WO2022058639A1 - Dispositivo de detección pasiva de eventos - Google Patents

Dispositivo de detección pasiva de eventos Download PDF

Info

Publication number
WO2022058639A1
WO2022058639A1 PCT/ES2021/070679 ES2021070679W WO2022058639A1 WO 2022058639 A1 WO2022058639 A1 WO 2022058639A1 ES 2021070679 W ES2021070679 W ES 2021070679W WO 2022058639 A1 WO2022058639 A1 WO 2022058639A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
ion
activated
battery
conducting
Prior art date
Application number
PCT/ES2021/070679
Other languages
English (en)
French (fr)
Inventor
Marc CASTELLARNAU
Jose Gabriel MACIAS
Neus SABATE
Juan Pablo ESQUIVEL
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Institució Catalana De Recerca I Estudis Avançats (Icrea)
Fuelium, S.L.
Institut De Física D'altes Energies (Ifae)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Institució Catalana De Recerca I Estudis Avançats (Icrea), Fuelium, S.L., Institut De Física D'altes Energies (Ifae) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Priority to US18/027,279 priority Critical patent/US20240038044A1/en
Priority to CN202180074282.8A priority patent/CN117044243A/zh
Priority to JP2023518429A priority patent/JP2023548276A/ja
Priority to EP21868787.9A priority patent/EP4216144A1/en
Publication of WO2022058639A1 publication Critical patent/WO2022058639A1/es

