WO2022059364A1 - Sound processing system, sound processing method, and recording medium - Google Patents

Sound processing system, sound processing method, and recording medium Download PDF

Info

Publication number
WO2022059364A1
WO2022059364A1 PCT/JP2021/028343 JP2021028343W WO2022059364A1 WO 2022059364 A1 WO2022059364 A1 WO 2022059364A1 JP 2021028343 W JP2021028343 W JP 2021028343W WO 2022059364 A1 WO2022059364 A1 WO 2022059364A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
unit
signal
impulse response
processing system
Prior art date
Application number
PCT/JP2021/028343
Other languages
French (fr)
Japanese (ja)
Inventor
僚太 山口
孝司 大杉
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2022550400A priority Critical patent/JPWO2022059364A5/en
Publication of WO2022059364A1 publication Critical patent/WO2022059364A1/en

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K15/00Acoustics not otherwise provided for
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Definitions

  • the present invention relates to an acoustic processing system, an acoustic processing method, and a recording medium.
  • the present invention relates to, for example, a method of acquiring a head-related impulse response (HRIR) for reproducing a sound having a stereoscopic effect using headphones, earphones, or the like.
  • HRIR head-related impulse response
  • Patent Document 1 discloses a method of synthesizing a two-channel acoustic signal by convolving each of the sound wave transmission characteristics from a sound source to the left and right ears of a listener as a head-related transfer function into a source sound. By presenting the sound based on the acoustic signal obtained by this method to the left and right ears of the listener, sound image localization in the direction of the sound source is realized.
  • HRIR corresponds to the head related transfer function expressed as an impulse response in the time domain.
  • Patent Document 1 describes a measuring device that measures a head transmission function by installing a microphone in the subject's ear with a signal of a pseudo sound source emitted from around the subject's head.
  • This measuring device has a sound source storage unit, an output control unit, an output unit, an input unit, a key input unit that supports the start of measurement, an input control unit that records measurement data in the data storage unit, and a reflector. Then, this measuring device starts the input in synchronization with the output of the output control unit at the time of measurement in the measurement room not subjected to the non-reverberation processing, and ends the data input before the reverberation sound reaches the input unit.
  • a reflector is arranged in the path of the reflected sound reaching the input unit within the measurement time.
  • the special environment refers to an environment where there is no reflection such as an anechoic chamber, or an environment where the influence is negligible and there is little reflection. This is because if the HRIR includes the influence of reflection, it becomes impossible to reproduce the sound waves arriving at the left and right ears from the target direction of the sound image localization.
  • the measuring device described in Patent Document 1 reduces the influence of reflection by arranging a reflector in the path of the reflected sound to block the reflection to the microphone. Therefore, it is difficult to arrange a reflector in the path of the reflected sound except for an acoustic engineer who has knowledge about the path of the reflected sound.
  • An example of an object of the present invention is to provide an acoustic processing system, an acoustic processing method, and a recording medium capable of acquiring HRIR more easily.
  • the sound processing system includes a sound source that emits a sound based on a predetermined sound source signal, a sound receiving unit that acquires a sound receiving signal of the incoming sound, and the sound source from the sound receiving signal.
  • a calculation unit that acquires an impulse response from the sound receiving unit to the sound receiving unit, and a sound absorbing material that covers an object on the path of the reflected sound that arrives at the sound receiving unit within at least a predetermined observation period from the generation of the sound. Be prepared.
  • the sound processing method includes a sound absorbing material that covers an object on the path of the reflected sound that arrives at the sound receiving portion within at least a predetermined observation period from the generation of the sound from the sound source.
  • a first step in which the sound source emits a sound based on a predetermined sound source signal, and the sound receiving unit acquires a sound receiving signal of the incoming sound. It has a second step and a third step in which the arithmetic processing unit acquires an impulse response from the sound source to the sound receiving unit from the sound receiving signal.
  • the recording medium is a sound absorbing material that covers an object on the path of the reflected sound that arrives at the sound receiving portion within at least a predetermined observation period from the generation of the sound from the sound source.
  • a computer of a sound processing system provided with a first step in which the sound source emits a sound based on a predetermined sound source signal, a second step in which the sound receiving unit acquires a sound receiving signal of the incoming sound, and an operation.
  • the processing unit stores a program for executing the third step of acquiring an impulse response from the sound source to the sound receiving unit from the sound receiving signal.
  • HRIR can be obtained more easily.
  • the sound processing system according to the first embodiment includes a sound source for emitting sound, a sound receiving unit for acquiring a sound receiving signal of the incoming sound, a sound absorbing material for absorbing the incoming sound, and an acoustic processing device. ..
  • An example of the functional configuration of the sound processing device 10 will be described later.
  • FIG. 1 is a plan view showing a configuration example of the acoustic processing system 1 according to the present embodiment.
  • FIG. 2 is a side view showing a configuration example of the sound processing system 1 according to the present embodiment.
  • FIG. 2 shows sides that pass through the AA'line of FIG. 1 and are vertically parallel.
  • the sound processing system 1 is used in the indoor space Rm.
  • the space Rm may be a room without special soundproofing and reverberation equipment as a whole space. That is, the space Rm is not limited to a soundproof room, a laboratory, or the like, but may be an office room, a classroom, a meeting room, a living room, or the like.
  • the space Rm has a substantially rectangular parallelepiped shape and has a rectangular shape in a plan view.
  • the space Rm is surrounded by four sides, one bottom surface, and one top surface. The top surface is a surface facing the bottom surface, and is represented above the bottom surface in FIGS. 1 and 2.
  • the side surface, bottom surface and top surface are collectively referred to as the inner surface.
  • the side surface, bottom surface, and top surface form a wall surface, floor surface, and ceiling, respectively.
  • two speakers Sp, a sound absorbing material As, and a seat Pf are arranged as sound sources for radiating sound.
  • the two speaker Sps are within a predetermined range from one side (hereinafter referred to as a speaker installation side) which is an intersection line where two adjacent side surfaces (hereinafter referred to as adjacent surfaces) intersect among the four sides of the space Rm. They are installed in close proximity to each other. However, the two speakers Sp are installed at different height positions in the vertical direction as shown in FIG. The two speakers Sp may be distinguished from each other by calling them speakers Sp01, Sp02, or the like. Of the two speakers Sp, the speaker Sp01 appears in FIG. 1, and the speaker Sp02 installed at a position lower than the speaker Sp01 does not appear.
  • a reproduction signal is input from the sound processing device 10 to any one speaker Sp (speaker Sp01 in the example shown in FIG. 1).
  • the speaker Sp radiates (reproduces) a sound based on a sound source signal input from the sound processing device 10.
  • the seat Pf is installed so that its central portion faces a position on the bisector of the angle formed by the adjacent surfaces and at a predetermined distance (for example, 1 to 2 m) from each speaker Sp. ing.
  • the seat Pf has a seat plate and a backrest, which allow the subject Sb to be stationary and supported in a sitting position.
  • the subject Sb is a person to be measured for HRIR from the speaker Sp to the left and right ears.
  • the sound absorbing material As is installed so as to cover at least a part of the inner surface of the space Rm. In the examples shown in FIGS. 1 and 2, the sound absorbing material As is installed so as to cover a part of the bottom surface and a part of the adjacent surface. Although not shown, a sound absorbing material may be installed to cover the seat Pf.
  • the sound absorbing material As includes a material having a sufficiently low reflectance of the incoming sound.
  • the sound absorbing material As may be a material that absorbs the energy of the sound and dissipates it as heat by converting most of the energy of the vibration of the incoming sound into heat.
  • the sound absorbing material As the sound absorbing material As, for example, glass wool, rock wool, urethane sponge, or the like can be used.
  • the sound absorbing material may also be referred to as a sound insulating material, a soundproofing material, or the like. The area where the sound absorbing material As is installed will be described later.
  • a microphone Mic is attached to each of the left and right ears of the subject Sb as a sound receiving part. Microphones attached to the left and right ears are distinguished by calling them microphones MicL and MicR, respectively.
  • the microphones MicL and MicR each receive the sound arriving at their own unit and convert the received sound into a sound receiving signal.
  • the microphones MicL and MicR each output the converted sound receiving signal to the sound processing device 10.
  • the sound receiving signals output from the microphones MicL and MicR may be referred to as a left sound receiving signal and a right sound receiving signal, respectively.
  • the sound wave radiated from the speaker Sp propagates on various paths to the microphones MicL and MicR.
  • a part of the sound wave radiated from the speaker Sp is directly transmitted to the microphone MicL and MicR. It's coming.
  • the other part of this sound wave is reflected by the surface of an object arranged on the path, and arrives at the microphones MicL and MicR as reflected sound.
  • the sound wave S emitted by the speaker Sp includes a reflection point on the surface of the object as a propagation path and is reflected at the reflection point.
  • the reflected wave Srn observed at the sound receiving point where any of the microphones Mic is installed is represented by the equation (1).
  • R and L indicate the reflectance of the sound wave at the reflection point and the attenuation rate according to the distance, respectively.
  • the reflected wave Sr that arrives at the sound receiving point corresponds to a composite of the reflected waves Srn for each reflection point as shown in the equation (2).
  • represents the sum between the reflection points.
  • the set of these reflection points corresponds to the surface of various reflectors that reflect the sound coming from the speaker Sp.
  • the sound wave S'arriving at the sound receiving point is a combination of the component of the direct wave S from the speaker Sp and the component of the reflected wave Sr as shown in the equation (3).
  • the head impulse response indicates the propagation characteristics of the sound wave from the sound source to each ear of the subject Sb.
  • the head impulse response includes the reflection and diffraction characteristic of the sound wave arriving from the sound source on the surface of the head of the subject Sb (for example, the pinna).
  • the head impulse response is expected to eliminate the effects of reflected waves.
  • it has been common to measure the head impulse response in an environment such as an anechoic chamber where sound wave reflection does not occur. This is because it does not include the contribution of the reflected sound by the object installed on the propagation path of the sound wave.
  • the head impulse response includes at least a period due to the reflection and diffraction of sound waves in the head (hereinafter referred to as a head transmission period), and the sound reflected by other objects. Reduce the ingredients. Therefore, in the sound processing apparatus 10, at least a period including a head transmission period is set in advance as an observation period of the head impulse response.
  • the head-related transfer period depends on the size of the human head, but is typically about 1 to 3 ms starting from the time when the direct wave coming from the speaker Sp first arrives at the head of the subject Sb. It will be a period.
  • the component of the reflected sound can be reduced. Even if the sound absorbing material As is installed, it does not hinder the use of the space Rm as much as the reflector, and the load related to the work related to the installation is light. Therefore, as illustrated in FIG. 1, HRIR can be acquired even in a common environment such as a corner of a space Rm.
  • the positional relationship between the sound source and the seat Pf or the subject Sb is not limited to those exemplified in FIGS. 1 and 2.
  • the seat Pf may be installed in the central portion of the space Rm.
  • the shape of the space Rm is not limited to that exemplified in FIGS. 1 and 2.
  • the shape of the space Rm may be a cylinder.
  • the area where the sound absorbing material As is installed is a square partial area including the seat Pf from the speaker installation side on the bottom surface and a bottom surface partial area of each of the two adjacent surfaces. It includes a region extending from the portion in contact with the speaker to a height obtained by adding a predetermined height to the height of at least two speakers Sp01 and Sp02, whichever is higher.
  • the time from the time when the speaker emits sound to the starting point of the observation period (hereinafter, observation start time) is calculated based on the distance from the speaker Sp to the subject Sb and the speed of sound.
  • the observation start time may be set in advance in the sound processing device 10, or may be calculated based on the position of the speaker Sp and the position of the seat Pf or the subject Sb.
  • the region where the sound absorbing material As is installed may include a portion where the reflected sound reaches the microphones MicL and MicR within the observation period, and the size and shape of the region are exemplified in FIGS. 1 and 2. It is not limited to what is done.
  • the shape of the region covering the floor surface with the sound absorbing material As may be fan-shaped as illustrated in FIG. 9, and may not necessarily include the position of the seat Pf.
  • the intensity of the reflected sound coming from the sound absorbing material As to each of the microphones MicL and MicR is not completely zero, but it is sufficiently lower than the intensity of the direct sound.
  • a phenomenon massing
  • the S / N ratio when the direct sound component is a signal component and the reflected sound component is a noise component can be reduced to the extent that the reflected sound cannot be perceived. Therefore, even with the head impulse response acquired by the acoustic processing system 1 according to the present embodiment, it is possible to aurally realize a stereoscopic effect similar to that of the head impulse response measured in the anechoic chamber.
  • FIG. 3 is a schematic block diagram showing a hardware configuration example of the sound processing device 10 according to the present embodiment.
  • the sound processing device 10 includes a control unit 110, a storage unit 130, an input / output unit 140, a display unit 150, and an operation unit 160.
  • the sound processing device 10 may be configured as a dedicated device or may be realized by a general-purpose computer.
  • the control unit 110 performs processing for realizing and controlling various functions of the sound processing device 10.
  • the control unit 110 enables the control unit 110 to execute a process instructed by an instruction (command) described in various programs such as an application program, and executes and controls the operation of each unit constituting the sound processing device 10. .
  • the control unit 110 includes, for example, one or more processors such as a CPU (Central Processing Unit).
  • the storage unit 130 stores various data used by the control unit 110, various data acquired by the control unit 110, various programs, and the like.
  • the storage unit 130 includes, for example, a ROM (ReadOnlyMemory), a RAM (RandomAccessMemory), and the like.
  • the input / output unit 140 connects to a device separate from the sound processing device 10 by wire or wirelessly, and inputs / outputs various data.
  • the input / output unit 140 may be connected to the communication network by wire or wirelessly, and may transmit and receive various data to and from a separate device connected to the communication network.
  • the input / output unit 140 includes, for example, input / output devices such as an input / output interface and a communication interface.
  • the display unit 150 visually and recognizablely displays information instructed by various display data input from the control unit 110.
  • display data includes image data, text data, and the like.
  • the display unit 150 includes, for example, a display device of any form such as a liquid crystal display (LCD: Liquid Crystal Display) or an organic electro-luminescence display (OLED: Organic Electro-luminescence Display).
  • LCD Liquid Crystal Display
  • OLED Organic Electro-luminescence Display
  • the operation unit 160 accepts the user's operation, generates an operation signal according to the accepted operation, and outputs the generated operation signal to the control unit 110.
  • the operation signal indicates various information such as a user's instruction and a command to the sound processing device 10.
  • the operation unit 160 includes, for example, an operation device in any form such as a push button or a stick key.
  • the operation unit 160 may be configured to include a receiver that receives wirelessly (including infrared rays) from a physically separated operating device (eg, a remote controller).
  • FIG. 4 is a schematic block diagram showing a functional configuration example of the sound processing device 10 according to the present embodiment.
  • the sound processing device 10 includes a measurement control unit 112, a recording unit 114, and a calculation unit 116 in the control unit 110.
  • the measurement control unit 112 performs various controls related to the measurement of the head impulse response.
  • the measurement control unit 112 When the operation signal indicating the start of measurement is input from the operation unit 160, the measurement control unit 112 generates a predetermined sound source signal for use in the measurement.
  • the sound source signal is, for example, an impulse signal.
  • the impulse signal is a signal whose signal value at a certain sample time is significantly different from zero (non-zero value) and whose signal value is zero at other times.
  • the measurement control unit 112 outputs the sound source signal generated via the input / output unit 140 to the speaker Sp.
  • the speaker Sp emits a sound according to the input sound source signal.
  • the sample time when the signal value takes a non-zero value corresponds to the time when the impulse sound is emitted from the speaker Sp.
  • the measurement control unit 112 may specify the speaker Sp that emits sound as the output destination of the sound source signal.
  • the speaker Sp as an output destination may be instructed by an operation signal input from the operation unit 160, or may be selected in a predetermined order.
  • the seat Pf may have a horizontal plane parallel to the floor surface and may have a rotatable seat plate.
  • the subject Sb may operate the operation unit 160 to instruct the start of measurement each time the direction is changed by a predetermined angle (for example, 3 to 60 °).
  • a predetermined angle for example, 3 to 60 °.
  • the measurement control unit 112 acquires direction information indicating the direction of the seat Pf, outputs the acquired direction information to the calculation unit 116, and stores the acquired direction information in the storage unit 130 in association with the HRIR measured by the calculation unit 116. You may.
  • the recording unit 114 stores (records) the left sound receiving signal and the right sound receiving signal input from the microphones MicL and MicR via the input / output units 140, respectively.
  • the sounds directly or indirectly propagated from the speaker Sp arrive at the microphones MicL and MicR, respectively, and the incoming sounds are received. Therefore, the left sound receiving signal and the right sound receiving signal are input to the recording unit 114 from the microphones MicL and MicR, respectively.
  • the left-received signal and the right-received signal indicate HRIRs from the speaker Sp to the microphones MicL and MicR, respectively.
