WO2022059063A1 - Biological information acquisition device, system, biological information acquisition method, and recording medium - Google Patents

Biological information acquisition device, system, biological information acquisition method, and recording medium Download PDF

Info

Publication number
WO2022059063A1
WO2022059063A1 PCT/JP2020/034886 JP2020034886W WO2022059063A1 WO 2022059063 A1 WO2022059063 A1 WO 2022059063A1 JP 2020034886 W JP2020034886 W JP 2020034886W WO 2022059063 A1 WO2022059063 A1 WO 2022059063A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical sensors
measurement
biometric
biometric data
light
Prior art date
Application number
PCT/JP2020/034886
Other languages
French (fr)
Japanese (ja)
Inventor
真奈 橋本
浩幸 遠藤
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2022550066A priority Critical patent/JPWO2022059063A5/en
Priority to PCT/JP2020/034886 priority patent/WO2022059063A1/en
Publication of WO2022059063A1 publication Critical patent/WO2022059063A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure

Definitions

  • the present invention relates to a biometric information acquisition device, a system, a biometric information acquisition method, and a recording medium, and more particularly to a biometric information acquisition device that acquires biometric information based on biometric data received from a biometric detection device.
  • biometric data information on the mind and body of the living body
  • biometric information information on the mind and body of the living body
  • An example of biological information acquired from biological data by a biological information acquisition device is pulse wave information based on the heartbeat of the living body.
  • the pulse wave information can be used not only as an index of health information itself, but also for estimating internal information such as stress.
  • Patent Document 1 describes an optical sensor module including a plurality of light emitting elements and one light receiving element.
  • Smart devices such as smart watches or data loggers are examples of biometric devices.
  • the biological detection device uses a wristband type (also called a wristwatch type). This is because the wristband type biological detection device is easy to attach to the living body. However, the wristband type biological detection device has a demerit that it is easily affected by the age and body shape of the living body. Specifically, many wristband-type biodetection devices are designed for adult men, so if the user is a woman, an elderly person, or a young person, the biometric detection device A gap is created between the arm and the user's arm, making it difficult to detect accurate biometric data.
  • the stick-on type biometric detection device that is directly attached to the skin has a higher degree of adhesion to the skin than the wristband-type biometric detection device, so that the burden on the skin is less and there is less data loss. Is expected as an advantage, and much development is still underway.
  • a wristband type is selected because of its ease of wearing, and a sticking type is selected because of the accuracy of the obtained data. Development is in progress.
  • the present invention has been made in view of the above problems, and an object thereof is to obtain highly accurate biometric information from high quality biometric data.
  • the biometric information acquisition device includes a pre-measurement means for performing pre-measurement of biometric data using a plurality of optical sensors that project light in different wavelengths or wavelength ranges onto the living body, and the plurality of pre-measurement means.
  • the comparison means for comparing the light intensity detected by each of the plurality of optical sensors based on the biological data output from each of the optical sensors, and the plurality of optics based on the comparison result of the light intensity.
  • the measuring means for performing the main measurement of the biological data using the selection means for selecting one of the formula sensors and one optical sensor selected based on the comparison result of the light intensity, and the main measurement. It is provided with an analysis means for acquiring biometric information by analyzing the biometric data obtained as a result of the above.
  • the system includes a pre-measurement means for performing pre-measurement of biological data by using a plurality of optical sensors that project light having different wavelengths or wavelength ranges onto a living body, and the plurality of optical sensors.
  • the comparison means for comparing the light intensity detected by each of the plurality of optical sensors, and the comparison result of the light intensity of the plurality of optical sensors.
  • the main measurement means for performing the main measurement of the biometric data using the selection means for selecting one of them and one optical sensor selected based on the comparison result of the light intensity. It includes a biometric information acquisition device including an analysis means for acquiring biometric information by analyzing the obtained biometric data, and a biometric detection device including the plurality of optical sensors.
  • pre-measurement of biometric data is performed using a plurality of optical sensors that project light in different wavelengths or wavelength ranges onto the living body, and the plurality of optical sensors can be used. Based on the biometric data output from each, the light intensities detected by the plurality of optical sensors are compared, and one of the plurality of optical sensors is selected based on the comparison result of the light intensities. By performing the main measurement of the biometric data using one optical sensor selected and selected based on the comparison result of the light intensity, and analyzing the biometric data obtained as a result of the main measurement. Includes the acquisition of biometric information.
  • the recording medium is to perform pre-measurement of biometric data by using a plurality of optical sensors that project light having different wavelengths or wavelength ranges onto a living body, and to use the plurality of optical sensors.
  • One of the plurality of optical sensors is compared with the light intensity detected by each of the plurality of optical sensors based on the biometric data output from each, and based on the comparison result of the light intensity.
  • the main measurement of the biological data is performed, and the living body obtained as a result of the main measurement is performed. It stores a program that causes a computer to acquire biometric information by analyzing data.
  • biometric information can be obtained from high quality biometric data.
  • the configuration of the system including the biometric detection device and the biometric information acquisition device is shown schematically. It is a block diagram which shows the structure of the biological information acquisition apparatus which concerns on Embodiment 1. FIG. It is a graph which shows an example of the biological data acquired from the biological detection device by the biological information acquisition apparatus which concerns on Embodiment 1. FIG. It is a flowchart which shows the operation of the biological information acquisition apparatus which concerns on Embodiment 1.
  • An example of the configuration of the biological detection device according to the second embodiment is shown. Another example of the configuration of the biological detection device according to the second embodiment is shown. Yet another example of the configuration of the biometric detection device according to the second embodiment is shown.
  • An example of the configuration of the optical sensor included in the biometric detection device according to the second embodiment is shown.
  • FIG. 1 Another example of the configuration of the optical sensor included in the biometric detection device according to the second embodiment is shown. It is a flowchart which shows the operation of the biological information acquisition apparatus which concerns on Embodiment 3. It is a flowchart which shows the operation of the biological information acquisition apparatus which concerns on Embodiment 4.
  • the configuration of the system including the biological detection device and the biological information acquisition device according to the fifth embodiment is schematically shown.
  • An example of the hardware configuration of the biometric information acquisition device according to any one of the first to fourth embodiments is shown.
  • FIG. 1 schematically shows a configuration of a system 1 common to embodiments 1 to 4 described later and variations thereof.
  • the system 1 includes a biometric detection device 100 (100A, 100B) and a biometric information acquisition device 10.
  • the biological detection device 100 (100A, 100B) indicates any one of the biological detection device 100, the biological detection device 100A, and the biological detection device 100B, which will be described later.
  • the biometric information acquisition device 10 and the biometric detection device 100 (100A, 100B) can communicate wirelessly or by wire depending on their respective communication functions.
  • the biometric information acquisition device 10 operates the biometric detection device 100 (100A, 100B) by transmitting a control signal to the biometric detection device 100 (100A, 100B) as described below.
  • the biological detection device 100 incidents an optical signal on a living body (human being in an example) (not shown).
  • the optical signal passes through the skin of the living body, and is partially scattered and partially absorbed by the tissues in the living body. Then, the scattered or reflected light is emitted from the living body to the outside.
  • the biological detection device 100 detects the light emitted from the biological body to the outside.
  • the biological detection device 100 acquires biological data (also referred to as a biological signal) based on the detected light, and transmits the biological data to the biological information acquisition device 10.
  • the biometric information acquisition device 10 acquires biometric information by receiving biometric data from the biometric detection device 100 (100A, 100B) and analyzing the biometric data.
  • the biological information is information on the mind and body of the living body, and in particular, is a measurable index value related to the health condition of the living body.
  • biometric information is pulse, blood flow, blood oxygen concentration, electroencephalogram, respiration, blood pressure, or sweating.
  • the biological information acquisition device 10 may output the biological information acquired in this way to an external device (for example, a display). An example of a specific process executed by the biological information acquisition device 10 will be described in the first to fourth embodiments described later.
  • FIG. 2 is a block diagram showing the configuration of the biological information acquisition device 10 according to the first embodiment.
  • the biological information acquisition device 10 includes a front measurement unit 11, a comparison unit 12, a selection unit 13, a main measurement unit 14, and an analysis unit 15.
  • the pre-measurement unit 11 performs pre-measurement of biometric data using a plurality of optical sensors 200 (an example is shown in FIGS. 8 to 9) that project light of different wavelengths or wavelength ranges onto the living body.
  • the pre-measurement unit 11 is an example of the pre-measurement means.
  • the pre-measurement unit 11 first inputs an inspection signal to a living body by using a plurality of optical sensors 200. Specifically, the pre-measurement unit 11 emits light having a different wavelength or wavelength range for each optical sensor 200 as an inspection signal from one or more light emitting elements 201 provided by each of the plurality of optical sensors 200. , The reflection from the living body is received by one (or a plurality) light receiving elements 202 provided in each of the plurality of optical sensors 200. Some examples of the configuration of the optical sensor 200 will be described later.
  • the test signal penetrates the skin of the living body, is partially scattered by the tissues in the living body, and is absorbed by the other part.
  • Each of the plurality of optical sensors 200 receives light emitted from the inside of the living body to the outside by one or more light receiving elements 202.
  • the plurality of optical sensors 200 acquire biometric data based on the light received by one or more light receiving elements 202. Then, each of the plurality of optical sensors 200 transmits biometric data to the pre-measurement unit 11.
  • the pre-measurement unit 11 receives biometric data from each of the plurality of optical sensors 200.
  • the pre-measurement unit 11 operates together with the optical sensors 200 of N sets (N is an integer of 1 or more) provided in the biometric detection device 100.
  • N sets of biometric data can be obtained.
  • N sets of biometric data correspond to N sets of optical sensors.
  • the front measurement unit 11 receives N sets of biometric data from the biometric detection device 100 equipped with N sets of optical sensors 200. Then, the front measurement unit 11 outputs the biometric data output from each of the plurality of optical sensors 200 to the comparison unit 12.
  • the biometric data output from each optical sensor 200 includes identification information for identifying one light receiving element 202 provided by each optical sensor 200 and light received by each light receiving element 202 at the same time. It contains at least information indicating the intensity of light.
  • the biometric data may include at least information indicating the intensity of light received by each of the light receiving elements 202 at the same time.
  • the biometric data may include at least information indicating the intensity of light received by each of the light receiving elements 202 at the same time.
  • the biological information acquisition device 10 acquires pulse wave information as biological information
  • the guideline for the time for the pre-measurement unit 11 to continue the pre-measurement will be described.
  • the pre-measurement unit 11 needs to perform pre-measurement for a time during which at least one pulse wave can be acquired.
  • the pulse per minute is often 40 (1 beat in 1.5 seconds) to 100 (1 beat in 0.6 seconds). Therefore, pre-measurement for about 1 second to several seconds is required.
  • the comparison unit 12 compares the light intensity detected by each of the plurality of optical sensors 200 based on the biometric data output from each of the plurality of optical sensors 200.
  • the comparison unit 12 is an example of the comparison means.
  • the comparison unit 12 receives biometric data output from each of the plurality of optical sensors 200 from the front measurement unit 11.
  • FIG. 3 is a graph showing an example of biometric data output from one optical sensor 200.
  • the biological data shown in FIG. 3 represents a waveform based on a pulse wave of a living body within a specific time.
  • the comparison unit 12 compares the light intensities detected by each of the plurality of optical sensors 200 based on the biological data exemplified in FIG.
  • the comparison unit 12 simply compares the light intensities detected by the plurality of optical sensors 200.
  • the comparison unit 12 extracts information indicating the intensity of light received by one or more light receiving elements 202 within a specific time from the biological data output from each of the plurality of optical sensors 200. Then, the comparison unit 12 compares the light intensities detected by each of the plurality of optical sensors 200.
  • the comparison unit 12 calculates the difference ⁇ (FIG. 3) between the maximum value and the minimum value of the light intensity detected by each optical sensor 200, and then sets the maximum value of the light intensity. Compare the values divided by ⁇ .
  • the value obtained by dividing the maximum value of the light intensity by the difference ⁇ is a value close to a general S / N ratio.
  • the former case that is, the configuration in which the comparison unit 12 compares the light intensities detected by the plurality of optical sensors 200 will be described.
  • the comparison unit 12 outputs data including information indicating the comparison result to the selection unit 13.
  • the information indicating the comparison result is one optical sensor 200 including the light receiving element 202 having the maximum average value or maximum value of the light intensity detected within a specific time among the plurality of optical sensors 200. Point to.
  • the selection unit 13 selects one of the plurality of optical sensors 200 (FIGS. 5 to 7) based on the comparison result of the light intensity.
  • the selection unit 13 is an example of selection means.
  • the selection unit 13 receives data from the comparison unit 12 including information indicating a comparison result regarding the light intensity detected by each of the plurality of optical sensors 200.
  • the selection unit 13 is the average value or the maximum value of the light intensity detected within a specific time among the plurality of optical sensors 200 included in the biometric detection device 100 (100A, 100B) based on the received data. Select the optical sensor 200 with the maximum.
  • the selection unit 13 outputs data including identification information for identifying one selected optical sensor 200 to the measurement unit 14.
  • the main measurement unit 14 performs the main measurement of biometric data using one optical sensor 200 selected based on the comparison result of the light intensity.
  • the measuring unit 14 is an example of the measuring means.
  • the measuring unit 14 first receives data including identification information for identifying one selected optical sensor 200 from the selection unit 13.
  • the measuring unit 14 inputs an inspection signal to the living body by using one optical sensor 200 selected by the selection unit 13.
  • the measuring unit 14 can be used as an inspection signal from one or more light emitting elements 201 (FIGS. 8 to 9) provided in one selected optical sensor 200 in a specific wavelength or wavelength range. Emit light.
  • the main measurement unit 14 may perform the main measurement for a time equivalent to the time for the pre-measurement unit 11 described above to continue the pre-measurement.
  • the measuring unit 14 receives biometric data from one selected optical sensor 200.
  • the measuring unit 14 outputs the biometric data output from one selected optical sensor 200 to the analysis unit 15.
  • the analysis unit 15 acquires biometric information by analyzing the biometric data obtained as a result of this measurement.
  • the analysis unit 15 is an example of analysis means.
  • the analysis unit 15 receives the biometric data output from one selected optical sensor 200 from the measurement unit 14.
  • the analysis unit 15 analyzes the received biometric data.
  • the analysis unit 15 acquires the biometric information as described above by analyzing the biometric data by the method described in any one of Patent Documents 2 to 4.
  • the analysis unit 15 may output the acquired biometric information to an external device (for example, a display device).
  • FIG. 4 is a flowchart showing a flow of processing executed by each part of the biological information acquisition device 10.
  • the pre-measurement unit 11 performs pre-measurement of biometric data using a plurality of optical sensors 200 that project light having different wavelengths or wavelength ranges onto the living body (S1).
  • the front measurement unit 11 outputs the biometric data output from each of the plurality of optical sensors 200 to the comparison unit 12.
  • the pre-measurement unit 11 executes. The processing to be performed will be described. However, in this embodiment 1 and later embodiments, it is assumed that the biometric detection device 100 (100A, 100B) does not include a plurality of optical sensors 200 having light sensitivity in the same wavelength or wavelength range.
  • the comparison unit 12 compares the light intensity detected by each of the plurality of optical sensors 200 based on the biometric data output from each of the plurality of optical sensors 200 (S2).
  • the comparison unit 12 outputs data including information indicating the comparison result of the light intensity to the selection unit 13.
  • the selection unit 13 receives data from the comparison unit 12 including information indicating the comparison result of the light intensity.
  • the selection unit 13 selects one of the plurality of optical sensors 200 based on the comparison result of the light intensity (S3).
  • the selection unit 13 selects the optical sensor 200 having the maximum average value or maximum value of the light intensity detected by one or more light receiving elements 202 within a specific time.
  • the selection unit 13 outputs data including information indicating the selection result of the optical sensor 200 to the measurement unit 14.
  • the measuring unit 14 receives data including information indicating the selection result of the optical sensor 200 from the selection unit 13.
  • the measuring unit 14 performs the main measurement of biometric data using one optical sensor 200 selected based on the comparison result of the light intensity (S4).
  • the measurement unit 14 outputs data including information indicating the result of the main measurement of biometric data to the analysis unit 15.
  • the analysis unit 15 receives data including information indicating the result of the main measurement of biometric data from the main measurement unit 14.
  • the analysis unit 15 acquires the biometric information exemplified above by analyzing the biometric data obtained as a result of this measurement (S5). This completes the operation of the biological information acquisition device 10.
  • the pre-measurement unit 11 performs pre-measurement of biological data by using a plurality of optical sensors that project light having a wavelength or a wavelength range different from each other onto the living body.
  • the comparison unit 12 compares the light intensity detected by each of the plurality of optical sensors based on the biometric data output from each of the plurality of optical sensors.
  • the selection unit 13 selects one of the plurality of optical sensors based on the comparison result of the light intensity.
  • the measuring unit 14 performs the main measurement of biometric data using one optical sensor selected based on the comparison result of the light intensity.
  • the analysis unit 15 acquires biometric information by analyzing the biometric data obtained as a result of this measurement.
  • the main measurement unit 14 since one optical sensor 200 used for the main measurement is selected based on the comparison result of the light intensity obtained in the previous measurement, the main measurement unit 14 has high quality from the selected optical sensor 200. Biometric data can be obtained. Therefore, the analysis unit 15 can acquire high-quality biometric information from high-quality biometric data.
  • the biological information acquisition device 10 according to the first embodiment has been described.
  • the biometric detection devices 100 (100A, 100B) that communicate with the biometric information acquisition device 10 in the system 1 (FIG. 1) will be described.
  • FIG. 5 shows an example of the configuration of the biological detection device 100 according to the second embodiment.
  • the user uses the biological detection device 100 in a state of being attached to the living body.
  • the biometric detection device 100 includes a plurality of optical sensors 200, a power supply element 300, an arithmetic element 400, a communication element 500, and a memory 600 on one or more substrates 101. ing.
  • a plurality of optical sensors 200 are arranged in a line on one substrate 101.
  • a plurality of optical sensors 200 may be arranged in a matrix on one substrate 101.
  • the biological detection device 100 may include three or more substrates 101 (not shown).
  • the material of the substrate 101 is not particularly limited as long as it has a shape and material on which the optical sensor 200 and other elements can be mounted.
  • a flexible material is preferable for the substrate 101, and for example, a film substrate, a thin glass epoxy resin, or the like can be considered.
  • the plurality of optical sensors 200 in the biometric detection device 100 are arranged in a line shape (FIG. 5), in a matrix shape (FIG. 6), or in a concentric circle shape (not shown). ) Etc., but any method may be used. However, if the optical sensors 200 are too far apart from each other, the biometric detection device 100 becomes too large. Therefore, it is desirable that the plurality of optical sensors 200 are arranged so as to fit in the general size of the palm of a person, about 5 cm.
  • the power device 300 has many options such as weight, shape, and whether it is a primary side power supply or a secondary side power supply.
  • the power supply element 300 is not limited as long as sufficient power can be supplied to the optical sensor 200, the arithmetic element 400, and the communication element 500.
  • the power supply element 300 may be a very general power supply element such as a dry battery, a button battery, or a lithium ion storage battery.
  • the arithmetic element 400 is not particularly limited as long as it can control the driver of the optical sensor 200 or the optical sensor 200 mounted on the biological detection device 100.
  • the communication element 500 is for communicating between the biometric detection device 100 and the biometric information acquisition device 10.
  • the communication element 500 is not limited in its form and specifications as long as it is possible to exchange biometric data and control signals between the optical sensor 200 or the biometric detection device 100 and the biometric information acquisition device 10.
  • the wireless or wired communication element 500 is selected based on the communication amount (signal amount), communication distance, and power consumption.
  • examples of the wireless format include Wi-Fi (registered trademark), Bluetooth (registered trademark), and Bluetooth LE (registered trademark).
  • Wi-Fi registered trademark
  • Bluetooth registered trademark
  • Bluetooth LE registered trademark
  • the memory 600 temporarily stores biometric data, and the communication element 500 transfers biometric data offline to and from the biometric information acquisition device 10.
  • the biometric data stored in the memory 600 is processed on the biometric detection device 100 (100A, 100B).
  • the arithmetic element 400 controls the operation of each part of the biological detection device 100 (100A, 100B) by executing a program read into the memory 600 of the biological detection device 100 (100A, 100B).
  • Modification example of biometric detection device 100 6 and 7 show a modified example of the biological detection device 100.
  • a plurality of optical sensors 200 are arranged in a matrix on one substrate 101.
  • the biological information acquisition device 10 can acquire biological information on the surface of a biological body based on biological data received from a plurality of optical sensors 200.
  • the biological information acquisition device 10 can acquire biological information indicating the distribution of veins under the skin of a living body based on biological data and identification information.
  • the other biometric detection device 100B shown in FIG. 7 includes two substrates 101A and 101B.
