈圧値と、前記上行大動脈の下流の動脈圧について得られた第1血圧値との関係から求められた個人差係数を記憶するストレージにアクセス可能なコンピュータに、前記上行大動脈の下流の動脈圧について新たに得られた第2血圧値の入力を受けると、前記ストレージから前記個人差係数を取得する処理と、前記個人差係数を用いて、前記第2血圧値から前記上行大動脈圧を推定する処理とを実行させる。 The program as one aspect of the present disclosure is an individual difference obtained from the relationship between the aortic pressure value obtained by measuring the ascending aortic pressure and the first blood pressure value obtained for the arterial pressure downstream of the ascending aorta. When a computer accessible to the storage for storing the coefficient receives an input of a second blood pressure value newly obtained for the arterial pressure downstream of the ascending aorta, the process of acquiring the individual difference coefficient from the storage and the process of acquiring the individual difference coefficient are performed. Using the individual difference coefficient, the process of estimating the ascending aortic pressure from the second blood pressure value is executed.
 本開示によれば、上行大動脈圧に対して、低侵襲に追従することができる。 According to the present disclosure, it is possible to follow the minimal invasiveness to the ascending aortic pressure.
本開示の実施形態に係るシステムの構成を示すブロック図である。It is a block diagram which shows the structure of the system which concerns on embodiment of this disclosure. 本開示の実施形態に係る心機能検査システムの動作を示すフローチャートである。It is a flowchart which shows the operation of the cardiac function test system which concerns on embodiment of this disclosure. 本開示の実施形態において適用される理論を示す図である。It is a figure which shows the theory applied in embodiment of this disclosure. 本開示の実施形態に係るモニタリングシステムの動作を示すフローチャートである。It is a flowchart which shows the operation of the monitoring system which concerns on embodiment of this disclosure. 本開示の実施形態における三角形の変化の一例を示す図である。It is a figure which shows an example of the change of the triangle in the embodiment of this disclosure. 本開示の実施形態における三角形の変化の別の例を示す図である。It is a figure which shows another example of the change of a triangle in the embodiment of this disclosure.
 以下、本開示の実施形態について、図を参照して説明する。 Hereinafter, embodiments of the present disclosure will be described with reference to the figures.
 各図中、同一又は相当する部分には、同一符号を付している。本実施形態の説明において、同一又は相当する部分については、説明を適宜省略又は簡略化する。 In each figure, the same or corresponding parts are given the same reference numerals. In the description of the present embodiment, the description will be omitted or simplified as appropriate for the same or corresponding parts.
 図1を参照して、本実施形態に係るシステム10の構成を説明する。 The configuration of the system 10 according to the present embodiment will be described with reference to FIG.
 本実施形態に係るシステム10は、心機能検査システム20と、モニタリングシステム30とを備える。 The system 10 according to the present embodiment includes a cardiac function test system 20 and a monitoring system 30.
 心機能検査システム20は、血圧測定装置21と、大動脈圧波形取得装置22と、左心室圧波形取得装置23と、波形データ収集装置24と、演算装置25とを備える。 The cardiac function test system 20 includes a blood pressure measuring device 21, an aortic pressure waveform acquisition device 22, a left ventricular pressure waveform acquisition device 23, a waveform data acquisition device 24, and a calculation device 25.
 血圧測定装置21は、上行大動脈の下流の動脈圧を測定する装置である。測定方法としては、任意の方法が用いられてよいが、本実施形態では、カフによる非観血的方法、又はAラインによる観血的方法が用いられる。「A」は、arterialの略語である。本実施形態では、血圧測定装置21は、上行大動脈の下流の動脈圧として、上腕動脈圧又は橈骨動脈圧を測定するが、大腿動脈圧、頸動脈圧、足背動脈圧、又はその他の中心動脈外血圧を測定してもよい。上腕動脈圧、橈骨動脈圧、大腿動脈圧、頸動脈圧、及び足背動脈圧などの中心動脈外血圧は、いわゆる「末梢血圧」に相当する。 The blood pressure measuring device 21 is a device that measures the arterial pressure downstream of the ascending aorta. As the measuring method, any method may be used, but in the present embodiment, a non-invasive method using a cuff or an invasive method using an A-line is used. "A" is an abbreviation for arterial. In the present embodiment, the blood pressure measuring device 21 measures the brachial artery pressure or the radial artery pressure as the arterial pressure downstream of the ascending aorta, but the femoral artery pressure, the carotid artery pressure, the dorsalis pedis artery pressure, or other central artery. External blood pressure may be measured. Extracentral arterial blood pressure such as brachial artery pressure, radial artery pressure, femoral artery pressure, carotid artery pressure, and dorsalis pedis pressure corresponds to so-called "peripheral blood pressure".
 大動脈圧波形取得装置22は、大動脈圧波形を取得する装置である。取得方法としては、任意の方法が用いられてよいが、本実施形態では、圧力センサカテーテルによる観血的方法が用いられる。 The aortic pressure waveform acquisition device 22 is a device that acquires an aortic pressure waveform. Any method may be used as the acquisition method, but in the present embodiment, an open blood method using a pressure sensor catheter is used.
 左心室圧波形取得装置23は、左心室圧波形を取得する装置である。取得方法としては、任意の方法が用いられてよいが、本実施形態では、圧力センサカテーテルによる観血的方法が用いられる。 The left ventricular pressure waveform acquisition device 23 is a device that acquires a left ventricular pressure waveform. Any method may be used as the acquisition method, but in the present embodiment, an open blood method using a pressure sensor catheter is used.
 波形データ収集装置24は、大動脈圧波形取得装置22により取得された大動脈圧波形と、左心室圧波形取得装置23により取得された左心室圧波形とを波形データとして収集し、波形データを出力する装置である。 The waveform data collecting device 24 collects the aortic pressure waveform acquired by the aortic pressure waveform acquisition device 22 and the left ventricular pressure waveform acquired by the left ventricular pressure waveform acquisition device 23 as waveform data, and outputs the waveform data. It is a device.
 演算装置25は、データ解析及び心機能演算、並びに個人差係数演算などの処理を実行するコンピュータである。演算装置25は、例えば、専用機器、PCなどの汎用機器、又はクラウドコンピューティングシステム若しくはその他のコンピューティングシステムに属するサーバ機器である。「PC」は、personal computerの略語である。演算装置25は、直接、又はLAN若しくはインターネットなどのネットワークを介して、血圧測定装置21、波形データ収集装置24、及びモニタリングシステム30と通信可能である。「LAN」は、local area networkの略語である。 The arithmetic unit 25 is a computer that executes processing such as data analysis, cardiac function calculation, and individual difference coefficient calculation. The arithmetic unit 25 is, for example, a dedicated device, a general-purpose device such as a PC, or a server device belonging to a cloud computing system or other computing system. "PC" is an abbreviation for personal computer. The arithmetic unit 25 can communicate with the blood pressure measuring device 21, the waveform data collecting device 24, and the monitoring system 30 directly or via a network such as a LAN or the Internet. "LAN" is an abbreviation for local area network.
 演算装置25により実行されるデータ解析は、波形データ収集装置24から出力された波形データを解析する処理である。演算装置25により実行される心機能演算は、データ解析の結果に基づいて、大動脈圧値、左心室圧値、及び前駆出時間の値を算出し、算出した3つの値の関係から収縮能パラメータを求める処理である。大動脈圧値は、具体的には大動脈拡張期圧、すなわち、AoDPである。左心室圧値は、具体的には左心室拡張終末期圧、すなわち、LVEDPである。前駆出時間、すなわち、PEPは、左心室圧波形と大動脈圧波形とを同期させ、LVEDPに対応する時点から大動脈圧波形の始まりの立上り時点までの時間として算出される。本実施形態では、左心室圧と大動脈圧とがデュアル圧力センサカテーテルによって同時に測定されるが、左心室圧と大動脈圧とを別々に測定してから、ECG、Aライン、又はPPGなど、別の脈波を基準として同期させてもよい。「ECG」は、electrocardiogramの略語である。「PPG」は、photoplethysmogramの略語である。図3、図5、又は図6に示す三角形41において、直角を挟む2辺の一方をPEP、他方をAoDPからLVEDPを引いた差分とすると、斜辺の傾きは左心室の収縮能に相当する。収縮能パラメータは、本実施形態では、この傾きを表すパラメータであるが、左心室圧波形における、LVEDPに対応する時点から大動脈圧波形の始まりの立上り時点までの近似曲線を表すパラメータでもよい。 The data analysis executed by the arithmetic unit 25 is a process of analyzing the waveform data output from the waveform data acquisition device 24. The cardiac function calculation executed by the calculation device 25 calculates the aortic pressure value, the left ventricular pressure value, and the prodromal time value based on the result of data analysis, and the contractility parameter is calculated from the relationship between the calculated three values. Is the process of finding. The aortic pressure value is specifically the aortic diastolic pressure, that is, AoDP. The left ventricular pressure value is specifically the left ventricular end-diastolic pressure, that is, LVEDP. The prodromal time, i.e., PEP, is calculated as the time from the point corresponding to the LVEDP to the onset of the onset of the aortic pressure waveform by synchronizing the left ventricular pressure waveform with the aortic pressure waveform. In this embodiment, the left ventricular pressure and the aortic pressure are measured simultaneously by the dual pressure sensor catheter, but the left ventricular pressure and the aortic pressure are measured separately, and then another ECG, A line, or PPG is used. It may be synchronized with reference to the pulse wave. "ECG" is an abbreviation for electrocardiogram. "PPG" is an abbreviation for photoplethysmogram. In the triangle 41 shown in FIG. 3, FIG. 5, or FIG. 6, if one of the two sides sandwiching the right triangle is PEP and the other is the difference obtained by subtracting LVEDP from AoDP, the inclination of the hypotenuse corresponds to the contractility of the left ventricle. In the present embodiment, the contractility parameter is a parameter representing this inclination, but may be a parameter representing an approximate curve from the time point corresponding to the LVEDP to the rising point of the start of the aortic pressure waveform in the left ventricular pressure waveform.
