WO2022057860A1 - 一种叠层太阳能电池 - Google Patents

一种叠层太阳能电池 Download PDF

Info

Publication number
WO2022057860A1
WO2022057860A1 PCT/CN2021/118782 CN2021118782W WO2022057860A1 WO 2022057860 A1 WO2022057860 A1 WO 2022057860A1 CN 2021118782 W CN2021118782 W CN 2021118782W WO 2022057860 A1 WO2022057860 A1 WO 2022057860A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
cell
auxiliary layer
type
doping
Prior art date
Application number
PCT/CN2021/118782
Other languages
English (en)
French (fr)
Inventor
李子峰
吴兆
徐琛
Original Assignee
隆基绿能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 隆基绿能科技股份有限公司 filed Critical 隆基绿能科技股份有限公司
Priority to AU2021342522A priority Critical patent/AU2021342522B2/en
Priority to US18/024,611 priority patent/US20230327037A1/en
Priority to EP21868682.2A priority patent/EP4216287A1/en
Publication of WO2022057860A1 publication Critical patent/WO2022057860A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • H01L31/02164Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors for shielding light, e.g. light blocking layers, cold shields for infrared detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/022458Electrode arrangements specially adapted for back-contact solar cells for emitter wrap-through [EWT] type solar cells, e.g. interdigitated emitter-base back-contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/078Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers including different types of potential barriers provided for in two or more of groups H01L31/062 - H01L31/075
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Definitions

