WO2022059399A1 - Servo dc power supply system, motor control device, and servo motor control method - Google Patents

Servo dc power supply system, motor control device, and servo motor control method Download PDF

Info

Publication number
WO2022059399A1
WO2022059399A1 PCT/JP2021/029945 JP2021029945W WO2022059399A1 WO 2022059399 A1 WO2022059399 A1 WO 2022059399A1 JP 2021029945 W JP2021029945 W JP 2021029945W WO 2022059399 A1 WO2022059399 A1 WO 2022059399A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
servo
voltage
motor control
supply system
Prior art date
Application number
PCT/JP2021/029945
Other languages
French (fr)
Japanese (ja)
Inventor
裕幸 徳崎
昌志 土井
武男 西川
岳 桐淵
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2022059399A1 publication Critical patent/WO2022059399A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/04Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/40Regulating or controlling the amount of current drawn or delivered by the motor for controlling the mechanical load

Definitions

  • the present invention relates to a servo DC power supply system, a motor control device, and a control method for a servo motor.
  • Patent Document 1 discloses a technique for suppressing torque ripple of a motor due to vibration of a DC bus.
  • the AC component of the voltage of the DC bus is extracted by a high-pass filter, and the correction signal obtained by multiplying the AC component by a predetermined gain is added to the voltage command in the motor control device to control the inverter.
  • the present invention has been made in view of the above problems, and provides a technique for suppressing voltage vibration in a servo DC power supply system including a motor control device that receives power from a DC power supply via a power supply path. With the goal.
  • the servo DC power supply system is a DC power supply, one or a plurality of motor control devices for controlling corresponding servomotors, and the one or a plurality of motor control devices for power from the DC power supply. Includes a power supply path to distribute and supply to. Further, the one or more motor control devices have a detection unit that detects a servo input end voltage input to the motor control device from the power supply path and a detection unit for detecting the servo input end voltage, respectively. , The servo by a current control loop using a predetermined filtered signal that attenuates the high frequency side of the servo input end voltage according to the frequency associated with the voltage vibration in the servo DC power supply system. It includes a current control loop unit that controls the current flowing through the motor, and an adjustment unit that adjusts the frequency band associated with the predetermined filtering process based on a predetermined parameter related to the vibration of the voltage.
  • the predetermined filtering process is a process of attenuating the high frequency side of the servo input end voltage
  • the band on the high frequency side is a frequency band associated with the predetermined filtering process.
  • the predetermined filter processing includes attenuation processing by a low-pass filter having a predetermined cutoff frequency, averaging processing that exhibits a function similar to that of a low-pass filter in a certain frequency band, filter processing by a bandpass filter or a notch filter, and the like. including.
  • the frequency band associated with the predetermined filtering process is set to be related to voltage vibrations in various parts of the system including the power supply path, the DC power supply, and the motor control device.
  • the frequency band in the filter processing is configured to be adjusted based on a predetermined parameter by the adjusting unit, the applicable range of the filtering processing is not unnecessarily expanded, and the servomotor caused by the filtering processing It is possible to suppress torque pulsation and deterioration of responsiveness in the current control loop as much as possible.
  • the predetermined parameter may be at least one of the rotation speed of the corresponding servomotor and the drive current flowing through the corresponding servomotor.
  • the adjusting unit may adjust so that the frequency band becomes lower as the rotation speed increases, and / or adjusts so that the frequency band becomes lower as the drive current increases.
  • the rotation speed of the servomotor increases or the drive current increases, the electric power supplied through the power supply path increases, so that voltage vibration in the power supply path tends to occur. Therefore, by adopting the rotation speed and the drive current of the servomotor as predetermined parameters, suitable adjustment of the frequency band can be realized.
  • the predetermined parameter may be the servo input end voltage.
  • the adjusting unit may adjust the frequency band so that the larger the amplitude is, the lower the frequency band is when the vibration of the voltage is detected in the servo DC power feeding system. As a result, the vibration of the detected voltage can be reduced or eliminated. Further, when the vibration of the voltage does not converge after the frequency band is adjusted by the adjusting unit, the drive of the corresponding servomotor may be stopped. This makes it possible to accurately prevent the unexpected operation of the servo motor.
  • the filtering process is executed by selecting one frequency band from a plurality of frequency bands, and the adjusting unit is based on the predetermined parameter.
  • the one frequency band may be selected.
  • the filter processing may be realized by hardware such as a resistor or a capacitor, or may be realized by software that performs predetermined signal processing (digital processing or the like).
  • the present invention can also be grasped from the side of the motor control device that controls the servo motor in the servo DC power supply system. That is, the present invention is a motor control device that controls a servomotor by power supplied from a DC power supply via a power supply path in a servo DC power supply system, from the power supply path to the motor control device.
  • the detection unit that detects the input servo input end voltage and the high frequency side of the servo input end voltage according to the frequency related to the vibration of the voltage in the servo DC power supply system with respect to the servo input end voltage.
  • a current control loop unit that controls the current flowing through the servomotor by a current control loop using a signal that has been subjected to a predetermined filtering process to attenuate the voltage, and a predetermined parameter related to the vibration of the voltage. It includes an adjusting unit that adjusts the frequency band associated with a predetermined filtering process. According to the motor control device, voltage vibration in the servo DC power supply system that supplies DC power to the motor control device can be suitably suppressed.
  • the present invention can be grasped from the aspect of the method of controlling the servomotor. That is, the present invention has a current control loop that controls the drive current flowing through the servomotor, and controls the servomotor by a motor control device in which power is supplied from the DC power supply via the power supply path in the servo DC power supply system. The step of detecting the servo input end voltage input to the motor control device from the power supply path and the voltage of the voltage in the servo DC power supply system with respect to the servo input end voltage.
  • the servomotor is driven by a current control loop using a step of performing a predetermined filter process for attenuating the high frequency side of the servo input end voltage according to a frequency related to vibration and a signal obtained by the predetermined filter process. Includes a step to control the current flowing through it.
  • the predetermined filtering process is a process by a low-pass filter, and the cutoff frequency in the predetermined filtering process may be adjusted based on a predetermined parameter related to the vibration of the voltage.
  • the rotation speed of the servomotor, the drive current, and the voltage of the power supply path can be adopted as described above. For example, when the value of such a predetermined parameter exceeds the reference value (in some cases, becomes smaller than the reference value), it means that voltage vibration is likely to occur.
  • FIG. 1 is an explanatory diagram of a configuration of a servo DC power supply system according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of the configuration of the motor control device in the servo DC power feeding system.
  • FIG. 3A is a functional block diagram of the motor control device.
  • FIG. 3B is a detailed functional block diagram of the current control loop unit.
  • FIG. 4 is a Bode diagram of the power supply side and the motor side in the conventional DC power supply system.
  • FIG. 5 is a diagram for explaining the difference in the voltage change pattern of the power supply path between the servo DC power supply system and the conventional power supply system.
  • FIG. 6 is a first flowchart of motor control by the motor control device.
  • FIG. 7 is a second flowchart of motor control by the motor control device.
  • FIG. 1 is an explanatory diagram of the configuration of the servo DC power supply system according to the present embodiment
  • FIG. 2 is an explanatory diagram of the configuration of the motor control device 10 which is a component of the servo DC power supply system.
  • the servo DC power supply system is a system in which a DC power supply 30 and a plurality of motor control devices 10 are connected by a power supply path 35.
  • the power supply path 35 is formed so that each of the plurality of motor control devices 10 is connected in parallel to the DC power supply 30.
  • the DC power supply 30 is a power supply that outputs a predetermined DC voltage.
  • FIG. 1 shows a device for converting a three-phase AC from a three-phase AC power source 50 into a DC voltage as a DC power source 30, and the DC power source 30 is a device for converting a single-phase AC to a DC voltage. You may.
  • the DC power supply 30 may be a rectifier circuit in which a diode is combined (for example, a full-wave rectifier circuit) or an AC-DC converter (for example, a power supply regeneration converter) in which a switching element is used.
  • the motor control device 10 is referred to as a servomotor 40 (hereinafter, also simply referred to as a motor 40) in accordance with commands (position command, speed command, etc.) from a host device (not shown in FIG. 1) such as a PLC (Programmable Logic Controller). ) Is a device (details will be described later).
  • the power supply path 35 is a power supply path in which a plurality of power cables are combined so that the electric power from the DC power supply 30 can be distributed and supplied to each motor control device in the servo DC power supply system.
  • a smoothing capacitor 15 is usually provided at a connection portion (between the power supply terminals of each motor control device 10) of the power supply path 35 with each motor control device 10.
  • the motor control device 10 includes an inverter circuit 11 and a control unit 12.
  • the inverter circuit 11 is a circuit for converting a DC voltage (corresponding to the servo input end voltage of the present application) Vb input from the power supply path 35 to the motor control device 10 into a three-phase alternating current.
  • the inverter circuit 11 has a configuration in which a U-phase leg, a V-phase leg, and a W-phase leg are connected in parallel between the positive and negative bus wires, and the motor control device 10 has a configuration in which the inverter circuit 11 is connected.
  • a current sensor 28 for measuring the output current of each leg is provided.
  • the control unit 12 is a unit that controls the inverter circuit 11 by PWM (Pulse Width Modulation) according to a command from a host device (PCL or the like).
  • the control unit 12 is composed of a processor (microcontroller, CPU, etc.) and its peripheral circuits, and the control unit 12 includes signals from each current sensor 28 and an encoder 41 (absolute encoder and incremental encoder) attached to the motor 40. A signal or the like from the encoder) is input.
  • the control unit 12 has a current control loop shown in FIG. 4, which will be described later, and a signal from the current sensor 28 and a signal from the encoder 41 are provided to realize servo control of the motor 40.
  • the servo DC power supply system cuts off each motor control device 10 in order to be able to suppress voltage vibration in the system including the DC power supply 30, the power supply path 35, and the motor control device 10.
  • This system is configured to control the current flowing through the motor 40 by a current control loop using a signal filtered by a low-pass filter configured so that the frequency can be adjusted.
  • all the motor control devices 10 included are configured to perform current control using the signal filtered by the low pass filter as described above.
  • some of the motor control devices 10 included in the motor control devices 10 may be configured to perform the same current control.
  • an averaging process, a filter processing by a band-pass filter, a notch filter, or the like, which exerts a function similar to that of the low-pass filter in a certain frequency band can be adopted.
  • FIG. 3A shows a control loop for servo-controlling the motor 40 included in the motor control device 10
  • FIG. 3B shows a detailed example of the current control loop unit constituting the control loop.
  • the subtractor 21 in the motor control device 10 is a unit that calculates the position deviation by subtracting the position detected by the encoder 41 (hereinafter referred to as the detection position) from the position command.
