WO2022058335A1 - Production of a form-molded shoe component - Google Patents

Production of a form-molded shoe component Download PDF

Info

Publication number
WO2022058335A1
WO2022058335A1 PCT/EP2021/075294 EP2021075294W WO2022058335A1 WO 2022058335 A1 WO2022058335 A1 WO 2022058335A1 EP 2021075294 W EP2021075294 W EP 2021075294W WO 2022058335 A1 WO2022058335 A1 WO 2022058335A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
shoe
blowing agent
pressure
foam
Prior art date
Application number
PCT/EP2021/075294
Other languages
German (de)
French (fr)
Inventor
Nils ALTROGGE
Jean Philippe ROMAIN
Nicolas HUTTON
Changwoo Shin
Ilmarin Heitz
Original Assignee
On Clouds Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by On Clouds Gmbh filed Critical On Clouds Gmbh
Publication of WO2022058335A1 publication Critical patent/WO2022058335A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/04Plastics, rubber or vulcanised fibre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3442Mixing, kneading or conveying the foamable material
    • B29C44/3446Feeding the blowing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3442Mixing, kneading or conveying the foamable material
    • B29C44/3446Feeding the blowing agent
    • B29C44/3453Feeding the blowing agent to solid plastic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3461Making or treating expandable particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3469Cell or pore nucleation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/44Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form
    • B29C44/445Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form in the form of expandable granules, particles or beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D35/00Producing footwear
    • B29D35/12Producing parts thereof, e.g. soles, heels, uppers, by a moulding technique
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2021/00Use of unspecified rubbers as moulding material
    • B29K2021/003Thermoplastic elastomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/48Wearing apparel
    • B29L2031/50Footwear, e.g. shoes or parts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/26Elastomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids

Definitions

  • the present invention relates to the technical field of shoe manufacture, in particular foamed shoe components, and relates to a method for producing a molded foamed shoe component.
  • Molded foam materials have a large number of pores or cells in the foam material, which means that molded foam materials are particularly suitable as cushioning elements, such as shoe soles.
  • foams are made using blowing agent additives.
  • a polymeric material typically a thermoplastic polymer such as thermoplastic polyurethane, is thereby melted in an extruder.
  • a blowing agent additive is typically added to the polymer material, which expands under predefined conditions and can form the pores or cells in the molded foam material.
  • blowing agent additives a distinction is typically made between chemical and physical blowing agents.
  • Physical blowing agents are those that can expand directly by changing physical parameters, such as pressure and temperature, or can change from the liquid or solid state of aggregation to the gaseous state.
  • blowing agents are CO 2 , nitrogen, water, hydrocarbons such as propane, butane, pentane or hexane, and hydrocarbon derivatives, in particular halogenated derivatives such as dichloromethane, chloroform or fluorocarbons.
  • Chemical blowing agents are blowing agents from which a blowing agent can be released in situ under predetermined conditions by chemical reaction. These include, for example, diazo compounds (liberation of N 2 ), metal hydrides (liberation of H 2 ) and carbonates (liberation of CO 2 ).
  • Blowing agents that are available as supercritical fluids (SCF) have established themselves as a special case among physical blowing agents. The best-known process in which SCFs are used is the so-called MuCell® process.
  • a polymer composition is mixed with a SCF in an extruder to form a single-phase mixture and then injected into a mold.
  • a drop in pressure in the mold causes the blowing agent to separate from the polymer solution and vaporize, resulting in the formation of microcells.
  • CO 2 or nitrogen is usually used as the SCF.
  • a problem with foam molding with blowing agents is controlling the pore size in the foam.
  • foaming with SCF is widely used with thermoplastic polyurethane, it is still problematic with other materials, particularly polyamides and copolymers thereof.
  • Controlling the pore size of the foam is particularly relevant for shoe components, especially in the area of running shoes, since on the one hand the lowest possible density should be achieved in order to reduce the overall weight of the shoe and on the other hand a high degree of stability must be guaranteed.
  • the control of the pore size can be significantly improved by means of supercritical fluids, the use of supercritical fluids is costly and not ecological since a relatively high level of energy is required to provide the required high pressures and temperatures.
  • a method is provided in which the formation of pores, in particular the pore size of the foamed material, can be controlled more precisely.
  • a method is provided which makes it possible to produce a foamed shoe component that has a low density, but at the same time ensures high stability.
  • a more energy-efficient method for producing a molded foam shoe component compared to the prior art is provided.
  • a first aspect relates to a method for producing a molded foam shoe component, in particular a running shoe component, comprising the steps: a. providing a polymer granulate; b. Pretreating the polymer granules comprising binding a first physical blowing agent to or in the polymer granules at a first pressure and a first temperature; c. Foam molding the pretreated polymer granules in a foam molding system, the foam molding system comprising: i. a barrel having a barrel lead, the barrel defining a processing space with a screw disposed therein; ii. a propellant supply in fluid communication with the processing space; iii. a nozzle in fluid communication with the processing space; and iv.
  • the foam molding comprises: the introduction of a second physical blowing agent by means of the blowing agent feed and the introduction of the in step b. pretreated polymer granules into the processing space through the drum feed line which is in fluid communication with the processing space; Melting the polymer granules in the processing room to produce a molten, in particular single-phase, polymer composition; and injecting the molten polymer composition into the mold cavity and foaming the polymer composition by expansion of the first and/or second blowing agent.
  • additional blowing agent is introduced into the polymer granulate before it is introduced into the drum.
  • the pore size and pore structure can be controlled more precisely via the amount of bound first blowing agent. It has been found that the first blowing agent can be retained in the polymer granules for a relatively long period of time, in particular for several hours. Typically, the polymer granules are melted in the processing room on the one hand and the polymer granules and the first blowing agent bound thereto are mixed on the other hand, in particular to form a single-phase system.
  • the pretreatment of the polymer granules with the first blowing agent can include impregnation, for example.
  • the first blowing agent can bind to the surface of the polymer granules. This can include both the binding of the first blowing agent on the outer surface and the binding within the polymer granules, with the blowing agent diffusing into the polymer granules.
  • the pre-treatment has the advantage, among other things, that the foam-molded component shows less material shrinkage and distortion after production than a foam-molded component which is only produced according to a process consisting of step c. will be produced.
  • the polymer granules can typically have a certain porosity, so that the first blowing agent can penetrate better into the individual polymer particles.
  • the first pressure and the first temperature are greater than normal pressure (1 bar) or higher than room temperature (25° C.).
  • first pressure and first temperature or second pressure, second temperature, etc.
  • the process according to the invention enables the production of a foam-moulded shoe component with smaller pores in the foam and a significantly more homogeneous distribution of the pores over the entire foam-moulded component.
  • Typical examples of suitable commercially available polymer granules which can be used directly without further pretreatment, are polyether blockamide such as PEBAX 2533 (CAMPUSplastics), PEBAX 3533 (CAMPUSplastics), PEBAX 35R53 (CAMPUSplastics), or polyamide such as RILSAN BZMNO (CAMPUSplastics, PA1 1), VESTAMID E40 -S3 (Evonik Industries AG, PA1 2), VESTAMID E47-S1 (Evonik Industries AG, PA1 2).
  • polyether blockamide such as PEBAX 2533 (CAMPUSplastics), PEBAX 3533 (CAMPUSplastics), PEBAX 35R53 (CAMPUSplastics), or polyamide such as RILSAN BZMNO (CAMPUSplastics, PA1 1), VESTAMID E40 -S3 (Evonik Industries AG, PA1 2), VESTAMID E47-S1 (Evonik Industries AG, PA1 2).
  • the polymer granules can have a water absorption of 0.8 to 1.2.
  • the density according to ISO 1183 of the polymer granulate is between 0.9 and 1.1 g/cm 3 .
  • the expansion of the first and/or second blowing agent typically occurs as a result of a drop in pressure, which can already occur when the molten polymer composition is injected into the mold cavity, and/or also after the injection, for example by increasing the volume of the mold cavity or by opening valves in the mold. can be triggered.
  • the first and/or the second blowing agent is selected from CO 2 , N 2 and mixtures thereof.
  • CO 2 is to be preferred for the first blowing agent, since this is typically more soluble in the polymer granulate, in particular because of its physico-chemical properties, and is better bound. This applies above all when polar thermoplastic elastomers such as polyurethane, polyamide or derivatives thereof are used.
  • the pretreatment in step b. 3 to 8% by weight, preferably 5 to 6% by weight, of CO 2 , based on the polymer granules, are bound on or in the polymer granules. This allows a foam-moulded
  • Shoe component can be achieved with an advantageous density of about 0.4 g / cm 3 .
  • the mold cavity can be expandable in volume. This typically involves expanding the volume of the mold cavity during injection of the polymer composition and/or during foaming. This can be achieved, for example, by at least one movable wall of the mold, which can be moved in a controlled manner under the control of a control unit, so that the volume of the mold cavity increases.