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/06Electric actuation of the alarm, e.g. using a thermally-operated switch
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/005Fire alarms; Alarms responsive to explosion for forest fires, e.g. detecting fires spread over a large or outdoors area
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B7/00Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00
    • G08B7/06Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00 using electric transmission, e.g. involving audible and visible signalling through the use of sound and light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/32Deferred-action cells activated through external addition of electrolyte or of electrolyte components
    • H01M6/34Immersion cells, e.g. sea-water cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1286Fuel cells applied on a support, e.g. miniature fuel cells deposited on silica supports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/12Alarms for ensuring the safety of persons responsive to undesired emission of substances, e.g. pollution alarms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/40Controlling or monitoring, e.g. of flood or hurricane; Forecasting, e.g. risk assessment or mapping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the object of the invention is a passive event detection device, which belongs to the field of wireless sensor nodes, in which a physical/chemical parameter is continuously monitored and remotely communicated to a receiver.
  • the device avoids the current energy consumption for the continuous monitoring of a physical magnitude, such as temperature, and implements a self-activation strategy that consumes absolutely no energy until relevant information from the environment is needed to be stored and/or stored. or communicated.
  • IoT is still in the early stages of growth, current estimates point to more than nine billion connected devices around the world. This number is expected to increase exponentially, with estimates ranging from 25 billion to 50 billion devices in 2025.
  • sensing nodes The autonomy of sensing nodes has been largely identified as a key functionality feature within the digital landscape and so far, significant financial and technological efforts have been made over the last decade to obtain sustainable energy sources capable of harvesting energy from the environment (light, heat and movement).
  • the Internet of Things can be defined as a network of nodes capable of monitoring physical or chemical magnitudes, providing relevant information related to the security of individuals and objects and, if required, performing an action. This implies continuous monitoring to assess that a safety-relevant magnitude has not reached an alarming threshold value, and consequently continuous energy consumption to monitor its environment.
  • the imminent implementation of the Internet of Things (IoT) scenario will imply a dramatic increase in energy needs that will not be met by the use of batteries alone. laptops.
  • many of the loT systems are designed to monitor single unwanted events such as water floods, fires, vacuum breaks, presence of toxic gas, etc., which occur rarely throughout the life of the device. . This means that most of these systems make use of electrical energy to continuously monitor the absence of relevant events.
  • the technologies used to carry out the detection are diverse, as well as the communication strategies used to send the recorded signal (depending on the distance to the receiver). In addition, all of them need energy to function continuously. Some of these devices are connected to the electrical network while others need an autonomous battery due to their location, the need for a power supply being a common feature.
  • forest fire detection and monitoring is done by three main methods: using optical cameras; detecting the humidity, composition and temperature of the air with networks of wireless sensors; and analyzing infrared image data from geostationary satellites every 30 to 15 minutes with a spatial resolution of 3 km.
  • Fire detection in buildings is carried out by means of sensors for the detection of smoke and/or very high temperatures through active fire detection systems usually located on the ceilings in each room.
  • liquid-activated batteries are devices that consist of at least two electroactive electrodes, at least one of them for oxidation (anode (12)) and at least one of them for reduction (cathode (13)) connected by a material (or a receptacle/cavity) (14) hydrophilic and/or porous capable of containing a fluid (11), as represented in Fig. 6.
  • the battery begins to function after the addition of the fluid (11), since This fluid acts as the battery's electrolyte.
  • the liquid used to activate the battery operation is generally a water-based fluid.
  • These batteries are primary batteries that stop working when one of the electrodes runs out. Their limited operating time and their simplicity in terms of structure and materials used make them particularly suitable for short-term applications such as diagnostic or portable devices.
  • the passive event detection device comprises a phase change material (PCM, Phase Change Material) that responds to physical/chemical changes in the environment that allow the development of wireless detection nodes with zero consumption power during detection. Electrical energy from a liquid-activated battery is used only when there is a detectable change in the environment.
  • PCM Phase Change Material
  • the device uses the solid-to-liquid phase changes of the PCM material to convert a change in a physical/chemical parameter of the surrounding environment into electrical energy, preferably using the resulting liquid phase to power a liquid-powered battery.
  • the activation of the battery allows to generate a pulse of electrical energy that can be used to power an electronic module.
  • the electronic module can detect, act on and/or report on the status of the device and its surrounding environment. For example, the electronic module can generate and optionally send an alarm signal to a remote receiver by radio frequency, light, sound or any other data transmission mode. Alternatively, electrical power generated in the battery can be used to illuminate an informative display or geolocate the device.
  • the battery-PCM combination remains dormant until the PGM material picks up enough energy from the environment to phase transition (ie, become liquid). Contrary to the current loT paradigm, this device would not consume power unless a significant event occurred, thus using the electrochemical energy stored in the liquid-activated battery only when the system gathers relevant information to report.
  • the proposed device could be adapted and used in multiple applications depending on the parameter responsible for the phase change transition of the PGM, which extends from physical parameters such as temperature, mechanical stress, hydrostatic pressure, electromagnetic field, electric field, radiation and radioactivity to chemical parameters such as gas composition, water absorption, pH, etc.
  • Phase change materials of this type could generate passive alarm systems for the detection of associated physical/chemical parameters in buildings, parking areas, research facilities, factories, transportation, and forests among the most relevant. It could also be used, for example, for package monitoring (temperature, location, and humidity), cold chain monitoring in the retail sector (pharmacy, chemicals, food), fire detection in private or public buildings or in open spaces (forests) or gas detection in professional environments (laboratories, clean rooms), monitoring in the equipment of individuals of temperature, radiation levels, concentration of gases for safety reasons (firefighters or other workers under thermal stress, of radiation or severe chemical), among others.
  • the device has the advantages of being low cost, environmentally friendly, and yet smart, as it simplifies manufacturing and minimizes the quantity and diversity of materials and electrical components required to enable ubiquitous monitoring of large spaces for long periods of time.
  • the device comprises a liquid activated battery and a PGM material placed in contact with the liquid activated battery.
  • the device also comprises an electronic module, connected to the liquid activated battery. This Thus, when the PCM material changes from solid to liquid, the liquid activated battery is activated and the electronic module is turned on.
  • the electronic module can then store information in an internal or external memory, detect the environment (temperature, humidity, etc.), activate an actuator (valve, motor, etc.) or generate a signal, which can be perceived from the outside, or that it can be sent to an external device.
  • the information provided by the electronic module can be transmitted by any means in the form of radiofrequency waves, light, sound, vibration, or can be stored in a memory contained in the electronic module, for example.
  • the PCM material and the electronic module can be placed on a support substrate that can be rigid or flexible.
  • the device can be made in the form of a label, which can then be attached to any surface.
  • the PCM material may be an ion-conductive (electrolytic) material in its liquid phase (non-ion-conductive in its solid state) and in direct contact with the liquid-activated battery, either outside the battery liquid activated, or inside the liquid activated battery, and would act as the battery's electrolyte after the phase change event where it changes from solid to liquid.
  • ion-conductive (electrolytic) material in its liquid phase (non-ion-conductive in its solid state) and in direct contact with the liquid-activated battery, either outside the battery liquid activated, or inside the liquid activated battery, and would act as the battery's electrolyte after the phase change event where it changes from solid to liquid.
  • the PCM material may be a non-ion conducting PCM material, and in this case the device further comprises an ion conducting liquid, intended to be the one to activate the liquid activated battery.
  • the non-ion-conducting PCM material acts as a barrier between the ion-conducting liquid and the liquid-activated battery, allowing its activation when the non-ion-conducting PCM material changes from a solid to a liquid and the ion-conducting liquid comes into contact with the liquid activated battery.
  • the ion-conducting liquid and the non-ion-conducting PCM material are located on the outside of the liquid-activated battery, for example, the ion-conducting liquid is stored in a reservoir, and the ion-non-conducting PCM material is placed as a barrier that separates the ion-conducting material from the liquid-activated battery.
  • the non-ion-conducting PCM material may form microcapsules containing the ion-conducting liquid, and the microcapsules may be located in contact with the liquid-activated battery (outside) and/or inserted into the liquid-activated battery. . In this way, when the non-ion-conducting PCM material changes from solid to liquid, the ion-conducting liquid is released and activates the liquid-activated battery.
  • the non-ion-conducting PCM material may be a substrate of a porous material, wherein the ion-conducting liquid is located in the pores of the non-ion-conducting PCM material.
  • the non-ion conducting PCM material may be located outside and in contact with the liquid activated battery, or it may be inserted into the liquid activated battery.
  • the information to be detected from the environment is encoded in the properties of the PCM material, which can be tuned and designed to trigger the phase transition of the material.