  • the recording unit 114 starts recording the left sound reception signal and the right sound reception signal when the operation signal indicating the start of measurement is input from the operation unit 160, and a predetermined recording period (for example, 0. Recording may be stopped after 2 to 2 seconds).
  • the recording period may have a length of at least the above observation period or longer.
  • the calculation unit 116 inputs an operation signal indicating the start of measurement from the operation unit 160, and after the above recording period has elapsed, the calculation unit 116 reads the newly recorded sound reception signal from the recording unit 114.
  • the arithmetic unit 116 acquires the HRIR from the read received signal.
  • the reflected sound included in the observation period is significantly attenuated by the sound absorbing material As. However, the component of the reflected sound arriving after the above observation period may be left in the received signal.
  • the arithmetic unit 116 may gradually attenuate (fade out) the signal value in the period after the observation period among the signal values forming the impulse response obtained from the received signal.
  • the calculation unit 116 attenuates the signal value of the received signal from the end point of the observation period over a predetermined attenuation time (for example, 10 to 100 ms) according to the passage of time until it reaches zero, and the time after that. Reject the signal value. Therefore, the influence of the reflected sound (hereinafter referred to as the late reflected sound) arriving after the observation period appearing in the received signal is removed, and the calculation unit 116 can acquire a significant portion as the HRIR.
  • a predetermined attenuation time for example, 10 to 100 ms
  • the components of the late reflected sound include, for example, the reflected sound from the ceiling, the back surface of the subject Sb, that is, the reflected sound from the seat Pf in the direction opposite to the direction of the speaker Sp.
  • the calculation unit 116 stores the acquired HRIR signal indicating the HRIR in the storage unit 130.
  • FIG. 5 is a flowchart showing an example of the HRIR measurement process according to the present embodiment.
  • the reflected sound for the impulses arriving at the microphones MicL and MicR attached to the left and right ears of the subject Sb arrives at least within the observation period from the generation of the impulse from the speaker Sp.
  • the reflective material of the portion that is, the floor surface, the wall surface, the seat Pf, etc.
  • the sound absorbing material As.
  • Step S102 The measurement control unit 112 outputs an impulse signal to the speaker Sp.
  • the speaker Sp emits an impulse as a measurement sound based on the impulse signal.
  • Step S104 Each of the microphones MicL and MicR receives a sound arriving at its own unit, and acquires a left sound reception signal and a right sound reception signal indicating the received sounds, respectively.
  • the microphones MicL and MicR output the left sound receiving signal and the right sound receiving signal to the recording unit 114, respectively.
  • Step S106 The recording unit 114 records a left sound reception signal including an HRIR and a right sound reception signal, respectively.
  • Step S108 The calculation unit 116 attenuates and rejects the signal values of the left-received signal and the right-received signal newly recorded in the recording unit 114 for a period after the observation period, thereby causing the late reflected sound. Is removed to obtain HRIR.
  • the measurement control unit 112 may repeat the HRIR measurement process from step S102 to step S108 a predetermined number of times or more after the measurement start is instructed. As the number of repetitions, a predetermined number of times of two or more is set in advance in the measurement control unit 112. Therefore, the calculation unit 116 outputs the HRIR acquisition end notification to the measurement control unit 112 after each HRIR measurement process is completed.
  • the measurement control unit 112 counts by adding (incrementing) the number of measurements by 1 each time the HRIR acquisition end notification is input. However, the initial value of the number of measurements is set to 0.
  • the measurement control unit 112 determines whether or not the number of measurements has reached the number of repetitions, and when it is determined that the number of measurements has reached, outputs a measurement end notification to the calculation unit 116. When the measurement control unit 112 determines that the value has not been reached, the measurement control unit 112 starts the next HRIR measurement process.
  • the calculation unit 116 adds the signal values for each time included in the acquired HRIR signal for the number of repetitions between the repetitions of the HRIR measurement process for each time.
  • a new HRIR signal including the sum obtained as a signal value is generated (synchronous addition).
  • the arithmetic unit 116 may generate an HRIR signal including the quotient obtained by dividing the signal value related to each time by the number of repetitions as a new signal value instead of the original signal value (normalization).
  • the calculation unit 116 stores the generated HRIR in the storage unit 130.
  • FIG. 6 is a side view showing a configuration example of the sound processing system 1 according to the present embodiment.
  • the sound processing system 1 according to the present embodiment includes a speaker Sp as a sound source, a microphone Mic L and Mic R as a sound receiving unit (however, Mic R is not shown in FIG. 6), a sound absorbing material As, and a sound processing device.
  • an image acquisition unit Cm is provided as an example of the measurement environment information acquisition unit.
  • the image acquisition unit Cm takes an image of the measurement environment of the HRIR as an example of the measurement environment information.
  • the image acquisition unit Cm is, for example, a digital still camera capable of capturing a still image.
  • the image acquisition unit Cm may be positioned and oriented so as to include the evaluation region in the visual field in the space Rm, and the viewing angle thereof may be set.
  • the sound processing device 10 determines the arrangement state of the sound absorbing material in the measurement environment, particularly in the evaluation region, based on the image taken by the image acquisition unit Cm.
  • the sound processing device 10 estimates the reflection characteristic from the arrangement state with reference to the reflection characteristic-related data showing the relationship between the arrangement state and the reflection characteristic. Then, the sound processing device 10 determines whether or not to measure the HRIR based on whether or not the estimated reflection characteristic is more remarkable than the predetermined reflection intensity. This identifies whether or not the HRIRs that can be used to achieve a stereoscopic effect can be measured.
  • FIG. 7 is a schematic block diagram showing a functional configuration example of the control unit 110 provided in the sound processing system 1 according to the present embodiment.
  • the control unit 110 includes a measurement control unit 112, a recording unit 114, a calculation unit 116, a reflectance storage unit 124, and a measurement environment determination unit 126.
  • Reflectance characteristic-related data is stored in advance in the reflectance storage unit 124.
  • the reflection characteristic-related data is data that includes information indicating the material and the reflectance for sound waves arriving at the material in association with each other for each material. Reflectance is the ratio of the intensity of the reflected wave to the sound wave to the intensity of the incoming sound wave.
  • the reflection characteristic-related data may include information on a material that can be at least one type of sound absorbing material.
  • the reflection characteristic-related data may or may not include information relating to a material that does not serve as a sound absorbing material.
  • the sound absorbing material corresponds to a material having a reflectance sufficiently lower than a predetermined reflectance (for example, -30 to -50 dB).
  • Image data indicating an image taken from the image acquisition unit Cm is input to the measurement environment determination unit 126.
  • the measurement environment determination unit 126 executes a predetermined image recognition process on the input image data to determine the arrangement state of the sound absorbing material in the measurement environment. More specifically, the measurement environment determination unit 126 identifies the material of the object arranged in the block for each block in which the image shown in the image data is subdivided into a predetermined size by the image recognition process.
  • image recognition data indicating the relationship between the image feature amount and the material is set in advance.
  • the measurement environment determination unit 126 calculates, for example, the image feature amount for each block based on the pixel value of each pixel arranged in the block, and calculates by referring to the image recognition data. It is possible to specify the material of the subject corresponding to the image feature amount.
  • a set of blocks in which the specified material corresponds to the sound absorbing material corresponds to the sound absorbing material region, and the distribution of the sound absorbing material region indicates the arrangement state of the sound absorbing material.
  • the measurement environment determination unit 126 determines whether or not to measure the HRIR based on the arrangement information of the sound absorbing material. More specifically, the measurement environment determination unit 126 specifies the reflectance of the specified material for each block included in the evaluation region by referring to the reflection characteristic-related data, and the block in the evaluation region of the specified reflectance. The average value between them is calculated as the average reflectance. The measurement environment determination unit 126 determines whether or not to measure the HRIR based on whether or not the calculated average reflectance is equal to or less than a predetermined upper limit value (for example, -25 to -40 dB) of the reflectance. In the measurement environment determination unit 126, evaluation area information indicating an evaluation area in the captured image is set in advance.
  • the evaluation area includes the positional relationship between the speaker Sp and the seat Pf, the distribution of reflectors (wall surface, side surface, seat Pf, etc.) of Rm in space, the position, orientation, and viewing angle of the image acquisition unit Cm. Determined based on size etc.
  • the measurement environment determination unit 126 generates, for example, display data including determination information corresponding to a determination result indicating whether or not to measure the HRIR, and outputs the generated display data to the display unit 150.
  • the display unit 150 notifies the user whether or not the measurement environment is an appropriate environment, that is, an environment in which the HRIR can be sufficiently perceived by the listener.
  • the user may be an operator involved in the measurement of the HRIR, or may be the subject Sb himself.
  • the measurement environment determination unit 126 may output determination information indicating the determination result to the measurement control unit 112.
  • the determination information input from the measurement environment determination unit 126 indicates that the measurement control unit 112 measures the HRIR
  • the measurement control unit 112 executes the above-mentioned HRIR measurement process, and the determination information indicates that the measurement environment does not measure the HRIR.
  • the measurement of HRIR is restricted when the measurement environment is not appropriate, and HRIR is measured when the measurement environment is appropriate. Therefore, the quality of the measured HRIR is ensured.
  • FIG. 8 is a flowchart showing an example of the measurement environment determination process according to the present embodiment.
  • the reflection characteristic-related data is saved in advance before the execution of the process shown in FIG. 8 is started.
  • the reflection characteristic-related data includes information indicating the reflectance of each material.
  • Step S202 The image acquisition unit Cm captures an image of the measurement environment and outputs image data indicating the captured image to the sound processing device 10.
  • Step S204 The measurement environment determination unit 126 performs image recognition processing on the image data input from the image acquisition unit Cm, and the subject in the measurement environment represented in the field of view for each block in which the image is subdivided. Identify the material.
  • the measurement environment determination unit 126 determines the reflectance of the material specified for each block with reference to the reflection characteristic-related data.
  • the measurement environment determination unit 126 determines the average reflectance as an example of the representative value of the reflectance in the evaluation region based on the reflectance determined for each block in the predetermined evaluation region. The measurement environment determination unit 126 determines whether or not the determined average reflectance is equal to or less than the upper limit of the predetermined reflectance. The measurement environment determination unit 126 determines that the measurement environment measures HRIR when it is determined that the average reflectance is equal to or less than the upper limit value, and when it is determined that the average reflectance is larger than the upper limit value, the measurement environment is HRIR. Is determined not to be measured. The measurement environment determination unit 126 may output the determination information indicating the determination result to the display unit 150 or the measurement control unit 112.
  • the measurement environment determination unit 126 determines whether or not the measurement environment is an environment for measuring HRIR, as an example of an index of the arrangement state of the sound absorbing material
  • a case where the reflectance in the evaluation region is determined is taken as an example.
  • the measurement environment determination unit 126 may determine the coverage of the sound absorbing material of a predetermined material in the evaluation region as an example of the index of the arrangement state of the sound absorbing material.
  • sound absorbing material information indicating whether or not the member is a sound absorbing material may be set in advance for each member. In that case, it is not necessary to store the reflection characteristic-related data in advance in the reflectance storage unit 124.
  • the measurement environment determination unit 126 performs image recognition processing on the image data as described above, and identifies the material of the subject for each block.
  • the measurement environment determination unit 126 can specify whether or not the identified material is a sound absorbing material by referring to the sound absorbing material information set in the own unit.
  • the measurement environment determination unit 126 determines a set of blocks in which the specified material is determined as the sound absorbing material as the sound absorbing region.
  • the measurement environment determination unit 126 can calculate the ratio of the area of the sound absorbing region included in the evaluation region to the area of the evaluation region as the sound absorbing region ratio.
  • the measurement environment determination unit 126 determines whether or not the sound absorption region ratio is equal to or higher than the lower limit of the predetermined ratio (for example, 0.8 to 0.98) as an index value indicating the arrangement state of the sound absorbing material.
  • the measurement environment determination unit 126 determines that the sound absorption region ratio is equal to or higher than a predetermined lower limit, the measurement environment determines that the HRIR is measured, and when the measurement environment determines that the sound absorption region ratio is equal to or less than the predetermined lower limit, the measurement environment determines the HRIR. Judge as an environment not to be measured.
  • FIG. 9 is an explanatory diagram showing an example of the configuration.
  • the sound processing system 1 includes a sound source (for example, a speaker Sp), a sound receiving unit (for example, a microphone Mic), a calculation unit 116, and a sound absorbing material As.
  • the sound source emits a sound based on a predetermined sound source signal.
  • the sound receiving unit acquires a sound receiving signal of the incoming sound.
  • the arithmetic unit 116 acquires an impulse response from the sound source to the sound receiving unit from the acquired sound receiving signal.
  • the sound absorbing material covers an object on the path of reflected sound that arrives at least within a predetermined observation period from the generation of sound.
  • the installation of the sound absorbing material reduces the intensity of the reflected sound component that arrives at least within the observation period in the impulse response as compared with the case where the sound absorbing material is not installed. Further, it is sufficient that the sound absorbing material is covered with an object related to the propagation path of the reflected sound arriving within at least the observation period in the propagation path of the sound wave from the sound source to the sound receiving portion. Therefore, even in an ordinary space that does not have special equipment such as an anechoic chamber, it is possible to easily obtain an impulse response to be used as an HRIR.
  • the load related to the installation of the sound absorbing material is relatively light, and the space can be effectively utilized.
  • the arithmetic unit 116 may attenuate the signal value after the observation period of the acquired impulse response has elapsed. According to this configuration, the portion of the acquired impulse response within the observation period is extracted, and the portion after the lapse of the observation period is removed. Therefore, the important part of the HRIR during the observation period for perceiving the three-dimensional effect of the sound is maintained, and the influence of the late reflected sound that arrives after the observation period can be avoided.
  • the acoustic processing system 1 may include a measurement control unit 112 that repeats the generation of sound from the sound source, the acquisition of the received signal, and the acquisition of the impulse response a plurality of times.
  • the arithmetic unit 116 may synchronously add a plurality of acquired impulse responses. According to this configuration, the added noise component is relatively reduced as compared with the component of the impulse response added by the synchronous addition. Therefore, it is possible to obtain a more accurate impulse response.
  • the sound processing system 1 may include a measurement environment information acquisition unit (for example, an image acquisition unit Cm) and a measurement environment determination unit 126.
  • the measurement environment information acquisition unit acquires information on the measurement environment of the impulse response.
  • the measurement environment determination unit refers to the preset reflection characteristic-related data, determines the arrangement state of the sound absorbing material based on the acquired information, and the measurement environment measures the impulse response based on the determined arrangement state of the sound absorbing material. Determine whether or not to do so. According to this configuration, it is determined based on the arrangement state of the sound absorbing material whether the measurement environment is an appropriate environment capable of obtaining an impulse response that allows the listener to sufficiently perceive a three-dimensional effect, and the determination thereof. The necessity of measuring the impulse response is determined according to the result. Therefore, the acquisition of an inappropriate impulse response is restricted, and the acquisition of an appropriate impulse response is promoted.
  • the sound processing system 1 may include a reflectance storage unit 124.
  • the reflectance storage unit 124 stores reflection characteristic-related data including information associated with information on the material and the reflectance of sound.
  • the measurement environment determination unit 126 identifies the material of the subject specified from the image as the acquired information, refers to the reflection characteristic-related data, specifies the reflectance corresponding to the specified material, and is based on the specified reflectance. To determine whether to measure the impulse response.
  • the material of the subject represented in the acquired image is specified, and it is determined whether or not to measure the impulse response based on the reflectance specified from the specified material. Therefore, since the reflectance in the measurement environment of the impulse response is estimated without performing the actual measurement, it is determined whether or not the impulse response can be measured without any change in the acoustic environment due to the actual measurement.
  • the present invention may be applied to an acoustic processing system, an acoustic processing method, and a recording medium.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