  • the pretreatment in step b. carried out in a pressure reactor, in particular an autoclave.
  • the first pressure in step b. 25 bar to 55 bar.
  • the first temperature in step b. 0 °C to 150 °C, in particular 40 °C to 120 °C.
  • the first temperature is preferably above room temperature, since this accelerates the binding of the first physical blowing agent on and in the polymer granules. In particular, this increases the depth of penetration of the propellant into the particles of the polymer granules. This is advantageous because blowing agent that has penetrated the granulate remains bound for a significantly longer time. The impregnated polymer granules can thus be stored longer and handled more easily, in particular transferred, without significant amounts of the physical blowing agent being lost.
  • the first temperature selected must not be too high, as this can cause polymer material, in particular thermoplastic material such as polyamide or polyether block amide (PEBA/PEBAX®), to be partially split or degenerate.
  • polymer material in particular thermoplastic material such as polyamide or polyether block amide (PEBA/PEBAX®)
  • PEBA/PEBAX® polyamide or polyether block amide
  • the mold can be maintained at a temperature of 20 to 80°C at least during the injection and foaming of the polymer composition. This can be achieved, for example, by an external heating element or by a mold that can be heated. In particular, the mold can be brought to the predetermined temperature by means of an oil and/or water heating element. The choice of temperature has a significant influence on the density, or the porosity and cell size of the foam.
  • the second physical blowing agent is present as a supercritical fluid, particularly during delivery and/or in the processing space.
  • the supercritical state can be reached before it is introduced into the processing room or in the processing room itself.
  • One advantage of using a supercritical fluid is that a single-phase system of polymer and blowing agent is achieved in the processing room, which results in a low density of the shoe component and a uniform Allows cell distribution in the foam. This is particularly relevant for shoe components such as soles, as an uneven distribution of the cells in the foam can mean that the foam is more flexible in some areas than in others, which can lead to an uncomfortable walking sensation and even anatomical misalignments.
  • the proportion of the supercritical fluid should be reduced from an energetic and ecological point of view, since reaching the supercritical state is energy-intensive due to the high pressure and temperature required.
  • the amount of supercritical fluid required in step c. can be significantly reduced without any loss in the quality of the foam-moulded shoe component.
  • the mold of the foam molding system is equipped with a gas counter-pressure device, by means of which a counter-pressure, preferably from >0 bar to 40 bar, in particular 1 bar to 40 bar, is applied to the Polymer composition can be exercised.
  • the expansion of the blowing agent can be slowed down or weakened by exerting a counter-pressure. This enables better control of the pore size and cell structure of the foam-moulded component, as well as more even distribution.
  • the polymer granules in step b. maintained at the first pressure and temperature for 2 hours to 8 hours, preferably for 2 hours to 5 hours. Typically, this period of time is sufficient to bind a sufficient amount of the first blowing agent on or in the polymer granules.
  • pretreated polymer granules are fed under a second pressure into the foam molding system, in particular into the processing room.
  • the second pressure can preferably be at least 50%, in particular at least 75%, in particular at least 90%, in particular at least 95%, in particular at least 100% of the first pressure. This ensures that no significant amount of bound blowing agent is desorbed during transfer into the foam molding system. It has been found here that a pressure which is only 50% of the first pressure is already sufficient to essentially prevent the desorption.
  • the second pressure is typically no more than 200%, in particular no more than 150%, in particular no more than 100% of the first pressure.
  • the polymer granules have a Shore hardness of 70 to 85.
  • the polymer granulate has a density of 0.9 g/cm 3 to 1.5 g/cm 3 , preferably 1.0 g/cm 3 to 1.2 g/cm 3 .
  • the use of polyamide and polyether block amide as polymer granules is particularly advantageous with regard to the uptake and absorption of the first physical blowing agent, in particular CO 2 .
  • the polymer granulate comprises a thermoplastic elastomer, in particular a polyamide, a polyether block amide or a thermoplastic polyurethane.
  • the polymer granulate can consist of a thermoplastic elastomer, in particular a polyamide, a polyether block amide or a thermoplastic polyurethane.
  • the shoe component is a shoe sole, in particular a midsole.
  • a shoe sole can be provided in that the mold cavity of the mold of the foam molding system is designed in such a way that during the foam molding in step c. a shoe sole is created.
  • the step c. produced shoe component represent a blank of a shoe component, which is processed in a subsequent process step to the finished shoe component.
  • this can be a blank for a shoe sole, which is then pressed into a finished sole by compression molding or which is then colored or surface-treated in some other way.
  • the molded foamed shoe component produced can be reshaped by compression molding, in particular in a compression molding press.
  • the nozzle can be designed so that it can be closed and, in particular, can only be open for an injection period during the injection of the polymer composition. The injection duration can be between 0.5 seconds and 2 seconds, for example.
  • the molded foam shoe component is a shoe sole, in particular a midsole, and can be connected to a shoe upper in an additional step, so that a shoe, in particular a running shoe, is produced.
  • a further aspect relates to a foam-moulded shoe component, in particular a shoe sole, produced by a method according to the embodiments disclosed here.
  • the molded foam shoe component may have a density of from 0.15 g/cm 3 to 0.5 g/cm 3 , preferably from 0.25 g/cm 3 to 0.5 g/cm 3 , preferably 0.3 g/cm 3 .
  • the molded foam shoe component can have an Asker C hardness of 40 to 65, in particular 45 to 65.
  • the molded foam shoe component can have pores or cells.
  • the pores can have a pore size, or the cells can have a cell size, from 30 ⁇ m to 1600 ⁇ m, in particular from 300 ⁇ m to 1600 ⁇ m, in particular from 600 ⁇ m to 1000 ⁇ m.
  • the pore size is smaller in a first region of the shoe component than in a second region.
  • the shoe component is a midsole having a top and a bottom, wherein the Top side in the operative state, ie when worn, faces the wearer's foot and the bottom side faces the ground.
  • the first portion of the midsole is closer to the top of the midsole than the second portion of the midsole.
  • the pores in the first area can have a pore size of 30 ⁇ m to 500 ⁇ m, in particular from 100 ⁇ m to 300 ⁇ m.
  • the pores in the second region can also have a pore size of from 300 ⁇ m to 1600 ⁇ m, in particular from 600 ⁇ m to 1000 ⁇ m.

Abstract

The invention relates to a method for producing a form-molded shoe component, more particularly a running shoe component, comprising the steps: a. providing a polymer granulate; b: pre-treating the polymer granulate including binding to or in the polymer granulate a first physical propellant at a first pressure and a first temperature; c. form-molding the pre-treated polymer granulate in a form molding system, the form molding system comprising: i. a drum having a drum feed, the drum defining a treatment chamber including a screw arranged therein; ii. a nozzle fluidically connected to the treatment chamber; and iv. a mold having a mold cavity which is fluidically connected to the nozzle. Form molding includes the following steps: introducing a second physical propellant by means of the propellant feed and introducing the polymer granulate pre-treated in step b. into the treatment chamber through the drum feed, which is fluidically connected to the treatment chamber; melting the polymer granulate in the treatment chamber to produce a molten, in particular monophase polymer composition; and injecting the molten polymer composition into the mold cavity and foaming the polymer composition as a result of the expansion of the first and/or second propellant.