  • the present disclosure relates to the field of photovoltaic technology, and in particular, to a tandem solar cell.
  • a tandem solar cell is a cell structure composed of a top cell and a bottom cell.
  • the top cell is made of light-transmitting material with a wide bandgap.
  • the bottom cell is made of a light-transmitting material with a narrow band gap. Based on this, sunlight with a shorter wavelength can be utilized by the top cell located above, and sunlight with a longer wavelength can be transmitted through the top cell to the bottom cell and utilized by the bottom cell. Therefore, the tandem solar cell can utilize Sunlight has a wide wavelength range and has a high utilization rate of light energy.
  • an interdigitated back contact (abbreviated as IBC) cell can be used as the bottom cell to absorb the carriers generated by the top cell, and the carriers can be extracted from the emitter and the back field at the bottom of the IBC cell.
  • the carriers generated by the top cell will recombine to a certain extent in the IBC cell, resulting in a low efficiency of the tandem cell.
  • FIG. 1 illustrates a schematic structural diagram of a tandem solar cell in the prior art.
  • the hole transport layer 102 included in the top cell 101 in the tandem solar cell may be located above the absorber layer 103
  • the electron transport layer 104 may be located below the absorber layer 103 .
  • the absorption layer 103 included in the top cell 101 generates electron-hole pairs after absorbing sunlight.
  • the holes generated in the top cell 101 can be conducted to the positive electrode 106 via the hole transport layer 102 above the absorption layer 103 , so as to be collected by the positive electrode 106 .
  • electrons generated in the top cell 101 can be conducted to the bottom cell 100 via the electron transport layer 104 under the absorber layer 103 and collected by the negative electrode 107 on the bottom surface of the bottom cell through the bottom cell 100 .
  • the substrate 105 included in the bottom cell 100 also absorbs sunlight to generate electron-hole pairs. Based on this, when the electrons generated in the top cell 101 pass through the bottom cell 100, it is easy to recombine with the hole generators, interface recombination or defect recombination generated by the bottom cell 100, so that the positive electrode 106 and the negative electrode 107 on the bottom surface of the bottom cell can be easily recombined. The number of collected holes and electrons is reduced, which greatly reduces the photoelectric conversion efficiency of tandem solar cells.
  • the purpose of the present disclosure is to provide a tandem solar cell, so as to improve the utilization rate of light energy of the tandem solar cell, thereby improving the photoelectric conversion efficiency of the tandem solar cell.
  • the present disclosure provides a tandem solar cell.
  • the tandem solar cell includes a bottom cell and a top cell on top of the bottom cell.
  • the bottom cell includes a first doped part and a second doped part.
  • the first doped portion and the second doped portion form at least one PN junction.
  • the multi-carrier carriers of the first doped portion are carriers of the first type.
  • the multi-carrier carriers of the second doping portion are carriers of the second type.
  • the bottom cell described above has a first electrode hole and a second electrode hole penetrating the bottom cell.
  • the first electrode is at least partially disposed in the first electrode hole
  • the second electrode is disposed at least partially in the second electrode hole.
  • the above-mentioned first electrode is in contact with the first doping part, and is used for extracting the first type of carriers of the bottom cell and the top cell.
  • the second electrode is in contact with the second doped part for extracting the second type of carriers of the bottom cell and the top cell.
  • the first doped part and the second doped part of the bottom cell can form at least one PN junction.
  • a first electrode and a second electrode that penetrate the bottom cell are formed inside the bottom cell, so that during the operation of the tandem solar cell, the first electrode can lead out the first type of carriers generated in the top cell and the bottom cell, and The second electrode can export the second type of charge carriers generated in the top and bottom cells.
  • both the first type of carriers and the second type of carriers generated after the semiconductor layer of the top cell absorbs sunlight can move in the direction close to the backlight surface of the top cell in the top cell, and are respectively absorbed by the top cell.
  • the tandem solar cell provided by the present disclosure can reduce the first type of carriers or the second type of carriers generated in the top cell and the second type of carriers generated in the bottom cell when passing through the bottom cell. Or the probability of the recombination of the first type of carriers, so that the photogenerated electric field generated by the bottom cell under illumination can be enhanced, the utilization rate of light energy of the tandem solar cell can be improved, and finally the photoelectric conversion efficiency of the tandem solar cell can be improved.
  • each PN junction includes: a first junction region perpendicular to the top cell.
  • the length extension directions of the first doped part and the second doped part forming the PN junction are perpendicular to the top the underside of the battery.
  • the lengthwise extending directions of the first and second electrodes are respectively the same as those of the first doping part and the second electrode.
  • the extension directions of the lengths of the second doping parts are the same; therefore, the contact areas of the first electrode and the second electrode with the first doping part and the second doping part respectively are larger.
  • the first type of carriers generated by the first doping part is easily extracted by the first electrode under the action of the built-in electric field, which reduces the recombination probability of the first type of carriers in the bottom cell.
  • the second type of carriers generated by the second doping part is easily extracted by the second electrode, which reduces the recombination probability of the second type of carriers in the bottom cell, thereby improving the stacking performance. Photoelectric conversion efficiency of solar cells.
  • each PN junction includes: a second junction region parallel to the bottom surface of the top cell.
  • the PN junction formed in the bottom cell includes a second junction region parallel to the bottom surface of the top cell
  • the first doped part and the second doped part included in the bottom cell are along the direction of the bottom cell.
  • Laminated structure stacked together in the thickness direction Based on this, when manufacturing the bottom cell, a relatively mature deposition process can be used to manufacture the first doped part and the second doped part, which reduces the difficulty of manufacturing the tandem solar cell.
  • the PN junction formed in the bottom cell includes a second junction region parallel to the bottom surface of the top cell
  • the PN junction interface formed in the bottom cell is parallel to the light-receiving surface of the bottom cell, and light is transmitted from the light-receiving surface of the bottom cell into the bottom cell. It can be more uniformly irradiated on the entire PN junction interface, so as to generate a balanced number of first-type carriers and second-type carriers in each region of the bottom cell, and reduce the movement of the first-type carriers to the first doping part.
  • the PN junction only includes a first junction region perpendicular to the bottom surface of the top cell, and the material of the first electrode includes a metal material and/or a first type of carrier conducting material.
  • the part of the first electrode located in the bottom cell may be the same as the first doping region included in the bottom cell. part but not the second doped part.
  • the material of the first electrode is metal material or the first type of carrier conducting material, under the action of the built-in electric field of the PN junction formed in the bottom cell, the first electrode only conducts electricity generated in the bottom cell and the top cell. Carriers of the first type but not the carriers of the second type, thereby expanding the range of material choices for the first electrode.
  • the PN junction only includes a first junction region perpendicular to the bottom surface of the top cell, and the material of the second electrode includes a metal material and/or a second type of carrier conducting material.
  • the part of the second electrode located in the bottom cell may be doped with the second doping region included in the bottom cell. part but not the first doped part.
  • the material of the second electrode is a metal material or a second type of carrier conducting material, under the action of the built-in electric field of the PN junction formed in the bottom cell, the second electrode only conducts electricity generated in the bottom cell and the top cell. The second type of carriers is not conducted, thereby expanding the range of material choices for the second electrode.
  • each first electrode includes a first conductive portion and a first metal portion distributed along a direction away from the top cell. At least a part of the first conductive portion is located in the corresponding first electrode hole.
  • the material of the first conduction part is the first type of carrier conduction material.
  • the second electrode includes a second conductive portion and a second metal portion distributed in a direction away from the top cell. At least a part of the second conductive portion is located in the corresponding second electrode hole.
  • the material of the second conduction part is the second type of carrier conduction material.
  • each first electrode since each first electrode includes at least part of the first conductive portion located in the corresponding first electrode hole, and the material is the first conductive portion of the first type of carrier conductive material, each first electrode is Has good carrier conduction selectivity. At this time, each first electrode can only transmit the first type of carriers to prevent the short circuit of the PN junction.
  • the metal material has better conductive characteristics than the first type of carrier conducting material, when the first electrode further includes a first metal part located on the surface of the first conducting part away from the top cell, the first metal part can be improved. Conductivity of an electrode.
  • each second electrode includes the above-mentioned second conductive portion and a second metal portion located on the surface of the second conductive portion away from the top cell, each second electrode has good carrier conduction selectivity. It also has good electrical conductivity.
  • the positions of the first metal portion relative to the first electrode hole are also different.
  • the position of the second metal portion relative to the second electrode hole is also different.
  • the length of the first metal part in the first electrode hole can be appropriately increased to improve the first type load
  • the conduction velocity of the current in the first electrode under the condition that at least the part of the second electrode in contact with the first doped part is the second conductive part, the length of the second metal part in the second electrode hole can be appropriately increased to improve the second type load.
  • the conduction rate of the current in the second electrode can improve the photoelectric conversion efficiency of the tandem solar cell.
  • the first metal portion is located outside the first electrode hole.
  • the second metal portion is located outside the second electrode hole.
  • the first conductive portion that only transmits the first type of carriers fills at least the first electrode hole to prevent the first metal portion from contacting the second doping portion in the first electrode hole.
  • the second conductive portion that only transmits the second type of carriers fills at least the second electrode hole to prevent the second metal portion from contacting the first doping portion in the second electrode hole, so as to avoid short circuit of the PN junction and improve the performance. Stability of tandem solar cells.
  • the PN junction includes a second junction region parallel to the bottom surface of the top cell, and a portion of the first electrode that contacts the second doping portion is configured as a third conductive portion.
  • the material of the third conduction part is the first type of carrier conduction material.
  • a portion of the second electrode that contacts the first doped portion is configured as a fourth conductive portion.
  • the material of the fourth conduction part is the second type of carrier conduction material.
  • both the first electrode and the second electrode penetrating the bottom cell will interact with the first doping part and the second doping part. Miscellaneous contacts.
  • the part of the first electrode contacting the second doped part is set as the third conducting part made of the first type of carrier conducting material, and the part of the second electrode contacting the first doped part is set as the second conductive part.
  • the first electrode may be in contact with the first doping part and the second doping part, and the second electrode may only be in contact with the second doping part Therefore, the part of the first electrode contacting the second doping part is set as the third conducting part of the first type of carrier conducting material, which can prevent the short circuit of the PN junction formed by the first doping part and the second doping part.
  • the bottom cell includes a first junction region perpendicular to the top cell, and a side away from the bottom surface of the top cell does not have a second junction region parallel to the bottom surface of the top cell.
  • the first electrode has a first outer edge portion extending out of the corresponding first electrode hole on a side away from the top cell.
  • the tandem solar cell further includes a first electrode auxiliary layer located between the first outer edge portion and the second doped portion. And/or, the second electrode has a second outer edge portion extending out of the corresponding second electrode hole on the side away from the top cell.
  • the tandem solar cell further includes a second electrode auxiliary layer between the second outer edge portion and the first doped portion.
  • the first electrode auxiliary layer and the second electrode auxiliary layer have at least an electrical isolation function.
  • the first electrode is an electrode used for extracting the first type of carriers of the top cell and the bottom cell.
  • the multi-carrier carriers of the second doped portion are the second type of carriers.
  • the first electrode auxiliary layer may separate the first outer edge portion from the second doped portion.
  • the existence of the first electrode auxiliary layer can prevent the first outer edge portion and the second doping portion from being electrically connected, and prevent the short circuit of the PN junction.
  • the above-mentioned first electrode auxiliary layer extends into the first electrode hole.
  • a portion of the first electrode auxiliary layer extending into the first electrode hole is formed between the first electrode and the first doping portion.
  • the second electrode auxiliary layer extends into the second electrode hole.
  • the portion of the second electrode auxiliary layer extending into the second electrode hole is formed between the second electrode and the second doping portion.
  • the part of the first electrode auxiliary layer between the first electrode and the first doping part and the part of the second electrode auxiliary layer between the second electrode and the second doping part have lattice matching function and energy band matching function , at least one of passivation functions.
  • the existence of the first electrode auxiliary layer can reduce the lattice mismatch between the first electrode and the first doping part, and prevent the first electrode auxiliary layer A defect recombination center is generated between the outer edge portion and the second doped portion, thereby reducing the probability of the recombination of the first type of carriers and the second type of carriers at the contact between the first electrode and the first doped portion.
  • the first electrode auxiliary layer has an energy band matching function
  • the first electrode auxiliary layer can also reduce the energy level difference between the first electrode and the first doping part, and improve the conduction of the first carriers from the first doping part to the first doping part.
  • the conduction rate in the first electrode increases the utilization rate of light energy by the bottom cell, and finally improves the photoelectric conversion efficiency of the tandem solar cell.
  • the first electrode auxiliary layer has a passivation function
  • the first electrode auxiliary layer can reduce the surface state density of the first electrode and the first doping part, and reduce the first type of carriers generated in the bottom cell in the first electrode. The rate at which defects recombine with the second type of carriers at the position in contact with the first doped portion.
  • the beneficial effects of the second electrode auxiliary layer reference may be made to the beneficial effects of the first electrode auxiliary layer, which will not be repeated here.
  • the material of the first outer edge portion and the second outer edge portion is a metal material.
  • the first electrode auxiliary layer and/or the second electrode auxiliary layer are used to avoid contact between the first outer edge portion and the second outer edge portion.
  • both the first outer edge portion and the second outer edge portion have the ability to conduct the first type of carriers and the ability of the second type of carrier.
  • the first electrode auxiliary layer further includes a portion located between the first outer edge portion and the second outer edge portion, and the first electrode auxiliary layer has insulating properties, the existence of the first electrode auxiliary layer can avoid the first electrode auxiliary layer.
  • the outer edge part is in contact with the second outer edge part to prevent the two opposite electrodes from being electrically connected, thereby improving the working stability of the stacked solar cell.
  • the existence of the second electrode auxiliary layer can also avoid the first outer edge.
  • the second outer edge part is in contact with the second outer edge part to prevent the two opposite electrodes from being electrically connected.
  • the above-mentioned tandem solar cell further includes at least two auxiliary electrodes. At least one auxiliary electrode covers the surface of the corresponding first electrode facing the top cell. At least one auxiliary electrode covers the surface of the corresponding second electrode facing the top cell.
  • the material of the auxiliary electrode corresponding to each first electrode is a metal material and/or a first carrier conducting material; and/or, the material of the auxiliary electrode corresponding to each second electrode is a metal material and/or a second current carrier Sub-conducting material.
  • the first electrode and the second electrode are respectively formed in the first electrode hole and the second battery hole penetrating the bottom cell, so the effective contact area of the first electrode and the second electrode and the top cell is respectively limited The effect of radial cross-sectional area of the first and second electrode holes.
  • the surfaces of the first electrode and the second electrode facing the top cell are respectively covered with at least one auxiliary electrode, the presence of the auxiliary electrode can increase the effective contact area between the first electrode and the second electrode and the top cell.
  • the conductivity of metal materials, the first type of carrier conducting materials and the second type of carrier conducting materials to carriers is much higher than that of semiconductor materials, so the existence of auxiliary electrodes can be The ability of the first electrode and the second electrode to collect corresponding types of carriers is enhanced, thereby improving the photoelectric conversion efficiency of the tandem solar cell.
  • each auxiliary electrode includes a plurality of main electrodes and at least one thin grid line.
  • the plurality of main electrodes are electrically connected by a thin grid line.
  • the main electrode is located at the position where the corresponding first electrode or the second electrode is in contact with the top cell.
  • the thin grid lines included in each auxiliary electrode can assist in collecting the first type of carriers or the second type of carriers.
  • the plurality of main electrodes included in each auxiliary electrode cover the position where the corresponding first electrode or the second electrode is in contact with the top cell, so that the first electrode or the second electrode can assist the first electrode or the second electrode to collect the first type current-carrying current in the top cell It can reduce the probability of recombination of two kinds of carriers in the top cell at the interface between the top cell and the bottom cell, and improve the utilization rate of light energy of the tandem solar cell.
  • the above-mentioned tandem solar cell further includes a first auxiliary layer.
  • the first auxiliary layer is formed on the surface of the bottom cell close to the top cell.
  • the longitudinal conductivity of the first auxiliary layer is greater than the lateral conductivity.
  • the material contained in the first auxiliary layer has at least one function among passivation function, optical adjustment function, lattice matching function and energy band matching function.
  • a first auxiliary layer is arranged between the bottom cell and the top cell, so as to improve the working performance of the tandem solar cell.
  • the first auxiliary layer has a passivation function and/or a lattice matching function
  • the first auxiliary layer can reduce the recombination probability of the two types of carriers at the interface of the top cell and the bottom cell.
  • the first auxiliary layer has an optical adjustment function
  • the first auxiliary layer can have a good light trapping effect, so that more light can be transmitted into the bottom cell.
  • the first auxiliary layer can reduce the energy level difference between the top cell and the first electrode and the second electrode respectively, and improve the conduction of two types of carriers from the top cell to the first electrode. Or the conduction rate of the second electrode, so that the first electrode and the second electrode can collect corresponding carriers.
  • the first auxiliary layer is located between the bottom cell and the top cell, and the first electrode and the second electrode penetrate the bottom cell, the surfaces of the first electrode and the second electrode close to the top cell are both in contact with the first auxiliary layer.
  • the first auxiliary layer has conductivity, and the longitudinal conductivity of the first auxiliary layer is greater than the lateral conductivity, it means that the first type of carriers and the second type of carriers are conducted in the longitudinal direction in the first auxiliary layer.
  • the rate is higher than the lateral conduction rate, so that the first electrode and the second electrode can be prevented from being electrically connected through the first auxiliary layer and short-circuited, and the working stability of the stacked solar cell can be improved.
  • At least one first electrode and/or at least one second electrode penetrates through the first auxiliary layer.
  • the first electrode and/or the second electrode penetrating the first auxiliary layer can be in direct contact with the backlight surface of the top cell, so that the first electrode and/or the second electrode can collect the corresponding carriers in the top cell and improve the stacking performance. performance of layered solar cells.
  • FIG. 1 is a schematic structural diagram of a tandem solar cell in the prior art
  • FIG. 2A is a schematic structural diagram of a first tandem solar cell provided by an embodiment of the present disclosure
  • FIG. 2B to 2D are schematic diagrams of alternative structures of the first electrode in the structure shown in FIG. 2A;
  • FIG. 2E to 2G are schematic diagrams of alternative structures of the second electrode in the structure shown in FIG. 2A;
  • FIG. 3A is a schematic structural diagram of a second tandem solar cell according to an embodiment of the present disclosure.
  • 3B to 3D are schematic diagrams of alternative structures of the first electrode in the structure shown in FIG. 3A;
  • 3E is a schematic diagram of an alternative structure of the second electrode in the structure shown in FIG. 3A;
  • FIG. 4A is a schematic structural diagram of a third tandem solar cell according to an embodiment of the present disclosure.
  • FIG. 4B to 4D are schematic diagrams of alternative structures of the first electrode in the structure shown in FIG. 4A;
  • 4E to 4G are schematic diagrams of alternative structures of the second electrode in the structure shown in FIG. 4A;
  • FIG. 5A is a schematic structural diagram of a fourth tandem solar cell according to an embodiment of the present disclosure.
  • 5B to 5D are schematic diagrams of alternative structures of the first electrode in the structure shown in FIG. 5A;
  • 5E to 5G are schematic diagrams of alternative structures of the second electrode in the structure shown in FIG. 5A;
  • FIG. 6A is a schematic structural diagram of a fifth tandem solar cell according to an embodiment of the present disclosure.
  • 6B to 6D are schematic diagrams of alternative structures of the first electrode in the structure shown in FIG. 6A;
  • 6E to 6G are schematic diagrams of alternative structures of the second electrode in the structure shown in FIG. 6A;
  • FIG. 7A is a schematic diagram of a first structure of a tandem solar cell including a first electrode auxiliary layer and a second electrode auxiliary layer provided by an embodiment of the present disclosure
  • FIG. 7B to 7D are schematic diagrams of alternative structures of the second electrode auxiliary layer in the structure shown in FIG. 7A;
  • FIG. 7E is a schematic diagram of an alternative structure of the first electrode auxiliary layer in the structure shown in FIG. 7A;
  • FIG. 7F is a schematic diagram of an alternative structure of the second electrode auxiliary layer in the structure shown in FIG. 7A;
  • FIG. 7G is a schematic diagram of a second structure of a tandem solar cell including a first electrode auxiliary layer and a second electrode auxiliary layer provided by an embodiment of the present disclosure
  • FIG. 7H is a schematic diagram of three structures of a tandem solar cell including a first electrode auxiliary layer and a second electrode auxiliary layer according to an embodiment of the present disclosure
  • FIG. 8A is a schematic structural diagram of a tandem solar cell including an auxiliary electrode provided by an embodiment of the present disclosure
  • FIG. 8B is a longitudinal cross-sectional view of the structure shown in FIG. 8A;
  • 8C and 8D are schematic structural diagrams of a tandem solar cell including a diffusion barrier layer and an auxiliary electrode;
  • FIG. 9A is a schematic structural diagram of a tandem solar cell including a first auxiliary layer and a second auxiliary layer.
  • FIG. 9B and FIG. 9C are schematic structural views of the first electrode penetrating the first auxiliary layer
  • FIG. 9D and FIG. 9E are schematic diagrams of the structure of the second electrode penetrating the first auxiliary layer.
  • FIG. 10 is a schematic structural diagram of a sixth tandem solar cell according to an embodiment of the present disclosure.
  • a layer/element when referred to as being "on" another layer/element, it can be directly on the other layer/element or intervening layers/elements may be present therebetween. element.
  • a layer/element when a layer/element is “on” another layer/element in one orientation, then when the orientation is reversed, the layer/element can be "under” the other layer/element.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plurality means two or more, unless expressly and specifically defined otherwise.
  • Several means one or more than one, unless expressly specifically defined otherwise.
  • a tandem solar cell is a cell structure composed of a top cell and a bottom cell.
  • the top cell is made of light-transmitting material with a wide bandgap.
  • the bottom cell is made of a light-transmitting material with a narrow band gap. Based on this, sunlight with a shorter wavelength can be utilized by the top cell located above, and sunlight with a longer wavelength can be transmitted through the top cell to the bottom cell and utilized by the bottom cell. Therefore, the tandem solar cell can utilize Sunlight has a wide wavelength range and has a high utilization rate of light energy.
  • the tandem solar cell includes a bottom cell 200 and a top cell 201 located on the bottom cell 200 .
  • the band gap width of the material of the top cell 201 is larger than that of the material of the bottom cell 200 .