This sound processing system comprises: a sound source that emits a sound, which is based on a prescribed sound source signal; a sound reception unit that acquires a sound reception signal of an arrived sound; a calculation unit that acquires, from the sound reception signal, the impulse response from the sound source to the sound reception unit; and a sound absorption material that covers an object, said object being on the path of a reflected sound that arrives at the sound reception unit at least within a prescribed observation period from the production of the aforementioned sound.

Description

音響処理システム、音響処理方法、および記録媒体Sound processing system, sound processing method, and recording medium
 本発明は、音響処理システム、音響処理方法、および記録媒体に関する。本発明は、例えば、ヘッドホン、イヤホンなどを用いて立体感を有する音を再現するための頭部インパルス応答(HRIR:Head Related Impulse Response)を取得する方法に関する。 The present invention relates to an acoustic processing system, an acoustic processing method, and a recording medium. The present invention relates to, for example, a method of acquiring a head-related impulse response (HRIR) for reproducing a sound having a stereoscopic effect using headphones, earphones, or the like.
 従来から立体感を有する音を再現する方法が提案されている。例えば、特許文献1は、音源から受聴者の左右の耳に至る音波の伝達特性を頭部伝達関数として、それぞれソース音に畳み込んで2チャンネルの音響信号を合成する手法について開示している。この手法により得られた音響信号に基づく音を受聴者の左右の耳に提示することで、音源方向への音像定位が実現する。HRIRは、頭部伝達関数を時間領域のインパルス応答として表現したものに相当する。
 他方、予め共通なHRIRを用いて合成された音響信号を用いても、3割以上の受聴者には所望の立体感が得られないことが知られている。そのため、個々の受聴者に対してHRIRを取得することが重要となる。
Conventionally, a method of reproducing a sound having a three-dimensional effect has been proposed. For example, Patent Document 1 discloses a method of synthesizing a two-channel acoustic signal by convolving each of the sound wave transmission characteristics from a sound source to the left and right ears of a listener as a head-related transfer function into a source sound. By presenting the sound based on the acoustic signal obtained by this method to the left and right ears of the listener, sound image localization in the direction of the sound source is realized. HRIR corresponds to the head related transfer function expressed as an impulse response in the time domain.
On the other hand, it is known that even if an acoustic signal synthesized in advance using a common HRIR is used, a desired stereoscopic effect cannot be obtained for 30% or more of the listeners. Therefore, it is important to obtain HRIRs for individual listeners.
 特許文献1には、被験者の頭部の回りから発する疑似音源の信号を被験者の耳にマイクロホンを設置して頭部伝達関数を測定する測定装置について記載されている。この測定装置は、音源記憶部、出力制御部、出力部、入力部、測定開始を支持するキー入力部、データ記憶部に測定データの記録を行う入力制御部および反射板を有する。そして、この測定装置は、無反響処理の施されていない測定室での測定時に、出力制御部の出力と同期して入力を開始し、残響音が入力部に到達する前にデータ入力を終了し、測定時間内に入力部に到達する反射音の経路に反射板が配されていることを特徴とする。 Patent Document 1 describes a measuring device that measures a head transmission function by installing a microphone in the subject's ear with a signal of a pseudo sound source emitted from around the subject's head. This measuring device has a sound source storage unit, an output control unit, an output unit, an input unit, a key input unit that supports the start of measurement, an input control unit that records measurement data in the data storage unit, and a reflector. Then, this measuring device starts the input in synchronization with the output of the output control unit at the time of measurement in the measurement room not subjected to the non-reverberation processing, and ends the data input before the reverberation sound reaches the input unit. However, it is characterized in that a reflector is arranged in the path of the reflected sound reaching the input unit within the measurement time.
日本国特開平8-307988号公報Japanese Patent Application Laid-Open No. 8-307988
 しかしながら、HRIRを取得するには、特殊な環境を要する。特殊な環境とは、無響室のように反射がない環境、もしくは、その影響が無視できるほど反射が少ない環境を指す。HRIRに反射の影響が含まれていると、音像定位の目標とする目標方向から左右の各耳に到来する音波を再現できなくなるためである。この点、特許文献1に記載の測定装置は反射音の経路に反射板を配することで、マイクロホンへの反射を遮断することで反射の影響を低減している。そのため、反射音の経路に反射板を配することは、反射音の経路に係る知見を有する音響技術者を除いては困難である。 However, a special environment is required to obtain HRIR. The special environment refers to an environment where there is no reflection such as an anechoic chamber, or an environment where the influence is negligible and there is little reflection. This is because if the HRIR includes the influence of reflection, it becomes impossible to reproduce the sound waves arriving at the left and right ears from the target direction of the sound image localization. In this respect, the measuring device described in Patent Document 1 reduces the influence of reflection by arranging a reflector in the path of the reflected sound to block the reflection to the microphone. Therefore, it is difficult to arrange a reflector in the path of the reflected sound except for an acoustic engineer who has knowledge about the path of the reflected sound.
 本発明は、上述の課題を解決すべくなされた。本発明の目的の一例は、より簡易にHRIRを取得することができる音響処理システム、音響処理方法、および記録媒体を提供することである。 The present invention has been made to solve the above-mentioned problems. An example of an object of the present invention is to provide an acoustic processing system, an acoustic processing method, and a recording medium capable of acquiring HRIR more easily.
 本発明の第1の態様によれば、音響処理システムは、所定の音源信号に基づく音を発する音源と、到来した音の受音信号を取得する受音部と、前記受音信号から前記音源から前記受音部へのインパルス応答を取得する演算部と、前記音の発生から少なくとも所定の観測期間内に前記受音部に到来する反射音の経路上の物体を被覆する吸音材と、を備える。 According to the first aspect of the present invention, the sound processing system includes a sound source that emits a sound based on a predetermined sound source signal, a sound receiving unit that acquires a sound receiving signal of the incoming sound, and the sound source from the sound receiving signal. A calculation unit that acquires an impulse response from the sound receiving unit to the sound receiving unit, and a sound absorbing material that covers an object on the path of the reflected sound that arrives at the sound receiving unit within at least a predetermined observation period from the generation of the sound. Be prepared.
 また本発明の第2の態様によれば、音響処理方法は、音源から音の発生から少なくとも所定の観測期間内に受音部に到来する反射音の経路上の物体を被覆する吸音材と、を備える音響処理システムのための音響処理方法であって、前記音源が、所定の音源信号に基づく音を発する第1のステップと、前記受音部が、到来した音の受音信号を取得する第2のステップと、演算処理部が、前記受音信号から前記音源から前記受音部へのインパルス応答を取得する第3ステップと、を有する。 Further, according to the second aspect of the present invention, the sound processing method includes a sound absorbing material that covers an object on the path of the reflected sound that arrives at the sound receiving portion within at least a predetermined observation period from the generation of the sound from the sound source. A first step in which the sound source emits a sound based on a predetermined sound source signal, and the sound receiving unit acquires a sound receiving signal of the incoming sound. It has a second step and a third step in which the arithmetic processing unit acquires an impulse response from the sound source to the sound receiving unit from the sound receiving signal.
 また本発明の第3の態様によれば、記録媒体は、音源から音の発生から少なくとも所定の観測期間内に受音部に到来する反射音の経路上の物体を被覆する吸音材と、を備える音響処理システムのコンピュータに、前記音源が、所定の音源信号に基づく音を発する第1のステップと、前記受音部が、到来した音の受音信号を取得する第2のステップと、演算処理部が、前記受音信号から前記音源から前記受音部へのインパルス応答を取得する第3ステップと、を実行させるプログラムを記憶する。 Further, according to the third aspect of the present invention, the recording medium is a sound absorbing material that covers an object on the path of the reflected sound that arrives at the sound receiving portion within at least a predetermined observation period from the generation of the sound from the sound source. A computer of a sound processing system provided with a first step in which the sound source emits a sound based on a predetermined sound source signal, a second step in which the sound receiving unit acquires a sound receiving signal of the incoming sound, and an operation. The processing unit stores a program for executing the third step of acquiring an impulse response from the sound source to the sound receiving unit from the sound receiving signal.
 本発明の一態様によれば、より簡易にHRIRを取得することができる。 According to one aspect of the present invention, HRIR can be obtained more easily.
第1の実施形態に係る音響処理システムの構成例を示す平面図である。It is a top view which shows the structural example of the acoustic processing system which concerns on 1st Embodiment. 第1の実施形態に係る音響処理システムの構成例を示す側面図である。It is a side view which shows the structural example of the acoustic processing system which concerns on 1st Embodiment. 第1の実施形態に係る音響処理装置のハードウェア構成例を示す概略ブロック図である。It is a schematic block diagram which shows the hardware configuration example of the acoustic processing apparatus which concerns on 1st Embodiment. 第1の実施形態に係る音響処理装置の機能構成例を示す概略ブロック図である。It is a schematic block diagram which shows the functional structure example of the acoustic processing apparatus which concerns on 1st Embodiment. 第1の実施形態に係るHRIR測定処理の例を示すフローチャートである。It is a flowchart which shows the example of the HRIR measurement processing which concerns on 1st Embodiment. 第2の実施形態に係る音響処理システムの構成例を示す側面図である。It is a side view which shows the structural example of the acoustic processing system which concerns on 2nd Embodiment. 第2の実施形態に係る制御部の機能構成例を示す概略ブロック図である。It is a schematic block diagram which shows the functional structure example of the control part which concerns on 2nd Embodiment. 第2の実施形態に係る測定環境判定処理の例を示すフローチャートである。It is a flowchart which shows the example of the measurement environment determination processing which concerns on 2nd Embodiment. 上記の実施形態の構成の一例を示す説明図である。It is explanatory drawing which shows an example of the structure of the said embodiment.
 以下、本発明の複数の実施形態に係る音響処理システムについて、図面を参照して説明する。
<第1の実施形態>
 第1の実施形態に係る音響処理システムは、音を発するための音源と、到来した音の受音信号を取得する受音部と、到来した音を吸音する吸音材と、音響処理装置を備える。音響処理装置10の機能構成例については、後述する。
 図1は、本実施形態に係る音響処理システム1の構成例を示す平面図である。図2は、本実施形態に係る音響処理システム1の構成例を示す側面図である。図2は、図1のA-A’線を通過し、垂直方向に平行な側面を示す。
Hereinafter, the acoustic processing system according to a plurality of embodiments of the present invention will be described with reference to the drawings.
<First Embodiment>
The sound processing system according to the first embodiment includes a sound source for emitting sound, a sound receiving unit for acquiring a sound receiving signal of the incoming sound, a sound absorbing material for absorbing the incoming sound, and an acoustic processing device. .. An example of the functional configuration of the sound processing device 10 will be described later.
FIG. 1 is a plan view showing a configuration example of the acoustic processing system 1 according to the present embodiment. FIG. 2 is a side view showing a configuration example of the sound processing system 1 according to the present embodiment. FIG. 2 shows sides that pass through the AA'line of FIG. 1 and are vertically parallel.
 図1、図2に示す例では、音響処理システム1は、屋内の空間Rmにおいて使用されている。空間Rmは、空間全体として特段の防音、反響設備が施されていない室であってもよい。即ち、空間Rmは、防音室、実験室などに限られず、事務室、教室、集会室、居室、などのいずれであってもよい。空間Rmは、ほぼ直方体の形状を有し、平面視して長方形の形状を有する。空間Rmは、4つの側面、1つの底面、および1つの天面に囲まれる。天面は、底面に向かい合った面であり、図1、図2において、底面よりも上方に表されている。側面、底面および天面を内面と総称する。側面、底面、天面は、それぞれ壁面、床面、天井をなす。空間Rmには、音を放射するための音源として2個のスピーカSp、吸音材Asおよび座席Pfが配置されている。 In the example shown in FIGS. 1 and 2, the sound processing system 1 is used in the indoor space Rm. The space Rm may be a room without special soundproofing and reverberation equipment as a whole space. That is, the space Rm is not limited to a soundproof room, a laboratory, or the like, but may be an office room, a classroom, a meeting room, a living room, or the like. The space Rm has a substantially rectangular parallelepiped shape and has a rectangular shape in a plan view. The space Rm is surrounded by four sides, one bottom surface, and one top surface. The top surface is a surface facing the bottom surface, and is represented above the bottom surface in FIGS. 1 and 2. The side surface, bottom surface and top surface are collectively referred to as the inner surface. The side surface, bottom surface, and top surface form a wall surface, floor surface, and ceiling, respectively. In the space Rm, two speakers Sp, a sound absorbing material As, and a seat Pf are arranged as sound sources for radiating sound.
 2個のスピーカSpは、空間Rmの4つの側面のうち、2つの隣り合う側面(以下、隣接面と呼ぶ)が交わる交線となる1つの辺(以下、スピーカ設置辺と呼ぶ)から所定範囲内に近接した位置にそれぞれ設置されている。但し、2個のスピーカSpは、図2に示されるように垂直方向に異なる高さの位置に設置されている。2個のスピーカSpを、スピーカSp01、Sp02などと呼ぶことで、両者を区別することがある。図1には、2個のスピーカSpのうち、スピーカSp01が表れ、スピーカSp01よりも低い位置に設置されたスピーカSp02は表れていない。音響処理装置10からは、いずれか1個のスピーカSp(図1に示す例では、スピーカSp01)に再生信号が入力される。スピーカSpは、音響処理装置10から入力される音源信号に基づく音を放射(再生)する。 The two speaker Sps are within a predetermined range from one side (hereinafter referred to as a speaker installation side) which is an intersection line where two adjacent side surfaces (hereinafter referred to as adjacent surfaces) intersect among the four sides of the space Rm. They are installed in close proximity to each other. However, the two speakers Sp are installed at different height positions in the vertical direction as shown in FIG. The two speakers Sp may be distinguished from each other by calling them speakers Sp01, Sp02, or the like. Of the two speakers Sp, the speaker Sp01 appears in FIG. 1, and the speaker Sp02 installed at a position lower than the speaker Sp01 does not appear. A reproduction signal is input from the sound processing device 10 to any one speaker Sp (speaker Sp01 in the example shown in FIG. 1). The speaker Sp radiates (reproduces) a sound based on a sound source signal input from the sound processing device 10.
 座席Pfは、その中央部が、隣接面がなす角の二等分面上であって個々のスピーカSpから、それぞれ所定の距離(例えば、1~2m)となる位置に対面するように設置されている。座席Pfは、座板と背もたれを有し、これらにより被験者Sbを座位の姿勢で静止して支持することを可能とする。被験者Sbは、スピーカSpから左右各耳までのHRIRの測定対象とする人物である。 The seat Pf is installed so that its central portion faces a position on the bisector of the angle formed by the adjacent surfaces and at a predetermined distance (for example, 1 to 2 m) from each speaker Sp. ing. The seat Pf has a seat plate and a backrest, which allow the subject Sb to be stationary and supported in a sitting position. The subject Sb is a person to be measured for HRIR from the speaker Sp to the left and right ears.
 吸音材Asは、空間Rmの内面の少なくともその一部を覆うように設置される。図1、図2に示す例では、吸音材Asは、底面の一部と隣接面の一部を覆うように設置されている。なお、図示が省略されているが、座席Pfを覆う吸音材が設置されてもよい。吸音材Asは、到来した音の反射率が十分に低い素材を含む。吸音材Asは、到来する音の振動のエネルギーの大部分を熱に変換することで、音のエネルギーを吸収し、熱として散逸する素材であればよい。吸音材Asは、例えば、グラスウール、ロックウール、ウレタンスポンジ、などが利用可能である。吸音材は、遮音材、防音材、などとも呼ばれることがある。吸音材Asが設置される領域については、後述する。 The sound absorbing material As is installed so as to cover at least a part of the inner surface of the space Rm. In the examples shown in FIGS. 1 and 2, the sound absorbing material As is installed so as to cover a part of the bottom surface and a part of the adjacent surface. Although not shown, a sound absorbing material may be installed to cover the seat Pf. The sound absorbing material As includes a material having a sufficiently low reflectance of the incoming sound. The sound absorbing material As may be a material that absorbs the energy of the sound and dissipates it as heat by converting most of the energy of the vibration of the incoming sound into heat. As the sound absorbing material As, for example, glass wool, rock wool, urethane sponge, or the like can be used. The sound absorbing material may also be referred to as a sound insulating material, a soundproofing material, or the like. The area where the sound absorbing material As is installed will be described later.
 被験者Sbの左右の各耳には、受音部として、マイクロホンMicが装着される。左耳、右耳に装着されるマイクロホンを、それぞれマイクロホンMicL、MicRと呼ぶことで区別する。マイクロホンMicL、MicRは、それぞれ自部に到来した音を受音し、受音した音を受音信号に変換する。マイクロホンMicL、MicRは、それぞれ変換した受音信号を音響処理装置10に出力する。以下の説明では、マイクロホンMicL、MicRから出力される受音信号を、それぞれ左受音信号、右受音信号と呼ぶことがある。 A microphone Mic is attached to each of the left and right ears of the subject Sb as a sound receiving part. Microphones attached to the left and right ears are distinguished by calling them microphones MicL and MicR, respectively. The microphones MicL and MicR each receive the sound arriving at their own unit and convert the received sound into a sound receiving signal. The microphones MicL and MicR each output the converted sound receiving signal to the sound processing device 10. In the following description, the sound receiving signals output from the microphones MicL and MicR may be referred to as a left sound receiving signal and a right sound receiving signal, respectively.
