WO2022057792A1 - 保护电路 - Google Patents

保护电路 Download PDF

Info

Publication number
WO2022057792A1
WO2022057792A1 PCT/CN2021/118266 CN2021118266W WO2022057792A1 WO 2022057792 A1 WO2022057792 A1 WO 2022057792A1 CN 2021118266 W CN2021118266 W CN 2021118266W WO 2022057792 A1 WO2022057792 A1 WO 2022057792A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
zero
trip
output
module
Prior art date
Application number
PCT/CN2021/118266
Other languages
English (en)
French (fr)
Inventor
唐荣道
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022057792A1 publication Critical patent/WO2022057792A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage

Definitions

  • the present application relates to the field of circuits, and in particular, to a protection circuit.
  • the SPD Sudge Protective Device of the AC power supply is an indispensable device in the lightning protection of electronic equipment. Its main function is to discharge the lightning current that has entered the power line into the ground to protect the equipment or system from impact. .
  • the core components of SPD are usually composed of MOV (Metal Oxide Varistors, zinc oxide varistor) and GDT (Gas Discharge Tube, gas discharge tube).
  • MCB Micro Circuit Breaker, miniature circuit breaker
  • MCB Micro Circuit Breaker, miniature circuit breaker
  • MCB Micro Circuit Breaker, miniature circuit breaker
  • MCB is composed of operating mechanism, contacts, protection devices (various releases), arc extinguishing system, etc.
  • the AC power supply is prone to TOV (Temporary Over Voltage, transient overvoltage) when the load is asymmetric, the neutral line is disconnected, the low-voltage ground fault and the high-voltage single-phase ground fault.
  • TOV Temporal Over Voltage, transient overvoltage
  • the transient overvoltage in the AC power supply will cause the MOV module to fail due to its inability to withstand it, and even cause a fire failure; when there is a short-lasting transient disturbance such as a surge in the AC power supply, it will cause the miniature circuit breaker to trip frequently. Affect the normal power supply of electronic equipment; if the miniature circuit breaker and surge protector are simply used together, the above disadvantages will exist.
  • the present application provides a protection circuit.
  • an embodiment of the present application provides a protection circuit, including: a miniature circuit breaker, including an AC input end, an AC output end, and a tripper connected in series between the AC input end and the AC output end;
  • the surge protector is set to drain the surge current into the ground, and is connected between the AC output terminal and the protection ground;
  • the trip control circuit includes a zero-sequence transformer, a first comparator a module, a delay module, an analog switch and a trip drive module configured to drive the action of the trip device, the zero-sequence transformer is provided on the conductor between the AC output terminal and the surge protector , the output terminal of the zero-sequence transformer is respectively connected to the first input terminal of the first comparison module and the input terminal of the analog switch, and the second input terminal of the first comparison module is set to be connected to the first input terminal of the first comparison module.
  • the output end of the first comparison module is connected to the input end of the delay module, the output end of the delay module is connected to the control end of the analog
  • an embodiment of the present application further provides a protection circuit, including: a miniature circuit breaker, including an AC input end, an AC output end, and a tripper connected in series between the AC input end and the AC output end ; a surge protector, which is set to drain the surge current into the ground, and is connected between the AC output terminal and the protection ground; a trip control circuit, which includes a zero-sequence transformer, a single-chip microcomputer, and a A tripping drive module configured to drive the action of the tripper, the zero-sequence transformer is arranged on the conductor between the AC output end of the miniature circuit breaker and the surge protector, the zero-sequence transformer The output end of the transformer is connected to the input end of the single-chip microcomputer, and the output port of the single-chip microcomputer is connected to the trip drive module through an optocoupler; wherein, the single-chip microcomputer performs the following operations: detecting the zero-sequence transformer The voltage signal detected by the zero-sequence
  • FIG. 1 is a circuit schematic diagram of a protection circuit provided by an embodiment of the present application.
  • FIG. 2 is a circuit schematic diagram of a protection circuit provided by another embodiment of the present application.
  • FIG. 3 is a circuit schematic diagram of a protection circuit provided by an embodiment of the present application.
  • FIG. 4 is an action curve diagram of a protection circuit provided by an embodiment of the present application.
  • the present application provides a protection circuit, which can not only effectively suppress transient surge interference, avoid frequent tripping of a miniature circuit breaker, but also avoid damage to a surge protector due to transient overvoltage.
  • FIG. 1 is a schematic diagram of a protection circuit provided by an embodiment of the present application.
  • the protection circuit includes a miniature circuit breaker 100, a trip control circuit 200 and a surge protector 300, wherein: the miniature circuit breaker 100 includes an AC input end, an AC output end, and an AC input end and an AC output end connected in series The trip unit 110 between the output terminals; the surge protector 300 is set to drain the surge current into the ground, and is connected between the AC output terminal and the protective ground, and the surge protector 300 includes a first varistor 310 , the second varistor 320, the third varistor 330 and the gas discharge tube 340, the live wire ends of the AC output end are respectively connected to one end of the first varistor 310 and one end of the second varistor 320, and the zero end of the AC output end The wire ends are respectively connected to the other end of the first varistor 310 and one end of the third varistor 330 , and the other end of the second varistor 320 and the other end of the third varistor 330 are connected to the gas discharge tube 340 .
  • the trip control circuit 200 includes a zero-sequence transformer 210 , a first comparison module 220 , a delay module 230 , an analog switch 240 and a trip device configured to drive the trip device 110 to act.
  • the zero sequence transformer 210 is arranged on the conductor between the AC output end and the surge protector 300, and the output end of the zero sequence transformer 210 is respectively connected to the first input end of the first comparison module 220 and the analog switch 240
  • the input terminal of the first comparison module 220 is set to be connected to the first reference level Vref1
  • the output terminal of the first comparison module 220 is connected to the input terminal of the delay module 230
  • the output terminal of the delay module 230 is connected to the input terminal of the delay module 230.
  • the control terminal of the analog switch 240 is connected, and the output terminal of the analog switch 240 is connected to the trip driving module 250 .
  • the zero-sequence transformer 210 can induce a voltage signal proportional to the abnormal current of the AC output terminal, and the voltage signal is compared between the first comparison module 220 and the first reference level Vref1 comparison, in order to filter out the interference of the detected abnormal current with lower amplitude, if the detected voltage signal is greater than the first reference level Vref1, the first comparison module 220 outputs a high level to the delay module 230, and delays The module 230 further filters out the transient surge interference, that is, the analog switch 240 will not be closed for the transient surge with a short duration, while the abnormal current generated by the transient overvoltage and leakage with a long duration is delayed.
  • the module 230 controls the analog switch 240 to close to output the detected voltage signal, and the trip drive module 250 drives the trip unit 110 to act according to the voltage signal, so that the MCB 100 is tripped, so the protection circuit can effectively suppress the transient surge Interference, avoid frequent tripping of the miniature circuit breaker 100, and can trigger the action of the release 110 when a transient overvoltage occurs for a long time, avoid the damage of the surge protector 300 due to the transient overvoltage, and can also detect leakage current
  • the micro-circuit breaker 100 is tripped in case of abnormal conditions, so as to avoid electric shock caused by electric leakage.
  • the trip control circuit 200 further includes an amplifier circuit 260 and an absolute value detection circuit 270.