  • the top cell 201 can be any type of back-contact solar cell, that is, both the positive electrode and the negative electrode of the top cell 201 are located on the backlight surface of the top cell 201 .
  • the top cell 201 may be an IBC cell, or a heterojunction cell with the positive and negative electrodes on one side.
  • the material of the absorption layer included in the top cell 201 is excitonic material such as perovskite material, organic material or quantum dot material, and the first type of carrier transport layer and the second type of carrier transport layer included in the top cell 201 are combined.
  • the second-type carrier transport layer is disposed on the backlight side of the absorption layer, so that both the first-type carriers and the second-type carriers in the top cell 201 can move in a direction toward the backlight side of the top cell 201 .
  • the bottom cell 200 described above includes a first doping part 202 and a second doping part 203 .
  • the first doping part 202 and the second doping part 203 form at least one PN junction.
  • the multi-carrier carriers of the first doped portion 202 are the first type of carriers.
  • the multi-carrier carriers of the second doping portion 203 are carriers of the second type.
  • the bottom cell 200 has a first electrode hole and a second electrode hole penetrating the bottom cell 200 .
  • the first electrode 204 is at least partially disposed in the first electrode hole.
  • a small part of the second electrodes to 205 are disposed in the second electrode holes.
  • the first electrode 204 is in contact with the first doped part 202 for extracting the first type of carriers of the bottom cell 200 and the top cell 201 .
  • the second electrode 205 is in contact with the second doped part 203 for extracting the second type of carriers of the bottom cell 200 and the top cell 201 .
  • the doping type of the impurities in the first doping part 202 included in the bottom cell 200 is opposite to the doping type of the impurities in the second doping part 203 .
  • the first doping portion 202 may be a semiconductor material portion doped with N-type impurities (eg, phosphorus). At this time, the multi-carrier carriers of the first doping portion 202 are electrons.
  • the second doping portion 203 may be a semiconductor material portion doped with P-type impurities (eg, boron). At this time, the multi-carriers of the second doping portion 203 are holes.
  • the first type of carriers are electrons, the first electrode 204 is used for collecting electrons, and the first electrode 204 is a negative electrode.
  • the second type of carriers is holes, the second electrode 205 is used for collecting holes, and the second electrode 205 is the positive electrode.
  • the first doped portion 202 may be a semiconductor material portion doped with P-type impurities, and in this case, the multi-subcarriers of the first doped portion 202 are holes.
  • the second doping portion 203 may be a semiconductor material portion doped with an N-type material, and in this case, the multi-carrier carriers of the second doping portion 203 are electrons.
  • the first type of carriers are holes, the first electrode 204 is used for collecting holes, and the first electrode 204 is a positive electrode.
  • the second type of carriers is electrons, the second electrode 205 is used for collecting electrons, and the second electrode 205 is a negative electrode.
  • the material of the semiconductor material portion may be a semiconductor material such as polysilicon.
  • the specific structures of the first doping part 202 and the second doping part 203 and the relative positional relationship between them determine the specific structure of the PN junction formed in the bottom cell 200 . Therefore, The first doping part 202 and the second doping part 203 can be set according to the specific structure of the PN junction. Of course, it can also be set according to actual application scenarios, as long as it can be applied to the tandem solar cells provided by the embodiments of the present disclosure.
  • the specific structures of the first electrode 204 and the second electrode 205 and the materials of the two can be determined according to the specific structures of the first doping part 202 and the second doping part 203 As long as it is ensured that the first electrode 204 can export the first type of carriers in the top cell 201 and the bottom cell 200, and the second electrode 205 can export the second type of carriers in the top cell 201 and the bottom cell 200, that is, Can.
  • the arrangement manner and quantity of the first electrodes 204 and the second electrodes 205 can be set according to actual application scenarios, which are not limited here.
  • the first electrodes 204 and the second electrodes 205 may be arranged in a matrix.
  • the distribution of the first electrodes 204 and the second electrodes 205 can be set according to the distribution of the two electrodes included in the top battery 201 .
  • the above top cell 201 , the first doping part 202 , the second doping part 203 , the first electrode 204 and the second electrode 205 The surface can be textured.
  • both the first type of carriers and the second type of carriers generated after the semiconductor layer of the top cell 201 absorbs sunlight with a shorter wavelength can be
  • the top cell 201 moves in a direction close to the backlight surface of the top cell 201 and is collected by the first electrode 204 and the second electrode 205 penetrating the bottom cell 200 respectively.
  • the longer wavelength sunlight is absorbed by the bottom cell 200 after passing through the top cell 201, and a pair of first type carriers and second type carriers are generated in the bottom cell 200.
  • the first type of carriers and the second type of carriers existing in pairs are separated under the action of the built-in electric field of the PN junction.
  • the first type of carriers moves in the direction toward the first electrode 204 under the action of the built-in electric field
  • the second type of carriers moves in the direction toward the second electrode 205 under the action of the built-in electric field , which are collected by the first electrode 204 and the second electrode 205 respectively, and generate current.
  • the first electrode 204 penetrating the bottom cell 200 can simultaneously collect the first type of carriers in the top cell 201 and the bottom cell 200
  • the second electrode 205 can simultaneously collect the second type of carriers in the top cell 201 and the bottom cell 200 Therefore, the connection relationship between the top cell 201 and the bottom cell 200 included in the tandem solar cell is parallel.
  • the first type of carriers and the second type of carriers generated during the operation of the top cell 201 included in the tandem solar cell provided by the embodiment of the present disclosure can be directly penetrated through the bottom cell 200, respectively.
  • the first electrode 204 and the second electrode 205 collect, so that the first type of carriers or the second type of carriers generated in the top cell 201 can be reduced when passing through the bottom cell 200 and the second type of carriers generated in the bottom cell 200.
  • the probability of the recombination of carriers or the first type of carriers enhances the photo-generated electric field generated by the bottom cell 200 under illumination, improves the utilization rate of light energy of the tandem solar cell, and finally improves the photoelectric conversion efficiency of the tandem solar cell.
  • each PN junction includes: a first junction region 301 perpendicular to the top cell 201 . It should be understood that when the field strength direction of the built-in electric field of the PN junction is parallel to the bottom surface of the top cell 201 , the PN junction includes the above-mentioned first junction region 301 . At this time, the lengthwise extending directions of the first doping part 202 and the second doping part 203 forming the PN junction are perpendicular to the bottom surface of the top cell 201 .
  • the lengthwise extending directions of the first electrodes 204 and the second electrodes 205 are respectively the same as those of the first electrode 204 and the second electrode 205.
  • the lengths of the doped portion 202 and the second doped portion 203 extend in the same direction. Therefore, the contact areas of the first electrode 204 and the second electrode 205 with the first doped portion 202 and the second doped portion 203 are larger, respectively.
  • the first type of carriers generated by the first doping portion 202 is easily extracted by the first electrode 204 under the action of the built-in electric field, which reduces the recombination probability of the first type of carriers in the bottom cell 200 .
  • the second type of carriers generated by the second doping part 203 is easily extracted by the second electrode 205 under the action of the built-in electric field, which reduces the recombination probability of the second type of carriers in the bottom cell 200, thereby reducing the recombination probability of the second type of carriers in the bottom cell 200.
  • the material of the first electrode 204 may include a metal material, or may include a first
  • the carrier-like conducting material may, of course, also include both metal materials and the first-type carrier conducting material.
  • the metal material may be aluminum, gold, silver, copper, or the like.
  • the above-mentioned first type of carrier conductive materials may be: 8-hydroxyquinoline aluminum, titanium oxide, and the like.
  • the first type of carrier conductive material may be: aromatic diamine, aromatic triamine, or polysilane, or the like.
  • the part of the first electrode 204 located in the bottom cell 200 may be connected to the bottom cell 200 .
  • the first doping part 202 included in 200 is in contact with the second doping part 203 .
  • the first electrode 204 regardless of whether the material of the first electrode 204 is a metal material or the first type of carrier conducting material, under the action of the built-in electric field of the PN junction formed in the bottom cell 200, the first electrode 204 only conducts the bottom cell 200 and the top cell.
  • the first type of carriers generated in the battery 201 will not conduct the second type of carriers, thereby expanding the material selection range of the first electrode 204 .
  • the material of the first electrode 204 includes a metal material and a first type of carrier material, which part of the first electrode 204 is made of the metal material and which part is made of the first carrier material can be determined according to the first type of carrier material.
  • the contact situation between an electrode 204 and the second doping portion 203 may be set according to actual application scenarios, which is not specifically limited here.
  • the first electrode 204 may be a positive electrode or a negative electrode.
  • the material contained in the first electrode 204 may be metal materials such as gold, silver, aluminum, etc., or may be 8-hydroxyquinoline Electron-conducting materials such as phosphonium aluminum.
  • the material contained in the first electrode 204 may be metal materials such as gold, silver, aluminum, etc., or may be aromatic diamine, etc. hole conducting material.
  • each first electrode 204 may include a first conducting part 207 and a first metal part 208 distributed along a direction away from the top cell 201 .
  • the first conductive portion 207 is at least partially located in the corresponding first electrode hole.
  • the material of the first conducting portion 207 is the above-mentioned first type of carrier conducting material.
  • the material of the first metal portion 208 is the aforementioned metal material. Specifically, the specifications of the first conductive portion 207 and the first metal portion 208 included in the first electrode 204 can be set according to actual conditions, which are not specifically limited here.
  • the size of the first metal portion 208 in the first electrode hole can be appropriately increased to increase the conduction rate of the first type of carriers in the first electrode 204, thereby improving the photoelectric conversion of the tandem solar cell effectiveness.
  • the first metal part 208 may also protrude out of the first electrode hole in a direction away from the top cell 201 .
  • the specification of the portion of the first metal portion 208 extending out of the first electrode hole can be set according to the actual application, which is not specifically limited here.
  • the first metal portion 208 is located outside the first electrode hole.
  • the first conductive portion 207 that only transmits the first type of carriers fills at least the first electrode hole.
  • the first conductive portion 207 may also extend out of the first electrode hole.
  • the specific structure of the portion of the first conductive portion 207 outside the first electrode hole and the first metal portion 208 can be set according to actual application scenarios.
  • each first electrode 204 includes a first conductive portion 207 that is at least partially located in the corresponding first electrode hole and is made of the first type of carrier conductive material, so each first electrode 204 is Has good carrier conduction selectivity.
  • the metal material has better conductive characteristics than the first type of carrier conducting material, when the first electrode 204 further includes the first metal part 208 located on the surface of the first conducting part 207 away from the top cell 201 , the conductivity of the first electrode 204 can be improved.
  • the material of the second electrode 205 includes a metal material or a second type of current-carrying material
  • the sub-conducting material may also include both metal materials and the second type of carrier-conducting material.
  • the metal material and the second carrier conducting material used for manufacturing the second electrode 205 can be selected with reference to the material of the first electrode 204 described above.
  • the part of the second electrode 205 located in the bottom cell 200 may be It is in contact with the second doping part 203 included in the bottom cell 200 but not in contact with the first doping part 202 .
  • the material of the second electrode 205 is a metal material or a second type of carrier conducting material, under the action of the built-in electric field of the PN junction formed in the bottom cell 200, the second electrode 205 only conducts the bottom cell 200 and the top cell.
  • the second type of carriers generated in the battery 201 will not conduct the second type of carriers, thereby expanding the material selection range of the second electrode 205 .
  • the material of the second electrode 205 includes a metal material and a second type of carrier material, which part of the second electrode 205 is made of the metal material and which part is made of the second carrier material can be determined according to the second type of carrier material.
  • the contact situation between the two electrodes 205 and the first doping portion 202 may be set according to the actual application scenario, which is not specifically limited here.
  • the second electrode 205 is the negative electrode.
  • the material contained in the second electrode 205 may be a metal material such as gold, silver, and aluminum, or may be an electron conductive material such as 8-hydroxyquinoline aluminum.
  • the first electrode 204 is a negative electrode
  • the second electrode 205 is a positive electrode.
  • the material contained in the second electrode 205 may be a metal material such as gold, silver, and aluminum, or may be a hole conducting material such as an aromatic diamine.
  • the second electrode 205 may include a second conductive part 209 and a second metal part 210 distributed along a direction away from the top cell 201 . At least a part of the second conductive portion 209 is located in the corresponding second electrode hole.
  • the material of the second conducting portion 209 is the second type of carrier conducting material.
  • the material of the second metal portion 210 is the aforementioned metal material. Specifically, the specifications of the second conductive portion 209 and the second metal portion 210 included in the second electrode 205 can be set according to actual conditions, which are not specifically limited here.
  • the second metal portion 210 is located in the corresponding second electrode hole.
  • the size of the second metal portion 210 in the second electrode hole can be appropriately increased to increase the conduction rate of the second type of carriers in the second electrode 205, thereby improving the photoelectric conversion of the tandem solar cell effectiveness.
  • the second metal part 210 may also protrude out of the second electrode hole in a direction away from the top cell 201 .
  • the specification of the portion of the second metal portion 210 extending out of the second electrode hole can be set according to the actual application, which is not specifically limited here.
  • the second metal portion 210 is located outside the second electrode hole.
  • the second conductive portion 209 that only transmits the second type of carriers fills at least the second electrode hole.
  • the second conductive portion 209 may also extend out of the second electrode hole.
  • the specific structure of the portion of the second conductive portion 209 outside the second electrode hole and the second metal portion 210 can be set according to actual application scenarios.
  • each second electrode 205 includes at least part of the second conductive portion 209 located in the corresponding second electrode hole and made of the second type of carrier conductive material, each second electrode 205 is Has good carrier conduction selectivity.
  • the metal material has good electrical conductivity compared with the second type of carrier conducting material, when the second electrode 205 further includes the second metal part 210 located on the surface of the second conducting part 209 away from the top cell 201, it can be The conductivity of the second electrode 205 is improved.
  • the first electrode 204 and the second electrode 205 of different structures shown in FIGS. random combination when the above-mentioned PN junction only includes the first junction region 301 perpendicular to the bottom surface of the top cell 201, the first electrode 204 passing through the bottom cell 200 may be the first electrode 204 shown in FIG. 2B.
  • the second electrode 205 penetrating the bottom cell 200 may be the second electrode 205 shown in FIG. 2E.
  • each PN junction includes: a second junction region parallel to the bottom surface of the top cell 201 .
  • the second doping part 203 may be at least partially located on the surface of the first doping part 202 facing the top cell 201 .
  • the second junction region included in the PN junction is parallel and close to the bottom surface of the top cell 201 .
  • the second doping portion 203 may be located at least partially on the surface of the first doping portion 202 away from the top cell 201 .
  • the second junction region included in the PN junction is parallel and close to the bottom surface of the bottom cell 200 .
  • the specific position of the second junction region can be set according to the actual situation, which is not specifically limited here.
  • the second doping part 203 may be located between the first doping part 202 and the top cell 201 .
  • the PN junction formed by the first doping part 202 and the second doping part 203 only includes the second junction region which is parallel and close to the bottom surface of the top cell 201 .
  • the first electrode 204 and the second electrode 205 both penetrate the first doping part 202 and the second doping part 203 .
  • the first doping part 202 and the second doping part 203 included in the bottom cell 200 are stacked together along the thickness direction of the bottom cell 200 .
  • the bottom cell 200 when manufacturing the bottom cell 200, a relatively mature deposition process can be used to manufacture the first doped portion 202 and the second doped portion 203, thereby reducing the difficulty of manufacturing the tandem solar cell.
  • the PN junction only includes a second junction region that is parallel and close to the bottom surface of the top cell 201, the interface of the PN junction is parallel to the light-receiving surface of the bottom cell 200, and sunlight can be transmitted through the light-receiving surface of the bottom cell 200 into the bottom cell 200.
  • the material of the first electrode 204 may include the first type of carrier
  • the carrier conducting material may also include both metal materials and the first type of carrier conducting material. Specifically, for the types of the metal material and the first type of carrier conducting material, reference may be made to the foregoing description, which will not be repeated here.
  • the material of the first electrode 204 may only include the first type of carrier conducting material. At this time, each part of the first electrode 204 has good carrier conduction selectivity.
  • the material contained in the first electrode 204 may be an electron conducting material such as 8-hydroxyquinoline aluminum. In this case, each part of the first electrode 204 has good electron conduction selectivity.
  • the material contained in the first electrode 204 may be a hole conducting material such as aromatic diamine.
  • each part of the first electrode 204 has good hole conduction selectivity.
  • each of the first electrodes 204 may include a third conductive part 211 and a third metal part 212 distributed along a direction away from the top cell 201 .
  • the portion of the first electrode 204 that contacts the second doping portion 203 is formed as the third conductive portion 211 .
  • the material of the third conducting portion 211 is the first type of carrier conducting material. At least part of the third conductive portion 211 is located in the corresponding first electrode hole.
  • the material of the third metal portion 212 is a metal material.
  • the materials of the third conducting portion 211 and the third metal portion 212 may refer to the aforementioned materials of the first conducting portion 207 and the first metal portion 208 .
  • each PN junction includes only the second junction region parallel to the bottom surface of the top cell 201 , the part of the first electrode 204 located in the first electrode hole is simultaneously connected with the first doping part 202 and the The second doped portion 203 is in contact.
  • the length of the third conductive portion 211 included in the first electrode 204 in the first electrode hole may be based on the contact between the first electrode 204 and the second doping portion 203 Set up to prevent shorting of the PN junction.
  • the third metal portion 212 is located in the corresponding first electrode hole.
  • the specification of the third metal part 212 in the first electrode hole can be appropriately increased to increase the size of the third conductive part 211.
  • the conduction rate of the first type of carriers in the first electrode 204 can improve the photoelectric conversion efficiency of the tandem solar cell.
  • the third metal portion 212 is located outside the first electrode hole.
  • the related description of the first electrode 204 may refer to the foregoing description of the first electrode 204 shown in FIG. 2D , which is not repeated here.
  • the material of the second electrode 205 may include a second type of carrier
  • the carrier conducting material may also include both metal materials and the second type of carrier conducting material.
  • types of the metal material and the second type of carrier conducting material reference may be made to the foregoing description, which will not be repeated here.
  • the material of the second electrode 205 may only include the second type of carrier conducting material. At this time, each part of the second electrode 205 has good carrier conduction selectivity.
  • the first electrode 204 is a positive electrode
  • the second electrode 205 is a negative electrode
  • the material contained in the second electrode 205 may be an electron conducting material such as 8-hydroxyquinoline aluminum. In this case, the second electrode 205 has good electron conduction selectivity.
  • the material contained in the second electrode 205 may be a hole conducting material such as aromatic diamine. In this case, each part of the second electrode 205 has good hole conduction selectivity.
  • each of the second electrodes 205 may include a fourth conductive part 213 and a fourth metal part 214 distributed along a direction away from the top cell 201 .
  • the portion of the second electrode 205 that contacts the first doping portion 202 is formed as the fourth conductive portion 213 .
  • the material of the fourth conduction portion 213 is the second type of carrier conduction material.
  • the fourth conductive portion 213 is at least partially located in the corresponding second electrode hole.
  • the material of the fourth metal portion 214 is a metal material.
  • the fourth metal portion 214 is located outside the second electrode hole. At this time, the fourth conductive part 213 can fill at least the second electrode hole, so as to prevent the fourth metal part 214 from contacting the first doping part 202 and to avoid short circuit of the PN junction.
  • the first electrode 204 penetrating the bottom cell 200 may be the first electrode 204 shown in FIG. 3D .
  • the second electrode 205 penetrating the bottom cell 200 may be the second electrode 205 shown in FIG. 3E.
  • each PN junction includes: a first junction region 301 perpendicular to the top cell 201 and a second junction region parallel to the bottom surface of the top cell 201 .
  • the relative positional relationship between the first junction region 301 and the second junction region may be set according to an actual application scenario, which is not specifically limited here.
  • the PN junction formed by the first doping part 202 and the second doping part 203 includes both the second junction region close to the bottom surface of the top cell 201 and the The first junction region 301 is perpendicular to the bottom surface of the top cell 201 .
  • the first electrode The material of 204 may include the first type of carrier, and may also include a metal material and a first type of carrier conducting material.
  • the portion of the first electrode 204 that contacts the second doping portion 203 is set as the third conductive portion 211 .
  • the third conducting portion 211 fills at least the first electrode hole, and the material of the third conducting portion 211 is the first type of carrier conducting material.
  • the material of the second electrode 205 may include a metal material, or may include a second carrier conducting material.
  • the material of the second electrode 205 may also include a metal material and a second type of carrier conducting material.
  • the portion of the second electrode 205 that contacts the first doping portion 202 is set as the fourth conductive portion 213.
  • the fourth conducting portion 213 fills at least the second electrode hole, and the material of the fourth conducting portion 213 is the second type of carrier conducting material.
  • the difference shown in FIG. 4A to FIG. 4G is different.
  • the first electrode 204 and the second electrode 205 of the structure can be combined arbitrarily.
  • the first electrode 204 passing through the bottom cell 200 may be the one shown in FIG. 4D . out of the first electrode 204 .
  • the second electrode 205 penetrating the bottom cell 200 may be the second electrode 205 shown in FIG. 4E .
  • the PN junction formed by the first doping part 202 and the second doping part 203 not only includes a second junction region close to the bottom surface of the bottom cell 200 , but also The first junction region 301 perpendicular to the bottom surface of the top cell 201 is included.
  • the first electrode 204 when the PN junction includes a second junction region close to the bottom surface of the bottom cell 200 and a first junction region 301 perpendicular to the bottom surface of the top cell 201 , the first electrode 204
  • the material can include metal materials, and can also include the first type of carrier conducting materials.
  • the material of the first electrode 204 may also include a metal material and a first type of carrier conducting material.
  • the portion of the first electrode 204 that contacts the second doping portion 203 is set as the third conductive portion 211 .
  • the third conducting portion 211 fills at least the first electrode hole, and the material of the third conducting portion 211 is the first type of carrier conducting material.
  • the material of the second electrode 205 may include a metal material, or may include a second type of carrier conducting material.
  • the material of the second electrode 205 may also include a metal material and a second type of carrier conducting material at the same time.
  • the portion of the second electrode 205 that contacts the first doping portion 202 is set as the fourth conductive portion 213 .
  • the fourth conducting portion 213 fills at least the second electrode hole, and the material of the fourth conducting portion 213 is the second type of carrier conducting material.
  • the PN junction shown in FIG. 5A further includes a second junction region close to the bottom surface of the bottom cell 200 , and at least part of the second doping part 203 is located in the first junction region.