 スピーカSpから放射される音波は、マイクロホンMicL、MicRまで、それぞれ多様な経路上を伝搬する。図1に例示されるようにスピーカSpからマイクロホンMicL、MicRの間にいずれの物体も設置されていない場合には、スピーカSpから放射される音波の一部は、直接音としてマイクロホンMicL、MicRに到来する。この音波の他の一部は、その経路上に配置された物体の表面で反射し、反射音としてマイクロホンMicL、MicRに到来する。 The sound wave radiated from the speaker Sp propagates on various paths to the microphones MicL and MicR. As illustrated in FIG. 1, when no object is installed between the speaker Sp and the microphone MicL and MicR, a part of the sound wave radiated from the speaker Sp is directly transmitted to the microphone MicL and MicR. It's coming. The other part of this sound wave is reflected by the surface of an object arranged on the path, and arrives at the microphones MicL and MicR as reflected sound.
 ここで、スピーカSpが発した音波Sが、物体表面のある反射点を伝搬経路として含み、その反射点で反射する場合を仮定する。この場合、いずれかのマイクロホンMicが設置された受音点において観測される反射波Srnは、式(1)で示される。 Here, it is assumed that the sound wave S emitted by the speaker Sp includes a reflection point on the surface of the object as a propagation path and is reflected at the reflection point. In this case, the reflected wave Srn observed at the sound receiving point where any of the microphones Mic is installed is represented by the equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)において、R、Lは、それぞれ、反射点における音波の反射率、距離に応じた減衰率を示す。
 一般には、反射点は無数に存在するため、受音点に到来する反射波Srは、式(2)に示すように反射点ごとの反射波Srnを合成したものに相当する。式(2)において、Σは反射点間の和を示す。これらの反射点の集合が、スピーカSpから到来した音を反射する各種の反射体の表面に相当する。
In the formula (1), R and L indicate the reflectance of the sound wave at the reflection point and the attenuation rate according to the distance, respectively.
In general, since there are innumerable reflection points, the reflected wave Sr that arrives at the sound receiving point corresponds to a composite of the reflected waves Srn for each reflection point as shown in the equation (2). In equation (2), Σ represents the sum between the reflection points. The set of these reflection points corresponds to the surface of various reflectors that reflect the sound coming from the speaker Sp.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 従って、受音点に到来する音波S’は、式(3)に示すようにスピーカSpからの直接波Sの成分と反射波Srの成分を合成したものとなる。 Therefore, the sound wave S'arriving at the sound receiving point is a combination of the component of the direct wave S from the speaker Sp and the component of the reflected wave Sr as shown in the equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 他方、頭部インパルス応答は、音源から被験者Sbの各耳までの音波の伝搬特性を示す。言い換えれば、頭部インパルス応答には、被験者Sbの頭部の表面(例えば、耳介等)に音源から到来する音波の反射および回折による伝搬特性が含まれる。純粋な頭部インパルス応答を取得するには、反射波の影響を除去することが期待される。従来は、無響室など音波の反射が生じない環境で頭部インパルス応答を測定することが一般的であった。これは、音波の伝搬経路上に設置された物体による反射音による寄与を含めないためである。 On the other hand, the head impulse response indicates the propagation characteristics of the sound wave from the sound source to each ear of the subject Sb. In other words, the head impulse response includes the reflection and diffraction characteristic of the sound wave arriving from the sound source on the surface of the head of the subject Sb (for example, the pinna). To obtain a pure head impulse response, it is expected to eliminate the effects of reflected waves. Conventionally, it has been common to measure the head impulse response in an environment such as an anechoic chamber where sound wave reflection does not occur. This is because it does not include the contribution of the reflected sound by the object installed on the propagation path of the sound wave.
 本実施形態に係る音響処理システム1は、頭部インパルス応答には、少なくとも頭部における音波の反射および回折による成分が含まれる期間(以下、頭部伝達期間)において、その他の物体による反射音の成分を低減する。そこで、音響処理装置10には、少なくとも頭部伝達期間を含む期間を頭部インパルス応答の観測期間として予め設定しておく。頭部伝達期間は、人間の頭部の大きさにもよるが、スピーカSpから到来する直接波が被験者Sbの頭部に最初に到来する時刻を起点として、典型的には1~3ms程度の期間となる。よって、少なくとも観測期間内にマイクロホンMicL、MicRに到来する反射音をもたらす反射体の領域を吸音材Asで覆うことで、その反射音の成分を低減することができる。吸音材Asは設置されても反射板ほど空間Rmの利用を妨げず、その設置に係る作業に係る負荷が軽い。そのため、図1に例示されるように、空間Rmの隅などの、ありふれた環境においてもHRIRが取得可能となる。但し、音源と座席Pfもしくは被験者Sbとの位置関係は、図1、図2に例示されるものに限られない。例えば、座席Pfは、空間Rmの中央部に設置されてもよい。また、空間Rmの形状も、図1、図2に例示されるものに限られない。例えば、空間Rmの形状は、円柱であってもよい。 In the acoustic processing system 1 according to the present embodiment, the head impulse response includes at least a period due to the reflection and diffraction of sound waves in the head (hereinafter referred to as a head transmission period), and the sound reflected by other objects. Reduce the ingredients. Therefore, in the sound processing apparatus 10, at least a period including a head transmission period is set in advance as an observation period of the head impulse response. The head-related transfer period depends on the size of the human head, but is typically about 1 to 3 ms starting from the time when the direct wave coming from the speaker Sp first arrives at the head of the subject Sb. It will be a period. Therefore, by covering the region of the reflector that brings about the reflected sound arriving at the microphones MicL and MicR at least within the observation period with the sound absorbing material As, the component of the reflected sound can be reduced. Even if the sound absorbing material As is installed, it does not hinder the use of the space Rm as much as the reflector, and the load related to the work related to the installation is light. Therefore, as illustrated in FIG. 1, HRIR can be acquired even in a common environment such as a corner of a space Rm. However, the positional relationship between the sound source and the seat Pf or the subject Sb is not limited to those exemplified in FIGS. 1 and 2. For example, the seat Pf may be installed in the central portion of the space Rm. Further, the shape of the space Rm is not limited to that exemplified in FIGS. 1 and 2. For example, the shape of the space Rm may be a cylinder.
 図1、図2に示す例では、吸音材Asが設置されている領域は、底面のうちスピーカ設置辺から座席Pfを含む正方形の部分領域と、2つの隣接面のそれぞれのうち底面の部分領域に接する部分から、少なくとも2つのスピーカSp01、Sp02のうち高い方の高さよりも所定の高さを加えた高さにわたる領域を含む。スピーカが音を発する時刻から観測期間の起点までの時間(以下、観測開始時間)は、スピーカSpから被験者Sbまでの距離と音速に基づいて算出される。音響処理装置10には、観測開始時間を予め設定しておいてもよいし、スピーカSpの位置と座席Pfもしくは被験者Sbの位置に基づいて算出してもよい。また、吸音材Asが設置される領域は、反射音が観測期間内にマイクロホンMicL、MicRに到来する部位を含んでいればよく、その領域の大きさ、形状は、図1、図2に例示されるものに限られない。例えば、吸音材Asで床面を覆う領域の形状は、図9に例示されるように扇形であってもよいし、必ずしも座席Pfの位置を含んでいなくてもよい。 In the examples shown in FIGS. 1 and 2, the area where the sound absorbing material As is installed is a square partial area including the seat Pf from the speaker installation side on the bottom surface and a bottom surface partial area of each of the two adjacent surfaces. It includes a region extending from the portion in contact with the speaker to a height obtained by adding a predetermined height to the height of at least two speakers Sp01 and Sp02, whichever is higher. The time from the time when the speaker emits sound to the starting point of the observation period (hereinafter, observation start time) is calculated based on the distance from the speaker Sp to the subject Sb and the speed of sound. The observation start time may be set in advance in the sound processing device 10, or may be calculated based on the position of the speaker Sp and the position of the seat Pf or the subject Sb. Further, the region where the sound absorbing material As is installed may include a portion where the reflected sound reaches the microphones MicL and MicR within the observation period, and the size and shape of the region are exemplified in FIGS. 1 and 2. It is not limited to what is done. For example, the shape of the region covering the floor surface with the sound absorbing material As may be fan-shaped as illustrated in FIG. 9, and may not necessarily include the position of the seat Pf.
 吸音材AsからマイクロホンMicL、MicRのそれぞれに到来する反射音の強度は完全にゼロにならないが、直接音の強度と比較して十分に低くなる。一般に、強度の異なる2つの音が被験者に提示されるとき、強度の弱い音は、強度の強い音にかき消されるために、聴取できない現象(マスキング)が知られている。吸音材Asによれば、直接音の成分を信号成分、反射音の成分を雑音成分とするときのS/N比を、反射音を知覚できない程度にまで低減できる。そのため、本実施形態に係る音響処理システム1により取得された頭部インパルス応答によっても、無響室で測定した頭部インパルス応答と同程度の立体感を聴覚上実現することができる。 The intensity of the reflected sound coming from the sound absorbing material As to each of the microphones MicL and MicR is not completely zero, but it is sufficiently lower than the intensity of the direct sound. Generally, when two sounds having different intensities are presented to a subject, a phenomenon (masking) is known in which a weak sound is drowned out by a strong sound and cannot be heard. According to the sound absorbing material As, the S / N ratio when the direct sound component is a signal component and the reflected sound component is a noise component can be reduced to the extent that the reflected sound cannot be perceived. Therefore, even with the head impulse response acquired by the acoustic processing system 1 according to the present embodiment, it is possible to aurally realize a stereoscopic effect similar to that of the head impulse response measured in the anechoic chamber.
 次に、本実施形態に係る音響処理装置10の構成について説明する。
 図3は、本実施形態に係る音響処理装置10のハードウェア構成例を示す概略ブロック図である。
 音響処理装置10は、制御部110と、記憶部130と、入出力部140と、表示部150と、操作部160と、を含んで構成される。音響処理装置10は、専用の装置として構成されてもよいし、汎用のコンピュータにより実現されてもよい。
Next, the configuration of the sound processing device 10 according to the present embodiment will be described.
FIG. 3 is a schematic block diagram showing a hardware configuration example of the sound processing device 10 according to the present embodiment.
The sound processing device 10 includes a control unit 110, a storage unit 130, an input / output unit 140, a display unit 150, and an operation unit 160. The sound processing device 10 may be configured as a dedicated device or may be realized by a general-purpose computer.
 制御部110は、音響処理装置10が有する各種の機能を実現および制御するための処理を行う。制御部110は、制御部110は、アプリケーションプログラムなどの各種のプログラムに記述された命令(コマンド)で指示される処理を実行可能とし、音響処理装置10を構成する各部の動作を実行および制御する。制御部110は、例えば、CPU(Central Processing Unit)などの1個以上のプロセッサを含んで構成される。 The control unit 110 performs processing for realizing and controlling various functions of the sound processing device 10. The control unit 110 enables the control unit 110 to execute a process instructed by an instruction (command) described in various programs such as an application program, and executes and controls the operation of each unit constituting the sound processing device 10. .. The control unit 110 includes, for example, one or more processors such as a CPU (Central Processing Unit).
 記憶部130は、制御部110が用いる各種のデータ、制御部110により取得された各種のデータ、各種のプログラムなどを格納する。記憶部130は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)などを含んで構成される。 The storage unit 130 stores various data used by the control unit 110, various data acquired by the control unit 110, various programs, and the like. The storage unit 130 includes, for example, a ROM (ReadOnlyMemory), a RAM (RandomAccessMemory), and the like.
 入出力部140は、音響処理装置10とは別個の機器と有線または無線で接続し、各種のデータを入出力する。入出力部140は、通信ネットワークと有線または無線で接続し、通信ネットワークに接続された別個の機器と各種のデータを送受信してもよい。入出力部140は、例えば、入出力インタフェース、通信インタフェースなどの入出力デバイスを含んで構成される。 The input / output unit 140 connects to a device separate from the sound processing device 10 by wire or wirelessly, and inputs / outputs various data. The input / output unit 140 may be connected to the communication network by wire or wirelessly, and may transmit and receive various data to and from a separate device connected to the communication network. The input / output unit 140 includes, for example, input / output devices such as an input / output interface and a communication interface.
 表示部150は、制御部110の制御のもとで、制御部110から入力される各種の表示データで指示される情報を視覚により認識可能に表示する。かかる表示データには、画像データ、テキストデータなどが含まれる。表示部150は、例えば、液晶ディスプレイ(LCD: Liquid Crystal Display)、有機エレクトロルミネッセンスディスプレイ(OLED: Organic Electro-luminescence Display)、などのいずれの形態の表示デバイスを含んで構成される。 Under the control of the control unit 110, the display unit 150 visually and recognizablely displays information instructed by various display data input from the control unit 110. Such display data includes image data, text data, and the like. The display unit 150 includes, for example, a display device of any form such as a liquid crystal display (LCD: Liquid Crystal Display) or an organic electro-luminescence display (OLED: Organic Electro-luminescence Display).
 操作部160は、ユーザの操作を受け付け、受け付けた操作に応じた操作信号を生成し、生成した操作信号を制御部110に出力する。操作信号は、音響処理装置10に対するユーザの指示、命令などの各種の情報を示す。操作部160は、例えば、プッシュボタン、スティックキーなどのいずれの形態の操作デバイスを含んで構成される。操作部160は、物理的に分離されている操作デバイス(例えば、リモートコントローラ)から無線(赤外線を含む)で受信する受信器を含んで構成されてもよい。 The operation unit 160 accepts the user's operation, generates an operation signal according to the accepted operation, and outputs the generated operation signal to the control unit 110. The operation signal indicates various information such as a user's instruction and a command to the sound processing device 10. The operation unit 160 includes, for example, an operation device in any form such as a push button or a stick key. The operation unit 160 may be configured to include a receiver that receives wirelessly (including infrared rays) from a physically separated operating device (eg, a remote controller).
 次に、本実施形態に係る音響処理装置10の機能構成例について説明する。
 図4は、本実施形態に係る音響処理装置10の機能構成例を示す概略ブロック図である。音響処理装置10は、制御部110において、測定制御部112、録音部114および演算部116を含んで構成される。
Next, a functional configuration example of the sound processing device 10 according to the present embodiment will be described.
FIG. 4 is a schematic block diagram showing a functional configuration example of the sound processing device 10 according to the present embodiment. The sound processing device 10 includes a measurement control unit 112, a recording unit 114, and a calculation unit 116 in the control unit 110.
 測定制御部112は、頭部インパルス応答の測定に係る各種の制御を行う。測定制御部112は、操作部160から測定開始を示す操作信号が入力されるとき、測定に用いるための所定の音源信号を生成する。音源信号は、例えば、インパルス信号である。インパルス信号は、あるサンプル時刻における信号値が有意にゼロとは異なる値(非零値)、その他の時刻における信号値がゼロとなる信号である。測定制御部112は、入出力部140を経由して生成した音源信号をスピーカSpに出力する。スピーカSpは、入力される音源信号に応じた音を発する。信号値が非零値をとるサンプル時刻が、スピーカSpからインパルス音が発される時刻に相当する。 The measurement control unit 112 performs various controls related to the measurement of the head impulse response. When the operation signal indicating the start of measurement is input from the operation unit 160, the measurement control unit 112 generates a predetermined sound source signal for use in the measurement. The sound source signal is, for example, an impulse signal. The impulse signal is a signal whose signal value at a certain sample time is significantly different from zero (non-zero value) and whose signal value is zero at other times. The measurement control unit 112 outputs the sound source signal generated via the input / output unit 140 to the speaker Sp. The speaker Sp emits a sound according to the input sound source signal. The sample time when the signal value takes a non-zero value corresponds to the time when the impulse sound is emitted from the speaker Sp.
 なお、図2に例示されるようにスピーカSpの個数が複数となる場合には、測定制御部112は、音を発するスピーカSpを音源信号の出力先として特定してもよい。出力先となるスピーカSpは、操作部160から入力される操作信号で指示されてもよいし、所定の順序に従って選択されてもよい。 When the number of speakers Sp is a plurality as illustrated in FIG. 2, the measurement control unit 112 may specify the speaker Sp that emits sound as the output destination of the sound source signal. The speaker Sp as an output destination may be instructed by an operation signal input from the operation unit 160, or may be selected in a predetermined order.
 座席Pfは、床面に対して平行な水平面を有し、回動可能とする座板を有していてもよい。座板上に着座した被験者Sbが回転することで、スピーカSpとの水平面内の方向を相対的に変化させることができる。被験者Sbは、所定の角度(例えば、3~60°)ずつ向きを変更するごとに、操作部160を操作して測定開始を指示してもよい。これにより、水平面内の方向が異なるHRIRを測定することが簡便に測定することができる。測定制御部112は、座席Pfの方向を示す方向情報を取得し、取得した方向情報を演算部116に出力し、演算部116に対して測定されたHRIRと対応付けて記憶部130に記憶させてもよい。 The seat Pf may have a horizontal plane parallel to the floor surface and may have a rotatable seat plate. By rotating the subject Sb seated on the seat plate, the direction in the horizontal plane with the speaker Sp can be relatively changed. The subject Sb may operate the operation unit 160 to instruct the start of measurement each time the direction is changed by a predetermined angle (for example, 3 to 60 °). As a result, it is possible to easily measure HRIRs having different directions in the horizontal plane. The measurement control unit 112 acquires direction information indicating the direction of the seat Pf, outputs the acquired direction information to the calculation unit 116, and stores the acquired direction information in the storage unit 130 in association with the HRIR measured by the calculation unit 116. You may.
 録音部114は、マイクロホンMicL、MicRから入出力部140を経由してそれぞれ入力される左受音信号、右受音信号を記憶(録音)する。
 なお、マイクロホンMicL、MicRには、それぞれスピーカSpから直接または間接的に伝搬された音が到来し、到来した音が受音される。従って、録音部114には、マイクロホンMicL、MicRから、それぞれ左受音信号、右受音信号が入力される。音源信号としてインパルス信号が用いられる場合、左受音信号、右受音信号は、それぞれスピーカSpからマイクロホンMicL、MicRまでのHRIRを示す。そこで、録音部114は、操作部160から測定開始を示す操作信号が入力されるとき左受音信号、右受音信号の記録を開始し、記録の開始から所定の記録期間(例えば、0.2~2秒)の経過後、記録を停止してもよい。記録期間は、少なくとも上記の観測期間以上の長さを有していればよい。
The recording unit 114 stores (records) the left sound receiving signal and the right sound receiving signal input from the microphones MicL and MicR via the input / output units 140, respectively.