 演算装置25により実行される個人差係数演算は、心機能演算で算出された大動脈圧値と、血圧測定装置21の測定結果として得られた血圧値との関係から個人差係数を求める処理である。個人差係数は、具体的には、AoDPを血圧値で割った比率である。 The individual difference coefficient calculation executed by the arithmetic unit 25 is a process of obtaining the individual difference coefficient from the relationship between the aortic pressure value calculated by the cardiac function calculation and the blood pressure value obtained as the measurement result of the blood pressure measuring device 21. .. The individual difference coefficient is specifically the ratio of AoDP divided by the blood pressure value.
 大動脈圧値、左心室圧値、収縮能パラメータ、血圧値、及び個人差係数は、検査データとしてストレージに記憶される。ストレージは、本実施形態ではモニタリングシステム30に備えられるが、外部のストレージとしてモニタリングシステム30に接続されてもよい。 The aortic pressure value, left ventricular pressure value, contractility parameter, blood pressure value, and individual difference coefficient are stored in the storage as test data. The storage is provided in the monitoring system 30 in this embodiment, but may be connected to the monitoring system 30 as external storage.
 モニタリングシステム30は、後負荷演算及びLVEDP演算を実行するコンピュータである。モニタリングシステム30は、例えば、専用機器、PCなどの汎用機器、又はクラウドコンピューティングシステム若しくはその他のコンピューティングシステムに属するサーバ機器である。 The monitoring system 30 is a computer that executes afterload calculation and LVEDP calculation. The monitoring system 30 is, for example, a dedicated device, a general-purpose device such as a PC, or a server device belonging to a cloud computing system or other computing system.
 モニタリングシステム30により実行される後負荷演算は、ストレージに記憶された個人差係数を用いて、血圧測定によって新たに得られた血圧値から上行大動脈圧を推定する処理である。血圧測定では、血圧測定装置21による測定と同じように、上行大動脈の下流の動脈圧が測定される。測定方法としては、任意の方法が用いられてよいが、本実施形態では、カフによる非観血的方法、又はAラインによる観血的方法が用いられる。血圧測定装置21とは別の測定方法が用いられてもよい。本実施形態では、血圧測定装置21に合わせて、上行大動脈の下流の動脈圧として、上腕動脈圧又は橈骨動脈圧が測定されるが、大腿動脈圧、頸動脈圧、足背動脈圧、又はその他の中心動脈外血圧が測定されてもよい。上行大動脈の下流の動脈圧が測定される代わりに、上行大動脈の下流の動脈圧が推定されて血圧値が得られてもよい。推定方法としては、PPGによる方法、顔の画像解析による方法、又はミリ波レーダによる方法など、任意の方法が用いられてよい。後負荷演算は、具体的には、個人差係数を血圧値に掛けた積をAoDPの推定値として算出する処理である。 The afterload calculation executed by the monitoring system 30 is a process of estimating the ascending aortic pressure from the blood pressure value newly obtained by the blood pressure measurement using the individual difference coefficient stored in the storage. In the blood pressure measurement, the arterial pressure downstream of the ascending aorta is measured in the same manner as the measurement by the blood pressure measuring device 21. As the measuring method, any method may be used, but in the present embodiment, a non-invasive method using a cuff or an invasive method using an A-line is used. A measurement method different from that of the blood pressure measuring device 21 may be used. In the present embodiment, the brachial artery pressure or the radial artery pressure is measured as the arterial pressure downstream of the ascending aorta according to the blood pressure measuring device 21, but the femoral artery pressure, the carotid artery pressure, the dorsalis pedis artery pressure, or the like. Extracentral arterial blood pressure may be measured. Instead of measuring the arterial pressure downstream of the ascending aorta, the arterial pressure downstream of the ascending aorta may be estimated to obtain a blood pressure value. As the estimation method, any method such as a method by PPG, a method by face image analysis, or a method by millimeter wave radar may be used. Specifically, the afterload calculation is a process of calculating the product of the individual difference coefficient multiplied by the blood pressure value as the estimated value of AoDP.
 モニタリングシステム30により実行されるLVEDP演算は、前負荷測定によって新たに得られたデータからPEPの値を特定し、ストレージに記憶された収縮能パラメータを用いて、特定した値から左心室圧を推定する処理である。前負荷測定は、具体的には、心電測定及び心音測定、又は心エコー測定である。心電及び心音からPEPの値を特定する方法、並びに心エコーからPEPの値を特定する方法については、既知の方法が用いられてよい。他の既知の方法として、心機図からPEPの値を特定する方法が用いられてもよい。LVEDP演算は、具体的には、後負荷演算で算出されたAoDPの推定値から、収縮能パラメータをPEPの値に掛けた積を引いた差分をLVEDPの推定値として算出する処理である。 The LVEDP calculation performed by the monitoring system 30 identifies the PEP value from the newly obtained data from the preload measurement and estimates the left ventricular pressure from the identified value using the contractility parameter stored in the storage. It is a process to do. The preload measurement is specifically an electrocardiographic measurement and a heart sound measurement, or an echocardiographic measurement. As for the method of specifying the PEP value from the electrocardiogram and the heart sound, and the method of specifying the PEP value from the echocardiography, a known method may be used. As another known method, a method of specifying the value of PEP from the electrocardiogram may be used. Specifically, the LVEDP calculation is a process of calculating the difference obtained by subtracting the product of the contractility parameter by the PEP value from the estimated value of AoDP calculated by the afterload calculation as the estimated value of LVEDP.
 モニタリングシステム30は、制御部31と、記憶部32と、通信部33と、入力部34と、出力部35とを備える。 The monitoring system 30 includes a control unit 31, a storage unit 32, a communication unit 33, an input unit 34, and an output unit 35.
 制御部31は、少なくとも1つのプロセッサ、少なくとも1つのプログラマブル回路、少なくとも1つの専用回路、又はこれらの任意の組合せを含む。プロセッサは、CPU若しくはGPUなどの汎用プロセッサ、又は特定の処理に特化した専用プロセッサである。「CPU」は、central processing unitの略語である。「GPU」は、graphics processing unitの略語である。プログラマブル回路は、例えば、FPGAである。「FPGA」は、field-programmable gate arrayの略語である。専用回路は、例えば、ASICである。「ASIC」は、application specific integrated circuitの略語である。制御部31は、モニタリングシステム30の各部を制御しながら、モニタリングシステム30の動作に関わる処理を実行する。制御部31は、後負荷演算及びLVEDP演算を実行する。 The control unit 31 includes at least one processor, at least one programmable circuit, at least one dedicated circuit, or any combination thereof. The processor is a general-purpose processor such as a CPU or GPU, or a dedicated processor specialized for a specific process. "CPU" is an abbreviation for central processing unit. "GPU" is an abbreviation for graphics processing unit. The programmable circuit is, for example, an FPGA. "FPGA" is an abbreviation for field-programmable gate array. The dedicated circuit is, for example, an ASIC. "ASIC" is an abbreviation for application specific integrated circuit. The control unit 31 executes processing related to the operation of the monitoring system 30 while controlling each unit of the monitoring system 30. The control unit 31 executes afterload calculation and LVEDP calculation.