  • the doped portion 202 is far away from the surface of the top cell 201 .
  • the material of the second electrode 205 is a metal material, the second electrode 205 shown in FIG.
  • the portion of the second electrode 205 extending out of the second electrode hole may extend in a direction parallel to the bottom surface of the bottom cell 200 , and the length of the extension may be determined according to the specification of the portion of the second doping portion 203 located on the bottom surface of the bottom cell 200 . set up.
  • the fourth metal portion 214 included in the second electrode 205 shown in FIG. 5F may also protrude out of the second electrode hole in a direction away from the top cell 201 .
  • the portion of the fourth metal portion 214 extending out of the second electrode hole may also extend in a direction parallel to the bottom surface of the bottom battery 200 .
  • the difference shown in FIGS. 5A to 5G is different.
  • the first electrode 204 and the second electrode 205 of the structure can be combined arbitrarily.
  • the first electrode 204 penetrating the bottom cell 200 may be as shown in FIG. 5D out of the first electrode 204 .
  • the second electrode 205 penetrating the bottom cell 200 may be the second electrode 205 shown in FIG. 5E .
  • the PN junction includes a second junction region close to the bottom surface of the top cell 201 and the bottom surface of the bottom cell 200 , and a first junction region perpendicular to the bottom surface of the top cell 201 .
  • a second junction region is formed on both sides close to and away from the top cell 201, and the interface of the PN junction formed by the first doping part 202 and the second doping part 203 is the largest.
  • the material of the first electrode 204 may include the first carrier conducting material, or may include both a metal material and the first carrier conducting material.
  • the portion of the first electrode 204 that contacts the second doping portion 203 is set as the third conductive portion 211 .
  • the third conducting portion 211 fills at least the first electrode hole, and the material of the third conducting portion 211 is the first type of carrier conducting material.
  • the material of the second electrode 205 may include a metal material, or may include a second carrier conducting material.
  • the material of the second electrode 205 may also include a metal material and a second carrier conducting material at the same time.
  • the portion of the second electrode 205 that contacts the first doping portion 202 is set as the fourth conductive portion 213 .
  • the fourth conducting portion 213 fills at least the second electrode hole, and the material of the fourth conducting portion 213 is the second type of carrier conducting material.
  • the above-mentioned PN junction includes a second junction region close to the bottom surface of the top cell 201 and the bottom surface of the bottom cell 200, and a first junction region 301 perpendicular to the bottom surface of the top cell 201, as shown in FIG. 6A to FIG. 6G
  • the first electrode 204 and the second electrode 205 of different structures can be combined arbitrarily.
  • the first electrode 204 passing through the bottom cell 200 can be shown in the figure
  • the first electrode 204 is shown in 6C.
  • the second electrode 205 penetrating the bottom cell 200 may be the second electrode 205 shown in FIG. 6E.
  • the bottom cell 200 includes a first junction region 301 perpendicular to the top cell 201 , and the side away from the bottom surface of the top cell 201 does not have a first junction region 301 parallel to the bottom surface of the top cell 201 .
  • the first electrode 204 has a first outer edge portion 215 extending out of the corresponding first electrode hole on the side away from the top cell 201 .
  • the tandem solar cell further includes a first electrode auxiliary layer 216 located between the first outer edge portion 215 and the second doping portion 203 .
  • the second electrode 205 has a second outer edge portion 217 extending out of the corresponding second electrode hole on the side away from the top cell 201 .
  • the tandem solar cell further includes a second electrode auxiliary layer 218 located between the second outer edge portion 217 and the first doped portion 202.
  • the first electrode auxiliary layer 216 and the second electrode auxiliary layer 218 at least have an electrical isolation function.
  • the first electrode 204 and the second electrode 205 may extend out of the first electrode hole or the second electrode hole in a direction away from the top cell 201, respectively, and the first electrode 204 has the first outer edge portion 215, And the second outer edge portion 217 of the second electrode 205 may extend in a direction parallel to the bottom surface of the bottom battery 200 .
  • the specifications and materials of the first outer edge portion 215 and the second outer edge portion 217 can be set according to actual application scenarios.
  • the first electrode 204 is an electrode for extracting the first type of carriers of the top cell 201 and the bottom cell 200 .
  • the multi-carrier carriers of the second doping portion 203 are the second type of carriers.
  • the first electrode auxiliary layer 216 may separate the first outer edge portion 215 from the second doping portion 203 , reducing the probability of the recombination of the first type of carriers and the second type of carriers.
  • the existence of the first electrode auxiliary layer 216 can avoid the electrical connection between the first outer edge portion 215 and the second doping portion 203 , preventing PN Junction shorted.
  • the material of the first electrode auxiliary layer 216 having the function of electrical isolation may be insulating materials such as silicon dioxide and silicon nitride.
  • the beneficial effects of the second electrode auxiliary layer 218 can be referred to the beneficial effects of the first electrode auxiliary layer 216 , which will not be repeated here.
  • the material contained can be set with reference to the material of the first electrode auxiliary layer 216 described above.
  • the first electrode auxiliary layer 216 extends into the first electrode hole.
  • the portion of the first electrode auxiliary layer 216 extending into the first electrode hole is formed between the first electrode 204 and the first doping portion 202 .
  • the second electrode auxiliary layer 218 extends into the second electrode hole.
  • the portion of the second electrode auxiliary layer 218 extending into the second electrode hole is formed between the second electrode 205 and the second doping portion 203 .
  • the part of the first electrode auxiliary layer 216 between the first electrode 204 and the first doping part 202 and the part of the second electrode auxiliary layer 218 between the second electrode 205 and the second doping part 203 have lattice matching At least one of function, band matching function and passivation function.
  • the existence of the first electrode auxiliary layer 216 can reduce the friction between the first electrode 204 and the first doping part 202 Lattice mismatch prevents the formation of defect recombination centers between the first electrode 204 and the first doped part 202, thereby reducing the first type of carriers and the second type of carriers between the first electrode 204 and the first doped part 202.
  • the material of the first electrode auxiliary layer 216 with lattice matching function can be set according to the lattice constants of the materials of the first electrode 204 and the first doping portion 202 .
  • the lattice constant of the material of the first electrode auxiliary layer 216 needs to be the same as that of the material of the first electrode 204 and the first doping portion 202 . between constants.
  • the material of the first doping portion 202 is Si and the material of the first electrode 204 is Ge
  • the material of the first electrode auxiliary layer 216 may be SixGe1-x (0 ⁇ x ⁇ 1).
  • the first electrode auxiliary layer 216 can reduce the energy level difference between the first electrode 204 and the first doping part 202 , and improve the first electrode auxiliary layer 216 .
  • the conduction rate of a carrier conducted from the first doped portion 202 to the first electrode 204 increases the utilization rate of light energy by the bottom cell 200 and finally improves the photoelectric conversion efficiency of the tandem solar cell.
  • the material of the first electrode auxiliary layer 216 with energy band matching function can be set according to the energy levels of the materials of the first electrode 204 and the first doping portion 202 .
  • the energy level of the material of the first electrode auxiliary layer 216 needs to be between the energy levels of the first electrode 204 and the material of the first doping portion 202 . between.
  • the material of the first doping portion 202 is N-type Si
  • the material of the first electrode 204 is a metal material
  • the material of the first electrode auxiliary layer 216 may be ia-Si:H/BZO, or may be ia-Si : H/n+-a-Si:H.
  • the first electrode auxiliary layer 216 when the first electrode auxiliary layer 216 has a passivation function, the first electrode auxiliary layer 216 can reduce the surface state density of the first electrode 204 and the first doping part 202 and reduce the bottom cell The rate at which the carriers of the first type generated in the 200 and the carriers of the second type undergo defect recombination at the position where the first electrode 204 and the first doped part 202 are in contact.
  • the first electrode auxiliary layer 216 with passivation function may be a silicon nitride layer, an amorphous silicon layer, a silicon dioxide layer or an aluminum oxide layer.
  • the above-mentioned silicon nitride layer and amorphous silicon layer may be a silicon nitride layer and an amorphous silicon layer formed by plasma-enhanced chemical vapor deposition, respectively.
  • the above-mentioned silicon dioxide layer may be a thermal oxide silicon dioxide layer.
  • the above-mentioned aluminum oxide layer may be an aluminum oxide layer formed by atomic layer deposition.
  • the first electrode auxiliary layer 216 may also be other film layers with passivation function.
  • the beneficial effects of the second electrode auxiliary layer 218 can be referred to the beneficial effects of the first electrode auxiliary layer 216 , which will not be repeated here.
  • the materials contained can be set with reference to the material of the first electrode auxiliary layer 216 described above.
  • the portion of the first electrode auxiliary layer 216 extending into the first electrode hole is located between the first electrode 204 and the first doping portion 202, and the second electrode auxiliary layer 218 extends into the second electrode hole
  • the part is located between the second electrode 205 and the second doping part 203 , so the specific specification of the first electrode auxiliary layer 216 in the first electrode hole can be determined according to the contact between the first electrode 204 and the first doping part 202 set up. Meanwhile, the specific specification of the second electrode auxiliary layer 218 in the second electrode hole can be set according to the contact condition between the second electrode 205 and the second doping part 203 .
  • the PN junction includes a second junction region close to the bottom surface of the top cell 201 and a first junction region 301 perpendicular to the bottom surface of the top cell 201 , and the end of the first electrode 204 close to the top cell 201 is connected to the second The doped portion 203 is in contact.
  • the first electrode auxiliary layer 216 may extend inward from the first electrode hole away from the orifice of the top cell 201 along the bottom-up direction to the position where the first electrode 204 contacts the second doping part 203 and stops.
  • each part of the second electrode 205 in the second electrode hole is in contact with the second doping part 203 , so the second electrode auxiliary layer 218 can cover the surface of the second doping part 203 away from the first doping part 202 .
  • each part of the first electrode 204 located in the first electrode hole is in contact with the first doping part 202, Therefore, the first electrode auxiliary layer 216 can cover the inner wall of the first electrode hole.
  • each part of the second electrode 205 in the second electrode hole is in contact with the second doping part 203 , so the second electrode auxiliary layer 218 can cover the surface of the second doping part 203 away from the first doping part 202 .
  • the above-mentioned stacked solar cell when the above-mentioned stacked solar cell includes a first outer edge portion 215 and a second outer edge portion 217 , and the first outer edge portion 215 and the second outer edge portion 215
  • the edge portion 217 is made of a metal material
  • the first electrode auxiliary layer 216 and/or the second electrode auxiliary layer 218 are used to avoid contact between the first outer edge portion 215 and the second outer edge portion 217 .
  • both the first outer edge portion 215 and the second outer edge portion 217 have the first type of carriers and The ability of the second type of carrier.
  • the first electrode auxiliary layer 216 when the first electrode auxiliary layer 216 further includes a portion located between the first outer edge portion 215 and the second outer edge portion 217, and the first electrode auxiliary layer 216 has insulating properties, the first electrode auxiliary layer 216 has an insulating property.
  • the existence of the contact between the first outer edge part 215 and the second outer edge part 217 can be avoided, the electrical connection between the two opposite electrodes can be prevented, and the working stability of the tandem solar cell can be improved.
  • the structure between the first outer edge portion 215 and the second outer edge portion 217 is the second electrode auxiliary layer 218, and the second electrode auxiliary layer 218 has insulating properties
  • the existence of the second electrode auxiliary layer 218 can also be used. The contact between the first outer edge portion 215 and the second outer edge portion 217 is avoided, and the electrical connection between the two opposite electrodes is prevented.
  • the metal material contained in the first outer edge portion 215 and the second outer edge portion 217 may be gold, silver, aluminum, copper, or the like.
  • the first electrode auxiliary layer 216 and the second electrode auxiliary layer 218 may be passivation layers having insulating properties. For example: silicon dioxide, silicon nitride, etc.
  • the above-mentioned tandem solar cell further includes at least two auxiliary electrodes 219 .
  • At least one auxiliary electrode 219 covers the surface of the corresponding first electrode 204 facing the top cell 201 .
  • At least one auxiliary electrode 219 covers the surface of the corresponding second electrode 205 facing the top cell 201 .
  • the material of the auxiliary electrode 219 corresponding to each first electrode 204 is a metal material and/or a first carrier conducting material.
  • the material of the auxiliary electrode 219 corresponding to each second electrode 205 is a metal material and/or a second carrier conducting material.
  • first electrode 204 and the second electrode 205 are respectively formed in the first electrode hole and the second cell hole penetrating the bottom cell 200, so the effective contact areas of the first electrode 204 and the second electrode 205 with the top cell 201 are respectively Influenced by the radial cross-sectional area of the first electrode hole and the second electrode hole.
  • the presence of the auxiliary electrode 219 can increase the distance between the first electrode 204 and the second electrode 205 and the top cell 201. effective contact area.
  • the conductivity of metal materials, the first type of carrier conductive materials and the second type of carrier conductive materials to carriers is much higher than that of semiconductor materials, so the existence of the auxiliary electrode 219
  • the ability of the first electrode 204 and the second electrode 205 to collect corresponding types of carriers can be enhanced, thereby improving the photoelectric conversion efficiency of the tandem solar cell.
  • the materials of the auxiliary electrodes 219 respectively covering the first electrode 204 and the second electrode 205 may be the same or different.
  • the materials of each auxiliary electrode 219 covering the first electrode 204 or covering the second electrode 205 may be the same or different.
  • the specific structure and shape of the auxiliary electrode 219 can be set according to the actual situation, as long as the effective contact area between the first electrode 204 and the second electrode 205 and the top cell 201 can be increased.
  • the materials of the auxiliary electrodes 219 covering the first electrodes 204 and the second electrodes 205 are the same, the materials of the auxiliary electrodes 219 are both metal materials. At this time, in order to prevent the first electrode 204 and the adjacent second electrode 205 from being electrically connected, the auxiliary electrode 219 located on the first electrode 204 and the auxiliary electrode 219 located on the second electrode 205 are not in contact with each other.
  • the auxiliary electrodes 219 covering the first electrodes 204 and the second electrodes 205 are different, the auxiliary electrodes 219 covering the first electrodes 204 are of different materials.
  • the material may be metal material, and the material of the auxiliary electrode 219 on the second electrode 205 is the second carrier conducting material.
  • the material of the auxiliary electrode 219 covering the first electrode 204 may be the first carrier conductive material, and the material of the auxiliary electrode 219 on the second electrode 205 may be a metal material.
  • the material of the auxiliary electrode 219 covering the first electrode 204 may be the first carrier conducting material
  • the material of the auxiliary electrode 219 on the second electrode 205 may be the second material carrier conducting material.
  • the auxiliary electrodes 219 located on the first electrode 204 and the second electrode 205 can be in contact.
  • the types of the metal materials, the first type of carrier conductive materials and the second type of carrier conductive materials contained in the auxiliary electrode 219 may refer to the aforementioned metal materials contained in the first electrode 204 and/or the second electrode 205 , the types of the first type of carrier conductive material and the second type of carrier conductive material are set, which will not be repeated here.
  • each auxiliary electrode 219 includes a plurality of main electrodes 220 and at least one thin grid line 221 .
  • the plurality of main electrodes 220 are electrically connected by a thin gate line 221 .
  • the main electrode 220 is located at the position where the corresponding first electrode 204 or the second electrode 205 is in contact with the top cell 201 .
  • the thin gate lines 221 included in each auxiliary electrode 219 may assist in collecting the first type of carriers or the second type of carriers.
  • each auxiliary electrode 219 cover the position where the corresponding first electrode 204 or the second electrode 205 is in contact with the top cell 201, so as to assist the first electrode 204 or the second electrode 205 to collect the top cell
  • the first type of carriers or the second type of carriers in 201 reduces the probability of recombination of the two types of carriers in the top cell 201 at the interface between the top cell 201 and the bottom cell 200, and improves the tandem solar cell utilization of light energy.
  • the shape of the main electrode 220 may be a rectangle, a square, an anisotropic polygon, or an ellipse, which is not specifically limited here, as long as the area of the main electrode 220 in contact with the top cell 201 is greater than
  • the radial cross-sectional area of the first electrode 204 and the second electrode 205 is sufficient to assist the first electrode 204 and the second electrode 205 to collect corresponding types of carriers.
  • the arrangement between the auxiliary electrodes 219 and the arrangement between the main electrodes 220 included in each auxiliary electrode 219 can be set according to the arrangement of the first electrodes 204 and the second electrodes 205 .
  • the extending direction of the thin grid lines 221 included in each auxiliary electrode 219 may be set according to the positional relationship between the adjacent first electrodes 204 or the adjacent second electrodes 205 .
  • the main electrode 220 may be a hemispherical structure.
  • the surface of the main electrode 220 in contact with the first electrode 204 or the second electrode 205 is a circular plane, and the surface of the main electrode 220 in contact with the top cell 201 is an arc-shaped curved surface.
  • the main electrodes 220 included in each auxiliary electrode 219 may be arranged in a matrix.
  • the geometric center of the bottom surface of each main electrode 220 included in each auxiliary electrode 219 may coincide with the axis of the thin grid line 221 .
  • each auxiliary electrode 219 may be appropriately increased.
  • the main electrodes 220 added in each auxiliary electrode 219 are electrically connected to the thin grid lines 221 and distributed along the axial direction of the thin grid lines 221 .
  • the material of the thin grid lines 221 may be metal materials.
  • the material of the main electrode 220 located on the first electrode 204 may be a metal material and/or a first type of carrier conducting material.
  • the material of the main electrode 220 located on the second electrode 205 may be a metal material and/or a second type of carrier conducting material.
  • the auxiliary electrode 219 and the first electrode 204 and the auxiliary electrode 219 and the second electrode 205 may be between the auxiliary electrode 219 and the second electrode 205 .
  • a diffusion barrier layer 223 is provided. During the working process of the tandem solar cell, the existence of the diffusion barrier layer 223 can prevent the active ions in the auxiliary electrode 219 from diffusing into the first doping part 202 and/or the second doping part 203, thereby affecting the performance of the tandem solar cell. work performance. Specifically, as shown in FIG.
  • the above-mentioned diffusion barrier layer 223 may be disposed on the surface of the bottom cell 200 close to the auxiliary electrode 219 as a whole. Also, the first electrode 204 and the second electrode 205 penetrate the diffusion barrier layer 223 . Alternatively, as shown in FIG. 8D , along the direction close to the top cell 201 , the first electrode 204 and the second electrode 205 protrude out of the first electrode hole and the second electrode hole, respectively.
  • the diffusion barrier layer 223 surrounds the periphery of the portion of the first electrode 204 extending out of the first electrode hole, and the diffusion barrier layer 223 surrounds the periphery of the portion of the second electrode 205 that extends out of the second electrode hole.
  • the material of the diffusion barrier layer 223 may be tantalum nitride and other materials that meet the requirements.
  • the above-mentioned tandem solar cell further includes a first auxiliary layer 222 .
  • the longitudinal conductivity of the first auxiliary layer 222 is greater than the lateral conductivity.
  • the first auxiliary layer 222 is formed on the surface of the bottom cell 200 close to the top cell 201 .
  • the material contained in the first auxiliary layer 222 has at least one of a passivation function, an optical adjustment function, a lattice matching function, and an energy band matching function.
  • the longitudinal conductivity of the first auxiliary layer 222 is greater than the lateral conductivity. It should be understood that the first auxiliary layer 222 is located between the bottom cell 200 and the top cell 201, and the first electrode 204 and the second electrode 205 penetrate the bottom cell 200, so the first electrode 204 and the second electrode 205 are close to the surface of the top cell 201 Both are in contact with the first auxiliary layer 222 .
  • the first auxiliary layer 222 has conductivity, and the longitudinal conductivity of the first auxiliary layer 222 is greater than the lateral conductivity, it means that the first type of carriers and the second type of carriers are in the first auxiliary layer 222
  • the longitudinal conduction rate is greater than the lateral conduction rate, so that the first electrode 204 and the second electrode 205 can be prevented from being electrically connected through the first auxiliary layer 222 and short-circuited, and the working stability of the tandem solar cell can be improved.
  • the above-mentioned first auxiliary layer 222 may be a tunnel junction layer.
  • the first auxiliary layer 222 can generate a moving path of carriers, and assist conduction of carriers between layers.
  • the material of the first auxiliary layer 222 can be intrinsic hydrogenated amorphous silicon.
  • the first auxiliary layer 222 may also be other auxiliary layers whose longitudinal conductivity is greater than the lateral conductivity.
  • the material of the first auxiliary layer 222 can refer to the above-mentioned passivation function, lattice matching function, energy band matching function
  • the material of the first electrode auxiliary layer 216 with the matching function is set, which is not repeated here.
  • the material of the first auxiliary layer 222 can be silicon oxide or nitride, or aluminum oxide or nitride.
  • the material of the first auxiliary layer 222 may be SiOy, Al2O3, SiNz, SiON, SiCN, or the like.
  • the specific structure and layer thickness of the first auxiliary layer 222 can be set according to actual application scenarios, as long as it can be applied to the tandem solar cells provided by the embodiments of the present disclosure.
  • the first auxiliary layer 222 may be an entire film layer disposed between the bottom cell 200 and the top cell 201 .
  • the material of each region of the first auxiliary layer 222 may be the same or different.
  • the part of the first auxiliary layer 222 located on the first electrode 204 may be of different material from other parts of the first auxiliary layer 222 .
  • the material contained in the portion of the first auxiliary layer 222 located on the first electrode 204 may be the first type of carrier conducting material. As shown in FIG.
  • the material of the part of the first auxiliary layer on the second electrode 205 may be different from that of other parts of the first auxiliary layer 222 .
  • the material contained in the portion of the first auxiliary layer 222 located on the second electrode 205 may be the second type of carrier conducting material.
  • the first auxiliary layer 222 can improve the working performance of the tandem solar cell. Specifically, when the first auxiliary layer 222 has a passivation function and/or a lattice matching function, the first auxiliary layer 222 can reduce the recombination probability of two types of carriers at the interface of the top cell 201 and the bottom cell 200 .
  • the first auxiliary layer 222 When the first auxiliary layer 222 has an optical adjustment function, the first auxiliary layer 222 can have a good light trapping effect, so that more light can be transmitted into the bottom cell 200 .
  • the first auxiliary layer 222 When the first auxiliary layer 222 has an energy band matching function, the first auxiliary layer 222 can reduce the energy level difference between the top cell 201 and the first electrode 204 and the second electrode 205 respectively, and improve the transfer of two types of carriers from the top cell to the The conduction rate of 201 to the first electrode 204 or the second electrode 205 is convenient for the first electrode 204 and the second electrode 205 to collect corresponding carriers.
  • At least one first electrode 204 or at least one second electrode 205 penetrates through the first auxiliary layer 222 .
  • the at least one first electrode 204 and the at least one second electrode 205 may penetrate the first auxiliary layer 222 at the same time.
  • the first electrode 204 and/or the second electrode 205 penetrating the first auxiliary layer 222 can directly contact the backlight surface of the top cell 201, so that the first electrode 204 and/or the second electrode 205 can collect the light in the top cell 201.
  • Corresponding carriers can improve the working performance of the tandem solar cell.
  • the above-mentioned tandem solar cell may further include a second auxiliary layer 206 .
  • the second auxiliary layer 206 is located on the surface of the top cell 201 away from the bottom cell 200 .
  • the second auxiliary layer 206 has an antireflection function or a passivation function.
  • the layer thickness of the second auxiliary layer 206 can be set according to actual application scenarios, which is not specifically limited here.
  • the material of the second auxiliary layer 206 with anti-reflection function may be silicon nitride or the like.
  • the material of the second auxiliary layer 206 with passivation function can be amorphous silicon or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本公开公开了一种叠层太阳能电池,涉及光伏技术领域,以提高叠层太阳能电池对光能的利用率,从而提升叠层太阳能电池的光电转换效率。所述叠层太阳能电池包括:底电池和位于底电池之上的顶电池;底电池包括第一掺杂部和第二掺杂部,第一掺杂部和第二掺杂部形成至少一个PN结,第一掺杂部的多子载流子为第一类载流子,第二掺杂部的多子载流子为第二类载流子;底电池具有贯穿底电池的第一电极孔和第二电极孔,第一电极形成于第一电极孔内,第二电极形成于第二电极孔内;第一电极和第一掺杂部相接触,用于导出底电池和顶电池的第一类载流子;第二电极和第二掺杂部相接触,用于导出底电池和顶电池的第二类载流子。