The sounds directly or indirectly propagated from the speaker Sp arrive at the microphones MicL and MicR, respectively, and the incoming sounds are received. Therefore, the left sound receiving signal and the right sound receiving signal are input to the recording unit 114 from the microphones MicL and MicR, respectively. When an impulse signal is used as the sound source signal, the left-received signal and the right-received signal indicate HRIRs from the speaker Sp to the microphones MicL and MicR, respectively. Therefore, the recording unit 114 starts recording the left sound reception signal and the right sound reception signal when the operation signal indicating the start of measurement is input from the operation unit 160, and a predetermined recording period (for example, 0. Recording may be stopped after 2 to 2 seconds). The recording period may have a length of at least the above observation period or longer.
 演算部116は、操作部160から測定開始を示す操作信号が入力され、上記の記録期間が経過した後、録音部114から新たに記録された受音信号を読み取る。演算部116は、読み取った受音信号からHRIRを取得する。上記のように、観測期間内に含まれる反射音については吸音材Asにより著しく減衰する。しかしながら、上記の観測期間よりも後に到来する反射音の成分が受音信号に残されることがある。 The calculation unit 116 inputs an operation signal indicating the start of measurement from the operation unit 160, and after the above recording period has elapsed, the calculation unit 116 reads the newly recorded sound reception signal from the recording unit 114. The arithmetic unit 116 acquires the HRIR from the read received signal. As described above, the reflected sound included in the observation period is significantly attenuated by the sound absorbing material As. However, the component of the reflected sound arriving after the above observation period may be left in the received signal.
 そこで、演算部116は、受音信号から得られるインパルス応答をなす信号値のうち、観測期間よりも後の期間の信号値を、漸次減衰(フェードアウト)させてもよい。演算部116は、例えば、観測期間の終点から受信信号の信号値を時間経過に応じて予め定めた減衰時間(例えば、10~100ms)をかけてゼロに達するまで減衰させ、それ以降の時刻の信号値を棄却する。よって、受信信号に現れる観測期間よりも後に到来する反射音(以下、後期反射音)の影響が除去され、演算部116は、HRIRとして有意な部分を取得することができる。後期反射音の成分には、例えば、天井からの反射音、被験者Sbの背面、つまり、座席PfからスピーカSpの方向とは逆方向からの反射音、などが含まれる。演算部116は、取得したHRIRを示すHRIR信号を記憶部130に記憶する。 Therefore, the arithmetic unit 116 may gradually attenuate (fade out) the signal value in the period after the observation period among the signal values forming the impulse response obtained from the received signal. For example, the calculation unit 116 attenuates the signal value of the received signal from the end point of the observation period over a predetermined attenuation time (for example, 10 to 100 ms) according to the passage of time until it reaches zero, and the time after that. Reject the signal value. Therefore, the influence of the reflected sound (hereinafter referred to as the late reflected sound) arriving after the observation period appearing in the received signal is removed, and the calculation unit 116 can acquire a significant portion as the HRIR. The components of the late reflected sound include, for example, the reflected sound from the ceiling, the back surface of the subject Sb, that is, the reflected sound from the seat Pf in the direction opposite to the direction of the speaker Sp. The calculation unit 116 stores the acquired HRIR signal indicating the HRIR in the storage unit 130.
 次に、本実施形態に係るHRIR測定処理の例について説明する。
 図5は、本実施形態に係るHRIR測定処理の例を示すフローチャートである。但し、以下の処理を開始する前にスピーカSpからのインパルスの発生から少なくとも観測期間内に被験者Sbの左耳、右耳にそれぞれ装着されたマイクロホンMicL、MicRに到来するインパルスに対する反射音が到来する部位の反射物(即ち、床面、壁面、座席Pf等)を吸音材Asで被覆しておく。
Next, an example of the HRIR measurement process according to the present embodiment will be described.
FIG. 5 is a flowchart showing an example of the HRIR measurement process according to the present embodiment. However, before starting the following processing, the reflected sound for the impulses arriving at the microphones MicL and MicR attached to the left and right ears of the subject Sb arrives at least within the observation period from the generation of the impulse from the speaker Sp. The reflective material of the portion (that is, the floor surface, the wall surface, the seat Pf, etc.) is covered with the sound absorbing material As.
(ステップS102)測定制御部112は、インパルス信号をスピーカSpに出力する。スピーカSpは、インパルス信号に基づく測定音としてインパルスを発する。
(ステップS104)マイクロホンMicL、MicRは、それぞれ自部に到来した音を受音し、それぞれ受音した音を示す左受音信号、右受音信号を取得する。マイクロホンMicL、MicRは、左受音信号、右受音信号をそれぞれ録音部114に出力する。
(ステップS106)録音部114は、それぞれHRIRを含む左受音信号、右受音信号を記録する。
(ステップS108)演算部116は、録音部114に新たに記録された左受音信号、右受音信号のそれぞれから観測期間よりも後の期間の信号値を減衰および棄却することにより後期反射音を除去してHRIRを取得する。
(Step S102) The measurement control unit 112 outputs an impulse signal to the speaker Sp. The speaker Sp emits an impulse as a measurement sound based on the impulse signal.
(Step S104) Each of the microphones MicL and MicR receives a sound arriving at its own unit, and acquires a left sound reception signal and a right sound reception signal indicating the received sounds, respectively. The microphones MicL and MicR output the left sound receiving signal and the right sound receiving signal to the recording unit 114, respectively.
(Step S106) The recording unit 114 records a left sound reception signal including an HRIR and a right sound reception signal, respectively.
(Step S108) The calculation unit 116 attenuates and rejects the signal values of the left-received signal and the right-received signal newly recorded in the recording unit 114 for a period after the observation period, thereby causing the late reflected sound. Is removed to obtain HRIR.
 なお、受音信号には、周囲からマイクロホンMicに到来するノイズが含まれることがある。そこで、測定制御部112は、測定開始が指示された後、ステップS102からステップS108までのHRIR計測処理を所定回数以上反復させてもよい。反復回数として、測定制御部112には、2回以上の所定の回数を予め設定しておく。そこで、演算部116は、各回のHRIR計測処理が終了した後、HRIR取得終了通知を測定制御部112に出力する。測定制御部112は、HRIR取得終了通知が入力されるごとに、計測回数を1ずつ加算(インクリメント)することにより計数する。但し、計測回数の初期値を0とする。そして、測定制御部112は、計測回数が反復回数に達したか否かを判定し、達したと判定するとき、計測終了通知を演算部116に出力する。測定制御部112は、達していないと判定するとき、次のHRIR計測処理を開始する。 Note that the received signal may include noise coming from the surroundings to the microphone Mic. Therefore, the measurement control unit 112 may repeat the HRIR measurement process from step S102 to step S108 a predetermined number of times or more after the measurement start is instructed. As the number of repetitions, a predetermined number of times of two or more is set in advance in the measurement control unit 112. Therefore, the calculation unit 116 outputs the HRIR acquisition end notification to the measurement control unit 112 after each HRIR measurement process is completed. The measurement control unit 112 counts by adding (incrementing) the number of measurements by 1 each time the HRIR acquisition end notification is input. However, the initial value of the number of measurements is set to 0. Then, the measurement control unit 112 determines whether or not the number of measurements has reached the number of repetitions, and when it is determined that the number of measurements has reached, outputs a measurement end notification to the calculation unit 116. When the measurement control unit 112 determines that the value has not been reached, the measurement control unit 112 starts the next HRIR measurement process.
 演算部116は、測定制御部112から計測終了通知が入力されるとき、取得された反復回数分のHRIR信号に含まれる時刻ごとの信号値を、各時刻についてHRIR計測処理の繰り返し間で加算して得られる和を信号値として含む新たなHRIR信号を生成する(同期加算)。演算部116は、各時刻に係る信号値を繰り返し回数で除算して得られる商を、もとの信号値に代えて新たな信号値として含むHRIR信号を生成してもよい(正規化)。演算部116は、生成したHRIRを記憶部130に記憶する。同期加算によりHRIRの信号成分よりも、HRIR計測処理の繰り返し間でランダムに重畳するノイズ成分が相対的に低減する。そのため、信号対雑音比(SNR:Signal-to-Noise Ratio)が向上し、ノイズによる影響を低減することができる。 When the measurement end notification is input from the measurement control unit 112, the calculation unit 116 adds the signal values for each time included in the acquired HRIR signal for the number of repetitions between the repetitions of the HRIR measurement process for each time. A new HRIR signal including the sum obtained as a signal value is generated (synchronous addition). The arithmetic unit 116 may generate an HRIR signal including the quotient obtained by dividing the signal value related to each time by the number of repetitions as a new signal value instead of the original signal value (normalization). The calculation unit 116 stores the generated HRIR in the storage unit 130. By the synchronous addition, the noise component randomly superimposed during the repetition of the HRIR measurement process is relatively reduced as compared with the signal component of the HRIR. Therefore, the signal-to-noise ratio (SNR) is improved, and the influence of noise can be reduced.
<第2の実施形態>
 次に、第2の実施形態について第1の実施形態との差異点を主として説明する。特に断らない限り、第1の実施形態と同様の構成、処理については、同一の符号を付して、その説明を援用する。
<Second embodiment>
Next, the differences between the second embodiment and the first embodiment will be mainly described. Unless otherwise specified, the same components and processes as in the first embodiment are designated by the same reference numerals and the description thereof will be incorporated.
 図6は、本実施形態に係る音響処理システム1の構成例を示す側面図である。
 本実施形態に係る音響処理システム1は、音源としてのスピーカSp、受音部としてのマイクロホンMic L、Mic R(但し、Mic Rは、図6に表れていない)、吸音材Asおよび音響処理装置10の他、測定環境情報取得部の一例として画像取得部Cmを備える。画像取得部Cmは、HRIRの測定環境の画像を測定環境情報の一例として撮影する。画像取得部Cmは、例えば、静止画像を撮影可能とするディジタルスチルカメラである。測定環境として、スピーカSpから放射される音に対する反射音のうち、マイクロホンMic L、Mic Rに観測期間内にそれぞれ到来する反射音をもたらす反射体が分布もしくは配置されている領域(以下、評価領域)が含まれればよい。言い換えれば、画像取得部Cmは、空間Rmにおいて評価領域を視野内に含むように位置および向きが設置され、かつ、その視野角を設定しておけばよい。
FIG. 6 is a side view showing a configuration example of the sound processing system 1 according to the present embodiment.
The sound processing system 1 according to the present embodiment includes a speaker Sp as a sound source, a microphone Mic L and Mic R as a sound receiving unit (however, Mic R is not shown in FIG. 6), a sound absorbing material As, and a sound processing device. In addition to 10, an image acquisition unit Cm is provided as an example of the measurement environment information acquisition unit. The image acquisition unit Cm takes an image of the measurement environment of the HRIR as an example of the measurement environment information. The image acquisition unit Cm is, for example, a digital still camera capable of capturing a still image. As a measurement environment, among the reflected sounds for the sound radiated from the speaker Sp, the area where the reflectors that bring about the reflected sounds that arrive in the microphones Mic L and Mic R within the observation period are distributed or arranged (hereinafter, evaluation area). ) May be included. In other words, the image acquisition unit Cm may be positioned and oriented so as to include the evaluation region in the visual field in the space Rm, and the viewing angle thereof may be set.
 音響処理装置10は、画像取得部Cmが撮影した画像に基づいて測定環境、とりわけ評価領域における吸音材の配置状態を判定する。音響処理装置10は、配置状態と反射特性との関係を示す反射特性関連データを参照して、配置状態から反射特性を推定する。そして、音響処理装置10は、推定した反射特性が所定の反射強度よりも著しいか否かに基づいてHRIRを測定するか否かを判定する。これにより、立体感の実現に利用可能なHRIRを測定することができるか否かが識別される。 The sound processing device 10 determines the arrangement state of the sound absorbing material in the measurement environment, particularly in the evaluation region, based on the image taken by the image acquisition unit Cm. The sound processing device 10 estimates the reflection characteristic from the arrangement state with reference to the reflection characteristic-related data showing the relationship between the arrangement state and the reflection characteristic. Then, the sound processing device 10 determines whether or not to measure the HRIR based on whether or not the estimated reflection characteristic is more remarkable than the predetermined reflection intensity. This identifies whether or not the HRIRs that can be used to achieve a stereoscopic effect can be measured.
 次に、本実施形態に係る音響処理装置10の機能構成例について説明する。図7は、本実施形態に係る音響処理システム1に備わる制御部110の機能構成例を示す概略ブロック図である。
 制御部110は、測定制御部112と、録音部114と、演算部116と、反射率保存部124と、測定環境判定部126と、を備える。
Next, a functional configuration example of the sound processing device 10 according to the present embodiment will be described. FIG. 7 is a schematic block diagram showing a functional configuration example of the control unit 110 provided in the sound processing system 1 according to the present embodiment.
The control unit 110 includes a measurement control unit 112, a recording unit 114, a calculation unit 116, a reflectance storage unit 124, and a measurement environment determination unit 126.
 反射率保存部124には、予め反射特性関連データを記憶しておく。反射特性関連データは、材質と、その材質に対して到来する音波に対する反射率を対応付けて示す情報を、材質ごとに含んで構成されるデータである。反射率は、到来する音波の強度に対する、その音波に対する反射波の強度の比である。反射特性関連データには、少なくとも1種類以上の吸音材となりうる材質に係る情報が含まれていればよい。反射特性関連データには、吸音材とならない材質に係る情報が含まれてもよいし、含まれなくでもよい。吸音材は、反射率が所定の反射率(例えば、-30~-50dB)よりも十分に反射率が低い材質に相当する。 Reflectance characteristic-related data is stored in advance in the reflectance storage unit 124. The reflection characteristic-related data is data that includes information indicating the material and the reflectance for sound waves arriving at the material in association with each other for each material. Reflectance is the ratio of the intensity of the reflected wave to the sound wave to the intensity of the incoming sound wave. The reflection characteristic-related data may include information on a material that can be at least one type of sound absorbing material. The reflection characteristic-related data may or may not include information relating to a material that does not serve as a sound absorbing material. The sound absorbing material corresponds to a material having a reflectance sufficiently lower than a predetermined reflectance (for example, -30 to -50 dB).
 測定環境判定部126には、画像取得部Cmから撮影された画像を示す画像データが入力される。測定環境判定部126は、入力された画像データに対して所定の画像認識処理を実行して測定環境における吸音材の配置状態を判定する。より具体的には、測定環境判定部126は、画像認識処理により画像データに示される画像を所定の大きさに細分化したブロックごとに、そのブロックに配置されている物体の材質を識別する。測定環境判定部126には、例えば、画像特徴量と材質との関係を示す画像認識データを予め設定しておく。測定環境判定部126は、画像認識処理において、例えば、各ブロックについて、そのブロック内に配置された画素ごとの画素値に基づいて画像特徴量を算出し、画像認識データを参照して、算出した画像特徴量に対応する被写体の材質を特定することができる。ここで、特定された材質が吸音材に相当する材質となるブロックの集合が吸音材領域に相当し、吸音材領域の分布により吸音材の配置状態が示される。 Image data indicating an image taken from the image acquisition unit Cm is input to the measurement environment determination unit 126. The measurement environment determination unit 126 executes a predetermined image recognition process on the input image data to determine the arrangement state of the sound absorbing material in the measurement environment. More specifically, the measurement environment determination unit 126 identifies the material of the object arranged in the block for each block in which the image shown in the image data is subdivided into a predetermined size by the image recognition process. In the measurement environment determination unit 126, for example, image recognition data indicating the relationship between the image feature amount and the material is set in advance. In the image recognition process, the measurement environment determination unit 126 calculates, for example, the image feature amount for each block based on the pixel value of each pixel arranged in the block, and calculates by referring to the image recognition data. It is possible to specify the material of the subject corresponding to the image feature amount. Here, a set of blocks in which the specified material corresponds to the sound absorbing material corresponds to the sound absorbing material region, and the distribution of the sound absorbing material region indicates the arrangement state of the sound absorbing material.
 測定環境判定部126は、吸音材の配置情報に基づいてHRIRを測定するか否かを判定する。より具体的には、測定環境判定部126は、反射特性関連データを参照して、評価領域に含まれるブロックごとに特定した材質の反射率を特定し、特定した反射率の評価領域内のブロック間の平均値を平均反射率として算出する。測定環境判定部126は、算出した平均反射率が予め定めた反射率の上限値(例えば、-25~-40dB)以下であるか否かにより、HRIRを測定するか否かを判定する。測定環境判定部126には、撮影される画像における評価領域を示す評価領域情報を予め設定しておく。評価領域は、上記のように、スピーカSpと座席Pfとの位置関係、空間内Rmの反射体(壁面、側面、座席Pf、等)の分布、画像取得部Cmの位置、向き、視野角の大きさなどに基づいて定まる。 The measurement environment determination unit 126 determines whether or not to measure the HRIR based on the arrangement information of the sound absorbing material. More specifically, the measurement environment determination unit 126 specifies the reflectance of the specified material for each block included in the evaluation region by referring to the reflection characteristic-related data, and the block in the evaluation region of the specified reflectance. The average value between them is calculated as the average reflectance. The measurement environment determination unit 126 determines whether or not to measure the HRIR based on whether or not the calculated average reflectance is equal to or less than a predetermined upper limit value (for example, -25 to -40 dB) of the reflectance. In the measurement environment determination unit 126, evaluation area information indicating an evaluation area in the captured image is set in advance. As described above, the evaluation area includes the positional relationship between the speaker Sp and the seat Pf, the distribution of reflectors (wall surface, side surface, seat Pf, etc.) of Rm in space, the position, orientation, and viewing angle of the image acquisition unit Cm. Determined based on size etc.