 記憶部32は、少なくとも1つの半導体メモリ、少なくとも1つの磁気メモリ、少なくとも1つの光メモリ、又はこれらの任意の組合せを含む。半導体メモリは、例えば、RAM又はROMである。「RAM」は、random access memoryの略語である。「ROM」は、read only memoryの略語である。RAMは、例えば、SRAM又はDRAMである。「SRAM」は、static random access memoryの略語である。「DRAM」は、dynamic random access memoryの略語である。ROMは、例えば、EEPROMである。「EEPROM」は、electrically erasable programmable read only memoryの略語である。記憶部32は、例えば、主記憶装置、補助記憶装置、又はキャッシュメモリとして機能する。記憶部32には、モニタリングシステム30の動作に用いられるデータと、モニタリングシステム30の動作によって得られたデータとが記憶される。記憶部32は、本実施形態ではストレージに相当する。 The storage unit 32 includes at least one semiconductor memory, at least one magnetic memory, at least one optical memory, or any combination thereof. The semiconductor memory is, for example, RAM or ROM. "RAM" is an abbreviation for random access memory. "ROM" is an abbreviation for read only memory. The RAM is, for example, an SRAM or a DRAM. "SRAM" is an abbreviation for static random access memory. "DRAM" is an abbreviation for dynamic random access memory. The ROM is, for example, EEPROM. "EEPROM" is an abbreviation for electrically erasable programmable read only memory. The storage unit 32 functions as, for example, a main storage device, an auxiliary storage device, or a cache memory. The storage unit 32 stores data used for the operation of the monitoring system 30 and data obtained by the operation of the monitoring system 30. The storage unit 32 corresponds to storage in this embodiment.
 通信部33は、少なくとも1つの通信用インタフェースを含む。通信用インタフェースは、例えば、LANインタフェース、LTE、4G規格、若しくは5G規格などの移動通信規格に対応したインタフェース、又はBluetooth(登録商標)などの近距離無線通信に対応したインタフェースである。「LTE」は、Long Term Evolutionの略語である。「4G」は、4th generationの略語である。「5G」は、5th generationの略語である。通信部33は、モニタリングシステム30の動作に用いられるデータを受信し、またモニタリングシステム30の動作によって得られるデータを送信する。 The communication unit 33 includes at least one communication interface. The communication interface is, for example, a LAN interface, an interface compatible with mobile communication standards such as LTE, 4G standard, or 5G standard, or an interface compatible with short-range wireless communication such as Bluetooth (registered trademark). "LTE" is an abbreviation for Long Term Evolution. "4G" is an abbreviation for 4th generation. "5G" is an abbreviation for 5th generation. The communication unit 33 receives the data used for the operation of the monitoring system 30, and also transmits the data obtained by the operation of the monitoring system 30.
 入力部34は、少なくとも1つの入力用インタフェースを含む。入力用インタフェースは、例えば、物理キー、静電容量キー、ポインティングデバイス、ディスプレイと一体的に設けられたタッチスクリーン、カメラなどの撮影装置、又はマイクである。入力部34は、モニタリングシステム30の動作に用いられるデータを入力する操作を受け付ける。入力部34は、モニタリングシステム30に備えられる代わりに、外部の入力機器としてモニタリングシステム30に接続されてもよい。接続方式としては、例えば、USB、HDMI(登録商標)、又はBluetooth(登録商標)などの任意の方式を用いることができる。「USB」は、Universal Serial Busの略語である。「HDMI(登録商標)」は、High-Definition Multimedia Interfaceの略語である。 The input unit 34 includes at least one input interface. The input interface is, for example, a physical key, a capacitance key, a pointing device, a touch screen integrally provided with a display, a photographing device such as a camera, or a microphone. The input unit 34 receives an operation for inputting data used for the operation of the monitoring system 30. The input unit 34 may be connected to the monitoring system 30 as an external input device instead of being provided in the monitoring system 30. As the connection method, for example, any method such as USB, HDMI (registered trademark), or Bluetooth (registered trademark) can be used. "USB" is an abbreviation for Universal Serial Bus. "HDMI (registered trademark)" is an abbreviation for High-Definition Multimedia Interface.
 出力部35は、少なくとも1つの出力用インタフェースを含む。出力用インタフェースは、例えば、ディスプレイ又はスピーカである。ディスプレイは、例えば、LCD又は有機ELディスプレイである。「LCD」は、liquid crystal displayの略語である。「EL」は、electro luminescenceの略語である。出力部35は、モニタリングシステム30の動作によって得られるデータを出力する。出力部35は、モニタリングシステム30に備えられる代わりに、外部の出力機器としてモニタリングシステム30に接続されてもよい。接続方式としては、例えば、USB、HDMI(登録商標)、又はBluetooth(登録商標)などの任意の方式を用いることができる。 The output unit 35 includes at least one output interface. The output interface is, for example, a display or a speaker. The display is, for example, an LCD or an organic EL display. "LCD" is an abbreviation for liquid crystal display. "EL" is an abbreviation for electroluminescence. The output unit 35 outputs the data obtained by the operation of the monitoring system 30. The output unit 35 may be connected to the monitoring system 30 as an external output device instead of being provided in the monitoring system 30. As the connection method, for example, any method such as USB, HDMI (registered trademark), or Bluetooth (registered trademark) can be used.
 モニタリングシステム30の機能は、本実施形態に係るプログラムを、制御部31としてのプロセッサで実行することにより実現される。すなわち、モニタリングシステム30の機能は、ソフトウェアにより実現される。プログラムは、モニタリングシステム30の動作をコンピュータに実行させることで、コンピュータをモニタリングシステム30として機能させる。すなわち、コンピュータは、プログラムに従ってモニタリングシステム30の動作を実行することによりモニタリングシステム30として機能する。 The function of the monitoring system 30 is realized by executing the program according to the present embodiment on the processor as the control unit 31. That is, the function of the monitoring system 30 is realized by software. The program causes the computer to function as the monitoring system 30 by causing the computer to perform the operation of the monitoring system 30. That is, the computer functions as the monitoring system 30 by executing the operation of the monitoring system 30 according to the program.
 プログラムは、非一時的なコンピュータ読取り可能な媒体に記憶しておくことができる。非一時的なコンピュータ読取り可能な媒体は、例えば、フラッシュメモリ、磁気記録装置、光ディスク、光磁気記録媒体、又はROMである。プログラムの流通は、例えば、プログラムを記憶したSDカード、DVD、又はCD-ROMなどの可搬型媒体を販売、譲渡、又は貸与することによって行う。「SD」は、Secure Digitalの略語である。「DVD」は、digital versatile discの略語である。「CD-ROM」は、compact disc read only memoryの略語である。プログラムをサーバのストレージに格納しておき、サーバから他のコンピュータにプログラムを転送することにより、プログラムを流通させてもよい。プログラムをプログラムプロダクトとして提供してもよい。 The program can be stored on a non-temporary computer-readable medium. The non-temporary computer readable medium is, for example, a flash memory, a magnetic recording device, an optical disk, a photomagnetic recording medium, or a ROM. The distribution of the program is performed, for example, by selling, transferring, or renting a portable medium such as an SD card, DVD, or CD-ROM in which the program is stored. "SD" is an abbreviation for Secure Digital. "DVD" is an abbreviation for digital versatile disc. "CD-ROM" is an abbreviation for compact disc read only memory. The program may be distributed by storing the program in the storage of the server and transferring the program from the server to another computer. The program may be provided as a program product.
 コンピュータは、例えば、可搬型媒体に記憶されたプログラム又はサーバから転送されたプログラムを、一旦、主記憶装置に格納する。そして、コンピュータは、主記憶装置に格納されたプログラムをプロセッサで読み取り、読み取ったプログラムに従った処理をプロセッサで実行する。コンピュータは、可搬型媒体から直接プログラムを読み取り、プログラムに従った処理を実行してもよい。コンピュータは、コンピュータにサーバからプログラムが転送される度に、逐次、受け取ったプログラムに従った処理を実行してもよい。サーバからコンピュータへのプログラムの転送は行わず、実行指示及び結果取得のみによって機能を実現する、いわゆるASP型のサービスによって処理を実行してもよい。「ASP」は、application service providerの略語である。プログラムには、電子計算機による処理の用に供する情報であってプログラムに準ずるものが含まれる。例えば、コンピュータに対する直接の指令ではないがコンピュータの処理を規定する性質を有するデータは、「プログラムに準ずるもの」に該当する。 The computer temporarily stores the program stored in the portable medium or the program transferred from the server in the main storage device, for example. Then, the computer reads the program stored in the main storage device by the processor, and executes the processing according to the read program by the processor. The computer may read the program directly from the portable medium and perform processing according to the program. The computer may sequentially execute processing according to the received program each time the program is transferred from the server to the computer. The process may be executed by a so-called ASP type service that realizes the function only by the execution instruction and the result acquisition without transferring the program from the server to the computer. "ASP" is an abbreviation for application service provider. The program includes information used for processing by a computer and equivalent to the program. For example, data that is not a direct command to the computer but has the property of defining the processing of the computer corresponds to "a program-like data".
 モニタリングシステム30の一部又は全ての機能が、制御部31としてのプログラマブル回路又は専用回路により実現されてもよい。すなわち、モニタリングシステム30の一部又は全ての機能が、ハードウェアにより実現されてもよい。 A part or all the functions of the monitoring system 30 may be realized by a programmable circuit or a dedicated circuit as the control unit 31. That is, some or all the functions of the monitoring system 30 may be realized by hardware.