Description

一种叠层太阳能电池
相关申请的交叉引用
本公开要求在2020年09月18日提交中国专利局、申请号为202010988035.6、名称为“一种叠层太阳能电池”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光伏技术领域,尤其涉及一种叠层太阳能电池。
背景技术
叠层太阳能电池是一种由顶电池和底电池复合而成的电池结构。顶电池由宽带隙的透光材料制造形成。底电池由较窄禁带宽度的透光材料制造形成。基于此,波长较短的太阳光可以被位于上方的顶电池所利用,波长较长的太阳光可以经顶电池透射至底电池内,并被底电池所利用,因此,叠层太阳能电池可以利用太阳光波长范围比较广,具有较高的光能利用率。
现有技术中,可以以指交叉背接触(Interdigitated back contact,缩写为IBC)电池为底电池吸收顶电池所产生的载流子,并在IBC电池的底部的发射极和背场引出载流子。但是,顶电池产生的载流子在IBC电池内会出现一定程度的复合,导致叠层电池效率比较低。下面以底电池为IBC电池,顶电池为钙钛矿电池为例,简述现有叠层太阳能电池的工作过程:
图1示例出现有技术中一种叠层太阳能电池的结构示意图。如图1所示,叠层太阳能电池中的顶电池101所包括的空穴传输层102可以位于吸收层103上方,以及电子传输层104可以位于吸收层103下方。顶电池101所包括的吸收层103吸收太阳光后会产生电子空穴对。其中,顶电池101内产生的空穴可以经由吸收层103上方的空穴传输层102传导至正极106,从而被正极106收集。并且,顶电池101内产生的电子可以经由吸收层103下方的电子传输层104传导至底电池100,并穿过底电池100被位于底电池底面的负极107 收集。在上述过程中,因底电池100所包括的基底105也会吸收太阳光产生电子空穴对。基于此,当顶电池101内产生的电子穿过底电池100时容易与底电池100产生的空穴发生体复合、界面复合或缺陷复合等,从而导致能够被底电池底面的正极106和负极107分别收集到的空穴和电子的数量减少,使得叠层太阳能电池的光电转换效率大大降低。
概述
本公开的目的在于提供一种叠层太阳能电池,以提高叠层太阳能电池对光能的利用率,从而提升叠层太阳能电池的光电转换效率。
本公开提供了一种叠层太阳能电池。该叠层太阳能电池包括:底电池和位于底电池之上的顶电池。底电池包括第一掺杂部和第二掺杂部。第一掺杂部和第二掺杂部形成至少一个PN结。第一掺杂部的多子载流子为第一类载流子。第二掺杂部的多子载流子为第二类载流子。
上述底电池具有贯穿底电池的第一电极孔和第二电极孔。第一电极至少部分设置于所述第一电极孔内,第二电极至少部分设置于所述第二电极孔内。
上述第一电极和第一掺杂部相接触,用于导出底电池和顶电池的第一类载流子。第二电极和第二掺杂部相接触,用于导出底电池和顶电池的第二类载流子。
采用上述技术方案的情况下,本公开提供的叠层太阳能电池中,底电池具有的第一掺杂部和第二掺杂部可以形成至少一个PN结。并且,底电池内部形成有贯穿底电池的第一电极和第二电极,使得在叠层太阳能电池工作过程中,第一电极可以导出顶电池和底电池内产生的第一类载流子,且第二电极可以导出顶电池和底电池内产生的第二类载流子。换句话说,顶电池所具有的半导体层吸收太阳光后产生的第一类载流子和第二类载流子均可以在顶电池内沿着靠近顶电池背光面的方向运动,并分别被贯穿底电池的第一电极和第二电极收集。基于上述原因,本公开提供的叠层太阳能电池可以降低顶电池内产生的第一类载流子或第二类载流子在穿过底电池时与底电池内产生的第二类载流子或第一类载流子发生复合的概率,从而可以增强底电池在光照下产生的光生电场,提高叠层太阳能电池对光能的利用率,最终提升叠层太 阳能电池的光电转换效率。
在一种可能的实现方式中,每个PN结包括:垂直于顶电池的第一结区。
采用上述技术方案的情况下,当底电池内形成的PN结包括垂直于顶电池的第一结区时,形成PN结的第一掺杂部和第二掺杂部的长度延伸方向垂直于顶电池的底面。在此情况下,当贯穿底电池的第一电极孔和第二电极孔的轴向也垂直于顶电池的底面时,第一电极和第二电极的长度延伸方向分别与第一掺杂部和第二掺杂部的长度延伸方向相同,因此,第一电极和第二电极分别与第一掺杂部和第二掺杂部的接触面积较大。此时,第一掺杂部产生的第一类载流子在内建电场的作用下很容易被第一电极导出,降低第一类载流子在底电池内的复合概率。同时,第二掺杂部产生的第二类载流子在内建电场的作用下很容易被第二电极导出,降低了第二类载流子在底电池内的复合概率,从而提高叠层太阳能电池的光电转换效率。
在一种可能的实现方式中,每个PN结包括:平行顶电池底面的第二结区。
采用上述技术方案的情况下,当底电池内形成的PN结包括平行顶电池底面的第二结区时,底电池所包括的第一掺杂部和第二掺杂部为沿着底电池的厚度方向层叠在一起的叠层结构。基于此,在制作底电池时,可以采用较为成熟的沉积工艺制造第一掺杂部和第二掺杂部,降低叠层太阳能电池的制造难度。并且,当底电池内形成的PN结包括平行顶电池底面的第二结区时,底电池内形成的PN结界面与底电池的受光面平行,光线由底电池的受光面透射入底电池后可以较为均匀的照射在整个PN结界面,从而在底电池各区域内产生数量均衡的第一类载流子和第二类载流子,降低第一类载流子向第一掺杂部运动、以及第二类载流子朝向第二掺杂部运动时因两类载流子分布不均匀而发生复合的概率,进而在连通外电路时有利于形成较大的电流,提高叠层太阳能电池的工作性能。
在一种可能的实现方式中,PN结仅包括垂直顶电池底面的第一结区,第一电极的材质包括金属材料和/或第一类载流子传导材料。
在实际应用的过程中,在底电池内形成的PN结仅包括垂直于顶电池的第一结区的情况下,第一电极位于底电池内的部分可以与底电池所包括的第一掺杂部接触,而不会与第二掺杂部相接触。此时,无论第一电极的材质为金 属材料还是第一类载流子传导材料,在底电池内形成的PN结内建电场的作用下,第一电极只传导底电池和顶电池内产生的第一类载流子,而不会传导第二类载流子,从而扩大了第一电极的材料选择范围。
在一种可能的实现方式中,PN结仅包括垂直顶电池底面的第一结区,第二电极的材质包括金属材料和/或第二类载流子传导材料。
在实际应用的过程中,在底电池内形成的PN结仅包括垂直于顶电池的第一结区的情况下,第二电极位于底电池内的部分可以与底电池所包括的第二掺杂部接触,而不会与第一掺杂部接触。此时,无论第二电极的材质为金属材料还是第二类载流子传导材料,在底电池内形成的PN结内建电场的作用下,第二电极只传导底电池和顶电池内产生的第二类载流子,而不会传导第二类载流子,从而扩大了第二电极的材料选择范围。
在一种可能的实现方式中,每个第一电极包括沿着远离顶电池的方向分布的第一传导部和第一金属部。第一传导部至少部分部位位于相应第一电极孔内。第一传导部的材质为第一类载流子传导材料。第二电极包括沿着远离顶电池的方向分布的第二传导部和第二金属部。第二传导部至少部分部位位于相应第二电极孔内。第二传导部的材质为第二类载流子传导材料。
采用上述技术方案的情况下,因每个第一电极均包括至少部分部位位于相应第一电极孔,且材质为第一类载流子传导材料的第一传导部,故每个第一电极均具有良好的载流子传导选择性。此时,每个第一电极可仅传输第一类载流子,防止PN结短路。并且,因金属材料相比于第一类载流子传导材料具有更好的导电特征,所以当第一电极还包括位于第一传导部远离顶电池的表面的第一金属部时,可以提高第一电极的导电性能。同理,因每个第二电极均包括上述第二传导部、以及位于第二传导部远离顶电池的表面的第二金属部,故每个第二电极具有良好的载流子传导选择性的同时还具有良好的导电性能。
在一种可能的实现方式中,因第一电极与第二掺杂部接触情况的不同,故第一金属部相对于第一电极孔的位置也不同。同理,因第二电极与第一掺杂部接触情况的不同,第二金属部相对于第二电极孔的位置也不同。
例如:第一金属部至少部分部位位于相应第一电极孔内。第二金属部至 少部分部位位于相应第二电极孔内。此时,在至少保证第一电极与第二掺杂部接触的部分为第一传导部的情况下,可以适当的增加第一金属部位于第一电极孔内的长度,以提高第一类载流子在第一电极内的传导速率。同理,在至少保证第二电极与第一掺杂部接触的部分为第二传导部的情况下,可以适当的增加第二金属部位于第二电极孔内的长度,以提高第二类载流子在第二电极内的传导速率,从而可以提高叠层太阳能电池的光电转换效率。
又例如:第一金属部位于第一电极孔外。第二金属部位于第二电极孔外。此时,只传输第一类载流子的第一传导部至少填充满第一电极孔,防止第一金属部在第一电极孔内与第二掺杂部接触。并且,只传输第二类载流子的第二传导部至少填充满第二电极孔,防止第二金属部在第二电极孔内与第一掺杂部接触,从而可以避免PN结短路,提高叠层太阳能电池工作稳定性。
在一种可能的实现方式中,PN结包括平行顶电池底面的第二结区,第一电极接触第二掺杂部的部分设置成第三传导部。第三传导部的材质为第一类载流子传导材料。第二电极接触第一掺杂部的部分设置成第四传导部。第四传导部的材质为第二类载流子传导材料。
采用上述技术方案的情况下,在PN结仅包括平行于顶电池底面的第二结区的情况下,贯穿底电池的第一电极和第二电极均会与第一掺杂部和第二掺杂部接触。基于此,第一电极接触第二掺杂部的部分设置成材质为第一类载流子传导材料的第三传导部,以及第二电极接触第一掺杂部的部分设置成材质为第二载流子传导材料的第四传导部时,可以防止第一掺杂部和第二掺杂部形成的PN结短路。在PN结既包括第一结区、又包括第二结区的情况下,第一电极会与第一掺杂部和第二掺杂部接触,而第二电极可以仅与第二掺杂部接触,因此第一电极接触第二掺杂部的部分设置成第一类载流子传导材料的第三传导部就可以防止第一掺杂部和第二掺杂部形成的PN结短路。
在一种可能的实现方式中,上述底电池包括垂直于顶电池的第一结区,且远离顶电池底面的一侧不具有平行于顶电池底面的第二结区。第一电极在远离顶电池的一侧具有延伸出相应第一电极孔的第一外缘部。叠层太阳能电池还包括位于第一外缘部与第二掺杂部之间的第一电极辅助层。和/或,第二电极在远离顶电池的一侧具有延伸出相应第二电极孔的第二外缘部。叠层太 阳能电池还包括位于第二外缘部与第一掺杂部之间的第二电极辅助层。第一电极辅助层和第二电极辅助层至少具有电隔离功能。
采用上述技术方案的情况下,第一电极为用于导出顶电池和底电池的第一类载流子的电极。而第二掺杂部的多子载流子为第二类载流子。当第一电极在远离顶电池的一侧具有延伸出相应第一电极孔的第一外缘部时,第一电极辅助层可以将第一外缘部与第二掺杂部分隔开。具体的,当第一电极辅助层具有电隔离功能时,第一电极辅助层的存在可以避免第一外缘部和第二掺杂部电连接,防止PN结短路。同理,第二电极辅助层具有的有益效果可以参考第一电极辅助层的有益效果,此处不再赘述。
在一种可能的实现方式中,上述第一电极辅助层延伸至第一电极孔内。第一电极辅助层延伸至第一电极孔内的部位形成于第一电极和第一掺杂部之间。第二电极辅助层延伸至第二电极孔内。第二电极辅助层延伸至第二电极孔内的部位形成于第二电极与第二掺杂部之间。第一电极辅助层位于第一电极和第一掺杂部之间的部分、以及第二电极辅助层位于第二电极和第二掺杂部之间的部分具有晶格匹配功能、能带匹配功能、钝化功能中至少一种。
采用上述技术方案的情况下,当第一电极辅助层具有晶格匹配功能时,第一电极辅助层的存在可以降低第一电极和第一掺杂部之间的晶格失配,防止第一外缘部和第二掺杂部之间产生缺陷复合中心,进而降低第一类载流子与第二类载流子在第一电极和第一掺杂部的接触处发生复合的概率。当第一电极辅助层具有能带匹配功能时,第一电极辅助层还可以降低第一电极与第一掺杂部之间的能级差,提高第一载流子由第一掺杂部传导至第一电极内的传导速率,增大底电池对光能的利用率,最终提升叠层太阳能电池的光电转换效率。当第一电极辅助层具有钝化功能时,第一电极辅助层可以降低第一电极和第一掺杂部的表面态密度,减小底电池内产生的第一类载流子在第一电极和第一掺杂部接触的位置与第二类载流子发生缺陷复合的速率。同理,第二电极辅助层具有的有益效果可以参考如第一电极辅助层的有益效果,此处不再赘述。
在一种可能的实现方式中,当叠层太阳能电池包括第一外缘部和第二外缘部,第一外缘部和第二外缘部的材质为金属材料。第一电极辅助层和/或第 二电极辅助层用于避免第一外缘部和第二外缘部接触。
采用上述技术方案的情况下,当第一外缘部和第二外缘部所含有的材料均为金属材料时,第一外缘部和第二外缘部均具有传导第一类载流子和第二类载流子的能力。基于此,当第一电极辅助层还包括位于第一外缘部和第二外缘部之间的部分、以及第一电极辅助层具有绝缘性能时,第一电极辅助层的存在可以避免第一外缘部和第二外缘部接触,防止两个异性电极电连接,提高叠层太阳能电池的工作稳定性。而当位于第一外缘部和第二外缘部之间的结构为第二电极辅助层,且第二电极辅助层具有绝缘性能时,第二电极辅助层的存在也可以避免第一外缘部和第二外缘部接触,防止两个异性电极电连接。
在一种可能的实现方式中,上述叠层太阳能电池还包括至少两个辅助电极。至少一个辅助电极覆盖在相应第一电极朝向顶电池的表面。至少一个辅助电极覆盖在相应第二电极朝向顶电池的表面。每个第一电极相应的辅助电极的材质为金属材料和/或第一载流子传导材料;和/或,每个第二电极相应的辅助电极的材质为金属材料和/或第二载流子传导材料。
采用上述技术方案的情况下,第一电极和第二电极分别形成在贯穿底电池的第一电极孔和第二电池孔内,因此第一电极和第二电极与顶电池的有效接触面积分别受第一电极孔和第二电极孔的径向横截面积的影响。当分别在第一电极和第二电极朝向顶电池的表面覆盖至少一个辅助电极时,辅助电极的存在可以增大第一电极和第二电极与顶电池之间的有效接触面积。并且,金属材料、第一类载流子传导材料和第二类载流子传导材料对载流子的传导性能均远远高于半导体材料对载流子的传导性能,故辅助电极的存在可以增强第一电极和第二电极收集相应种类的载流子的能力,进而提升叠层太阳能电池的光电转换效率。
在一种可能的实现方式中,每个辅助电极包括多个主电极以及至少一条细栅线。多个主电极通过一条细栅线电连接。其中,主电极位于相应第一电极或第二电极和顶电池接触的部位。
采用上述技术方案的情况下,每个辅助电极所包括的细栅线可以辅助收集第一类载流子或第二类载流子。并且,每个辅助电极所包括的多个主电极 覆盖在相应第一电极或第二电极与顶电池接触的部位,从而可以辅助第一电极或第二电极收集顶电池内的第一类载流子或第二类载流子,降低顶电池内的两种载流子在顶电池和底电池的交界面处发生复合的概率,提高叠层太阳能电池的光能的利用率。
在一种可能的实现方式中,上述叠层太阳能电池还包括第一辅助层。第一辅助层形成在底电池靠近顶电池的表面。第一辅助层的纵向导电能力大于横向导电能力。第一辅助层所含有的材质具有钝化功能、光学调整功能、晶格匹配功能、能带匹配功能中至少一种功能。
采用上述技术方案的情况下,在底电池和顶电池之间设置第一辅助层,以提高叠层太阳能电池的工作性能。具体的,当第一辅助层具有钝化功能和/或晶格匹配功能时,第一辅助层可以降低两类载流子在顶电池与底电池的界面处的复合概率。当第一辅助层具有光学调整功能时,第一辅助层可以具有良好的陷光效果,使更多的光线透射入底电池。当第一辅助层具有能带匹配功能时,第一辅助层可以减小顶电池分别与第一电极和第二电极之间的能级差,提高两类载流子由顶电池传导至第一电极或第二电极的传导速率,便于第一电极和第二电极收集相应载流子。此外,因第一辅助层位于底电池和顶电池之间,并且第一电极和第二电极贯穿底电池,故第一电极和第二电极靠近顶电池的表面均会与第一辅助层接触。基于此,若第一辅助层具有导电能力,且第一辅助层的纵向导电能力大于横向导电能力,则说明第一类载流子和第二类载流子在第一辅助层内的纵向传导速率大于横向传导速率,从而可以防止第一电极和第二电极通过第一辅助层电连接而发生短路,提高叠层太阳能电池的工作稳定性。
在一种可能的实现方式中,至少一个第一电极和/或至少一个第二电极贯穿第一辅助层。此时,贯穿第一辅助层的第一电极和/或第二电极可以直接与顶电池的背光面接触,便于第一电极和/或第二电极收集顶电池内的相应载流子,提高叠层太阳能电池的工作性能。
附图简述
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部 分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为现有技术中一种叠层太阳能电池的结构示意图;
图2A为本公开实施例提供的第一种叠层太阳能电池的结构示意图;
图2B至图2D为图2A所示结构中第一电极的替代结构示意图;
图2E至图2G为图2A所示结构中第二电极的替代结构示意图;
图3A为本公开实施例提供的第二种叠层太阳能电池的结构示意图;
图3B至图3D为图3A所示结构中第一电极的替代结构示意图;
图3E为图3A所示结构中第二电极的替代结构示意图;
图4A为本公开实施例提供的第三种叠层太阳能电池的结构示意图;
图4B至图4D为图4A所示结构中第一电极的替代结构示意图;
图4E至图4G为图4A所示结构中第二电极的替代结构示意图;
图5A为本公开实施例提供的第四种叠层太阳能电池的结构示意图;
图5B至图5D为图5A所示结构中第一电极的替代结构示意图;
图5E至图5G为图5A所示结构中第二电极的替代结构示意图;
图6A为本公开实施例提供的第五种叠层太阳能电池的结构示意图;
图6B至图6D为图6A所示结构中第一电极的替代结构示意图;
图6E至图6G为图6A所示结构中第二电极的替代结构示意图;
图7A为本公开实施例提供的包括第一电极辅助层和第二电极辅助层的叠层太阳能电池的第一种结构示意图;
图7B至图7D为图7A所示结构中第二电极辅助层的替代结构示意图;
图7E为图7A所示结构中第一电极辅助层的替代结构示意图;
图7F为图7A所示结构中第二电极辅助层的替代结构示意图;
图7G为本公开实施例提供的包括第一电极辅助层和第二电极辅助层的叠层太阳能电池的第二种结构示意图;
图7H为本公开实施例提供的包括第一电极辅助层和第二电极辅助层的叠层太阳能电池的三种结构示意图;
图8A为本公开实施例提供的包括辅助电极的叠层太阳能电池的结构示意图;
图8B为图8A所示结构的纵向剖视图;
图8C和图8D为包括扩散阻挡层和辅助电极的叠层太阳能电池的结构示意图;
图9A为包括第一辅助层和第二辅助层的叠层太阳能电池的结构示意图。
图9B和图9C为第一电极贯穿第一辅助层的结构示意图;
图9D和图9E为第二电极贯穿第一辅助层的结构示意图;并且
图10为本公开实施例提供的第六种叠层太阳能电池的结构示意图。
详细描述
以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。
在附图中示出了根据本公开实施例的各种结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状以及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。
在本公开的上下文中,当将一层/元件称作位于另一层/元件“上”时,该层/元件可以直接位于该另一层/元件上,或者它们之间可以存在居中层/元件。另外,如果在一种朝向中一层/元件位于另一层/元件“上”,那么当调转朝向时,该层/元件可以位于该另一层/元件“下”。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。“若干”的含义是一个或一个以上,除非另有明确具体的限定。
叠层太阳能电池是一种由顶电池和底电池复合而成的电池结构。顶电池由宽带隙的透光材料制造形成。底电池由较窄禁带宽度的透光材料制造形成。 基于此,波长较短的太阳光可以被位于上方的顶电池所利用,波长较长的太阳光可以经顶电池透射至底电池内,并被底电池所利用,因此,叠层太阳能电池可以利用太阳光波长范围比较广,具有较高的光能利用率。
为了解决相关技术中遇到的技术问题,本公开实施例提供了一种叠层太阳能电池。如图2A至图10所示,该叠层太阳能电池包括:底电池200和位于底电池200之上的顶电池201。
具体来说,如图2A至图10所示,上述顶电池201材质所具有的带隙宽度大于底电池200材质所具有的带隙宽度。该顶电池201可以为任一种背接触式太阳能电池,即顶电池201的正极和负极均位于顶电池201的背光面。例如:顶电池201可以为IBC电池,或正负极均位于一侧的异质结电池。又例如:上述顶电池201所包括的吸收层的材质为钙钛矿材料、有机材料或量子点材料等激子材料,并通过将顶电池201所包括的第一类载流子传输层和第二类载流子传输层设置在吸收层的背光面,从而使得顶电池201内的第一类载流子和第二类载流子均可以沿着朝向顶电池201的背光面的方向运动。
如图2A至图10所示,上述底电池200包括第一掺杂部202和第二掺杂部203。第一掺杂部202和第二掺杂部203形成至少一个PN结。第一掺杂部202的多子载流子为第一类载流子。第二掺杂部203的多子载流子为第二类载流子。底电池200具有贯穿底电池200的第一电极孔和第二电极孔。第一电极204至少部分设置于第一电极孔内。第二电极至205少部分设置于第二电极孔内。第一电极204和第一掺杂部202相接触,用于导出底电池200和顶电池201的第一类载流子。第二电极205和第二掺杂部203相接触,用于导出底电池200和顶电池201的第二类载流子。
示例性的,如图2A至图10所示,上述底电池200所包括的第一掺杂部202内杂质的掺杂类型与第二掺杂部203内杂质的掺杂类型相反。
例如:如图2A至图10所示,第一掺杂部202可以为掺杂有N型杂质(如磷)的半导体材料部。此时,第一掺杂部202的多子载流子为电子。第二掺杂部203可以为掺杂有P型杂质(如硼)的半导体材料部。此时,第二掺杂部203的多子载流子为空穴。相应的,此时第一类载流子为电子,第一电极204用于收集电子,第一电极204为负极。第二类载流子为空穴,第二电极 205用于收集空穴,第二电极205为正极。
又例如:如图2A至图10所示,第一掺杂部202可以为掺杂有P型杂质的半导体材料部,此时第一掺杂部202的多子载流子为空穴。第二掺杂部203可以为掺杂有N型材料的半导体材料部,此时第二掺杂部203的多子载流子为电子。相应的,此时第一类载流子为空穴,第一电极204用于收集空穴,第一电极204为正极。第二类载流子为电子,第二电极205用于收集电子,第二电极205为负极。其中,上述半导体材料部的材质可以为多晶硅等半导体材料。
如图2A至图10所示,上述第一掺杂部202和第二掺杂部203的具体结构、以及二者的相对位置关系决定了底电池200内形成的PN结的具体结构,因此,可以根据PN结的具体结构对第一掺杂部202和第二掺杂部203进行设置。当然,也可以根据实际应用场景设置,只要能够应用到本公开实施例提供的叠层太阳能电池中均可。对于第一电极204和第二电极205来说,第一电极204和第二电极205的具体结构、以及二者的材质可以根据第一掺杂部202和第二掺杂部203的具体结构进行设置,只要确保第一电极204可以导出顶电池201和底电池200内的第一类载流子、以及确保第二电极205可以导出顶电池201和底电池200内的第二类载流子即可。此外,第一电极204和第二电极205的排布方式和数量可以根据实际应用场景设置,此处不做限定。例如:第一电极204和第二电极205可以呈矩阵式排布。又例如:当顶电池201为IBC电池时,第一电极204和第二电极205的分布方式可以根据顶电池201所包括的两个电极的分布情况进行设置。
在一些情况下,如图10所示,为了提高叠层太阳能电池的陷光效果,上述顶电池201、第一掺杂部202、第二掺杂部203、第一电极204和第二电极205的表面均可以制绒。