  • the position controller 22 is a unit that calculates a speed command by multiplying the position deviation by a predetermined position proportional gain.
  • the speed detector 29 is a unit that calculates a speed (hereinafter referred to as a detection speed) by differentiating the detection position.
  • the subtractor 23 is a unit that calculates the speed deviation by subtracting the detected speed from the speed command.
  • the speed controller 24 is a unit that calculates a current command by PI (proportional integration) calculation based on the speed deviation.
  • the current control loop unit 20 is a unit in which the current control loop shown in FIG. 3B is formed so that the current flowing through the motor 40 is feedback-controlled so that the current according to the current command flows through the motor 40.
  • the current control loop unit 20 includes a subtractor 25, a current controller 27, and a current sensor 28.
  • the subtractor 25 is a unit that calculates the current deviation by subtracting the current detected by the current sensor 28 from the current command.
  • the current controller 27 is a unit including the inverter circuit 11 to which the current control loop shown in FIG. 3B is formed.
  • a signal (hereinafter referred to as “processed signal”) obtained by performing a predetermined low-pass filter processing by the low-pass filter 26 with respect to the input voltage Vb to the motor control device 10 is input to the current controller 27. Then, the inverter circuit 11 is controlled so that the current according to the current command flows through the motor 40.
  • the low-pass filter 26 is a digital filter configured so that its cutoff frequency can be adjusted.
  • the cutoff frequency of the low pass filter 26 corresponding to the current control loop unit 20 of each motor control device 10 is the vibration of the voltage in the system, for example, the power supply path 35.
  • the value is set according to the frequency associated with the vibration of the voltage of.
  • the frequency related to the vibration of the voltage may include not only the frequency of the vibration itself but also the frequency that causes the oscillation of the voltage of the power supply path 35 or a frequency in the vicinity thereof.
  • current control is performed according to the control loop shown in FIG. 3B using the processed signal that has passed through the low-pass filter 26. Specifically, the ratio of the output signal of the subtractor 25 to the processed signal is used.
  • FIG. 4 shows a board diagram on the power supply side and the motor side in the conventional servo DC power supply system.
  • the transmission function that integrates the transmission function on the power supply path 35 side and the transmission function on the motor control device 10 side becomes unstable, that is, it is schematically shown in FIG.
  • the gain on the power supply path 35 side (“power supply side”) has a frequency range higher than the gain on the motor control device 10 side (“motor side”)
  • the voltage of the power supply path 35 can oscillate. ..
  • the cutoff frequency of the low-pass filter 26 is adjusted so that the gain on the power supply side is lower than the lower limit frequency in the frequency range exceeding the gain on the motor side. Is preferable. If the current flowing through the motor 40 is controlled by the current control loop shown in FIG. 3B using the low-pass filter 26 whose cutoff frequency is adjusted in this way, the gain on the power supply side can be set on the motor side at any frequency. It is possible not to exceed the gain.
  • the motor control device 10 detects the voltage Vb input to the motor control device 10 from the power supply path 35, performs low-pass filter processing on the voltage Vb by the low-pass filter 26, and performs the processed signal.
  • the motor control device 10 preferably performs voltage oscillation even under power supply conditions (in other words, operating conditions of the motor 40) such that voltage oscillation occurs in the conventional form. It becomes possible to suppress it.
  • the operating state of the motor 40 is acquired.
  • the operating state is a parameter related to the electric power supplied to the motor 40, and for example, the rotation speed and the drive current of the motor 40 can be exemplified.
  • the rotation speed of the motor 40 can be calculated based on the signal from the encoder 41, and the drive current can be acquired based on the signal from the current sensor 28.
  • the operating state of the motor 40 belongs to the high-speed operation region. It can be determined that there is. If an affirmative determination is made in S102, the process proceeds to S103, and if a negative determination is made, the process proceeds to S104.
  • the cutoff frequency of the low-pass filter 26 is adjusted in order to suppress the voltage oscillation of the power supply path 35 as described above. Specifically, the cutoff frequency is adjusted to be lower as the rotation speed of the motor 40 is higher, and / or the cutoff frequency is adjusted to be lower as the drive current of the motor 40 is larger. That is, the cutoff frequency is adjusted to be lower as the electric power supplied through the electric power supply path 35 becomes larger. By such adjustment, the voltage oscillation of the power supply path 35 is suitably suppressed.
  • the low-pass filter processing by the low-pass filter 26 is bypassed.
  • the operation of the low-pass filter 26, which is a digital filter, is turned off, and the signal from the subtractor 25 is directly input to the current controller 27.
  • the bypass of the low-pass filter processing is performed.
  • the low-pass filter processing by the low-pass filter 26 may be performed.
  • the suppression of voltage oscillation by the low-pass filter 26 is substantially limited to the time when the operating state of the motor 40 belongs to the high-speed operating region. Therefore, it is possible to suitably suppress the voltage oscillation of the power supply path 35 while minimizing the generation of torque pulsation caused by the low-pass filter 26. Further, since the cutoff frequency of the low-pass filter 26 is adjusted based on the operating state of the motor 40, it becomes easy to prevent voltage oscillation.
  • the low-pass filter 26 is configured so that its cutoff frequency can be appropriately adjusted according to the rotation speed and the drive current of the motor 40.
  • the low-pass filter 26 is configured in advance. It may be configured so that one of a plurality of frequencies can be selected as the cutoff frequency. Then, based on the rotation speed and drive current of the motor 40, one frequency is selected as the cutoff frequency from the plurality of frequencies and switched to it, thereby suitably suppressing the voltage oscillation of the power supply path 35. be able to.
  • the low-pass filter 26 may be a filter configured by hardware such as a resistance element or a capacitor instead of the form of the digital filter. In such a case, the cutoff frequency can be switched by including a plurality of combinations of resistance elements and capacitors corresponding to a plurality of cutoff frequencies in the low-pass filter 26 in advance and selecting one of the combinations. It can be realized.
  • ⁇ Second adjustment method> a second adjustment method of the low-pass filter 26, which is a digital filter, for achieving both suppression of voltage oscillation and suppression of pulsation of the motor 40 will be described with reference to the flowchart shown in FIG. 7.
  • the adjustment method is repeatedly realized at predetermined intervals by executing a predetermined control program in the control unit 12 of the motor control device 10.
  • S201 the voltage of the power supply path 35 is detected. The detection is performed by a voltage sensor (not shown).
  • S202 it is determined whether or not voltage oscillation occurs in the power supply path 35 based on the detected voltage. Specifically, it can be determined that voltage oscillation has occurred when the rate of change in the amplitude of voltage oscillation exceeds a predetermined value. If an affirmative determination is made in S202, the process proceeds to S203, and if a negative determination is made, the process proceeds to S204.
  • the cutoff frequency of the low-pass filter 26 is adjusted in order to eliminate the voltage oscillation of the power supply path 35 as described above. Specifically, the cutoff frequency is adjusted to be lower as the voltage oscillation detected in S202 is larger. For example, the cutoff frequency may be adjusted to be lower as the amplitude of the voltage vibration is larger. By such adjustment, the voltage oscillation of the power supply path 35 is reduced. However, depending on the state of power supply to the motor control device 10, it may not be possible to sufficiently eliminate the voltage oscillation that has already occurred. Therefore, after the processing of S203, it is determined in S205 whether or not the oscillation has converged. The determination can also be made based on the rate of change of the amplitude of the voltage vibration.
  • the low-pass filter process by the low-pass filter 26 is bypassed as in S104. That is, the operation of the low-pass filter 26, which is a digital filter, is turned off, and the signal from the subtractor 25 is directly input to the current controller 27.
  • the bypass of the low-pass filter processing is performed.
  • the low-pass filter processing by the low-pass filter 26 may be performed.
  • the suppression of voltage oscillation by the low-pass filter 26 is limited to the time when voltage oscillation (vibration) actually occurs. Therefore, it is possible to suitably suppress the voltage oscillation of the power supply path 35 while minimizing the generation of torque pulsation caused by the low-pass filter 26. Further, if the voltage oscillation cannot be sufficiently eliminated by the low-pass filter 26, the motor 40 is stopped, so that the user's safety is preferably maintained.
  • Servo DC power supply system including Each of the one or more motor control devices (10) A detection unit that detects the servo input end voltage (Vb) input from the power supply path (35) to the motor control device (10), and A predetermined filter process was performed on the servo input end voltage (Vb) to attenuate the high frequency side of the servo input end voltage according to the frequency related to the vibration of the voltage in the servo DC power supply system.
  • a current control loop unit (20) that controls the current flowing through the servomotor by a current control loop using a signal, and a current control loop unit (20).
  • An adjusting unit (12) that adjusts the frequency band associated with the predetermined filtering process based on the predetermined parameters related to the vibration of the voltage. Servo DC power supply system.
  • a motor control device (10) that controls a servomotor (40) by electric power supplied from a DC power supply (30) via a power supply path (35) in a servo DC power supply system.
  • a detection unit that detects the servo input end voltage (Vb) input from the power supply path (35) to the motor control device (10), and A predetermined filter process was performed on the servo input end voltage (Vb) to attenuate the high frequency side of the servo input end voltage according to the frequency related to the vibration of the voltage in the servo DC power supply system.
  • a current control loop unit (20) that controls the current flowing through the servomotor by a current control loop using a signal, and a current control loop unit (20).
  • An adjusting unit (12) that adjusts the frequency band associated with the predetermined filtering process based on the predetermined parameters related to the vibration of the voltage.
  • a motor control device (10) having a current control loop that controls a drive current flowing through a servomotor (40), and power is supplied from a DC power supply (30) to a power supply path (35) in a servo DC power supply system. It is a method of controlling the servomotor (40) by A step of detecting a servo input end voltage (Vb) input from the power supply path (35) to the motor control device (10), and With respect to the servo input end voltage (Vb), a predetermined filter process for attenuating the high frequency side of the servo input end voltage according to the frequency related to the vibration of the voltage in the servo DC power feeding system is performed. , A step of controlling the current flowing through the servomotor (40) by a current control loop using the signal obtained by the predetermined filter processing, and a step of controlling the current flowing through the servomotor (40). Servo motor control methods, including.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

This servo DC power supply system includes: a DC power supply; one or a plurality of motor control devices each controlling the corresponding servo motor; and a power supply path for distributing and supplying power from the DC power supply to the one or the plurality of motor control devices. The one or the plurality of motor control devices each comprise: a current control loop unit for controlling current flowing through the servo motor using a signal obtained by performing, on servo input terminal voltage input from the power supply path to the motor control devices, predetermined filter processing for attenuating the high frequency side of the servo input terminal voltage in accordance with a frequency relating to a voltage vibration within the system; and an adjustment unit for adjusting, on the basis of a predetermined parameter relating to the voltage vibration, a frequency band associated with the predetermined filter processing. This configuration suppresses the voltage vibration in the servo DC power supply system.