 図2を参照して、本実施形態に係る心機能検査システム20の動作を説明する。この動作は、本実施形態に係る心機能検査方法に相当する。 The operation of the cardiac function test system 20 according to the present embodiment will be described with reference to FIG. This operation corresponds to the cardiac function test method according to the present embodiment.
 ステップS101において、血圧測定装置21は、上行大動脈の下流の動脈圧を測定する。具体的には、血圧測定装置21は、上腕又は手首に取り付けられたカフによって非観血的に血圧を測定する。あるいは、血圧測定装置21は、Aラインによって観血的に血圧を測定する。 In step S101, the blood pressure measuring device 21 measures the arterial pressure downstream of the ascending aorta. Specifically, the blood pressure measuring device 21 measures the blood pressure non-invasively by a cuff attached to the upper arm or the wrist. Alternatively, the blood pressure measuring device 21 measures the blood pressure invasively by the A line.
 ステップS102において、カテーテル検査が行われる。その結果、左心室圧波形取得装置23は、図3に示すような左心室圧波形を取得する。大動脈圧波形取得装置22は、図3に示すような大動脈圧波形を取得する。 In step S102, a catheter examination is performed. As a result, the left ventricular pressure waveform acquisition device 23 acquires the left ventricular pressure waveform as shown in FIG. The aortic pressure waveform acquisition device 22 acquires an aortic pressure waveform as shown in FIG.
 ステップS103において、演算装置25は、左心室圧波形取得装置23により取得された左心室圧波形から左心室圧値を取得する。すなわち、演算装置25は、ステップS102でカテーテル検査を行って得られた左心室圧値を取得する。具体的には、演算装置25は、圧力センサカテーテルによって観血的に取得された左心室圧波形からLVEDP値を取得する。図3の例では、点AがLVEDPに対応する点として抽出される。 In step S103, the arithmetic unit 25 acquires the left ventricular pressure value from the left ventricular pressure waveform acquired by the left ventricular pressure waveform acquisition device 23. That is, the arithmetic unit 25 acquires the left ventricular pressure value obtained by performing the catheter examination in step S102. Specifically, the arithmetic unit 25 acquires the LVEDP value from the left ventricular pressure waveform invasively acquired by the pressure sensor catheter. In the example of FIG. 3, the point A is extracted as the point corresponding to the LVEDP.
 ステップS104において、演算装置25は、大動脈圧波形取得装置22により取得された大動脈圧波形から大動脈圧値を算出する。すなわち、演算装置25は、ステップS102でカテーテル検査を行って得られた大動脈圧値を算出する。また、演算装置25は、大動脈圧波形取得装置22により取得された大動脈圧波形から前駆出時間の値を第1時間値として算出する。具体的には、演算装置25は、圧力センサカテーテルによってそれぞれ観血的に取得された左心室圧波形と大動脈圧波形との時間同期をとり、PEP及びAoDPを算出する。図3の例では、点BがAoDPに対応する点として抽出される。線分ACがPEPに対応する線分として抽出される。 In step S104, the arithmetic unit 25 calculates the aortic pressure value from the aortic pressure waveform acquired by the aortic pressure waveform acquisition device 22. That is, the arithmetic unit 25 calculates the aortic pressure value obtained by performing the catheter examination in step S102. Further, the arithmetic unit 25 calculates the value of the precursor time from the aortic pressure waveform acquired by the aortic pressure waveform acquisition device 22 as the first time value. Specifically, the arithmetic unit 25 calculates PEP and AoDP by time-synchronizing the left ventricular pressure waveform and the aortic pressure waveform obtained invasively by the pressure sensor catheter, respectively. In the example of FIG. 3, the point B is extracted as the point corresponding to AoDP. The line segment AC is extracted as the line segment corresponding to PEP.
 ステップS105において、演算装置25は、第1時間値と、大動脈圧値及び左心室圧値の差との関係を示すパラメータを収縮能パラメータとして算出する。本実施形態では、演算装置25は、第1時間値に対する大動脈圧値と左心室圧値との差の比率を収縮能パラメータとして算出する。具体的には、演算装置25は、Ctrを収縮能パラメータとしたとき、次式によりCtrを算出する。
 Ctr=(AoDP-LVEDP)/PEP
 図3の例では、直角三角形ABCに相当する三角形41の斜辺の傾きがCtrとして算出される。一変形例として、Ctrは、図3における線形化前の曲線ABのように、LVEDPに対応する時点から大動脈圧波形の始まりの立上り時点までの時間における、左心室圧波形に近似する曲線として算出されてもよい。
In step S105, the arithmetic unit 25 calculates a parameter indicating the relationship between the first time value and the difference between the aortic pressure value and the left ventricular pressure value as the contractility parameter. In the present embodiment, the arithmetic unit 25 calculates the ratio of the difference between the aortic pressure value and the left ventricular pressure value with respect to the first time value as the contractility parameter. Specifically, the arithmetic unit 25 calculates Ctr by the following equation when Ctr is used as a contractility parameter.
Ctr = (AoDP-LVEDP) / PEP
In the example of FIG. 3, the slope of the hypotenuse of the triangle 41 corresponding to the right triangle ABC is calculated as Ctr. As an example of modification, Ctr is calculated as a curve that approximates the left ventricular pressure waveform in the time from the time point corresponding to the LVEDP to the rising point of the beginning of the aortic pressure waveform, as in the curve AB before linearization in FIG. May be done.
 ステップS106において、演算装置25は、血圧測定装置21の測定結果として得られた第1血圧値に対する大動脈圧値の比率を個人差係数として算出する。第1血圧値は、測定結果として得られた血圧の最高値でもよいし、最低値でもよいし、又は中間値など別の値でもよい。具体的には、演算装置25は、pBPrefを第1血圧値としたとき、AoDP/pBPrefを個人差係数として算出する。 In step S106, the arithmetic unit 25 calculates the ratio of the aortic pressure value to the first blood pressure value obtained as the measurement result of the blood pressure measuring device 21 as an individual difference coefficient. The first blood pressure value may be the highest value, the lowest value, or another value such as an intermediate value of the blood pressure obtained as a measurement result. Specifically, the arithmetic unit 25 calculates AoDP / pBPRef as an individual difference coefficient when pBPRef is the first blood pressure value.
 ステップS105及びステップS106において、演算装置25は、収縮能パラメータ及び個人差係数をそれぞれストレージに記憶させてもよいが、本実施形態では、ステップS106において、演算装置25は、収縮能パラメータ及び個人差係数をまとめてストレージに記憶させる。具体的には、演算装置25は、ステップS105で算出したCtrと、ステップS106で算出した個人差係数とを、ステップS103で取得したLVEDP値、並びにステップS104で算出したPEP及びAoDPとともに検査データとしてまとめてモニタリングシステム30に送信する。モニタリングシステム30の通信部33は、検査データを受信する。モニタリングシステム30の記憶部32は、通信部33により受信された検査データを記憶する。 In steps S105 and S106, the arithmetic unit 25 may store the contractility parameter and the individual difference coefficient in the storage, respectively, but in the present embodiment, in step S106, the arithmetic unit 25 has the contractility parameter and the individual difference. Store the coefficients together in the storage. Specifically, the arithmetic unit 25 uses the Ctr calculated in step S105 and the individual difference coefficient calculated in step S106 as inspection data together with the LVEDP value acquired in step S103 and the PEP and AoDP calculated in step S104. Collectively send to the monitoring system 30. The communication unit 33 of the monitoring system 30 receives the inspection data. The storage unit 32 of the monitoring system 30 stores the inspection data received by the communication unit 33.
 その結果、モニタリングシステム30の記憶部32は、上行大動脈圧を測定して得られた大動脈圧値と、上行大動脈の下流の動脈圧について得られた第1血圧値との関係から求められた個人差係数を記憶する。記憶部32は、大動脈圧値と、左心室圧を測定して得られた左心室圧値と、前駆出時間を測定して得られた第1時間値との関係から求められた収縮能パラメータを更に記憶する。 As a result, the storage unit 32 of the monitoring system 30 is an individual obtained from the relationship between the aortic pressure value obtained by measuring the ascending aorta pressure and the first blood pressure value obtained for the arterial pressure downstream of the ascending aorta. Store the difference coefficient. The storage unit 32 has a contractility parameter obtained from the relationship between the aortic pressure value, the left ventricular pressure value obtained by measuring the left ventricular pressure, and the first time value obtained by measuring the precursor time. Further memorize.
 図4を参照して、本実施形態に係るモニタリングシステム30の動作を説明する。この動作は、本実施形態に係るモニタリング方法に相当する。 The operation of the monitoring system 30 according to the present embodiment will be described with reference to FIG. This operation corresponds to the monitoring method according to the present embodiment.