  • the volume, geometry, and intrinsic physical and/or chemical properties of the PCM material are variables that allow adjustment of the ambient energy required for the PCM material to undergo phase transition. This can be used to adjust the characteristics of the PCM material to suit a particular intensity and/or duration of the environmental parameter so that the PCM material will phase transition when pre-set conditions are complete.
  • Figure 1. Shows a view of the tank containing the ion-conducting liquid, separated from the liquid-activated battery by means of the non-ion-conducting PCM material.
  • Figure 2. Shows a general view of the device, in an embodiment of the invention.
  • Figure 3. Shows the electrical output voltage of the battery-PCM assemblies sensitive to temperature with different PCM materials that are activated at different temperatures.
  • Figure 4.- Shows a diagram of the different components of the electronic module integrated in one embodiment of the device.
  • Figure 5. Shows the experimental validation of the activation of the device after a significant rise in ambient temperature.
  • Figure 6. Shows a diagram of the state-of-the-art liquid-activated battery.
  • Figure 7. Shows a diagram of the different components of the electronic module of the device shown in Figure 2.
  • the passive event detection device comprises a liquid-activated battery (1) and a PCM material (2), located in contact with the liquid-activated battery (1).
  • the liquid activated battery (1) is a single use paper battery.
  • the device also comprises an electronic module (4), connected to the liquid activated battery (1).
  • the electronic module (4) can comprise a memory, a transmitter (6), and an actuator or one or more sensors that are activated when the electronic module (4) is turned on.
  • the electronic module (4) can store information in memory, can perform an action with the actuator (open a valve, start a motor), can detect the environment (temperature, humidity, etc.) or can send a signal that can be visible from the outside, or can be sent to an external device.
  • the signal emitted by the electronic module (4) can be a radiofrequency signal, a light, a sound, a vibration, or it can be stored in a memory contained in the electronic module (4), for example.
  • the event that caused the change of the PCM material (2) from solid to liquid can be a change in temperature, light, pressure, gas concentration, radioactivity, etc. In this case, a temperature change is going to be studied as the activator of the PCM material (2).
  • the liquid activated battery (1), the PCM material (2) and the electronic module (4) can be placed on a support substrate (5).
  • the PCM material (2) is an ion-conducting PCM material (2) (being only an ion conductor in its liquid phase and not an ion conductor in its solid phase), it is placed in direct contact with the battery liquid-activated battery (1), either outside the liquid-activated battery (1), or inside the liquid-activated battery (1), in the form of, for example, microcapsules inserted into the liquid-activated battery liquid (1).
  • the PCM material (2) is an ion-conducting material, so as to be able to activate the liquid-activated battery (1) when it melts.
  • the device comprises a flexible substrate (5), in which the liquid-activated battery (1) and the non-ion-conducting PCM material (2) are in contact. direct with the battery activated by liquid (1).
  • the device also comprises an electronic module (4) connected to the liquid activated battery (1), and an antenna (6) to send a signal to an external device when the battery (1) is activated.
  • the device further comprises an ion-conducting liquid, intended to be the one that activates the liquid-activated battery (1).
  • the PCM material (2) acts as a barrier between the ion-conducting liquid and the liquid-activated battery (1), allowing its activation when the non-ion-conductive PCM material (2) melts and the ion-conductive liquid comes into contact with the liquid-activated battery (1).
  • the first shown in figure 1, is when the ion-conducting liquid and the non-ion-conducting PCM material (2) are outside the liquid-activated battery (1), being, for example, the liquid ion-conductive stored in a reservoir (3), a capsule in this case, with the non-ion-conducting PCM material (2) placed as a thin layer that seals the reservoir (3), separating the ion-conducting liquid from the battery liquid activated (1).
  • the ambient temperature passes the phase transition temperature of the non-ion-conducting PCM material (2)
  • the reservoir (3) releases the ion-conducting liquid and activates the liquid-activated battery (1), activating the module (4) electronic.
  • the non-ion-conducting PCM material (2) forms microcapsules, which contain the ion-conducting liquid, and the microcapsules are placed outside and in contact with the liquid-activated battery (1) and/or are inserted into the liquid activated battery (1). In this way, when the non-ion-conducting PCM material (2) melts, the ion-conducting liquid activates the liquid-activated battery (1).
  • the non-ion-conducting PCM material (2) may be a substrate of a porous material, wherein the ion-conducting liquid is located in the pores of the non-ion-conducting PCM material (2).
  • the non-ion-conductive PCM material (2) may be placed outside and in contact with the liquid-activated battery (1), or it may be inserted into the liquid-activated battery (1).
  • the PCM (2) material can be chosen to operate at different temperature ranges, with different phase transition temperatures, as shown in figure 3.
  • the figure presents the operation of temperature-sensitive batteries designed to activate at three different temperatures.
  • the measured battery voltage in each device rises when the surrounding temperature reaches the phase transition of the PCM material (2).
  • the ability to define the activation temperature based on the selection of the PCM material (2) makes this approach a versatile solution for different applications where temperature is a key factor.
  • the continuous lines represent the evolution of the electrical voltage of the battery; the dotted lines represent the temperature measured near the battery.
  • the temperature values represented by large dots indicate the ambient temperature at which batteries with different PCMs activate.
  • the electronic module (4) performs three main functions: first, the regulation of the electrical voltage produced by the battery (1) and its elevation to 3.3 V to power the commercial components included in the module; second, monitoring the temperature and humidity of the device; and third, connecting to a master station (external device) using a dedicated point-to-point communications protocol.
  • the battery management section (1) comprises, as shown in figure 4, a battery level with latency that allows a switch to adjust for the activation dynamics of the battery (1) and provides a source of supply to all the electronics in a synchronized way.
  • a microcontroller (7) manages the operation of the entire electronic module (4). Every two seconds, it reads the measurements of a temperature and humidity sensor (8) located in the substrate (5) and sends the reading to an RF (radio frequency) transceiver (10) that communicates with a master in the ISM band ( of the English “Industrial, Scientific and Medical') of 2.4 GHz.
  • the substrate (5) of the device can be in label format, as shown in figure 2, with a flexible surface. It may be composed of a biodegradable material. In this way, in case the device is used to monitor forest fires, it will not contaminate them. Furthermore, if the device is used to monitor paper containers, these will still be recyclable, avoiding plastic material that could disrupt the established recycling process.
  • All the components of the device can be manufactured with a printed and roll-to-roll manufacturing process including the hybridization of the electronic module (4), which will be integrated into a single microelectronic chip to reduce cost, area, consumption, complexity and environmental impact after removal, as shown in Figure 7.
  • the liquid-activated battery (1) is a paper-based battery
  • the substrate (5) is composed of a biodegradable material
  • the electronic module (4) comprises, such as shown in Figure 7, one or more thin-film antennas (6) (with carbon nanotubes or similar) printed on the biodegradable substrate (5), and an Application Specific Integrated Circuit (ASIC) without encapsulation connected to the antennas (6) and the liquid activated battery (1).
  • ASIC Application Specific Integrated Circuit
  • the ASIC comprises a battery management unit, a dedicated digital controller with memory banks, physical and chemical sensing circuitry, an ID chip, an Ultra High Frequency (UHF) transceiver without quartz crystals, and a drive with a power amplifier for transmission and a low noise amplifier for reception.
  • UHF Ultra High Frequency
  • the passive event detection device was placed inside an oven that was set to increase in temperature from 25°C to 70°C (the oven temperature is indicated as “environment with thermocouple”).
  • the electrical voltage of the battery (1) was measured and an external thermocouple was inserted inside the device to record the temperature evolution (solid smoother line indicated as “Thermocouple inside the prototype”) .
  • the device was designed to be activated when the temperature inside the device exceeds 55°C. As can be seen, the electrical voltage of the battery (1) rises when the device reaches the set temperature. Once activated, the sensors (8) incorporated in the electronic module (4) begin to record the temperature, process the information and send the data wirelessly. A compatible data receiver processes the information sent by the device.
  • the dotted line (indicated as “prototype module T sensor”) represents the received temperature data, which matches the temperature recorded with the external thermocouple.
  • the boxes in the figure show the fluctuations in battery voltage (1) due to circuit power consumption during standby time, data acquisition, and data transmission.
  • the device can be applied in various fields, and some of them are explained below.
  • the device would only use electrical energy from the battery (1) when the alarming event (a sudden rise in temperature) causes the PGM material (2) to change state from solid to liquid.
  • the activation of the battery (1) would allow to send a signal from the module email (4) to a receiver located a long distance from the event.
  • a set of devices distributed in the forest can provide accurate information on fire dynamics at night when the fire brigade is not allowed to use aerial equipment to assess direction. and fire intensity. Such information is crucial for planning firefighting actions with the best chance of success.
  • the availability of the device located in strategic places with higher flammability probabilities would allow the fire to be detected at a very early stage.
  • the device can be placed near the most likely fire sources, such as garbage cans or electrical panels, which will activate much faster than smoke or fire detectors on ceilings.
  • the device When applied to packages, the device can be activated if the package has been subjected to undesirable thermal conditions. For example, temperatures above 0 or in the case of frozen products or temperatures above 30° in the case of perishable chemical reagents.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • Emergency Management (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Primary Health Care (AREA)
  • Game Theory and Decision Science (AREA)
  • Electrochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Development Economics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Educational Administration (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Signal Processing (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Secondary Cells (AREA)
  • Burglar Alarm Systems (AREA)
  • Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Alarm Systems (AREA)