  • a plurality of optical sensors 200 are arranged (in a line) on the substrate 101A, while components other than the plurality of optical sensors 200 are arranged on the substrate 101B.
  • a plurality of optical sensors 200 are arranged on one substrate 101A, and other components (power element 300 and arithmetic element 400 in FIG. 7). , Communication element 500, memory 600) are arranged on another substrate 101B. Therefore, the shape of the biological detection device 100B can be flexibly designed. Further, by removing only the substrate 101A from the biological detection device 100B (while not removing the substrate 101B), the failed optical sensor 200 can be easily replaced.
  • the biological detection device 100 includes a plurality of substrates 101, it is possible to freely design which element is mounted on each substrate 101 in consideration of the size, weight, and the like. ..
  • constituent elements other than the optical sensor 200 may be mounted together on another substrate 101, or only the power element 300 may be mounted on another substrate 101. It is also good.
  • biometric detection device 100 (100A, 100B)
  • an embodiment of any one of the biometric detection devices 100 (100A, 100B) described in the second embodiment will be described.
  • ROHM's SMLMN2ECTT86C LED is used as the light emitting element 201 of the optical sensor 200, and the SMLMN2ECTT86C LED sensor is used as the light receiving element 202 of the optical sensor 200.
  • the optical sensor 200 includes one or more light emitting elements 201 capable of emitting light of a certain fixed wavelength (hereinafter referred to as ⁇ ), and one light receiving element 202 having sensitivity in a wavelength range including the wavelength ⁇ .
  • the plurality of optical sensors 200 included in the system 1 include one or more light emitting elements 201 and one light receiving element 202, respectively, but each optical sensor 200 has the above-mentioned wavelength. ⁇ is different.
  • one or more light receiving elements 202 have sensitivity in a wavelength range common to a plurality of optical sensors 200.
  • the light emitting element 201 included in the optical sensor 200 for example, an LED (Light Emitting Diode) that emits light when a current is passed may be used.
  • the light emitting device 201 is not limited in material or shape as long as it can emit light in a specific wavelength range or wavelength.
  • the light emitting element 201 either an inorganic material or an organic material can be used.
  • the emission intensity of the light emitting element 201 is not particularly limited as long as the reflected light obtained via the human body (living body) can be received by the light receiving element 202, but the forward voltage and the forward voltage set in the light emitting element 201 are not particularly limited. It is desirable to emit light below the standard value of. Specifically, when the LED described in the above embodiment is used as the light emitting element 201, the light emitting element 201 may be used at a standard value (20 mA in one example) or less of the forward current of this LED. desirable.
  • the measurement cycle of the optical sensor 200 is not particularly limited as long as it can detect biometric data based on pulse waves. However, if the measurement cycle is too long, the pulse wave detection accuracy will be low. On the other hand, even if the measurement cycle is short, it does not adversely affect the measurement accuracy, but it causes an increase in the amount of data and an increase in power consumption due to the measurement. Therefore, it is desirable to perform the measurement in a cycle of 10 Hz to 200 Hz in terms of frequency.
  • FIG. 8 is a block diagram showing an example of the configuration of an optical sensor 200 including one light emitting element 201 and one light receiving element 202. Since the optical sensor 200 shown in FIG. 8 is composed of one light emitting element 201 and one light receiving element 202, there is an advantage that the cost can be suppressed.
  • the ratio between the number of light emitting elements 201 included in the optical sensor 200 and the number of light receiving elements 202 included in the optical sensor 200 may be many to one.
  • FIG. 9 is a block diagram showing a configuration of an optical sensor 200 including a plurality of light emitting elements 201 and one light receiving element 202. As shown in FIG. 9, the optical sensor 200 includes a plurality of light emitting elements 201. However, in FIG. 9, the third light emitting element 201 is omitted. FIG. 9 is a block diagram showing an example of the configuration of an optical sensor 200 including a plurality of light emitting elements 201 and one light receiving element 202.
  • the optical sensor 200 shown in FIG. 9 since a plurality of light emitting elements 201 are provided, even if any of the light emitting elements 201 fails, the remaining light emitting element 201 and the light receiving element 202 However, the function as the optical sensor 200 can be maintained.
  • the optical sensor 200 it is also possible to form the optical sensor 200 by combining one light emitting element 201 and a plurality of light receiving elements 202. In that case, the biometric information acquisition device 10 needs to manage which light emitting element 201 of the optical sensor 200 targets the biometric data based on the light detected in order to acquire accurate biometric information.
  • each blood cell component such as red blood cells, leukocytes, and platelets can be monitored.
  • the wavelength ⁇ is determined so that it is possible, and when monitoring the expansion and contraction of the blood vessel, it is possible to monitor the blood vessel wall.
  • hemoglobin which is a pigment component in erythrocytes, absorbs light at 600 nm or less, so ⁇ is determined to be 600 nm or less.
  • water such as plasma absorbs light in the infrared region well, a wavelength corresponding to infrared light (specifically, 750 nm or more) is selected as ⁇ .
  • a wavelength corresponding to infrared light specifically, 750 nm or more
  • is in the range of 380 nm to 1000 nm excluding the wavelength of 380 nm or less, which is considered to have an adverse effect on the human body as ultraviolet rays, or the region of 1000 nm or more, which is greatly affected by absorption by other components of the human body. It is possible to select from. However, since it is more accurate to monitor changes in blood cell components, it is desirable that ⁇ has a wavelength corresponding to green light of 500 nm to 600 nm.
  • the biological information acquisition device 10 reselects one optical sensor 200 used for performing the main measurement every time a certain time elapses.
  • FIG. 10 is a flowchart showing a flow of processing executed by each part of the biological information acquisition device 10.
  • steps S1 to S5 are common to the first embodiment. That is, the pre-measurement unit 11 performs pre-measurement of biometric data using a plurality of optical sensors 200 that project light having different wavelengths or wavelength ranges onto the living body (S1).
  • the comparison unit 12 compares the light intensity detected by each of the plurality of optical sensors 200 based on the biometric data output from each of the plurality of optical sensors 200 (S2).
  • the selection unit 13 selects one of the plurality of optical sensors 200 based on the comparison result of the light intensity (S3).
  • the main measurement unit 14 performs the main measurement of biometric data using one optical sensor 200 selected based on the comparison result of the light intensity (S4).
  • the measuring unit 14 repeats performing the main measurement using one selected optical sensor 200.
  • the main measurement unit 14 may repeat the main measurement shown in step S4 from 5 minutes to a few hours after the first main measurement.
  • the period of this measurement may be the same as or longer than the measurement cycle of the optical sensor 200 (in one example, 10 Hz to 200 Hz in terms of frequency).
  • the measurement unit 14 outputs data including information indicating the result of the main measurement of biometric data to the analysis unit 15.
  • the analysis unit 15 receives data including information indicating the result of the main measurement of biometric data from the main measurement unit 14.
  • the analysis unit 15 acquires biometric information by analyzing the biometric data obtained as a result of this measurement (S5).
  • the above-mentioned fixed time is not particularly limited. However, if the fixed time is too short, the processing performed by each part of the biometric information acquisition device 10 becomes too frequent, and if the fixed time is too long, there is a concern that the accuracy of this measurement may deteriorate. In consideration of this point, it is preferable to appropriately determine the fixed time.
  • the pre-measurement unit 11 performs pre-measurement of biological data by using a plurality of optical sensors that project light having a wavelength or a wavelength range different from each other onto the living body.
  • the comparison unit 12 compares the light intensity detected by each of the plurality of optical sensors based on the biometric data output from each of the plurality of optical sensors.
  • the selection unit 13 selects one of the plurality of optical sensors based on the comparison result of the light intensity.
  • the measuring unit 14 performs the main measurement of biometric data using one optical sensor selected based on the comparison result of the light intensity.
  • the analysis unit 15 acquires biometric information by analyzing the biometric data obtained as a result of this measurement.
  • the main measurement unit 14 since one optical sensor 200 used for the main measurement is selected based on the comparison result of the light intensity obtained in the previous measurement, the main measurement unit 14 has high quality from the selected optical sensor 200. Biometric data can be obtained. Therefore, the analysis unit 15 can acquire high-quality biometric information from high-quality biometric data.
  • the main measurement unit 14 repeats the main measurement using one selected optical sensor 200 until a certain time elapses from the first main measurement. Then, after a certain period of time has elapsed from the first main measurement, the pre-measurement unit 11 performs the pre-measurement again. Then, based on the result of the previous measurement, one optical sensor 200 used for the main measurement is reselected. As a result, one optical sensor 200 used for the main measurement can be updated every time a certain time elapses from the first main measurement.
  • the present invention is performed using the optical sensor 200 of one of the plurality of optical sensors 200. Since the measurement is repeated, there is an advantage that the power consumption of the biometric detection device 100 can be suppressed as compared with the configuration in which all the optical sensors 200 are always used and the main measurement is repeatedly performed.
  • the biometric information acquisition device 10 selects one optical sensor 200 to be used for the main measurement when the S / N ratio of the biometric data obtained in the main measurement becomes a certain value or less. Redo.
  • FIG. 11 is a flowchart showing a flow of processing executed by each part of the biological information acquisition device 10.
  • steps S1 to S5 are common to the first embodiment and the third embodiment. That is, the pre-measurement unit 11 performs pre-measurement of biometric data using a plurality of optical sensors 200 that project light having different wavelengths or wavelength ranges onto the living body (S1).
  • the comparison unit 12 compares the light intensity detected by each of the plurality of optical sensors 200 based on the biometric data output from each of the plurality of optical sensors 200 (S2).
  • the selection unit 13 selects one of the plurality of optical sensors 200 based on the comparison result of the light intensity (S3).
  • the main measurement unit 14 performs the main measurement of biometric data using one optical sensor 200 selected based on the comparison result of the light intensity (S4).
  • the measurement unit 14 outputs data including information indicating the result of the main measurement of biometric data to the analysis unit 15.
  • the analysis unit 15 receives data including information indicating the result of the main measurement of biometric data from the main measurement unit 14.
  • the analysis unit 15 acquires biometric information by analyzing the biometric data obtained as a result of this measurement (S5).
  • the measuring unit 14 calculates the S / N ratio of the biometric data obtained as a result of the main measurement, and holds the value as the initial value. Then, until the S / N ratio of the biometric data is reduced by 50% or more as compared with the initial value (No in S306) as compared with the S / N ratio in the first step S5 in the flow, this measuring unit. 14 performs the main measurement using one selected optical sensor 200 (S4).
  • the main measurement unit 14 repeatedly performs the main measurement until the S / N ratio becomes less than 50. I do.
  • the analysis unit 15 repeats acquiring biometric information from the biometric data obtained as a result of this measurement (S5).
  • the S / N ratio of the biometric data obtained as a result of this measurement is reduced by 50% or more compared to the initial value (Yes in S306), and then the process returns to step S1 in the flow. ..
  • the criterion of "the S / N ratio of the biometric data is reduced by 50% or more compared to the S / N ratio at the time of the first step S5 in the flow" explained according to the flow shown in FIG. 11 is only an example. Yes, but not limited to this. However, if the reference value (50% in the above example) is too low, the poor quality of this measurement will be continued. On the other hand, if the reference value of the S / N ratio is too high, the processing performed by each part of the biometric information acquisition device 10 becomes too frequent. Therefore, in step S306 described above, it is preferable to return to step S1 in the flow when the S / N ratio of the biometric data obtained as a result of this measurement decreases by 50 to 90%.
  • the pre-measurement unit 11 performs pre-measurement of biological data by using a plurality of optical sensors that project light having a wavelength or a wavelength range different from each other onto the living body.
  • the comparison unit 12 compares the light intensity detected by each of the plurality of optical sensors based on the biometric data output from each of the plurality of optical sensors.
  • the selection unit 13 selects one of the plurality of optical sensors based on the comparison result of the light intensity.
  • the measuring unit 14 performs the main measurement of biometric data using one optical sensor selected based on the comparison result of the light intensity.
  • the analysis unit 15 acquires biometric information by analyzing the biometric data obtained as a result of this measurement.
  • the main measurement unit 14 has high quality from the selected optical sensor 200. Biometric data can be obtained. Therefore, the biometric information acquisition device 10 can acquire high-quality biometric information from high-quality biometric data.
  • the measuring unit 14 uses one selected optical sensor 200 until the S / N ratio of the biometric data obtained as a result of the measurement is reduced by 50% or more. Then, this measurement is repeated. Then, after the S / N ratio of the biometric data obtained as a result of this measurement is reduced by 50% (reference value) or more, the pre-measurement unit 11 performs the pre-measurement again. Then, based on the result of the previous measurement, one optical sensor 200 used for the main measurement is reselected. As a result, one optical sensor 200 used for this measurement can be updated every time the S / N ratio of the biometric data obtained as a result of this measurement decreases by 50% (reference value) or more.
  • the present invention is performed using the optical sensor 200 of one of the plurality of optical sensors 200. Since the measurement is repeated, there is an advantage that the power consumption of the biometric detection device 100 can be suppressed as compared with the configuration in which all the optical sensors 200 are always used and the main measurement is repeatedly performed.
  • the configuration in which the biological detection device 100 (100A, 100B) includes a plurality of optical sensors 200 that project light having different wavelengths or wavelength ranges onto the living body has been described.
  • the biometric detection device 100 (100A, 100B) may also include a plurality of optical sensors 200 having light sensitivity in the same wavelength or wavelength range.
  • the pre-measurement unit 11 is a plurality of optical sensors that project light having different wavelengths or wavelength ranges to the living body among all the optical sensors 200 included in the biological detection device 100 (100A, 100B).
  • the pre-measurement described above may be performed using only 200.
  • the pre-measurement unit 11 may perform pre-measurement using all the optical sensors 200 provided in the biometric detection device 100 (100A, 100B). In either case, there is not much difference in the contents of the processing performed by the comparison unit 12 after the processing of the pre-measurement unit 11. That is, in the former case, the comparison unit 12 compares the light intensities detected by the plurality of optical sensors 200 based on the biological data output from each of the plurality of optical sensors 200 for which the pre-measurement was performed.
  • the comparison unit 12 compares the light intensity detected by each of the plurality of optical sensors 200 based on the biological data output from each of the plurality of optical sensors 200.
  • the process executed by each of the other units (selection unit 13, main measurement unit 14, analysis unit 15) of the biological information acquisition device 10 is the same as that of any one of the first to fourth embodiments.
  • FIG. 12 schematically shows the configuration of the system 2 according to the fifth embodiment.
  • the system 2 further includes an information relay device 150 in addition to the biometric information acquisition device 10 and the biometric detection device 100 (100A, 100B).
  • the configuration and operation of the biological information acquisition device 10 according to the fifth embodiment are the same as those of the first to fourth embodiments.
  • the information relay device 150 is a host device for relaying communication between the biometric information acquisition device 10 and the biometric detection device 100 (100A, 100B).
  • the information relay device 150 for example, an information communication device such as a personal computer, a tablet, or a smartphone is used.
  • the information relay device 150 may be arbitrarily determined based on the situation of the target person (living body) for measuring the biological data, the communication environment, or the like.
  • both the biological detection device 100 (100A, 100B) and the information relay device 150 can control the optical sensor 200.
  • the biological detection device 100 (100A, 100B) controls a plurality of optical sensors 200
  • the arithmetic element 400 provided in the biological detection device 100 (100A, 100B) is used.
  • the information relay device 150 controls the optical sensor 200, for example, an FPGA (field-programmable gate array) or the like is used to execute a computer program for controlling the optical sensor 200.
  • the information relay device 150 receives the biometric data from the biometric detection device 100 (100A, 100B) and transfers the biometric data to the biometric information acquisition device 10. Further, the information relay device 150 receives a control signal for controlling the biometric detection device 100 (100A, 100B) from the biometric information acquisition device 10, and based on the control signal, the biometric detection device 100 (100A, 100B). ) Is executed.
  • a mobile information communication device such as a smartphone is used to relay the communication between the biometric information acquisition device 10 or the information relay device 150 and the biometric detection device 100 (100A, 100B). good.
  • the mobile information communication device once receives the information from the biometric detection device 100 (100A, 100B), and the biometric detection is performed from the mobile information communication device (not shown) to the biometric information acquisition device 10 or the information relay device 150. Information from the device 100 (100A, 100B) may be transferred.
  • the information relay device 150 relays the communication between the biological information acquisition device 10 and the biological detection device 100 (100A, 100B). Therefore, it is not necessary for the biometric information acquisition device 10 and the biometric detection device 100 (100A, 100B) to directly communicate with each other, so that the degree of freedom regarding the design of the system 2 is improved.
  • Each component of the biological information acquisition device 10 described in the first to fifth embodiments shows a block of functional units. Some or all of these components are realized by, for example, the information processing apparatus 900 as shown in FIG.
  • FIG. 13 is a block diagram showing an example of the hardware configuration of the information processing apparatus 900.
  • the information processing apparatus 900 includes the following configuration as an example.
  • -CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • a storage device 905 that stores the program 904.
  • a drive device 907 that reads and writes the recording medium 906.
  • -Communication interface 908 for connecting to the communication network 909.
  • -I / O interface 910 for inputting / outputting data -Bus 911 connecting each component
  • Each component of the biometric information acquisition device 10 described in the first to fifth embodiments is realized by the CPU 901 reading and executing the program 904 that realizes these functions.
  • the program 904 that realizes the functions of each component is stored in, for example, a storage device 905 or ROM 902 in advance, and the CPU 901 is loaded into the RAM 903 and executed as needed.
  • the program 904 may be supplied to the CPU 901 via the communication network 909, or may be stored in the recording medium 906 in advance, and the drive device 907 may read the program and supply the program to the CPU 901.
  • the biometric information acquisition device 10 described in the above embodiment is realized as hardware. Therefore, it is possible to obtain the same effect as the effect described in the above embodiment.
  • Pre-measurement means for pre-measurement of biometric data using multiple optical sensors that project light in different wavelengths or wavelength ranges onto the living body.
  • a comparison means for comparing the light intensity detected by each of the plurality of optical sensors based on the biometric data output from each of the plurality of optical sensors.
  • a selection means for selecting one of the plurality of optical sensors based on the comparison result of the light intensity, and a selection means. Using one optical sensor selected based on the comparison result of the light intensity, the measuring means for performing the main measurement of the biological data and the measuring means.
  • a biometric information acquisition device including an analysis means for acquiring biometric information by analyzing the biometric data obtained as a result of the present measurement.
  • the comparison means compares the maximum value of the waveform indicated by the biometric data output from each of the plurality of optical sensors.
  • the biometric information acquisition device according to Appendix 1, wherein the selection means selects one optical sensor that outputs the biometric data having the largest maximum value of the waveform.
  • the comparison means compares the value obtained by dividing the maximum value of the waveform indicated by the biometric data output from each of the plurality of optical sensors by the difference between the maximum value and the minimum value of the waveform.
  • the biometric information acquisition device according to Appendix 1, wherein the selection means selects one optical sensor that outputs the biometric data having the largest value.
  • biometric information acquisition device according to any one of Supplementary note 1 to 4 and the biometric information acquisition device.
  • a system including a biometric detection device with the plurality of optical sensors.
  • Appendix 6 The system according to Appendix 5, wherein the biological detection device is used in a state of being attached to the skin of a living body.
  • Appendix 7 In the biometric detection device The system according to Appendix 5 or 6, wherein the plurality of optical sensors are arranged on a line on one substrate.
  • Appendix 8 In the biometric detection device The system according to Appendix 5 or 6, wherein the plurality of optical sensors are arranged in a matrix on one substrate.
  • Pre-measurement of biometric data is performed using multiple optical sensors that project light of different wavelengths or wavelengths onto the living body. Based on the biometric data output from each of the plurality of optical sensors, the light intensities detected by the plurality of optical sensors are compared. Based on the comparison result of the light intensity, one of the plurality of optical sensors is selected. The main measurement of the biometric data was performed using one optical sensor selected based on the comparison result of the light intensity.
  • Pre-measurement of the biometric data is performed using the plurality of biosensors at regular time intervals. Based on the biometric data output from each of the plurality of optical sensors, the light intensities detected by the plurality of optical sensors are compared. The biometric information acquisition method according to Appendix 9, wherein one optical sensor used for the present measurement is reselected based on the comparison result of the light intensity.
  • (Appendix 12) Pre-measurement of biometric data using multiple optical sensors that project light of different wavelengths or wavelengths onto the living body. Comparing the light intensities detected by each of the plurality of optical sensors based on the biometric data output from each of the plurality of optical sensors, and To select one of the plurality of optical sensors based on the comparison result of the light intensity, and to select one of the plurality of optical sensors. Using one optical sensor selected based on the comparison result of the light intensity, the main measurement of the biometric data can be performed.
  • a non-temporary recording medium containing a program for causing a computer to acquire biometric information by analyzing the biometric data obtained as a result of the present measurement.
  • Appendix 13 The program Pre-measurement of the biometric data using the plurality of biosensors at regular time intervals, and Comparing the light intensities detected by each of the plurality of optical sensors based on the biometric data output from each of the plurality of optical sensors, and The recording medium according to Appendix 12, wherein the computer is made to reselect one optical sensor used for the present measurement based on the comparison result of the light intensity.