Description

Herstellung einerformgeschäumten Schuhkomponente Production of a molded foam shoe component
Technisches Gebiet technical field
Die vorliegende Erfindung betrifft das technische Gebiet der Schuhherstellung, insbesondere geschäumter Schuhkomponenten und betrifft ein Verfahren zur Herstellung einer formgeschäumten Schuhkomponente. The present invention relates to the technical field of shoe manufacture, in particular foamed shoe components, and relates to a method for producing a molded foamed shoe component.
Stand der Technik State of the art
Formgeschäumte Materialien weisen eine Vielzahl von Poren, bzw. Zellen im Schaummaterial auf, wodurch formgeschäumte Materialien besonders geeignet sind als Dämpfungselemente, wie beispielsweise Schuhsohlen. Typischerweise werden solche Schäume mithilfe von Treibmittelzusätzen hergestellt. Ein Polymermaterial, typischerweise ein thermoplastisches Polymer, wie thermoplastisches Polyurethan, wird dabei in einem Extruder geschmolzen. Typischerweise wird dem Polymermaterial ein Treibmittelzusatz beigemischt, welches unter vordefinierten Bedingungen expandiert und dabei die Poren, bzw. Zellen, im formgeschäumten Material ausbilden kann. Bei Treibmittelzusätzen wird typischerweise zwischen chemischen und physikalischen Treibmitteln unterschieden. Physikalische Treibmittel sind solche, welche direkt durch Änderung physikalischer Parameter, wie Druck und Temperatur, expandieren oder vom flüssigen oder festen Aggregatszustand in den gasförmigen Zustand übergehen können. Bekannte physikalische Treibmittel sind CO2, Stickstoff, Wasser, Kohlenwasserstoffe wie Propan, Butan, Pentan oder Hexan, und Kohlenwasserstoffderivate, insbesondere halogenierte Derivate wie Dichlormethan, Chloroform oder Fluorkohlenwasserstoffe. Chemische Treibmittel sind Treibmittel, aus welchen ein Treibmittel in situ unter vorbestimmten Bedingungen durch chemische Reaktion freigesetzt werden kann. Hierzu zählen beispielsweise Diazoverbindungen (Freisetzung von N2), Metallhydride (Freisetzung von H2) und Carbonate (Freisetzung von CO2). Als Sonderfall bei physikalischen Treibmitteln haben sich Treibmittel etabliert, die als superkritisches Fluid (SCF) vorliegen. Der bekannteste Prozess, bei welchem SCF eingesetzt werden, ist das sogenannte MuCell® Verfahren. Hierbei wird in einem Extruder eine Polymerzusammensetzung mit einem SCF zu einem einphasigen Gemisch vermengt und anschliessend in eine Form eingespritzt. Durch einen Druckabfall in der Form löst sich das Treibmittel aus der Polymerlösung und verdampft, wodurch sich Mikrozellen ausbilden. Als SCF wird hierbei meistens CO2 oder Stickstoff eingesetzt. Molded foam materials have a large number of pores or cells in the foam material, which means that molded foam materials are particularly suitable as cushioning elements, such as shoe soles. Typically, such foams are made using blowing agent additives. A polymeric material, typically a thermoplastic polymer such as thermoplastic polyurethane, is thereby melted in an extruder. A blowing agent additive is typically added to the polymer material, which expands under predefined conditions and can form the pores or cells in the molded foam material. When it comes to blowing agent additives, a distinction is typically made between chemical and physical blowing agents. Physical blowing agents are those that can expand directly by changing physical parameters, such as pressure and temperature, or can change from the liquid or solid state of aggregation to the gaseous state. Known physical blowing agents are CO 2 , nitrogen, water, hydrocarbons such as propane, butane, pentane or hexane, and hydrocarbon derivatives, in particular halogenated derivatives such as dichloromethane, chloroform or fluorocarbons. Chemical blowing agents are blowing agents from which a blowing agent can be released in situ under predetermined conditions by chemical reaction. These include, for example, diazo compounds (liberation of N 2 ), metal hydrides (liberation of H 2 ) and carbonates (liberation of CO 2 ). Blowing agents that are available as supercritical fluids (SCF) have established themselves as a special case among physical blowing agents. The best-known process in which SCFs are used is the so-called MuCell® process. Here, a polymer composition is mixed with a SCF in an extruder to form a single-phase mixture and then injected into a mold. A drop in pressure in the mold causes the blowing agent to separate from the polymer solution and vaporize, resulting in the formation of microcells. CO 2 or nitrogen is usually used as the SCF.
Darstellung der Erfindung Presentation of the invention
Ein Problem beim Formschäumen mitTreibmittelzusätzen ist die Kontrolle der Porengrösse im Schaum. Des Weiteren wird das Schäumen mit SCF zwar häufig bei thermoplastischem Polyurethan eingesetzt, ist jedoch nach wie vor problematisch bei anderen Materialien, insbesondere bei Polyamiden und Copolymeren davon. Gerade für Schuhkomponenten, insbesondere im Bereich der Laufschuhe, ist die Kontrolle der Porengrösse des Schaums hochrelevant, da einerseits eine möglichst geringe Dichte erreicht werden soll um das Gesamtgewicht des Schuhs zu reduzieren und andererseits eine hohe Stabilität gewährleistet sein muss. Des Weiteren kann die Kontrolle der Porengrösse zwar mittels superkritischen Fluiden signifikant verbessert werden, jedoch ist der Einsatz von superkritischen Fluiden aufwendig und nicht ökologisch, da eine relativ hohe Energie nötig ist um die benötigten hohen Drücke und Temperaturen bereitzustellen. A problem with foam molding with blowing agents is controlling the pore size in the foam. Furthermore, although foaming with SCF is widely used with thermoplastic polyurethane, it is still problematic with other materials, particularly polyamides and copolymers thereof. Controlling the pore size of the foam is particularly relevant for shoe components, especially in the area of running shoes, since on the one hand the lowest possible density should be achieved in order to reduce the overall weight of the shoe and on the other hand a high degree of stability must be guaranteed. Furthermore, although the control of the pore size can be significantly improved by means of supercritical fluids, the use of supercritical fluids is costly and not ecological since a relatively high level of energy is required to provide the required high pressures and temperatures.
Es ist daher die allgemeine Aufgabe den Stand der Technik der Herstellung geschäumter Schuhkomponenten weiterzuentwickeln und vorzugsweise ein oder mehrere der obengenannten Nachteile des Stands der Technik ganz oder teilweise zu überwinden. In vorteilhaften Ausführungsformen wird ein Verfahren bereitgestellt, bei welchem die Porenbildung, insbesondere die Porengrösse des geschäumten Materials genauer kontrolliert werden kann. In weiteren vorteilhaften Ausführungsformen wird ein Verfahren bereitgestellt, welches es ermöglicht eine geschäumte Schuhkomponente herzustellen, die eine geringe Dichte aufweist, gleichzeitig jedoch eine hohe Stabilität gewährleistet. In weiteren Ausführungsformen wird ein im Vergleich zum Stand der Technik energieeffizienteres Verfahren zur Herstellung einer formgeschäumten Schuhkomponente bereitgestellt. It is therefore the general object to further develop the state of the art for the production of foamed shoe components and preferably to overcome one or more of the above-mentioned disadvantages of the prior art in whole or in part. In advantageous embodiments, a method is provided in which the formation of pores, in particular the pore size of the foamed material, can be controlled more precisely. In further advantageous embodiments, a method is provided which makes it possible to produce a foamed shoe component that has a low density, but at the same time ensures high stability. In further embodiments, a more energy-efficient method for producing a molded foam shoe component compared to the prior art is provided.
Die allgemeine Aufgabe wird durch den Gegenstand der unabhängigen Patentansprüche gelöst. Weitere vorteilhafte Ausführungsformen ergeben sich aus den abhängigen Ansprüchen und der Gesamtoffenbarung. The general problem is solved by the subject matter of the independent patent claims. Further advantageous embodiments emerge from the dependent claims and the overall disclosure.