Abstract

Con consumo nulo de energía hasta que tiene lugar un evento alarmante, ya que aprovecha la ventaja de la transición de fase de un material PCM (2) (material de cambio de fase) para monitorizar eventos físicos/químicos relevantes. Si el material PCM (2) es conductor de iones, el dispositivo comprende una batería activada por líquido (1), un material PCM (2) no conductor de iones, situado en contacto con la batería activada por líquido (1), y un módulo electrónico (4), conectado a la batería activada por líquido (1), que se activa con la batería. Si el material PCM (2) es un material PCM (2) no conductor de iones, el dispositivo comprende adicionalmente un líquido conductor de iones, y donde dicho material PCM (2) no conductor de iones se sitúa como una barrera entre el líquido conductor de iones y la batería activada por líquido (1).

Description

DISPOSITIVO DE DETECCIÓN PASIVA DE EVENTOS
Figure imgf000003_0001
OBJECTO DE LA INVENCIÓN
El objeto de la invención es un dispositivo de detección pasiva de eventos, que pertenece al campo de los nodos de sensores inalámbricos, en el cual un parámetro físico/químico es monitorizado continuamente y comunicado a un receptor de manera remota. El dispositivo evita el actual consumo de energía para la monitorización continua de una magnitud física, tal como la temperatura, e implementa una estrategia de auto activación que no consume absolutamente ninguna energía hasta que se necesite una información relevante del ambiente para que sea almacenada y/o comunicada.
ANTECEDENTES DE LA INVENCIÓN
Resulta incuestionable que el desarrollo del panorama actual del Internet de las cosas (loT, Internet of Things'), que es posible mediante múltiples sistemas autónomos de energía que son ampliamente capaces de detectar, diagnosticar, decidir y actuar de forma comunicativa y colaborativa, está conduciendo a la sociedad hacia una nueva era digitalizada.
Aunque el loT se encuentra todavía en las primeras etapas de crecimiento, las estimaciones actuales apuntan a más de nueve mil millones de dispositivos conectados alrededor del mundo. Se espera que esta cantidad se incremente exponencialmente, con estimaciones que oscilan de 25 mil millones a 50 mil millones de dispositivos en 2025.
La autonomía de los nodos de detección se ha identificado en gran medida como una característica de funcionalidad clave dentro del escenario digital y hasta ahora, durante la última década se han realizado esfuerzos financieros y tecnológicos significativos para obtener fuentes de energía sostenibles capaces de recoger energía del entorno (luz, calor y movimiento).
Sin embargo, los dispositivos de detección autónomos del estado del arte de la tecnología utilizan baterías, ya que son los únicos candidatos para proporcionar una energía eléctrica suficiente y de manera fiable, mientras que los elementos colectores de energía (células solares, generadores termoeléctricos, generadores piezoeléctricos, etc...) se utilizan para extender el tiempo de operación limitado de tales baterías. Sin embargo, no queda claro si las necesidades energéticas de miles de millones de dispositivos demandantes de energía eléctrica van a poder satisfacerse con las tecnologías de las baterías actuales, como ocurre en las previsiones de demanda en sectores en crecimiento como el transporte y la computación, lo que parece comprometer la disponibilidad de litio y otros materiales clave para las baterías.
En particular, el internet de las cosas (loT) puede definirse como una red de nodos capaz de monitorizar magnitudes físicas o químicas, proporcionar información relevante relacionada con la seguridad de individuos y objetos y si se requiere, realizar una acción. Esto implica una monitorización continua para evaluar que una magnitud relevante para la seguridad no haya alcanzado un valor umbral alarmante, y en consecuencia un continuo consumo de energía para monitorizar su entorno.
A pesar de todos los esfuerzos dirigidos a desarrollar dispositivos electrónicos de detección y comunicaciones de bajo consumo, la inminente implementación del escenario del Internet de las cosas (loT) implicará un dramático incremento en las necesidades energéticas que no se cumplirán únicamente con el uso de baterías portátiles. Más aún, muchos de los sistemas del loT están destinados a vigilar eventos únicos no deseados tales como inundaciones de agua, incendios, roturas de vacío, presencia de gas tóxico, etc., que tienen lugar rara vez a lo largo de la vida del dispositivo. Esto significa que la mayoría de estos sistemas hacen uso de la energía eléctrica para monitorizar de forma continua la ausencia de eventos relevantes.
Las fuentes de alimentación fiables y estables son factores clave para asegurar un escenario de monitorización de varios meses a años. Se han realizado esfuerzos significativos de aprovechamiento de energía del medio ambiente de forma continua en la última década. El aprovechamiento de energía solar, de sistemas de flujo (viento e hidrológicos), de energía térmica y mecánica ha evolucionado para proporcionar la suficiente energía eléctrica para permitir las comunicaciones inalámbricas bajo condiciones de ambiente controlado.
No obstante, su dependencia en las condiciones medioambientales limita su aplicación en una gama de emplazamientos muy limitada. Esto convierte las baterías primarias en la fuente de energía eléctrica de mayor preferencia para las redes de sensores inalámbricos que en la actualidad permite extender la autonomía energética de los nodos inalámbricos hasta varios años con la optimización de módulos de bajo consumo.
Sin embargo, la actual predominancia de baterías primarias en el panorama del loT y la esperada fuerte penetración en el mercado de los módulos de detección, permiten prever una enorme producción, uso y desechabilidad de componentes de batería que representa un panorama bastante poco ecológico. Más aún, la necesidad de una fuente de alimentación supone una gran limitación en términos de autonomía para aquellos sensores situados en una localización remota.
Las tecnologías utilizadas para realizar la detección son diversas, así como las estrategias de comunicaciones utilizadas para enviar la señal registrada (dependiendo de la distancia al receptor). Además, todas ellas necesitan energía para funcionar de forma continua. Algunos de estos dispositivos se conectan a la red eléctrica mientras que otros necesitan una batería autónoma debido a su localización siendo la necesidad de una fuente de alimentación una característica común.
Como un ejemplo en particular, la detección y monitorización de incendios en bosques se realiza mediante tres métodos principales: utilizando cámaras ópticas; detectando la humedad, la composición y la temperatura del aire con redes de sensores inalámbricos; y analizando datos de imágenes de infrarrojo de satélites geoestacionarios cada 30 o 15 minutos con una resolución espacial de 3 km. La detección de incendios en edificios se realiza mediante sensores para la detección de humos y/o de temperaturas muy altas a través de sistemas activos de detección de incendios situados habitualmente en los techos en cada estancia.
Por lo tanto, se pierde una gran cantidad de energía, ya que todos estos dispositivos funcionan constantemente en el modo en espera. Además, cuando existe la necesidad de mediciones muy precisas, estos sistemas verifican su entorno de forma constante. Cuando los sistemas requieren mediciones menos precisas, dichos sistemas utilizan menos energía al realizar verificaciones muy separadas en el tiempo, y por lo tanto, pierden mediciones relevantes. Existe la necesidad de un dispositivo que combine una pérdida nula de energía manteniendo una monitorización permanente, para evitar consumir constantemente energía eléctrica de una batería y perder cualquier medición relevante.
En este sentido, las baterías activadas por líquido son dispositivos que consisten en al menos dos electrodos electroactivos, al menos uno de ellos de oxidación (ánodo (12)) y al menos uno de ellos de reducción (cátodo (13)) conectados por un material (o un receptáculo/cavidad) (14) hidrófilo y/o poroso capaz de contener un fluido (11), tal como se representa en la Fig. 6. La batería comienza a funcionar tras la adición del fluido (11), ya que este fluido actúa como el electrolito de la batería. El líquido utilizado para activar la operación de la batería es generalmente un fluido a base de agua.
Estas baterías son baterías primarias que dejan de funcionar cuando uno de los electrodos se agota. Su limitado tiempo operativo y su simplicidad en términos de estructura y materiales utilizados, las hacen particularmente adecuadas para aplicaciones a corto plazo tal como dispositivos de diagnóstico o portátiles.
DESCRIPCIÓN DE LA INVENCIÓN
El dispositivo de detección pasiva de eventos, objeto de la presente invención, comprende un material de cambio de fase (PCM, Phase Change Material) que responde a cambios físicos/químicos en el entorno que permiten el desarrollo de nodos de detección inalámbricos con consumo nulo de energía durante la detección. La energía eléctrica de una batería activada por líquido se utiliza únicamente cuando se produce un cambio detectable en el entorno.
El dispositivo utiliza los cambios de fase de sólido a líquido del material PCM para convertir un cambio en un parámetro físico/químico del entorno circundante en energía eléctrica, utilizando preferiblemente la fase líquida originada para activar una batería activada por líquido. La activación de la batería permite generar un pulso de energía eléctrica que puede utilizarse para alimentar un módulo electrónico.
El módulo electrónico puede detectar, actuar y/o informar sobre el estado del dispositivo y su entorno circundante. Por ejemplo, el módulo electrónico puede generar y opcionalmente enviar, una señal de alarma a un receptor remoto por radio frecuencia, luz, sonido o cualquier otro modo de transmisión de datos. Alternativamente, la energía eléctrica generada en la batería puede ser utilizada para ¡luminar un visualizador informativo o geolocalizar el dispositivo.