Abstract

The present invention acquires high-precision biological information from high-quality biological data. A pre-measurement unit (11) uses a plurality of optical sensors, which project light having mutually different wavelengths or wavelength bands onto a living body, to carry out pre-measurement of biological data. A comparison unit (12) compares the intensities of light, detected by the respective plurality of optical sensors, on the basis of the biological data output by the plurality of optical sensors. A selection unit (13) selects one of the plurality of optical sensors on the basis of comparison results of the intensities of light. A main measurement unit (14) uses the one optical sensor, selected on the basis of the comparison results of the intensities of light, to carry out a main measurement of the biological data. An analysis unit (15) acquires biological information by analyzing the biological data obtained as a result of the main measurement.

Description

生体情報取得装置、システム、生体情報取得方法、および記録媒体Biometric information acquisition device, system, biometric information acquisition method, and recording medium
 本発明は、生体情報取得装置、システム、生体情報取得方法、および記録媒体に関し、特に、生体検知デバイスから受信した生体データに基づいて、生体情報を取得する生体情報取得装置に関する。 The present invention relates to a biometric information acquisition device, a system, a biometric information acquisition method, and a recording medium, and more particularly to a biometric information acquisition device that acquires biometric information based on biometric data received from a biometric detection device.
 近年、健康管理等を目的として、生体検知デバイスから様々なバイタル信号(以下、生体データと呼ぶ)を受信して、受信した生体データを分析することによって、生体の心身に関する情報(以下、生体情報と呼ぶ)を取得する生体情報取得装置が普及しつつある。 In recent years, for the purpose of health management, etc., by receiving various vital signals (hereinafter referred to as biometric data) from a biometric detection device and analyzing the received biometric data, information on the mind and body of the living body (hereinafter referred to as biometric information). A biometric information acquisition device that acquires (called) is becoming widespread.
 生体情報取得装置が生体データから取得する生体情報の一例には、生体の心拍に基づく脈波の情報がある。脈波の情報は、健康情報そのものの指標としてだけでなく、ストレスなどの内面情報を推定することにも利用できる。 An example of biological information acquired from biological data by a biological information acquisition device is pulse wave information based on the heartbeat of the living body. The pulse wave information can be used not only as an index of health information itself, but also for estimating internal information such as stress.
 生体検知デバイスの中には、光学式センサを採用しているものがある。例えば、特許文献1には、複数の発光素子と、1つの受光素子とを備えた光学式のセンサモジュールが記載されている。スマートウォッチまたはデータロガーなどのスマートデバイスは、生体検知デバイスの一例である。 Some biometric detection devices use optical sensors. For example, Patent Document 1 describes an optical sensor module including a plurality of light emitting elements and one light receiving element. Smart devices such as smart watches or data loggers are examples of biometric devices.
 生体検知デバイスは、リストバンド型(腕時計型とも呼ぶ)を採用している例が多い。リストバンド型の生体検知デバイスは、生体への装着が簡単であるためである。しかしながら、リストバンド型の生体検知デバイスは、生体の年齢および体型などの影響を受けやすいというデメリットを持つ。具体的には、リストバンド型の生体検知デバイスの多くは、成人男性向けの仕様になっているため、ユーザが女性であったり、老人であったり、年少者であったりする場合、生体検知デバイスとユーザの腕との間に隙間が生じて、正確な生体データを検知することが困難になる。 In many cases, the biological detection device uses a wristband type (also called a wristwatch type). This is because the wristband type biological detection device is easy to attach to the living body. However, the wristband type biological detection device has a demerit that it is easily affected by the age and body shape of the living body. Specifically, many wristband-type biodetection devices are designed for adult men, so if the user is a woman, an elderly person, or a young person, the biometric detection device A gap is created between the arm and the user's arm, making it difficult to detect accurate biometric data.
 一方、皮膚に直接貼り付けられる貼付型の生体検知デバイスは、リストバンド型の生体検知デバイスよりも皮膚への密着度が大きいため、皮膚への負担が少ないこと、および、データ欠損が少ないことなどが利点として期待されており、現在でも多くの開発が行われている。 On the other hand, the stick-on type biometric detection device that is directly attached to the skin has a higher degree of adhesion to the skin than the wristband-type biometric detection device, so that the burden on the skin is less and there is less data loss. Is expected as an advantage, and much development is still underway.
 以上のように、人体の生体データを取得するための生体検知デバイスとしては、装着の簡便性からはリストバンド型が、得られるデータの正確性からは貼付型が選択され、どちらも多くの研究開発が進められている。 As described above, as a biometric detection device for acquiring biometric data of the human body, a wristband type is selected because of its ease of wearing, and a sticking type is selected because of the accuracy of the obtained data. Development is in progress.
国際公開第2019/181268号International Publication No. 2019/181268 特開2008-289807号公報Japanese Unexamined Patent Publication No. 2008-289807 特開2012-019926号公報Japanese Unexamined Patent Publication No. 2012-109926 実開昭63-195811号公報Jikkai Sho 63-195811
 特許文献1に記載の関連する技術においては、互いに異なる波長または波長域の光を生体へ投射の光を生体へ投射する複数の光学式センサを用いて、生体データが測定される。しかしながら、測定の対象である生体の組織を構成する要素によって、波長または波長域ごとに、光の吸収率が異なる。 In the related technique described in Patent Document 1, biological data is measured by using a plurality of optical sensors that project light having a wavelength or wavelength range different from each other onto a living body. However, the light absorption rate differs depending on the wavelength or wavelength range, depending on the elements constituting the tissue of the living body to be measured.
 生体の組織の要素による吸収率の高い波長または波長域の光を生体に照射する光学式センサでは、生体データに乗ったノイズが大きくなり、質の高い生体データを得られない。そのため、生体情報取得装置が複数の光学式センサから受信する生体データの間には、品質のばらつきがある。生体情報取得装置は、品質の悪い生体データから、正確な生体情報を取得することが困難である。 With an optical sensor that irradiates a living body with light of a wavelength or wavelength range with a high absorption rate due to the elements of the tissue of the living body, noise on the biometric data becomes large, and high quality biometric data cannot be obtained. Therefore, there are variations in quality among the biometric data received by the biometric information acquisition device from the plurality of optical sensors. It is difficult for a biometric information acquisition device to acquire accurate biometric information from poor quality biometric data.
 本発明は、上記の課題に鑑みてなされたものであり、その目的は、高品質な生体データから高精度な生体情報を得ることにある。 The present invention has been made in view of the above problems, and an object thereof is to obtain highly accurate biometric information from high quality biometric data.
 本発明の一態様に係わる生体情報取得装置は、互いに異なる波長または波長域の光を生体へ投射する複数の光学式センサを用いて、生体データの前測定を行う前測定手段と、前記複数の光学式センサのそれぞれから出力される生体データに基づいて、前記複数の光学式センサがそれぞれ検知した光の強度を比較する比較手段と、前記光の強度の比較結果に基づいて、前記複数の光学式センサのうち1つを選択する選択手段と、前記光の強度の比較結果に基づいて選択した1つの光学式センサを用いて、前記生体データの本測定を行う本測定手段と、前記本測定の結果として得られた前記生体データを分析することによって、生体情報を取得する分析手段とを備えている。 The biometric information acquisition device according to one aspect of the present invention includes a pre-measurement means for performing pre-measurement of biometric data using a plurality of optical sensors that project light in different wavelengths or wavelength ranges onto the living body, and the plurality of pre-measurement means. The comparison means for comparing the light intensity detected by each of the plurality of optical sensors based on the biological data output from each of the optical sensors, and the plurality of optics based on the comparison result of the light intensity. The measuring means for performing the main measurement of the biological data using the selection means for selecting one of the formula sensors and one optical sensor selected based on the comparison result of the light intensity, and the main measurement. It is provided with an analysis means for acquiring biometric information by analyzing the biometric data obtained as a result of the above.
 本発明の一態様に係わるシステムは、互いに異なる波長または波長域の光を生体へ投射する複数の光学式センサを用いて、生体データの前測定を行う前測定手段と、前記複数の光学式センサのそれぞれから出力される生体データに基づいて、前記複数の光学式センサがそれぞれ検知した光の強度を比較する比較手段と、前記光の強度の比較結果に基づいて、前記複数の光学式センサのうち1つを選択する選択手段と、前記光の強度の比較結果に基づいて選択した1つの光学式センサを用いて、前記生体データの本測定を行う本測定手段と、前記本測定の結果として得られた前記生体データを分析することによって、生体情報を取得する分析手段とを備えた生体情報取得装置と、前記複数の光学式センサを備えた生体検知デバイスとを備えている。 The system according to one aspect of the present invention includes a pre-measurement means for performing pre-measurement of biological data by using a plurality of optical sensors that project light having different wavelengths or wavelength ranges onto a living body, and the plurality of optical sensors. Based on the biometric data output from each of the above, the comparison means for comparing the light intensity detected by each of the plurality of optical sensors, and the comparison result of the light intensity of the plurality of optical sensors. As a result of the main measurement means for performing the main measurement of the biometric data using the selection means for selecting one of them and one optical sensor selected based on the comparison result of the light intensity. It includes a biometric information acquisition device including an analysis means for acquiring biometric information by analyzing the obtained biometric data, and a biometric detection device including the plurality of optical sensors.
 本発明の一態様に係わる生体情報取得方法は、互いに異なる波長または波長域の光を生体へ投射する複数の光学式センサを用いて、生体データの前測定を行い、前記複数の光学式センサのそれぞれから出力される生体データに基づいて、前記複数の光学式センサがそれぞれ検知した光の強度を比較し、前記光の強度の比較結果に基づいて、前記複数の光学式センサのうち1つを選択し、前記光の強度の比較結果に基づいて選択した1つの光学式センサを用いて、前記生体データの本測定を行い、前記本測定の結果として得られた前記生体データを分析することによって、生体情報を取得することを含む。 In the biometric information acquisition method according to one aspect of the present invention, pre-measurement of biometric data is performed using a plurality of optical sensors that project light in different wavelengths or wavelength ranges onto the living body, and the plurality of optical sensors can be used. Based on the biometric data output from each, the light intensities detected by the plurality of optical sensors are compared, and one of the plurality of optical sensors is selected based on the comparison result of the light intensities. By performing the main measurement of the biometric data using one optical sensor selected and selected based on the comparison result of the light intensity, and analyzing the biometric data obtained as a result of the main measurement. Includes the acquisition of biometric information.
 本発明の一態様に係わる記録媒体は、互いに異なる波長または波長域の光を生体へ投射する複数の光学式センサを用いて、生体データの前測定を行うことと、前記複数の光学式センサのそれぞれから出力される生体データに基づいて、前記複数の光学式センサがそれぞれ検知した光の強度を比較することと、前記光の強度の比較結果に基づいて、前記複数の光学式センサのうち1つを選択することと、前記光の強度の比較結果に基づいて選択した1つの光学式センサを用いて、前記生体データの本測定を行うことと、前記本測定の結果として得られた前記生体データを分析することによって、生体情報を取得することとをコンピュータに実行させるためのプログラムを格納している。 The recording medium according to one aspect of the present invention is to perform pre-measurement of biometric data by using a plurality of optical sensors that project light having different wavelengths or wavelength ranges onto a living body, and to use the plurality of optical sensors. One of the plurality of optical sensors is compared with the light intensity detected by each of the plurality of optical sensors based on the biometric data output from each, and based on the comparison result of the light intensity. Using one optical sensor selected based on the comparison result of the light intensity, the main measurement of the biological data is performed, and the living body obtained as a result of the main measurement is performed. It stores a program that causes a computer to acquire biometric information by analyzing data.
 本発明の一態様によれば、高品質な生体データから高精度な生体情報を得ることができる。 According to one aspect of the present invention, highly accurate biometric information can be obtained from high quality biometric data.
生体検知デバイスおよび生体情報取得装置を備えたシステムの構成を概略的に示す。The configuration of the system including the biometric detection device and the biometric information acquisition device is shown schematically. 実施形態1に係わる生体情報取得装置の構成を示すブロック図である。It is a block diagram which shows the structure of the biological information acquisition apparatus which concerns on Embodiment 1. FIG. 実施形態1に係わる生体情報取得装置が生体検知デバイスから取得する生体データの一例を示すグラフである。It is a graph which shows an example of the biological data acquired from the biological detection device by the biological information acquisition apparatus which concerns on Embodiment 1. FIG. 実施形態1に係わる生体情報取得装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the biological information acquisition apparatus which concerns on Embodiment 1. 実施形態2に係わる生体検知デバイスの構成の一例を示す。An example of the configuration of the biological detection device according to the second embodiment is shown. 実施形態2に係わる生体検知デバイスの構成の他の例を示す。Another example of the configuration of the biological detection device according to the second embodiment is shown. 実施形態2に係わる生体検知デバイスの構成のさらに他の例を示す。Yet another example of the configuration of the biometric detection device according to the second embodiment is shown. 実施形態2に係わる生体検知デバイスが備えた光学式センサの構成の一例を示す。An example of the configuration of the optical sensor included in the biometric detection device according to the second embodiment is shown. 実施形態2に係わる生体検知デバイスが備えた光学式センサの構成の他の例を示す。Another example of the configuration of the optical sensor included in the biometric detection device according to the second embodiment is shown. 実施形態3に係わる生体情報取得装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the biological information acquisition apparatus which concerns on Embodiment 3. 実施形態4に係わる生体情報取得装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the biological information acquisition apparatus which concerns on Embodiment 4. 実施形態5に係わる生体検知デバイスおよび生体情報取得装置を備えたシステムの構成を概略的に示す。The configuration of the system including the biological detection device and the biological information acquisition device according to the fifth embodiment is schematically shown. 実施形態1から4のいずれかに係わる生体情報取得装置のハードウェア構成の一例を示す。An example of the hardware configuration of the biometric information acquisition device according to any one of the first to fourth embodiments is shown.
 以下に、実施形態の詳細な説明を記載する。 The detailed description of the embodiment is described below.
 (全ての実施形態および変形例に共通)
 図1は、後述する実施形態1~4およびその変形例に共通のシステム1の構成を概略的に示す。図1に示すように、システム1は、生体検知デバイス100(100A,100B)および生体情報取得装置10を備えている。図1において、生体検知デバイス100(100A、100B)は、のちに説明する生体検知デバイス100、生体検知デバイス100A、生体検知デバイス100Bのいずれかを示す。生体情報取得装置10と、生体検知デバイス100(100A,100B)とは、それぞれの通信機能によって、無線または有線で通信可能である。
(Common to all embodiments and modifications)
FIG. 1 schematically shows a configuration of a system 1 common to embodiments 1 to 4 described later and variations thereof. As shown in FIG. 1, the system 1 includes a biometric detection device 100 (100A, 100B) and a biometric information acquisition device 10. In FIG. 1, the biological detection device 100 (100A, 100B) indicates any one of the biological detection device 100, the biological detection device 100A, and the biological detection device 100B, which will be described later. The biometric information acquisition device 10 and the biometric detection device 100 (100A, 100B) can communicate wirelessly or by wire depending on their respective communication functions.
 生体情報取得装置10は、生体検知デバイス100(100A,100B)に対し、制御信号を送信することによって、以下で説明するように、生体検知デバイス100(100A,100B)を動作させる。 The biometric information acquisition device 10 operates the biometric detection device 100 (100A, 100B) by transmitting a control signal to the biometric detection device 100 (100A, 100B) as described below.
 生体検知デバイス100(100A,100B)は、図示しない生体(一例では人間)に対し、光信号を入射する。光信号は、生体の皮膚を透過して、生体内の組織によって、一部は散乱され、また一部は吸収される。そして、散乱または反射された光は、生体から外部へ放出される。生体検知デバイス100(100A,100B)は、生体から外部へ放出された光を検知する。生体検知デバイス100(100A,100B)は、検知した光に基づく生体データ(生体信号とも呼ぶ)を取得して、生体情報取得装置10へ生体データを送信する。 The biological detection device 100 (100A, 100B) incidents an optical signal on a living body (human being in an example) (not shown). The optical signal passes through the skin of the living body, and is partially scattered and partially absorbed by the tissues in the living body. Then, the scattered or reflected light is emitted from the living body to the outside. The biological detection device 100 (100A, 100B) detects the light emitted from the biological body to the outside. The biological detection device 100 (100A, 100B) acquires biological data (also referred to as a biological signal) based on the detected light, and transmits the biological data to the biological information acquisition device 10.
 生体情報取得装置10は、生体検知デバイス100(100A,100B)から、生体データを受信して、生体データを分析することによって、生体情報を取得する。生体情報とは、生体の心身に関する情報であり、特に、生体の健康状態に係わる測定可能な指標値である。例えば、生体情報は、脈拍、血流量、血中酸素濃度、脳波、呼吸、血圧、または発汗である。生体情報取得装置10は、このように取得した生体情報を、外部機器(例えばディスプレイ)へ出力してもよい。なお、生体情報取得装置10が実行する具体的な処理の一例について、後述する実施形態1~4で説明する。 The biometric information acquisition device 10 acquires biometric information by receiving biometric data from the biometric detection device 100 (100A, 100B) and analyzing the biometric data. The biological information is information on the mind and body of the living body, and in particular, is a measurable index value related to the health condition of the living body. For example, biometric information is pulse, blood flow, blood oxygen concentration, electroencephalogram, respiration, blood pressure, or sweating. The biological information acquisition device 10 may output the biological information acquired in this way to an external device (for example, a display). An example of a specific process executed by the biological information acquisition device 10 will be described in the first to fourth embodiments described later.
 〔実施形態1〕
 図2~図4を参照して、実施形態1について説明する。
[Embodiment 1]
The first embodiment will be described with reference to FIGS. 2 to 4.
 (生体情報取得装置10)
 図2は、本実施形態1に係わる生体情報取得装置10の構成を示すブロック図である。図2に示すように、生体情報取得装置10は、前測定部11、比較部12、選択部13、本測定部14、および分析部15を備えている。
(Biological information acquisition device 10)
FIG. 2 is a block diagram showing the configuration of the biological information acquisition device 10 according to the first embodiment. As shown in FIG. 2, the biological information acquisition device 10 includes a front measurement unit 11, a comparison unit 12, a selection unit 13, a main measurement unit 14, and an analysis unit 15.
 前測定部11は、互いに異なる波長または波長域の光を生体へ投射する複数の光学式センサ200(図8~図9に一例を示す)を用いて、生体データの前測定を行う。前測定部11は、前測定手段の一例である。 The pre-measurement unit 11 performs pre-measurement of biometric data using a plurality of optical sensors 200 (an example is shown in FIGS. 8 to 9) that project light of different wavelengths or wavelength ranges onto the living body. The pre-measurement unit 11 is an example of the pre-measurement means.
 一例では、前測定部11は、まず、複数の光学式センサ200を用いて、生体に対し、検査信号を入力する。具体的には、前測定部11は、複数の光学式センサ200がそれぞれ備えた1つ以上の発光素子201から、検査信号として、光学式センサ200ごとに異なる波長又は波長域の光を出射させ、複数の光学式センサ200がそれぞれ備えた1つ(あるいは複数)の受光素子202によって、生体からの反射を受光する。なお、光学式センサ200の構成のいくつかの例を後で説明する。 In one example, the pre-measurement unit 11 first inputs an inspection signal to a living body by using a plurality of optical sensors 200. Specifically, the pre-measurement unit 11 emits light having a different wavelength or wavelength range for each optical sensor 200 as an inspection signal from one or more light emitting elements 201 provided by each of the plurality of optical sensors 200. , The reflection from the living body is received by one (or a plurality) light receiving elements 202 provided in each of the plurality of optical sensors 200. Some examples of the configuration of the optical sensor 200 will be described later.
 検査信号は、生体の皮膚を透過して、生体内の組織によって、その一部を散乱され、また他の一部を吸収される。複数の光学式センサ200は、それぞれ、1つ以上の受光素子202によって、生体内から外部へ出射される光を受光する。複数の光学式センサ200は、1つ以上の受光素子202が受光した光に基づく生体データを取得する。そして、複数の光学式センサ200は、それぞれ、前測定部11へ生体データを送信する。 The test signal penetrates the skin of the living body, is partially scattered by the tissues in the living body, and is absorbed by the other part. Each of the plurality of optical sensors 200 receives light emitted from the inside of the living body to the outside by one or more light receiving elements 202. The plurality of optical sensors 200 acquire biometric data based on the light received by one or more light receiving elements 202. Then, each of the plurality of optical sensors 200 transmits biometric data to the pre-measurement unit 11.
 このように、前測定部11は、複数の光学式センサ200のそれぞれから、生体データを受信する。上述の手順で、前測定部11は、生体検知デバイス100が備えたN組(Nは1以上の整数)の光学式センサ200を共に動作させる。これにより、N組の生体データを得られる。N組の生体データは、N組の光学式センサと対応する。 In this way, the pre-measurement unit 11 receives biometric data from each of the plurality of optical sensors 200. In the above procedure, the pre-measurement unit 11 operates together with the optical sensors 200 of N sets (N is an integer of 1 or more) provided in the biometric detection device 100. As a result, N sets of biometric data can be obtained. N sets of biometric data correspond to N sets of optical sensors.
 前測定部11は、N組の光学式センサ200を備えた生体検知デバイス100から、N組の生体データを受信する。そして、前測定部11は、複数の光学式センサ200のそれぞれから出力される生体データを比較部12へ出力する。 The front measurement unit 11 receives N sets of biometric data from the biometric detection device 100 equipped with N sets of optical sensors 200. Then, the front measurement unit 11 outputs the biometric data output from each of the plurality of optical sensors 200 to the comparison unit 12.
 ここで、各光学式センサ200から出力される生体データは、各光学式センサ200がそれぞれ備えた1つの受光素子202を識別するための識別情報と、各受光素子202が同時刻にそれぞれ受光した光の強度を示す情報とを少なくとも含む。 Here, the biometric data output from each optical sensor 200 includes identification information for identifying one light receiving element 202 provided by each optical sensor 200 and light received by each light receiving element 202 at the same time. It contains at least information indicating the intensity of light.
 なお、1つの光学式センサ200が複数の受光素子202を備えている場合、生体データは、それらの受光素子202が同時刻にそれぞれ受光した光の強度を示す情報を少なくとも含んでいてよい。以下では、1つの光学式センサ200がただ1つの受光素子202を備えている場合について説明する。 When one optical sensor 200 includes a plurality of light receiving elements 202, the biometric data may include at least information indicating the intensity of light received by each of the light receiving elements 202 at the same time. Hereinafter, a case where one optical sensor 200 includes only one light receiving element 202 will be described.
 一例として、生体情報取得装置10が生体情報として脈波の情報を取得する場合に、前測定部11が前測定を継続する時間の目安について説明する。脈波の測定には、いくつもの方法が知られている。一般的には、血管中の容積の変化、血球などの成分の変化、血管の伸縮の変化などから算出することが多く、これらの変化を随時センシングして、脈波波形を導き出す。したがって、上記容積の変化、血球などの成分の変化、血管の伸縮の変化などをセンシングできる波長を選択する必要がある。 As an example, when the biological information acquisition device 10 acquires pulse wave information as biological information, the guideline for the time for the pre-measurement unit 11 to continue the pre-measurement will be described. There are many known methods for measuring pulse waves. Generally, it is often calculated from changes in volume in blood vessels, changes in components such as blood cells, changes in expansion and contraction of blood vessels, etc., and these changes are sensed at any time to derive a pulse wave waveform. Therefore, it is necessary to select a wavelength that can sense changes in the volume, changes in components such as blood cells, and changes in the expansion and contraction of blood vessels.