 測定環境判定部126は、例えば、HRIRを測定するか否かを示す判定結果に相当する判定情報を含む表示データを生成し、生成した表示データを表示部150に出力する。表示部150には、判定結果として測定環境が適切な環境、つまり、受聴者に対して立体感を十分に知覚させることができるHRIRを測定できる環境であるか否かがユーザに通知される。ここで、ユーザは、HRIRの測定に携わるオペレータであってもよいし、被験者Sb自身であってもよい。 The measurement environment determination unit 126 generates, for example, display data including determination information corresponding to a determination result indicating whether or not to measure the HRIR, and outputs the generated display data to the display unit 150. As a result of the determination, the display unit 150 notifies the user whether or not the measurement environment is an appropriate environment, that is, an environment in which the HRIR can be sufficiently perceived by the listener. Here, the user may be an operator involved in the measurement of the HRIR, or may be the subject Sb himself.
 測定環境判定部126は、その判定結果を示す判定情報を測定制御部112に出力してもよい。測定制御部112は、測定環境判定部126から入力される判定情報が、HRIRを測定することを示す場合、上記のHRIR測定処理を実行し、その判定情報が、測定環境がHRIRを測定しないことを示す場合、上記のHRIR測定処理を実行しなくてもよい。これにより、測定環境が適切ではない場合には、HRIRの測定が制限され、測定環境が適切な場合に、HRIRが測定される。そのため、測定されるHRIRの品質が確保される。 The measurement environment determination unit 126 may output determination information indicating the determination result to the measurement control unit 112. When the determination information input from the measurement environment determination unit 126 indicates that the measurement control unit 112 measures the HRIR, the measurement control unit 112 executes the above-mentioned HRIR measurement process, and the determination information indicates that the measurement environment does not measure the HRIR. In the case of, it is not necessary to execute the above-mentioned HRIR measurement process. As a result, the measurement of HRIR is restricted when the measurement environment is not appropriate, and HRIR is measured when the measurement environment is appropriate. Therefore, the quality of the measured HRIR is ensured.
 次に、本実施形態に係る測定環境判定処理の例について説明する。図8は、本実施形態に係る測定環境判定処理の例を示すフローチャートである。但し、図8に示す処理の実行を開始する前に、予め反射特性関連データを保存しておく。反射特性関連データには、材質ごとに、その材質の反射率を示す情報が含めておく。 Next, an example of the measurement environment determination process according to the present embodiment will be described. FIG. 8 is a flowchart showing an example of the measurement environment determination process according to the present embodiment. However, the reflection characteristic-related data is saved in advance before the execution of the process shown in FIG. 8 is started. The reflection characteristic-related data includes information indicating the reflectance of each material.
(ステップS202)画像取得部Cmは、測定環境の画像を撮影し、撮影した画像を示す画像データを音響処理装置10に出力する。
(ステップS204)測定環境判定部126は、画像取得部Cmから入力される画像データに対して画像認識処理を行って、画像を細分化したブロックごとに視野内に表される測定環境における被写体の材質を特定する。測定環境判定部126は、反射特性関連データを参照して、ブロックごとに特定した材質の反射率を定める。
(Step S202) The image acquisition unit Cm captures an image of the measurement environment and outputs image data indicating the captured image to the sound processing device 10.
(Step S204) The measurement environment determination unit 126 performs image recognition processing on the image data input from the image acquisition unit Cm, and the subject in the measurement environment represented in the field of view for each block in which the image is subdivided. Identify the material. The measurement environment determination unit 126 determines the reflectance of the material specified for each block with reference to the reflection characteristic-related data.
(ステップS206)測定環境判定部126は、所定の評価領域内のブロックごとに定めた反射率に基づいて、評価領域における反射率の代表値の例として平均反射率を定める。測定環境判定部126は、定めた平均反射率が所定の反射率の上限値以下であるか否かを判定する。測定環境判定部126は、平均反射率が上限値以下である判定されるとき、測定環境がHRIRを測定すると判定し、平均反射率が上限値よりも大きいと判定されるとき、測定環境がHRIRを測定しないと判定する。
 測定環境判定部126は、判定結果を示す判定情報を表示部150に出力してもよいし、測定制御部112に出力してもよい。
(Step S206) The measurement environment determination unit 126 determines the average reflectance as an example of the representative value of the reflectance in the evaluation region based on the reflectance determined for each block in the predetermined evaluation region. The measurement environment determination unit 126 determines whether or not the determined average reflectance is equal to or less than the upper limit of the predetermined reflectance. The measurement environment determination unit 126 determines that the measurement environment measures HRIR when it is determined that the average reflectance is equal to or less than the upper limit value, and when it is determined that the average reflectance is larger than the upper limit value, the measurement environment is HRIR. Is determined not to be measured.
The measurement environment determination unit 126 may output the determination information indicating the determination result to the display unit 150 or the measurement control unit 112.
 なお、測定環境判定部126は、測定環境がHRIRを測定する環境であるか否か判定する際、吸音材の配置状態の指標の例として、評価領域における反射率を定める場合を例にしたが、これには限られない。例えば、測定環境判定部126は、吸音材の配置状態の指標の例として、評価領域における所定の材質の吸音材の被覆率を定めてもよい。ここで、測定環境判定部126には、部材ごとに、当該部材が吸音材であるか否かを示す吸音材情報を予め設定しておいてもよい。その場合には、反射率保存部124において予め反射特性関連データさせておかなくてもよい。 In addition, when the measurement environment determination unit 126 determines whether or not the measurement environment is an environment for measuring HRIR, as an example of an index of the arrangement state of the sound absorbing material, a case where the reflectance in the evaluation region is determined is taken as an example. , Not limited to this. For example, the measurement environment determination unit 126 may determine the coverage of the sound absorbing material of a predetermined material in the evaluation region as an example of the index of the arrangement state of the sound absorbing material. Here, in the measurement environment determination unit 126, sound absorbing material information indicating whether or not the member is a sound absorbing material may be set in advance for each member. In that case, it is not necessary to store the reflection characteristic-related data in advance in the reflectance storage unit 124.
 測定環境判定部126は、上記のように画像データに対して画像認識処理を行い、ブロックごとに被写体の材質を識別する。測定環境判定部126は、自部に設定されている吸音材情報を参照して、識別した材質が吸音材であるか否かを特定することができる。測定環境判定部126は、特定された材質を吸音材として判定されたブロックの集合を吸音領域として判定する。測定環境判定部126は、評価領域の面積の、その評価領域に含まれる吸音領域の面積の割合を、吸音領域比として算出することができる。そして、測定環境判定部126は、吸音材の配置状態を示す指標値として、吸音領域比が所定の比の下限(例えば、0.8~0.98)以上であるか否かを判定する。測定環境判定部126は、吸音領域比が所定の下限以上と判定するとき、測定環境がHRIRを測定する環境として判定し、吸音領域比が所定の下限以下と判定するとき、測定環境がHRIRを測定しない環境として判定する。 The measurement environment determination unit 126 performs image recognition processing on the image data as described above, and identifies the material of the subject for each block. The measurement environment determination unit 126 can specify whether or not the identified material is a sound absorbing material by referring to the sound absorbing material information set in the own unit. The measurement environment determination unit 126 determines a set of blocks in which the specified material is determined as the sound absorbing material as the sound absorbing region. The measurement environment determination unit 126 can calculate the ratio of the area of the sound absorbing region included in the evaluation region to the area of the evaluation region as the sound absorbing region ratio. Then, the measurement environment determination unit 126 determines whether or not the sound absorption region ratio is equal to or higher than the lower limit of the predetermined ratio (for example, 0.8 to 0.98) as an index value indicating the arrangement state of the sound absorbing material. When the measurement environment determination unit 126 determines that the sound absorption region ratio is equal to or higher than a predetermined lower limit, the measurement environment determines that the HRIR is measured, and when the measurement environment determines that the sound absorption region ratio is equal to or less than the predetermined lower limit, the measurement environment determines the HRIR. Judge as an environment not to be measured.
 次に、上記の実施形態の構成の一例について説明する。図9は、構成の一例を示す説明図である。上記の実施形態に係る音響処理システム1は、音源(例えば、スピーカSp)と、受音部(例えば、マイクロホンMic)と、演算部116と、吸音材Asと、を備える。音源は、所定の音源信号に基づく音を発する。受音部は、到来した音の受音信号を取得する。演算部116は、取得された受音信号から音源から受音部へのインパルス応答を取得する。吸音材は、音の発生から少なくとも所定の観測期間内に到来する反射音の経路上の物体を被覆する。
 この構成によれば、吸音材の設置により、インパルス応答において少なくとも観測期間内に到来する反射音の成分の強度が吸音材が設置されていない場合よりも低減する。また、吸音材は、音源から受音部までの音波の伝搬経路のうち、少なくとも観測期間内に到来する反射音の伝搬経路に係る物体が被覆されていれば足りる。そのため、無響室のような特段の設備を有していない、ありふれた空間であっても、HRIRとして利用するインパルス応答を簡易に取得することができる。ここで、吸音材の設置に係る負荷は比較的軽微で済み、空間を有効に活用することができる。
Next, an example of the configuration of the above embodiment will be described. FIG. 9 is an explanatory diagram showing an example of the configuration. The sound processing system 1 according to the above embodiment includes a sound source (for example, a speaker Sp), a sound receiving unit (for example, a microphone Mic), a calculation unit 116, and a sound absorbing material As. The sound source emits a sound based on a predetermined sound source signal. The sound receiving unit acquires a sound receiving signal of the incoming sound. The arithmetic unit 116 acquires an impulse response from the sound source to the sound receiving unit from the acquired sound receiving signal. The sound absorbing material covers an object on the path of reflected sound that arrives at least within a predetermined observation period from the generation of sound.
According to this configuration, the installation of the sound absorbing material reduces the intensity of the reflected sound component that arrives at least within the observation period in the impulse response as compared with the case where the sound absorbing material is not installed. Further, it is sufficient that the sound absorbing material is covered with an object related to the propagation path of the reflected sound arriving within at least the observation period in the propagation path of the sound wave from the sound source to the sound receiving portion. Therefore, even in an ordinary space that does not have special equipment such as an anechoic chamber, it is possible to easily obtain an impulse response to be used as an HRIR. Here, the load related to the installation of the sound absorbing material is relatively light, and the space can be effectively utilized.
 また、演算部116は、取得したインパルス応答の観測期間の経過後の信号値を減衰させてもよい。
 この構成によれば、取得したインパルス応答のうち観測期間内の部分が抽出され、観測期間の経過後の部分が除去される。そのため、観測期間内のHRIRとして音の立体感の知覚に重要な部分が維持されるとともに、観測期間後に到来する後期反射音の影響を回避することができる。
Further, the arithmetic unit 116 may attenuate the signal value after the observation period of the acquired impulse response has elapsed.
According to this configuration, the portion of the acquired impulse response within the observation period is extracted, and the portion after the lapse of the observation period is removed. Therefore, the important part of the HRIR during the observation period for perceiving the three-dimensional effect of the sound is maintained, and the influence of the late reflected sound that arrives after the observation period can be avoided.
 また、音響処理システム1は、音源からの音の発生、受音信号の取得、およびインパルス応答の取得を複数回反復させる測定制御部112を備えてもよい。演算部116は、取得された複数のインパルス応答を同期加算してもよい。
 この構成によれば、同期加算により加算されたインパルス応答の成分に比べ、加算されたノイズ成分が相対的に低減する。そのため、より精度の高いインパルス応答を取得することができる。
Further, the acoustic processing system 1 may include a measurement control unit 112 that repeats the generation of sound from the sound source, the acquisition of the received signal, and the acquisition of the impulse response a plurality of times. The arithmetic unit 116 may synchronously add a plurality of acquired impulse responses.
According to this configuration, the added noise component is relatively reduced as compared with the component of the impulse response added by the synchronous addition. Therefore, it is possible to obtain a more accurate impulse response.
 また、音響処理システム1は、測定環境情報取得部(例えば、画像取得部Cm)と、測定環境判定部126と、を備えてもよい。測定環境情報取得部は、インパルス応答の測定環境の情報を取得する。測定環境判定部は、予め設定した反射特性関連データを参照し、取得された情報に基づいて吸音材の配置状態を判定し、判定した吸音材の配置状態に基づいて測定環境がインパルス応答を測定するか否かを判定する。
 この構成によれば、吸音材の配置状態に基づいて測定環境が、受聴者に対して立体感を十分に知覚させることができるインパルス応答を取得できる適切な環境であるかが判定され、その判定結果に応じてインパルス応答の測定の要否が判定される。そのため、不適切なインパルス応答の取得が制限され、適切なインパルス応答の取得が促される。
Further, the sound processing system 1 may include a measurement environment information acquisition unit (for example, an image acquisition unit Cm) and a measurement environment determination unit 126. The measurement environment information acquisition unit acquires information on the measurement environment of the impulse response. The measurement environment determination unit refers to the preset reflection characteristic-related data, determines the arrangement state of the sound absorbing material based on the acquired information, and the measurement environment measures the impulse response based on the determined arrangement state of the sound absorbing material. Determine whether or not to do so.
According to this configuration, it is determined based on the arrangement state of the sound absorbing material whether the measurement environment is an appropriate environment capable of obtaining an impulse response that allows the listener to sufficiently perceive a three-dimensional effect, and the determination thereof. The necessity of measuring the impulse response is determined according to the result. Therefore, the acquisition of an inappropriate impulse response is restricted, and the acquisition of an appropriate impulse response is promoted.
 また、音響処理システム1は、反射率保存部124を備えてもよい。反射率保存部124は、材質および音の反射率の情報を対応付けた情報を含む反射特性関連データを保存する。測定環境判定部126は、取得した情報として画像から特定される被写体の材質を特定し、反射特性関連データを参照して、特定した材質に対応する反射率を特定し、特定した反射率に基づいてインパルス応答を測定するか否かを判定する。
 この構成によれば、取得された画像に表される被写体の材質を特定し、特定した材質から特定された反射率に基づいてインパルス応答を測定するか否かが判定される。そのため、実測を行わなくてもインパルス応答の測定環境における反射率が推定されるので、実測による音響環境の変化を伴わずにインパルス応答の測定の可否が判定される。
Further, the sound processing system 1 may include a reflectance storage unit 124. The reflectance storage unit 124 stores reflection characteristic-related data including information associated with information on the material and the reflectance of sound. The measurement environment determination unit 126 identifies the material of the subject specified from the image as the acquired information, refers to the reflection characteristic-related data, specifies the reflectance corresponding to the specified material, and is based on the specified reflectance. To determine whether to measure the impulse response.
According to this configuration, the material of the subject represented in the acquired image is specified, and it is determined whether or not to measure the impulse response based on the reflectance specified from the specified material. Therefore, since the reflectance in the measurement environment of the impulse response is estimated without performing the actual measurement, it is determined whether or not the impulse response can be measured without any change in the acoustic environment due to the actual measurement.
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and variations thereof are included in the scope of the invention described in the claims and the equivalent scope thereof, as are included in the scope and gist of the invention.
 この出願は、2020年9月17日に出願された日本国特願2020-156368号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2020-156368 filed on September 17, 2020, and incorporates all of its disclosures here.
 本発明は、音響処理システム、音響処理方法、および記録媒体に適用してもよい。 The present invention may be applied to an acoustic processing system, an acoustic processing method, and a recording medium.
1…音響処理システム
10…音響処理装置
110…制御部
112…測定制御部
114…録音部
116…演算部
124…反射率保存部
126…測定環境判定部
130…記憶部
140…入出力部
150…表示部
160…操作部
As…吸音材
Cm…画像取得部
Mic(Mic L、Mic R)…マイクロホン
Sp…スピーカ
1 ... Sound processing system 10 ... Sound processing device 110 ... Control unit 112 ... Measurement control unit 114 ... Recording unit 116 ... Calculation unit 124 ... Reflectance storage unit 126 ... Measurement environment determination unit 130 ... Storage unit 140 ... Input / output unit 150 ... Display unit 160 ... Operation unit As ... Sound absorbing material Cm ... Image acquisition unit Mic (Mic L, Mic R) ... Microphone Sp ... Speaker

Claims (7)

  1.  所定の音源信号に基づく音を発する音源と、
     到来した音の受音信号を取得する受音部と、
     前記受音信号から前記音源から前記受音部へのインパルス応答を取得する演算部と、
     前記音の発生から少なくとも所定の観測期間内に前記受音部に到来する反射音の経路上の物体を被覆する吸音材と、を備える
     音響処理システム。
    A sound source that emits sound based on a predetermined sound source signal,
    A sound receiving unit that acquires the sound receiving signal of the incoming sound,
    An arithmetic unit that acquires an impulse response from the sound receiving signal to the sound receiving unit, and
    An acoustic processing system comprising a sound absorbing material that covers an object on the path of the reflected sound arriving at the sound receiving portion within at least a predetermined observation period from the generation of the sound.
  2.  前記演算部は、
     前記インパルス応答の前記観測期間の経過後の信号値を減衰させる
     請求項1に記載の音響処理システム。
    The arithmetic unit
    The acoustic processing system according to claim 1, wherein the signal value of the impulse response after the lapse of the observation period is attenuated.
  3.  前記音源からの音の発生、前記受音信号の取得、および前記インパルス応答の取得を複数回反復させる測定制御部を備え、
     前記演算部は、
     複数の前記インパルス応答を同期加算する
     請求項1または請求項2に記載の音響処理システム。
    It is provided with a measurement control unit that repeats the generation of sound from the sound source, the acquisition of the received signal, and the acquisition of the impulse response a plurality of times.
    The arithmetic unit
    The acoustic processing system according to claim 1 or 2, wherein the plurality of impulse responses are synchronously added.
  4.  前記インパルス応答の測定環境の情報を取得する測定環境情報取得部と、
     前記情報に基づいて前記測定環境における前記吸音材の配置状態を判定し、
     予め設定した反射特性関連データを参照し、前記配置状態に基づいて前記インパルス応答を測定する否かを判定する測定環境判定部と、を備える
     請求項1から請求項3のいずれか一項に記載の音響処理システム。
    A measurement environment information acquisition unit that acquires information on the measurement environment of the impulse response,
    Based on the information, the arrangement state of the sound absorbing material in the measurement environment is determined.
    The invention according to any one of claims 1 to 3, further comprising a measurement environment determination unit for determining whether or not to measure the impulse response based on the arrangement state with reference to preset reflection characteristic-related data. Sound processing system.
  5.  材質および音の反射率の情報を対応付けた前記反射特性関連データを保存する反射率保存部を備え、
     前記測定環境判定部は、
     前記情報として画像から特定される被写体の材質を特定し、前記反射特性関連データを参照して、特定した材質に対応する反射率を特定し、
     特定した反射率に基づいて前記インパルス応答を測定するか否かを判定する
     請求項4に記載の音響処理システム。
    It is provided with a reflectance storage unit that stores the reflection characteristic-related data associated with the material and sound reflectance information.
    The measurement environment determination unit is
    The material of the subject specified from the image is specified as the information, and the reflectance corresponding to the specified material is specified by referring to the reflection characteristic-related data.
    The acoustic processing system according to claim 4, wherein it is determined whether or not to measure the impulse response based on the specified reflectance.
  6.  音源から音の発生から少なくとも所定の観測期間内に受音部に到来する反射音の経路上の物体を被覆する吸音材と、を備える音響処理システムのため音響処理方法であって、
     前記音源が、所定の音源信号に基づく音を発する第1のステップと、
     前記受音部が、到来した音の受音信号を取得する第2のステップと、
     演算処理部が、前記受音信号から前記音源から前記受音部へのインパルス応答を取得する第3ステップと、を有する
     音響処理方法。
    It is an acoustic processing method for an acoustic processing system including a sound absorbing material that covers an object on the path of the reflected sound that arrives at the sound receiving portion within at least a predetermined observation period from the generation of sound from the sound source.
    The first step in which the sound source emits a sound based on a predetermined sound source signal,
    The second step in which the sound receiving unit acquires the sound receiving signal of the incoming sound, and
    An acoustic processing method comprising a third step in which an arithmetic processing unit acquires an impulse response from the sound source to the sound receiving unit from the sound receiving signal.
  7.  音源から音の発生から少なくとも所定の観測期間内に受音部に到来する反射音の経路上の物体を被覆する吸音材と、を備える音響処理システムのコンピュータに、
     前記音源が、所定の音源信号に基づく音を発する第1のステップと、
     前記受音部が、到来した音の受音信号を取得する第2のステップと、
     演算処理部が、前記受音信号から前記音源から前記受音部へのインパルス応答を取得する第3ステップと、
     を実行させるプログラムを記憶した記録媒体。
    A computer of an acoustic processing system comprising a sound absorbing material covering an object on the path of reflected sound arriving at a sound receiving unit at least within a predetermined observation period from the generation of sound from a sound source.
    The first step in which the sound source emits a sound based on a predetermined sound source signal,
    The second step in which the sound receiving unit acquires the sound receiving signal of the incoming sound, and
    The third step in which the arithmetic processing unit acquires an impulse response from the sound source to the sound receiving unit from the sound receiving signal,
    A recording medium that stores a program to execute.
PCT/JP2021/028343 2020-09-17 2021-07-30 Sound processing system, sound processing method, and recording medium WO2022059364A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022550400A JPWO2022059364A5 (en) 2021-07-30 SOUND PROCESSING SYSTEM, SOUND PROCESSING METHOD, AND PROGRAM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020156368 2020-09-17
JP2020-156368 2020-09-17