Ein erster Aspekt betrifft ein Verfahren zur Herstellung einer formgeschäumten Schuhkomponente, insbesondere eine Laufschuhkomponente, umfassend die Schritte: a. Bereitstellen eines Polymergranulates; b. Vorbehandlung des Polymergranulats umfassend das Binden eines ersten physikalischen Treibmittels an oder im Polymergranulat bei einem ersten Druck und einer ersten Temperatur; c. Formschäumen des vorbehandelten Polymergranulats in einem Formschäumungssystem, wobei das Formschäumungssystem umfasst: i. eine Trommel mit einer Trommelzuleitung, wobei die Trommel einen Verarbeitungsraum mit einer darin angeordneten Schraube definiert; ii. eine Treibmittelzufuhr in fluidischer Verbindung mit dem Verarbeitungsraum; iii. eine mit dem Verarbeitungsraum in fluidischer Verbindung stehende Düse; und iv. eine Form mit einem Formhohlraum, welcher in fluidischer Verbindung mit der Düse steht. Das Formschäumen umfasst dabei: Das Einbringen eines zweiten physikalischen Treibmittels mittels der Treibmittelzufuhr und das Einbringen des in Schritt b. vorbehandelten Polymergranulats in den Verarbeitungsraum durch die Trommelzuleitung, welche in fluidischer Verbindung mit dem Verarbeitungsraum steht; Schmelzen des Polymergranulates im Verarbeitungsraum zur Herstellung einer geschmolzenen, insbesondere einphasigen, Polymerzusammensetzung; und Injektion der geschmolzenen Polymerzusammensetzung in den Formhohlraum und Schäumen der Polymerzusammensetzung durch Expansion des ersten und/oder zweiten Treibmittels. Durch die Vorbehandlung des Polymergranulats mit einem ersten physikalischen Treibmittel wird ein zusätzliches Treibmittel bereits vor dem Einbringen in die Trommel in das Polymergranulat eingebracht. Hierdurch ist es möglich, die Dichte der hergestellten Schuhkomponente weiter zu senken. Zudem kann über die Menge an gebundenem ersten Treibmittel die Porengrösse und Porenstruktur genauer kontrolliert werden. Dabei hat sich herausgestellt, dass das erste Treibmittel über einen relativ langen Zeitraum, insbesondere über mehrere Stunden, im Polymergranulat gehalten werden kann. Typischerweise wird im Verarbeitungsraum einerseits das Polymergranulat geschmolzen und andererseits das Polymergranulat und das daran gebundene erste Treibmittel vermischt, insbesondere zu einem Einphasensystem. A first aspect relates to a method for producing a molded foam shoe component, in particular a running shoe component, comprising the steps: a. providing a polymer granulate; b. Pretreating the polymer granules comprising binding a first physical blowing agent to or in the polymer granules at a first pressure and a first temperature; c. Foam molding the pretreated polymer granules in a foam molding system, the foam molding system comprising: i. a barrel having a barrel lead, the barrel defining a processing space with a screw disposed therein; ii. a propellant supply in fluid communication with the processing space; iii. a nozzle in fluid communication with the processing space; and iv. a mold having a mold cavity in fluid communication with the nozzle. The foam molding comprises: the introduction of a second physical blowing agent by means of the blowing agent feed and the introduction of the in step b. pretreated polymer granules into the processing space through the drum feed line which is in fluid communication with the processing space; Melting the polymer granules in the processing room to produce a molten, in particular single-phase, polymer composition; and injecting the molten polymer composition into the mold cavity and foaming the polymer composition by expansion of the first and/or second blowing agent. By pretreating the polymer granules with a first physical blowing agent additional blowing agent is introduced into the polymer granulate before it is introduced into the drum. This makes it possible to further reduce the density of the manufactured shoe component. In addition, the pore size and pore structure can be controlled more precisely via the amount of bound first blowing agent. It has been found that the first blowing agent can be retained in the polymer granules for a relatively long period of time, in particular for several hours. Typically, the polymer granules are melted in the processing room on the one hand and the polymer granules and the first blowing agent bound thereto are mixed on the other hand, in particular to form a single-phase system.
Die Vorbehandlung des Polymergranulats mit dem ersten Treibmittel kann beispielsweise eine Imprägnierung umfassen. Dabei kann das erste Treibmittel an der Oberfläche des Polymergranulats binden. Dies kann sowohl das Binden des ersten Treibmittels an der äusseren Oberfläche umfassen, als auch das Binden innerhalb des Polymergranulats, wobei das Treibmittel in das Polymergranulat hinein diffundiert. Die Vorbehandlung hat unter anderem den Vorteil, dass die formgeschäumte Komponente weniger Materialschrumpfung und Verziehung nach der Herstellung zeigt als eine formgeschäumte Komponente, welche lediglich nach einem Verfahren bestehend aus Schritt c. hergestellt wird. The pretreatment of the polymer granules with the first blowing agent can include impregnation, for example. The first blowing agent can bind to the surface of the polymer granules. This can include both the binding of the first blowing agent on the outer surface and the binding within the polymer granules, with the blowing agent diffusing into the polymer granules. The pre-treatment has the advantage, among other things, that the foam-molded component shows less material shrinkage and distortion after production than a foam-molded component which is only produced according to a process consisting of step c. will be produced.
Das Polymergranulat kann typischerweise eine gewisse Porosität aufweisen, sodass das erste Treibmittel besser in die einzelnen Polymerpartikel eindringen kann. Typischerweise sind der erste Druck und die erste Temperatur grösser als der Normaldruck ( 1 bar), bzw. höher als Raumtemperatur (25 °C). Der Fachmann versteht, dass die Bezeichnungen erster Druck und erste Temperatur (bzw. zweiter Druck, zweite Temperatur, etc.) sofern nicht anders angegeben, auch einen Temperatur- bzw. Druckbereich umfassen kann, innerhalb welchem diese Parameter gehalten werden. Verglichen mit einem Prozess ohne Schritt b. ermöglicht der erfindungsgemässe Prozess die Herstellung einer formgeschäumten Schuhkomponente mit kleineren Poren im Schaum und einer deutlich homogeneren Verteilung der Poren über die gesamte formgeschäumte Komponente. Zudem wird das Gewicht der formgeschäumten Komponente reduziert, was vorteilhaft für den Läufer ist, da dieser weniger schnell ermüdet. Typische Beispiele geeigneter kommerziell erhältlicher Polymergranulate, welche direkt ohne weitere Vorbehandlung eingesetzt werden können sind Polyetherblockamid wie PEBAX 2533 (CAMPUSplastics), PEBAX 3533 (CAMPUSplastics), PEBAX 35R53 (CAMPUSplastics), oder Polyamid wie RILSAN BZMNO (CAMPUSplastics, PA1 1 ), VESTAMID E40-S3 (Evonik Industries AG, PA1 2), VESTAMID E47-S1 (Evonik Industries AG, PA1 2). The polymer granules can typically have a certain porosity, so that the first blowing agent can penetrate better into the individual polymer particles. Typically, the first pressure and the first temperature are greater than normal pressure (1 bar) or higher than room temperature (25° C.). The person skilled in the art understands that the terms first pressure and first temperature (or second pressure, second temperature, etc.), unless otherwise stated, can also include a temperature or pressure range within which these parameters are maintained. Compared to a process without step b. the process according to the invention enables the production of a foam-moulded shoe component with smaller pores in the foam and a significantly more homogeneous distribution of the pores over the entire foam-moulded component. In addition, the weight of the molded foam Component reduced, which is beneficial for the runner, as they tire less quickly. Typical examples of suitable commercially available polymer granules, which can be used directly without further pretreatment, are polyether blockamide such as PEBAX 2533 (CAMPUSplastics), PEBAX 3533 (CAMPUSplastics), PEBAX 35R53 (CAMPUSplastics), or polyamide such as RILSAN BZMNO (CAMPUSplastics, PA1 1), VESTAMID E40 -S3 (Evonik Industries AG, PA1 2), VESTAMID E47-S1 (Evonik Industries AG, PA1 2).
Das Polymergranulat kann dabei beispielsweise nach DIN 62 eine Wasseraufnahme von 0.8 bis 1 .2 aufweisen. Typischerweise ist die Dichte nach ISO 1 183 des Polymergranulats zwischen 0.9 und 1 .1 g/cm3. According to DIN 62, for example, the polymer granules can have a water absorption of 0.8 to 1.2. Typically, the density according to ISO 1183 of the polymer granulate is between 0.9 and 1.1 g/cm 3 .
Die Expansion des ersten und/oder zweiten Treibmittels erfolgt typischerweise durch einen Druckabfall, welcher bereits bei der Injektion der geschmolzenen Polymerzusammensetzung in den Formhohlraum auftreten kann, und/oder auch nach der Injektion, beispielsweise durch Volumenerweiterung des Formhohlraums oder durch Öffnen von Ventilen der Form, ausgelöst werden kann. The expansion of the first and/or second blowing agent typically occurs as a result of a drop in pressure, which can already occur when the molten polymer composition is injected into the mold cavity, and/or also after the injection, for example by increasing the volume of the mold cavity or by opening valves in the mold. can be triggered.
In einigen Ausführungsformen ist das erste und/oder das zweite Treibmittel ausgewählt aus CO2, N2 und Mischungen davon. Für das erste Treibmittel ist CO2 zu bevorzugen, da dieses typischerweise, insbesondere aufgrund seiner physikalisch-chemischen Eigenschaften besser löslich im Polymergranulat ist und besser gebunden wird. Dies gilt vor allem dann, wenn polare thermoplastische Elastomere, wie Polyurethan, Polyamid oder Derivate davon verwendet werden. In some embodiments, the first and/or the second blowing agent is selected from CO 2 , N 2 and mixtures thereof. CO 2 is to be preferred for the first blowing agent, since this is typically more soluble in the polymer granulate, in particular because of its physico-chemical properties, and is better bound. This applies above all when polar thermoplastic elastomers such as polyurethane, polyamide or derivatives thereof are used.
In einigen Ausführungsformen kann bei der Vorbehandlung in Schritt b. 3 bis 8 Gew.%, vorzugsweise 5 bis 6 Gew.%, CO2 bezogen auf das Polymergranulat an oder im Polymergranulat gebunden werden. Hierdurch kann eine formgeschäumteIn some embodiments, the pretreatment in step b. 3 to 8% by weight, preferably 5 to 6% by weight, of CO 2 , based on the polymer granules, are bound on or in the polymer granules. This allows a foam-moulded