在实际的应用过程中,如图2A至图10所示,顶电池201所具有的半导体层吸收波长较短的太阳光后产生的第一类载流子和第二类载流子均可以在顶电池201内沿着靠近顶电池201背光面的方向运动,并分别被贯穿底电池200的第一电极204和第二电极205收集。而波长较长的太阳光透过顶电池201后会被底电池200吸收,并在底电池200内产生成对存在的第一类载流子 和第二类载流子。接着成对存在的第一类载流子和第二类载流子在PN结内建电场的作用下分离。之后,第一类载流子在内建电场的作用下沿着朝向第一电极204的方向运动、以及第二类载流子在内建电场的作用下沿着朝向第二电极205的方向运动,从而分别被第一电极204和第二电极205收集,并产生电流。此外,因贯穿底电池200的第一电极204可以同时收集顶电池201和底电池200内的第一类载流子,且第二电极205可以同时收集顶电池201和底电池200内的第二类载流子,故叠层太阳能电池所包括的顶电池201和底电池200之间的连接关系为并联。
由上述内容可知看出,本公开实施例提供的叠层太阳能电池所包括的顶电池201在工作时产生的第一类载流子和第二类载流子可以直接分别被贯穿底电池200的第一电极204和第二电极205收集,从而可以降低顶电池201内产生的第一类载流子或第二类载流子在穿过底电池200时与底电池200内产生的第二类载流子或第一类载流子发生复合的概率,增强底电池200在光照下产生的光生电场,提高叠层太阳能电池对光能的利用率,最终提升叠层太阳能电池的光电转换效率。
在一种可能的实现方式中,如图2A至图2G所示,每个PN结包括:垂直于顶电池201的第一结区301。应理解,当PN结的内建电场的场强方向平行于顶电池201的底面时,PN结包括上述第一结区301。此时,形成PN结的第一掺杂部202和第二掺杂部203的长度延伸方向垂直于顶电池201的底面。在此情况下,当贯穿底电池200的第一电极孔和第二电极孔的轴向也垂直于顶电池201的底面时,第一电极204和第二电极205的长度延伸方向分别与第一掺杂部202和第二掺杂部203的长度延伸方向相同,因此,第一电极204和第二电极205分别与第一掺杂部202和第二掺杂部203的接触面积较大。此时,第一掺杂部202产生的第一类载流子在内建电场的作用下很容易被第一电极204导出,降低第一类载流子在底电池200内的复合概率。同时,第二掺杂部203产生的第二类载流子在内建电场的作用下很容易被第二电极205导出,降低了第二类载流子在底电池200内的复合概率,从而提高叠层太阳能电池的光电转换效率。
在一种示例中,如图2A至图2D所示,当上述PN结仅包括垂直顶电池 201底面的第一结区301时,第一电极204的材质可以包括金属材料,也可以包括第一类载流子传导材料,当然还可以同时包括金属材料和第一类载流子传导材料。应理解,该金属材料可以为铝、金、银、铜等。当第一类载流子为电子时,上述第一类载流子传导材料可以为:8-羟基喹啉铝、氧化钛等。当第一类载流子为空穴时,第一类载流子传导材料可以为:芳香二胺、芳香三胺或聚硅烷等。
如图2A至图2D所示,当底电池200内形成的PN结仅包括垂直于顶电池201的第一结区301的情况下,第一电极204位于底电池200内的部分可以与底电池200所包括的第一掺杂部202接触,而不会与第二掺杂部203相接触。此时,无论第一电极204的材质为金属材料还是第一类载流子传导材料,在底电池200内形成的PN结内建电场的作用下,第一电极204只传导底电池200和顶电池201内产生的第一类载流子,而不会传导第二类载流子,从而扩大了第一电极204的材料选择范围。并且,当第一电极204的材质包括金属材料和第一类载流子材料时,第一电极204的具体哪个部位由金属材料制成、哪个部位由第一载流子材料制成可以根据第一电极204与第二掺杂部203的接触情况,或根据实际应用场景设置,此处不作具体限定。
示例性的,如图2A和图2C所示,在上述PN结仅包括垂直于顶电池201底面的第一结区301的情况下,第一电极204可以为正极,也可以为负极。当第一掺杂部202内掺杂有N型杂质,且第一电极204为负极时,第一电极204所含有的材料可以为金、银、铝等金属材料,也可以为8-羟基喹啉铝等电子传导材料。当第一掺杂部202内掺杂有P型杂质,且第一电极204为正极时,第一电极204所含有的材料可以为金、银、铝等金属材料,也可以为芳香二胺等空穴传导材料。
示例性的,如图2B和图2D所示,在上述PN结仅包括垂直顶电池201底面的第一结区301的情况下,当第一电极204的材质同时包括金属材料和第一类载流子传导材料时,每个第一电极204可以包括沿着远离顶电池201的方向分布的第一传导部207和第一金属部208。第一传导部207至少部分部位位于相应第一电极孔内。第一传导部207的材质为上述第一类载流子传导材料。第一金属部208的材质为上述金属材料。具体的,第一电极204所包 括的第一传导部207和第一金属部208的规格可以根据实际情况设置,此处不做具体限定。
例如:如图2B所示,上述第一金属部208至少部分部位位于相应第一电极孔内。此时,可以适当的增加第一金属部208位于第一电极孔内的规格,以增大第一类载流子在第一电极204内的传导速率,从而可以提高叠层太阳能电池的光电转换效率。此外,在第一金属部208至少有部分部位位于相应第一电极孔内的情况下,第一金属部208还可以沿着远离顶电池201的方向伸出第一电极孔外。其中,第一金属部208伸出第一电极孔外的部分的规格可以根据实际应用情况设置,此处不做具体限定。
又例如:如图2D所示,第一金属部208位于第一电极孔外。此时,只传输第一类载流子的第一传导部207至少填充满第一电极孔。并且,沿着远离顶电池201的方向,第一传导部207还可以伸出第一电极孔外。其中,第一传导部207位于第一电极孔外的部分、以及第一金属部208的具体结构可以根据实际应用场景设置。
由上述内容可知,因每个第一电极204均包括至少部分部位位于相应第一电极孔,且材质为第一类载流子传导材料的第一传导部207,故每个第一电极204均具有良好的载流子传导选择性。并且,因金属材料相比于第一类载流子传导材料具有更好的导电特征,所以当第一电极204还包括位于第一传导部207远离顶电池201的表面的第一金属部208时,可以提高第一电极204的导电性能。
在一种示例中,如图2A和图2E至图2G,当上述PN结仅包括垂直顶电池201底面的第一结区301时,第二电极205的材质包括金属材料或者第二类载流子传导材料,当然还可以同时包括金属材料和第二类载流子传导材料。其中,用于制造第二电极205的金属材料、第二载流子传导材料可以参考前文所述的第一电极204的材质进行选择。
如图2A和图2E至图2G所示,在底电池200内形成的PN结仅包括垂直于顶电池201的第一结区301的情况下,第二电极205位于底电池200内的部分可以与底电池200所包括的第二掺杂部203接触,而不会与第一掺杂部202接触。此时,无论第二电极205的材质为金属材料还是第二类载流子传导 材料,在底电池200内形成的PN结内建电场的作用下,第二电极205只传导底电池200和顶电池201内产生的第二类载流子,而不会传导第二类载流子,从而扩大了第二电极205的材料选择范围。并且,当第二电极205的材质包括金属材料和第二类载流子材料时,第二电极205的具体哪个部位由金属材料制成、哪个部位由第二载流子材料制成可以根据第二电极205与第一掺杂部202的接触情况,或根据实际应用场景设置,此处不作具体限定。
示例性的,如图2A和图2F所示,在上述PN结仅包括垂直顶电池201底面的第一结区301的情况下,当第一电极204为正极时,第二电极205为负极。此时,第二电极205所含有的材料可以为金、银、铝等金属材料,也可以为8-羟基喹啉铝等电子传导材料。当第一电极204为负极时,第二电极205为正极。此时,第二电极205所含有的材料可以为金、银、铝等金属材料,也可以为芳香二胺等空穴传导材料。
示例性的,如图2E和图2G所示,在上述PN结仅包括垂直于顶电池201底面的第一结区301的情况下,当第二电极205的材质同时包括金属材料和第二类载流子传导材料时,第二电极205可以包括沿着远离顶电池201的方向分布的第二传导部209和第二金属部210。第二传导部209至少部分部位位于相应第二电极孔内。第二传导部209的材质为第二类载流子传导材料。第二金属部210的材质为上述金属材料。具体的,第二电极205所包括的第二传导部209和第二金属部210的规格可以根据实际情况设置,此处不做具体限定。
例如:如图2E所示,上述第二金属部210至少部分部位位于相应第二电极孔内。此时,可以适当的增加第二金属部210位于第二电极孔内的规格,以增大第二类载流子在第二电极205内的传导速率,从而可以提高叠层太阳能电池的光电转换效率。此外,在第二金属部210至少部分部位位于相应第二电极孔内的情况下,第二金属部210还可以沿着远离顶电池201的方向伸出第二电极孔外。其中,第二金属部210伸出第二电极孔外的部分的规格可以根据实际应用情况设置,此处不做具体限定。
又例如:上述第二金属部210位于第二电极孔外。此时,只传输第二类载流子的第二传导部209至少填充满第二电极孔。具体的,沿着远离顶电池 201的方向,第二传导部209也可以伸出第二电极孔外。其中,第二传导部209位于第二电极孔外的部分、以及第二金属部210的具体结构可以根据实际应用场景设置。
由上可知,因每个第二电极205均包括至少部分部位位于相应第二电极孔内,且材质为第二类载流子传导材料的第二传导部209,故每个第二电极205均具有良好的载流子传导选择性。并且,因金属材料相比于第二类载流子传导材料具有良好的导电特性,所以当第二电极205还包括位于第二传导部209远离顶电池201的表面的第二金属部210时可以提高第二电极205的导电性能。
需要说明的是,在上述PN结仅包括垂直顶电池201底面的第一结区301的情况下,图2A至图2G中示出的不同结构的第一电极204和第二电极205之间可以任意组合。例如:当上述PN结仅包括垂直顶电池201底面的第一结区301时,贯穿底电池200的第一电极204可以为图2B中示出的第一电极204。贯穿底电池200的第二电极205可以为图2E中示出的第二电极205。
在一种可能的实现方式中,如图3A至图3E所示,每个PN结包括:平行顶电池201底面的第二结区。应理解,第二掺杂部203可以至少部分部位位于第一掺杂部202朝向顶电池201的表面。此时,PN结所包括的第二结区平行且靠近顶电池201的底面。此外,第二掺杂部203可以至少部分部位位于第一掺杂部202远离顶电池201的表面。此时,PN结所包括的第二结区平行且靠近底电池200底面。其中,第二结区的具体位置可以根据实际情况设置,此处不做具体限定。
示例性的,如图3A至图3E所示,第二掺杂部203可以位于第一掺杂部202和顶电池201之间。相应的,第一掺杂部202和第二掺杂部203形成的PN结仅包括平行且靠近顶电池201底面的第二结区。并且,第一电极204和第二电极205均贯穿第一掺杂部202和第二掺杂部203。此时,底电池200所包括的第一掺杂部202和第二掺杂部203为沿着底电池200的厚度方向层叠在一起的叠层结构。基于此,在制作底电池200时,可以采用较为成熟的沉积工艺制造第一掺杂部202和第二掺杂部203,降低叠层太阳能电池的制造难度。并且,当PN结仅包括平行且靠近顶电池201底面的第二结区时,PN结 界面与底电池200的受光面平行,太阳光由底电池200的受光面透射入底电池200后可以较为均匀的照射在整个PN结界面,从而在底电池200各区域内产生数量均衡的第一类载流子和第二类载流子,降低第一类载流子向第一掺杂部202运动、以及第二类载流子朝向第二掺杂部203运动时因两类载流子分布不均匀而发生复合的概率,进而在连通外电路时有利于形成较大的电流,提高叠层太阳能电池的工作性能。
在一种可选的方式中,如图3A至图3D所示,当每个PN结仅包括平行于顶电池201底面的第二结区时,第一电极204的材质可以包括第一类载流子传导材料,也可以同时包括金属材料和第一类载流子传导材料。具体的,金属材料和第一类载流子传导材料的种类可以参考前文,此处不再赘述。
示例性的,如图3A所示,当每个PN结仅包括平行于顶电池201底面的第二结区时,第一电极204的材质可以仅包括第一类载流子传导材料。此时,第一电极204的各个部分均具有良好的载流子传导选择性。例如:当第一掺杂部202内掺杂有N型杂质,且第一电极204为负极时,第一电极204所含有的材料可以为8-羟基喹啉铝等电子传导材料。在此情况下,第一电极204各个部分均具有良好的电子传导选择性。又例如:当第一掺杂部202内掺杂有P型杂质,且第一电极204为正极时,第一电极204所含有的材料可以为芳香二胺等空穴传导材料。在此情况下,第一电极204各个部分均具有良好的空穴传导选择性。
示例性的,如图3B至图3D所示,在每个PN结仅包括平行于顶电池201底面的第二结区的情况下,当第一电极204的材质同时包括金属材料和第一类载流子传导材料时,每个第一电极204可以包括沿着远离顶电池201的方向分布的第三传导部211和第三金属部212。第一电极204接触第二掺杂部203的部分设置成第三传导部211。第三传导部211的材质为第一类载流子传导材料。第三传导部211至少部分部位位于相应第一电极孔内。第三金属部212的材质为金属材料。其中,第三传导部211和第三金属部212的材质可以参考前文第一传导部207和第一金属部208的材质。
如图3B至图3D所示,当每个PN结仅包括平行于顶电池201底面的第二结区时,第一电极204位于第一电极孔内的部分同时与第一掺杂部202和 第二掺杂部203接触。此时,沿着第一电极孔的轴向方向,第一电极204所包括的第三传导部211在第一电极孔内的长度可以根据第一电极204与第二掺杂部203的接触情况进行设置,以防止PN结短路。
例如:如图3B和图3C所示,上述第三金属部212至少部分部位位于相应第一电极孔内。此时,在确保第一电极204与第二掺杂部203接触的部分为第三传导部211的情况下,可以适当的增加第三金属部212位于第一电极孔内的规格,以增大第一类载流子在第一电极204内的传导速率,从而可以提高叠层太阳能电池的光电转换效率。
又例如:如图3D所示,第三金属部212位于第一电极孔外。具体的,当第一电极204为图3D所示的结构时,对第一电极204的相关描述可以参考前文对图2D示出的第一电极204的描述,此处不做赘述。
在一种可选的方式中,如图3A和图3E所示,当每个PN结仅包括平行于顶电池201底面的第二结区时,第二电极205的材质可以包括第二类载流子传导材料,也可以同时包括金属材料和第二类载流子传导材料。金属材料和第二类载流子传导材料的种类可以参考前文,此处不再赘述。
示例性的,如图3A所示,当每个PN结仅包括平行于顶电池201底面的第二结区时,第二电极205的材质可以仅包括第二类载流子传导材料。此时,第二电极205的各个部分均具有良好的载流子传导选择性。具体的,当第一电极204为正极时,第二电极205为负极,第二电极205所含有的材料可以为8-羟基喹啉铝等电子传导材料。在此情况下,第二电极205具有良好的电子传导选择性。当第一电极204为负极时,第二电极205为所含有的材料可以为芳香二胺等空穴传导材料。在此情况下,第二电极205各个部分均具有良好的空穴传导选择性。
示例性的,如图3E所示,在每个PN结仅包括平行于顶电池201底面的第二结区的情况下,当第二电极205的材质同时包括金属材料和第二类载流子传导材料时,每个第二电极205可以包括沿着远离顶电池201的方向分布的第四传导部213和第四金属部214。第二电极205接触第一掺杂部202的部分设置成第四传导部213。第四传导部213的材质为第二类载流子传导材料。第四传导部213至少部分部位位于相应第二电极孔内。第四金属部214的材 质为金属材料。第四金属部214位于第二电极孔外。此时,第四传导部213可以至少将第二电极孔填充满,以防止第四金属部214与第一掺杂部202接触,避免PN结短路。
需要说明的是,在上述PN结仅包括平行于顶电池201底面的第二结区的情况下,图3A至图3E中示出的不同结构的第一电极204和第二电极205之间可以任意组合。例如:当上述PN结仅包括平行于顶电池201底面的第二结区时,贯穿底电池200的第一电极204可以为图3D中示出的第一电极204。贯穿底电池200的第二电极205可以为图3E中示出的第二电极205。
在一种可能的实现方式中,如图4A、图5A和图6A所示,每个PN结包括:垂直于顶电池201的第一结区301、以及平行顶电池201底面的第二结区。其中,第一结区301与第二结区之间的相对位置关系可以根据实际应用场景设置,此处不做具体限定。
在一种可选的方式中,如图4A至图4G所示,第一掺杂部202和第二掺杂部203形成的PN结既包括靠近顶电池201底面的第二结区,又包括垂直于顶电池201底面的第一结区301。
在一种示例中,如图4A至图4D所示,当PN结既包括靠近顶电池201底面的第二结区,又包括垂直于顶电池201底面的第一结区301时,第一电极204的材质可以包括第一类载流子,也可以包括金属材料和第一类载流子传导材料。例如:如图4A所示,第一电极204接触第二掺杂部203的部分设置为第三传导部211。并且,第三传导部211至少将第一电极孔填满,第三传导部211的材质为第一类载流子传导材料。
具体的,关于图4A至图4D示出的第一电极204的具体结构的描述可以参考前文对图3A至图3D示出的第一电极204的具体结构的描述,此处不再赘述。
在一种示例中,如图4A和图4E至图4G所示,当PN结既包括靠近顶电池201底面的第二结区,又包括垂直于顶电池201底面的第一结区301时,第二电极205的材料可以包括金属材料,也可以包括第二载流子传导材料。当然,第二电极205的材质还可以包括金属材料和第二类载流子传导材料。例如:如图4A所示,第二电极205接触第一掺杂部202的部分设置为第四传 导部213。并且,第四传导部213至少将第二电极孔填满,第四传导部213的材质为第二类载流子传导材料。
具体的,关于图4A和图4E至图4G示出的第二电极205的具体结构的描述可以参考前文对图2A和图2E至图2G示出的第二电极205的具体结构的描述,此处不再赘述。
需要说明的是,在上述PN结既包括靠近顶电池201底面的第二结区,又包括垂直于顶电池201底面的第一结区301的情况下,图4A至图4G中示出的不同结构的第一电极204和第二电极205之间可以任意组合。例如:当上述PN结既包括靠近顶电池201底面的第二结区,又包括垂直于顶电池201底面的第一结区301时,贯穿底电池200的第一电极204可以为图4D中示出的第一电极204。贯穿底电池200的第二电极205可以为图4E中示出的第二电极205。
在另一种可选的方式中,如图5A至图5G所示,第一掺杂部202和第二掺杂部203形成的PN结既包括靠近底电池200底面的第二结区,又包括垂直于顶电池201底面的第一结区301。
在一种示例中,如图5A至图5D所示,当PN结包括靠近底电池200底面的第二结区,又包括垂直于顶电池201底面的第一结区301时,第一电极204的材质可以包括金属材料,也可以包括第一类载流子传导材料。当然,第一电极204的材质还可以包括金属材料和第一类载流子传导材料。例如:如图5A所示,第一电极204接触第二掺杂部203的部分设置为第三传导部211。并且,第三传导部211至少将第一电极孔填满,第三传导部211的材质为第一类载流子传导材料。
具体的,关于图5A至图5D示出的第一电极204的具体结构的描述可以参考前文对图2A至图2D示出的第一电极204的具体结构的描述,此处不再赘述。
在一种示例中,如图5A和图5E至图5G所示,当PN结既包括靠近底电池200底面的第二结区,又包括垂直于顶电池201底面的第一结区301时,第二电极205的材质可以包括金属材料,也可以包括第二类载流子传导材料。当然,第二电极205的材质还可以同时包括金属材料和第二类载流子传导材 料。例如:如图5A所示,第二电极205接触第一掺杂部202的部分设置为第四传导部213。并且,第四传导部213至少将第二电极孔填满,第四传导部213的材质为第二类载流子传导材料。
具体的,关于图5A和图5E至图5G示出的第二电极205的具体结构的描述可以参考前文对图2A和图2E至图2G示出的第二电极205的具体结构的描述,此处不再赘述。不同的是,与图2A示出的PN结相比,图5A示出的PN结还包括靠近底电池200底面的第二结区,此时第二掺杂部203至少有部分部位位于第一掺杂部202远离顶电池201的表面。在此情况下,当第二电极205的材质为金属材料时,图5E示出的第二电极205可以沿着远离顶电池201的方向伸出第二电极孔外。并且,第二电极205伸出第二电极孔外的部分可以沿着平行于底电池200底面的方向延伸,其延伸的长度可以根据第二掺杂部203位于底电池200底面的部分的规格进行设置。同理,图5F示出的第二电极205所包括的第四金属部214也可以沿着远离顶电池201的方向伸出第二电极孔外。并且,第四金属部214伸出第二电极孔外的部分也可以沿着平行于底电池200底面的方向延伸。
需要说明的是,在上述PN结既包括靠近底电池200底面的第二结区,又包括垂直于顶电池201底面的第一结区301的情况下,图5A至图5G中示出的不同结构的第一电极204和第二电极205之间可以任意组合。例如:当上述PN结既包括靠近底电池200底面的第二结区,又包括垂直于顶电池201底面的第一结区301时,贯穿底电池200的第一电极204可以为图5D中示出的第一电极204。贯穿底电池200的第二电极205可以为图5E中示出的第二电极205。
在又一种可选的方式中,如图6A至图6G所示,PN结包括靠近顶电池201底面和底电池200底面的第二结区、以及垂直于顶电池201底面的第一结区301,其在靠近和远离顶电池201的一侧均形成第二结区,第一掺杂部202和第二掺杂部203形成的PN结的界面最大。
在一种示例中,如图6A至图6D所示,当PN结包括靠近顶电池201底面和底电池200底面的第二结区、以及垂直于顶电池201底面的第一结区301时,第一电极204的材质可以包括第一载流子传导材料,也可以同时包括金 属材料和第一载流子传导材料。例如:如图6A所示,第一电极204接触第二掺杂部203的部分设置成第三传导部211。并且,第三传导部211至少将第一电极孔填满,第三传导部211的材质为第一类载流子传导材料。
具体的,关于图6A至图6D示出的第一电极204的具体结构的描述可以参考前文对图3A至图3D示出的第一电极204的具体结构的描述,此处不再赘述。
在一种示例中,如图6A和图6E至图6G所示,当PN结包括靠近顶电池201底面和底电池200底面的第二结区、以及垂直于顶电池201底面的第一结区301时,第二电极205的材质可以包括金属材料,也可以包括第二载流子传导材料。当然,第二电极205的材质还可以同时包括金属材料和第二载流子传导材料。例如:如图6A所示,第二电极205接触第一掺杂部202的部分设置成第四传导部213。并且,第四传导部213至少将第二电极孔填满,第四传导部213的材质为第二类载流子传导材料。
具体的,关于图6A和图6E至图6G示出的第二电极205的具体结构的描述可以参考前文对图5A和图5E至图5G示出的第二电极205的具体结构的描述,此处不再赘述。
需要说明的是,在上述PN结包括靠近顶电池201底面和底电池200底面的第二结区、以及垂直于顶电池201底面的第一结区301的情况下,图6A至图6G中示出的不同结构的第一电极204和第二电极205之间可以任意组合。例如:当上述PN结包括靠近顶电池201底面和底电池200底面的第二结区、以及垂直于顶电池201底面的第一结区301时,贯穿底电池200的第一电极204可以为图6C中示出的第一电极204。贯穿底电池200的第二电极205可以为图6E中示出的第二电极205。
在一种可能的实现方式中,如图7A所示,底电池200包括垂直于顶电池201的第一结区301,且远离顶电池201底面的一侧不具有平行于顶电池201底面的第二结区。第一电极204在远离顶电池201的一侧具有延伸出相应第一电极孔的第一外缘部215。叠层太阳能电池还包括位于第一外缘部215与第二掺杂部203之间的第一电极辅助层216。和/或,第二电极205在远离顶电池201的一侧具有延伸出相应第二电极孔的第二外缘部217。叠层太阳能电池 还包括位于第二外缘部217与第一掺杂部202之间的第二电极辅助层218。第一电极辅助层216和第二电极辅助层218至少具有电隔离功能。应理解,上述第一电极204和第二电极205可以分别沿着远离顶电池201的方向延伸出第一电极孔或第二电极孔外,且第一电极204具有的第一外缘部215、以及第二电极205具有的第二外缘部217均可以沿着平行于底电池200底面的方向延伸。其中,第一外缘部215和第二外缘部217的规格和材质可以根据实际应用场景设置。具体来说,第一电极204为用于导出顶电池201和底电池200的第一类载流子的电极。而第二掺杂部203的多子载流子为第二类载流子。当第一电极204具有位于相应第一电极孔远离顶电池201底面的第一外缘部215时,第一电极辅助层216可以将第一外缘部215与第二掺杂部203分隔开,降低第一类载流子和第二类载流子发生复合的概率。