Description

サーボDC給電システム、モータ制御装置、及びサーボモータの制御方法Servo DC power supply system, motor control device, and servo motor control method
 本発明は、サーボDC給電システム、モータ制御装置、及びサーボモータの制御方法に関する。 The present invention relates to a servo DC power supply system, a motor control device, and a control method for a servo motor.
 工場等では、複数の電動機が、離れた場所に配置された複数のサーボドライバにてPWM駆動されるシステム(ロボットとその制御装置とで構成されたシステム等)が使用されている。そのようなシステムには、電動機・サーボドライバ間の長いケーブルからの放射ノイズを低減するために、スイッチングスピードを速くできない、電動機・サーボドライバ間の接続に多数のケーブルが必要とされる、といった問題がある。各電動機の近傍に、サーボドライバからコンバータを除去した装置(以下、モータ制御装置)を配置し、1つの直流電源からDCバスにて複数のモータ制御装置に電力を供給する構成を採用しておけば、上記問題が発生しないようにすることが出来る。ただし、この構成を採用したシステムでは、DCバス側のLC回路とモータ制御装置内のインバータ回路側とが干渉してDCバスの電圧が発振する場合がある(例えば、非特許文献1参照)。 In factories and the like, a system in which a plurality of motors are PWM-driven by a plurality of servo drivers arranged at remote locations (a system composed of a robot and its control device, etc.) is used. Such systems have problems such as the inability to increase switching speeds to reduce radiation noise from long cables between the motor and servo drivers, and the need for multiple cables to connect between the motor and servo drivers. There is. Place a device (hereinafter referred to as a motor control device) in which the converter is removed from the servo driver in the vicinity of each motor, and adopt a configuration in which power is supplied from one DC power supply to multiple motor control devices via a DC bus. For example, the above problem can be prevented from occurring. However, in a system adopting this configuration, the LC circuit on the DC bus side and the inverter circuit side in the motor control device may interfere with each other to oscillate the voltage of the DC bus (see, for example, Non-Patent Document 1).
 また、例えば、特許文献1には、DCバスの振動によるモータのトルクリップル抑制のための技術が開示されている。当該技術では、DCバスの電圧の交流成分をハイパスフィルタで抽出し、それに所定のゲインを乗算した補正信号を、モータ制御装置における電圧指令に加算してインバータが制御される。 Further, for example, Patent Document 1 discloses a technique for suppressing torque ripple of a motor due to vibration of a DC bus. In this technique, the AC component of the voltage of the DC bus is extracted by a high-pass filter, and the correction signal obtained by multiplying the AC component by a predetermined gain is added to the voltage command in the motor control device to control the inverter.
国際公開2012/060357号公報International Publication No. 2012/060357
 本発明は、上記問題に鑑みなされたものであり、直流電源から電力供給路を介して電力の供給を受けるモータ制御装置を含むサーボDC給電システムにおいて、電圧の振動を抑制する技術を提供することを目的とする。 The present invention has been made in view of the above problems, and provides a technique for suppressing voltage vibration in a servo DC power supply system including a motor control device that receives power from a DC power supply via a power supply path. With the goal.
 本発明の一側面に係るサーボDC給電システムは、直流電源と、それぞれ、対応するサーボモータを制御する一又は複数のモータ制御装置と、前記直流電源からの電力を前記一又は複数のモータ制御装置に分配供給する電力供給路と、を含む。その上で、前記一又は複数のモータ制御装置は、それぞれ、前記電力供給路から前記モータ制御装置に対して入力されるサーボ入力端電圧を検出する検出部と、前記サーボ入力端電圧に対して、前記サーボDC給電システム内での電圧の振動に関連する周波数に応じて該サーボ入力端電圧の高周波数側を減衰させる所定のフィルタ処理が行われた信号を用いて、電流制御ループにより前記サーボモータに流れる電流を制御する電流制御ループ部と、前記電圧の振動に関連する所定のパラメータに基づいて、前記所定のフィルタ処理に関連付けられた周波数帯域を調整する調整部と、を備える。 The servo DC power supply system according to one aspect of the present invention is a DC power supply, one or a plurality of motor control devices for controlling corresponding servomotors, and the one or a plurality of motor control devices for power from the DC power supply. Includes a power supply path to distribute and supply to. Further, the one or more motor control devices have a detection unit that detects a servo input end voltage input to the motor control device from the power supply path and a detection unit for detecting the servo input end voltage, respectively. , The servo by a current control loop using a predetermined filtered signal that attenuates the high frequency side of the servo input end voltage according to the frequency associated with the voltage vibration in the servo DC power supply system. It includes a current control loop unit that controls the current flowing through the motor, and an adjustment unit that adjusts the frequency band associated with the predetermined filtering process based on a predetermined parameter related to the vibration of the voltage.
 上記構成を有するサーボDC給電システムおいて、モータ制御装置での電流制御ループによる電流制御では、サーボ入力端電圧に対して所定のフィルタ処理が行われた信号が用いられる。所定のフィルタ処理は、サーボ入力端電圧の高周波数側を減衰させる処理であり、当該高周波数側の帯域が、所定のフィルタ処理に関連付けられた周波数帯域である。例えば、所定のフィルタ処理は、所定のカットオフ周波数を有するローパスフィルタによる減衰処理や、ある周波数帯域でローパスフィルタと類似する機能を発揮する、平均化処理、バンドパスフィルタやノッチフィルタによるフィルタ処理等を含む。そして、当該所定のフィルタ処理に関連付けられた周波数帯域は、電力供給路、直流電源、モータ制御装置を含むシステム各所での電圧の振動に関連するように設定されている。この結果、サーボモータの運転状態が、従来技術では、直流電源からモータ制御装置に至るシステム全体の伝達関数が不安定となり発振してしまう状態であっても、伝達関数を安定化させることが可能となり、以て、上記電圧の振動を抑制することができる。また、フィルタ処理での上記周波数帯域は、調整部によって所定のパラメータに基づいて調整されるように構成されるため、当該フィルタ処理の適用範囲をいたずらに広げず、フィルタ処理に起因するサーボモータのトルク脈動や電流制御ループでの応答性低下を可及的に抑制することができる。 In the servo DC power supply system having the above configuration, in the current control by the current control loop in the motor control device, a signal obtained by performing a predetermined filter process on the servo input end voltage is used. The predetermined filtering process is a process of attenuating the high frequency side of the servo input end voltage, and the band on the high frequency side is a frequency band associated with the predetermined filtering process. For example, the predetermined filter processing includes attenuation processing by a low-pass filter having a predetermined cutoff frequency, averaging processing that exhibits a function similar to that of a low-pass filter in a certain frequency band, filter processing by a bandpass filter or a notch filter, and the like. including. The frequency band associated with the predetermined filtering process is set to be related to voltage vibrations in various parts of the system including the power supply path, the DC power supply, and the motor control device. As a result, it is possible to stabilize the transfer function even if the operating state of the servomotor is in a state where the transfer function of the entire system from the DC power supply to the motor control device becomes unstable and oscillates in the conventional technique. Therefore, the vibration of the above voltage can be suppressed. Further, since the frequency band in the filter processing is configured to be adjusted based on a predetermined parameter by the adjusting unit, the applicable range of the filtering processing is not unnecessarily expanded, and the servomotor caused by the filtering processing It is possible to suppress torque pulsation and deterioration of responsiveness in the current control loop as much as possible.
 ここで、上記サーボDC給電システムにおいて、前記所定のパラメータは、前記対応するサーボモータの回転速度と該対応するサーボモータを流れる駆動電流のうち少なくとも一つであってもよい。その場合、前記調整部は、前記回転速度が大きいほど前記周波数帯域が低くなるように調整し、および/または、前記駆動電流が大きいほど前記周波数帯域が低くなるように調整してもよい。サーボモータの回転速度が大きくなったり駆動電流が大きくなったりすると、電力供給路を介して供給される電力が大きくなるため電力供給路の電圧振動が生じやすくなる。そこで、サーボモータの回転速度や駆動電流を所定のパラメータとして採用することで、上記周波数帯域の好適な調整が実現され得る。 Here, in the servo DC power supply system, the predetermined parameter may be at least one of the rotation speed of the corresponding servomotor and the drive current flowing through the corresponding servomotor. In that case, the adjusting unit may adjust so that the frequency band becomes lower as the rotation speed increases, and / or adjusts so that the frequency band becomes lower as the drive current increases. When the rotation speed of the servomotor increases or the drive current increases, the electric power supplied through the power supply path increases, so that voltage vibration in the power supply path tends to occur. Therefore, by adopting the rotation speed and the drive current of the servomotor as predetermined parameters, suitable adjustment of the frequency band can be realized.
 また、別法として、上記サーボDC給電システムにおいて、前記所定のパラメータは、前記サーボ入力端電圧であってもよい。その場合、前記調整部は、前記サーボDC給電システムにおいて前記電圧の振動が検出されたときに、その振幅が大きいほど前記周波数帯域が低くなるように調整してもよい。これにより、検出された電圧の振動を低減させ、もしくは消滅させることができる。更に、前記調整部により前記周波数帯域が調整された後に前記電圧の振動が収束しないときは、前記対応するサーボモータの駆動は停止されてもよい。これにより、サーボモータの予期せぬ動作を的確に防止することができる。 Alternatively, in the servo DC power supply system, the predetermined parameter may be the servo input end voltage. In that case, the adjusting unit may adjust the frequency band so that the larger the amplitude is, the lower the frequency band is when the vibration of the voltage is detected in the servo DC power feeding system. As a result, the vibration of the detected voltage can be reduced or eliminated. Further, when the vibration of the voltage does not converge after the frequency band is adjusted by the adjusting unit, the drive of the corresponding servomotor may be stopped. This makes it possible to accurately prevent the unexpected operation of the servo motor.
 ここで、上述までのサーボDC給電システムにおいて、前記フィルタ処理は、複数の周波数帯域のうち1つの周波数帯域を選択することで実行され、そして、前記調整部は、前記所定のパラメータに基づいて、前記1つの周波数帯域の選択を行ってもよい。なお、フィルタ処理は、抵抗やコンデンサ等のハードウェアにより実現されてもよく、所定の信号処理(デジタル処理等)を行うソフトウェアにより実現されてもよい。 Here, in the servo DC power feeding system up to the above, the filtering process is executed by selecting one frequency band from a plurality of frequency bands, and the adjusting unit is based on the predetermined parameter. The one frequency band may be selected. The filter processing may be realized by hardware such as a resistor or a capacitor, or may be realized by software that performs predetermined signal processing (digital processing or the like).
 本発明を、サーボDC給電システムにおいてサーボモータを制御するモータ制御装置の側面から捉えることもできる。すなわち、本発明は、サーボDC給電システムにおいて直流電源から電力供給路を介して供給される電力により、サーボモータを制御するモータ制御装置であって、前記電力供給路から前記モータ制御装置に対して入力されるサーボ入力端電圧を検出する検出部と、前記サーボ入力端電圧に対して、前記サーボDC給電システム内での電圧の振動に関連する周波数に応じて該サーボ入力端電圧の高周波数側を減衰させる所定のフィルタ処理が行われた信号を用いて、電流制御ループにより前記サーボモータに流れる電流を制御する電流制御ループ部と、前記電圧の振動に関連する所定のパラメータに基づいて、前記所定のフィルタ処理に関連付けられた周波数帯域を調整する調整部と、を備える。当該モータ制御装置によれば、モータ制御装置に直流電力を供給するサーボDC給電システムでの電圧振動を好適に抑制することができる。 The present invention can also be grasped from the side of the motor control device that controls the servo motor in the servo DC power supply system. That is, the present invention is a motor control device that controls a servomotor by power supplied from a DC power supply via a power supply path in a servo DC power supply system, from the power supply path to the motor control device. The detection unit that detects the input servo input end voltage and the high frequency side of the servo input end voltage according to the frequency related to the vibration of the voltage in the servo DC power supply system with respect to the servo input end voltage. Based on a current control loop unit that controls the current flowing through the servomotor by a current control loop using a signal that has been subjected to a predetermined filtering process to attenuate the voltage, and a predetermined parameter related to the vibration of the voltage. It includes an adjusting unit that adjusts the frequency band associated with a predetermined filtering process. According to the motor control device, voltage vibration in the servo DC power supply system that supplies DC power to the motor control device can be suitably suppressed.