 上記の場合、前測定部11は、少なくとも1つの脈波が取得できる時間にわたって前測定を行うことが必要である。たいていの人では、一分間の脈拍が40(1.5秒間に1拍)から100(0.6秒間に1拍)の場合が多い。そのため、おおむね1秒から数秒間の前測定が必要となる。 In the above case, the pre-measurement unit 11 needs to perform pre-measurement for a time during which at least one pulse wave can be acquired. For most people, the pulse per minute is often 40 (1 beat in 1.5 seconds) to 100 (1 beat in 0.6 seconds). Therefore, pre-measurement for about 1 second to several seconds is required.
 比較部12は、複数の光学式センサ200のそれぞれから出力される生体データに基づいて、複数の光学式センサ200がそれぞれ検知した光の強度を比較する。比較部12は、比較手段の一例である。 The comparison unit 12 compares the light intensity detected by each of the plurality of optical sensors 200 based on the biometric data output from each of the plurality of optical sensors 200. The comparison unit 12 is an example of the comparison means.
 一例では、比較部12は、前測定部11から、複数の光学式センサ200のそれぞれから出力された生体データを受信する。 In one example, the comparison unit 12 receives biometric data output from each of the plurality of optical sensors 200 from the front measurement unit 11.
 図3は、1つの光学式センサ200から出力される生体データの一例を示すグラフである。図3に示す生体データには、特定の時間内における生体の脈波に基づく波形が表されている。比較部12は、図3に例示する生体データに基づいて、複数の光学式センサ200がそれぞれ検知した光の強度を比較する。 FIG. 3 is a graph showing an example of biometric data output from one optical sensor 200. The biological data shown in FIG. 3 represents a waveform based on a pulse wave of a living body within a specific time. The comparison unit 12 compares the light intensities detected by each of the plurality of optical sensors 200 based on the biological data exemplified in FIG.
 一例では、比較部12は、単純に、複数の光学式センサ200が検知した光の強度を比較する。比較部12は、複数の光学式センサ200のそれぞれから出力された生体データから、1つ以上の受光素子202が特定の時間内にそれぞれ受光した光の強度を示す情報を抽出する。そして、比較部12は、複数の光学式センサ200がそれぞれ検知した光の強度を比較する。 In one example, the comparison unit 12 simply compares the light intensities detected by the plurality of optical sensors 200. The comparison unit 12 extracts information indicating the intensity of light received by one or more light receiving elements 202 within a specific time from the biological data output from each of the plurality of optical sensors 200. Then, the comparison unit 12 compares the light intensities detected by each of the plurality of optical sensors 200.
 他の例では、比較部12は、各光学式センサ200が検知した光の強度の最大値と最小値との間の差分Δ(図3)を計算したうえ、光の強度の最大値を差分Δで割った値を比較する。光の強度の最大値を差分Δで割った値は、一般的なS/N比に近い値となる。以下では、前者の場合、すなわち、比較部12が、複数の光学式センサ200が検知した光の強度を比較する構成を説明する。 In another example, the comparison unit 12 calculates the difference Δ (FIG. 3) between the maximum value and the minimum value of the light intensity detected by each optical sensor 200, and then sets the maximum value of the light intensity. Compare the values divided by Δ. The value obtained by dividing the maximum value of the light intensity by the difference Δ is a value close to a general S / N ratio. Hereinafter, the former case, that is, the configuration in which the comparison unit 12 compares the light intensities detected by the plurality of optical sensors 200 will be described.
 比較部12は、この比較結果を示す情報を含むデータを、選択部13へ出力する。比較結果を示す情報は、複数の光学式センサ200のうち、ある特定の時間内に検知した光の強度の平均値又は最大値が最大であった受光素子202を備えた1つの光学式センサ200を指し示す。 The comparison unit 12 outputs data including information indicating the comparison result to the selection unit 13. The information indicating the comparison result is one optical sensor 200 including the light receiving element 202 having the maximum average value or maximum value of the light intensity detected within a specific time among the plurality of optical sensors 200. Point to.
 選択部13は、光の強度の比較結果に基づいて、複数の光学式センサ200(図5から図7)のうち1つを選択する。選択部13は、選択手段の一例である。 The selection unit 13 selects one of the plurality of optical sensors 200 (FIGS. 5 to 7) based on the comparison result of the light intensity. The selection unit 13 is an example of selection means.
 一例では、選択部13は、比較部12から、複数の光学式センサ200がそれぞれ検知した光の強度についての比較結果を示す情報を含むデータを受信する。選択部13は、受信したデータに基づいて、生体検知デバイス100(100A,100B)が備えた複数の光学式センサ200のうち、ある特定の時間内に検知した光の強度の平均値又は最大値が最大であった光学式センサ200を選択する。選択部13は、選択した1つの光学式センサ200を識別するための識別情報を含むデータを、本測定部14へ出力する。 In one example, the selection unit 13 receives data from the comparison unit 12 including information indicating a comparison result regarding the light intensity detected by each of the plurality of optical sensors 200. The selection unit 13 is the average value or the maximum value of the light intensity detected within a specific time among the plurality of optical sensors 200 included in the biometric detection device 100 (100A, 100B) based on the received data. Select the optical sensor 200 with the maximum. The selection unit 13 outputs data including identification information for identifying one selected optical sensor 200 to the measurement unit 14.
 本測定部14は、光の強度の比較結果に基づいて選択した1つの光学式センサ200を用いて、生体データの本測定を行う。本測定部14は、本測定手段の一例である。 The main measurement unit 14 performs the main measurement of biometric data using one optical sensor 200 selected based on the comparison result of the light intensity. The measuring unit 14 is an example of the measuring means.
 一例では、本測定部14は、まず、選択部13から、選択した1つの光学式センサ200を識別するための識別情報を含むデータを受信する。本測定部14は、選択部13によって選択された1つの光学式センサ200を用いて、生体に対し、検査信号を入力する。 In one example, the measuring unit 14 first receives data including identification information for identifying one selected optical sensor 200 from the selection unit 13. The measuring unit 14 inputs an inspection signal to the living body by using one optical sensor 200 selected by the selection unit 13.
 具体的には、本測定部14は、選択された1つの光学式センサ200が備えた1つ以上の発光素子201(図8から図9)から、検査信号として、特定の波長又は波長域の光を出射させる。なお、本測定部14は、上述した前測定部11が前測定を継続する時間と同等の時間にわたって本測定を行ってよい。 Specifically, the measuring unit 14 can be used as an inspection signal from one or more light emitting elements 201 (FIGS. 8 to 9) provided in one selected optical sensor 200 in a specific wavelength or wavelength range. Emit light. The main measurement unit 14 may perform the main measurement for a time equivalent to the time for the pre-measurement unit 11 described above to continue the pre-measurement.
 その後、本測定部14は、選択された1つの光学式センサ200から、生体データを受信する。本測定部14は、選択された1つの光学式センサ200から出力された生体データを分析部15へ出力する。 After that, the measuring unit 14 receives biometric data from one selected optical sensor 200. The measuring unit 14 outputs the biometric data output from one selected optical sensor 200 to the analysis unit 15.
 分析部15は、本測定の結果として得られた生体データを分析することによって、生体情報を取得する。分析部15は、分析手段の一例である。 The analysis unit 15 acquires biometric information by analyzing the biometric data obtained as a result of this measurement. The analysis unit 15 is an example of analysis means.
 一例では、分析部15は、本測定部14から、選択された1つの光学式センサ200から出力された生体データを受信する。分析部15は、受信した生体データを分析する。例えば、分析部15は、特許文献2から4のいずれかに記載された方法で、生体データを分析することによって、前述のような生体情報を取得する。分析部15は、取得した生体情報を、外部機器(例えば、ディスプレイデバイス)へ出力してもよい。 In one example, the analysis unit 15 receives the biometric data output from one selected optical sensor 200 from the measurement unit 14. The analysis unit 15 analyzes the received biometric data. For example, the analysis unit 15 acquires the biometric information as described above by analyzing the biometric data by the method described in any one of Patent Documents 2 to 4. The analysis unit 15 may output the acquired biometric information to an external device (for example, a display device).
 (生体情報取得装置10の動作)
 図4を参照して、実施形態1に係わる生体情報取得装置10の動作を説明する。図4は、生体情報取得装置10の各部が実行する処理の流れを示すフローチャートである。
(Operation of biometric information acquisition device 10)
The operation of the biological information acquisition device 10 according to the first embodiment will be described with reference to FIG. FIG. 4 is a flowchart showing a flow of processing executed by each part of the biological information acquisition device 10.
 図4に示すように、まず、前測定部11は、互いに異なる波長または波長域の光を生体へ投射する複数の光学式センサ200を用いて、生体データの前測定を行う(S1)。 As shown in FIG. 4, first, the pre-measurement unit 11 performs pre-measurement of biometric data using a plurality of optical sensors 200 that project light having different wavelengths or wavelength ranges onto the living body (S1).
 前測定部11は、複数の光学式センサ200のそれぞれから出力される生体データを、比較部12へ出力する。なお、後の変形例では、生体検知デバイス100(100A,100B)が、同一の波長または波長域で光の感度を有する複数の光学式センサ200も備えている場合に、前測定部11が実行する処理について説明する。ただし、本実施形態1および後の実施形態では、生体検知デバイス100(100A,100B)が、同一の波長または波長域で光の感度を有する複数の光学式センサ200を備えていないとする。 The front measurement unit 11 outputs the biometric data output from each of the plurality of optical sensors 200 to the comparison unit 12. In the later modification, when the biological detection device 100 (100A, 100B) also includes a plurality of optical sensors 200 having light sensitivities in the same wavelength or wavelength range, the pre-measurement unit 11 executes. The processing to be performed will be described. However, in this embodiment 1 and later embodiments, it is assumed that the biometric detection device 100 (100A, 100B) does not include a plurality of optical sensors 200 having light sensitivity in the same wavelength or wavelength range.
 次に、比較部12は、複数の光学式センサ200のそれぞれから出力される生体データに基づいて、複数の光学式センサ200がそれぞれ検知した光の強度を比較する(S2)。比較部12は、光の強度の比較結果を示す情報を含むデータを、選択部13へ出力する。 Next, the comparison unit 12 compares the light intensity detected by each of the plurality of optical sensors 200 based on the biometric data output from each of the plurality of optical sensors 200 (S2). The comparison unit 12 outputs data including information indicating the comparison result of the light intensity to the selection unit 13.
 選択部13は、比較部12から、光の強度の比較結果を示す情報を含むデータを受信する。選択部13は、光の強度の比較結果に基づいて、複数の光学式センサ200のうち1つを選択する(S3)。 The selection unit 13 receives data from the comparison unit 12 including information indicating the comparison result of the light intensity. The selection unit 13 selects one of the plurality of optical sensors 200 based on the comparison result of the light intensity (S3).
 一例では、選択部13は、ある特定の時間内において、1つ以上の受光素子202が検知した光の強度の平均値又は最大値が最大であった光学式センサ200を選択する。選択部13は、光学式センサ200の選択結果を示す情報を含むデータを、本測定部14へ出力する。 In one example, the selection unit 13 selects the optical sensor 200 having the maximum average value or maximum value of the light intensity detected by one or more light receiving elements 202 within a specific time. The selection unit 13 outputs data including information indicating the selection result of the optical sensor 200 to the measurement unit 14.
 本測定部14は、選択部13から、光学式センサ200の選択結果を示す情報を含むデータを受信する。本測定部14は、光の強度の比較結果に基づいて選択した1つの光学式センサ200を用いて、生体データの本測定を行う(S4)。本測定部14は、生体データの本測定の結果を示す情報を含むデータを、分析部15へ出力する。 The measuring unit 14 receives data including information indicating the selection result of the optical sensor 200 from the selection unit 13. The measuring unit 14 performs the main measurement of biometric data using one optical sensor 200 selected based on the comparison result of the light intensity (S4). The measurement unit 14 outputs data including information indicating the result of the main measurement of biometric data to the analysis unit 15.
 分析部15は、本測定部14から、生体データの本測定の結果を示す情報を含むデータを受信する。分析部15は、本測定の結果として得られた生体データを分析することによって、上で例示した生体情報を取得する(S5)。以上で、生体情報取得装置10の動作は終了する。 The analysis unit 15 receives data including information indicating the result of the main measurement of biometric data from the main measurement unit 14. The analysis unit 15 acquires the biometric information exemplified above by analyzing the biometric data obtained as a result of this measurement (S5). This completes the operation of the biological information acquisition device 10.
 (本実施形態の効果)
 本実施形態の構成によれば、前測定部11は、互いに異なる波長または波長域の光を生体へ投射する複数の光学式センサを用いて、生体データの前測定を行う。比較部12は、複数の光学式センサのそれぞれから出力される生体データに基づいて、複数の光学式センサがそれぞれ検知した光の強度を比較する。選択部13は、光の強度の比較結果に基づいて、複数の光学式センサのうち1つを選択する。本測定部14は、光の強度の比較結果に基づいて選択した1つの光学式センサを用いて、生体データの本測定を行う。分析部15は、本測定の結果として得られた生体データを分析することによって、生体情報を取得する。このように、前測定で得られた光の強度の比較結果に基づいて、本測定に用いる1つの光学式センサ200を選択するので、本測定部14は、選択した光学式センサ200から高品質な生体データを得ることができる。そのため、分析部15は、高品質な生体データから、高品質な生体情報を取得することができる。
(Effect of this embodiment)
According to the configuration of the present embodiment, the pre-measurement unit 11 performs pre-measurement of biological data by using a plurality of optical sensors that project light having a wavelength or a wavelength range different from each other onto the living body. The comparison unit 12 compares the light intensity detected by each of the plurality of optical sensors based on the biometric data output from each of the plurality of optical sensors. The selection unit 13 selects one of the plurality of optical sensors based on the comparison result of the light intensity. The measuring unit 14 performs the main measurement of biometric data using one optical sensor selected based on the comparison result of the light intensity. The analysis unit 15 acquires biometric information by analyzing the biometric data obtained as a result of this measurement. In this way, since one optical sensor 200 used for the main measurement is selected based on the comparison result of the light intensity obtained in the previous measurement, the main measurement unit 14 has high quality from the selected optical sensor 200. Biometric data can be obtained. Therefore, the analysis unit 15 can acquire high-quality biometric information from high-quality biometric data.
 ここまでは、本実施形態1に係わる生体情報取得装置10について、説明してきた。以下では、システム1(図1)において、生体情報取得装置10と通信する生体検知デバイス100(100A,100B)について説明する。 Up to this point, the biological information acquisition device 10 according to the first embodiment has been described. Hereinafter, the biometric detection devices 100 (100A, 100B) that communicate with the biometric information acquisition device 10 in the system 1 (FIG. 1) will be described.
 〔実施形態2〕
 図5~図9を参照して、実施形態2について説明する。
[Embodiment 2]
The second embodiment will be described with reference to FIGS. 5 to 9.
 (生体検知デバイス100)
 図5は、本実施形態2に係わる生体検知デバイス100の構成の一例を示す。ユーザは、生体検知デバイス100を生体に取り付けられた状態で使用する。図5および図6にそれぞれ示すように、生体検知デバイス100は、1枚以上の基板101上に、複数の光学式センサ200、電源素子300、演算素子400、通信素子500、およびメモリ600を備えている。図5に示す生体検知デバイス100では、複数の光学式センサ200が1枚の基板101上でライン状に配置されている。しかし、図6に示す生体検知デバイス100Aのように、複数の光学式センサ200が、1枚の基板101上でマトリクス状に配置されてもよい。
(Biological detection device 100)
FIG. 5 shows an example of the configuration of the biological detection device 100 according to the second embodiment. The user uses the biological detection device 100 in a state of being attached to the living body. As shown in FIGS. 5 and 6, the biometric detection device 100 includes a plurality of optical sensors 200, a power supply element 300, an arithmetic element 400, a communication element 500, and a memory 600 on one or more substrates 101. ing. In the biometric detection device 100 shown in FIG. 5, a plurality of optical sensors 200 are arranged in a line on one substrate 101. However, as in the biometric detection device 100A shown in FIG. 6, a plurality of optical sensors 200 may be arranged in a matrix on one substrate 101.
 生体検知デバイス100は、3枚以上の基板101を備えていてもよい(図示せず)。基板101の材質としては、光学式センサ200およびその他の素子を搭載できる形状および材質であれば特に限定されるものではない。生体検知デバイス100を生体に装着するもしくは貼り付けることを考慮すると、基板101は、フレキシブルな材質のほうが望ましく、例えば、フィルム基板、薄型のガラスエポキシ樹脂等が考えられる。 The biological detection device 100 may include three or more substrates 101 (not shown). The material of the substrate 101 is not particularly limited as long as it has a shape and material on which the optical sensor 200 and other elements can be mounted. Considering that the biological detection device 100 is attached to or attached to a living body, a flexible material is preferable for the substrate 101, and for example, a film substrate, a thin glass epoxy resin, or the like can be considered.
 なお、生体検知デバイス100における複数の光学式センサ200の配置に関して、ライン状に配置する(図5)、またはマトリクス状に配置する(図6)ほかにも、同心円状に配置する(図示せず)等、いくつかの配置が考えられるが、どのような方法で配置されていてもよい。ただし、あまりに光学式センサ200同士の間が離れすぎてしまうと、生体検知デバイス100が大きくなりすぎてしまう。したがって、人の手のひらの一般的な大きさ5cm程度に収まるように、複数の光学式センサ200は配置されることが望ましい。 Regarding the arrangement of the plurality of optical sensors 200 in the biometric detection device 100, they are arranged in a line shape (FIG. 5), in a matrix shape (FIG. 6), or in a concentric circle shape (not shown). ) Etc., but any method may be used. However, if the optical sensors 200 are too far apart from each other, the biometric detection device 100 becomes too large. Therefore, it is desirable that the plurality of optical sensors 200 are arranged so as to fit in the general size of the palm of a person, about 5 cm.
 電源素子300としては、重さ、形状、および、一次側電源かあるいは二次側電源かなど、多くの選択肢を有する。しかしながら、光学式センサ200、演算素子400、および通信素子500への十分な電力供給が可能であれば、電源素子300は限定されない。例えば、電源素子300は、乾電池、ボタン電池、またはリチウムイオン蓄電池等、ごく一般的な電源素子であってよい。 The power device 300 has many options such as weight, shape, and whether it is a primary side power supply or a secondary side power supply. However, the power supply element 300 is not limited as long as sufficient power can be supplied to the optical sensor 200, the arithmetic element 400, and the communication element 500. For example, the power supply element 300 may be a very general power supply element such as a dry battery, a button battery, or a lithium ion storage battery.
 演算素子400としては、光学式センサ200もしくは生体検知デバイス100に搭載された光学式センサ200のドライバを制御可能であれば、特に限定されない。 The arithmetic element 400 is not particularly limited as long as it can control the driver of the optical sensor 200 or the optical sensor 200 mounted on the biological detection device 100.
 通信素子500は、生体検知デバイス100と、生体情報取得装置10との間で通信を行うためのものである。通信素子500は、光学式センサ200もしくは生体検知デバイス100と、生体情報取得装置10との間で、生体データおよび制御信号の授受が可能であれば、形式および仕様に制限はない。 The communication element 500 is for communicating between the biometric detection device 100 and the biometric information acquisition device 10. The communication element 500 is not limited in its form and specifications as long as it is possible to exchange biometric data and control signals between the optical sensor 200 or the biometric detection device 100 and the biometric information acquisition device 10.
 一例では、通信量(信号量)、通信距離、および消費電力に基づいて、無線形式または有線形式の通信素子500が選択される。例えば、無線形式として、Wi-Fi(登録商標)、Bluetooth(登録商標)、およびBluetoothLE(登録商標)などがあげられる。もちろん、有線形式の通信素子500を選択することも可能であるが、その場合、生体検知デバイス100の設計及び特性が著しく制限される。このことから、通信素子500としては、無線形式のものが選択されることが好ましい。 In one example, the wireless or wired communication element 500 is selected based on the communication amount (signal amount), communication distance, and power consumption. For example, examples of the wireless format include Wi-Fi (registered trademark), Bluetooth (registered trademark), and Bluetooth LE (registered trademark). Of course, it is possible to select the wired communication element 500, but in that case, the design and characteristics of the biometric detection device 100 are significantly limited. For this reason, it is preferable to select a wireless type communication element 500.
 メモリ600は、生体データを一時的に保存し、通信素子500は、オフラインで生体情報取得装置10との間で生体データを送受信する。この場合、生体検知デバイス100(100A,100B)上で、メモリ600に格納された生体データの処理を行う。また、演算素子400は、生体検知デバイス100(100A,100B)のメモリ600に読み込んだプログラムを実行することにより、生体検知デバイス100(100A,100B)の各部の動作を制御する。 The memory 600 temporarily stores biometric data, and the communication element 500 transfers biometric data offline to and from the biometric information acquisition device 10. In this case, the biometric data stored in the memory 600 is processed on the biometric detection device 100 (100A, 100B). Further, the arithmetic element 400 controls the operation of each part of the biological detection device 100 (100A, 100B) by executing a program read into the memory 600 of the biological detection device 100 (100A, 100B).
 (生体検知デバイス100の変形例)
 図6および図7は、生体検知デバイス100の変形例を示す。図6に示す生体検知デバイス100Aでは、複数の光学式センサ200が1枚の基板101上でマトリクス状に配置されている。
(Modification example of biometric detection device 100)
6 and 7 show a modified example of the biological detection device 100. In the biological detection device 100A shown in FIG. 6, a plurality of optical sensors 200 are arranged in a matrix on one substrate 101.
 図6に示す生体検知デバイス100Aの構成によれば、複数の光学式センサ200がマトリクス状に配置されている。生体情報取得装置10は、複数の光学式センサ200から受信した生体データに基づいて、生体の面における生体情報を取得することができる。例えば、生体情報取得装置10は、生体データおよび識別情報に基づいて、生体の皮膚の下での静脈の分布を示す生体情報を取得することができる。 According to the configuration of the biological detection device 100A shown in FIG. 6, a plurality of optical sensors 200 are arranged in a matrix. The biological information acquisition device 10 can acquire biological information on the surface of a biological body based on biological data received from a plurality of optical sensors 200. For example, the biological information acquisition device 10 can acquire biological information indicating the distribution of veins under the skin of a living body based on biological data and identification information.
 図7に示す他の生体検知デバイス100Bは、2つの基板101A,101Bを備えている。生体検知デバイス100Bでは、複数の光学式センサ200が、基板101A上に(ライン状に)配置されている一方、複数の光学式センサ200を除く構成要素が、基板101B上に配置されている。 The other biometric detection device 100B shown in FIG. 7 includes two substrates 101A and 101B. In the biological detection device 100B, a plurality of optical sensors 200 are arranged (in a line) on the substrate 101A, while components other than the plurality of optical sensors 200 are arranged on the substrate 101B.
 図7に示す生体検知デバイス100Bの構成によれば、複数の光学式センサ200が、1枚の基板101A上に配置されており、他の構成要素(図7では、電源素子300、演算素子400、通信素子500、メモリ600)が、他の基板101B上に配置されている。そのため、生体検知デバイス100Bの形状を柔軟に設計することができる。また、生体検知デバイス100Bから、基板101Aだけを取り外す(一方、基板101Bを取り外さない)ことによって、故障した光学式センサ200を容易に交換することができる。 According to the configuration of the biometric detection device 100B shown in FIG. 7, a plurality of optical sensors 200 are arranged on one substrate 101A, and other components (power element 300 and arithmetic element 400 in FIG. 7). , Communication element 500, memory 600) are arranged on another substrate 101B. Therefore, the shape of the biological detection device 100B can be flexibly designed. Further, by removing only the substrate 101A from the biological detection device 100B (while not removing the substrate 101B), the failed optical sensor 200 can be easily replaced.
 なお、生体検知デバイス100が複数の基板101を備えている場合、それぞれの基板101にどの素子を搭載するのかは、大きさ、重さ等を考慮して、自由に設計することが可能である。一例では、図7に示す生体検知デバイス100Bのように、光学式センサ200以外の構成素子をまとめて別の基板101に搭載してもよいし、電源素子300だけ別の基板101に搭載してもよい。 When the biological detection device 100 includes a plurality of substrates 101, it is possible to freely design which element is mounted on each substrate 101 in consideration of the size, weight, and the like. .. In one example, as in the biometric detection device 100B shown in FIG. 7, constituent elements other than the optical sensor 200 may be mounted together on another substrate 101, or only the power element 300 may be mounted on another substrate 101. It is also good.
 (生体検知デバイス100(100A,100B)の実施例)
 以下では、本実施形態2で説明した生体検知デバイス100(100A,100B)のいずれかの一実施例を説明する。
(Example of biometric detection device 100 (100A, 100B))
Hereinafter, an embodiment of any one of the biometric detection devices 100 (100A, 100B) described in the second embodiment will be described.
 本実施例では、ローム社のSMLMN2ECTT86C LEDを光学式センサ200の発光素子201とし、SMLMN2ECTT86C LED用センサを光学式センサ200の受光素子202として用いた。 In this embodiment, ROHM's SMLMN2ECTT86C LED is used as the light emitting element 201 of the optical sensor 200, and the SMLMN2ECTT86C LED sensor is used as the light receiving element 202 of the optical sensor 200.