  • the input end of the amplifier circuit 260 is connected to the output end of the zero-sequence transformer 210, and the absolute value detection circuit 270 is connected to the amplifier circuit 270.
  • the output terminal of the circuit 260 is used to convert the zero sequence current into a positive voltage signal, and the output terminal of the absolute value detection circuit 270 is respectively connected to the input terminal of the first comparison module 220 and the analog switch 240 .
  • the amplifying circuit 260 and the absolute value detection circuit 270 in the trip control circuit 200 preprocess the voltage signal detected by the zero-sequence transformer 210 that is proportional to the abnormal current at the AC output end, so that subsequent The module can obtain a signal with a large amplitude and a positive value.
  • the amplifier circuit 260 is a differential amplifier
  • the absolute value detection circuit 270 is an active bridge rectifier circuit or a passive bridge rectifier circuit. After the induction output of the zero sequence transformer 210 is amplified by the differential amplifier, it is converted into a positive voltage signal by an active bridge rectifier circuit or a passive bridge rectifier circuit.
  • the active bridge rectifier circuit or the passive bridge rectifier circuit can be implemented by using a metal-oxide-semiconductor field effect transistor or an operational amplifier.
  • the delay module 230 includes a first resistor R1, a first capacitor C1, and a second comparison module 231.
  • the output end of the first comparison module 220 is connected to one end of the first resistor R1, and the first resistor
  • the other end of R1 is connected to one end of the first capacitor C1 and the non-inverting input end of the second comparison module 231 respectively, the other end of the first capacitor C1 is grounded, and the inverting input end of the second comparison module 231 is connected to the second reference level vr.
  • the delay time t1 of the delay module 230 since the output terminal of the first comparison module 220 outputs a constant high level, it is ensured that the delay time t1 of the delay module 230 has nothing to do with the peak value of the abnormal current at the AC output terminal.
  • the transient surge whose duration is lower than the delay time t1 is shielded; the delay time t1 of the delay module 230 is determined by the first resistor R1 and the first capacitor C1, and is generally in milliseconds.
  • the delay module 230 further includes a first diode D1 connected in antiparallel to both ends of the first resistor R1 .
  • the first diode D1 is connected in anti-parallel at both ends of the first resistor R1, once the abnormal current at the AC output end disappears, that is, when the output of the absolute value detection circuit 270 is zero, the first two The pole tube D1 can quickly release the charge on the first capacitor C1 , thereby ensuring the dynamic response of the delay module 230 .
  • the trip control circuit 200 further includes a first filter circuit 280 connected between the output end of the absolute value detection circuit 270 and the input end of the analog switch 240 .
  • the first filter circuit 280 includes a second resistor R2 and a second capacitor C2, the output end of the absolute value detection circuit 270 is connected to one end of the second resistor R2, and the other end of the second resistor R2 is respectively connected to the input end of the analog switch 240 and one end of the second capacitor C2 , and the other end of the second capacitor C2 is grounded.
  • the first filter circuit 280 between the output end of the absolute value detection circuit 270 and the input end of the analog switch 240, it is possible to effectively filter out the voltage proportional to the abnormal current induced by the zero-sequence transformer 210.
  • the harmonic components of the voltage signal are then sent to the analog switch 240 .
  • the first filter circuit 280 further includes a second diode D2 connected in anti-parallel to both ends of the second resistor R2 .
  • the second diode D2 is connected in anti-parallel to both ends of the second resistor R2, once the abnormal current at the AC output end disappears, that is, when the output of the absolute value detection circuit 270 is zero, the second diode D2
  • the pole tube D2 can quickly release the charge on the second capacitor C2 , thereby ensuring the dynamic response of the first filter circuit 280 .
  • the trip control circuit 200 further includes a second filter circuit 290 and a third comparison module 291 connected between the output end of the analog switch 240 and the trip drive module 250 .
  • the second filter circuit 290 includes a third resistor R3 and a third capacitor C3, the output end of the analog switch 240 is connected to one end of the third resistor R3, and the other end of the third resistor R3 is respectively connected to one end of the third capacitor C3 and the non-inverting input of the third comparison module 291 terminal, the inverting input terminal of the third comparison module 291 is connected to the third reference level Vref3.
  • the analog switch 240 outputs the voltage signal To the second filter circuit 290, after filtering out the interference through the second filter circuit 290, it is compared with the third reference level Vref3 to further filter out the interference, and finally the trip drive module 250 generates a drive current to control the action of the trip unit 110 , the MCB 100 is tripped, and the main contact of the MCB 100 is disconnected from the circuit, so as to prevent the SPD 300 from being scrapped or even burned due to the long heating time; the third reference level Vref3 is used as a trigger
  • the anti-interference threshold level of whether the trip drive module 250 operates or not can filter unnecessary tripping interference; for transient overvoltage, the time for the surge protector 300 to not be damaged is generally greater than several hundred milliseconds, due to the delay time t1 is a few mill
  • the first varistor 310, the second varistor 320, the third varistor 330 and the gas discharge tube 340 in the surge protector 300 are in a high resistance state, and the L-phase current and N-phase current of the AC power The currents are equal in magnitude and opposite in direction, and the inductive output of the zero-sequence transformer 210 is zero.
  • the tripping drive module 250 After passing through the first comparison module 220, the delay module 230 and the analog switch 240, the tripping drive module 250 has no current output, and the microcircuit breaker 100 is tripped.
  • the button 110 does not act, and the main contact of the MCB 100 is in the connected state.
  • the surge protector 300 When there is a transient disturbance with a short duration such as a surge, the surge protector 300 is in a low-resistance state, embeds the surge in the power grid to a certain amplitude, and discharges it through the ground.
  • the L-phase current and N-phase current are no longer equal in magnitude and opposite in direction.
  • the zero-sequence transformer 210 induces a voltage signal proportional to the abnormal current.
  • the passive bridge rectifier circuit is converted into a positive voltage signal.
  • the active bridge rectifier circuit or the passive bridge rectifier circuit can be realized by a MOS tube or an operational amplifier.
  • the positive voltage signal output by the active bridge rectifier circuit or the passive bridge rectifier circuit is divided into two paths: one path passes through the first filter circuit 280 composed of the second resistor R2, the second capacitor C2 and the second diode D2, and the output To the analog switch 240, once the abnormal voltage disappears, that is, when the output of the active bridge rectifier circuit or the passive bridge rectifier circuit is zero, the second diode D2 can quickly release the charge on the second capacitor C2, ensuring that The dynamic response of the first filter circuit 280; the other way through the first comparison module 220, the first reference level Vref1 is the trigger level for transient overvoltage and leakage detection, and the delay time t1 of the delay module 230 is determined by the first resistor R1 Determined with the first capacitor C1 , which is also in millisecond level, the first diode D1 can quickly release the charge on the first capacitor C1 , which ensures the dynamic response of the delay module 230 .
  • the discharge current of surge through the surge protector 300 is generally large, since the output of the first comparison module 220 is a constant high level, it is ensured that the delay time t1 has nothing to do with the peak value of the surge current.
  • the short-time signals such as surges are shielded, and the output terminal of the first comparison module 220 controls the output terminal of the analog switch 240 to be connected to the ground terminal, that is, the output of the analog switch 240 is zero volts and trips.