 ステップS107において、制御部31は、心臓の測定を行って新たに得られたデータの入力を受けると、入力されたデータから前駆出時間の値を第2時間値として特定するとともに、記憶部32から収縮能パラメータを取得する。入力されたデータは、心電測定及び心音測定の結果、又は心エコー測定の結果を含む。データは、通信部33により受信されることで入力されてもよいし、又は入力部34を介して入力されてもよい。具体的には、制御部31は、非観血測定により得られた心電及び心音からPEPの値を取得する。あるいは、制御部31は、非観血測定により得られた心エコーからPEPの値を取得する。また、制御部31は、記憶部32に記憶された検査データに含まれるCtrを取得する。 In step S107, when the control unit 31 measures the heart and receives the input of the newly obtained data, the control unit 31 specifies the value of the precursor time from the input data as the second time value, and the storage unit 32. Obtain the contractility parameter from. The input data includes the results of electrocardiographic and heart sound measurements, or the results of echocardiographic measurements. The data may be input by being received by the communication unit 33, or may be input via the input unit 34. Specifically, the control unit 31 acquires the PEP value from the electrocardiogram and the heart sound obtained by the non-invasive measurement. Alternatively, the control unit 31 acquires the PEP value from the echocardiography obtained by the non-invasive measurement. Further, the control unit 31 acquires the Ctr included in the inspection data stored in the storage unit 32.
 ステップS108において、制御部31は、上行大動脈の下流の動脈圧について新たに得られた第2血圧値の入力を受けると、記憶部32から個人差係数を取得する。第2血圧値は、通信部33により受信されることで入力されてもよいし、又は入力部34を介して入力されてもよい。第2血圧値は、測定結果として得られた血圧の最高値でもよいし、最低値でもよいし、又は中間値など別の値でもよいが、どの値を第2血圧値として適用するかは第1血圧値に合わせて決められる。具体的には、制御部31は、上腕又は手首に取り付けられたカフによって非観血的に測定された血圧の値を取得する。あるいは、制御部31は、Aラインによって観血的に測定された血圧の値を取得する。また、制御部31は、記憶部32に記憶された検査データに含まれる個人差係数を取得する。 In step S108, when the control unit 31 receives the input of the newly obtained second blood pressure value for the arterial pressure downstream of the ascending aorta, the control unit 31 acquires the individual difference coefficient from the storage unit 32. The second blood pressure value may be input by being received by the communication unit 33, or may be input via the input unit 34. The second blood pressure value may be the highest value, the lowest value, or another value such as an intermediate value of the blood pressure obtained as a measurement result, but which value is applied as the second blood pressure value is the second. 1 Determined according to blood pressure value. Specifically, the control unit 31 acquires a blood pressure value non-invasively measured by a cuff attached to the upper arm or wrist. Alternatively, the control unit 31 acquires the blood pressure value measured invasively by the A line. Further, the control unit 31 acquires the individual difference coefficient included in the inspection data stored in the storage unit 32.
 ステップS109において、制御部31は、個人差係数を用いて、第2血圧値から上行大動脈圧を推定する。具体的には、制御部31は、第2血圧値と個人差係数との積を、上行大動脈圧の推定値として算出する。より具体的には、制御部31は、tAoDPをAoDPの推定値、pBPdを第2血圧値としたとき、次式によりtAoDPを算出する。
 tAoDP=pBPd×個人差係数
In step S109, the control unit 31 estimates the ascending aortic pressure from the second blood pressure value using the individual difference coefficient. Specifically, the control unit 31 calculates the product of the second blood pressure value and the individual difference coefficient as an estimated value of the ascending aorta pressure. More specifically, when tAoDP is an estimated value of AoDP and pBPd is a second blood pressure value, the control unit 31 calculates tAoDP by the following equation.
tAoDP = pBPd × individual difference coefficient
 制御部31は、上行大動脈圧の推定値を出力してもよい。例えば、制御部31は、tAoDPを出力部35としてのディスプレイに表示してもよい。あるいは、制御部31は、tAoDPを出力部35としてのスピーカから音声で出力してもよい。あるいは、制御部31は、tAoDPを通信部33に送信させてもよい。通信部33は、tAoDPを、直接、又はLAN若しくはインターネットなどのネットワークを介して他の装置に送信してもよい。 The control unit 31 may output an estimated value of the ascending aortic pressure. For example, the control unit 31 may display tAoDP on a display as an output unit 35. Alternatively, the control unit 31 may output the tAoDP by voice from the speaker as the output unit 35. Alternatively, the control unit 31 may transmit tAoDP to the communication unit 33. The communication unit 33 may transmit tAoDP directly or to another device via a network such as a LAN or the Internet.
 ステップS110において、制御部31は、収縮能パラメータを用いて、上行大動脈圧の推定値、及び第2時間値から左心室圧を推定する。具体的には、制御部31は、上行大動脈圧の推定値と、第2時間値と収縮能パラメータとの積との差を、左心室圧の推定値として算出する。より具体的には、制御部31は、PEPdを第2時間値としたとき、次式によりLVEDPの推定値を算出する。
 LVEDP=tAoDP-Ctr×PEPd
 例えば、収縮能が一定で、LVEDPも一定であるとすると、図5に示すように、血圧の上昇は、変化後の三角形42では、PEPが長くなるという形で現れる。また、収縮能が一定で、血圧も一定であるとすると、図6に示すように、PEPの短縮は、変化後の三角形43では、LVEDPが上昇するという形で現れる。
In step S110, the control unit 31 estimates the left ventricular pressure from the estimated value of the ascending aortic pressure and the second time value using the contractility parameter. Specifically, the control unit 31 calculates the difference between the estimated value of the ascending aortic pressure and the product of the second time value and the contractility parameter as the estimated value of the left ventricular pressure. More specifically, the control unit 31 calculates the estimated value of LVEDP by the following equation when PEPd is set as the second time value.
LVEDP = tAoDP-Ctr × PEPd
For example, assuming that the contractility is constant and the LVEDP is also constant, as shown in FIG. 5, the increase in blood pressure appears in the form of a longer PEP in the changed triangle 42. Further, assuming that the contractile ability is constant and the blood pressure is also constant, as shown in FIG. 6, the shortening of PEP appears in the form of an increase in LVEDP in the changed triangle 43.
 制御部31は、左心室圧の推定値を出力してもよい。例えば、制御部31は、LVEDPの推定値を出力部35としてのディスプレイに表示してもよい。あるいは、制御部31は、LVEDPの推定値を出力部35としてのスピーカから音声で出力してもよい。あるいは、制御部31は、LVEDPの推定値を通信部33に送信させてもよい。通信部33は、LVEDPの推定値を、直接、又はLAN若しくはインターネットなどのネットワークを介して他の装置に送信してもよい。 The control unit 31 may output an estimated value of the left ventricular pressure. For example, the control unit 31 may display the estimated value of LVEDP on the display as the output unit 35. Alternatively, the control unit 31 may output the estimated value of the LVEDP by voice from the speaker as the output unit 35. Alternatively, the control unit 31 may cause the communication unit 33 to transmit the estimated value of the LVEDP. The communication unit 33 may transmit the estimated value of LVEDP directly or via a network such as LAN or the Internet to another device.
 本実施形態の一適用例として、病院でカテーテル検査を行う際に図2のフローを実施し、病院内又は病院外で日々のモニタリングを行う際に図4のフローを実施してもよい。例えば、心不全患者の退院前に図2のフローを実施して検査データをストレージに格納し、退院後は検査データを活用して図4のフローを実施すれば、1回の侵襲的な検査の結果をもとに、低侵襲に慢性期管理を行うことが可能となる。慢性期管理の期間中は、図4のフローの実施結果をトレンドデータとして解析し、解析結果に応じて薬の処方を調整してもよい。あるいは、データを監視して、異常を検知した場合にはアラームを通知してもよい。また、図2のフローを1年など、定期的に実施して検査データを更新してもよい。 As an application example of this embodiment, the flow shown in FIG. 2 may be carried out when performing a catheter examination in a hospital, and the flow shown in FIG. 4 may be carried out when performing daily monitoring inside or outside the hospital. For example, if the flow shown in FIG. 2 is performed before the patient with heart failure is discharged and the test data is stored in the storage, and the test data is used to perform the flow shown in FIG. 4 after discharge, one invasive test can be performed. Based on the results, it becomes possible to perform chronic phase management with minimal invasiveness. During the period of chronic phase management, the implementation result of the flow of FIG. 4 may be analyzed as trend data, and the prescription of the drug may be adjusted according to the analysis result. Alternatively, the data may be monitored and an alarm may be notified when an abnormality is detected. Further, the inspection data may be updated by periodically carrying out the flow of FIG. 2 such as one year.