De esta manera, la combinación de batería-PCM permanece inactiva hasta que el material PGM recoge energía suficiente del entorno para realizar la transición de fase (es decir, para volverse líquido). Al contrario que el actual paradigma del loT, este dispositivo no consumiría energía a menos que tuviera lugar un evento significativo, utilizando de este modo la energía electroquímica almacenada en la batería activada por líquido únicamente cuando el sistema reúna información relevante que reportar.
El dispositivo propuesto podría ser adaptado y utilizado en múltiples aplicaciones dependiendo del parámetro responsable de la transición de cambio de fase del PGM, que se extiende desde los parámetros físicos tales como temperatura, esfuerzo mecánico, presión hidrostática, campo electromagnético, campo eléctrico, radiación y radioactividad hasta parámetros químicos tales como composición de gases, absorción de agua, pH, etc.
Los materiales de cambio de fase de este tipo podrían generar sistemas pasivos de alarmas para la detección de los parámetros físicos/químicos asociados en edificios, áreas de aparcamiento, instalaciones para la investigación, fábricas, transporte, y bosques entre los más relevantes. Podría también utilizarse, por ejemplo, para la monitorización de paquetes (temperatura, localización, y humedad), monitorización de la cadena de frío en el sector minorista (farmacia, químicos, alimentación), detección de incendios en edificios de uso privado o público o en espacios abiertos (bosques) o detección de gases en entornos profesionales (laboratorios, salas blancas), monitorización en la equipación de individuos de temperatura, niveles de radiación, concentración de gases por razones de seguridad (bomberos u otros trabajadores bajo esfuerzo térmico, de radiación o químico severo), entre otros.
El dispositivo tiene las ventajas de ser de bajo coste, respetuoso con el medio ambiente, y aun así inteligente, ya que simplifica la fabricación y minimiza la cantidad y la diversidad de los materiales y los componentes eléctricos que se requieren para permitir la monitorización ubicua de grandes espacios durante periodos de tiempo extensos.
Particularmente, el dispositivo comprende una batería activada por líquido y un material PGM situado en contacto con la batería activada por líquido. El dispositivo también comprende un módulo electrónico, conectado con la batería activada por líquido. De esta manera, cuando el material PCM cambia de sólido a líquido, la batería activada por líquido se activa y el módulo electrónico se enciende.
El módulo electrónico puede entonces almacenar información en una memoria interna o externa, detectar el entorno (temperatura, humedad, etc.), activar un actuador (válvula, motor, etc.) o generar una señal, que puede ser percibida desde el exterior, o que puede ser enviada a un dispositivo externo. La información provista por el módulo electrónico puede ser transmitida por cualquier medio en forma de ondas de radiofrecuencia, luz, sonido, vibración, o puede ser almacenada en una memoria contenida en el módulo electrónico, por ejemplo.
En la batería activada por líquido, el material PCM y el módulo electrónico pueden situarse sobre un sustrato de soporte que puede ser rígido o flexible. El dispositivo puede fabricarse en forma de una etiqueta, que después puede adherirse a cualquier superficie.
En relación a la colocación y las características del material PCM en referencia a la batería activada por líquido, existen diversas realizaciones. En primer lugar, el material PCM puede ser un material conductor de iones (electrolítico) en su fase líquida (no conductor de iones en su estado sólido) y en contacto directo con la batería activada por líquido, ya sea en el exterior de la batería activada por líquido, o en el interior de la batería activada por líquido, y actuaría como el electrolito de la batería tras el evento de cambio de fase en el que cambia de sólido a líquido.
En segundo lugar, el material PCM puede ser un material PCM no conductor de iones, y en este caso el dispositivo comprende adicionalmente un líquido conductor de iones, destinado a ser el que active la batería activada por líquido. En este caso, el material PCM no conductor de iones actúa como una barrera entre el líquido conductor de iones y la batería activada por líquido, permitiendo su activación cuando el material PCM no conductor de iones cambia de sólido a líquido y el líquido conductor de iones entra en contacto con la batería activada por líquido.
En este caso, también existen dos posibles realizaciones. El líquido conductor de iones y el material PCM no conductor de iones se encuentran en el exterior de la batería activada por líquido, estando, por ejemplo, el líquido conductor de iones almacenado en un depósito, y el material PCM no conductor de iones situado como una barrera que separa el material conductor de iones de la batería activada por líquido. En otra realización, el material PCM no conductor de iones puede formar microcápsulas que contienen el líquido conductor de iones, y las microcápsulas estar situadas en contacto con la batería activada por líquido (en el exterior) y/o introducidas en la batería activada por líquido. De esta manera, cuando el material PCM no conductor de iones cambia de sólido a líquido, el líquido conductor de iones se libera y activa la batería activada por líquido.
Alternativamente, el material PCM no conductor de iones puede ser un sustrato de un material poroso, en donde el líquido conductor de iones se sitúa en los poros del material PCM no conductor de iones. El material PCM no conductor de iones puede situarse en el exterior y en contacto con la batería activada por líquido, o puede introducirse en la batería activada por líquido.
La información que va a ser detectada del entorno está codificada en las propiedades del material PCM, que pueden ajustarse y diseñarse para activar la transición de fase del material. El volumen, la geometría y las propiedades intrínsecas físicas y/o químicas del material PCM son variables que permiten el ajuste de la energía ambiental requerida para que el material PCM realice la transición de fase. Esto puede utilizarse para ajustar las características del material PCM para que se adapten a una intensidad y/o duración en particular del parámetro ambiental de manera que el material PCM realice la transición de fase cuando se completan las condiciones pre-establecidas.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y para ayudar hacia una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se adjunta un conjunto de dibujos como parte integral de dicha descripción en donde, con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
Figura 1.- Muestra una vista del depósito que contiene el líquido conductor de iones, separado de la batería activada por líquido mediante el material PCM no conductor de iones. Figura 2.- Muestra una vista general del dispositivo, en una realización de la invención.
Figura 3.- Muestra el voltaje eléctrico de salida de los conjuntos de batería-PCM sensible a la temperatura con diferentes materiales PCM que son activados a diferentes temperaturas.
Figura 4.- Muestra un diagrama de los diferentes componentes del módulo electrónico integrado en una realización del dispositivo.
Figura 5.- Muestra la validación experimental de la activación del dispositivo tras una subida significativa de la temperatura ambiente.
Figura 6.- Muestra un diagrama de la batería activada por líquido del estado de la técnica.
Figura 7.- Muestra un diagrama de los diferentes componentes del módulo electrónico del dispositivo que se muestra en la Figura 2.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
Con la ayuda de las figuras 1 a 7, se describe una realización preferente del dispositivo pasivo de detección de eventos.
El dispositivo de detección pasiva de eventos, objeto de la presente invención, comprende una batería activada por líquido (1) y un material PCM (2), situado en contacto con la batería activada por líquido (1). La batería activada por líquido (1) es una batería en formato papel de un solo uso. El dispositivo también comprende un módulo electrónico (4), conectado a la batería activada por líquido (1).
De esta manera, cuando el material PCM (2) cambia de sólido a líquido, la batería activada por líquido (1) se activa y el módulo electrónico (4) se enciende. El módulo electrónico (4) puede comprender una memoria, un emisor (6), y un actuador o uno o más sensores que se activan cuando el módulo electrónico (4) se enciende.
De esta manera, el módulo electrónico (4) puede almacenar información en la memoria, puede realizar una acción con el actuador (abrir una válvula, arrancar un motor), puede detectar el entorno (la temperatura, humedad, etc.) o puede enviar una señal que puede ser visible desde el exterior, o que puede ser enviada a un dispositivo externo.
La señal emitida por el módulo electrónico (4) puede ser una señal de radiofrecuencia, una luz, un sonido, una vibración, o puede ser almacenada en una memoria contenida en el módulo electrónico (4), por ejemplo.
El evento que produjo el cambio del material PCM (2) de sólido a líquido puede ser un cambio en la temperatura, la luz, la presión, la concentración de gas, radiactividad, etc. En este caso, un cambio de temperatura va a ser estudiado como el activador del material PCM (2).
La batería activada por líquido (1), el material PCM (2) y el módulo electrónico (4) pueden situarse en un sustrato (5) de soporte.
En relación a la colocación del material PCM (2) con respecto a la batería activada por líquido (1), existen diversas posibles realizaciones. En primer lugar, si el material PCM (2) es un material PCM (2) conductor de iones (siendo únicamente conductor de iones en su fase líquida y no conductor de iones en su fase sólida), se sitúa en contacto directo con la batería activada por líquido (1), ya sea en el exterior de la batería activada por líquido (1), o en el interior de la batería activada por líquido (1), en forma de, por ejemplo, microcápsulas introducidas en la batería activada por líquido (1). En este caso, el material PCM (2) es un material conductor de iones, para poder activar la batería activada por líquido (1) cuando se funda.
Un ejemplo de esta realización puede verse en la figura 2, en donde el dispositivo comprende un sustrato (5) flexible, en el que la batería activada por líquido (1) y el material PCM (2) no conductor de iones se encuentra en contacto directo con la batería activada por líquido (1). El dispositivo también comprende un módulo electrónico (4) conectado a la batería activada por líquido (1), y una antena (6) para enviar una señal a un dispositivo externo cuando se activa la batería (1).
En segundo lugar, si el material PCM (2) es un material PCM (2) no conductor de iones, el dispositivo comprende adicionalmente un líquido conductor de iones, destinado a ser el que active la batería activada por líquido (1). En este caso, el material PCM (2) actúa como una barrera entre el líquido conductor de iones y la batería activada por líquido (1), permitiendo su activación cuando el material PCM (2) no conductor de iones se funde y el líquido conductor de iones entra en contacto con la batería activada por líquido (1).
En este caso, existen también dos posibles realizaciones. La primera, que se muestra en la figura 1 , es cuando el líquido conductor de iones y el material PCM (2) no conductor de iones están en el exterior de la batería activada por líquido (1), estando, por ejemplo, el líquido conductor de iones almacenado en un depósito (3), una cápsula en este caso, con el material PCM (2) no conductor de iones colocado como una capa fina que sella el depósito (3), separando el líquido conductor de iones de la batería activada por líquido (1). Cuando la temperatura ambiente traspasa la temperatura de transición de fase del material PCM (2) no conductor de iones, el depósito (3) libera el líquido conductor de iones y activa la batería activada por líquido (1), activando el módulo (4) electrónico.
En la segunda realización, el material PCM (2) no conductor de iones forma microcápsulas, las cuales contienen el líquido conductor de iones, y las microcápsulas se sitúan en el exterior y en contacto con la batería activada por líquido (1) y/o se introducen en la batería activada por líquido (1). De esta manera, cuando el material PCM (2) no conductor de iones se funde, el líquido conductor de iones activa la batería activada por líquido (1).
Alternativamente, el material PCM (2) no conductor de iones puede ser un sustrato de un material poroso, en donde el líquido conductor de iones se sitúa en los poros del material PCM (2) no conductor de iones. El material PCM (2) no conductor de iones puede situarse en el exterior y en contacto con la batería activada por líquido (1), o puede introducirse en la batería activada por líquido (1).
El material PCM (2) puede elegirse para operar a diferentes rangos de temperatura, con diferentes temperaturas de transición de fase, tal como se muestra en la figura 3. La figura presenta la operación de las baterías sensibles a la temperatura diseñadas para activarse a tres temperaturas diferentes. Tal como puede verse, la tensión medida de la batería en cada dispositivo se eleva cuando la temperatura circundante alcanza la transición de fase del material PCM (2). La capacidad para definir la temperatura de activación en base a la selección del material PCM (2) convierte esta aproximación en una solución versátil para diferentes aplicaciones en las que la temperatura es un factor clave.
En particular, en la figura 3, las líneas continuas representan la evolución del voltaje eléctrico de la batería; las líneas de puntos representan la temperatura medida cerca de la batería. Los valores de temperatura representados con puntos grandes indican la temperatura ambiente a la que las baterías con diferentes PCM se activan.
El módulo electrónico (4), que se muestra en la figura 4, realiza tres funciones principales: primero, la regulación del voltaje eléctrico producido por la batería (1) y su elevación a 3,3 V para alimentar los componentes comerciales comprendidos en el módulo; segundo, la monitorización de la temperatura y la humedad del dispositivo; y tercero, la conexión a una estación maestra (dispositivo externo) utilizando un protocolo de comunicaciones punto-a- punto dedicado.
La sección de gestión de la batería (1) comprende, tal como se muestra en la figura 4, un nivel de batería con latencia que permite que un conmutador se ajuste para la dinámica de activación de la batería (1) y proporcione una fuente de alimentación a toda la electrónica de forma sincronizada. Un microcontrolador (7) gestiona la operación del módulo electrónico (4) al completo. Cada dos segundos, lee las mediciones de un sensor (8) de temperatura y humedad situado en el sustrato (5) y envía la lectura a un transceptor (10) de RF (radiofrecuencia) que se comunica con un maestro en la banda ISM (del inglés “Industrial, Scientific and Medical’) de 2,4 GHz.
El sustrato (5) del dispositivo puede ser en formato de etiqueta, tal como se muestra en la figura 2, con una superficie flexible. Puede estar compuesto de un material biodegradable. De esta manera, en caso de que el dispositivo se utilice para monitorizar fuegos en los bosques, no los contaminará. Más aún, si el dispositivo se utiliza para monitorizar envases de papel, estos aún serán reciclables, evitando material de plástico que podría alterar el proceso de reciclaje establecido.
Todos los componentes del dispositivo pueden ser fabricados con un proceso de fabricación impresa y de rollo a rollo incluyendo la hibridación del módulo electrónico (4), que será integrado en un único chip microelectrónico para reducir coste, área, consumo, complejidad e impacto medioambiental tras su eliminación, tal como se muestra en la figura 7.
En la realización en la que el dispositivo es biodegradable, la batería (1) activada por líquido es una batería a base de papel, el sustrato (5) está compuesto de un material biodegradable, y el módulo (4) electrónico comprende, tal como se muestra en la figura 7, una o varias antenas (6) de película fina (con nanotubos de carbono o similar) impresas sobre el sustrato (5) biodegradable, y un circuito integrado de aplicación específica (ASIC por sus siglas en inglés Application Specific Integrated Circuit) sin encapsulation conectado a las antenas (6) y la batería activada por líquido (1).
El ASIC comprende una unidad de gestión de la batería, un controlador digital dedicado con bancos de memoria, circuitos sensores físicos y químicos, un chip ID, un transceptor UHF (Ultra High Frecuency, frecuencia ultra alta) sin cristales de cuarzo y una unidad con un amplificador de potencia para la transmisión y un amplificador de bajo ruido para la recepción.
La validación de la operación del dispositivo se muestra en la Figura 5. El dispositivo de detección pasiva de eventos se situó en el interior de un horno que se ajustó para aumentar su temperatura de 25°C a 70°C (la temperatura del horno está indicada como “ambiente con termopar”). Por razones de prueba, se midió el voltaje eléctrico de la batería (1) y se introdujo un termopar externo en el interior del dispositivo para registrar la evolución de la temperatura (línea continua más suave indicada como “Termopar en el interior del prototipo”).
El dispositivo fue diseñado para ser activado cuando la temperatura en el interior del mismo excede los 55°C. Tal como puede verse, el voltaje eléctrico de la batería (1) se eleva cuando el dispositivo alcanza la temperatura establecida. Una vez activados, los sensores (8) incorporados en el módulo electrónico (4) comienzan a registrar la temperatura, procesar la información y enviar los datos de forma inalámbrica. Un receptor de datos compatible procesa la información enviada por el dispositivo.
La línea de puntos (indicada como “sensor de T del módulo del prototipo”) representa los datos de temperatura recibidos, que coinciden con la temperatura registrada con el termopar externo. Los recuadros de la figura muestran las fluctuaciones de la tensión de la batería (1) debido al consumo de energía eléctrica del circuito durante el tiempo en espera, la adquisición de datos y la transmisión de datos.
El dispositivo puede aplicarse en diversos campos, y algunos de ellos se explican a continuación. En un escenario de detección de incendios, el dispositivo únicamente utilizaría la energía eléctrica de la batería (1) cuando el evento alarmante (un aumento repentino de la temperatura) provoca el cambio de estado del material PGM (2) de sólido a líquido. La activación de la batería (1) permitiría enviar una señal desde el módulo electrónico (4) a un receptor situado a larga distancia del evento. Por ejemplo, en un incendio forestal de medianas a grandes dimensiones, un conjunto de dispositivos distribuidos en los bosques puede proporcionar información precisa sobre la dinámica del incendio durante la noche cuando no se permite que la brigada anti-incendios utilice equipo aéreo para evaluar la dirección e intensidad del fuego. Dicha información es crucial para planear las acciones de extinción de fuego con mejores oportunidades de éxito.
En el caso de detección de incendios en edificios, la disponibilidad del dispositivo situado en lugares estratégicos con mayores probabilidades de inflamabilidad permitiría detectar el incendio en una etapa muy inicial. El dispositivo puede situarse cerca de las fuentes de fuego más probables, tales como cubos de basura o paneles eléctricos, que se activarán mucho más rápido que los detectores de humo o incendio en los techos.
Cuando se aplica a paquetes, el dispositivo puede activarse si el paquete ha sido sometido a condiciones térmicas no deseadas. Por ejemplo, temperaturas por encima de 0o en el caso de productos congelados o temperaturas por encima de 30° en el caso de reactivos químicos perecederos.

Claims

1.- Dispositivo de detección pasiva de eventos, que comprende:
- un sustrato (5) de soporte,
- una batería activada por líquido (1), unida al sustrato (5) de soporte,
- un líquido conductor de iones,
- un material PCM (2) (material de cambio de fase, Phase Change Material) no conductor de iones, situado como una barrera física entre el líquido conductor de iones y la batería activada por líquido (1), que cambia de sólido a líquido cuando una magnitud ambiental física o química excede un umbral en intensidad y/o duración, y
- un módulo electrónico (4), conectado a la batería activada por líquido (1), que se enciende cuando se activa la batería activada por líquido (1).
2.- El dispositivo según la reivindicación 1 , en donde el dispositivo comprende adicionalmente un depósito (3) unido al sustrato (5) de soporte, para contener el líquido conductor de iones, estando el material PCM (2) no conductor de iones situado como una barrera que separa el líquido conductor de iones de la batería activada por líquido (1).
3.- El dispositivo, según la reivindicación 1 , en donde el material PCM (2) no conductor de iones toma la forma de microcápsulas, que contienen el líquido conductor de iones, y donde las microcápsulas están en contacto con la batería activada por líquido (1) y/o están insertadas en la batería activada por líquido (1).
4.- El dispositivo según la reivindicación 1, en donde el material PCM (2) no conductor de iones toma forma de un sustrato poroso, en donde el líquido conductor de iones se introduce en unos poros del material PCM (2) no conductor de iones, y donde el material PCM (2) no conductor de iones se sitúa en contacto con la batería activada por líquido (1) y/o se introduce en la batería activada por líquido (1).
5.- Un dispositivo pasivo de detección de eventos, que comprende:
- un sustrato (5) de soporte,
- una batería activada por líquido (1), unida al sustrato (5) de soporte,
- un material PCM (2) (material de cambio de fase, Phase Change Material) no conductor de iones, que es conductor de iones en su fase líquida y no conductor de iones en su fase sólida, situado en contacto con la batería activada por líquido (1), cambiando dicho material PCM (2) no conductor de iones de sólido a líquido cuando una magnitud ambiental física o química excede un umbral en intensidad y/o duración, activando la batería activada por líquido (1), y
- un módulo electrónico (4), conectado a la batería activada por líquido (1), que se enciende cuando se activa la batería (1) activada por líquido.
6.- El dispositivo según la reivindicación 5, en donde el material PCM (2) no conductor de iones se sitúa en el exterior de la batería activada por líquido (1) y en contacto directo con la batería activada por líquido (1).
7.- El dispositivo según la reivindicación 5, en donde el material PCM (2) no conductor de iones se sitúa en el interior de la batería activada por líquido (1) y/o en contacto directo con la batería activada por líquido (1).
8.- El dispositivo según las reivindicaciones 1 o 5, en donde el módulo electrónico (4) comprende adicionalmente un emisor (6) que genera una señal cuando el módulo electrónico se enciende (4).
9.- El dispositivo según la reivindicación 8, en donde el emisor (6) produce una señal seleccionada entre una señal de radiofrecuencia, una luz, un sonido y una vibración.
10.- El dispositivo según las reivindicaciones 1 o 5, en donde el módulo electrónico (4) comprende adicionalmente uno o más sensores (8) que registran una magnitud ambiental física o química cuando el módulo electrónico (4) se enciende.
11.- El dispositivo según las reivindicaciones 1 a 5, en donde el módulo electrónico (4) comprende adicionalmente una memoria que registra información cuando el módulo electrónico (4) se enciende.
12.- El dispositivo según las reivindicaciones 1 o 5, en donde el módulo electrónico (4) comprende adicionalmente uno o más actuadores que se activan cuando el módulo electrónico (4) se enciende.
13.- El dispositivo según las reivindicaciones 1 o 5, en donde la batería activada por líquido (1) es una batería de papel de un solo uso, el sustrato (5) está compuesto de material biodegradable, y el módulo electrónico (4) comprende una antena (6) impresa en el 16 sustrato (5), y un chip no encapsulado conectado a la antena (6) y la batería activada por líquido (1).
14.- El dispositivo según las reivindicaciones 1 o 5, en donde el material PCM (2) es un material que cambia de sólido a líquido cuando una magnitud seleccionada desde parámetros físicos tales como temperatura, esfuerzo mecánico, presión hidrostática, campo electromagnético, campo eléctrico, radiación, y radiactividad, hasta parámetros químicos tales como composición de gases, absorción de agua, y pH.
15.- El dispositivo según las reivindicaciones 1 o 5, en donde el módulo electrónico (4) comprende adicionalmente un geolocalizador que geolocaliza el dispositivo cuando el módulo electrónico (4) se activa.
PCT/ES2021/070679 2020-09-18 2021-09-20 Dispositivo de detección pasiva de eventos WO2022058639A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/027,279 US20240038044A1 (en) 2020-09-18 2021-09-20 Device for passive detection of events
CN202180074282.8A CN117044243A (zh) 2020-09-18 2021-09-20 被动事件检测设备
JP2023518429A JP2023548276A (ja) 2020-09-18 2021-09-20 事象の受動検知のためのデバイス
EP21868787.9A EP4216144A1 (en) 2020-09-18 2021-09-20 Device for passive detection of events