  • the drive module 250 has no current output, and the main contact of the micro-circuit breaker 100 is in a connected state.
  • the surge protector 300 When an abnormal transient overvoltage occurs, the surge protector 300 is in a low-resistance state, clamps the transient voltage in the power grid to a certain amplitude, and discharges it through the ground. At this time, the L-phase current and The N-phase currents are no longer equal in magnitude and opposite in direction.
  • the zero-sequence transformer 210 induces a voltage signal proportional to the transient current.
  • the voltage signal is differentially amplified by the amplifying circuit 260 and divided into two paths: one path passes through the first filter circuit 280 The output is output to the analog switch 240, and the other way passes through the first comparison module 220.
  • the first reference level Vref1 is the trigger level for transient overvoltage and leakage detection.
  • the output of the analog switch 240 is controlled.
  • the terminal is connected to the input terminal, that is, the output of the analog switch 240 is a voltage signal proportional to the transient current.
  • the tripping drive module 250 controls the action of the trip unit 110 of the MCB 100, and the main contact of the MCB 100 disconnects the main circuit, thereby avoiding the surge protector 300. The risk of tripping and scrapping or even burning due to long heating time.
  • the time for the surge protector 300 to not be damaged is generally greater than several hundreds of milliseconds. Since the delay time t1 is several milliseconds, as long as the delay time t1, the second filter circuit 290 and the trip unit 110 act for the total time If the delay is within 100ms, it can ensure that the surge protector 300 will not be damaged due to the excessive heating time of the transient overvoltage.
  • the second filter circuit 290 is composed of a third resistor R3 and a third capacitor C3, and is an integrating circuit in function.
  • its output is a voltage signal proportional to the product of transient current and time, that is, the greater the transient current, the shorter the time for the main contact of the MCB 100 to be disconnected, which ensures that the surge protector 300 is cut off before it is damaged.
  • AC power supply for the microcircuit breaker 100 is a voltage signal proportional to the product of transient current and time, that is, the greater the transient current, the shorter the time for the main contact of the MCB 100 to be disconnected, which ensures that the surge protector 300 is cut off before it is damaged.
  • the first varistor 310, the second varistor 320, the third varistor 330 and the gas discharge tube 340 in the surge protector 300 are in a high resistance state, and the leakage current passes through the AC power supply, Equipment and people, etc. flow into the earth. At this time, the L-phase current and N-phase current of the AC power supply are no longer equal in magnitude and opposite in direction.
  • the zero-sequence transformer 210 induces a voltage signal proportional to the leakage current.
  • the voltage signal is differentially amplified by the amplifier circuit 260 and divided into two parts. Path: one path is output to the analog switch 240 through the first filter circuit 280, and the other path passes through the first comparison module 220.
  • the first reference level Vref1 is the trigger level for transient overvoltage and leakage detection, and the delay module 230 delays t1 After time, the output terminal of the analog switch 240 is controlled to be connected to the input terminal, that is, the output terminal of the analog switch 240 is a voltage signal proportional to the leakage current.
  • the third reference level Vref3 is the anti-interference threshold level.
  • the tripping drive module 250 is used to control the action of the trip unit 110 of the MCB 100, and the main contact of the MCB 100 disconnects the main circuit. This avoids the risk of electric shock to the human body due to leakage. Since the delay time t1 is several milliseconds, the total delay time of the delay time t1 , the second filter circuit 290 and the trip unit 110 is within 100ms, which meets the standard requirements of relevant leakage protection.
  • another embodiment of the present application further provides a protection circuit, including:
  • the miniature circuit breaker 100 includes an AC input end, an AC output end, and a release 110 connected in series between the AC input end and the AC output end;
  • the surge protector 300 is set to drain the surge current into the ground, and is connected between the AC output terminal and the protection ground;
  • the trip control circuit 200 includes a zero-sequence transformer 210, a single-chip microcomputer 400, and a trip drive module 250 configured to drive the trip 110 to act.
  • the output end of the zero sequence transformer 210 is connected to the input end of the single-chip microcomputer 400, and the output port of the single-chip microcomputer 400 is connected to the trip drive module 250 through the optocoupler 500; 400 does the following:
  • the microcontroller 400 compares the duration of the voltage signal detected by the zero-sequence transformer 210 with the first preset time;
  • the output port of the single-chip microcomputer 400 When the duration of the voltage signal detected by the zero-sequence transformer 210 is greater than the first preset time, the output port of the single-chip microcomputer 400 outputs an action signal to activate the trip drive module 250 through the optocoupler 500 .
  • the zero-sequence transformer 210 can induce a voltage signal proportional to the abnormal current of the AC output terminal. Compare to filter out the interference of the detected abnormal current with lower amplitude, if the voltage signal is greater than the first reference level Vref1, further compare the duration of the voltage signal with the first preset time to filter out the transient Surge interference, that is, for transient surges with a short duration, the output port of the single-chip microcomputer 400 does not output an action signal, and for abnormal currents generated by transient overvoltage and leakage with a long duration, the output port of the single-chip microcomputer 400 outputs.
  • the action signal is used to make the trip drive module 250 act through the optocoupler 500 to make the MCB 100 trip. Therefore, the protection circuit can effectively suppress transient surge interference, avoid frequent tripping of the MCB 100, and can The trip unit 110 is triggered to act when the transient overvoltage is relatively long, so as to avoid the damage of the surge protector 300 due to the transient overvoltage, and it can also detect the abnormal leakage of electricity and trigger the MCB 100 to trip, so as to avoid electric shock caused by the leakage of electricity.
  • the trip control circuit 200 further includes an amplifier circuit 260 and an absolute value detection circuit 270.
  • the input end of the amplifier circuit 260 is connected to the output end of the zero-sequence transformer 210, and the absolute value detection circuit 270 is connected to the amplifier circuit 270.
  • the output end of the circuit 260 is used to convert the zero sequence current into a positive voltage signal, and the output end of the absolute value detection circuit 270 is connected to the single-chip microcomputer 400 respectively.
  • the microcontroller 400 includes an analog-to-digital conversion module, that is, an ADC module, which can convert the analog signal obtained from the absolute value detection circuit 270 into a digital signal for subsequent digital logic operations.
  • curve A is the power-frequency current damage-free curve of the surge protector 300
  • the MCB 100 can set curve B as its main contact breaking curve according to the power-frequency current damage-proof curve of the surge protector 300 . Open the curve and store it in the microcontroller 400, so as to determine the disconnection time of the micro-circuit breaker 100 under abnormal conditions, which can improve the protection effect of the surge protector 300, and avoid transient transient overvoltage causing the surge protector 300 to frequently damage.
  • this embodiment can also have an automatic reclosing function: after the main switch of the micro-circuit breaker 100 is disconnected, the main switch is closed again after a certain period of time. If the fault still exists at this time, after several preset attempts, the main switch will be cut off, no more attempts will be made, and the maintenance personnel will be on the station. Troubleshoot.
  • the miniature circuit breaker 100, the trip control circuit 200 and the surge protector 300 can be assembled into an integrated rail-type module, and the conventional miniature circuit breaker 100 and the surge protector 300 can be replaced at the engineering site. Realize anti-surge, transient overvoltage and leakage protection functions.