Schuhkomponente mit vorteilhafter Dichte von etwa 0.4 g/cm3 erreicht werden. In weiteren Ausführungsformen kann der Formhohlraum volumenerweiterbar sein. Dabei wird typsicherweise während der Injektion der Polymerzusammensetzung und/oder während dem Schäumen das Volumen des Formhohlraums erweitert. Dies kann beispielsweise durch mindestens eine bewegliche Wand der Form erreicht werden, welche unter Kontrolle eine Steuereinheit kontrolliert bewegt werden kann, sodass sich das Volumen des Formhohlraums vergrössert. Shoe component can be achieved with an advantageous density of about 0.4 g / cm 3 . In further embodiments, the mold cavity can be expandable in volume. This typically involves expanding the volume of the mold cavity during injection of the polymer composition and/or during foaming. This can be achieved, for example, by at least one movable wall of the mold, which can be moved in a controlled manner under the control of a control unit, so that the volume of the mold cavity increases.
In einigen Ausführungsformen wird die Vorbehandlung in Schritt b. in einem Druckreaktor, insbesondere einem Autoklav durchgeführt. In some embodiments, the pretreatment in step b. carried out in a pressure reactor, in particular an autoclave.
In weiteren Ausführungsformen beträgt der erste Druck in Schritt b. 25 bar bis 55 bar. Unabhängig davon kann die erste Temperatur in Schritt b. 0 °C bis 1 50 °C, insbesondere 40 °C bis 1 20 °C betragen. Vorzugsweise liegt die erste Temperatur oberhalb der Raumtemperatur, da hierdurch das Binden des ersten physikalischen Treibmittels am und im Polymergranulat beschleunigt wird. Vor allem die Eindringtiefe des Treibmittels in die Partikel des Polymergranulats wird dadurch erhöht. Dies ist vorteilhaft, da in das Granulat eingedrungene Treibmittel deutlich länger gebunden bleibt. Das imprägnierte Polymergranulat kann somit länger gelagert und einfacher gehandhabt, insbesondere transferiert, werden, ohne dass signifikante Mengen des physikalischen Treibmittels verloren gehen. Andererseits darf die erste Temperatur nicht zu hoch gewählt werden, da hierdurch Polymermaterial, insbesondere thermoplastisches Material wie Polyamid oder Polyetherblockamid (PEBA/PEBAX®) teilweise gespalten oder degeneriert werden kann. Dies ist für den Einsatz im Schuhbereich problematisch, da ein solches teilweise degradierendes Material im Laufe der Nutzung des Schuhs schnell zu einer mangelnden Dämpfung führen kann, was beim Träger zu Knie-, Hüft- und Fussgelenksschmerzen führen kann. In further embodiments, the first pressure in step b. 25 bar to 55 bar. Irrespective of this, the first temperature in step b. 0 °C to 150 °C, in particular 40 °C to 120 °C. The first temperature is preferably above room temperature, since this accelerates the binding of the first physical blowing agent on and in the polymer granules. In particular, this increases the depth of penetration of the propellant into the particles of the polymer granules. This is advantageous because blowing agent that has penetrated the granulate remains bound for a significantly longer time. The impregnated polymer granules can thus be stored longer and handled more easily, in particular transferred, without significant amounts of the physical blowing agent being lost. On the other hand, the first temperature selected must not be too high, as this can cause polymer material, in particular thermoplastic material such as polyamide or polyether block amide (PEBA/PEBAX®), to be partially split or degenerate. This is problematic for use in the shoe sector, since such a partially degrading material can quickly lead to insufficient cushioning over the course of use of the shoe, which can lead to knee, hip and ankle pain in the wearer.
In einigen Ausführungsformen wird das Polymergranulat vor Schritt b. durch Erwärmen aufIn some embodiments, before step b. by heating up
30 bis 1 30° C, insbesondere auf 60 °C bis 1 20 °C, insbesondere auf 50 °C bis 90 °C, getrocknet, wodurch die Menge an absorbierten, bzw. absorbierbaren Treibmittel im Polymergranulat erhöht wird. Die Trocknung kann dabei bis zu einem Restfeuchtegehalt von maximal 0.02% erfolgen. 30 to 130° C., in particular 60° C. to 120° C., in particular 50° C. to 90° C., dried, whereby the amount of absorbed or absorbable blowing agent in the polymer granules is increased. The drying can take place down to a maximum residual moisture content of 0.02%.
In weiteren Ausführungsformen kann die Form zumindest während der Injektion und dem Schäumen der Polymerzusammensetzung bei einer Temperatur von 20 bis 80 °C gehalten werden. Dies kann beispielsweise durch ein externes Heizelement, bzw. durch eine beheizbare Form erreicht werden. Insbesondere kann die Form mittels einem Öl- und/oder Wasserheizelement auf die vorbestimmte Temperatur gebracht werden. Die Wahl der Temperatur beeinflusst wesentlich die Dichte, bzw. die Porosität und Zellgrösse des Schaums. In further embodiments, the mold can be maintained at a temperature of 20 to 80°C at least during the injection and foaming of the polymer composition. This can be achieved, for example, by an external heating element or by a mold that can be heated. In particular, the mold can be brought to the predetermined temperature by means of an oil and/or water heating element. The choice of temperature has a significant influence on the density, or the porosity and cell size of the foam.
In einigen Ausführungsformen liegt das zweite physikalische Treibmittel insbesondere während dem Einbringen und/oder im Verarbeitungsraum als superkritisches Fluid vor. Der superkritische Zustand kann dabei bereits vor dem Einbringen in den Verarbeitungsraum erreicht werden oder im Verarbeitungsraum selbst. Ein Vorteil der Verwendung eines superkritischen Fluids ist, dass im Verarbeitungsraum ein einphasiges System aus Polymer und Treibmittel erreicht wird, was eine geringe Dichte der Schuhkomponente und eine gleichmässige Zellverteilung im Schaum ermöglicht. Dies ist besonders relevant für Schuhkomponenten wie Sohlen, da eine ungleichmässige Verteilung der Zellen im Schaum dazu führen kann, dass der Schaum in einigen Bereichen nachgiebiger ist als in anderen, was zu einem unangenehmen Laufgefühl, bis hin zu anatomischen Schiefstellungen führen kann. Allerdings sollte der Anteil des superkritischen Fluids aus energetischen und ökologischen Gesichtspunkten reduziert werden, da das Erreichen des superkritischen Zustands aufgrund des erforderlichen hohen Drucks und Temperatur energieaufwendig ist. Durch Kombination des Imprägnierens aus Schritt b. kann die Menge an benötigtem superkritischen Fluid in Schritt c. signifikant reduziert werden, ohne dass es zu Einbussen bei der Qualität der formgeschäumten Schuhkomponente kommt. In weiteren Ausführungsformen ist die Form des Formschäumungssystems mit einer Gasgegendruckvorrichtung ausgestattet, mittels welcher zumindest während einer Teildauer der Injektion und/oder während einer Teildauer des Schäumens ein Gegendruck, vorzugsweise von >0 bar bis 40 bar, insbesondere 1 bar bis 40 bar, auf die Polymerzusammensetzung ausgeübt werden kann. Durch Ausüben eines Gegendrucks kann die Expansion des Treibmittels verlangsamt, bzw. abgeschwächt werden. Hierdurch kann eine bessere Kontrolle der Porengrösse und Zellstruktur der formgeschäumten Komponente, sowie eine gleichmässigere Verteilung, erreicht werden. In some embodiments, the second physical blowing agent is present as a supercritical fluid, particularly during delivery and/or in the processing space. The supercritical state can be reached before it is introduced into the processing room or in the processing room itself. One advantage of using a supercritical fluid is that a single-phase system of polymer and blowing agent is achieved in the processing room, which results in a low density of the shoe component and a uniform Allows cell distribution in the foam. This is particularly relevant for shoe components such as soles, as an uneven distribution of the cells in the foam can mean that the foam is more flexible in some areas than in others, which can lead to an uncomfortable walking sensation and even anatomical misalignments. However, the proportion of the supercritical fluid should be reduced from an energetic and ecological point of view, since reaching the supercritical state is energy-intensive due to the high pressure and temperature required. By combining the impregnation of step b. the amount of supercritical fluid required in step c. can be significantly reduced without any loss in the quality of the foam-moulded shoe component. In further embodiments, the mold of the foam molding system is equipped with a gas counter-pressure device, by means of which a counter-pressure, preferably from >0 bar to 40 bar, in particular 1 bar to 40 bar, is applied to the Polymer composition can be exercised. The expansion of the blowing agent can be slowed down or weakened by exerting a counter-pressure. This enables better control of the pore size and cell structure of the foam-moulded component, as well as more even distribution.
In weiteren Ausführungsformen wird das Polymergranulat in Schritt b. für 2 Stunden bis 8 Stunden, vorzugsweise für 2 Stunden bis 5 Stunden bei dem ersten Druck und der ersten Temperatur gehalten. Typischerweise reicht dieser Zeitraum aus um eine ausreichende Menge des ersten Treibmittels am, bzw. im Polymergranulat zu binden. In further embodiments, the polymer granules in step b. maintained at the first pressure and temperature for 2 hours to 8 hours, preferably for 2 hours to 5 hours. Typically, this period of time is sufficient to bind a sufficient amount of the first blowing agent on or in the polymer granules.