 大きさ25mm×35mm、厚さ0.1mmのガラスエポキシ基板(これは基板101に対応する)上に、2mmの間隔を空けつつ、マトリクス状に5行×2列、合計10個の光学式センサ200を搭載した。さらに、同一のガラスエポキシ基板上に、LIR1655型ボタン電池(電源素子300の一例)およびBLE素子(通信素子500の一例)を搭載した。 A total of 10 optical sensors in a matrix of 5 rows x 2 columns on a glass epoxy board with a size of 25 mm x 35 mm and a thickness of 0.1 mm (which corresponds to the board 101) with an interval of 2 mm. It was equipped with 200. Further, a LIR1655 type button battery (an example of a power supply element 300) and a BLE element (an example of a communication element 500) are mounted on the same glass epoxy substrate.
 (光学式センサ200)
 本実施形態2に係わる光学式センサ200の詳細を説明する。光学式センサ200は、ある固定波長(以下、λと記載する)の発光を行うことができる1つ以上の発光素子201と、波長λを包含する波長域に感度を有する1つの受光素子202とを備える。なお、システム1(図1)が備えた複数の光学式センサ200は、それぞれ、1つ以上の発光素子201および1つの受光素子202を備えているが、光学式センサ200ごとに、上述の波長λは異なる。
(Optical sensor 200)
The details of the optical sensor 200 according to the second embodiment will be described. The optical sensor 200 includes one or more light emitting elements 201 capable of emitting light of a certain fixed wavelength (hereinafter referred to as λ), and one light receiving element 202 having sensitivity in a wavelength range including the wavelength λ. To prepare for. The plurality of optical sensors 200 included in the system 1 (FIG. 1) include one or more light emitting elements 201 and one light receiving element 202, respectively, but each optical sensor 200 has the above-mentioned wavelength. λ is different.
 より詳細には、複数の光学式センサ200は、互いに異なる固定波長(λ=λ1,λ2,・・・)で発光する1つ以上の発光素子201を備えている。一方、1つ以上の受光素子202は、複数の光学式センサ200に共通する波長域で感度を有する。1つ以上の受光素子202が感度を有する波長域は、それぞれの光学式センサ200が備えた1つ以上の発光素子201が出力する光の固定波長(λ=λ1,λ2,・・・)をすべて包含する。それぞれの光学式センサ200は、1つ以上の発光素子201が出力する固定波長(λ=λ1,λ2,・・・)の光に基づく生体データを生成する。 More specifically, the plurality of optical sensors 200 include one or more light emitting elements 201 that emit light at fixed wavelengths (λ = λ1, λ2, ...) Different from each other. On the other hand, one or more light receiving elements 202 have sensitivity in a wavelength range common to a plurality of optical sensors 200. The wavelength range in which one or more light receiving elements 202 have sensitivity is a fixed wavelength (λ = λ1, λ2, ...) Of the light output by one or more light emitting elements 201 provided in each optical sensor 200. Include all. Each optical sensor 200 generates biometric data based on light of a fixed wavelength (λ = λ1, λ2, ...) Output by one or more light emitting elements 201.
 光学式センサ200が備えた発光素子201として、一例では、電流を流すと光を発するLED(Light Emitting Diode)が使用されてよい。しかしながら、発光素子201は、特定の波長域または波長の光を発することが可能であれば、材質または形状について制限されない。発光素子201として、無機材質のものも、有機材質のものも用いることができる。 As the light emitting element 201 included in the optical sensor 200, for example, an LED (Light Emitting Diode) that emits light when a current is passed may be used. However, the light emitting device 201 is not limited in material or shape as long as it can emit light in a specific wavelength range or wavelength. As the light emitting element 201, either an inorganic material or an organic material can be used.
 発光素子201の発光強度としては、人体(生体)を経由して得られる反射光が受光素子202で受光できる程度であれば特に制限はないが、発光素子201に設定された順電圧および順電圧の標準値以下での発光が望ましい。具体的には、発光素子201として、上述の一実施例に記載したLEDが使用される場合、発光素子201は、本LEDの順電流の標準値(一例では20mA)以下で使用されることが望ましい。 The emission intensity of the light emitting element 201 is not particularly limited as long as the reflected light obtained via the human body (living body) can be received by the light receiving element 202, but the forward voltage and the forward voltage set in the light emitting element 201 are not particularly limited. It is desirable to emit light below the standard value of. Specifically, when the LED described in the above embodiment is used as the light emitting element 201, the light emitting element 201 may be used at a standard value (20 mA in one example) or less of the forward current of this LED. desirable.
 光学式センサ200が備えた受光素子202としては、光を電気・電流に変換することができる光電変換素子が用いられる。受光素子202も、発光素子201と同様に、無機材質のものでも、有機材質のものでも、どちらでも利用が可能である。また、受光素子202は、複数の光学式センサ200がそれぞれ備えた発光素子201が出力する光の波長(λ=λ1,λ2,・・・)をすべて包含する波長域に感度を有するものであれば、材質および形状について制限されない。ただし、受光素子202は、発光素子201の発光がカバ―する波長または波長域において、十分な感度を有することが必要である。 As the light receiving element 202 provided in the optical sensor 200, a photoelectric conversion element capable of converting light into electricity and current is used. Similar to the light emitting element 201, the light receiving element 202 can be made of either an inorganic material or an organic material. Further, the light receiving element 202 may have sensitivity in a wavelength range including all the wavelengths of light (λ = λ1, λ2, ...) Output by the light emitting element 201 provided in each of the plurality of optical sensors 200. For example, there are no restrictions on the material and shape. However, the light receiving element 202 needs to have sufficient sensitivity in the wavelength or wavelength range covered by the light emission of the light emitting element 201.
 光学式センサ200による測定の周期は、脈波に基づく生体データを検出できるのであれば、特に制限されない。しかしながら、測定の周期が長すぎると、脈波の検出精度が低くなる。他方、測定の周期が短くても、測定精度に悪影響を及ぼすことは少ないが、測定によるデータ量の増加、消費電力の増大を引き起こす。そのため、周波数換算で10Hz~200Hzの周期で、測定を行うことが望ましい。 The measurement cycle of the optical sensor 200 is not particularly limited as long as it can detect biometric data based on pulse waves. However, if the measurement cycle is too long, the pulse wave detection accuracy will be low. On the other hand, even if the measurement cycle is short, it does not adversely affect the measurement accuracy, but it causes an increase in the amount of data and an increase in power consumption due to the measurement. Therefore, it is desirable to perform the measurement in a cycle of 10 Hz to 200 Hz in terms of frequency.
 図8は、1つの発光素子201と1つの受光素子202とを備えた光学式センサ200の構成の一例を示すブロック図である。図8に示す光学式センサ200は、1つの発光素子201と1つの受光素子202とで構成されるので、コストを抑制できるという利点がある。 FIG. 8 is a block diagram showing an example of the configuration of an optical sensor 200 including one light emitting element 201 and one light receiving element 202. Since the optical sensor 200 shown in FIG. 8 is composed of one light emitting element 201 and one light receiving element 202, there is an advantage that the cost can be suppressed.
 しかしながら、他の一例では、光学式センサ200が備えた発光素子201の数と、光学式センサ200が備えた受光素子202の数との間の比率は、多対1であってもよい。 However, in another example, the ratio between the number of light emitting elements 201 included in the optical sensor 200 and the number of light receiving elements 202 included in the optical sensor 200 may be many to one.
 図9は、複数の発光素子201と1つの受光素子202とを備えた光学式センサ200の構成を示すブロック図である。図9に示すように、光学式センサ200は、複数の発光素子201を備えている。ただし、図9では、3つ目の発光素子201を省略している。図9は、複数の発光素子201と1つの受光素子202とを備えた光学式センサ200の構成の一例を示すブロック図である。 FIG. 9 is a block diagram showing a configuration of an optical sensor 200 including a plurality of light emitting elements 201 and one light receiving element 202. As shown in FIG. 9, the optical sensor 200 includes a plurality of light emitting elements 201. However, in FIG. 9, the third light emitting element 201 is omitted. FIG. 9 is a block diagram showing an example of the configuration of an optical sensor 200 including a plurality of light emitting elements 201 and one light receiving element 202.
 図9に示す光学式センサ200の構成によれば、複数の発光素子201を備えているので、いずれかの発光素子201が故障した場合であっても、残りの発光素子201と受光素子202とが、光学式センサ200としての機能を維持することができる。 According to the configuration of the optical sensor 200 shown in FIG. 9, since a plurality of light emitting elements 201 are provided, even if any of the light emitting elements 201 fails, the remaining light emitting element 201 and the light receiving element 202 However, the function as the optical sensor 200 can be maintained.
 あるいは、一つの発光素子201と、複数の受光素子202とを組み合わせて光学式センサ200を構成することも可能である。その場合、生体情報取得装置10は、正確な生体情報を取得するために、光学式センサ200のどの発光素子201が検知した光に基づく生体データを分析対象とするかを管理する必要がある。 Alternatively, it is also possible to form the optical sensor 200 by combining one light emitting element 201 and a plurality of light receiving elements 202. In that case, the biometric information acquisition device 10 needs to manage which light emitting element 201 of the optical sensor 200 targets the biometric data based on the light detected in order to acquire accurate biometric information.
 続いて、波長λを決定する方法の具体例を以下で説明する。 Subsequently, a specific example of the method for determining the wavelength λ will be described below.
 血液中の血しょうの量に関しては、主に血しょう中の水分のモニタが可能となるように、波長、血球などの成分の変化に関しては、赤血球、白血球、血小板などの各血球成分のモニタが可能となるように、また、血管の伸縮をモニタする場合には、血管壁のモニタが可能となるように、波長λを決定する。例えば、赤血球中の色素成分であるヘモグロビンは600nm以下に光の吸収があるため、λを600nm以下に決定する。一方、血しょうなどの水分は赤外領域の光をよく吸収するので、赤外光に相当する波長(具体的には750nm以上)をλとして選択する。しかしながら、λが成分の最大吸収波長から外れても、成分の変化がモニタ出来ればよいので、上記よりも幅広い波長域から、波長λを選択可能である。 As for the amount of plasma in blood, it is possible to mainly monitor the water content in plasma, and for changes in components such as wavelength and blood cells, each blood cell component such as red blood cells, leukocytes, and platelets can be monitored. The wavelength λ is determined so that it is possible, and when monitoring the expansion and contraction of the blood vessel, it is possible to monitor the blood vessel wall. For example, hemoglobin, which is a pigment component in erythrocytes, absorbs light at 600 nm or less, so λ is determined to be 600 nm or less. On the other hand, since water such as plasma absorbs light in the infrared region well, a wavelength corresponding to infrared light (specifically, 750 nm or more) is selected as λ. However, even if λ deviates from the maximum absorption wavelength of the component, it is sufficient that the change of the component can be monitored, so that the wavelength λ can be selected from a wider wavelength range than the above.
 したがって、λとしては、紫外線として人体に悪影響を及ぼすと考えられている380nm以下の波長、あるいは、人体の他の構成成分による吸収の影響が大きくなる1000nm以上の領域を除いた380nm~1000nmの範囲から選択可能である。しかしながら、血球成分の変化をモニタしたほうがより正確性は向上するので、λは500nm~600nmの緑色の光に相当する波長であることが望ましい。 Therefore, λ is in the range of 380 nm to 1000 nm excluding the wavelength of 380 nm or less, which is considered to have an adverse effect on the human body as ultraviolet rays, or the region of 1000 nm or more, which is greatly affected by absorption by other components of the human body. It is possible to select from. However, since it is more accurate to monitor changes in blood cell components, it is desirable that λ has a wavelength corresponding to green light of 500 nm to 600 nm.
 〔実施形態3〕
 図10を参照して、実施形態3について説明する。本実施形態3では、生体情報取得装置10は、一定の時間が経過するごとに、本測定を行うために用いる1つの光学式センサ200を選択しなおす。
[Embodiment 3]
The third embodiment will be described with reference to FIG. In the third embodiment, the biological information acquisition device 10 reselects one optical sensor 200 used for performing the main measurement every time a certain time elapses.
 (生体情報取得装置10の動作)
 図10を参照して、実施形態3に係わる生体情報取得装置10の動作を説明する。図10は、生体情報取得装置10の各部が実行する処理の流れを示すフローチャートである。
(Operation of biometric information acquisition device 10)
The operation of the biological information acquisition device 10 according to the third embodiment will be described with reference to FIG. FIG. 10 is a flowchart showing a flow of processing executed by each part of the biological information acquisition device 10.
 図10に示すように、本実施形態3において、ステップS1からS5までは、前記実施形態1と共通である。すなわち、前測定部11は、互いに異なる波長または波長域の光を生体へ投射する複数の光学式センサ200を用いて、生体データの前測定を行う(S1)。 As shown in FIG. 10, in the third embodiment, steps S1 to S5 are common to the first embodiment. That is, the pre-measurement unit 11 performs pre-measurement of biometric data using a plurality of optical sensors 200 that project light having different wavelengths or wavelength ranges onto the living body (S1).
 次に、比較部12は、複数の光学式センサ200のそれぞれから出力される生体データに基づいて、複数の光学式センサ200がそれぞれ検知した光の強度を比較する(S2)。 Next, the comparison unit 12 compares the light intensity detected by each of the plurality of optical sensors 200 based on the biometric data output from each of the plurality of optical sensors 200 (S2).
 選択部13は、光の強度の比較結果に基づいて、複数の光学式センサ200のうち1つを選択する(S3)。 The selection unit 13 selects one of the plurality of optical sensors 200 based on the comparison result of the light intensity (S3).
 本測定部14は、光の強度の比較結果に基づいて選択した1つの光学式センサ200を用いて、生体データの本測定を行う(S4)。 The main measurement unit 14 performs the main measurement of biometric data using one optical sensor 200 selected based on the comparison result of the light intensity (S4).
 フローにおける1度目のステップS5の後、一定時間が経過するまで(S206でNo)、本測定部14は、選択した1つの光学式センサ200を用いて、本測定を行うことを繰り返す。例えば、1回目の本測定後、5分から2,3時間が経過するまで、本測定部14は、ステップS4に示す本測定を繰り返し行ってもよい。本測定の周期は、光学式センサ200の測定の周期(一例では、周波数換算で10Hz~200Hz)と同じかそれより長ければよい。本測定部14は、本測定を行うごとに、生体データの本測定の結果を示す情報を含むデータを、分析部15へ出力する。 After the first step S5 in the flow, until a certain time elapses (No in S206), the measuring unit 14 repeats performing the main measurement using one selected optical sensor 200. For example, the main measurement unit 14 may repeat the main measurement shown in step S4 from 5 minutes to a few hours after the first main measurement. The period of this measurement may be the same as or longer than the measurement cycle of the optical sensor 200 (in one example, 10 Hz to 200 Hz in terms of frequency). Each time the main measurement is performed, the measurement unit 14 outputs data including information indicating the result of the main measurement of biometric data to the analysis unit 15.
 分析部15は、本測定部14から、生体データの本測定の結果を示す情報を含むデータを受信する。分析部15は、本測定の結果として得られた生体データを分析することによって、生体情報を取得する(S5)。 The analysis unit 15 receives data including information indicating the result of the main measurement of biometric data from the main measurement unit 14. The analysis unit 15 acquires biometric information by analyzing the biometric data obtained as a result of this measurement (S5).
 フローにおける1度目のステップS5の後、一定時間が経過したのち(S206でYes)、フローにおけるステップS1に戻る。 After a certain period of time has elapsed after the first step S5 in the flow (Yes in S206), the process returns to step S1 in the flow.
 なお、上述の一定時間は特に限定されない。しかしながら、一定時間が短すぎると、生体情報取得装置10の各部が行う処理が頻繁になりすぎるし、一方で、一定時間が長くなりすぎると、本測定の精度の低下が懸念される。この点を考慮して、一定時間を適宜に決定することが好ましい。 The above-mentioned fixed time is not particularly limited. However, if the fixed time is too short, the processing performed by each part of the biometric information acquisition device 10 becomes too frequent, and if the fixed time is too long, there is a concern that the accuracy of this measurement may deteriorate. In consideration of this point, it is preferable to appropriately determine the fixed time.
 (本実施形態の効果)
 本実施形態の構成によれば、前測定部11は、互いに異なる波長または波長域の光を生体へ投射する複数の光学式センサを用いて、生体データの前測定を行う。比較部12は、複数の光学式センサのそれぞれから出力される生体データに基づいて、複数の光学式センサがそれぞれ検知した光の強度を比較する。選択部13は、光の強度の比較結果に基づいて、複数の光学式センサのうち1つを選択する。本測定部14は、光の強度の比較結果に基づいて選択した1つの光学式センサを用いて、生体データの本測定を行う。分析部15は、本測定の結果として得られた生体データを分析することによって、生体情報を取得する。このように、前測定で得られた光の強度の比較結果に基づいて、本測定に用いる1つの光学式センサ200を選択するので、本測定部14は、選択した光学式センサ200から高品質な生体データを得ることができる。そのため、分析部15は、高品質な生体データから、高品質な生体情報を取得することができる。
(Effect of this embodiment)
According to the configuration of the present embodiment, the pre-measurement unit 11 performs pre-measurement of biological data by using a plurality of optical sensors that project light having a wavelength or a wavelength range different from each other onto the living body. The comparison unit 12 compares the light intensity detected by each of the plurality of optical sensors based on the biometric data output from each of the plurality of optical sensors. The selection unit 13 selects one of the plurality of optical sensors based on the comparison result of the light intensity. The measuring unit 14 performs the main measurement of biometric data using one optical sensor selected based on the comparison result of the light intensity. The analysis unit 15 acquires biometric information by analyzing the biometric data obtained as a result of this measurement. In this way, since one optical sensor 200 used for the main measurement is selected based on the comparison result of the light intensity obtained in the previous measurement, the main measurement unit 14 has high quality from the selected optical sensor 200. Biometric data can be obtained. Therefore, the analysis unit 15 can acquire high-quality biometric information from high-quality biometric data.
 さらに、本実施形態の構成によれば、1回目の本測定から一定時間が経過するまで、本測定部14は、選択した1つの光学式センサ200を用いて、本測定を行うことを繰り返す。そして、1回目の本測定から一定時間が経過したのち、前測定部11が前測定を再び行う。そして、前測定の結果に基づいて、本測定に用いる1つの光学式センサ200を再選択する。これにより、1回目の本測定から一定時間が経過するごとに、本測定に用いる1つの光学式センサ200を更新することができる。 Further, according to the configuration of the present embodiment, the main measurement unit 14 repeats the main measurement using one selected optical sensor 200 until a certain time elapses from the first main measurement. Then, after a certain period of time has elapsed from the first main measurement, the pre-measurement unit 11 performs the pre-measurement again. Then, based on the result of the previous measurement, one optical sensor 200 used for the main measurement is reselected. As a result, one optical sensor 200 used for the main measurement can be updated every time a certain time elapses from the first main measurement.
 加えて、本実施形態の構成によれば、複数の光学式センサ200を用いて、前測定を1度行った後、複数の光学式センサ200のうち1つの光学式センサ200を用いて、本測定を繰り返し行うので、常に全ての光学式センサ200を用いて、本測定を繰り返し行う構成と比較して、生体検知デバイス100の電力消費を抑制できるというメリットもある。 In addition, according to the configuration of the present embodiment, after performing the pre-measurement once using the plurality of optical sensors 200, the present invention is performed using the optical sensor 200 of one of the plurality of optical sensors 200. Since the measurement is repeated, there is an advantage that the power consumption of the biometric detection device 100 can be suppressed as compared with the configuration in which all the optical sensors 200 are always used and the main measurement is repeatedly performed.
 〔実施形態4〕
 図11を参照して、実施形態4について説明する。本実施形態4では、生体情報取得装置10は、本測定で得られる生体データのS/N比が一定値以下になった場合に、本測定を行うために用いる1つの光学式センサ200を選択しなおす。
[Embodiment 4]
The fourth embodiment will be described with reference to FIG. In the fourth embodiment, the biometric information acquisition device 10 selects one optical sensor 200 to be used for the main measurement when the S / N ratio of the biometric data obtained in the main measurement becomes a certain value or less. Redo.
 (生体情報取得装置10の動作)
 図11を参照して、実施形態4に係わる生体情報取得装置10の動作を説明する。図11は、生体情報取得装置10の各部が実行する処理の流れを示すフローチャートである。
(Operation of biometric information acquisition device 10)
The operation of the biological information acquisition device 10 according to the fourth embodiment will be described with reference to FIG. FIG. 11 is a flowchart showing a flow of processing executed by each part of the biological information acquisition device 10.
 図11に示すように、本実施形態4において、ステップS1からS5までは、前記実施形態1及び前記実施形態3と共通である。すなわち、前測定部11は、互いに異なる波長または波長域の光を生体へ投射する複数の光学式センサ200を用いて、生体データの前測定を行う(S1)。 As shown in FIG. 11, in the fourth embodiment, steps S1 to S5 are common to the first embodiment and the third embodiment. That is, the pre-measurement unit 11 performs pre-measurement of biometric data using a plurality of optical sensors 200 that project light having different wavelengths or wavelength ranges onto the living body (S1).
 次に、比較部12は、複数の光学式センサ200のそれぞれから出力される生体データに基づいて、複数の光学式センサ200がそれぞれ検知した光の強度を比較する(S2)。 Next, the comparison unit 12 compares the light intensity detected by each of the plurality of optical sensors 200 based on the biometric data output from each of the plurality of optical sensors 200 (S2).
 選択部13は、光の強度の比較結果に基づいて、複数の光学式センサ200のうち1つを選択する(S3)。 The selection unit 13 selects one of the plurality of optical sensors 200 based on the comparison result of the light intensity (S3).
 本測定部14は、光の強度の比較結果に基づいて選択した1つの光学式センサ200を用いて、生体データの本測定を行う(S4)。本測定部14は、生体データの本測定の結果を示す情報を含むデータを、分析部15へ出力する。 The main measurement unit 14 performs the main measurement of biometric data using one optical sensor 200 selected based on the comparison result of the light intensity (S4). The measurement unit 14 outputs data including information indicating the result of the main measurement of biometric data to the analysis unit 15.
 分析部15は、本測定部14から、生体データの本測定の結果を示す情報を含むデータを受信する。分析部15は、本測定の結果として得られた生体データを分析することによって、生体情報を取得する(S5)。 The analysis unit 15 receives data including information indicating the result of the main measurement of biometric data from the main measurement unit 14. The analysis unit 15 acquires biometric information by analyzing the biometric data obtained as a result of this measurement (S5).
 フローにおける1度目のステップS4の後、本測定部14は、本測定の結果として得られた生体データのS/N比を算出し、その値を初期値として保持する。そして、フローにおける1度目のステップS5のときのS/N比と比較して、生体データのS/N比が初期値と比較して50%以上低下するまで(S306でNo)、本測定部14は、選択した1つの光学式センサ200を用いて、本測定を行う(S4)。 After the first step S4 in the flow, the measuring unit 14 calculates the S / N ratio of the biometric data obtained as a result of the main measurement, and holds the value as the initial value. Then, until the S / N ratio of the biometric data is reduced by 50% or more as compared with the initial value (No in S306) as compared with the S / N ratio in the first step S5 in the flow, this measuring unit. 14 performs the main measurement using one selected optical sensor 200 (S4).
 例えば、1度目のステップS4において、本測定の結果として得られた生体データのS/N比を100とした場合、本測定部14は、S/N比が50未満になるまで、繰り返し本測定を行う。 For example, when the S / N ratio of the biological data obtained as a result of the main measurement is 100 in the first step S4, the main measurement unit 14 repeatedly performs the main measurement until the S / N ratio becomes less than 50. I do.
 分析部15は、本測定の結果として得られた生体データから生体情報を取得する(S5)ことを繰り返す。 The analysis unit 15 repeats acquiring biometric information from the biometric data obtained as a result of this measurement (S5).
 フローにおける1度目のステップS5の後、本測定の結果として得られた生体データのS/N比が初期値と比較して50%以上低下したのち(S306でYes)、フローにおけるステップS1に戻る。 After the first step S5 in the flow, the S / N ratio of the biometric data obtained as a result of this measurement is reduced by 50% or more compared to the initial value (Yes in S306), and then the process returns to step S1 in the flow. ..
 なお、図11に示すフローにしたがって説明した「フローにおける1度目のステップS5のときのS/N比と比較して、生体データのS/N比が50%以上低下」という基準はあくまで一例であり、これに限定されない。ただし、基準値(上記の例では50%)が低すぎると、質の悪い本測定を継続することになる。他方、S/N比の基準値が高すぎると、生体情報取得装置10の各部が行う処理が頻繁になりすぎる。そのため、上述したステップS306では、本測定の結果として得られた生体データのS/N比が50~90%低下した場合、フローにおけるステップS1に戻ることが好ましい。 It should be noted that the criterion of "the S / N ratio of the biometric data is reduced by 50% or more compared to the S / N ratio at the time of the first step S5 in the flow" explained according to the flow shown in FIG. 11 is only an example. Yes, but not limited to this. However, if the reference value (50% in the above example) is too low, the poor quality of this measurement will be continued. On the other hand, if the reference value of the S / N ratio is too high, the processing performed by each part of the biometric information acquisition device 10 becomes too frequent. Therefore, in step S306 described above, it is preferable to return to step S1 in the flow when the S / N ratio of the biometric data obtained as a result of this measurement decreases by 50 to 90%.
 (本実施形態の効果)