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

一种保护电路,包括微型断路器(100)、电涌保护器(300)和脱扣控制电路(200),脱扣控制电路(200)包括零序互感器(210)、第一比较模块(220)、延时模块(230)、模拟开关(240)和脱扣驱动模块(250),零序互感器(210)能够感应出与异常电流成正比的电压信号,该电压信号在第一比较模块与第一参考电平比较以滤除幅值较低的异常电流的干扰,延时模块(230)滤除瞬态浪涌干扰,对于持续时间较长的暂态过电压和漏电产生的异常电流,延时模块(230)控制模拟开关(240)闭合以传输电压信号,脱扣驱动模块(250)根据该电压信号驱动脱扣器(110)动作,使得微型断路器(100)跳闸。

Description

保护电路
相关申请的交叉引用
本申请基于申请号为202010972589.7、申请日为2020年9月16日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及电路领域,特别涉及一种保护电路。
背景技术
交流电源的SPD(Surge Protective Device,电涌保护器)是电子设备雷电防护中不可缺少的一种装置,其主要作用是把窜入到电力线的雷电流泄流入地,保护设备或系统不受冲击。SPD的核心部件通常由MOV(Metal Oxide Varistors,氧化锌压敏电阻)和GDT(Gas Discharge Tube,气体放电管)组成。另外,MCB(Micro Circuit Breaker,微型断路器)在电路中一般主要起着电源通断的功能,MCB由操作机构、触点、保护装置(各种脱扣器)、灭弧系统等组成。
交流电源在负荷不对称、中性线断线、低压接地故障和高压单相接地故障等情况下,容易产生TOV(Temporary Over Voltage,暂态过电压)。交流电源中出现暂态过电压会导致MOV模块不能耐受而发生失效,甚至发生起火故障;交流电源中出现浪涌等维持时间较短的瞬态干扰时,则会导致微型断路器频繁跳闸,影响电子设备的正常供电;若简单地将微型断路器和电涌保护器结合在一起使用,会存在以上弊端。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请提供一种保护电路。
第一方面,本申请实施例提供一种保护电路,包括:微型断路器,包括交流输入端、交流输出端和串接在所述交流输入端和所述交流输出端之间的脱扣器;电涌保护器,被设置成将浪涌电流泄流入地,并接在所述交流输出端和保护地之间;脱扣控制电路,所述脱扣控制电路包括零序互感器、第一比较模块、延时模块、模拟开关和被设置成驱动所述脱扣器动作的脱扣驱动模块,所述零序互感器设置在所述交流输出端和所述电涌保护器之间的导体上,所述零序互感器的输出端分别连接所述第一比较模块的第一输入端和所述模拟开关的输入端,所述第一比较模块的第二输入端被设置成接入第一参考电平,所述第一比较模块的输出端连接所述延时模块的输入端,所述延时模块的输出端连接所述模拟开关的控制端,所述模拟开关的输出端连接所述脱扣驱动模块。
第二方面,本申请实施例还提供一种保护电路,包括:微型断路器,包括交流输入端、交流输出端和串接在所述交流输入端和所述交流输出端之间的脱扣器;电涌保护器,被设置成将浪涌电流泄流入地,并接在所述交流输出端和保护地之间;脱扣控制电路,所述脱扣控 制电路包括零序互感器、单片机和被设置成驱动所述脱扣器动作的脱扣驱动模块,所述零序互感器设置在所述微型断路器的交流输出端和所述电涌保护器之间的导体上,所述零序互感器的输出端连接至所述单片机的输入端,所述单片机的输出端口通过光耦连接至所述脱扣驱动模块;其中,所述单片机执行以下操作:将所述零序互感器检测到的电压信号与第一参考电平比较;当所述零序互感器检测到的电压信号大于所述第一参考电平,所述单片机将所述零序互感器检测到的电压信号的持续时间与第一预设时间比较;当所述零序互感器检测到的电压信号的持续时间大于第一预设时间,所述单片机的输出端口输出动作信号,以通过所述光耦使所述脱扣驱动模块动作。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请一个实施例提供的一种保护电路的电路原理图;
图2是本申请另一个实施例提供的一种保护电路的电路原理图;
图3是本申请有一个实施例提供的一种保护电路的电路原理图;
图4是本申请实施例提供的一种保护电路的动作曲线图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请提供了一种保护电路,既能够有效抑制瞬态浪涌干扰,避免微型断路器频繁跳闸,又能够避免电涌保护器因暂态过电压而损坏。
下面结合附图,对本申请实施例作进一步阐述。
如图1所示,图1是本申请一个实施例提供的保护电路的示意图。
如图1所示,该保护电路包括微型断路器100、脱扣控制电路200和电涌保护器300,其中:微型断路器100包括交流输入端、交流输出端和串接在交流输入端和交流输出端之间的脱扣器110;电涌保护器300被设置成将浪涌电流泄流入地,并接在交流输出端和保护地之间,电涌保护器300包括第一压敏电阻310、第二压敏电阻320、第三压敏电阻330和气体放电管340,交流输出端的火线端分别连接至第一压敏电阻310的一端和第二压敏电阻320的一端,交流输出端的零线端分别连接至第一压敏电阻310的另一端和第三压敏电阻330的一端,第二压敏电阻320的另一端和第三压敏电阻330的另一端连接至气体放电管340的一端, 气体放电管340的另一端接地;脱扣控制电路200包括零序互感器210、第一比较模块220、延时模块230、模拟开关240和被设置成驱动脱扣器110动作的脱扣驱动模块250,零序互感器210设置在交流输出端和电涌保护器300之间的导体上,零序互感器210的输出端分别连接第一比较模块220的第一输入端和模拟开关240的输入端,第一比较模块220的第二输入端被设置成接入第一参考电平Vref1,第一比较模块220的输出端连接延时模块230的输入端,延时模块230的输出端连接模拟开关240的控制端,模拟开关240的输出端连接脱扣驱动模块250。
在本实施例中,通过设置脱扣控制电路200,零序互感器210能够感应出与交流输出端的异常电流成正比的电压信号,该电压信号在第一比较模块220与第一参考电平Vref1比较,以滤除检测到的幅值较低的异常电流的干扰,若检测到的电压信号大于第一参考电平Vref1,则第一比较模块220输出高电平至延时模块230,延时模块230进一步滤除瞬态浪涌干扰,即对于持续时间较短的瞬态浪涌,模拟开关240不会闭合,而对于持续时间较长的暂态过电压和漏电产生的异常电流,延时模块230控制模拟开关240闭合,以输出检测到的电压信号,脱扣驱动模块250根据该电压信号驱动脱扣器110动作,使得微型断路器100跳闸,因此该保护电路能够有效抑制瞬态浪涌干扰,避免微型断路器100频繁跳闸,又能够在出现持续时间较长的暂态过电压时触发脱扣器110动作,避免电涌保护器300因暂态过电压而损坏,还能够检测出漏电异常情况而触发微型断路器100跳闸,避免漏电导致人体触电。