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP202030949 2020-09-18
ES202030949A ES2900900B8 (es) 2020-09-18 2020-09-18 Dispositivo de detección pasiva de eventos

Publications (1)

Publication Number Publication Date
WO2022058639A1 true WO2022058639A1 (es) 2022-03-24

Family

ID=80775955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2021/070679 WO2022058639A1 (es) 2020-09-18 2021-09-20 Dispositivo de detección pasiva de eventos

Country Status (6)

Country Link
US (1) US20240038044A1 (es)
EP (1) EP4216144A1 (es)
JP (1) JP2023548276A (es)
CN (1) CN117044243A (es)
ES (1) ES2900900B8 (es)
WO (1) WO2022058639A1 (es)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190008698A1 (en) * 2011-07-20 2019-01-10 Etectrx, Inc. Wetness sensors, wetness monitoring system, and related methods
US20190133958A1 (en) * 2006-10-25 2019-05-09 Proteus Digital Health, Inc. Controlled activation ingestible identifier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190133958A1 (en) * 2006-10-25 2019-05-09 Proteus Digital Health, Inc. Controlled activation ingestible identifier
US20190008698A1 (en) * 2011-07-20 2019-01-10 Etectrx, Inc. Wetness sensors, wetness monitoring system, and related methods

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ESQUIVEL, J.P . ET AL.: "Paper-based batteries as sustainable power source for disposable electronic devices. Smart Systems Integration", 13TH INTERNATIONAL CONFERENCE AND EXHIBITION ON INTEGRATION ISSUES OF MINIATURIZED SYSTEMS, 2019, pages 114 - 117, XP055917111 *
MONTES-CEBRLAN, Y. ET AL.: "Plug-and- Power ' Point- of-Care diagnostics: A novel approach for self-powered electronic reader- based portable analytical devices", BIOSENSORS AND BIOELECTRONICS, vol. 118, 2018, pages 88 - 96, XP085444753, ISSN: 0956-5663, DOI: 10.1016/j.bios. 2018.07.03 4 *
ORTEGA ET AL.: "Paper-Based Batteries as Conductivity Sensors for Single-Use Applications", ACS SENSORS, vol. 5, no. 6, 26 June 2020 (2020-06-26), US, pages 1743 - 1749, XP055917120, ISSN: 2379-3694, DOI: 10.1021/acssensors.0c00405 *

Also Published As

Publication number Publication date
US20240038044A1 (en) 2024-02-01
ES2900900B8 (es) 2022-11-24
CN117044243A (zh) 2023-11-10
ES2900900A1 (es) 2022-03-18
ES2900900B2 (es) 2022-11-16
JP2023548276A (ja) 2023-11-16
EP4216144A1 (en) 2023-07-26

Similar Documents

Publication Publication Date Title
US10617306B2 (en) Body temperature logging patch
EP2077815B1 (en) Self-powered rfid tag activated by a fluid and method for using such rfid tags
ES2949293T3 (es) Parche de registro de temperatura corporal
US20180249291A1 (en) Systems and methods for tracking a device in zero-infrastructure and zero-power conditions, and a tracking device therefor
Salameh et al. An end-to-end early warning system based on wireless sensor network for gas leakage detection in industrial facilities
Chen et al. Harvest energy from the water: A self-sustained wireless water quality sensing system
CN112097764A (zh) 基于低频触发模式的人员定位系统
ES2900900B2 (es) Dispositivo de detección pasiva de eventos
US20140272499A1 (en) Battery damage indicator
JP7332965B2 (ja) 傾斜センサおよび検知システム
JP6041357B2 (ja) 空気圧検知装置およびそれを備えた空気圧監視装置
TWM561293U (zh) 邊坡感測裝置
US11670155B1 (en) Systems and methods for detecting water events in vehicles
EP3469568B1 (en) Integrated 3d printed wireless sensing system for environmental monitoring
US20170039840A1 (en) Method and System for Locating a Wireless Tracking Device Associated With a Network of Alarm Panels
Neubauer et al. A new thermally activated battery cell-based forest fire detection and monitoring system
Randhawa et al. AquaEye: a low cost flood early warning system for developing countries
CN212460741U (zh) 自供能的火灾报警装置及系统
CN217982437U (zh) 门禁系统、智能门及智能家居系统
ES2935828T3 (es) Un sensor de inundación para sistemas de automatización
ES2910400T3 (es) Tapadera de obturación para un hidrante
CN217034902U (zh) 地震现场监测报警装置
US11459661B2 (en) Corrosion preventative systems
Wang The IoT Based Environmental Sensing Platform
WO2022249329A1 (ja) 冠水センサおよび通知システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868787

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023518429

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021868787

Country of ref document: EP

Effective date: 20230418

WWE Wipo information: entry into national phase

Ref document number: 202180074282.8

Country of ref document: CN