 上述のように、本実施形態では、心機能検査システム20の大動脈圧波形取得装置22は、大動脈圧波形を取得する。心機能検査システム20の血圧測定装置21は、上行大動脈の下流の動脈圧を測定する。心機能検査システム20の演算装置25は、大動脈圧波形取得装置22により取得された大動脈圧波形から大動脈圧値を算出する。演算装置25は、血圧測定装置21の測定結果として得られた血圧値に対する大動脈圧値の比率を個人差係数として算出する。演算装置25は、個人差係数をストレージに記憶させる。 As described above, in the present embodiment, the aortic pressure waveform acquisition device 22 of the cardiac function test system 20 acquires the aortic pressure waveform. The blood pressure measuring device 21 of the cardiac function test system 20 measures the arterial pressure downstream of the ascending aorta. The arithmetic unit 25 of the cardiac function test system 20 calculates the aortic pressure value from the aortic pressure waveform acquired by the aortic pressure waveform acquisition device 22. The arithmetic unit 25 calculates the ratio of the aortic pressure value to the blood pressure value obtained as the measurement result of the blood pressure measuring device 21 as an individual difference coefficient. The arithmetic unit 25 stores the individual difference coefficient in the storage.
 モニタリングシステム30は、上行大動脈圧を測定して得られた大動脈圧値と、上行大動脈の下流の動脈圧について得られた第1血圧値との関係から求められた個人差係数を記憶するストレージにアクセス可能である。モニタリングシステム30の制御部31は、上行大動脈の下流の動脈圧について新たに得られた第2血圧値の入力を受けると、ストレージから個人差係数を取得する。制御部31は、個人差係数を用いて、第2血圧値から上行大動脈圧を推定する。 The monitoring system 30 is a storage that stores an individual difference coefficient obtained from the relationship between the aortic pressure value obtained by measuring the ascending aorta pressure and the first blood pressure value obtained for the arterial pressure downstream of the ascending aorta. It is accessible. Upon receiving the input of the newly obtained second blood pressure value for the arterial pressure downstream of the ascending aorta, the control unit 31 of the monitoring system 30 acquires the individual difference coefficient from the storage. The control unit 31 estimates the ascending aortic pressure from the second blood pressure value using the individual difference coefficient.
 本実施形態によれば、上行大動脈圧に対して、低侵襲に追従することができる。 According to this embodiment, it is possible to follow the minimal invasiveness to the ascending aortic pressure.
 本実施形態では、心機能検査システム20の左心室圧波形取得装置23は、左心室圧波形を取得する。演算装置25は、左心室圧波形取得装置23により取得された左心室圧波形から左心室圧値を取得するとともに、大動脈圧波形取得装置22により取得された大動脈圧波形から前駆出時間の値を時間値として算出する。演算装置25は、時間値と、大動脈圧値及び左心室圧値の差との関係を示すパラメータを収縮能パラメータとして算出する。演算装置25は、収縮能パラメータをストレージに記憶させる。 In the present embodiment, the left ventricular pressure waveform acquisition device 23 of the cardiac function test system 20 acquires the left ventricular pressure waveform. The arithmetic unit 25 acquires the left ventricular pressure value from the left ventricular pressure waveform acquired by the left ventricular pressure waveform acquisition device 23, and obtains the value of the precursor time from the aortic pressure waveform acquired by the aortic pressure waveform acquisition device 22. Calculated as a time value. The arithmetic unit 25 calculates a parameter indicating the relationship between the time value and the difference between the aortic pressure value and the left ventricular pressure value as a contractility parameter. The arithmetic unit 25 stores the contractility parameter in the storage.
 ストレージは、大動脈圧値と、左心室圧を測定して得られた左心室圧値と、前駆出時間を測定して得られた第1時間値との関係から求められた収縮能パラメータを更に記憶する。制御部31は、心臓の測定を行って新たに得られたデータの入力を受けると、入力されたデータから前駆出時間の値を第2時間値として特定するとともに、ストレージから収縮能パラメータを取得する。制御部31は、収縮能パラメータを用いて、上行大動脈圧の推定値、及び第2時間値から左心室圧を推定する。 The storage further includes the contractility parameter obtained from the relationship between the aortic pressure value, the left ventricular pressure value obtained by measuring the left ventricular pressure, and the first time value obtained by measuring the precursor time. Remember. When the control unit 31 measures the heart and receives the input of the newly obtained data, the control unit 31 specifies the value of the precursor time as the second time value from the input data and acquires the contractility parameter from the storage. do. The control unit 31 estimates the left ventricular pressure from the estimated value of the ascending aorta pressure and the second time value using the contractility parameter.
 本実施形態によれば、中心動脈外血圧から大動脈圧及び左心室圧を推定する際の個人差要因の誤差を、観血的検査情報で補正することができる。したがって、大動脈圧及び左心室圧の推定精度が向上する。 According to this embodiment, it is possible to correct the error of the individual difference factor when estimating the aortic pressure and the left ventricular pressure from the aortic pressure outside the central artery with the open blood test information. Therefore, the estimation accuracy of aortic pressure and left ventricular pressure is improved.
 本実施形態では、観血検査情報を用いた個人差係数によりLVEDP及び関連する数値が算出される。具体的には、カテーテル検査で得られたAoDPと、その際に測定された中心動脈外血圧値との関係から求められる個人差係数を用いて、日々測定される中心動脈外血圧値からtAoDPが算出される。ここで、AoDPは後負荷を示す値である。非侵襲センシングによるPEPの値と、tAoDPの値と、カテーテル検査で得られた収縮能パラメータとによりLVEDPが算出される。中心動脈外血圧値は、カフによる非観血測定によって得られた血圧値でもよいし、又はAラインからの観血測定によって得られた動脈圧値でもよい。中心動脈外血圧値及びPEP値は、複数回の測定によって得られた値の平均値でもよい。収縮能は、カテーテル検査の代わりに、エコーで測定されてもよい。 In this embodiment, the LVEDP and related numerical values are calculated by the individual difference coefficient using the open blood test information. Specifically, tAoDP is obtained from the central extraarterial blood pressure value measured daily using the individual difference coefficient obtained from the relationship between the AoDP obtained by catheterization and the central extraarterial blood pressure value measured at that time. Calculated. Here, AoDP is a value indicating afterload. LVEDP is calculated from the value of PEP by non-invasive sensing, the value of tAoDP, and the contractility parameter obtained by catheterization. The extracentral arterial blood pressure value may be a blood pressure value obtained by a non-open blood measurement with a cuff, or an arterial pressure value obtained by an open blood measurement from the A line. The extracentral arterial blood pressure value and the PEP value may be the average value of the values obtained by a plurality of measurements. Contractility may be measured by echo instead of catheterization.
 本実施形態によれば、中心動脈外血圧値及び個人差係数のみでAoDPを精度良く算出できる。tAoDPと、心電及び心音などのセンシングによって得られるPEPの値と、検査時に得られる収縮能パラメータとにより、LVEDPを算出できるため、複雑な計算が不要となり、且つ精度の向上も見込むことができる。 According to this embodiment, AoDP can be calculated accurately only by the blood pressure value outside the central artery and the individual difference coefficient. Since LVEDP can be calculated from tAoDP, the PEP value obtained by sensing such as electrocardiogram and cardiac sound, and the contractility parameter obtained at the time of examination, complicated calculation is not required and accuracy can be expected to be improved. ..
 本実施形態の一変形例として、ストレージは、個人差係数を個人ごとに記憶してもよい。この変形例では、モニタリングシステム30の制御部31は、第2血圧値の入力とともに個人の識別子の入力を受けると、個人差係数として、入力された識別子に対応する係数を取得する。 As a modification of this embodiment, the storage may store the individual difference coefficient for each individual. In this modification, when the control unit 31 of the monitoring system 30 receives the input of the individual identifier together with the input of the second blood pressure value, the control unit 31 acquires the coefficient corresponding to the input identifier as the individual difference coefficient.
 この変形例によれば、モニタリングシステム30を複数の患者に対して共通に利用することができる。 According to this modification, the monitoring system 30 can be commonly used for a plurality of patients.
 本実施形態の別の変形例として、ストレージは、心エコー測定の結果を更に記憶してもよい。この変形例では、モニタリングシステム30の制御部31は、新たな心エコー測定の結果の入力を受けると、入力された結果をストレージに記憶された結果と比較する。制御部31は、比較結果に応じて、収縮能パラメータを補正する。 As another modification of this embodiment, the storage may further store the result of echocardiography measurement. In this modification, when the control unit 31 of the monitoring system 30 receives the input of the new echocardiographic measurement result, the input result is compared with the result stored in the storage. The control unit 31 corrects the contractility parameter according to the comparison result.
 この変形例によれば、収縮能パラメータの算出時に収縮能パラメータとエコーのデータとの相関も求めておくことで、将来、収縮能パラメータの校正が可能となる。 According to this modification, it will be possible to calibrate the contractility parameter in the future by obtaining the correlation between the contractility parameter and the echo data when calculating the contractility parameter.