参照图1,在一实施例中,脱扣控制电路200还包括放大电路260和绝对值检波电路270,放大电路260的输入端连接零序互感器210的输出端,绝对值检波电路270连接放大电路260的输出端以将零序电流转换为正电压信号,绝对值检波电路270的输出端分别连接第一比较模块220和模拟开关240的输入端。
在本实施例中,通过在脱扣控制电路200中设置放大电路260和绝对值检波电路270对零序互感器210检测到的与交流输出端的异常电流成正比的电压信号进行预处理,使得后续的模块能够获得幅值较大且为正值的信号。
参照图2,在一实施例中,放大电路260为差分放大器,绝对值检波电路270为有源桥式整流电路或者无源桥式整流电路。零序互感器210的感应输出通过差分放大器放大后,由有源桥式整流电路或者无源桥式整流电路转换为正电压信号。另外,为了提高检波灵敏度,有源桥式整流电路或者无源桥式整流电路可以采用金属(metal)-氧化物(oxide)-半导体(semiconductor)场效应晶体管或者运算放大器来实现。
参照图2,在一实施例中,延时模块230包括第一电阻R1、第一电容C1和第二比较模块231,第一比较模块220的输出端连接第一电阻R1的一端,第一电阻R1的另一端分别连接至第一电容C1的一端和第二比较模块231的同相输入端,第一电容C1的另一端接地,第二比较模块231的反相输入端接入第二参考电平Vr。
在本实施例中,由于第一比较模块220的输出端输出的是恒定高电平,保证了延时模块230的延时时间t1和交流输出端的异常电流的峰值大小无关,通过延时模块230屏蔽掉了持续时间低于延时时间t1的瞬态浪涌;延时模块230的延时时间t1由第一电阻R1和第一电容C1确定,一般为毫秒级。
参照图2,在一实施例中,延时模块230还包括反向并联在第一电阻R1两端的第一二极管D1。
在本实施例中,通过在第一电阻R1的两端反向并联有第一二极管D1,一旦交流输出端的异常电流消失,也即绝对值检波电路270的输出为零时,第一二极管D1能够快速释放第一电容C1上的电荷,从而保证延时模块230的动态响应。
参照图1和图2,在一实施例中,脱扣控制电路200还包括连接在绝对值检波电路270的输出端和模拟开关240的输入端之间的第一滤波电路280,第一滤波电路280包括第二电阻R2和第二电容C2,绝对值检波电路270的输出端连接第二电阻R2的一端,第二电阻R2的另一端分别连接模拟开关240的输入端和第二电容C2的一端,第二电容C2的另一端接地。
在本实施例中,通过在绝对值检波电路270的输出端和模拟开关240的输入端之间设置第一滤波电路280,能够有效滤除零序互感器210感应出的与异常电流成正比的电压信号的谐波分量,再送入模拟开关240。
参照图2,在一实施例中,第一滤波电路280还包括反向并联在第二电阻R2两端的第二二极管D2。
在本实施例中,通过在第二电阻R2的两端反向并联有第二二极管D2,一旦交流输出端的异常电流消失,也即绝对值检波电路270的输出为零时,第二二极管D2能够快速释放第二电容C2上的电荷,从而保证第一滤波电路280的动态响应。
参照图2,在一实施例中,脱扣控制电路200还包括连接在模拟开关240的输出端和脱扣驱动模块250之间的第二滤波电路290和第三比较模块291,第二滤波电路290包括第三电阻R3和第三电容C3,模拟开关240的输出端连接第三电阻R3的一端,第三电阻R3的另一端分别连接第三电容C3的一端和第三比较模块291的同相输入端,第三比较模块291的反相输入端接入第三参考电平Vref3。
在本实施例中,若零序互感器210感应出的与异常电流成正比的电压信号大于第一参考电平Vref1且异常电流的持续时间大于延时时间t1,模拟开关240将该电压信号输出至第二滤波电路290,通过第二滤波电路290滤除干扰后,与第三参考电平Vref3进行比较以进一步滤除干扰,最后通过脱扣驱动模块250产生驱动电流,控制脱扣器110动作,使得微型断路器100跳闸,微型断路器100的主触点断开出电路,从而避免电涌保护器300由于发热时间较长而产生的脱扣报废甚至烧毁;第三参考电平Vref3作为触发脱扣驱动模块250动作与否的抗干扰门限电平,能够滤除不必要的跳闸干扰;对于暂态过电压,电涌保护器300不损坏的时间一般大于几百毫秒,由于延时时间t1为数毫秒,只要保证延时时间t1、第二滤波电路290和脱扣驱动模块250驱动脱扣器110动作脱扣的总时延在100毫秒以内,就能保证电涌保护器300不会因为暂态过电压发热时间过长而损坏,而第二滤波电路290在功能上为积分电路,其输出是与暂态电流与时间的乘积成正比的电压信号,也就是暂态电流越大,微型断路器100的主触点断开的时间越短。
下面结合图2,阐述本申请实施例提供的保护电路在实际应用中对于各种情况的响应状态。
正常状态时,电涌保护器300中的第一压敏电阻310、第二压敏电阻320、第三压敏电阻330和气体放电管340呈高阻状态,交流电源的L相电流和N相电流大小相等、方向相反,零序互感器210的感应输出为零,通过第一比较模块220、延时模块230、模拟开关240后,脱扣驱动模块250无电流输出,微型断路器100的脱扣器110不动作,微型断路器100的主触点处于接通状态。
当出现浪涌等维持时间较短的瞬态干扰时,电涌保护器300呈低阻状态,将电网中的浪涌嵌位到一定的幅值,并通过大地泄放,此时交流电源的L相电流和N相电流不再大小相等、方向相反,零序互感器210感应出与异常电流成正比的电压信号,该电压信号通过放大电路260进行差分放大后,由有源桥式整流电路或者无源桥式整流电路转换为正电压信号,为了提高检波灵敏度,有源桥式整流电路或者无源桥式整流电路可以通过MOS管或运算放大器来实现。有源桥式整流电路或者无源桥式整流电路输出的正电压信号分成两路:一路通过由第二电阻R2、第二电容C2和第二二极管D2组成的第一滤波电路280,输出到模拟开关240,一旦异常电压消失,也就是有源桥式整流电路或者无源桥式整流电路的输出为零时,第二二极管D2能快速释放第二电容C2上的电荷,保证了第一滤波电路280的动态响应;另外一路通过第一比较模块220,第一参考电平Vref1为暂态过电压和漏电检测触发电平,延时模块230的延时时间t1由第一电阻R1和第一电容C1确定,也为毫秒级,第一二极管D1能快速释放第一电容C1上的电荷,保证了延时模块230的动态响应。虽然浪涌通过电涌保护器300的泄放电流一般都很大,但由于第一比较模块220输出的为恒定高电平,保证了延时时间t1和浪涌电流的峰值大小无关,通过延时模块230后,屏蔽掉了浪涌等时间较短的信号,第一比较模块220的输出端控制模拟开关240的输出端和地端连接,也就是模拟开关240的输出为零伏,脱扣驱动模块250无电流输出,微型断路器100的主触点处于接通状态。
当出现暂态过电压异常情况时,电涌保护器300呈低阻状态,将电网中的暂态电压嵌位到一定的幅值,并通过大地泄放,此时交流电源的L相电流和N相电流不再大小相等、方向相反,零序互感器210感应出与暂态电流成正比的电压信号,该电压信号通过放大电路260进行差分放大后分成两路:一路通过第一滤波电路280输出到模拟开关240,另外一路通过第一比较模块220,第一参考电平Vref1为暂态过电压和漏电检测触发电平,通过延时模块230延时t1时间后,控制模拟开关240的输出端和输入端连接,也就是模拟开关240的输出为与暂态电流成正比的电压信号,通过第二滤波电路290滤除干扰后,与第三参考电平Vref3进行比较,第三参考电平Vref3为抗干扰门限电平,最后通过脱扣驱动模块250控制微型断路器100的脱扣器110动作,微型断路器100的主触点断开主电路,由此避免了电涌保护器300由于发热时间较长而产生的脱扣报废甚至烧毁风险。对于暂态过电压,电涌保护器300不损坏的时间一般大于几百毫秒,由于延时时间t1为数毫秒,只要保证延时时间t1、第二滤波电路290以及脱扣器110动作的总时延在100ms以内,就能保证电涌保护器300不会因暂态过电压发热时间过长而损坏,第二滤波电路290由第三电阻R3和第三电容C3组成,在功能上为积分电路,其输出是与暂态电流和时间乘积成正比的电压信号,也就是暂态电流越大,微型断路器100主触点断开的时间越短,保证了在电涌保护器300损坏之前切断微型断路器100的交流电源。
当出现漏电异常情况时,电涌保护器300中的第一压敏电阻310、第二压敏电阻320、第三压敏电阻330和气体放电管340呈高阻状态,漏电流通过交流电源、设备和人体等流入大地。此时交流电源的L相电流和N相电流也不再大小相等、方向相反,零序互感器210感应出与漏电流成正比的电压信号,该电压信号通过放大电路260进行差分放大后分成两路:一路通过第一滤波电路280输出到模拟开关240,另外一路通过第一比较模块220,第一参考电平Vref1为暂态过电压和漏电检测触发电平,通过延时模块230延时t1时间后,控制模拟开关240的输出端和输入端连接,也就是模拟开关240的输出为与漏电流成正比的电压信号, 通过第二滤波电路290滤除干扰后,与第三参考电平Vref3进行比较,第三参考电平Vref3为抗干扰门限电平,最后通过脱扣驱动模块250控制微型断路器100的脱扣器110动作,微型断路器100的主触点断开主电路,由此避免了由于漏电导致人体触电的风险。由于延时时间t1为数毫秒,而延时时间t1、第二滤波电路290以及脱扣器110动作的总时延在100ms以内,符合相关漏电保护的标准要求。
参照图3,本申请的另一实施例还提供一种保护电路,包括:
微型断路器100,包括交流输入端、交流输出端和串接在交流输入端和交流输出端之间的脱扣器110;
电涌保护器300,被设置成将浪涌电流泄流入地,并接在交流输出端和保护地之间;
脱扣控制电路200,脱扣控制电路200包括零序互感器210、单片机400和被设置成驱动脱扣器110动作的脱扣驱动模块250,零序互感器210设置在微型断路器100的交流输出端和电涌保护器300之间的导体上,零序互感器210的输出端连接至单片机400的输入端,单片机400的输出端口通过光耦500连接至脱扣驱动模块250;其中,单片机400执行以下操作:
将零序互感器210检测到的电压信号与第一参考电平Vref1比较;
当零序互感器210检测到的电压信号大于第一参考电平Vref1,单片机400将零序互感器210检测到的电压信号的持续时间与第一预设时间比较;
当零序互感器210检测到的电压信号的持续时间大于第一预设时间,单片机400的输出端口输出动作信号,以通过光耦500使脱扣驱动模块250动作。
在本实施例中,通过设置脱扣控制电路200,零序互感器210能够感应出与交流输出端的异常电流成正比的电压信号,该电压信号送入单片机400后,与第一参考电平Vref1比较以滤除检测到的幅值较低的异常电流的干扰,若该电压信号大于第一参考电平Vref1,则进一步将该电压信号的持续时间与第一预设时间比较以滤除瞬态浪涌干扰,即对于持续时间较短的瞬态浪涌,单片机400的输出端口不输出动作信号,而对于持续时间较长的暂态过电压和漏电产生的异常电流,单片机400的输出端口输出动作信号,以通过光耦500使脱扣驱动模块250动作,使得微型断路器100跳闸,因此该保护电路能够有效抑制瞬态浪涌干扰,避免微型断路器100频繁跳闸,又能够在出现持续时间较长的暂态过电压时触发脱扣器110动作,避免电涌保护器300因暂态过电压而损坏,还能够检测出漏电异常情况而触发微型断路器100跳闸,避免漏电导致人体触电。
参照图3,在一实施例中,脱扣控制电路200还包括放大电路260和绝对值检波电路270,放大电路260的输入端连接零序互感器210的输出端,绝对值检波电路270连接放大电路260的输出端以将零序电流转换为正电压信号,绝对值检波电路270的输出端分别连接单片机400。
在本实施例中,通过在脱扣控制电路200中设置放大电路260和绝对值检波电路270对零序互感器210检测到的与交流输出端的异常电流成正比的电压信号进行预处理,使得单片机400能够获得幅值较大且为正值的信号。可以理解的是,单片机400内部包括有模数转换模块,也即ADC模块,能够将从绝对值检波电路270获取到的模拟信号转换为数字信号,以便后续进行数字逻辑运算。
另外,参照图4,曲线A为电涌保护器300的工频电流不损坏曲线,微型断路器100可以根据电涌保护器300的工频电流不损坏曲线设置曲线B作为自身的主触点断开曲线,并存储在单片机400内部,从而确定异常情况下微型断路器100的断开时间,可以提高对电涌保护器300保护效果,避免瞬态的暂态过电压导致电涌保护器300频繁损坏。
此外,由于引入单片机400来实现逻辑判断,因此,本实施例还可以具有自动重合闸功能:在断开微型断路器100主开关后,经过若干约定时间,再次合上主开关,若此时故障消失,则继续给交流负载供电,由此减少了人工上站合闸的次数;若此时故障依然存在,在经过预设的若干尝试后,切断主开关,不再尝试,等待维护人员上站排除故障。
需要说明的是,微型断路器100、脱扣控制电路200和电涌保护器300可以组装成一体式导轨式模块,工程现场只要替换掉常规的微型断路器100和电涌保护器300,就可以实现抗浪涌、暂态过电压和漏电保护功能。
以上是对本申请的一些实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请范围的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

  1. 一种保护电路,包括:
    微型断路器,包括交流输入端、交流输出端和串接在所述交流输入端和所述交流输出端之间的脱扣器;
    电涌保护器,被设置成将浪涌电流泄流入地,并接在所述交流输出端和保护地之间;
    脱扣控制电路,所述脱扣控制电路包括零序互感器、第一比较模块、延时模块、模拟开关和被设置成驱动所述脱扣器动作的脱扣驱动模块,所述零序互感器设置在所述交流输出端和所述电涌保护器之间的导体上,所述零序互感器的输出端分别连接所述第一比较模块的第一输入端和所述模拟开关的输入端,所述第一比较模块的第二输入端被设置成接入第一参考电平,所述第一比较模块的输出端连接所述延时模块的输入端,所述延时模块的输出端连接所述模拟开关的控制端,所述模拟开关的输出端连接所述脱扣驱动模块。
  2. 根据权利要求1所述的保护电路,其中,所述脱扣控制电路还包括放大电路和绝对值检波电路,所述放大电路的输入端连接所述零序互感器的输出端,所述绝对值检波电路连接所述放大电路的输出端以将零序电流转换为正电压信号,所述绝对值检波电路的输出端分别连接所述第一比较模块和所述模拟开关的输入端。
  3. 根据权利要求2所述的保护电路,其中,所述绝对值检波电路为有源桥式整流电路或者无源桥式整流电路。
  4. 根据权利要求3所述的保护电路,其中,所述延时模块包括第一电阻、第一电容和第二比较模块,所述第一比较模块的输出端连接所述第一电阻的一端,所述第一电阻的另一端分别连接至所述第一电容的一端和所述第二比较模块的同相输入端,所述第一电容的另一端接地,所述第二比较模块的反相输入端接入第二参考电平。
  5. 根据权利要求4所述的保护电路,其中,所述延时模块还包括反向并联在所述第一电阻两端的第一二极管。
  6. 根据权利要求2所述的保护电路,其中,所述脱扣控制电路还包括连接在所述绝对值检波电路的输出端和所述模拟开关的输入端之间的第一滤波电路,所述第一滤波电路包括第二电阻和第二电容,所述绝对值检波电路的输出端连接所述第二电阻的一端,所述第二电阻的另一端分别连接所述模拟开关的输入端和所述第二电容的一端,所述第二电容的另一端接地。
  7. 根据权利要求6所述的保护电路,其中,所述第一滤波电路还包括反向并联在所述第二电阻两端的第二二极管。
  8. 根据权利要求1所述的保护电路,其中,所述脱扣控制电路还包括连接在所述模拟开关的输出端和所述脱扣驱动模块之间的第二滤波电路和第三比较模块,所述第二滤波电路包括第三电阻和第三电容,所述模拟开关的输出端连接所述第三电阻的一端,所述第三电阻的另一端分别连接所述第三电容的一端和所述第三比较模块的同相输入端,所述第三比较模块的反相输入端接入第三参考电平。
  9. 一种保护电路,包括:
    微型断路器,包括交流输入端、交流输出端和串接在所述交流输入端和所述交流输出端之间的脱扣器;
    电涌保护器,被设置成将浪涌电流泄流入地,并接在所述交流输出端和保护地之间;
    脱扣控制电路,所述脱扣控制电路包括零序互感器、单片机和被设置成驱动所述脱扣器动作的脱扣驱动模块,所述零序互感器设置在所述微型断路器的交流输出端和所述电涌保护器之间的导体上,所述零序互感器的输出端连接至所述单片机的输入端,所述单片机的输出端口通过光耦连接至所述脱扣驱动模块;其中,所述单片机执行以下操作:
    将所述零序互感器检测到的电压信号与第一参考电平比较;
    当所述零序互感器检测到的电压信号大于所述第一参考电平,所述单片机将所述零序互感器检测到的电压信号的持续时间与第一预设时间比较;
    当所述零序互感器检测到的电压信号的持续时间大于第一预设时间,所述单片机的输出端口输出动作信号,以通过所述光耦使所述脱扣驱动模块动作。
  10. 根据权利要求1至9任一项所述的保护电路,其中,所述电涌保护器包括第一压敏电阻、第二压敏电阻、第三压敏电阻和气体放电管,所述交流输出端的火线端分别连接至所述第一压敏电阻的一端和所述第二压敏电阻的一端,所述交流输出端的零线端分别连接至所述第一压敏电阻的另一端和所述第三压敏电阻的一端,所述第二压敏电阻的另一端和所述第三压敏电阻的另一端连接至所述气体放电管的一端,所述气体放电管的另一端接地。
PCT/CN2021/118266 2020-09-16 2021-09-14 保护电路 WO2022057792A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010972589.7 2020-09-16
CN202010972589.7A CN114268073A (zh) 2020-09-16 2020-09-16 保护电路