 また、本発明を、サーボモータを制御する方法の側面から捉えることもできる。すなわち、本発明は、サーボモータに流れる駆動電流を制御する電流制御ループを有し、サーボDC給電システムにおいて直流電源から電力供給路を介して電力が供給されるモータ制御装置によって、サーボモータを制御する方法であって、前記電力供給路から前記モータ制御装置に対して入力されるサーボ入力端電圧を検出するステップと、前記サーボ入力端電圧に対して、前記サーボDC給電システム内での電圧の振動に関連する周波数に応じて該サーボ入力端電圧の高周波数側を減衰させる所定のフィルタ処理を行うステップと、前記所定のフィルタ処理により得られた信号を用いて、電流制御ループにより前記サーボモータに流れる電流を制御するステップと、を含む。当該方法により、サーボDC給電システムでの電圧振動を好適に抑制することができる。更に、前記所定のフィルタ処理は、ローパスフィルタによる処理であって、そして、前記所定のフィルタ処理におけるカットオフ周波数は、該電圧の振動に関連する所定のパラメータに基づいて調整されてもよい。当該方法における所定のパラメータについては、上述と同様に、サーボモータの回転速度や駆動電流、電力供給路の電圧が採用できる。例えば、このような所定のパラメータの値が基準となる値を超えたときに(場合によっては、基準となる値より小さくなったときに)、電圧の振動が生じやすくなることを意味する。 Further, the present invention can be grasped from the aspect of the method of controlling the servomotor. That is, the present invention has a current control loop that controls the drive current flowing through the servomotor, and controls the servomotor by a motor control device in which power is supplied from the DC power supply via the power supply path in the servo DC power supply system. The step of detecting the servo input end voltage input to the motor control device from the power supply path and the voltage of the voltage in the servo DC power supply system with respect to the servo input end voltage. The servomotor is driven by a current control loop using a step of performing a predetermined filter process for attenuating the high frequency side of the servo input end voltage according to a frequency related to vibration and a signal obtained by the predetermined filter process. Includes a step to control the current flowing through it. By this method, the voltage vibration in the servo DC power feeding system can be suitably suppressed. Further, the predetermined filtering process is a process by a low-pass filter, and the cutoff frequency in the predetermined filtering process may be adjusted based on a predetermined parameter related to the vibration of the voltage. As for the predetermined parameters in the method, the rotation speed of the servomotor, the drive current, and the voltage of the power supply path can be adopted as described above. For example, when the value of such a predetermined parameter exceeds the reference value (in some cases, becomes smaller than the reference value), it means that voltage vibration is likely to occur.
 サーボDC給電システムにおける電圧の振動を抑制する技術を提供することができる。 It is possible to provide a technology for suppressing voltage vibration in a servo DC power supply system.
図1は、本発明の一実施形態に係るサーボDC給電システムの構成の説明図である。FIG. 1 is an explanatory diagram of a configuration of a servo DC power supply system according to an embodiment of the present invention. 図2は、サーボDC給電システム内のモータ制御装置の構成の説明図である。FIG. 2 is an explanatory diagram of the configuration of the motor control device in the servo DC power feeding system. 図3Aは、モータ制御装置の機能ブロック図である。FIG. 3A is a functional block diagram of the motor control device. 図3Bは、電流制御ループ部の詳細な機能ブロック図である。FIG. 3B is a detailed functional block diagram of the current control loop unit. 図4は、従来のDC給電システムにおける、電源側及びモータ側のボード線図である。FIG. 4 is a Bode diagram of the power supply side and the motor side in the conventional DC power supply system. 図5は、サーボDC給電システムと従来の給電システムの電力供給路の電圧変化パターンの違いを説明するための図である。FIG. 5 is a diagram for explaining the difference in the voltage change pattern of the power supply path between the servo DC power supply system and the conventional power supply system. 図6は、モータ制御装置によるモータ制御の第1のフローチャートである。FIG. 6 is a first flowchart of motor control by the motor control device. 図7は、モータ制御装置によるモータ制御の第2のフローチャートである。FIG. 7 is a second flowchart of motor control by the motor control device.
 以下、図面を参照して本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 まず、図1及び図2を用いて、本発明の一実施形態に係るサーボDC給電システムの概要を説明する。なお、図1は、本実施形態に係るサーボDC給電システムの構成の説明図であり、図2は、サーボDC給電システムの構成要素であるモータ制御装置10の構成の説明図である。 First, the outline of the servo DC power supply system according to the embodiment of the present invention will be described with reference to FIGS. 1 and 2. Note that FIG. 1 is an explanatory diagram of the configuration of the servo DC power supply system according to the present embodiment, and FIG. 2 is an explanatory diagram of the configuration of the motor control device 10 which is a component of the servo DC power supply system.
 図1に示してあるように、本実施形態に係るサーボDC給電システムは、直流電源30と複数のモータ制御装置10との間を、電力供給路35にて接続したシステムである。この電力供給路35は、複数のモータ制御装置10のそれぞれが直流電源30に対して並列に接続されるように形成される。 As shown in FIG. 1, the servo DC power supply system according to the present embodiment is a system in which a DC power supply 30 and a plurality of motor control devices 10 are connected by a power supply path 35. The power supply path 35 is formed so that each of the plurality of motor control devices 10 is connected in parallel to the DC power supply 30.
 ここで、直流電源30は、所定の直流電圧を出力する電源である。図1には、直流電源30として、三相交流電源50からの三相交流を直流電圧に変換する装置を示してあるが、直流電源30は、単相交流を直流電圧に変換する装置であってもよい。また、直流電源30は、ダイオードを組み合わせた整流回路(例えば、全波整流回路)であっても、スイッチング素子が用いられたAC-DCコンバータ(例えば、電源回生コンバータ)であってもよい。 Here, the DC power supply 30 is a power supply that outputs a predetermined DC voltage. FIG. 1 shows a device for converting a three-phase AC from a three-phase AC power source 50 into a DC voltage as a DC power source 30, and the DC power source 30 is a device for converting a single-phase AC to a DC voltage. You may. Further, the DC power supply 30 may be a rectifier circuit in which a diode is combined (for example, a full-wave rectifier circuit) or an AC-DC converter (for example, a power supply regeneration converter) in which a switching element is used.
 モータ制御装置10は、PLC(Programmable Logic Controller)等の上位装置(図1においては不図示)からの指令(位置指令、速度指令等)に従って、サーボモータ40(以下、単に、モータ40とも表記する)を制御する装置(詳細は後述)である。電力供給路35は、直流電源30からの電力を、サーボDC給電システム内の各モータ制御装置に分配供給できるように複数の電力ケーブルを組み合わせた給電路である。この電力供給路35の各モータ制御装置10との接続部分(各モータ制御装置10の電源端子間)には、通常、平滑コンデンサ15が設けられる。 The motor control device 10 is referred to as a servomotor 40 (hereinafter, also simply referred to as a motor 40) in accordance with commands (position command, speed command, etc.) from a host device (not shown in FIG. 1) such as a PLC (Programmable Logic Controller). ) Is a device (details will be described later). The power supply path 35 is a power supply path in which a plurality of power cables are combined so that the electric power from the DC power supply 30 can be distributed and supplied to each motor control device in the servo DC power supply system. A smoothing capacitor 15 is usually provided at a connection portion (between the power supply terminals of each motor control device 10) of the power supply path 35 with each motor control device 10.
 図2に示してあるように、モータ制御装置10は、インバータ回路11と制御部12とを備える。インバータ回路11は、モータ制御装置10に電力供給路35から入力される直流電圧(本願のサーボ入力端電圧に相当)Vbを三相交流に変換するための回路である。インバータ回路11は、正負の母線間に、U相用のレグ、V相用のレグ及びW相用のレグを並列接続した構成を有しており、モータ制御装置10には、インバータ回路11の各レグの出力電流を測定するための電流センサ28が設けられている。 As shown in FIG. 2, the motor control device 10 includes an inverter circuit 11 and a control unit 12. The inverter circuit 11 is a circuit for converting a DC voltage (corresponding to the servo input end voltage of the present application) Vb input from the power supply path 35 to the motor control device 10 into a three-phase alternating current. The inverter circuit 11 has a configuration in which a U-phase leg, a V-phase leg, and a W-phase leg are connected in parallel between the positive and negative bus wires, and the motor control device 10 has a configuration in which the inverter circuit 11 is connected. A current sensor 28 for measuring the output current of each leg is provided.
 制御部12は、上位装置(PCL等)からの指令に従って、インバータ回路11をPWM(Pulse Width Modulation)制御するユニットである。制御部12は、プロセッサ(マイクロコントローラ、CPU等)とその周辺回路とから構成されており、制御部12は、各電流センサ28からの信号、モータ40に取り付けられたエンコーダ41(アブソリュートエンコーダやインクリメンタルエンコーダ)からの信号等が入力されている。制御部12は、後述する図4に示す電流制御ループを有しており、電流センサ28からの信号やエンコーダ41からの信号が供されることで、モータ40のサーボ制御が実現される。 The control unit 12 is a unit that controls the inverter circuit 11 by PWM (Pulse Width Modulation) according to a command from a host device (PCL or the like). The control unit 12 is composed of a processor (microcontroller, CPU, etc.) and its peripheral circuits, and the control unit 12 includes signals from each current sensor 28 and an encoder 41 (absolute encoder and incremental encoder) attached to the motor 40. A signal or the like from the encoder) is input. The control unit 12 has a current control loop shown in FIG. 4, which will be described later, and a signal from the current sensor 28 and a signal from the encoder 41 are provided to realize servo control of the motor 40.
 以下、本実施形態に係るサーボDC給電システム、及びそこに組み込まれるモータ制御装置10についてさらに具体的に説明する。本実施形態に係るサーボDC給電システムは、直流電源30、電力供給路35、モータ制御装置10を含むシステム内での電圧の振動を抑制可能とするために、各モータ制御装置10を、カットオフ周波数を調整可能に構成されたローパスフィルタによりフィルタ処理された信号を用いて、電流制御ループによりモータ40に流れる電流を制御するように構成したシステムである。なお、本実施形態のサーボDC給電システムにおいて、最も好ましくは、含まれる全てのモータ制御装置10が、上記のようにローパスフィルタによりフィルタ処理された信号を用いて電流制御を行うように構成されるが、電圧振動を許容可能な範囲に抑制できれば、含まれる全てのモータ制御装置10のうち一部のモータ制御装置10が、同様の電流制御を行うように構成されてもよい。また、ローパスフィルタによるフィルタ処理に代えて、ある周波数帯域でローパスフィルタと類似する機能を発揮する、平均化処理、バンドパスフィルタやノッチフィルタによるフィルタ処理等を採用することもできる。 Hereinafter, the servo DC power supply system according to the present embodiment and the motor control device 10 incorporated therein will be described in more detail. The servo DC power supply system according to the present embodiment cuts off each motor control device 10 in order to be able to suppress voltage vibration in the system including the DC power supply 30, the power supply path 35, and the motor control device 10. This system is configured to control the current flowing through the motor 40 by a current control loop using a signal filtered by a low-pass filter configured so that the frequency can be adjusted. In the servo DC power supply system of the present embodiment, most preferably, all the motor control devices 10 included are configured to perform current control using the signal filtered by the low pass filter as described above. However, if the voltage vibration can be suppressed to an acceptable range, some of the motor control devices 10 included in the motor control devices 10 may be configured to perform the same current control. Further, instead of the filter processing by the low-pass filter, an averaging process, a filter processing by a band-pass filter, a notch filter, or the like, which exerts a function similar to that of the low-pass filter in a certain frequency band, can be adopted.
 以下、上位装置から入力される指令が位置指令である場合を例に、モータ制御装置10の機能的な構成及びその動作について、図3A及び図3Bに基づいて説明する。図3Aは、モータ制御装置10が有するモータ40をサーボ制御するための制御ループを表し、図3Bは、当該制御ループを構成する電流制御ループ部の詳細の一例を表している。モータ制御装置10は、位置指令に従ってモータ40を制御する場合、減算器21及び23、位置制御器22、速度制御器24、電流制御ループ部20、速度検出器29等を備えた装置として動作する。 Hereinafter, the functional configuration of the motor control device 10 and its operation will be described with reference to FIGS. 3A and 3B, taking as an example the case where the command input from the host device is a position command. FIG. 3A shows a control loop for servo-controlling the motor 40 included in the motor control device 10, and FIG. 3B shows a detailed example of the current control loop unit constituting the control loop. When the motor 40 is controlled according to the position command, the motor control device 10 operates as a device including the subtractors 21 and 23, the position controller 22, the speed controller 24, the current control loop unit 20, the speed detector 29, and the like. ..