 本開示は上述の実施形態に限定されるものではない。例えば、ブロック図に記載の2つ以上のブロックを統合してもよいし、又は1つのブロックを分割してもよい。フローチャートに記載の2つ以上のステップを記述に従って時系列に実行する代わりに、各ステップを実行する装置の処理能力に応じて、又は必要に応じて、並列的に又は異なる順序で実行してもよい。その他、本開示の趣旨を逸脱しない範囲での変更が可能である。 The present disclosure is not limited to the above-described embodiment. For example, two or more blocks described in the block diagram may be integrated, or one block may be divided. Instead of executing the two or more steps described in the flow chart in chronological order according to the description, they may be executed in parallel or in a different order according to the processing power of the device that executes each step, or as necessary. good. Other changes are possible without departing from the spirit of this disclosure.
 10 システム
 20 心機能検査システム
 21 血圧測定装置
 22 大動脈圧波形取得装置
 23 左心室圧波形取得装置
 24 波形データ収集装置
 25 演算装置
 30 モニタリングシステム
 31 制御部
 32 記憶部
 33 通信部
 34 入力部
 35 出力部
 41 三角形
 42 三角形
 43 三角形
10 System 20 Cardiac function test system 21 Blood pressure measurement device 22 Aortic pressure waveform acquisition device 23 Left ventricular pressure waveform acquisition device 24 Waveform data acquisition device 25 Computing device 30 Monitoring system 31 Control unit 32 Storage unit 33 Communication unit 34 Input unit 35 Output unit 41 triangle 42 triangle 43 triangle

Claims (18)

  1.  上行大動脈圧を測定して得られた大動脈圧値と、前記上行大動脈の下流の動脈圧について得られた第1血圧値との関係から求められた個人差係数を記憶するストレージにアクセス可能なモニタリングシステムであって、
     前記上行大動脈の下流の動脈圧について新たに得られた第2血圧値の入力を受けると、前記ストレージから前記個人差係数を取得し、前記個人差係数を用いて、前記第2血圧値から前記上行大動脈圧を推定する制御部を備えるモニタリングシステム。
    A storage-accessible monitoring that stores the individual difference coefficient obtained from the relationship between the aortic pressure value obtained by measuring the ascending aorta pressure and the first blood pressure value obtained for the arterial pressure downstream of the ascending aorta. It ’s a system,
    Upon receiving the input of the newly obtained second blood pressure value for the arterial pressure downstream of the ascending aorta, the individual difference coefficient is obtained from the storage, and the individual difference coefficient is used to obtain the individual difference coefficient from the second blood pressure value. A monitoring system with a control unit that estimates ascending aortic pressure.
  2.  前記個人差係数は、前記第1血圧値に対する前記大動脈圧値の比率であり、
     前記制御部は、前記第2血圧値と前記個人差係数との積を、前記上行大動脈圧の推定値として算出する請求項1に記載のモニタリングシステム。
    The individual difference coefficient is the ratio of the aortic pressure value to the first blood pressure value.
    The monitoring system according to claim 1, wherein the control unit calculates the product of the second blood pressure value and the individual difference coefficient as an estimated value of the ascending aorta pressure.
  3.  前記大動脈圧値は、大動脈拡張期圧である請求項1又は請求項2に記載のモニタリングシステム。 The monitoring system according to claim 1 or 2, wherein the aortic pressure value is an aortic diastolic pressure.
  4.  前記上行大動脈の下流の動脈圧は、上腕動脈圧、橈骨動脈圧、大腿動脈圧、頸動脈圧、及び足背動脈圧のいずれかである請求項1から請求項3のいずれか1項に記載のモニタリングシステム。 The arterial pressure downstream of the ascending aorta is any one of brachial artery pressure, radial artery pressure, femoral artery pressure, carotid artery pressure, and ankle dorsal artery pressure, according to any one of claims 1 to 3. Monitoring system.
  5.  前記ストレージは、前記個人差係数を個人ごとに記憶し、
     前記制御部は、前記第2血圧値の入力とともに個人の識別子の入力を受けると、前記個人差係数として、入力された識別子に対応する係数を取得する請求項1から請求項4のいずれか1項に記載のモニタリングシステム。
    The storage stores the individual difference coefficient for each individual, and stores the individual difference coefficient for each individual.
    When the control unit receives an input of an individual identifier together with the input of the second blood pressure value, the control unit acquires a coefficient corresponding to the input identifier as the individual difference coefficient, which is any one of claims 1 to 4. The monitoring system described in the section.
  6.  前記ストレージは、前記大動脈圧値と、左心室圧を測定して得られた左心室圧値と、前駆出時間を測定して得られた第1時間値との関係から求められた収縮能パラメータを更に記憶し、
     前記制御部は、心臓の測定を行って新たに得られたデータの入力を受けると、入力されたデータから前記前駆出時間の値を第2時間値として特定するとともに、前記ストレージから前記収縮能パラメータを取得し、前記収縮能パラメータを用いて、前記上行大動脈圧の推定値、及び前記第2時間値から前記左心室圧を推定する請求項1から請求項5のいずれか1項に記載のモニタリングシステム。
    The storage is a contractility parameter obtained from the relationship between the aortic pressure value, the left ventricular pressure value obtained by measuring the left ventricular pressure, and the first time value obtained by measuring the precursor time. To remember more,
    When the control unit receives the input of the newly obtained data by measuring the heart, the control unit specifies the value of the precursor time as the second time value from the input data, and the contractile ability from the storage. The one according to any one of claims 1 to 5, wherein a parameter is acquired and the left ventricular pressure is estimated from the estimated value of the ascending aorta pressure and the second time value using the contractile ability parameter. Monitoring system.
  7.  前記収縮能パラメータは、前記第1時間値と、前記大動脈圧値及び前記左心室圧値の差との関係を示すパラメータである請求項6に記載のモニタリングシステム。 The monitoring system according to claim 6, wherein the contractility parameter is a parameter showing the relationship between the first time value and the difference between the aortic pressure value and the left ventricular pressure value.
  8.  前記収縮能パラメータは、前記第1時間値に対する前記大動脈圧値と前記左心室圧値との差の比率であり、
     前記制御部は、前記上行大動脈圧の推定値と、前記第2時間値と前記収縮能パラメータとの積との差を、前記左心室圧の推定値として算出する請求項6又は請求項7に記載のモニタリングシステム。
    The contractility parameter is the ratio of the difference between the aortic pressure value and the left ventricular pressure value to the first time value.
    According to claim 6 or 7, the control unit calculates the difference between the estimated value of the ascending aorta pressure and the product of the second time value and the contractile ability parameter as the estimated value of the left ventricular pressure. The monitoring system described.
  9.  前記左心室圧値は、左心室拡張終末期圧である請求項6から請求項8のいずれか1項に記載のモニタリングシステム。 The monitoring system according to any one of claims 6 to 8, wherein the left ventricular pressure value is the left ventricular end-diastolic pressure.
  10.  前記データは、心電測定及び心音測定の結果を含む請求項6から請求項9のいずれか1項に記載のモニタリングシステム。 The monitoring system according to any one of claims 6 to 9, wherein the data includes the results of electrocardiographic measurement and cardiac sound measurement.
  11.  前記データは、心エコー測定の結果を含む請求項6から請求項9のいずれか1項に記載のモニタリングシステム。 The monitoring system according to any one of claims 6 to 9, wherein the data includes the result of echocardiography measurement.
  12.  前記ストレージは、心エコー測定の結果を更に記憶し、
     前記制御部は、新たな心エコー測定の結果の入力を受けると、入力された結果を前記ストレージに記憶された結果と比較し、比較結果に応じて、前記収縮能パラメータを補正する請求項6から請求項11のいずれか1項に記載のモニタリングシステム。
    The storage further stores the results of echocardiographic measurements.
    When the control unit receives an input of a new echocardiographic measurement result, the input result is compared with the result stored in the storage, and the contractility parameter is corrected according to the comparison result. The monitoring system according to any one of claims 11.
  13.  前記大動脈圧値及び前記左心室圧値は、カテーテル検査を行って得られた値である請求項6から請求項12のいずれか1項に記載のモニタリングシステム。 The monitoring system according to any one of claims 6 to 12, wherein the aortic pressure value and the left ventricular pressure value are values obtained by performing a catheter examination.
  14.  前記ストレージに相当する記憶部を更に備える請求項1から請求項13のいずれか1項に記載のモニタリングシステム。 The monitoring system according to any one of claims 1 to 13, further comprising a storage unit corresponding to the storage.
  15.  大動脈圧波形を取得する大動脈圧波形取得装置と、
     上行大動脈の下流の動脈圧を測定する血圧測定装置と、
     前記大動脈圧波形取得装置により取得された大動脈圧波形から大動脈圧値を算出し、前記血圧測定装置の測定結果として得られた血圧値に対する前記大動脈圧値の比率を個人差係数として算出し、前記個人差係数をストレージに記憶させる演算装置と
    を備える心機能検査システム。
    Aortic pressure waveform acquisition device that acquires aortic pressure waveform,
    A blood pressure measuring device that measures the arterial pressure downstream of the ascending aorta,
    The aortic pressure value is calculated from the aortic pressure waveform acquired by the aortic pressure waveform acquisition device, and the ratio of the aortic pressure value to the blood pressure value obtained as the measurement result of the blood pressure measuring device is calculated as an individual difference coefficient. A cardiac function test system equipped with an arithmetic device that stores the individual difference coefficient in storage.