 本実施形態の構成によれば、前測定部11は、互いに異なる波長または波長域の光を生体へ投射する複数の光学式センサを用いて、生体データの前測定を行う。比較部12は、複数の光学式センサのそれぞれから出力される生体データに基づいて、複数の光学式センサがそれぞれ検知した光の強度を比較する。選択部13は、光の強度の比較結果に基づいて、複数の光学式センサのうち1つを選択する。本測定部14は、光の強度の比較結果に基づいて選択した1つの光学式センサを用いて、生体データの本測定を行う。分析部15は、本測定の結果として得られた生体データを分析することによって、生体情報を取得する。このように、前測定で得られた光の強度の比較結果に基づいて、本測定に用いる1つの光学式センサ200を選択するので、本測定部14は、選択した光学式センサ200から高品質な生体データを得ることができる。そのため、生体情報取得装置10は、高品質な生体データから、高品質な生体情報を取得することができる。
(Effect of this embodiment)
According to the configuration of the present embodiment, the pre-measurement unit 11 performs pre-measurement of biological data by using a plurality of optical sensors that project light having a wavelength or a wavelength range different from each other onto the living body. The comparison unit 12 compares the light intensity detected by each of the plurality of optical sensors based on the biometric data output from each of the plurality of optical sensors. The selection unit 13 selects one of the plurality of optical sensors based on the comparison result of the light intensity. The measuring unit 14 performs the main measurement of biometric data using one optical sensor selected based on the comparison result of the light intensity. The analysis unit 15 acquires biometric information by analyzing the biometric data obtained as a result of this measurement. In this way, since one optical sensor 200 used for the main measurement is selected based on the comparison result of the light intensity obtained in the previous measurement, the main measurement unit 14 has high quality from the selected optical sensor 200. Biometric data can be obtained. Therefore, the biometric information acquisition device 10 can acquire high-quality biometric information from high-quality biometric data.
 さらに、本実施形態の構成によれば、本測定の結果として得られた生体データのS/N比が50%以上低下するまで、本測定部14は、選択した1つの光学式センサ200を用いて、本測定を行うことを繰り返す。そして、本測定の結果として得られた生体データのS/N比が50%(基準値)以上低下したのち、前測定部11が前測定を再び行う。そして、前測定の結果に基づいて、本測定に用いる1つの光学式センサ200を再選択する。これにより、本測定の結果として得られた生体データのS/N比が50%(基準値)以上低下するごとに、本測定に用いる1つの光学式センサ200を更新することができる。 Further, according to the configuration of the present embodiment, the measuring unit 14 uses one selected optical sensor 200 until the S / N ratio of the biometric data obtained as a result of the measurement is reduced by 50% or more. Then, this measurement is repeated. Then, after the S / N ratio of the biometric data obtained as a result of this measurement is reduced by 50% (reference value) or more, the pre-measurement unit 11 performs the pre-measurement again. Then, based on the result of the previous measurement, one optical sensor 200 used for the main measurement is reselected. As a result, one optical sensor 200 used for this measurement can be updated every time the S / N ratio of the biometric data obtained as a result of this measurement decreases by 50% (reference value) or more.
 加えて、本実施形態の構成によれば、複数の光学式センサ200を用いて、前測定を1度行った後、複数の光学式センサ200のうち1つの光学式センサ200を用いて、本測定を繰り返し行うので、常に全ての光学式センサ200を用いて、本測定を繰り返し行う構成と比較して、生体検知デバイス100の電力消費を抑制できるというメリットもある。 In addition, according to the configuration of the present embodiment, after performing the pre-measurement once using the plurality of optical sensors 200, the present invention is performed using the optical sensor 200 of one of the plurality of optical sensors 200. Since the measurement is repeated, there is an advantage that the power consumption of the biometric detection device 100 can be suppressed as compared with the configuration in which all the optical sensors 200 are always used and the main measurement is repeatedly performed.
 〔変形例〕
 前記実施形態2では、生体検知デバイス100(100A,100B)が、互いに異なる波長または波長域の光を生体へ投射する複数の光学式センサ200を備えた構成について説明した。前記実施形態2のいずれかの一変形例では、生体検知デバイス100(100A,100B)は、同一の波長または波長域で光の感度を有する複数の光学式センサ200も備えていてもよい。
[Modification example]
In the second embodiment, the configuration in which the biological detection device 100 (100A, 100B) includes a plurality of optical sensors 200 that project light having different wavelengths or wavelength ranges onto the living body has been described. In any one modification of the second embodiment, the biometric detection device 100 (100A, 100B) may also include a plurality of optical sensors 200 having light sensitivity in the same wavelength or wavelength range.
 本変形例では、前測定部11は、生体検知デバイス100(100A,100B)が備えた全ての光学式センサ200のうち、互いに異なる波長または波長域の光を生体へ投射する複数の光学式センサ200のみを用いて、上述の前測定を行ってもよい。あるいは、前測定部11は、生体検知デバイス100(100A,100B)が備えた全ての光学式センサ200を用いて、前測定を行ってもよい。どちらの場合であっても、前測定部11の処理の後に比較部12が行う処理の内容には、それほどの大差がない。すなわち、前者の場合、比較部12は、前測定が行われた複数の光学式センサ200のそれぞれから出力される生体データに基づいて、複数の光学式センサ200がそれぞれ検知した光の強度を比較する。一方、後者の場合、比較部12は、全ての複数の光学式センサ200のそれぞれから出力される生体データに基づいて、複数の光学式センサ200がそれぞれ検知した光の強度を比較する。どちらの場合であっても、生体情報取得装置10の他の各部(選択部13、本測定部14、分析部15)が実行する処理は、前記実施形態1から4のいずれかと同じである。 In this modification, the pre-measurement unit 11 is a plurality of optical sensors that project light having different wavelengths or wavelength ranges to the living body among all the optical sensors 200 included in the biological detection device 100 (100A, 100B). The pre-measurement described above may be performed using only 200. Alternatively, the pre-measurement unit 11 may perform pre-measurement using all the optical sensors 200 provided in the biometric detection device 100 (100A, 100B). In either case, there is not much difference in the contents of the processing performed by the comparison unit 12 after the processing of the pre-measurement unit 11. That is, in the former case, the comparison unit 12 compares the light intensities detected by the plurality of optical sensors 200 based on the biological data output from each of the plurality of optical sensors 200 for which the pre-measurement was performed. do. On the other hand, in the latter case, the comparison unit 12 compares the light intensity detected by each of the plurality of optical sensors 200 based on the biological data output from each of the plurality of optical sensors 200. In either case, the process executed by each of the other units (selection unit 13, main measurement unit 14, analysis unit 15) of the biological information acquisition device 10 is the same as that of any one of the first to fourth embodiments.
 〔実施形態5〕
 本実施形態5では、図1に示すシステム1とは別の構成を持つシステム2について説明する。
[Embodiment 5]
In the fifth embodiment, a system 2 having a configuration different from that of the system 1 shown in FIG. 1 will be described.
 図12は、本実施形態5に係わるシステム2の構成を概略的に示す。図12に示すように、システム2は、生体情報取得装置10、および生体検知デバイス100(100A,100B)に加えて、情報中継装置150をさらに備えている。本実施形態5に係わる生体情報取得装置10の構成及び動作は、前記実施形態1~4のいずれかと共通である。 FIG. 12 schematically shows the configuration of the system 2 according to the fifth embodiment. As shown in FIG. 12, the system 2 further includes an information relay device 150 in addition to the biometric information acquisition device 10 and the biometric detection device 100 (100A, 100B). The configuration and operation of the biological information acquisition device 10 according to the fifth embodiment are the same as those of the first to fourth embodiments.
 情報中継装置150は、生体情報取得装置10と生体検知デバイス100(100A,100B)との間の通信を中継するためのホストデバイスである。情報中継装置150としては、例えば、パーソナルコンピュータ、タブレット、スマートフォンなどの情報通信機器が用いられる。しかしながら、情報中継装置150は、生体データの測定の対象者(生体)の状況、または、通信環境などに基づいて、任意に決定されてよい。 The information relay device 150 is a host device for relaying communication between the biometric information acquisition device 10 and the biometric detection device 100 (100A, 100B). As the information relay device 150, for example, an information communication device such as a personal computer, a tablet, or a smartphone is used. However, the information relay device 150 may be arbitrarily determined based on the situation of the target person (living body) for measuring the biological data, the communication environment, or the like.
 本実施形態5では、生体検知デバイス100(100A,100B)および情報中継装置150のどちらも、光学式センサ200を制御することができる。生体検知デバイス100(100A,100B)が複数の光学式センサ200を制御する場合、生体検知デバイス100(100A,100B)が備えた演算素子400を利用する。一方、情報中継装置150が光学式センサ200を制御する場合には、例えば、FPGA(field-programmable gate array)などを利用して、光学式センサ200を制御するためのコンピュータプログラムを実行する。 In the fifth embodiment, both the biological detection device 100 (100A, 100B) and the information relay device 150 can control the optical sensor 200. When the biological detection device 100 (100A, 100B) controls a plurality of optical sensors 200, the arithmetic element 400 provided in the biological detection device 100 (100A, 100B) is used. On the other hand, when the information relay device 150 controls the optical sensor 200, for example, an FPGA (field-programmable gate array) or the like is used to execute a computer program for controlling the optical sensor 200.
 後者の場合、情報中継装置150は、生体検知デバイス100(100A,100B)から生体データを受信し、生体情報取得装置10へ生体データを転送する。また、情報中継装置150は、生体情報取得装置10から、生体検知デバイス100(100A,100B)を制御するための制御信号を受信して、制御信号に基づいて、生体検知デバイス100(100A,100B)の制御を実行する。 In the latter case, the information relay device 150 receives the biometric data from the biometric detection device 100 (100A, 100B) and transfers the biometric data to the biometric information acquisition device 10. Further, the information relay device 150 receives a control signal for controlling the biometric detection device 100 (100A, 100B) from the biometric information acquisition device 10, and based on the control signal, the biometric detection device 100 (100A, 100B). ) Is executed.
 さらに、生体情報取得装置10または情報中継装置150と、生体検知デバイス100(100A,100B)との間の通信を中継するために、スマートフォンなどのモバイル情報通信機器(図示せず)を用いてもよい。この場合、生体検知デバイス100(100A,100B)からの情報をいったんモバイル情報通信機器が受信し、モバイル情報通信機器(図示せず)から、生体情報取得装置10または情報中継装置150へ、生体検知デバイス100(100A,100B)からの情報を転送してもよい。 Further, even if a mobile information communication device (not shown) such as a smartphone is used to relay the communication between the biometric information acquisition device 10 or the information relay device 150 and the biometric detection device 100 (100A, 100B). good. In this case, the mobile information communication device once receives the information from the biometric detection device 100 (100A, 100B), and the biometric detection is performed from the mobile information communication device (not shown) to the biometric information acquisition device 10 or the information relay device 150. Information from the device 100 (100A, 100B) may be transferred.
 (本実施形態の効果)
 本実施形態の構成によれば、生体情報取得装置10と生体検知デバイス100(100A,100B)との間の通信を、情報中継装置150が中継する。そのため、生体情報取得装置10と生体検知デバイス100(100A,100B)とが直接的に通信を行う必要がないので、システム2の設計に関する自由度が向上する。
(Effect of this embodiment)
According to the configuration of the present embodiment, the information relay device 150 relays the communication between the biological information acquisition device 10 and the biological detection device 100 (100A, 100B). Therefore, it is not necessary for the biometric information acquisition device 10 and the biometric detection device 100 (100A, 100B) to directly communicate with each other, so that the degree of freedom regarding the design of the system 2 is improved.
 (ハードウェア構成について)
 前記実施形態1~5で説明した生体情報取得装置10の各構成要素は、機能単位のブロックを示している。これらの構成要素の一部又は全部は、例えば図13に示すような情報処理装置900により実現される。図13は、情報処理装置900のハードウェア構成の一例を示すブロック図である。
(About hardware configuration)
Each component of the biological information acquisition device 10 described in the first to fifth embodiments shows a block of functional units. Some or all of these components are realized by, for example, the information processing apparatus 900 as shown in FIG. FIG. 13 is a block diagram showing an example of the hardware configuration of the information processing apparatus 900.
 図13に示すように、情報処理装置900は、一例として、以下のような構成を含む。 As shown in FIG. 13, the information processing apparatus 900 includes the following configuration as an example.
  ・CPU(Central Processing Unit)901
  ・ROM(Read Only Memory)902
  ・RAM(Random Access Memory)903
  ・RAM903にロードされるプログラム904
  ・プログラム904を格納する記憶装置905
  ・記録媒体906の読み書きを行うドライブ装置907
  ・通信ネットワーク909と接続する通信インタフェース908
  ・データの入出力を行う入出力インタフェース910
  ・各構成要素を接続するバス911
 前記実施形態1~5で説明した生体情報取得装置10の各構成要素は、これらの機能を実現するプログラム904をCPU901が読み込んで実行することで実現される。各構成要素の機能を実現するプログラム904は、例えば、予め記憶装置905やROM902に格納されており、必要に応じてCPU901がRAM903にロードして実行される。なお、プログラム904は、通信ネットワーク909を介してCPU901に供給されてもよいし、予め記録媒体906に格納されており、ドライブ装置907が当該プログラムを読み出してCPU901に供給してもよい。
-CPU (Central Processing Unit) 901
-ROM (Read Only Memory) 902
-RAM (Random Access Memory) 903
-Program 904 loaded into RAM 903
A storage device 905 that stores the program 904.
A drive device 907 that reads and writes the recording medium 906.
-Communication interface 908 for connecting to the communication network 909.
-I / O interface 910 for inputting / outputting data
-Bus 911 connecting each component
Each component of the biometric information acquisition device 10 described in the first to fifth embodiments is realized by the CPU 901 reading and executing the program 904 that realizes these functions. The program 904 that realizes the functions of each component is stored in, for example, a storage device 905 or ROM 902 in advance, and the CPU 901 is loaded into the RAM 903 and executed as needed. The program 904 may be supplied to the CPU 901 via the communication network 909, or may be stored in the recording medium 906 in advance, and the drive device 907 may read the program and supply the program to the CPU 901.
 (本実施形態の効果)
 本実施形態の構成によれば、前記実施形態において説明した生体情報取得装置10が、ハードウェアとして実現される。したがって、前記実施形態において説明した効果と同様の効果を奏することができる。
(Effect of this embodiment)
According to the configuration of the present embodiment, the biometric information acquisition device 10 described in the above embodiment is realized as hardware. Therefore, it is possible to obtain the same effect as the effect described in the above embodiment.
 〔付記〕
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
[Additional Notes]
Some or all of the above embodiments may also be described, but not limited to:
  (付記1)
 互いに異なる波長または波長域の光を生体へ投射する複数の光学式センサを用いて、生体データの前測定を行う前測定手段と、
 前記複数の光学式センサのそれぞれから出力される生体データに基づいて、前記複数の光学式センサがそれぞれ検知した光の強度を比較する比較手段と、
 前記光の強度の比較結果に基づいて、前記複数の光学式センサのうち1つを選択する選択手段と、
 前記光の強度の比較結果に基づいて選択した1つの光学式センサを用いて、前記生体データの本測定を行う本測定手段と、
 前記本測定の結果として得られた前記生体データを分析することによって、生体情報を取得する分析手段と
 を備えた生体情報取得装置。
(Appendix 1)
Pre-measurement means for pre-measurement of biometric data using multiple optical sensors that project light in different wavelengths or wavelength ranges onto the living body.
A comparison means for comparing the light intensity detected by each of the plurality of optical sensors based on the biometric data output from each of the plurality of optical sensors.
A selection means for selecting one of the plurality of optical sensors based on the comparison result of the light intensity, and a selection means.
Using one optical sensor selected based on the comparison result of the light intensity, the measuring means for performing the main measurement of the biological data and the measuring means.
A biometric information acquisition device including an analysis means for acquiring biometric information by analyzing the biometric data obtained as a result of the present measurement.
  (付記2)
 前記比較手段は、前記複数の光学式センサからそれぞれ出力される前記生体データが示す波形の最大値を比較し、
 前記選択手段は、前記波形の最大値が最も大きい前記生体データを出力する1つの光学式センサを選択する
 ことを特徴とする付記1に記載の生体情報取得装置。
(Appendix 2)
The comparison means compares the maximum value of the waveform indicated by the biometric data output from each of the plurality of optical sensors.
The biometric information acquisition device according to Appendix 1, wherein the selection means selects one optical sensor that outputs the biometric data having the largest maximum value of the waveform.
  (付記3)
 前記比較手段は、前記複数の光学式センサからからそれぞれ出力される前記生体データが示す波形の最大値を、前記波形の最大値と最小値との差分で割った値を比較し、
 前記選択手段は、前記値が最も大きくなる前記生体データを出力する1つの光学式センサを選択する
 ことを特徴とする付記1に記載の生体情報取得装置。
(Appendix 3)
The comparison means compares the value obtained by dividing the maximum value of the waveform indicated by the biometric data output from each of the plurality of optical sensors by the difference between the maximum value and the minimum value of the waveform.
The biometric information acquisition device according to Appendix 1, wherein the selection means selects one optical sensor that outputs the biometric data having the largest value.
  (付記4)
 前記複数の光学式センサは、それぞれ、380nm~1000nmの波長域内の光を生体へ投射する
 ことを特徴とする付記1から3のいずれか1項に記載の生体情報取得装置。
(Appendix 4)
The biometric information acquisition device according to any one of Supplementary note 1 to 3, wherein each of the plurality of optical sensors projects light in a wavelength range of 380 nm to 1000 nm onto a living body.
  (付記5)
 付記1から4のいずれか1項に記載の生体情報取得装置と、
 前記複数の光学式センサを備えた生体検知デバイスと
 を備えたシステム。
(Appendix 5)
The biometric information acquisition device according to any one of Supplementary note 1 to 4 and the biometric information acquisition device.
A system including a biometric detection device with the plurality of optical sensors.
  (付記6)
 前記生体検知デバイスは、生体の皮膚に貼り付けられた状態で使用される
 ことを特徴とする付記5項に記載のシステム。
(Appendix 6)
The system according to Appendix 5, wherein the biological detection device is used in a state of being attached to the skin of a living body.
  (付記7)
 前記生体検知デバイスにおいて、
 前記複数の光学式センサは、1枚の基板上でライン上に配置されている
 ことを特徴とする付記5または6に記載のシステム。
(Appendix 7)
In the biometric detection device
The system according to Appendix 5 or 6, wherein the plurality of optical sensors are arranged on a line on one substrate.
  (付記8)
 前記生体検知デバイスにおいて、
 前記複数の光学式センサが、1枚の基板上でマトリクス状に配置されている
 ことを特徴とする付記5または6に記載のシステム。
(Appendix 8)
In the biometric detection device
The system according to Appendix 5 or 6, wherein the plurality of optical sensors are arranged in a matrix on one substrate.
  (付記9)
 互いに異なる波長または波長域の光を生体へ投射する複数の光学式センサを用いて、生体データの前測定を行い、
 前記複数の光学式センサのそれぞれから出力される生体データに基づいて、前記複数の光学式センサがそれぞれ検知した光の強度を比較し、
 前記光の強度の比較結果に基づいて、前記複数の光学式センサのうち1つを選択し、
 前記光の強度の比較結果に基づいて選択した1つの光学式センサを用いて、前記生体データの本測定を行い、
 前記本測定の結果として得られた前記生体データを分析することによって、生体情報を取得する
 生体情報取得方法。
(Appendix 9)
Pre-measurement of biometric data is performed using multiple optical sensors that project light of different wavelengths or wavelengths onto the living body.
Based on the biometric data output from each of the plurality of optical sensors, the light intensities detected by the plurality of optical sensors are compared.
Based on the comparison result of the light intensity, one of the plurality of optical sensors is selected.
The main measurement of the biometric data was performed using one optical sensor selected based on the comparison result of the light intensity.
A biometric information acquisition method for acquiring biometric information by analyzing the biometric data obtained as a result of the present measurement.
  (付記10)
 一定の時間間隔で、前記複数の生体センサを用いて、前記生体データの前測定を行い、
 前記複数の光学式センサのそれぞれから出力される前記生体データに基づいて、前記複数の光学式センサがそれぞれ検知した光の強度を比較し、
 前記光の強度の比較結果に基づいて、前記本測定に用いる1つの光学式センサを再選択する
 ことを特徴とする付記9に記載の生体情報取得方法。
(Appendix 10)
Pre-measurement of the biometric data is performed using the plurality of biosensors at regular time intervals.
Based on the biometric data output from each of the plurality of optical sensors, the light intensities detected by the plurality of optical sensors are compared.
The biometric information acquisition method according to Appendix 9, wherein one optical sensor used for the present measurement is reselected based on the comparison result of the light intensity.
  (付記11)
 前記本測定に用いられる1つの光学式センサから出力される前記生体データのS/N比が、前記本測定の開始直後から50%以上低下した場合、
 前記前測定を再び行い、
 前記複数の光学式センサのそれぞれから出力される生体データに基づいて、前記複数の光学式センサがそれぞれ検知した光の強度を比較し、
 前記光の強度の比較結果に基づいて、前記本測定に用いる1つの光学式センサを再選択する
 ことを特徴とする付記9に記載の生体情報取得方法。
(Appendix 11)
When the S / N ratio of the biometric data output from one optical sensor used for the main measurement decreases by 50% or more immediately after the start of the main measurement.
Perform the pre-measurement again and
Based on the biometric data output from each of the plurality of optical sensors, the light intensities detected by the plurality of optical sensors are compared.
The biometric information acquisition method according to Appendix 9, wherein one optical sensor used for the present measurement is reselected based on the comparison result of the light intensity.
  (付記12)
 互いに異なる波長または波長域の光を生体へ投射する複数の光学式センサを用いて、生体データの前測定を行うことと、
 前記複数の光学式センサのそれぞれから出力される生体データに基づいて、前記複数の光学式センサがそれぞれ検知した光の強度を比較することと、
 前記光の強度の比較結果に基づいて、前記複数の光学式センサのうち1つを選択することと、
 前記光の強度の比較結果に基づいて選択した1つの光学式センサを用いて、前記生体データの本測定を行うことと、
 前記本測定の結果として得られた前記生体データを分析することによって、生体情報を取得することと
 をコンピュータに実行させるためのプログラムを格納した、一時的でない記録媒体。
(Appendix 12)
Pre-measurement of biometric data using multiple optical sensors that project light of different wavelengths or wavelengths onto the living body.
Comparing the light intensities detected by each of the plurality of optical sensors based on the biometric data output from each of the plurality of optical sensors, and
To select one of the plurality of optical sensors based on the comparison result of the light intensity, and to select one of the plurality of optical sensors.
Using one optical sensor selected based on the comparison result of the light intensity, the main measurement of the biometric data can be performed.
A non-temporary recording medium containing a program for causing a computer to acquire biometric information by analyzing the biometric data obtained as a result of the present measurement.
  (付記13)
 前記プログラムは、
 一定の時間間隔で、前記複数の生体センサを用いて、前記生体データの前測定を行うことと、
 前記複数の光学式センサのそれぞれから出力される前記生体データに基づいて、前記複数の光学式センサがそれぞれ検知した光の強度を比較することと、
 前記光の強度の比較結果に基づいて、前記本測定に用いる1つの光学式センサを再選択することと
 をコンピュータに実行させることを特徴とする付記12に記載の記録媒体。
(Appendix 13)
The program
Pre-measurement of the biometric data using the plurality of biosensors at regular time intervals, and
Comparing the light intensities detected by each of the plurality of optical sensors based on the biometric data output from each of the plurality of optical sensors, and
The recording medium according to Appendix 12, wherein the computer is made to reselect one optical sensor used for the present measurement based on the comparison result of the light intensity.
  (付記14)
 前記プログラムは、
 前記本測定に用いられる1つの光学式センサから出力される前記生体データのS/N比が、前記本測定の開始直後から50%以上低下した場合、
 前記前測定を再び行うことと、
 前記複数の光学式センサのそれぞれから出力される生体データに基づいて、前記複数の光学式センサがそれぞれ検知した光の強度を比較することと、
 前記光の強度の比較結果に基づいて、前記本測定に用いる1つの光学式センサを再選択することと
 をコンピュータに実行させることを特徴とする付記12に記載の記録媒体。
(Appendix 14)
The program
When the S / N ratio of the biometric data output from one optical sensor used for the main measurement decreases by 50% or more immediately after the start of the main measurement.
Re-doing the pre-measurement and
Comparing the light intensities detected by each of the plurality of optical sensors based on the biometric data output from each of the plurality of optical sensors, and
The recording medium according to Appendix 12, wherein the computer is made to reselect one optical sensor used for the present measurement based on the comparison result of the light intensity.
   1 システム
   2 システム
  10 生体情報取得装置
  11 前測定部
  12 比較部
  13 選択部
  14 本測定部
  15 分析部
 100 生体検知デバイス
 200 光学式センサ
 201 発光素子
 202 受光素子
1 System 2 System 10 Biometric information acquisition device 11 Front measurement unit 12 Comparison unit 13 Selection unit 14 Measurement unit 15 Analysis unit 100 Biometric detection device 200 Optical sensor 201 Light emitting element 202 Light receiving element