Publications (1)

Publication Number Publication Date
WO2022057792A1 true WO2022057792A1 (zh) 2022-03-24

Family

ID=80776478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118266 WO2022057792A1 (zh) 2020-09-16 2021-09-14 保护电路

Country Status (2)

Country Link
CN (1) CN114268073A (zh)
WO (1) WO2022057792A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102354965A (zh) * 2011-10-14 2012-02-15 江苏普明商贸有限公司 新型浪涌控制电路
CN106298366A (zh) * 2016-08-19 2017-01-04 杭州聚彤节能科技有限公司 一种防雷击电磁继电器
CN108599108A (zh) * 2018-04-30 2018-09-28 上海晶丰明源半导体股份有限公司 保护电路、驱动系统、芯片及电路保护方法、驱动方法
CN111049101A (zh) * 2020-01-02 2020-04-21 中车青岛四方车辆研究所有限公司 过压保护电路
CN111130208A (zh) * 2019-12-27 2020-05-08 零点创新科技有限公司 防晃电与过流保护联动控制装置及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102354965A (zh) * 2011-10-14 2012-02-15 江苏普明商贸有限公司 新型浪涌控制电路
CN106298366A (zh) * 2016-08-19 2017-01-04 杭州聚彤节能科技有限公司 一种防雷击电磁继电器
CN108599108A (zh) * 2018-04-30 2018-09-28 上海晶丰明源半导体股份有限公司 保护电路、驱动系统、芯片及电路保护方法、驱动方法
CN111130208A (zh) * 2019-12-27 2020-05-08 零点创新科技有限公司 防晃电与过流保护联动控制装置及其控制方法
CN111049101A (zh) * 2020-01-02 2020-04-21 中车青岛四方车辆研究所有限公司 过压保护电路

Also Published As

Publication number Publication date
CN114268073A (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
US6504692B1 (en) AFCI device which detects upstream and downstream series and parallel ARC faults
KR101599071B1 (ko) 전압 서지 및 과전압 보호
US7082021B2 (en) Circuit interrupter with improved surge suppression
US7639461B2 (en) Overcurrent protection for circuit interrupting devices
US20050286184A1 (en) Electrical power outlet strip
USRE39446E1 (en) Power filter circuit responsive to supply system fault conditions
US5745322A (en) Circuit protection arrangements using ground fault interrupter for overcurrent and overvoltage protection
US20140177111A1 (en) Safe quick disconnect leakage protector
CN211428100U (zh) 一种电路保护装置
CN102623947A (zh) 一种带相线切换功能的漏电保护器
SK18498A3 (en) Disconnector for surge arrester
JPS63167629A (ja) 差電流保護開閉器
CN110912101B (zh) 一种非接触无源式spd后备保护断路器
WO2022057792A1 (zh) 保护电路
US11095108B2 (en) Point of use protective wiring device
CN206517032U (zh) 直流供电系统中的直流侧接地故障保护装置
CN214958692U (zh) 一种电阻型直流偏磁抑制装置
KR101074663B1 (ko) 쌍방향 서지보호기
CN209001573U (zh) 过电流继电保护器
KR101431659B1 (ko) 다중 보호 장치를 구비한 분전반
RU2619777C2 (ru) Устройство защиты электрических потребителей от перенапряжений в однофазных сетях переменного тока
CN210111583U (zh) 带有低电流试跳功能的漏电保护器
CN109217238B (zh) 一种保护电路和电子设备
CN206293872U (zh) 一种基于电磁差动的spd后备保护器
KR102445966B1 (ko) 아크 방지 차단기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/08/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21868615

Country of ref document: EP

Kind code of ref document: A1