In einigen Ausführungsformen wird nach Schritt b. das in Schritt b. vorbehandelte Polymergranulat unter einem zweiten Druck in das Formschäumungssystem, insbesondere in den Verarbeitungsraum, geführt. Der zweite Druck kann dabei vorzugsweise mindestens 50%, insbesondere mindestens 75%, insbesondere mindestens 90%, insbesondere mindestens 95%, insbesondere mindestens 100%, des ersten Drucks betragen. Hierdurch wird sichergestellt, dass keine signifikante Menge des gebundenen Treibmittels während dem Transfer in das Formschäumungssystem desorbiert. Hierbei hat sich herausgestellt, dass bereits ein Druck, der nur 50% des ersten Drucks beträgt, ausreichend ist, um die Desorption im Wesentlichen zu unterbinden. Der zweite Druck beträgt typischerweise nicht mehr als 200%, insbesondere nicht mehr als 1 50%, insbesondere nicht mehr als 100%, des ersten Drucks. In some embodiments, after step b. that in step b. pretreated polymer granules are fed under a second pressure into the foam molding system, in particular into the processing room. The second pressure can preferably be at least 50%, in particular at least 75%, in particular at least 90%, in particular at least 95%, in particular at least 100% of the first pressure. This ensures that no significant amount of bound blowing agent is desorbed during transfer into the foam molding system. It has been found here that a pressure which is only 50% of the first pressure is already sufficient to essentially prevent the desorption. The second pressure is typically no more than 200%, in particular no more than 150%, in particular no more than 100% of the first pressure.
In weiteren Ausführungsformen weist das Polymergranulat eine Shore Härte von 70 bis 85 auf. In einigen Ausführungsformen weist das Polymergranulat eine Dichte von 0.9 g/cm3 bis 1 .5 g/cm3, vorzugsweise 1 .0 g/cm3 bis 1 .2 g/cm3, auf. Je dichter das Polymergranulat ausgebildet ist, desto geringer ist typischerweise die Menge an gebundenem ersten Treibmittel. Besonders vorteilhaft hinsichtlich der Aufnahme und Absorption des ersten physikalischen Treibmittels, insbesondere von CO2, ist hierbei die Verwendung von Polyamid und Polyetherblockamid als Polymergranulat. In further embodiments, the polymer granules have a Shore hardness of 70 to 85. In some embodiments, the polymer granulate has a density of 0.9 g/cm 3 to 1.5 g/cm 3 , preferably 1.0 g/cm 3 to 1.2 g/cm 3 . The denser the polymer granules are, the lower the amount of bound first blowing agent typically is. The use of polyamide and polyether block amide as polymer granules is particularly advantageous with regard to the uptake and absorption of the first physical blowing agent, in particular CO 2 .
In einigen Ausführungsformen umfasst das Polymergranulat ein thermoplastisches Elastomer, insbesondere ein Polyamid, ein Polyetherblockamid oder ein thermoplastisches Polyurethan. Alternativ kann das Polymergranulat aus einem thermoplastischen Elastomer, insbesondere einem Polyamid, einem Polyetherblockamid oder einem thermoplastischen Polyurethan bestehen. In some embodiments, the polymer granulate comprises a thermoplastic elastomer, in particular a polyamide, a polyether block amide or a thermoplastic polyurethane. Alternatively, the polymer granulate can consist of a thermoplastic elastomer, in particular a polyamide, a polyether block amide or a thermoplastic polyurethane.
In weiteren Ausführungsformen ist die Schuhkomponente eine Schuhsohle, insbesondere eine Mittelsohle. Eine solche Schuhsohle kann bereitgestellt werden, indem der Formhohlraum der Form des Formschäumungssystems derart ausgebildet ist, dass beim Formschäumen in Schritt c. eine Schuhsohle entsteht. In further embodiments, the shoe component is a shoe sole, in particular a midsole. Such a shoe sole can be provided in that the mold cavity of the mold of the foam molding system is designed in such a way that during the foam molding in step c. a shoe sole is created.
In einigen Ausführungsformen kann die in Schritt c. hergestellte Schuhkomponente ein Rohling einer Schuhkomponente darstellen, welcher in einem nachfolgenden Prozessschritt zur fertigen Schuhkomponente verarbeitet wird. Beispielsweise kann dies ein Rohling einer Schuhsohle sein, welcher anschliessend durch Formpressen zu einer fertigen Sohle gepresst wird oder welcher anschliessend gefärbt oder in sonstiger Weise oberflächenbehandelt wird. In einigen Ausführungsformen kann beispielsweise nach dem Schäumen der Polymerzusammensetzung durch Expansion des ersten und/oder zweiten Treibmittels die hergestellte formgeschäumte Schuhkomponente durch Formpressen, insbesondere in einer Formpresse, nachgeformt werden. In einigen Ausführungsformen kann die Düse verschliessbar ausgebildet sein und kann insbesondere nur bei der Injektion der Polymerzusammensetzung für eine Injektionsdauer geöffnet sein. Die Injektionsdauer kann beispielsweise zwischen 0.5 Sekunden und 2 Sekunden betragen. In some embodiments, the step c. produced shoe component represent a blank of a shoe component, which is processed in a subsequent process step to the finished shoe component. For example, this can be a blank for a shoe sole, which is then pressed into a finished sole by compression molding or which is then colored or surface-treated in some other way. In some embodiments, for example after the polymer composition has been foamed by expansion of the first and/or second blowing agent, the molded foamed shoe component produced can be reshaped by compression molding, in particular in a compression molding press. In some embodiments, the nozzle can be designed so that it can be closed and, in particular, can only be open for an injection period during the injection of the polymer composition. The injection duration can be between 0.5 seconds and 2 seconds, for example.
In einigen Ausführungsformen ist die formgeschäumte Schuhkomponente eine Schuhsohle, insbesondere eine Mittelsohle, und kann in einem zusätzlichen Schritt mit einem Schuhoberteil verbunden werden, sodass ein Schuh, insbesondere ein Laufschuh hergestellt wird. In some embodiments, the molded foam shoe component is a shoe sole, in particular a midsole, and can be connected to a shoe upper in an additional step, so that a shoe, in particular a running shoe, is produced.
Ein weiterer Aspekt betrifft eine formgeschäumte Schuhkomponente, insbesondere eine Schuhsohle, hergestellt nach einem Verfahren gemäss den hier offenbarten Ausführungsformen. A further aspect relates to a foam-moulded shoe component, in particular a shoe sole, produced by a method according to the embodiments disclosed here.
In einigen Ausführungsformen kann die formgeschäumte Schuhkomponente eine Dichte von 0.1 5 g/cm3 bis 0.5 g/cm3, vorzugsweise von 0.25 g/cm3 bis 0.5 g/cm3, vorzugsweise 0.3 g/cm3, aufweisen. In some embodiments, the molded foam shoe component may have a density of from 0.15 g/cm 3 to 0.5 g/cm 3 , preferably from 0.25 g/cm 3 to 0.5 g/cm 3 , preferably 0.3 g/cm 3 .
In weiteren Ausführungsformen kann die formgeschäumte Schuhkomponente eine Asker C Härte von 40 bis 65, insbesondere von 45 bis 65, aufweisen. In further embodiments, the molded foam shoe component can have an Asker C hardness of 40 to 65, in particular 45 to 65.
In einigen Ausführunsgformen kann die formgeschäumte Schuhkomponente Poren, bzw. Zellen, aufweisen. Insbesondere können die Poren eine Porengrösse, bzw. die Zellen eine Zellgrösse, von 30 pm bis 1 600 pm, insbesondere von 300 pm bis 1 600 pm, insbesondere von 600 pm bis 1000 pm, aufweisen. In some embodiments, the molded foam shoe component can have pores or cells. In particular, the pores can have a pore size, or the cells can have a cell size, from 30 μm to 1600 μm, in particular from 300 μm to 1600 μm, in particular from 600 μm to 1000 μm.
In einigen Ausführunsgformen ist die Porengrösse in einem ersten Bereich der Schuhkomponente kleiner als in einem zweiten Bereich. Vorzugsweise ist die Schuhkomponente eine Mittelsohle mit einer Oberseite und einer Unterseite, wobei die Oberseite im operativen Zustand, d.h. im getragenen Zustand, dem Fuss des Trägers zugewandt ist und die Unterseite dem Boden zugewandt ist. Vorzugsweise ist der erste Bereich der Mittelsohle näher zur Oberseite der M ittelsoh le angeordnet, als der zweite Bereich der Mittelsohle. Somit sind die kleineren Poren an der Oberseite und daher im operativen Zustand näher am Fuss des Trägers angeordnet. Die Poren im ersten Bereich können dabei eine Porengrösse von 30 pm bis 500 pm, insbesondere von 100 pm bis 300 pm, aufweisen. In einigen Ausführungsformen können die Poren im zweiten Bereich zudem eine Porengrösse von 300 pm bis 1 600 pm, insbesondere von 600 pm bis 1000 pm, aufweisen. In some embodiments, the pore size is smaller in a first region of the shoe component than in a second region. Preferably, the shoe component is a midsole having a top and a bottom, wherein the Top side in the operative state, ie when worn, faces the wearer's foot and the bottom side faces the ground. Preferably, the first portion of the midsole is closer to the top of the midsole than the second portion of the midsole. Thus, the smaller pores are located at the top and therefore closer to the foot of the wearer in the operative state. The pores in the first area can have a pore size of 30 μm to 500 μm, in particular from 100 μm to 300 μm. In some embodiments, the pores in the second region can also have a pore size of from 300 μm to 1600 μm, in particular from 600 μm to 1000 μm.