Publications (1)

Publication Number Publication Date
WO2022059364A1 true WO2022059364A1 (en) 2022-03-24

Family

ID=80775776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028343 WO2022059364A1 (en) 2020-09-17 2021-07-30 Sound processing system, sound processing method, and recording medium

Country Status (1)

Country Link
WO (1) WO2022059364A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011244310A (en) * 2010-05-20 2011-12-01 Sony Corp Audio signal processing apparatus and audio signal processing method
WO2020071200A1 (en) * 2018-10-03 2020-04-09 ソニー株式会社 Information processing device, information processing method, and program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011244310A (en) * 2010-05-20 2011-12-01 Sony Corp Audio signal processing apparatus and audio signal processing method
WO2020071200A1 (en) * 2018-10-03 2020-04-09 ソニー株式会社 Information processing device, information processing method, and program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIRAHARA TATSUYA, MAKOTO OTANI, IWAKI TOSHIMA: "Issues on HRTF Measurements and Binaural Reproduction", FUNDAMENTALS REVIEW, vol. 2, no. 4, 1 January 2009 (2009-01-01), pages 68 - 85, XP055912566 *

Also Published As

Publication number Publication date
JPWO2022059364A1 (en) 2022-03-24

Similar Documents

Publication Publication Date Title
US10993065B2 (en) Systems and methods of calibrating earphones
EP3095254B1 (en) Enhanced spatial impression for home audio
US9706292B2 (en) Audio camera using microphone arrays for real time capture of audio images and method for jointly processing the audio images with video images
US7123731B2 (en) System and method for optimization of three-dimensional audio
O'Donovan et al. Imaging concert hall acoustics using visual and audio cameras
Ando et al. Nonlinear response in evaluating the subjective diffuseness of sound fields
EP3269150A1 (en) Calibrating listening devices
CN102860041A (en) Loudspeakers with position tracking
Cubick et al. Validation of a virtual sound environment system for testing hearing aids
AU2001239516A1 (en) System and method for optimization of three-dimensional audio
US9584938B2 (en) Method of determining acoustical characteristics of a room or venue having n sound sources
Frank Source width of frontal phantom sources: Perception, measurement, and modeling
EP3595337A1 (en) Audio apparatus and method of audio processing
JP2022525902A (en) Audio equipment and its processing method
WO2022059364A1 (en) Sound processing system, sound processing method, and recording medium
JP5533282B2 (en) Sound playback device
Steffens et al. Auditory orientation and distance estimation of sighted humans using virtual echolocation with artificial and self-generated sounds
Spiousas et al. An auditory illusion of proximity of the source induced by sonic crystals
Fujii et al. Spatial distribution of acoustical parameters in concert halls: Comparison of different scattered reflections
Blauert Hearing of music in three spatial dimensions
Dolci et al. Cinema Sound and audio 3D: the case study of Cinema Lux, Rome, Italy
Dunn 3D room acoustic measurements with low cost equipment
Begault et al. Early reflection thresholds for anechoic and reverberant stimuli within a 3-D sound display
Asakura et al. Effect of auditory and visual stimuli on distance perception presented by head-mounted display and headphone
Martellotta et al. Acoustic problems in a large hemispherical concrete church

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21869051

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022550400

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21869051

Country of ref document: EP

Kind code of ref document: A1