Claims (14)

  1.  互いに異なる波長または波長域の光を生体へ投射する複数の光学式センサを用いて、生体データの前測定を行う前測定手段と、
     前記複数の光学式センサのそれぞれから出力される生体データに基づいて、前記複数の光学式センサがそれぞれ検知した光の強度を比較する比較手段と、
     前記光の強度の比較結果に基づいて、前記複数の光学式センサのうち1つを選択する選択手段と、
     前記光の強度の比較結果に基づいて選択した1つの光学式センサを用いて、前記生体データの本測定を行う本測定手段と、
     前記本測定の結果として得られた前記生体データを分析することによって、生体情報を取得する分析手段と
     を備えた生体情報取得装置。
    Pre-measurement means for pre-measurement of biometric data using multiple optical sensors that project light in different wavelengths or wavelength ranges onto the living body.
    A comparison means for comparing the light intensity detected by each of the plurality of optical sensors based on the biometric data output from each of the plurality of optical sensors.
    A selection means for selecting one of the plurality of optical sensors based on the comparison result of the light intensity, and a selection means.
    Using one optical sensor selected based on the comparison result of the light intensity, the measuring means for performing the main measurement of the biological data and the measuring means.
    A biometric information acquisition device including an analysis means for acquiring biometric information by analyzing the biometric data obtained as a result of the present measurement.
  2.  前記比較手段は、前記複数の光学式センサからそれぞれ出力される前記生体データが示す波形の最大値を比較し、
     前記選択手段は、前記波形の最大値が最も大きい前記生体データを出力する1つの光学式センサを選択する
     ことを特徴とする請求項1に記載の生体情報取得装置。
    The comparison means compares the maximum value of the waveform indicated by the biometric data output from each of the plurality of optical sensors.
    The biometric information acquisition device according to claim 1, wherein the selection means selects one optical sensor that outputs the biometric data having the largest maximum value of the waveform.
  3.  前記比較手段は、前記複数の光学式センサからからそれぞれ出力される前記生体データが示す波形の最大値を、前記波形の最大値と最小値との差分で割った値を比較し、
     前記選択手段は、前記値が最も大きくなる前記生体データを出力する1つの光学式センサを選択する
     ことを特徴とする請求項1に記載の生体情報取得装置。
    The comparison means compares the value obtained by dividing the maximum value of the waveform indicated by the biometric data output from each of the plurality of optical sensors by the difference between the maximum value and the minimum value of the waveform.
    The biometric information acquisition device according to claim 1, wherein the selection means selects one optical sensor that outputs the biometric data having the largest value.
  4.  前記複数の光学式センサは、それぞれ、380nm~1000nmの波長域内の光を生体へ投射する
     ことを特徴とする請求項1から3のいずれか1項に記載の生体情報取得装置。
    The biometric information acquisition device according to any one of claims 1 to 3, wherein each of the plurality of optical sensors projects light in a wavelength range of 380 nm to 1000 nm onto a living body.
  5.  請求項1から4のいずれか1項に記載の生体情報取得装置と、
     前記複数の光学式センサを備えた生体検知デバイスと
     を備えたシステム。
    The biometric information acquisition device according to any one of claims 1 to 4,
    A system including a biometric detection device with the plurality of optical sensors.
  6.  前記生体検知デバイスは、生体の皮膚に貼り付けられた状態で使用される
     ことを特徴とする請求項5項に記載のシステム。
    The system according to claim 5, wherein the biological detection device is used in a state of being attached to the skin of a living body.
  7.  前記生体検知デバイスにおいて、
     前記複数の光学式センサは、1枚の基板上でライン上に配置されている
     ことを特徴とする請求項5または6に記載のシステム。
    In the biometric detection device
    The system according to claim 5 or 6, wherein the plurality of optical sensors are arranged on a line on one substrate.
  8.  前記生体検知デバイスにおいて、
     前記複数の光学式センサが、1枚の基板上でマトリクス状に配置されている
     ことを特徴とする請求項5または6に記載のシステム。
    In the biometric detection device
    The system according to claim 5 or 6, wherein the plurality of optical sensors are arranged in a matrix on one substrate.
  9.  互いに異なる波長または波長域の光を生体へ投射する複数の光学式センサを用いて、生体データの前測定を行い、
     前記複数の光学式センサのそれぞれから出力される生体データに基づいて、前記複数の光学式センサがそれぞれ検知した光の強度を比較し、
     前記光の強度の比較結果に基づいて、前記複数の光学式センサのうち1つを選択し、
     前記光の強度の比較結果に基づいて選択した1つの光学式センサを用いて、前記生体データの本測定を行い、
     前記本測定の結果として得られた前記生体データを分析することによって、生体情報を取得する
     生体情報取得方法。
    Pre-measurement of biometric data is performed using multiple optical sensors that project light of different wavelengths or wavelengths onto the living body.
    Based on the biometric data output from each of the plurality of optical sensors, the light intensities detected by the plurality of optical sensors are compared.
    Based on the comparison result of the light intensity, one of the plurality of optical sensors is selected.
    The main measurement of the biometric data was performed using one optical sensor selected based on the comparison result of the light intensity.
    A biometric information acquisition method for acquiring biometric information by analyzing the biometric data obtained as a result of the present measurement.
  10.  一定の時間間隔で、前記複数の生体センサを用いて、前記生体データの前測定を行い、
     前記複数の光学式センサのそれぞれから出力される前記生体データに基づいて、前記複数の光学式センサがそれぞれ検知した光の強度を比較し、
     前記光の強度の比較結果に基づいて、前記本測定に用いる1つの光学式センサを再選択する
     ことを特徴とする請求項9に記載の生体情報取得方法。
    Pre-measurement of the biometric data is performed using the plurality of biosensors at regular time intervals.
    Based on the biometric data output from each of the plurality of optical sensors, the light intensities detected by the plurality of optical sensors are compared.
    The biometric information acquisition method according to claim 9, wherein one optical sensor used for the present measurement is reselected based on the comparison result of the light intensity.
  11.  前記本測定に用いられる1つの光学式センサから出力される前記生体データのS/N比が、前記本測定の開始直後から50%以上低下した場合、
     前記前測定を再び行い、
     前記複数の光学式センサのそれぞれから出力される生体データに基づいて、前記複数の光学式センサがそれぞれ検知した光の強度を比較し、
     前記光の強度の比較結果に基づいて、前記本測定に用いる1つの光学式センサを再選択する
     ことを特徴とする請求項9に記載の生体情報取得方法。
    When the S / N ratio of the biometric data output from one optical sensor used for the main measurement decreases by 50% or more immediately after the start of the main measurement.
    Perform the pre-measurement again and
    Based on the biometric data output from each of the plurality of optical sensors, the light intensities detected by the plurality of optical sensors are compared.
    The biometric information acquisition method according to claim 9, wherein one optical sensor used for the present measurement is reselected based on the comparison result of the light intensity.
  12.  互いに異なる波長または波長域の光を生体へ投射する複数の光学式センサを用いて、生体データの前測定を行うことと、
     前記複数の光学式センサのそれぞれから出力される生体データに基づいて、前記複数の光学式センサがそれぞれ検知した光の強度を比較することと、
     前記光の強度の比較結果に基づいて、前記複数の光学式センサのうち1つを選択することと、
     前記光の強度の比較結果に基づいて選択した1つの光学式センサを用いて、前記生体データの本測定を行うことと、
     前記本測定の結果として得られた前記生体データを分析することによって、生体情報を取得することと
     をコンピュータに実行させるためのプログラムを格納した、一時的でない記録媒体。
    Pre-measurement of biometric data using multiple optical sensors that project light of different wavelengths or wavelengths onto the living body.
    Comparing the light intensities detected by each of the plurality of optical sensors based on the biometric data output from each of the plurality of optical sensors, and
    To select one of the plurality of optical sensors based on the comparison result of the light intensity, and to select one of the plurality of optical sensors.
    Using one optical sensor selected based on the comparison result of the light intensity, the main measurement of the biometric data can be performed.
    A non-temporary recording medium containing a program for causing a computer to acquire biometric information by analyzing the biometric data obtained as a result of the present measurement.
  13.  前記プログラムは、
     一定の時間間隔で、前記複数の生体センサを用いて、前記生体データの前測定を行うことと、
     前記複数の光学式センサのそれぞれから出力される前記生体データに基づいて、前記複数の光学式センサがそれぞれ検知した光の強度を比較することと、
     前記光の強度の比較結果に基づいて、前記本測定に用いる1つの光学式センサを再選択することと
     をコンピュータに実行させることを特徴とする請求項12に記載の記録媒体。
    The program
    Pre-measurement of the biometric data using the plurality of biosensors at regular time intervals
    Comparing the intensity of light detected by each of the plurality of optical sensors based on the biometric data output from each of the plurality of optical sensors, and
    The recording medium according to claim 12, wherein a computer is made to reselect one optical sensor used for the present measurement based on the comparison result of the light intensity.
  14.  前記プログラムは、
     前記本測定に用いられる1つの光学式センサから出力される前記生体データのS/N比が、前記本測定の開始直後から50%以上低下した場合、
     前記前測定を再び行うことと、
     前記複数の光学式センサのそれぞれから出力される生体データに基づいて、前記複数の光学式センサがそれぞれ検知した光の強度を比較することと、
     前記光の強度の比較結果に基づいて、前記本測定に用いる1つの光学式センサを再選択することと
     をコンピュータに実行させることを特徴とする請求項12に記載の記録媒体。
    The program
    When the S / N ratio of the biometric data output from one optical sensor used for the main measurement decreases by 50% or more immediately after the start of the main measurement.
    Re-doing the pre-measurement and
    Comparing the light intensities detected by each of the plurality of optical sensors based on the biometric data output from each of the plurality of optical sensors, and
    The recording medium according to claim 12, wherein a computer is made to reselect one optical sensor used for the present measurement based on the comparison result of the light intensity.
PCT/JP2020/034886 2020-09-15 2020-09-15 Biological information acquisition device, system, biological information acquisition method, and recording medium WO2022059063A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022550066A JPWO2022059063A5 (en) 2020-09-15 Biometric information acquisition device, biometric information acquisition method, and program
PCT/JP2020/034886 WO2022059063A1 (en) 2020-09-15 2020-09-15 Biological information acquisition device, system, biological information acquisition method, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/034886 WO2022059063A1 (en) 2020-09-15 2020-09-15 Biological information acquisition device, system, biological information acquisition method, and recording medium