具体的,如图7A所示,当第一电极辅助层216具有电隔离功能时,第一电极辅助层216的存在可以避免第一外缘部215和第二掺杂部203电连接,防止PN结短路。其中,具有电隔离功能的第一电极辅助层216的材质可以为二氧化硅、氮化硅等绝缘材料。同理,在上述情况下,第二电极辅助层218具有的有益效果可以参考第一电极辅助层216具有的有益效果,此处不再赘述。当第二电极辅助层218具有电隔离功能时所含有的材料可以参考前文所述的第一电极辅助层216的材质进行设置。
在一种可选的方式中,如图7E和图7F所示,第一电极辅助层216延伸至第一电极孔内。第一电极辅助层216延伸至第一电极孔内的部位形成于第一电极204和第一掺杂部202之间。第二电极辅助层218延伸至第二电极孔内。第二电极辅助层218延伸至第二电极孔内的部位形成于第二电极205与第二掺杂部203之间。第一电极辅助层216位于第一电极204和第一掺杂部202之间的部分、以及第二电极辅助层218位于第二电极205和第二掺杂部203之间的部分具有晶格匹配功能、能带匹配功能、钝化功能中至少一种。
具体的,如图7E和图7F所示,当第一电极辅助层216具有晶格匹配功能时,第一电极辅助层216的存在可以降低第一电极204和第一掺杂部202之间的晶格失配,防止第一电极204和第一掺杂部202之间产生缺陷复合中心,进而降低第一类载流子与第二类载流子在第一电极204和第一掺杂部202 的接触处发生复合的概率。其中,具有晶格匹配功能的第一电极辅助层216的材质可以根据第一电极204和第一掺杂部202的材质所具有的晶格常数进行设置。一般来说,当第一电极辅助层216具有晶格匹配功能时,第一电极辅助层216材质所具有的晶格常数需要在第一电极204和第一掺杂部202材质所具有的晶格常数之间。例如:当第一掺杂部202的材质为Si,且第一电极204的材质为Ge时,第一电极辅助层216的材质可以为SixGe1-x(0<x<1)。
如图7E和图7F所示,当第一电极辅助层216具有能带匹配功能时,第一电极辅助层216可以降低第一电极204与第一掺杂部202之间的能级差,提高第一载流子由第一掺杂部202传导至第一电极204内的传导速率,增大底电池200对光能的利用率,最终提升叠层太阳能电池的光电转换效率。其中,具有能带匹配功能的第一电极辅助层216的材质可以根据第一电极204和第一掺杂部202的材质所具有的能级进行设置。一般来说,当第一电极辅助层216具有能带匹配功能时,第一电极辅助层216材质所具有的能级需要在第一电极204和第一掺杂部202材质所具有的能级之间。例如:第一掺杂部202的材质为N型Si,第一电极204的材质为金属材料时,第一电极辅助层216的材质可以为i-a-Si:H/BZO,或者可以为i-a-Si:H/n+-a-Si:H。
如图7E和图7F所示,当第一电极辅助层216具有钝化功能时,第一电极辅助层216可以降低第一电极204和第一掺杂部202的表面态密度,减小底电池200内产生的第一类载流子在第一电极204和第一掺杂部202接触的位置与第二类载流子发生缺陷复合的速率。其中,具有钝化功能的第一电极辅助层216可以为氮化硅层、非晶硅层、二氧化硅层或三氧化二铝层。具体来说,上述氮化硅层和非晶硅层可以分别为采用等离子体增强化学气相沉积方式形成的氮化硅层和非晶硅层。上述二氧化硅层可以为热氧化二氧化硅层。上述三氧化二铝层可以为原子层沉积方式形成的三氧化二铝层。当然,第一电极辅助层216还可以为其他具有钝化功能的膜层。
同理,在上述情况下,第二电极辅助层218具有的有益效果可以参考第一电极辅助层216具有的有益效果,此处不再赘述。当第二电极辅助层218分别具有晶格匹配功能、能带匹配功能、钝化功能时所含有的材料可以参考 前文所述的第一电极辅助层216的材质进行设置。
需要说明的是,因第一电极辅助层216延伸至第一电极孔内的部分位于第一电极204和第一掺杂部202之间、以及第二电极辅助层218延伸至第二电极孔内的部分位于第二电极205和第二掺杂部203之间,故第一电极辅助层216在第一电极孔内的具体规格可以根据第一电极204与第一掺杂部202的接触情况进行设置。同时,第二电极辅助层218在第二电极孔内的具体规格可以根据第二电极205与第二掺杂部203的接触情况进行设置。
例如:如图7G所示,PN结包括靠近顶电池201底面的第二结区、以及垂直于顶电池201底面的第一结区301,第一电极204靠近顶电池201的端部会与第二掺杂部203接触。此时,第一电极辅助层216可以沿着自下而上的方向由第一电极孔远离顶电池201的孔口处向内延伸至第一电极204与第二掺杂部203接触的位置停止。同时,第二电极205位于第二电极孔内的各部分均与第二掺杂部203接触,故第二电极辅助层218可以覆盖在第二掺杂部203远离第一掺杂部202的表面。
又例如:如图7H所示,PN结仅包括垂直于顶电池201底面的第一结区301时,第一电极204位于第一电极孔内的各部分均与第一掺杂部202接触,故第一电极辅助层216可以覆盖在第一电极孔的内壁。同时,第二电极205位于第二电极孔内的各部分均与第二掺杂部203接触,故第二电极辅助层218可以覆盖在第二掺杂部203远离第一掺杂部202的表面。
在一种可选的方式中,如图7A至图7D所示,当上述叠层太阳能电池包括第一外缘部215和第二外缘部217,且第一外缘部215和第二外缘部217为金属材料时,第一电极辅助层216和/或第二电极辅助层218用于避免第一外缘部215和第二外缘部217接触。应理解,当第一外缘部215和第二外缘部217所含有的材料均为金属材料时,第一外缘部215和第二外缘部217均具有传导第一类载流子和第二类载流子的能力。基于此,当第一电极辅助层216还包括位于第一外缘部215和第二外缘部217之间的部分、以及第一电极辅助层216具有绝缘性能时,第一电极辅助层216的存在可以避免第一外缘部215和第二外缘部217接触,防止两个异性电极电连接,提高叠层太阳能电池的工作稳定性。而当位于第一外缘部215和第二外缘部217之间的结构为第 二电极辅助层218,且第二电极辅助层218具有绝缘性能时,第二电极辅助层218的存在也可以避免第一外缘部215和第二外缘部217接触,防止两个异性电极电连接。
具体的,第一外缘部215和第二外缘部217所含有的金属材料可以为金、银、铝、铜等。第一电极辅助层216和第二电极辅助层218可以为具有绝缘性能的钝化层。例如:二氧化硅、氮化硅等。
在一种可能的实现方式中,如图8A至图8D所示,上述叠层太阳能电池还包括至少两个辅助电极219。至少一个辅助电极219覆盖在相应第一电极204朝向顶电池201的表面。至少一个辅助电极219覆盖在相应第二电极205朝向顶电池201的表面。每个第一电极204相应的辅助电极219的材质为金属材料和/或第一载流子传导材料。和/或,每个第二电极205相应的辅助电极219的材质为金属材料和/或第二载流子传导材料。应理解,第一电极204和第二电极205分别形成在贯穿底电池200的第一电极孔和第二电池孔内,因此第一电极204和第二电极205与顶电池201的有效接触面积分别受第一电极孔和第二电极孔的径向横截面积的影响。当分别在第一电极204和第二电极205朝向顶电池201的表面覆盖至少一个辅助电极219时,辅助电极219的存在可以增大第一电极204和第二电极205与顶电池201之间的有效接触面积。并且,金属材料、第一类载流子传导材料和第二类载流子传导材料对载流子的传导性能均远远高于半导体材料对载流子的传导性能,故辅助电极219的存在可以增强第一电极204和第二电极205收集相应种类的载流子的能力,进而提升叠层太阳能电池的光电转换效率。
具体的,分别覆盖在第一电极204和第二电极205上的辅助电极219的材质可以相同,也可以不同。覆盖在第一电极204,或覆盖在第二电极205上的各个辅助电极219的材质可以相同,也可以不同。此外,辅助电极219的具体结构、形状可以根据实际情况设置,只要确保可以增大第一电极204和第二电极205与顶电池201之间的有效接触面积即可。
在一种示例中,如图8A至图8D所示,当覆盖在第一电极204和第二电极205上的辅助电极219的材质相同时,辅助电极219的材质均为金属材料。此时,为防止第一电极204和相邻的第二电极205电连接,位于第一电极204 上的辅助电极219与位于第二电极205上的辅助电极219互不接触。
在另一种示例中,如图8A至图8D所示,当覆盖在第一电极204和第二电极205上的辅助电极219的材质不同时,覆盖在第一电极204上的辅助电极219的材质可以为金属材料,位于第二电极205上的辅助电极219的材质为第二载流子传导材料。
或者,如图8A至图8D所示,覆盖在第一电极204上的辅助电极219的材质可以为第一载流子传导材料,位于第二电极205上的辅助电极219的材质为金属材料。
又或者,如图8A至图8D所示,覆盖在第一电极204上的辅助电极219的材质可以为第一载流子传导材料,位于第二电极205上的辅助电极219的材质为第二载流子传导材料。
需要说明的是,如图8A至图8D所示,当覆盖在第一电极204和第二电极205上的辅助电极219的材质不同时,为了增加辅助电极219与顶电池201之间的有效接触面积,可以使得位于第一电极204和第二电极205上的辅助电极219相接触。
其中,上述辅助电极219所含有的金属材料、第一类载流子传导材料和第二类载流子传导材料的种类可以参考前文第一电极204和/或第二电极205所含有的金属材料、第一类载流子传导材料和第二类载流子传导材料的种类进行设置,此处不做赘述。
在一种可选的方式中,如图8A和图8B所示,每个辅助电极219包括多个主电极220以及至少一条细栅线221。多个主电极220通过一条细栅线221电连接。其中,主电极220位于相应第一电极204或第二电极205和顶电池201接触的部位。应理解,每个辅助电极219所包括的细栅线221可以辅助收集第一类载流子或第二类载流子。并且,每个辅助电极219所包括的多个主电极220覆盖在相应第一电极204或第二电极205与顶电池201接触的部位,从而可以辅助第一电极204或第二电极205收集顶电池201内的第一类载流子或第二类载流子,降低顶电池201内的两种载流子在顶电池201和底电池200的交界面处发生复合的概率,提高叠层太阳能电池的光能的利用率。
具体的,如图8A和图8B所示,主电极220的形状可以为长方形、正方 形、异性多边形或椭圆形等形状,此处不作具体限定,只要主电极220与顶电池201相接触的面积大于第一电极204、第二电极205的径向横截面积,且可以辅助第一电极204、第二电极205收集相应种类的载流子即可。此外,各辅助电极219之间的排布方式,以及每个辅助电极219所包括的各主电极220之间的排布方式可以根据第一电极204和第二电极205的排布方式进行设置。每个辅助电极219所包括的细栅线221的延伸方向可以根据相邻第一电极204或相邻第二电极205之间的位置关系进行设置。
示例性的,如图8A和图8B所示,主电极220可以为半球体结构。其中,主电极220与第一电极204或第二电极205接触的一面为圆形平面,主电极220与顶电池201接触的一面为弧形曲面。当第一电极204和第二电极205呈矩阵式排布时,每个辅助电极219所包括的各主电极220可以呈矩阵排布。并且,每个辅助电极219所包括的各主电极220底面的几何中心可以与细栅线221的轴线重合。此外,为了提高第一电极204、第二电极205分别收集电子、空穴的数量,可以适当增加每个辅助电极219所包括的主电极220的数量。每个辅助电极219中增加的主电极220均与细栅线221电连接、且沿着细栅线221的轴向分布。
其中,细栅线221的材质可以为金属材料。位于第一电极204上的主电极220的材质可以为金属材料和/或第一类载流子传导材料。位于第二电极205上的主电极220的材质可以为金属材料和/或第二类载流子传导材料。
需要说明的是,如图8C和图8D所示,当上述叠层太阳能电池还包括辅助电极219时,可以在辅助电极219与第一电极204,以及在辅助电极219与第二电极205之间设置扩散阻挡层223。在叠层太阳能电池的工作过程中,扩散阻挡层223的存在可以防止辅助电极219中活泼的离子扩散至第一掺杂部202和/或第二掺杂部203内,影响叠层太阳能电池的工作性能。具体的,如图8C所示,上述扩散阻挡层223可以整层设置在底电池200靠近辅助电极219的表面。并且,第一电极204和第二电极205贯穿扩散阻挡层223。或者,如图8D所示,沿着靠近顶电池201的方向,第一电极204和第二电极205分别伸出第一电极孔和第二电极孔外。扩散阻挡层223围绕在第一电极204伸出第一电极孔外的部分的外周,以及扩散阻挡层223围绕在第二电极205伸 出第二电极孔外的部分的外周。其中,扩散阻挡层223的材质可以为氮化钽等满足要求的材料。
在一种可能的实现方式中,如图9A至图9E所示,上述叠层太阳能电池还包括第一辅助层222。第一辅助层222的纵向导电能力大于横向导电能力。第一辅助层222形成在底电池200靠近顶电池201的表面。第一辅助层222所含有的材质具有钝化功能、光学调整功能、晶格匹配功能、能带匹配功能中至少一种功能。
具体的,如图9A所示,上述第一辅助层222的纵向导电能力大于横向导电能力。应理解,第一辅助层222位于底电池200和顶电池201之间,并且第一电极204和第二电极205贯穿底电池200,因此第一电极204和第二电极205靠近顶电池201的表面均会与第一辅助层222接触。基于此,若第一辅助层222具有导电能力,且第一辅助层222的纵向导电能力大于横向导电能力,则说明第一类载流子和第二类载流子在第一辅助层222内的纵向传导速率大于横向传导速率,从而可以防止第一电极204和第二电极205通过第一辅助层222电连接而发生短路,提高叠层太阳能电池的工作稳定性。在此情况下,上述第一辅助层222可以为隧道结层。此时第一辅助层222能够产生载流子的移动路径,在层间辅助传导载流子。例如:第一辅助层222的材质可以为本征氢化非晶硅。当然,第一辅助层222还可以为其它纵向导电能力大于横向导电能力的辅助层。
而对于具有钝化功能、晶格匹配功能、能带匹配功能的第一辅助层222来说,第一辅助层222的材质可以参考前文所述的具有钝化功能、晶格匹配功能、能带匹配功能的第一电极辅助层216的材质进行设置,此处不做赘述。当第一辅助层222具有光学调整功能时,第一辅助层222的材质可以为硅的氧化物或氮化物,也可以为铝的氧化物或氮化物等。例如:第一辅助层222的材质可以为SiOy、Al2O3、SiNz、SiON、SiCN等。第一辅助层222的具体结构和层厚可以根据实际应用场景设置,只要可以应用到本公开实施例提供的叠层太阳能电池中即可。
示例性的,如图9A、图9C和图9E所示,第一辅助层222可以为整层设置在底电池200和顶电池201之间的膜层。此时,第一辅助层222各个区域 的材质可以相同,也可以不同。例如:如图9C所示,第一辅助层222位于第一电极204上的部分可以与第一辅助层222的其他部分的材质不同。具体的,第一辅助层222位于第一电极204上的部分所含有的材质可以为第一类载流子传导材料。如图9D所示,第一辅助层位于第二电极205上的部分可以与第一辅助层222的其他部分的材质不同。具体的,第一辅助层222位于第二电极205上的部分所含有的材质可以为第二类载流子传导材料。
值得注意的是,不管第一辅助层222具有钝化功能、光学调整功能、晶格匹配功能、能带匹配功能中的具体哪一种或哪几种功能,在底电池200和顶电池201之间设置第一辅助层222,均可以提高叠层太阳能电池的工作性能。具体的,当第一辅助层222具有钝化功能和/或晶格匹配功能时,第一辅助层222可以降低两类载流子在顶电池201与底电池200的界面处的的复合概率。当第一辅助层222具有光学调整功能时,第一辅助层222可以具有良好的陷光效果,使更多的光线透射入底电池200。当第一辅助层222具有能带匹配功能时,第一辅助层222可以减小顶电池201分别与第一电极204和第二电极205之间的能级差,提高两类载流子由顶电池201传导至第一电极204或第二电极205的传导速率,便于第一电极204和第二电极205收集相应载流子。
在一种可选的方式中,如图9B和图9D所示,至少一个第一电极204或至少一个第二电极205贯穿第一辅助层222。当然,至少一个第一电极204和至少一个第二电极205可以同时贯穿第一辅助层222。此时,贯穿第一辅助层222的第一电极204和/或第二电极205可以直接与顶电池201的背光面接触,便于第一电极204和/或第二电极205收集顶电池201内的相应载流子,提高叠层太阳能电池的工作性能。
在一种可能的实现方式中,如图9A所示,上述叠层太阳能电池还可以包括第二辅助层206。第二辅助层206位于顶电池201远离底电池200的表面。第二辅助层206具有减反射功能或钝化功能。第二辅助层206的层厚可以根据实际应用场景设置,此处不作具体限定。例如:具有减反射功能的第二辅助层206的材质可以为氮化硅等。具有钝化功能的第二辅助层206的材质可以为非晶硅等。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何 的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种叠层太阳能电池,其特征在于,包括:底电池和位于所述底电池之上的顶电池;所述底电池包括第一掺杂部和第二掺杂部,所述第一掺杂部和所述第二掺杂部形成至少一个PN结,所述第一掺杂部的多子载流子为第一类载流子,所述第二掺杂部的多子载流子为第二类载流子;
    所述底电池具有贯穿所述底电池的第一电极孔和第二电极孔,第一电极至少部分设置于所述第一电极孔内,第二电极至少部分设置于所述第二电极孔内;;
    所述第一电极和所述第一掺杂部相接触,用于导出所述底电池和所述顶电池的第一类载流子;所述第二电极和所述第二掺杂部相接触,用于导出所述底电池和所述顶电池的第二类载流子。
  2. 根据权利要求1所述的叠层太阳能电池,其特征在于,每个所述PN结包括:
    垂直于所述顶电池的第一结区;和/或,
    平行顶电池底面的第二结区。
  3. 根据权利要求1所述的叠层太阳能电池,其特征在于,所述PN结仅包括垂直顶电池底面的第一结区,所述第一电极的材质包括金属材料和/或第一类载流子传导材料;和/或,所述第二电极的材质包括金属材料和/或第二类载流子传导材料。
  4. 根据权利要求3所述的叠层太阳能电池,其特征在于,每个所述第一电极包括沿着远离所述顶电池的方向分布的第一传导部和第一金属部;所述第一传导部至少部分部位位于相应所述第一电极孔内,所述第一传导部的材质为第一类载流子传导材料;
    所述第二电极包括沿着远离所述顶电池的方向分布的第二传导部和第二金属部;所述第二传导部至少部分部位位于相应所述第二电极孔内,所述第二传导部的材质为第二类载流子传导材料。
  5. 根据权利要求4所述的叠层太阳能电池,其特征在于,所述第一金属部至少部分部位位于相应所述第一电极孔内,所述第二金属部至少部分部位位于相应所述第二电极孔内;或,
    所述第一金属部位于所述第一电极孔外,所述第二金属部位于所述第二电极孔外。
  6. 根据权利要求2所述的叠层太阳能电池,其特征在于,所述PN结包括平行顶电池底面的第二结区;
    所述第一电极接触所述第二掺杂部的部位设置成第三传导部,所述第三传导部的材质为第一类载流子传导材料;
    所述第二电极接触所述第一掺杂部的部位设置成第四传导部;所述第四传导部的材质为第二类载流子传导材料。
  7. 根据权利要求1~6任一项所述的叠层太阳能电池,其特征在于,所述底电池包括垂直于所述顶电池的第一结区,且远离所述顶电池底面的一侧不具有平行顶电池底面的第二结区;
    所述第一电极在远离所述顶电池的一侧具有延伸出相应所述第一电极孔的第一外缘部,所述叠层太阳能电池还包括位于所述第一外缘部与所述第二掺杂部之间的第一电极辅助层;和/或,
    所述第二电极在远离所述顶电池的一侧具有延伸出相应所述第二电极孔的第二外缘部,所述叠层太阳能电池还包括位于所述第二外缘部与所述第一掺杂部之间的第二电极辅助层;
    所述第一电极辅助层和所述第二电极辅助层至少具有电隔离功能。
  8. 根据权利要求7所述的叠层太阳能电池,其特征在于,所述第一电极辅助层延伸至所述第一电极孔内,所述第一电极辅助层延伸至所述第一电极孔内的部位形成于所述第一电极和所述第一掺杂部之间;
    所述第二电极辅助层延伸至所述第二电极孔内,所述第二电极辅助层延伸至所述第二电极孔内的部位形成于所述第二电极与所述第二掺杂部之间;
    所述第一电极辅助层位于所述第一电极和所述第一掺杂部之间的部分、以及所述第二电极辅助层位于所述第二电极和所述第二掺杂部之间的部分具有晶格匹配功能、能带匹配功能、钝化功能中至少一种。
  9. 根据权利要求7所述的叠层太阳能电池,其特征在于,所述叠层太阳能电池包括所述第一外缘部和所述第二外缘部,所述第一外缘部和所述第二外缘部的材质为金属材料;
    所述第一电极辅助层和/或所述第二电极辅助层用于避免所述第一外缘部和所述第二外缘部接触。
  10. 根据权利要求1~6任一项所述的叠层太阳能电池,其特征在于,所述叠层太阳能电池还包括至少两个辅助电极,至少一个所述辅助电极覆盖在相应所述第一电极朝向所述顶电池的表面,至少一个所述辅助电极覆盖在相应所述第二电极朝向所述顶电池的表面;
    每个所述第一电极相应的所述辅助电极的材质为金属材料和/或第一载流子传导材料;和/或,每个所述第二电极相应的所述辅助电极的材质为金属材料和/或第二载流子传导材料。
  11. 根据权利要求10所述的叠层太阳能电池,其特征在于,每个所述辅助电极包括多个主电极以及至少一条细栅线,多个所述主电极通过一条所述细栅线电连接;其中,
    所述主电极位于相应所述第一电极或所述第二电极和所述顶电池接触的部位。
  12. 根据权利要求10所述的叠层太阳能电池,其特征在于,所述叠层太阳能电池还包括第一辅助层;所述第一辅助层形成在所述底电池靠近所述顶电池的表面;所述第一辅助层的纵向导电能力大于横向导电能力;
    所述第一辅助层所含有的材质具有钝化功能、光学调整功能、晶格匹配功能、能带匹配功能中至少一种功能。
  13. 根据权利要求12所述的叠层太阳能电池,其特征在于,至少一个所述第一电极和/或至少一个所述第二电极贯穿所述第一辅助层。
PCT/CN2021/118782 2020-09-18 2021-09-16 一种叠层太阳能电池 WO2022057860A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2021342522A AU2021342522B2 (en) 2020-09-18 2021-09-16 Laminated solar cell
US18/024,611 US20230327037A1 (en) 2020-09-18 2021-09-16 Tandem solar cell
EP21868682.2A EP4216287A1 (en) 2020-09-18 2021-09-16 Laminated solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010988035.6 2020-09-18
CN202010988035.6A CN112086536B (zh) 2020-09-18 2020-09-18 一种叠层太阳能电池