 このモータ制御装置10内の減算器21は、位置指令から、エンコーダ41により検出された位置(以下、検出位置)を減算することで位置偏差を算出するユニットである。位置制御器22は、位置偏差に所定の位置比例ゲインを乗ずることにより速度指令を算出するユニットである。速度検出器29は、検出位置を微分することで、速度(以下、検出速度)を算出するユニットである。減算器23は、速度指令から検出速度を減算することにより速度偏差を算出するユニットである。速度制御器24は、速度偏差に基づくPI(比例積分)演算により電流指令を算出するユニットである。 The subtractor 21 in the motor control device 10 is a unit that calculates the position deviation by subtracting the position detected by the encoder 41 (hereinafter referred to as the detection position) from the position command. The position controller 22 is a unit that calculates a speed command by multiplying the position deviation by a predetermined position proportional gain. The speed detector 29 is a unit that calculates a speed (hereinafter referred to as a detection speed) by differentiating the detection position. The subtractor 23 is a unit that calculates the speed deviation by subtracting the detected speed from the speed command. The speed controller 24 is a unit that calculates a current command by PI (proportional integration) calculation based on the speed deviation.
 また、電流制御ループ部20は、電流指令通りの電流がモータ40に流れるように、モータ40に流れる電流をフィードバック制御するように、図3Bに示す電流制御ループが形成されたユニットである。図示してあるように、電流制御ループ部20は、減算器25と、電流制御器27と、電流センサ28とにより構成されている。減算器25は、電流指令から電流センサ28により検出された電流を減算することで電流偏差を算出するユニットである。電流制御器27は、インバータ回路11を含んで図3Bに示す電流制御ループが形成されたユニットである。更に、電流制御器27には、モータ制御装置10への入力電圧Vbに対してローパスフィルタ26により所定のローパスフィルタ処理が行われた信号(以下、「処理済み信号」という)が入力されることで、モータ40に電流指令通りの電流が流れるようにインバータ回路11が制御される。 Further, the current control loop unit 20 is a unit in which the current control loop shown in FIG. 3B is formed so that the current flowing through the motor 40 is feedback-controlled so that the current according to the current command flows through the motor 40. As shown in the figure, the current control loop unit 20 includes a subtractor 25, a current controller 27, and a current sensor 28. The subtractor 25 is a unit that calculates the current deviation by subtracting the current detected by the current sensor 28 from the current command. The current controller 27 is a unit including the inverter circuit 11 to which the current control loop shown in FIG. 3B is formed. Further, a signal (hereinafter referred to as “processed signal”) obtained by performing a predetermined low-pass filter processing by the low-pass filter 26 with respect to the input voltage Vb to the motor control device 10 is input to the current controller 27. Then, the inverter circuit 11 is controlled so that the current according to the current command flows through the motor 40.
 ここで、ローパスフィルタ26は、そのカットオフ周波数が調整可能に構成されたデジタルフィルタである。そして、本実施形態に係るサーボDC給電システムでは、各モータ制御装置10の電流制御ループ部20に対応するローパスフィルタ26のカットオフ波数は、システム内での電圧の振動、例えば、電力供給路35の電圧の振動に関連する周波数に応じた値に設定される。電圧の振動に関連する周波数とは、振動そのものの周波数だけではなく、電力供給路35の電圧の発振を惹起する周波数、もしくはその近傍の周波数を含めてもよい。電流制御ループ部20では、ローパスフィルタ26を通った処理済み信号を用いて、図3Bに示す制御ループに従って電流制御が行われる。具体的には、減算器25の出力信号と処理済み信号との比率が利用される。 Here, the low-pass filter 26 is a digital filter configured so that its cutoff frequency can be adjusted. In the servo DC power supply system according to the present embodiment, the cutoff frequency of the low pass filter 26 corresponding to the current control loop unit 20 of each motor control device 10 is the vibration of the voltage in the system, for example, the power supply path 35. The value is set according to the frequency associated with the vibration of the voltage of. The frequency related to the vibration of the voltage may include not only the frequency of the vibration itself but also the frequency that causes the oscillation of the voltage of the power supply path 35 or a frequency in the vicinity thereof. In the current control loop unit 20, current control is performed according to the control loop shown in FIG. 3B using the processed signal that has passed through the low-pass filter 26. Specifically, the ratio of the output signal of the subtractor 25 to the processed signal is used.
 ここで、電流制御ループ部20が処理済み信号を用いない形態、すなわち従来のサーボDC給電システムを考える。図4には、従来のサーボDC給電システムにおける、電源側及びモータ側のボード線図を示す。このような従来のサーボDC給電システムにおいて、電力供給路35側の伝達関数とモータ制御装置10側の伝達関数とを統合した伝達関数が不安定となる場合、つまり、図4に模式的に示したように、電力供給路35側(“電源側”)のゲインが、モータ制御装置10側(“モータ側”)のゲインを上回る周波数範囲がある場合、電力供給路35の電圧が発振し得る。 Here, consider a form in which the current control loop unit 20 does not use the processed signal, that is, a conventional servo DC power supply system. FIG. 4 shows a board diagram on the power supply side and the motor side in the conventional servo DC power supply system. In such a conventional servo DC power supply system, when the transmission function that integrates the transmission function on the power supply path 35 side and the transmission function on the motor control device 10 side becomes unstable, that is, it is schematically shown in FIG. As described above, when the gain on the power supply path 35 side (“power supply side”) has a frequency range higher than the gain on the motor control device 10 side (“motor side”), the voltage of the power supply path 35 can oscillate. ..
 この点を踏まえ、処理済み信号を用いるサーボDC給電システムでは、当該ローパスフィルタ26のカットオフ周波数が、電源側のゲインがモータ側のゲインを超える周波数範囲の下限周波数よりも低くなるように調整されるのが好ましい。このようにカットオフ周波数が調整されたローパスフィルタ26を用いて、図3Bに示す電流制御ループによりモータ40に流れる電流を制御すれば、電源側のゲインが、いずれの周波数においても、モータ側のゲインを上回らないようにすることが可能となる。このとき、モータ制御装置10は、電力供給路35からモータ制御装置10に対して入力される電圧Vbを検出し、その電圧Vbに対してローパスフィルタ26によるローパスフィルタ処理を行い、その処理済み信号を用いて、電流制御ループによりモータ40に流れる電流を制御する。その結果、図5に示すように、モータ制御装置10は、従来の形態では電圧発振が生じるような電力供給条件(換言すると、モータ40の運転条件)であっても、その電圧発振を好適に抑制することが可能となる。 Based on this point, in the servo DC power supply system using the processed signal, the cutoff frequency of the low-pass filter 26 is adjusted so that the gain on the power supply side is lower than the lower limit frequency in the frequency range exceeding the gain on the motor side. Is preferable. If the current flowing through the motor 40 is controlled by the current control loop shown in FIG. 3B using the low-pass filter 26 whose cutoff frequency is adjusted in this way, the gain on the power supply side can be set on the motor side at any frequency. It is possible not to exceed the gain. At this time, the motor control device 10 detects the voltage Vb input to the motor control device 10 from the power supply path 35, performs low-pass filter processing on the voltage Vb by the low-pass filter 26, and performs the processed signal. Is used to control the current flowing through the motor 40 by the current control loop. As a result, as shown in FIG. 5, the motor control device 10 preferably performs voltage oscillation even under power supply conditions (in other words, operating conditions of the motor 40) such that voltage oscillation occurs in the conventional form. It becomes possible to suppress it.
 <第1の調整方法>
 このように電流制御ループ部20がローパスフィルタ26による処理済み信号を用いて電流制御を行うことで、電力供給路35の電圧発振を好適に抑制できるが、一方で、モータ40の脈動が発生しやすくなる。そこで、電圧発振の抑制とモータ40の脈動抑制の両立を図るための、デジタルフィルタであるローパスフィルタ26の調整方法について、図6に示すフローチャートに基づいて説明する。なお、当該調整方法は、モータ制御装置10の制御部12において所定の制御プログラムが実行されることで、所定間隔で繰り返し実現される。
<First adjustment method>
By performing the current control by the current control loop unit 20 using the processed signal by the low-pass filter 26 in this way, the voltage oscillation of the power supply path 35 can be suitably suppressed, but on the other hand, the pulsation of the motor 40 occurs. It will be easier. Therefore, an adjustment method of the low-pass filter 26, which is a digital filter, for achieving both suppression of voltage oscillation and suppression of pulsation of the motor 40 will be described with reference to the flowchart shown in FIG. The adjustment method is repeatedly realized at predetermined intervals by executing a predetermined control program in the control unit 12 of the motor control device 10.
 先ず、S101では、モータ40の運転状態が取得される。当該運転状態は、モータ40に供給される電力に関連するパラメータであり、例えば、モータ40の回転速度や駆動電流が例示できる。モータ40の回転速度は、エンコーダ41からの信号に基づいて算出でき、駆動電流は、電流センサ28からの信号に基づいて取得できる。次に、S102では、S101で取得されたモータ40の運転状態に基づいて、モータ40の運転が高速運転領域に属しているか否かが判定される。当該高速運転領域は、直流電源30から電力供給路35を介してモータ制御装置10に供給される電力が比較的に大きくなることで、電力供給路35の電圧発振を惹起しやすくなる、モータの運転状態の範囲である。例えば、モータ40の回転速度が所定の回転速度を超えている場合、もしくは、モータ40の駆動電流が所定の駆動電流を越えている場合には、モータ40の運転状態が高速運転領域に属していると判定することができる。S102で肯定判定されると、処理はS103へ進み、否定判定されると、処理はS104へ進む。 First, in S101, the operating state of the motor 40 is acquired. The operating state is a parameter related to the electric power supplied to the motor 40, and for example, the rotation speed and the drive current of the motor 40 can be exemplified. The rotation speed of the motor 40 can be calculated based on the signal from the encoder 41, and the drive current can be acquired based on the signal from the current sensor 28. Next, in S102, it is determined whether or not the operation of the motor 40 belongs to the high-speed operation region based on the operation state of the motor 40 acquired in S101. In the high-speed operation region, the electric power supplied from the DC power supply 30 to the motor control device 10 via the power supply path 35 becomes relatively large, so that voltage oscillation of the power supply path 35 is likely to occur. It is the range of operating conditions. For example, when the rotation speed of the motor 40 exceeds a predetermined rotation speed, or when the drive current of the motor 40 exceeds a predetermined drive current, the operating state of the motor 40 belongs to the high-speed operation region. It can be determined that there is. If an affirmative determination is made in S102, the process proceeds to S103, and if a negative determination is made, the process proceeds to S104.
 S103では、上述したように電力供給路35の電圧発振を抑制するために、ローパスフィルタ26のカットオフ周波数が調整される。具体的には、モータ40の回転速度が大きいほどカットオフ周波数が低くなるように調整し、および/または、モータ40の駆動電流が大きいほどカットオフ周波数が低くなるように調整する。すなわち、電力供給路35を介して供給される電力が大きくなるほど、カットオフ周波数は低くなるように調整される。このような調整により、電力供給路35の電圧発振が好適に抑制される。一方で、S104では、ローパスフィルタ26によるローパスフィルタ処理がバイパスされる。すなわち、デジタルフィルタであるローパスフィルタ26の作動をオフにし、減算器25からの信号が直接、電流制御器27に入力される。なお、S104の別法として、ローパスフィルタ26のカットオフ周波数に既に適切な周波数が設定されている場合(例えば、以前にS103の処理が行われた場合)には、上記ローパスフィルタ処理のバイパスに代えて、ローパスフィルタ26によるローパスフィルタ処理を行っても構わない。 In S103, the cutoff frequency of the low-pass filter 26 is adjusted in order to suppress the voltage oscillation of the power supply path 35 as described above. Specifically, the cutoff frequency is adjusted to be lower as the rotation speed of the motor 40 is higher, and / or the cutoff frequency is adjusted to be lower as the drive current of the motor 40 is larger. That is, the cutoff frequency is adjusted to be lower as the electric power supplied through the electric power supply path 35 becomes larger. By such adjustment, the voltage oscillation of the power supply path 35 is suitably suppressed. On the other hand, in S104, the low-pass filter processing by the low-pass filter 26 is bypassed. That is, the operation of the low-pass filter 26, which is a digital filter, is turned off, and the signal from the subtractor 25 is directly input to the current controller 27. As another method of S104, when an appropriate frequency is already set for the cutoff frequency of the low-pass filter 26 (for example, when the processing of S103 is performed before), the bypass of the low-pass filter processing is performed. Alternatively, the low-pass filter processing by the low-pass filter 26 may be performed.
 このように図6に示す調整方法によれば、ローパスフィルタ26による電圧発振の抑制は、実質的にモータ40の運転状態が高速運転領域に属しているときに限定される。そのため、ローパスフィルタ26に起因するトルク脈動の発生を最小限に抑えつつ、電力供給路35の電圧発振を好適に抑制することができる。また、モータ40の運転状態に基づいてローパスフィルタ26のカットオフ周波数が調整されるため、電圧発振を予防しやすくなる。 As described above, according to the adjustment method shown in FIG. 6, the suppression of voltage oscillation by the low-pass filter 26 is substantially limited to the time when the operating state of the motor 40 belongs to the high-speed operating region. Therefore, it is possible to suitably suppress the voltage oscillation of the power supply path 35 while minimizing the generation of torque pulsation caused by the low-pass filter 26. Further, since the cutoff frequency of the low-pass filter 26 is adjusted based on the operating state of the motor 40, it becomes easy to prevent voltage oscillation.
 また、上記のローパスフィルタ26は、そのカットオフ周波数をモータ40の回転速度や駆動電流に応じて適宜調整できるように構成されているが、そのような形態に代えて、ローパスフィルタ26は、予め複数の周波数のうち1つの周波数をカットオフ周波数として選択できるように構成されてもよい。その上で、モータ40の回転速度や駆動電流に基づいて、当該複数の周波数の中から1つの周波数をカットオフ周波数として選択しそれに切り替えることで、電力供給路35の電圧発振を好適に抑制することができる。また、ローパスフィルタ26は、デジタルフィルタの形態に代えて、抵抗素子やコンデンサ等のハードウェアで構成されるフィルタであってもよい。このような場合には、ローパスフィルタ26内に、複数のカットオフ周波数に対応する抵抗素子やコンデンサの組み合わせを予め複数組み含ませ、何れかの組み合わせを選択することで、カットオフ周波数の切り替えを実現することができる。 Further, the low-pass filter 26 is configured so that its cutoff frequency can be appropriately adjusted according to the rotation speed and the drive current of the motor 40. Instead of such a form, the low-pass filter 26 is configured in advance. It may be configured so that one of a plurality of frequencies can be selected as the cutoff frequency. Then, based on the rotation speed and drive current of the motor 40, one frequency is selected as the cutoff frequency from the plurality of frequencies and switched to it, thereby suitably suppressing the voltage oscillation of the power supply path 35. be able to. Further, the low-pass filter 26 may be a filter configured by hardware such as a resistance element or a capacitor instead of the form of the digital filter. In such a case, the cutoff frequency can be switched by including a plurality of combinations of resistance elements and capacitors corresponding to a plurality of cutoff frequencies in the low-pass filter 26 in advance and selecting one of the combinations. It can be realized.
 <第2の調整方法>
 次に、電圧発振の抑制とモータ40の脈動抑制の両立を図るための、デジタルフィルタであるローパスフィルタ26の第2の調整方法について、図7に示すフローチャートに基づいて説明する。なお、当該調整方法は、モータ制御装置10の制御部12において所定の制御プログラムが実行されることで、所定間隔で繰り返し実現される。
<Second adjustment method>
Next, a second adjustment method of the low-pass filter 26, which is a digital filter, for achieving both suppression of voltage oscillation and suppression of pulsation of the motor 40 will be described with reference to the flowchart shown in FIG. 7. The adjustment method is repeatedly realized at predetermined intervals by executing a predetermined control program in the control unit 12 of the motor control device 10.
 S201では、電力供給路35の電圧が検出される。当該検出は図示しない電圧センサにより行われる。次に、S202では検出された電圧に基づいて、電力供給路35において電圧の発振が生じているか否かが判定される。具体的には、電圧振動の振幅の変化率が所定の値を超えたときに、電圧発振が生じていると判定することができる。S202で肯定判定されると処理はS203へ進み、否定判定されると処理はS204へ進む。 In S201, the voltage of the power supply path 35 is detected. The detection is performed by a voltage sensor (not shown). Next, in S202, it is determined whether or not voltage oscillation occurs in the power supply path 35 based on the detected voltage. Specifically, it can be determined that voltage oscillation has occurred when the rate of change in the amplitude of voltage oscillation exceeds a predetermined value. If an affirmative determination is made in S202, the process proceeds to S203, and if a negative determination is made, the process proceeds to S204.
 S203では、上述したように電力供給路35の電圧発振を解消するために、ローパスフィルタ26のカットオフ周波数が調整される。具体的には、S202で検出された電圧発振が大きいほどカットオフ周波数が低くなるように調整する。例えば、電圧振動の振幅が大きいほどカットオフ周波数が低くなるように調整してもよい。このような調整により、電力供給路35の電圧発振が低減されることとなる。ただし、モータ制御装置10への電力供給の状況によっては、既に発生している電圧発振を十分に解消するまでには至らない可能性もあり得る。そこで、S203の処理後、S205において発振が収束したか否かが判定される。当該判定も、電圧振動の振幅の変化率に基づいて判定することができる。S205で肯定判定された場合には、S203でのカットオフ周波数の調整を経て電圧発振が収束したことを意味するため、このまま図7の調整処理は終了する。一方で、S205で否定判定された場合には、S203でのカットオフ周波数の調整を経ても電圧発振が収束しなかったことを意味する。その場合は、処理はS206へ進み、モータ40の駆動が停止される。これにより、モータ40の暴走を的確に回避できる。 In S203, the cutoff frequency of the low-pass filter 26 is adjusted in order to eliminate the voltage oscillation of the power supply path 35 as described above. Specifically, the cutoff frequency is adjusted to be lower as the voltage oscillation detected in S202 is larger. For example, the cutoff frequency may be adjusted to be lower as the amplitude of the voltage vibration is larger. By such adjustment, the voltage oscillation of the power supply path 35 is reduced. However, depending on the state of power supply to the motor control device 10, it may not be possible to sufficiently eliminate the voltage oscillation that has already occurred. Therefore, after the processing of S203, it is determined in S205 whether or not the oscillation has converged. The determination can also be made based on the rate of change of the amplitude of the voltage vibration. If an affirmative determination is made in S205, it means that the voltage oscillation has converged through the adjustment of the cutoff frequency in S203, so that the adjustment process of FIG. 7 ends as it is. On the other hand, if a negative determination is made in S205, it means that the voltage oscillation did not converge even after the cutoff frequency was adjusted in S203. In that case, the process proceeds to S206, and the driving of the motor 40 is stopped. As a result, the runaway of the motor 40 can be accurately avoided.
 なお、S202で否定判定され処理がS204へ進んだ場合、S104と同じように、ローパスフィルタ26によるローパスフィルタ処理がバイパスされる。すなわち、デジタルフィルタであるローパスフィルタ26の作動をオフにし、減算器25からの信号が直接、電流制御器27に入力される。なお、S204の別法として、ローパスフィルタ26のカットオフ周波数に既に適切な周波数が設定されている場合(例えば、以前にS203の処理が行われた場合)には、上記ローパスフィルタ処理のバイパスに代えて、ローパスフィルタ26によるローパスフィルタ処理を行っても構わない。 If a negative determination is made in S202 and the process proceeds to S204, the low-pass filter process by the low-pass filter 26 is bypassed as in S104. That is, the operation of the low-pass filter 26, which is a digital filter, is turned off, and the signal from the subtractor 25 is directly input to the current controller 27. As another method of S204, when an appropriate frequency is already set for the cutoff frequency of the low-pass filter 26 (for example, when the processing of S203 has been performed before), the bypass of the low-pass filter processing is performed. Alternatively, the low-pass filter processing by the low-pass filter 26 may be performed.
 このように図7に示す調整方法によれば、ローパスフィルタ26による電圧発振の抑制は、実際に電圧発振(振動)が生じたときに限定される。そのため、ローパスフィルタ26に起因するトルク脈動の発生を最小限に抑えつつ、電力供給路35の電圧発振を好適に抑制することができる。また、仮にローパスフィルタ26によっても電圧発振を十分に解消できなかった場合には、モータ40は停止されるため、ユーザの安全は好適に保たれる。 As described above, according to the adjustment method shown in FIG. 7, the suppression of voltage oscillation by the low-pass filter 26 is limited to the time when voltage oscillation (vibration) actually occurs. Therefore, it is possible to suitably suppress the voltage oscillation of the power supply path 35 while minimizing the generation of torque pulsation caused by the low-pass filter 26. Further, if the voltage oscillation cannot be sufficiently eliminated by the low-pass filter 26, the motor 40 is stopped, so that the user's safety is preferably maintained.
 <付記1>
 直流電源(30)と、
 それぞれ、対応するサーボモータ(40)を制御する一又は複数のモータ制御装置(10)と、
 前記直流電源(30)からの電力を前記一又は複数のモータ制御装置(10)に分配供給する電力供給路(35)と、
 を含むサーボDC給電システムであって、
 前記一又は複数のモータ制御装置(10)は、それぞれ、
 前記電力供給路(35)から前記モータ制御装置(10)に対して入力されるサーボ入力端電圧(Vb)を検出する検出部と、
 前記サーボ入力端電圧(Vb)に対して、前記サーボDC給電システム内での電圧の振動に関連する周波数に応じて該サーボ入力端電圧の高周波数側を減衰させる所定のフィルタ処理が行われた信号を用いて、電流制御ループにより前記サーボモータに流れる電流を制御する電流制御ループ部(20)と、
 前記電圧の振動に関連する所定のパラメータに基づいて、前記所定のフィルタ処理に関連付けられた周波数帯域を調整する調整部(12)と、
 を備える、サーボDC給電システム。
<Appendix 1>
DC power supply (30) and
One or more motor control devices (10) that control the corresponding servomotors (40), respectively.
A power supply path (35) that distributes and supplies power from the DC power supply (30) to the one or more motor control devices (10).
Servo DC power supply system including
Each of the one or more motor control devices (10)
A detection unit that detects the servo input end voltage (Vb) input from the power supply path (35) to the motor control device (10), and
A predetermined filter process was performed on the servo input end voltage (Vb) to attenuate the high frequency side of the servo input end voltage according to the frequency related to the vibration of the voltage in the servo DC power supply system. A current control loop unit (20) that controls the current flowing through the servomotor by a current control loop using a signal, and a current control loop unit (20).
An adjusting unit (12) that adjusts the frequency band associated with the predetermined filtering process based on the predetermined parameters related to the vibration of the voltage.
Servo DC power supply system.
 <付記2>
 サーボDC給電システムにおいて直流電源(30)から電力供給路(35)を介して供給される電力により、サーボモータ(40)を制御するモータ制御装置(10)であって、
 前記電力供給路(35)から前記モータ制御装置(10)に対して入力されるサーボ入力端電圧(Vb)を検出する検出部と、
 前記サーボ入力端電圧(Vb)に対して、前記サーボDC給電システム内での電圧の振動に関連する周波数に応じて該サーボ入力端電圧の高周波数側を減衰させる所定のフィルタ処理が行われた信号を用いて、電流制御ループにより前記サーボモータに流れる電流を制御する電流制御ループ部(20)と、
 前記電圧の振動に関連する所定のパラメータに基づいて、前記所定のフィルタ処理に関連付けられた周波数帯域を調整する調整部(12)と、
 を備える、モータ制御装置(10)。
<Appendix 2>
A motor control device (10) that controls a servomotor (40) by electric power supplied from a DC power supply (30) via a power supply path (35) in a servo DC power supply system.
A detection unit that detects the servo input end voltage (Vb) input from the power supply path (35) to the motor control device (10), and
A predetermined filter process was performed on the servo input end voltage (Vb) to attenuate the high frequency side of the servo input end voltage according to the frequency related to the vibration of the voltage in the servo DC power supply system. A current control loop unit (20) that controls the current flowing through the servomotor by a current control loop using a signal, and a current control loop unit (20).
An adjusting unit (12) that adjusts the frequency band associated with the predetermined filtering process based on the predetermined parameters related to the vibration of the voltage.
The motor control device (10).
 <付記3>
 サーボモータ(40)に流れる駆動電流を制御する電流制御ループを有し、サーボDC給電システムにおいて直流電源(30)から電力供給路(35)を介して電力が供給されるモータ制御装置(10)によって、サーボモータ(40)を制御する方法であって、
 前記電力供給路(35)から前記モータ制御装置(10)に対して入力されるサーボ入力端電圧(Vb)を検出するステップと、
 前記サーボ入力端電圧(Vb)に対して、前記サーボDC給電システム内での電圧の振動に関連する周波数に応じて該サーボ入力端電圧の高周波数側を減衰させる所定のフィルタ処理を行うステップと、
 前記所定のフィルタ処理により得られた信号を用いて、電流制御ループにより前記サーボモータ(40)に流れる電流を制御するステップと、
 を含む、サーボモータの制御方法。
<Appendix 3>
A motor control device (10) having a current control loop that controls a drive current flowing through a servomotor (40), and power is supplied from a DC power supply (30) to a power supply path (35) in a servo DC power supply system. It is a method of controlling the servomotor (40) by
A step of detecting a servo input end voltage (Vb) input from the power supply path (35) to the motor control device (10), and
With respect to the servo input end voltage (Vb), a predetermined filter process for attenuating the high frequency side of the servo input end voltage according to the frequency related to the vibration of the voltage in the servo DC power feeding system is performed. ,
A step of controlling the current flowing through the servomotor (40) by a current control loop using the signal obtained by the predetermined filter processing, and a step of controlling the current flowing through the servomotor (40).
Servo motor control methods, including.
 10  モータ制御装置
 11  インバータ回路
 12  制御部
 15  平滑コンデンサ
 20  電流制御ループ部
 21,23,25  減算器
 22  位置制御器
 24  速度制御器
 26  ローパスフィルタ
 27  電流制御部
 28  電流センサ
 29  速度検出器
 30  直流電源
 35  電力供給路
 40  サーボモータ
 41  エンコーダ
 50  三相交流電源
10 Motor control device 11 Inverter circuit 12 Control unit 15 Smoothing capacitor 20 Current control loop unit 21, 23,25 Subtractor 22 Position controller 24 Speed controller 26 Low pass filter 27 Current control unit 28 Current sensor 29 Speed detector 30 DC power supply 35 Power supply path 40 Servo motor 41 Encoder 50 Three-phase AC power supply