Claims

Patentansprüche patent claims
1. Verfahren zur Herstellung einer formgeschäumten Schuhkomponente, umfassend die Schritte: a. Bereitstellen eines Polymergranulats; b. Vorbehandlung des Polymergranulats umfassend das Binden eines ersten physikalischen Treibmittels an oder im Polymergranulat bei einem ersten Druck und einer ersten Temperatur; c. Formschäumen des vorbehandelten Polymergranulats in einem Formschäumungssystem, wobei das Formschäumungssystem umfasst: i. eine Trommel mit einer Trommelzuleitung, wobei die Trommel die einen Verarbeitungsraum mit einer darin angeordneten Schraube definiert; ii. eine Treibmittelzufuhr in fluidischer Verbindung mit dem Verarbeitungsraum; iii. eine mit dem Verarbeitungsraum in fluidischer Verbindung stehende Düse; iv. eine Form mit einem Formhohlraum, welcher in fluidischer Verbindung mit der Düse steht; wobei das Formschäumen umfasst: Einbringen eines zweiten physikalischen Treibmittels mittels der Treibmittelzufuhr und Einbringen des vorbehandelten Polymergranulats in den Verarbeitungsraum; Schmelzen des Polymergranulates im Verarbeitungsraum zur Herstellung einer geschmolzenen Polymerzusammensetzung; Injektion der geschmolzenen Polymerzusammensetzung in den Formhohlraum und Schäumen der Polymerzusammensetzung durch Expansion des ersten und/oder zweiten Treibmittels. Verfahren nach Anspruch 1 , wobei das erste und/oder zweite physikalische Treibmittel ausgewählt ist aus CO2, N2 und Mischungen daraus. Verfahren nach einem der vorherigen Ansprüche, wobei der Formhohlraum volumenerweiterbar ist und das Volumen während dem Schäumen der Polymerzusammensetzung erweitert wird. Verfahren nach einem der vorherigen Ansprüche, wobei die Vorbehandlung in Schritt b. in einem Autoklav durchgeführt wird. Verfahren nach einem der vorherigen Ansprüche, wobei in Schritt b. der erste Druck 35 bar bis 55 bar, und/oder die erste Temperatur 0 °C bis 1 50 °C, vorzugsweise 40 °C bis 1 20 °C beträgt. Verfahren nach einem der vorherigen Ansprüche, wobei das Polymergranulat vor Schritt b. durch Erwärmen auf 30 bis 1 30° C getrocknet wird. Verfahren nach einem der vorherigen Ansprüche, wobei die Form zumindest während der Injektion und dem Schäumen der Polymerzusammensetzung bei einer Temperatur von 20 bis 80 °C gehalten wird. Verfahren nach einem der vorherigen Ansprüche, wobei das zweite Treibmittel als superkritisches Fluid vorliegt, insbesondere während dem Einbringen und/oder im Verarbeitungsraum. Verfahren nach einem der vorherigen Ansprüche, wobei die Form mit einer Gasgegendruckvorrichtung ausgestattet ist, mittels welcher zumindest während einer Teildauer der Injektion und/oder während einer Teildauer des Schäumens ein 14 1. A process for producing a molded foam shoe component, comprising the steps of: a. providing a polymer granulate; b. Pretreating the polymer granules comprising binding a first physical blowing agent to or in the polymer granules at a first pressure and a first temperature; c. Foam molding the pretreated polymer granules in a foam molding system, the foam molding system comprising: i. a barrel having a barrel lead, the barrel defining a processing space with a screw disposed therein; ii. a propellant supply in fluid communication with the processing space; iii. a nozzle in fluid communication with the processing space; IV. a mold having a mold cavity in fluid communication with the nozzle; wherein the foam molding comprises: introducing a second physical blowing agent by means of the blowing agent supply and introducing the pretreated polymer granules into the processing space; melting the polymer granules in the processing room to produce a molten polymer composition; injecting the molten polymer composition into the mold cavity and foaming the polymer composition by expansion of the first and/or second blowing agent. A method according to claim 1, wherein the first and/or second physical blowing agent is selected from CO 2 , N 2 and mixtures thereof. A method according to any one of the preceding claims, wherein the mold cavity is volume expandable and the volume is expanded during foaming of the polymer composition. Method according to one of the preceding claims, wherein the pre-treatment in step b. carried out in an autoclave. Method according to one of the preceding claims, wherein in step b. the first pressure is 35 bar to 55 bar, and/or the first temperature is 0°C to 150°C, preferably 40°C to 120°C. Method according to one of the preceding claims, wherein the polymer granules before step b. is dried by heating to 30 to 130°C. A method according to any one of the preceding claims, wherein the mold is maintained at a temperature of from 20 to 80°C at least during the injection and foaming of the polymer composition. Method according to one of the preceding claims, wherein the second blowing agent is present as a supercritical fluid, in particular during the introduction and/or in the processing space. Method according to one of the preceding claims, in which the mold is equipped with a gas counter-pressure device, by means of which a 14
Gegendruck, vorzugsweise von >0 bar bis 40 bar, auf die Polymerzusammensetzung ausgeübt wird. 0. Verfahren nach einem der vorherigen Ansprüche, wobei in Schritt b. das Polymergranulatfür 2 Stunden bis 8 Stunden, vorzugsweisefür 2 Stunden bis 5 Stunden bei dem ersten Druck und der ersten Temperatur gehalten wird. 1 . Verfahren nach einem der vorherigen Ansprüche, wobei das in Schritt b. vorbehandelte Polymergranulat unter einem zweiten Druck in das Formschäumungssystem, insbesondere in den Verarbeitungsraum, geführt wird, wobei der zweite Druck vorzugsweise mindestens 50%, insbesondere mindestens 75%, insbesondere mindestens 90%, insbesondere mindestens 95%, insbesondere mindestens 100%, des ersten Drucks beträgt. 2. Verfahren nach einem der vorherigen Ansprüche, wobei das Polymergranulat eine Shore Härte von 70 bis 85, und/oder eine Dichte von 0.9 g/cm3 bis 1 .5 g/cm3, vorzugsweise 1 .0 g/cm3 bis 1 .2 g/cm3, aufweist. 3. Verfahren nach einem der vorherigen Ansprüche, wobei das Polymergranulat ein thermoplastisches Elastomer, insbesondere ein Polyamid, ein Polyetherblockamid oder ein thermoplastisches Polyurethan, umfasst. 4. Verfahren nach einem der vorherigen Ansprüche, wobei die Schuhkomponente eine Schuhsohle, insbesondere eine Mittelsohle ist, und wobei bevorzugt die Schuhsohle, in einem zusätzlichen Schritt mit einem Schuhoberteil verbunden wird, sodass ein Schuh, insbesondere ein Laufschuh hergestellt wird. 15 Back pressure, preferably from >0 bar to 40 bar, is applied to the polymer composition. 0. The method according to any one of the preceding claims, wherein in step b. the polymer granules are maintained at the first pressure and temperature for 2 hours to 8 hours, preferably for 2 hours to 5 hours. 1 . Method according to one of the preceding claims, wherein in step b. pretreated polymer granules are fed under a second pressure into the foam molding system, in particular into the processing space, the second pressure preferably being at least 50%, in particular at least 75%, in particular at least 90%, in particular at least 95%, in particular at least 100% of the first pressure amounts to. 2. The method according to any one of the preceding claims, wherein the polymer granules have a Shore hardness of 70 to 85 and/or a density of 0.9 g/cm 3 to 1.5 g/cm 3 , preferably 1.0 g/cm 3 to 1 .2 g/cm 3 . 3. The method according to any one of the preceding claims, wherein the polymer granulate comprises a thermoplastic elastomer, in particular a polyamide, a polyether block amide or a thermoplastic polyurethane. 4. The method according to any one of the preceding claims, wherein the shoe component is a shoe sole, in particular a midsole, and wherein the shoe sole is preferably connected to a shoe upper in an additional step, so that a shoe, in particular a running shoe, is produced. 15
15. Verfahren nach einem der vorherigen Ansprüche, wobei die Düse verschliessbar ist und nur bei der Injektion der Polymerzusammensetzung für eine Injektionsdauer geöffnet ist, und vorzugsweise die Injektionsdauer zwischen 0.5 und 2 Sekunden beträgt. 15. The method according to any one of the preceding claims, wherein the nozzle can be closed and is only open during the injection of the polymer composition for an injection duration, and the injection duration is preferably between 0.5 and 2 seconds.
16. Verfahren nach einem der vorherigen Ansprüche, wobei nach dem Schäumen der der Polymerzusammensetzung durch Expansion des ersten und/oder zweiten Treibmittels die hergestellte formgeschäumte Schuhkomponente durch Formpressen nachgeformt wird. 16. The method according to any one of the preceding claims, wherein after the foaming of the polymer composition by expansion of the first and / or second blowing agent, the foamed shoe component produced is post-formed by compression molding.
17. Formgeschäumte Schuhkomponente, insbesondere eine Schuhsohle, hergestellt nach dem Verfahren gemäss einem der Ansprüche 1 bis 1 6. 18. Formgeschäumte Schuhkomponente, insbesondere eine Schuhsohle, nach Anspruch17. Foam-moulded shoe component, in particular a shoe sole, produced by the method according to one of claims 1 to 16. 18. Foam-moulded shoe component, in particular a shoe sole, according to claim
1 7, welche eine Dichte von 0.1 5 g/cm3 bis 0.5 g/cm3 aufweist. 1 7 which has a density of 0.1 5 g/cm 3 to 0.5 g/cm 3 .
19. Formgeschäumte Schuhkomponente, insbesondere eine Schuhsohle, nach Anspruch19. Molded foam shoe component, in particular a shoe sole, according to claim
1 7 oder 18, die eine Asker C Härte von 40 bis 65 aufweist. 1 7 or 18, which has an Asker C hardness of 40 to 65.
PCT/EP2021/075294 2020-09-15 2021-09-15 Production of a form-molded shoe component WO2022058335A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH01161/20A CH717846A2 (en) 2020-09-15 2020-09-15 Process for manufacturing a molded foam shoe component.
CHCH01161/20 2020-09-15

Publications (1)

Publication Number Publication Date
WO2022058335A1 true WO2022058335A1 (en) 2022-03-24

Family

ID=77897648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/075294 WO2022058335A1 (en) 2020-09-15 2021-09-15 Production of a form-molded shoe component

Country Status (2)

Country Link
CH (1) CH717846A2 (en)
WO (1) WO2022058335A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111055420A (en) * 2019-12-31 2020-04-24 晋江兴迅新材料科技有限公司 Foaming forming process and foaming forming equipment for environment-friendly shoe sole

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111055420A (en) * 2019-12-31 2020-04-24 晋江兴迅新材料科技有限公司 Foaming forming process and foaming forming equipment for environment-friendly shoe sole

Also Published As

Publication number Publication date
CH717846A2 (en) 2022-03-15

Similar Documents

Publication Publication Date Title
DE102016209046B4 (en) METHOD FOR THE PRODUCTION OF A SHOE SOLE, SHOE SOLE, SHOE AND PREPARED TPU ITEMS
DE60003367T2 (en) Process for producing a porous product
DE1291115B (en) Process for the production of cell bodies from polyolefins
DE102011105775A9 (en) Method for injection molding of plastic molded parts made of thermoplastic material
EP1161333A1 (en) Method for producing physically foamed injection moulded parts
WO2022058335A1 (en) Production of a form-molded shoe component
EP2322337A1 (en) Process for manufacturing objects
EP4214045A1 (en) Production of a form-molded shoe component by way of pre-treatment in an autoclave
DE2126681A1 (en) Process for the production of elastic polyurethane foams
DE102008017508A1 (en) Process for producing a molded part
DE10059471A1 (en) Method for producing a seat or comparable cushion for a motor vehicle
DE102010043329A1 (en) Process for the production of foamed moldings
EP0094375B1 (en) Method and mould for the manufacture of elastic shoe soles
DE2335310C3 (en) Process for the production of structural foams with an unfoamed outer skin and a smooth and glossy surface from thermoplastics
DE102020201543A1 (en) Process for the production of a foam component
EP2168747B1 (en) Method for producing a moulded part from a rigid plastic holder and a flexible foam plastic layer positioned above it and apparatus
DE1965368B2 (en) Method of making laminates by successively injecting at least two batches of plastic material into a mold cavity
AT508511B1 (en) METHOD FOR PRODUCING AN ARTICLE WITH A CAVITY OF A PLASTIC MATERIAL
AT523284B1 (en) Sports shoe and method for adapting such a sports shoe to the shape of a user's foot
DE102006010354A1 (en) Preparation of plastic granular material, useful in the preparation of foamed product, comprises partially plastifying a plastic raw material and subsequently processing to granular particles
EP1455998B1 (en) Process for crosslinking a foamable polymer
WO1999043483A1 (en) Method and device for foaming plastics
DE102021210100A1 (en) Process and device for direct soling
DE1261670B (en) Process for the continuous production of cell bodies from polymers of vinyl chloride or vinyl aromatic monomers
DE102006034953A1 (en) Process to manufacture plastic profile containing a void, foaming plastic is introduced to the form with propellant gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21773828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21773828

Country of ref document: EP

Kind code of ref document: A1