Publications (1)

Publication Number Publication Date
WO2022059063A1 true WO2022059063A1 (en) 2022-03-24

Family

ID=80776843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034886 WO2022059063A1 (en) 2020-09-15 2020-09-15 Biological information acquisition device, system, biological information acquisition method, and recording medium

Country Status (1)

Country Link
WO (1) WO2022059063A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005040608A (en) * 2003-07-21 2005-02-17 Siemens Ag Training adjusting method and device in sport
JP2011212387A (en) * 2010-04-02 2011-10-27 Seiko Epson Corp Measuring device
JP2012019926A (en) * 2010-07-14 2012-02-02 Rohm Co Ltd Plethysmogram sensor
US20130261415A1 (en) * 2012-03-30 2013-10-03 General Electric Company System and methods for physiological monitoring
JP2016537069A (en) * 2013-10-17 2016-12-01 ラフバラ・ユニバーシティLoughborough University Photophysiological sensor and assembly method
JP2017169690A (en) * 2016-03-22 2017-09-28 ソニー株式会社 Biological information measuring device and electronic equipment
JP2019120684A (en) * 2017-12-29 2019-07-22 三星電子株式会社Samsung Electronics Co.,Ltd. Biological component measuring apparatus and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005040608A (en) * 2003-07-21 2005-02-17 Siemens Ag Training adjusting method and device in sport
JP2011212387A (en) * 2010-04-02 2011-10-27 Seiko Epson Corp Measuring device
JP2012019926A (en) * 2010-07-14 2012-02-02 Rohm Co Ltd Plethysmogram sensor
US20130261415A1 (en) * 2012-03-30 2013-10-03 General Electric Company System and methods for physiological monitoring
JP2016537069A (en) * 2013-10-17 2016-12-01 ラフバラ・ユニバーシティLoughborough University Photophysiological sensor and assembly method
JP2017169690A (en) * 2016-03-22 2017-09-28 ソニー株式会社 Biological information measuring device and electronic equipment
JP2019120684A (en) * 2017-12-29 2019-07-22 三星電子株式会社Samsung Electronics Co.,Ltd. Biological component measuring apparatus and method

Also Published As

Publication number Publication date
JPWO2022059063A1 (en) 2022-03-24

Similar Documents

Publication Publication Date Title
CA3010164C (en) Device, system and method for non-invasive monitoring of physiological measurements
US10506953B2 (en) Operation-verifying wearable vapor sensor
US10188329B2 (en) Self-contained regional oximetry
US6600946B1 (en) Methods and apparatus for quantifying dermal hydration
JP4710084B2 (en) Biological information measuring device
KR20190081051A (en) Apparatus for measuring biological signal and operating method thereof
US20180310880A1 (en) Methods for Reducing Noise in Optical Biological Sensors
US10335087B2 (en) Biosignal processing apparatus and biosignal processing method
KR20190119414A (en) Apparatus and method for measuring bio-information
EP1774903B1 (en) Metabolic rate measuring apparatus
KR20190056871A (en) Apparatus and method for measuring bio-information
US20220354398A1 (en) Device, system and method for non-invasive monitoring of physiological measurements
KR20240019185A (en) Method and Apparatus for measuring aging parameter based on gait speed
WO2022059063A1 (en) Biological information acquisition device, system, biological information acquisition method, and recording medium
WO2022059062A1 (en) Biological information acquisition device, system, biological information acquisition method, and recording medium
KR101661287B1 (en) Method For Non-Invasive Glucose Measurement And Non-Invasive Glucose Measuring Apparatus using the same Method
KR20170017989A (en) Biological information measurement Necklace
US20220257131A1 (en) Portable sensor system with measuring patch
WO2022059083A1 (en) Living body detection device, biological information acquisition device, biological information acquisition method, and recording medium
KR20190143340A (en) Apparatus and method for measuring bio-information
CN205679616U (en) A kind of Immunofluorescence test instrument for acute myocardial infarction detection
EP3961171A1 (en) Apparatus and method for measuring body temperature, and apparatus for estimating bio-information
JP6845520B1 (en) Biological information calculation system
WO2022050334A1 (en) Biological information calculation system
WO2024012479A1 (en) Devices, systems and methods for blood glucose monitoring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954049

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022550066

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954049

Country of ref document: EP

Kind code of ref document: A1