Claims (9)

  1.  直流電源と、
     それぞれ、対応するサーボモータを制御する一又は複数のモータ制御装置と、
     前記直流電源からの電力を前記一又は複数のモータ制御装置に分配供給する電力供給路と、
     を含むサーボDC給電システムであって、
     前記一又は複数のモータ制御装置は、それぞれ、
     前記電力供給路から前記モータ制御装置に対して入力されるサーボ入力端電圧を検出する検出部と、
     前記サーボ入力端電圧に対して、前記サーボDC給電システム内での電圧の振動に関連する周波数に応じて該サーボ入力端電圧の高周波数側を減衰させる所定のフィルタ処理が行われた信号を用いて、電流制御ループにより前記サーボモータに流れる電流を制御する電流制御ループ部と、
     前記電圧の振動に関連する所定のパラメータに基づいて、前記所定のフィルタ処理に関連付けられた周波数帯域を調整する調整部と、
     を備える、サーボDC給電システム。
    DC power supply and
    One or more motor control devices that control the corresponding servomotors, respectively,
    A power supply path that distributes and supplies power from the DC power supply to the one or more motor control devices, and
    Servo DC power supply system including
    The one or more motor control devices are each
    A detector that detects the servo input terminal voltage input to the motor control device from the power supply path, and
    A signal subjected to a predetermined filter process for attenuating the high frequency side of the servo input end voltage according to the frequency related to the vibration of the voltage in the servo DC power supply system is used for the servo input end voltage. The current control loop unit that controls the current flowing through the servo motor by the current control loop,
    An adjusting unit that adjusts the frequency band associated with the predetermined filtering process based on the predetermined parameters related to the vibration of the voltage.
    Servo DC power supply system.
  2.  前記所定のパラメータは、前記対応するサーボモータの回転速度と該対応するサーボモータを流れる駆動電流のうち少なくとも一つであって、
     前記調整部は、前記回転速度が大きいほど前記周波数帯域が低くなるように調整し、および/または、前記駆動電流が大きいほど前記周波数帯域が低くなるように調整する、
     請求項1に記載のサーボDC給電システム。
    The predetermined parameter is at least one of the rotation speed of the corresponding servomotor and the drive current flowing through the corresponding servomotor.
    The adjusting unit adjusts so that the frequency band becomes lower as the rotation speed increases, and / or adjusts so that the frequency band becomes lower as the drive current increases.
    The servo DC power supply system according to claim 1.
  3.  前記所定のパラメータは、前記サーボ入力端電圧であって、
     前記調整部は、前記サーボDC給電システムにおいて前記電圧の振動が検出されたときに、その振幅が大きいほど前記周波数帯域が低くなるように調整する、
     請求項1に記載のサーボDC給電システム。
    The predetermined parameter is the servo input end voltage.
    When the vibration of the voltage is detected in the servo DC power feeding system, the adjusting unit adjusts so that the larger the amplitude, the lower the frequency band.
    The servo DC power supply system according to claim 1.
  4.  前記調整部により前記周波数帯域が調整された後に前記電圧の振動が収束しないときは、前記対応するサーボモータの駆動は停止される、
     請求項3に記載のサーボDC給電システム。
    When the vibration of the voltage does not converge after the frequency band is adjusted by the adjusting unit, the drive of the corresponding servomotor is stopped.
    The servo DC power supply system according to claim 3.
  5.  前記所定のフィルタ処理は、複数の周波数帯域のうち1つの周波数帯域を選択することで実行され、
     前記調整部は、前記所定のパラメータに基づいて、前記1つの周波数帯域の選択を行う、
     請求項1から請求項4の何れか1項に記載のサーボDC給電システム。
    The predetermined filtering process is executed by selecting one frequency band from a plurality of frequency bands.
    The adjusting unit selects the one frequency band based on the predetermined parameter.
    The servo DC power supply system according to any one of claims 1 to 4.
  6.  前記所定のフィルタ処理は、ローパスフィルタによる処理であって、
     前記調整部は、前記所定のパラメータに基づいて、前記ローパスフィルタのカットオフ周波数を調整する、
     請求項1から請求項5の何れか1項に記載のサーボDC給電システム。
    The predetermined filter processing is a processing by a low-pass filter.
    The adjusting unit adjusts the cutoff frequency of the low-pass filter based on the predetermined parameter.
    The servo DC power supply system according to any one of claims 1 to 5.
  7.  サーボDC給電システムにおいて直流電源から電力供給路を介して供給される電力により、サーボモータを制御するモータ制御装置であって、
     前記電力供給路から前記モータ制御装置に対して入力されるサーボ入力端電圧を検出する検出部と、
     前記サーボ入力端電圧に対して、前記サーボDC給電システム内での電圧の振動に関連する周波数に応じて該サーボ入力端電圧の高周波数側を減衰させる所定のフィルタ処理が行われた信号を用いて、電流制御ループにより前記サーボモータに流れる電流を制御する電流制御ループ部と、
     前記電圧の振動に関連する所定のパラメータに基づいて、前記所定のフィルタ処理に関連付けられた周波数帯域を調整する調整部と、
     を備える、モータ制御装置。
    A motor control device that controls a servomotor by means of electric power supplied from a DC power supply via a power supply path in a servo DC power supply system.
    A detector that detects the servo input terminal voltage input to the motor control device from the power supply path, and
    A signal subjected to a predetermined filter process for attenuating the high frequency side of the servo input end voltage according to the frequency related to the vibration of the voltage in the servo DC power supply system is used for the servo input end voltage. The current control loop unit that controls the current flowing through the servo motor by the current control loop,
    An adjusting unit that adjusts the frequency band associated with the predetermined filtering process based on the predetermined parameters related to the vibration of the voltage.
    A motor control unit.
  8.  サーボモータに流れる駆動電流を制御する電流制御ループを有し、サーボDC給電システムにおいて直流電源から電力供給路を介して電力が供給されるモータ制御装置によって、サーボモータを制御する方法であって、
     前記電力供給路から前記モータ制御装置に対して入力されるサーボ入力端電圧を検出するステップと、
     前記サーボ入力端電圧に対して、前記サーボDC給電システム内での電圧の振動に関連する周波数に応じて該サーボ入力端電圧の高周波数側を減衰させる所定のフィルタ処理を行うステップと、
     前記所定のフィルタ処理により得られた信号を用いて、電流制御ループにより前記サーボモータに流れる電流を制御するステップと、
     を含む、サーボモータの制御方法。
    It is a method of controlling a servomotor by a motor control device having a current control loop that controls a drive current flowing through the servomotor and supplying power from a DC power supply via a power supply path in a servo DC power supply system.
    The step of detecting the servo input end voltage input to the motor control device from the power supply path, and
    A step of performing a predetermined filter process to attenuate the high frequency side of the servo input end voltage according to the frequency related to the vibration of the voltage in the servo DC power supply system with respect to the servo input end voltage.
    A step of controlling the current flowing through the servomotor by a current control loop using the signal obtained by the predetermined filter processing, and a step of controlling the current flowing through the servomotor.
    Servo motor control methods, including.
  9.  前記所定のフィルタ処理は、ローパスフィルタによる処理であって、
     前記所定のフィルタ処理におけるカットオフ周波数は、該電圧の振動に関連する所定のパラメータに基づいて調整される、
     請求項8に記載のサーボモータの制御方法。
    The predetermined filter processing is a processing by a low-pass filter.
    The cutoff frequency in the predetermined filtering process is adjusted based on the predetermined parameters associated with the vibration of the voltage.
    The servomotor control method according to claim 8.
PCT/JP2021/029945 2020-09-17 2021-08-16 Servo dc power supply system, motor control device, and servo motor control method WO2022059399A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-156464 2020-09-17
JP2020156464A JP2022050079A (en) 2020-09-17 2020-09-17 Servo dc power supply system, motor controller, and method for controlling servo motor

Publications (1)

Publication Number Publication Date
WO2022059399A1 true WO2022059399A1 (en) 2022-03-24

Family

ID=80776885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029945 WO2022059399A1 (en) 2020-09-17 2021-08-16 Servo dc power supply system, motor control device, and servo motor control method

Country Status (3)

Country Link
JP (1) JP2022050079A (en)
TW (1) TWI800905B (en)
WO (1) WO2022059399A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03265485A (en) * 1990-03-14 1991-11-26 Matsushita Electric Ind Co Ltd Controller for servo motor
JP2011042240A (en) * 2009-08-20 2011-03-03 Mitsubishi Electric Corp Current controller for electric power steering device
JP2012125844A (en) * 2010-12-13 2012-07-05 Kawasaki Heavy Ind Ltd Method and program for adjusting control loop gain of servo amplifier, and robot controller

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060357A1 (en) * 2010-11-05 2012-05-10 三菱電機株式会社 Power converter
CN107707160A (en) * 2017-10-19 2018-02-16 安徽爱意爱机电科技有限公司 High-accuracy direct current brushless servo motor driver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03265485A (en) * 1990-03-14 1991-11-26 Matsushita Electric Ind Co Ltd Controller for servo motor
JP2011042240A (en) * 2009-08-20 2011-03-03 Mitsubishi Electric Corp Current controller for electric power steering device
JP2012125844A (en) * 2010-12-13 2012-07-05 Kawasaki Heavy Ind Ltd Method and program for adjusting control loop gain of servo amplifier, and robot controller

Also Published As

Publication number Publication date
JP2022050079A (en) 2022-03-30
TW202213930A (en) 2022-04-01
TWI800905B (en) 2023-05-01

Similar Documents

Publication Publication Date Title
JP5751242B2 (en) Inverter control device and power conversion device
JP5724903B2 (en) Power regeneration device and power conversion device
JP5382069B2 (en) Inverter device and electric motor drive system
EP3139491B1 (en) System and method for improved motor drive tuning
JP2009183142A (en) Motor control method and its apparatus
JP6897790B2 (en) Motor control method and motor control device
JP5164138B2 (en) Electric motor control device
WO2022059399A1 (en) Servo dc power supply system, motor control device, and servo motor control method
CN111418144B (en) Motor control method and motor control device
JP6388542B2 (en) Motor control device
CN114337437B (en) Control method of variable frequency air conditioner, variable frequency air conditioner and computer storage medium
JP5932136B2 (en) Motor control device
WO2020195677A1 (en) Servo dc power supply system and motor control device
US20050007058A1 (en) Spindle motor drive controller
JP2010288370A (en) Controller for inverter and method for controlling inverter
JPWO2019106729A1 (en) Electric motor control method and electric motor control device
JP2006006038A (en) Power converter
JP2022163794A (en) Processor
JP6548582B2 (en) Power converter
JP6640659B2 (en) Control device for power converter, power conversion system, compressor drive system, flywheel power generation system, and control method for power converter
WO2021070403A1 (en) Dc power supply device and servo dc power supply system
JP7472462B2 (en) Servo DC power supply system and motor control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21869086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21869086

Country of ref document: EP

Kind code of ref document: A1