Publications (1)

Publication Number Publication Date
WO2022057860A1 true WO2022057860A1 (zh) 2022-03-24

Family

ID=73738967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118782 WO2022057860A1 (zh) 2020-09-18 2021-09-16 一种叠层太阳能电池

Country Status (5)

Country Link
US (1) US20230327037A1 (zh)
EP (1) EP4216287A1 (zh)
CN (1) CN112086536B (zh)
AU (1) AU2021342522B2 (zh)
WO (1) WO2022057860A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112086536B (zh) * 2020-09-18 2022-04-15 隆基绿能科技股份有限公司 一种叠层太阳能电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100083997A1 (en) * 2008-10-02 2010-04-08 International Business Machines Corporation QUANTUM WELL GaP/Si TANDEM PHOTOVOLTAIC CELLS
CN108604608A (zh) * 2015-12-18 2018-09-28 荷兰能源研究中心基金会 串联太阳能电池及制造这种太阳能电池的方法
CN109888034A (zh) * 2019-04-04 2019-06-14 国家电投集团西安太阳能电力有限公司 一种钙钛矿/背接触晶硅叠层太阳能电池
CN111435691A (zh) * 2019-10-17 2020-07-21 杭州纤纳光电科技有限公司 一种叠层mwt太阳能电池组件及其制备方法
CN112086536A (zh) * 2020-09-18 2020-12-15 隆基绿能科技股份有限公司 一种叠层太阳能电池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8158881B2 (en) * 2005-07-14 2012-04-17 Konarka Technologies, Inc. Tandem photovoltaic cells
TWI452703B (zh) * 2007-11-16 2014-09-11 Semiconductor Energy Lab 光電轉換裝置及其製造方法
US7893349B2 (en) * 2009-02-19 2011-02-22 Suncore, Inc. Photovoltaic multi-junction wavelength compensation system and method
US8829329B2 (en) * 2010-08-18 2014-09-09 International Business Machines Corporation Solar cell and battery 3D integration
US20130306141A1 (en) * 2011-05-20 2013-11-21 Panasonic Corporation Multi-junction compound solar cell, mutli-junction compound solar battery, and method for manufacturing same
US20160307704A1 (en) * 2013-12-03 2016-10-20 University Of Washington Through Its Center For Commercialization Photovoltaic architectures incorporating organic-inorganic hybrid perovskite absorber
JP6338990B2 (ja) * 2014-09-19 2018-06-06 株式会社東芝 多接合型太陽電池
FR3041475B1 (fr) * 2015-09-23 2018-03-02 Commissariat Energie Atomique Procede de fabrication de structures pour cellule photovoltaique
US9935230B1 (en) * 2016-10-05 2018-04-03 International Business Machines Corporation Type IV semiconductor based high voltage laterally stacked multijunction photovoltaic cell
CN107564989A (zh) * 2017-07-20 2018-01-09 南开大学 一种钙钛矿/硅异质结叠层太阳电池中隧穿结的结构设计
WO2019143776A1 (en) * 2018-01-19 2019-07-25 Solar Junction Corporation Surface mount solar cell having low stress passivation layers
IL275961B2 (en) * 2018-01-23 2024-04-01 Moshe Einav A voltage-matched multi-node solar module made of two-dimensional materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100083997A1 (en) * 2008-10-02 2010-04-08 International Business Machines Corporation QUANTUM WELL GaP/Si TANDEM PHOTOVOLTAIC CELLS
CN108604608A (zh) * 2015-12-18 2018-09-28 荷兰能源研究中心基金会 串联太阳能电池及制造这种太阳能电池的方法
CN109888034A (zh) * 2019-04-04 2019-06-14 国家电投集团西安太阳能电力有限公司 一种钙钛矿/背接触晶硅叠层太阳能电池
CN111435691A (zh) * 2019-10-17 2020-07-21 杭州纤纳光电科技有限公司 一种叠层mwt太阳能电池组件及其制备方法
CN112086536A (zh) * 2020-09-18 2020-12-15 隆基绿能科技股份有限公司 一种叠层太阳能电池

Also Published As

Publication number Publication date
AU2021342522A1 (en) 2023-03-30
AU2021342522B2 (en) 2024-02-15
EP4216287A1 (en) 2023-07-26
CN112086536A (zh) 2020-12-15
CN112086536B (zh) 2022-04-15
US20230327037A1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
US11456391B2 (en) Solar cell
US20190245101A1 (en) Solar cell
EP4235805A1 (en) Solar cell, method for preparing the same, and photovoltaic module
KR20120110283A (ko) 양면 수광형 태양전지
US20230343881A1 (en) Solar cell and solar cell module
CN217933805U (zh) 太阳能电池及光伏组件
US20230275163A1 (en) Solar cell and photovoltaic module
JP2024003746A (ja) 太陽電池および光起電力モジュール
CN116666460A (zh) 太阳能电池及制备方法、光伏组件
WO2022057860A1 (zh) 一种叠层太阳能电池
KR20180018895A (ko) 양면 수광형 실리콘 태양전지
EP4386864A1 (en) Solar cell and photovoltaic module
KR20230116748A (ko) 태양전지 및 태양광 모듈
CN118156335A (zh) 太阳能电池及光伏组件
CN107482074B (zh) 电池片内置二极管结构及其制造工艺、太阳能组件
EP2610917A2 (en) Solar cell having buried electrode
US20240204121A1 (en) Solar cell and photovoltaic module
CN114883425B (zh) 一种晶硅异质结太阳电池的迎光面结构
CN220041872U (zh) 一种背接触电池及光伏组件
CN117936616B (zh) 太阳能电池及其制作方法、光伏组件及光伏系统
US20240047587A1 (en) Solar cell, method for manufacturing solar cell, and photovoltaic module
CN117673177A (zh) 太阳能电池及光伏组件
CN115954393A (zh) 一种太阳能叠层电池及其制作方法、电池组件和光伏系统
JP2024076321A (ja) 被覆型太陽電池及び太陽光発電モジュール
CN117352567A (zh) 太阳能电池及光伏组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868682

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021342522

Country of ref document: AU

Date of ref document: 20210916

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021868682

Country of ref document: EP

Effective date: 20230418