  16.  左心室圧波形を取得する左心室圧波形取得装置を更に備え、
     前記演算装置は、前記左心室圧波形取得装置により取得された左心室圧波形から左心室圧値を取得するとともに、前記大動脈圧波形取得装置により取得された大動脈圧波形から前駆出時間の値を時間値として算出し、前記時間値と、前記大動脈圧値及び前記左心室圧値の差との関係を示すパラメータを収縮能パラメータとして算出し、前記収縮能パラメータを前記ストレージに記憶させる請求項15に記載の心機能検査システム。
    Further equipped with a left ventricular pressure waveform acquisition device that acquires the left ventricular pressure waveform,
    The calculation device acquires the left ventricular pressure value from the left ventricular pressure waveform acquired by the left ventricular pressure waveform acquisition device, and obtains the value of the precursor time from the aortic pressure waveform acquired by the aortic pressure waveform acquisition device. Claim 15 that calculates as a time value, calculates a parameter showing the relationship between the time value and the difference between the aortic pressure value and the left ventricular pressure value as a contractility parameter, and stores the contractility parameter in the storage. Cardiac function test system described in.
  17.  上行大動脈圧を測定して得られた大動脈圧値と、前記上行大動脈の下流の動脈圧について得られた第1血圧値との関係から求められた個人差係数を記憶するストレージにアクセス可能なコンピュータを用いるモニタリング方法であって、
     前記コンピュータが、前記上行大動脈の下流の動脈圧について新たに得られた第2血圧値の入力を受けると、前記ストレージから前記個人差係数を取得し、
     前記コンピュータが、前記個人差係数を用いて、前記第2血圧値から前記上行大動脈圧を推定するモニタリング方法。
    A computer accessible to a storage that stores an individual difference coefficient obtained from the relationship between the aortic pressure value obtained by measuring the ascending aorta pressure and the first blood pressure value obtained for the arterial pressure downstream of the ascending aorta. It is a monitoring method using
    When the computer receives the input of the newly obtained second blood pressure value for the arterial pressure downstream of the ascending aorta, the individual difference coefficient is obtained from the storage.
    A monitoring method in which the computer estimates the ascending aortic pressure from the second blood pressure value using the individual difference coefficient.
  18.  上行大動脈圧を測定して得られた大動脈圧値と、前記上行大動脈の下流の動脈圧について得られた第1血圧値との関係から求められた個人差係数を記憶するストレージにアクセス可能なコンピュータに、
     前記上行大動脈の下流の動脈圧について新たに得られた第2血圧値の入力を受けると、前記ストレージから前記個人差係数を取得する処理と、
     前記個人差係数を用いて、前記第2血圧値から前記上行大動脈圧を推定する処理と
    を実行させるプログラム。
    A computer accessible to a storage that stores an individual difference coefficient obtained from the relationship between the aortic pressure value obtained by measuring the ascending aorta pressure and the first blood pressure value obtained for the arterial pressure downstream of the ascending aorta. To,
    Upon receiving the input of the newly obtained second blood pressure value for the arterial pressure downstream of the ascending aorta, the process of acquiring the individual difference coefficient from the storage and the process of acquiring the individual difference coefficient.
    A program for executing a process of estimating the ascending aortic pressure from the second blood pressure value using the individual difference coefficient.
PCT/JP2021/034188 2020-09-18 2021-09-16 Monitoring system, cardiac function inspection system, monitoring method, and program WO2022059752A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020157603 2020-09-18
JP2020-157603 2020-09-18

Publications (1)

Publication Number Publication Date
WO2022059752A1 true WO2022059752A1 (en) 2022-03-24

Family

ID=80776740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034188 WO2022059752A1 (en) 2020-09-18 2021-09-16 Monitoring system, cardiac function inspection system, monitoring method, and program

Country Status (1)

Country Link
WO (1) WO2022059752A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117717325A (en) * 2024-02-18 2024-03-19 安徽通灵仿生科技有限公司 Left ventricle pressure determining system and method based on ventricular catheter pump

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1094526A (en) * 1996-09-24 1998-04-14 Nippon Colin Co Ltd Aortal pulse pressure waveform detector
JP2003501194A (en) * 1999-06-16 2003-01-14 ジョージズ アスマー,ブーロス Apparatus and method for assessing cardiovascular function
JP2006000176A (en) * 2004-06-15 2006-01-05 Omron Healthcare Co Ltd Central blood pressure-estimating system and method
US20180160917A1 (en) * 2015-05-05 2018-06-14 The Johns Hopkins University A device and method for non-invasive left ventricular end diastolic pressure (lvedp) measurement
WO2019144058A1 (en) * 2018-01-18 2019-07-25 California Institute Of Technology Method and apparatus for left ventricular end diastolic pressure measurement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1094526A (en) * 1996-09-24 1998-04-14 Nippon Colin Co Ltd Aortal pulse pressure waveform detector
JP2003501194A (en) * 1999-06-16 2003-01-14 ジョージズ アスマー,ブーロス Apparatus and method for assessing cardiovascular function
JP2006000176A (en) * 2004-06-15 2006-01-05 Omron Healthcare Co Ltd Central blood pressure-estimating system and method
US20180160917A1 (en) * 2015-05-05 2018-06-14 The Johns Hopkins University A device and method for non-invasive left ventricular end diastolic pressure (lvedp) measurement
WO2019144058A1 (en) * 2018-01-18 2019-07-25 California Institute Of Technology Method and apparatus for left ventricular end diastolic pressure measurement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117717325A (en) * 2024-02-18 2024-03-19 安徽通灵仿生科技有限公司 Left ventricle pressure determining system and method based on ventricular catheter pump
CN117717325B (en) * 2024-02-18 2024-05-14 安徽通灵仿生科技有限公司 Left ventricle pressure determining system and method based on ventricular catheter pump

Similar Documents

Publication Publication Date Title
Nabeel et al. Local pulse wave velocity: theory, methods, advancements, and clinical applications
Koopman et al. Assessment of myocardial deformation in children using Digital Imaging and Communications in Medicine (DICOM) data and vendor independent speckle tracking software
Lang et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology
Pratt et al. Calculating arterial pressure-based cardiac output using a novel measurement and analysis method
US11957438B2 (en) Method and apparatus for left ventricular end diastolic pressure measurement
US9131859B2 (en) Blood pressure measurement apparatus, recording medium that records blood pressure derivation program, and blood pressure derivation method
JP2018061826A (en) Apparatus and method for estimating biometric information, and apparatus for estimating blood pressure information
WO2018072212A1 (en) Calibration method for blood pressure measuring device, and blood pressure measuring device
Liu et al. Patient-specific oscillometric blood pressure measurement: validation for accuracy and repeatability
JP2009136656A (en) Improved estimation of arterial pressure at remote site by oscillometric waveform analysis by use of pressure cuff
KR20190048878A (en) Method and apparatus for measuring blood pressure using optical sensor
Sharman et al. Automated ‘oscillometric’blood pressure measuring devices: how they work and what they measure
US10925516B2 (en) Method and apparatus for estimating the aortic pulse transit time from time intervals measured between fiducial points of the ballistocardiogram
Heravi et al. Continuous and cuffless blood pressure monitoring based on ECG and SpO2 signals ByUsing Microsoft visual C sharp
WO2022059752A1 (en) Monitoring system, cardiac function inspection system, monitoring method, and program
Tolia et al. Validating left ventricular filling pressure measurements in patients with congestive heart failure: CardioMEMS™ pulmonary arterial diastolic pressure versus left atrial pressure measurement by transthoracic echocardiography
Díaz et al. Impact of methodological and calibration approach on the association of central and peripheral systolic blood pressure with cardiac structure and function in children, adolescents and adults
TWI600408B (en) Method for estimating central aortic blood pressure and apparatus using the same
JP7096035B2 (en) Biometric information processing equipment, biometric information processing methods, programs and storage media
US20230200666A1 (en) Arterial-pressure estimation apparatus, arterial-pressure estimation system, and arterial-pressure estimation method
US20230404415A1 (en) Method, A Device And An Electronic Apparatus For Adaptive Blood Pressure Monitoring And Model Training
US11974839B2 (en) Circulatory dynamic measuring apparatus and circulatory dynamic measuring method
Wajdan et al. Automatic detection of valve events by epicardial accelerometer allows estimation of the left ventricular pressure trace and pressure–displacement loop area
Koohi et al. Dynamic threshold algorithm to evaluate trustworthiness of the estimated blood pressure in oscillometry
Sharman et al. Measurements of arterial pressure and flow in vivo

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21869435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21869435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP