WO2022057747A1 - 一种基于多线激光数据融合的集装箱定位方法及装置 - Google Patents

一种基于多线激光数据融合的集装箱定位方法及装置 Download PDF

Info

Publication number
WO2022057747A1
WO2022057747A1 PCT/CN2021/117872 CN2021117872W WO2022057747A1 WO 2022057747 A1 WO2022057747 A1 WO 2022057747A1 CN 2021117872 W CN2021117872 W CN 2021117872W WO 2022057747 A1 WO2022057747 A1 WO 2022057747A1
Authority
WO
WIPO (PCT)
Prior art keywords
target container
edge points
container
line laser
group
Prior art date
Application number
PCT/CN2021/117872
Other languages
English (en)
French (fr)
Inventor
冯志
梁浩
陈环
Original Assignee
上海驭矩信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海驭矩信息科技有限公司 filed Critical 上海驭矩信息科技有限公司
Priority to US18/023,938 priority Critical patent/US11841436B2/en
Publication of WO2022057747A1 publication Critical patent/WO2022057747A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4808Evaluating distance, position or velocity data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds

Definitions

  • the invention relates to the field of crane loading and unloading, in particular to a container positioning method and device based on multi-line laser data fusion.
  • the ports mostly use manual operations to load and unload containers on the trucks.
  • the tire crane driver operates the tire crane to load and unload the trucks (inner and outer) below it.
  • the disadvantage of manual work by tire crane drivers is that the work efficiency is low and the work quality is unstable.
  • lidars used in port sites are mostly single-point lidar or single-line lidar, and single-point lidar or single-line lidar can only be used to achieve target detection.
  • single-point lidar or single-line lidar cannot achieve precise positioning of containers.
  • the technical problem to be solved by the present invention is to provide a container positioning method and device based on multi-line laser data fusion.
  • the point cloud data of the multi-line laser radar is fused to obtain the edge points of the top surface or side of the target container. , so as to accurately obtain the location of the target container.
  • the technical solution adopted by the present invention to solve the above technical problems is to provide a container positioning method based on multi-line laser data fusion, including:
  • the contour of the top or side of the target container is obtained according to the edge points of the top or side of the target container to determine the center point and the heading angle of the target container, thereby determining the position of the target container.
  • the top surface contour of the target container is obtained according to the length, width, and height of the target container and a single-side edge point of the top surface of the target container.
  • the side profile of the target container is obtained according to the width, length, and height of the target container and edge points of the side surfaces of the target container.
  • the position of the target container is determined according to the position and floor height of the target container.
  • the point cloud ROI is selected according to the estimated position of the target container, and the point cloud data that is obviously not marked on the target container is removed;
  • the point cloud data in the point cloud ROI area is clustered according to the target container width, length, and container height, to obtain the laser lines on the top or side surface of the target container in the point cloud ROI area.
  • the clustered scan lines intersect with the long side of the top surface of the target container to obtain a first group of edge points and/or a second group of edge points, and the clustered scan lines and the top surface of the container
  • the third group of edge points and/or the fourth group of edge points obtained by intersecting the short sides, the first group of edge points and/or the second group of edge points are at least two, and the third group of edge points and/or the at least one of the four sets of edge points; or
  • the clustered scan line intersects the side of the target container to obtain a fifth group of edge points and/or a sixth group of edge points, and the clustered scan line intersects the bottom surface of the target container to obtain a seventh group of edge points , the fifth group and/or the sixth group of edge points is at least one, and the seventh group of edge points is at least two.
  • the at least two multi-line lidars are three-dimensional lidars mounted on a trolley.
  • the at least two multi-line laser radars are angled so as to scan the target container from the horizontal and vertical directions, respectively.
  • it also includes:
  • the at least two multi-line laser radars are calibrated, the at least two multi-line laser radars respectively scan two mutually perpendicular surfaces of the target container, and the two mutually perpendicular surfaces are fitted to obtain a Two dimensions of the rotation relationship and the displacement relationship of the at least two multi-line laser radars are acquired, and the third dimension is obtained by measuring the positional relationship of the at least two multi-line laser radars.
  • the technical solution adopted by the present invention to solve the above technical problem is to further provide a container positioning device based on multi-line laser data fusion, using the above-mentioned container positioning method based on multi-line laser data fusion.
  • the container positioning method and device based on multi-line laser data fusion provided by the present invention can obtain point cloud data of at least two multi-line laser radars and perform point cloud data fusion, according to The fused point cloud data is used to cluster the scan lines and obtain the edge points and contours of the top or side of the target container to determine the center point and heading angle of the target container, and then determine the position of the target container, so as to realize the detection of the target container. Precise positioning.
  • the target container according to the length, width, and height of the target container, as well as the single-side edge point and top surface contour of the top surface of the target container or the edge point and side contour of the side surface, when part or all of the top surface of the target container cannot be obtained. , and can also achieve precise positioning of the target container.
  • At least two multi-line laser radars are angled to scan the target container from the horizontal and vertical directions, so as to completely scan the edge points and contours of the target container, and achieve precise positioning of the target container.
  • FIG. 1 is a flowchart of a container positioning method based on multi-line laser data fusion in an embodiment of the present invention
  • FIG. 2 is a flowchart of a container positioning method based on multi-line laser data fusion in yet another embodiment of the present invention
  • FIG. 3 is a schematic diagram of a multi-line laser radar scanning the top surface of a target container in an embodiment of the present invention
  • FIG. 4 is a schematic diagram of scanning the top surface of a target container with a multi-line laser radar when the top surface part of the target container cannot be acquired in an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a multi-line laser radar scanning a side surface of a target container when all the top surfaces of the target container cannot be obtained in an embodiment of the present invention
  • FIG. 6 is a schematic diagram of the arrangement of a target container and other containers in an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the floor height of a target container in an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the installation of a multi-line laser radar in an embodiment of the present invention.
  • FIG. 1 is a flowchart of a container positioning method based on multi-line laser data fusion in an embodiment of the present invention.
  • the container positioning method based on multi-line laser data fusion includes the following steps:
  • Step 101 Acquire point cloud data of at least two multi-line laser radars, and perform point cloud data fusion according to the coordinate system relationship between the at least two laser radars;
  • Step 102 Perform clustering of scan lines according to the fused point cloud data, and obtain edge points on the top surface or side of the target container according to the clustered scan lines;
  • Step 103 Obtain the contour of the top surface or side surface of the target container according to the edge points of the top surface or side surface of the target container to determine the center point and heading angle of the target container, thereby determining the position of the target container .
  • the center point of the target container refers to the center point of the rectangular top surface of the container
  • the heading angle refers to the angle between the straight line connecting the centers of the front and rear lock buttons of the car board and the ordinate of the cart coordinate system.
  • FIG. 3 is a schematic diagram of a multi-line laser radar scanning a top surface of a target container according to an embodiment of the present invention.
  • two multi-line lidars can be used, for example, lidar 1 and lidar 2, lidar 1 and lidar 2 are multi-line lidars, and the points of the two multi-line lidars are adjusted using calibration parameters
  • the cloud data is placed in the same coordinate system, and the point cloud data fusion is performed according to the coordinate relationship between lidar 1 and lidar 2.
  • the scan lines are clustered according to the fused point cloud data.
  • the dotted line in the figure is the point cloud of the two multi-line lidar lasers falling on the top of the container.
  • the scanning line of lidar 2 intersects with one of the long sides of the top surface of the target container to obtain the first set of edge points P1...P8 and/or intersects with another long side to obtain the second set of edge points, the scanning line of lidar 1 and the One of the short sides of the top surface intersects to obtain a third set of edge points Q1...Q3 and/or intersects with another short edge to obtain a fourth set of edge points.
  • the first set of edge points and the second set of edge points are at least two, and the third set of edge points
  • the group edge point and the fourth group edge point are at least one.
  • a first set of edge points or a second set of edge points, and a third set of edge points or a fourth set of edge points may be used.
  • the first set of edge points and the second set of edge points, and the third set of edge points and the fourth set of edge points can be used simultaneously, by using the edge point data of the two sets of long sides and the edge points of the two sets of short sides simultaneously data, so as to obtain the contour of the top surface of the target container more accurately, and then determine the center point of the target container more accurately.
  • the point cloud ROI (Region of Interest, region of interest) is selected according to the estimated position of the target container, the point cloud data that is obviously not marked on the target container is removed, and the point cloud data in the point cloud ROI area is based on The width, length, and height of the target container are clustered to obtain the laser lines on the top or side of the target container in the ROI area of the point cloud.
  • the target container heading angle can be obtained by performing straight line fitting using the first set of edge points P1...P8 and/or the second set of edge points.
  • the first set of edge points and the second set of edge points can be used at the same time, and by using the edge point data of the two sets of long sides at the same time, the heading angle of the target container can be obtained more accurately, and the position of the target container can be more accurately determined.
  • the third group of edge points Q1 . . . Q3 and/or the fourth group of edge points may also be used to perform straight line fitting, so as to obtain the target container heading angle.
  • the third group of edge points and the fourth group of edge points can be used at the same time, and by using the edge point data of the two groups of short sides at the same time, the heading angle of the target container can be obtained more accurately, and the position of the target container can be determined more accurately .
  • the contour of the top surface of the target container is determined. After the contour of the top surface of the target container is determined, the center position of the target container can be obtained, thereby determining the position of the target container.
  • FIG. 2 is a flowchart of a container positioning method based on multi-line laser data fusion in yet another embodiment of the present invention.
  • the container positioning method based on multi-line laser data fusion includes the following steps:
  • Step 201 Acquire point cloud data of at least two multi-line laser radars, and perform point cloud data fusion according to the coordinate system relationship between the at least two laser radars;
  • Step 202 Perform clustering of scan lines according to the fused point cloud data, and obtain edge points on the top surface or side surface of the target container according to the clustered scan lines;
  • Step 203 Obtain the contour of the top surface or side surface of the target container according to the edge points of the top surface or side surface of the target container, so as to determine the center point and heading angle of the target container, so as to determine the position of the target container ;
  • Step 204 when the top surface part of the target container cannot be obtained, obtain the top surface contour of the target container according to the length, width and height of the target container and the single-side edge point of the top surface of the target container ;
  • Step 205 When all the top surfaces of the target container cannot be obtained, obtain the side profile of the target container according to the width, length, and height of the target container and edge points of the side surfaces of the target container.
  • FIG. 4 is a schematic diagram of the top surface of the target container scanned by the multi-line laser radar when the top surface part of the target container cannot be obtained in the embodiment of the present invention.
  • the lidar scan line intersects one of the long sides of the top surface of the target container to obtain the first set of edge points P1...P8, and the lidar scan line intersects one of the short sides of the top surface of the target container to obtain the third set of edge points Q1 and Q2 and Or/intersecting with another short edge to obtain a fourth group of edge points, the first group of edge points is at least two, the third group of edge points and the fourth group of edge points are at least one.
  • the top surface contour of the target container is obtained according to the length, width, and height of the target container and the single-side edge points of the top surface of the target container, ie, the first group of edge points P1 . . . P8.
  • the top surface contour of the target container may also be obtained according to the length, width, height of the target container, and the third group of edge points and/or the fourth group of edge points.
  • the third group of edge points and the fourth group of edge points can be used at the same time, and by using the edge point data of the two groups of short sides at the same time, the contour of the top surface of the target container can be obtained more accurately, and the shape of the target container can be more accurately determined. center point.
  • FIG. 5 is a schematic diagram of the multi-line laser radar scanning the side surface of the target container when all the top surfaces of the target container cannot be obtained in the embodiment of the present invention.
  • the fifth set of edge points and/or the sixth set of edge points is obtained by the intersection of the lidar scan line and the side of the target container, and the seventh set of edge points, the fifth and sixth sets of edges are obtained by the intersection of the lidar scan line and the bottom surface of the target container
  • the side profile of the target container is obtained according to the width, length, height of the target container and the edge points on the side of the target container, that is, the seventh group of edge points.
  • the side profile of the target container may also be obtained according to the length, width, height of the target container, and the fifth and/or sixth group of edge points.
  • the five groups and the sixth group of edge points can be used at the same time, and by using the edge point data of the two groups of short sides at the same time, the profile of the side surface of the target container can be obtained more accurately, and the center point of the target container can be determined more accurately.
  • the single-sided edge point is used in combination with the container width or The length still determines the heading angle of the container and the location of the center point.
  • FIG. 6 is a schematic diagram of the arrangement of the target container and other containers in an embodiment of the present invention
  • FIG. 7 is a schematic diagram of the floor height of the target container in an embodiment of the present invention.
  • the multi-line lidar scans the contours of multiple containers, and the target container needs to be distinguished.
  • the crane is grabbing or placing the container, it is usually possible to estimate the row where the target container is located.
  • Position and floor height according to the position and floor height of the target container, the position of the target container can be determined, and the heading angle and the center position of the target container can be obtained.
  • the IPC Industrial Personal Computer, industrial computer
  • PLC Programmable Logic Controller
  • FIG. 8 is a schematic diagram of the installation of a multi-line laser radar in an embodiment of the present invention.
  • At least two multi-line lidars are three-dimensional lidars installed on the trolley. As shown in Figure 8, there is an angle between lidar 1 and lidar 2 to scan the target container from the horizontal and vertical directions, respectively. 1 and the lidar 2 are preferably placed perpendicular to each other, which facilitates the use of two multi-line lidars to scan the target container laterally and longitudinally.
  • the multi-line lidar there can be multiple lidars, so that the target container can be scanned more accurately.
  • the multi-line lidar is also calibrated.
  • the multi-line lidar scans the two mutually perpendicular surfaces of the target container respectively, and obtains multiple multi-line by fitting the two mutually perpendicular surfaces.
  • the rotation relationship and the displacement relationship of the lidar are two dimensions, and the third dimension is obtained by measuring the positional relationship of multiple multi-line lidars.
  • the embodiment of the present invention also provides a container positioning device based on multi-line laser data fusion, using the above-mentioned container positioning method based on multi-line laser data fusion.
  • the container positioning method and device based on multi-line laser data fusion can acquire point cloud data of at least two multi-line laser radars, perform point cloud data fusion, and scan according to the fused point cloud data. Line clustering and obtain the edge points and contours of the top or side surface of the target container to determine the center point and heading angle of the target container, and then determine the position of the target container, so as to achieve precise positioning of the target container.
  • the target container according to the length, width, and height of the target container, as well as the single-side edge point and top surface contour of the top surface of the target container or the edge point and side contour of the side surface, when part or all of the top surface of the target container cannot be obtained. , and can also achieve precise positioning of the target container.
  • At least two multi-line laser radars are angled to scan the target container from the horizontal and vertical directions, so as to completely scan the edge points and contours of the target container, and achieve precise positioning of the target container.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种基于多线激光数据融合的集装箱定位方法,包括:获取至少两个多线激光雷达的点云数据,根据至少两个激光雷达之间的坐标系关系进行点云数据融合(101);根据融合后的点云数据进行扫描线的聚类,根据聚类后的扫描线获取目标集装箱顶面或侧面的边缘点(102);根据目标集装箱的顶面或侧面的边缘点获取目标集装箱的顶面或侧面的轮廓,以确定目标集装箱的中心点以及航向角,从而确定目标集装箱的位置(103)。一种基于多线激光数据融合的集装箱定位装置,使用一种基于多线激光数据融合的集装箱定位方法,基于多线激光数据融合的集装箱定位方法及装置,通过多线激光雷达的点云数据,对点云数据进行融合后获取目标集装箱的顶面或侧面的边缘点,从而精确获取目标集装箱的位置。

Description

一种基于多线激光数据融合的集装箱定位方法及装置 技术领域
本发明涉及起重机装卸领域,尤其涉及一种基于多线激光数据融合的集装箱定位方法及装置。
背景技术
目前,港口对集卡进行装卸集装箱多采用人工作业的方式,轮胎吊司机操作轮胎吊对其下方的集卡(内集卡、外集卡)进行集装箱装卸作业。轮胎吊司机进行人工作业的缺点在于作业效率低,且作业质量不稳定。随着技术的进步和发展,越来越多的高科技技术被应用到码头,自动化以及智能化逐渐成为未来港口发展的趋势。激光雷达作为一种扫描手段,被广泛应用于港口现场,然而目前港口现场使用的激光雷达多为单点激光雷达或单线激光雷达,并且单点激光雷达或单线激光雷达只能用于实现对目标集装箱的测距以及防撞等功能,单点激光雷达或单线激光雷达无法实现集装箱的精准定位。
因此有必要提供一种集装箱定位方法,可以实现对目标集装箱的精准定位。
发明内容
本发明所要解决的技术问题是提供基于多线激光数据融合的集装箱定位方法及装置,通过多线激光雷达的点云数据,对点云数据进行融合后获取目标集装箱的顶面或侧面的边缘点,从而精确获取目标集装箱的位置。
本发明为解决上述技术问题而采用的技术方案是提供一种基于多线激光数据融合的集装箱定位方法,包括:
获取至少两个多线激光雷达的点云数据,根据所述至少两个激光雷达之间的坐标系关系进行点云数据融合;
根据融合后的点云数据进行扫描线的聚类,根据聚类后的扫描线获取目标集装箱顶面或侧面的边缘点;
根据所述目标集装箱的顶面或侧面的边缘点获取所述目标集装箱的顶面或侧面的轮廓,以确定所述目标集装箱的中心点以及航向角,从而确定所述目标集装箱 的位置。
优选地,当所述目标集装箱的顶面部分无法获取时,根据所述目标集装箱的长度、宽度、箱高以及所述目标集装箱的顶面的单侧边缘点获取所述目标集装箱的顶面轮廓;
当所述目标集装箱顶面全部无法获取时,根据所述目标集装箱宽度、长度、箱高以及所述目标集装箱的侧面的边缘点获取所述目标集装箱的侧面轮廓。
优选地,当所述至少两个多线激光雷达扫描到多个集装箱的轮廓时,根据所述目标集装箱所在的排位和层高确定所述目标集装箱的位置。
优选地,根据所述目标集装箱的预估位置选取点云ROI,去除明显未打在所述目标集装箱上的点云数据;
将所述点云ROI区域内的点云数据根据所述目标集装箱宽度、长度、箱高进行聚类,得到所述点云ROI区域内打在所述目标集装箱顶面或侧面的激光线。
优选地,所述聚类后的扫描线与所述目标集装箱顶面长边相交得到第一组边缘点和/或第二组边缘点,所述聚类后的扫描线与所述集装箱顶面短边相交得到的第三组边缘点和/或第四组边缘点,所述第一组边缘点和/或第二组边缘点至少为两个,所述第三组边缘点和/或第四组边缘点至少为一个;或
所述聚类后的扫描线与所述目标集装箱侧面相交得到第五组边缘点和/或第六组边缘点,所述聚类后扫描线与所述目标集装箱底面相交得到第七组边缘点,所述第五组和/或第六组边缘点至少为一个,所述第七组边缘点至少为两个。
优选地,将所述第一组边缘点和/或所述第二组边缘点进行直线拟合以获取所述目标集装箱的航向角或将所述第七组边缘点进行直线拟合以获取所述目标集装箱的航向角。
优选地,所述至少两个多线激光雷达是安装于小车上的三维激光雷达。
优选地,所述至少两个多线激光雷达之间成角度以实现分别从横向以及纵向对所述目标集装箱的扫描。
优选地,还包括:
对所述至少两个多线激光雷达进行校准,所述至少两个多线激光雷达分别扫描到所述目标集装箱相互垂直的两个面,通过对所述相互垂直的两个面进行拟合以获取所述至少两个多线激光雷达的旋转关系以及位移关系的两个维度,通过测量所述 至少两个多线激光雷达的位置关系得到第三个维度。
本发明为解决上述技术问题而还采用的技术方案是还提供一种基于多线激光数据融合的集装箱定位装置,使用以上所述的基于多线激光数据融合的集装箱定位方法。
本发明对比现有技术有如下的有益效果:本发明提供的基于多线激光数据融合的集装箱定位方法及装置,能够获取至少两个多线激光雷达的点云数据并进行点云数据融合,根据融合后的点云数据进行扫描线的聚类并获取目标集装箱顶面或侧面的边缘点以及轮廓,以确定目标集装箱的中心点以及航向角,进而确定目标集装箱的位置,从而实现对目标集装箱的精准定位。
进一步地,根据目标集装箱的长度、宽度、箱高以及目标集装箱的顶面的单侧边缘点及顶面轮廓或侧面的边缘点及侧面轮廓,从而在目标集装箱的顶面部分或全部无法获取时,也能实现对目标集装箱的精准定位。
进一步地,至少两个多线激光雷达之间成角度以实现分别从横向以及纵向对目标集装箱的扫描,从而完整扫描目标集装箱的边缘点以及轮廓,实现对目标集装箱的精准定位。
附图说明
图1为本发明实施例中基于多线激光数据融合的集装箱定位方法的流程图;
图2为本发明又一实施例中基于多线激光数据融合的集装箱定位方法的流程图;
图3为本发明实施例中多线激光雷达扫描目标集装箱的顶面的示意图;
图4为本发明实施例中目标集装箱的顶面部分无法获取时多线激光雷达扫描目标集装箱的顶面的示意图;
图5为本发明实施例中目标集装箱的顶面全部无法获取时多线激光雷达扫描目标集装箱的侧面的示意图;
图6为本发明实施例中目标集装箱和其他集装箱的排位示意图;
图7为本发明实施例中目标集装箱的层高示意图;
图8为本发明实施例中多线激光雷达的安装示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步的描述。
在以下描述中,为了提供本发明的透彻理解,阐述了很多具体的细节。然而,本发明可以在没有这些具体的细节的情况下实践,这对本领域普通该技术人员来说将是显而易见的。因此,具体的细节阐述仅仅是示例性的,具体的细节可以由奔放的精神和范围而变化并且仍被认为是在本发明的精神和范围内。
现在参看图1,图1为本发明实施例中基于多线激光数据融合的集装箱定位方法的流程图。基于多线激光数据融合的集装箱定位方法,包括以下步骤:
步骤101:获取至少两个多线激光雷达的点云数据,根据所述至少两个激光雷达之间的坐标系关系进行点云数据融合;
步骤102:根据融合后的点云数据进行扫描线的聚类,根据聚类后的扫描线获取目标集装箱顶面或侧面的边缘点;
步骤103:根据所述目标集装箱的顶面或侧面的边缘点获取所述目标集装箱的顶面或侧面的轮廓,以确定所述目标集装箱的中心点以及航向角,从而确定所述目标集装箱的位置。
在具体实施中,目标集装箱的中心点指的是集装箱矩形顶面的中心点,航向角指的是车板首尾锁钮的中心所连接的直线与大车坐标系纵坐标的夹角。
现在参看图3,图3为本发明实施例中多线激光雷达扫描目标集装箱的顶面的示意图。在具体实施中,可以使用两个多线激光雷达,例如可以是激光雷达1和激光雷达2,激光雷达1和激光雷达2是多线激光雷达,使用校准参数将两个多线激光雷达的点云数据置于同一坐标系中,根据激光雷达1和激光雷达2之间的坐标关系进行点云数据融合。根据融合后的点云数据进行扫描线的聚类,图中虚线为两个多线激光雷达的激光落在集装箱顶面的点云。激光雷达2扫描线和目标集装箱的顶面其中一条长边相交得到第一组边缘点P1…P8和/或与另一条长边相交得到第二组边缘点,激光雷达1扫描线和目标集装箱的顶面其中一条短边相交得到第三组边缘点Q1…Q3和/或与另一条短边相交得到第四组边缘点,第一组边缘点和第二组边缘点至少为两个,第三组边缘点和第四组边缘点至少为一个。
在具体实施中,可以使用第一组边缘点或第二组边缘点,以及第三组边缘点或第四组边缘点。优选地,可以同时使用第一组边缘点和第二组边缘点,以及第三组 边缘点和第四组边缘点,通过同时使用两组长边的边缘点数据以及两组短边的边缘点数据,从而更精准地获取目标集装箱的顶面的轮廓,进而更精准地确定目标集装箱的中心点。
在具体实施中,根据目标集装箱的预估位置选取点云ROI(Region of Interest,感兴趣区域),去除明显未打在目标集装箱上的点云数据,将点云ROI区域内的点云数据根据目标集装箱宽度、长度、箱高进行聚类,得到点云ROI区域内打在目标集装箱顶面或侧面的激光线。
使用第一组边缘点P1…P8和/或第二组边缘点进行直线拟合可以得到目标集装箱航向角。优选地,可以同时使用第一组边缘点和第二组边缘点,通过同时使用两组长边的边缘点数据,从而更精准地获取目标集装箱的航向角,进而更精准地确定目标集装箱的位置。在具体实施中,也可以使用第三组边缘点Q1…Q3和/或第四组边缘点进行直线拟合,以得到目标集装箱航向角。优选地,可以同时使用第三组边缘点和第四组边缘点,通过同时使用两组短边的边缘点数据,从而更精准地获取目标集装箱的航向角,进而更精准地确定目标集装箱的位置。根据多线激光雷达在目标集装箱顶面的边缘点以及集装箱宽度、长度确定目标集装箱顶面的轮廓,目标集装箱顶面轮廓确定后即可得到目标集装箱的中心位置,从而确定目标集装箱的位置。
现在参看图2,图2为本发明又一实施例中基于多线激光数据融合的集装箱定位方法的流程图。
基于多线激光数据融合的集装箱定位方法,包括以下步骤:
步骤201:获取至少两个多线激光雷达的点云数据,根据所述至少两个激光雷达之间的坐标系关系进行点云数据融合;
步骤202:根据融合后的点云数据进行扫描线的聚类,根据聚类后的扫描线获取目标集装箱顶面或侧面的边缘点;
步骤203:根据所述目标集装箱的顶面或侧面的边缘点获取所述目标集装箱的顶面或侧面的轮廓,以确定所述目标集装箱的中心点以及航向角,从而确定所述目标集装箱的位置;
步骤204:当所述目标集装箱的顶面部分无法获取时,根据所述目标集装箱的长度、宽度、箱高以及所述目标集装箱的顶面的单侧边缘点获取所述目标集装箱的顶面轮廓;
步骤205:当所述目标集装箱顶面全部无法获取时,根据所述目标集装箱宽度、长度、箱高以及所述目标集装箱的侧面的边缘点获取所述目标集装箱的侧面轮廓。
现在参看图4,图4为本发明实施例中目标集装箱的顶面部分无法获取时多线激光雷达扫描目标集装箱的顶面的示意图。激光雷达扫描线和目标集装箱的顶面其中一条长边相交得到第一组边缘点P1…P8,激光雷达扫描线和目标集装箱的顶面其中一条短边相交得到第三组边缘点Q1和Q2和或/与另一条短边相交得到第四组边缘点,第一组边缘点至少为两个,第三组边缘点和第四组边缘点至少为一个。从而根据目标集装箱的长度、宽度、箱高以及目标集装箱的顶面的单侧边缘点,即第一组边缘点P1…P8,获取目标集装箱的顶面轮廓。在具体实施中,也可以根据目标集装箱的长度、宽度、箱高以及第三组边缘点和/或第四组边缘点,获取目标集装箱的顶面轮廓。
优选地,可以同时使用第三组边缘和第四组边缘点,通过同时使用两组短边的边缘点数据,从而更精准地获取目标集装箱的顶面的轮廓,进而更精准地确定目标集装箱的中心点。
现在参看图5,图5为本发明实施例中目标集装箱的顶面全部无法获取时多线激光雷达扫描目标集装箱的侧面的示意图。激光雷达扫描线与目标集装箱侧面相交得到第五组边缘点和/或第六组边缘点,激光雷达扫描线与所述目标集装箱底面相交得到第七组边缘点,第五组和第六组边缘点至少为一个,第七组边缘点至少为两个。从而根据目标集装箱宽度、长度、箱高以及目标集装箱的侧面的边缘点,即第七组边缘点,获取目标集装箱的侧面轮廓。在具体实施中,也可以根据目标集装箱的长度、宽度、箱高以及第五组和/或第六组边缘点,获取目标集装箱的侧面轮廓。
优选地,可以同时使用五组和第六组边缘点,通过同时使用两组短边的边缘点数据,从而更精准地获取目标集装箱的侧面的轮廓,进而更精准地确定目标集装箱的中心点。
因此,即使当存在吊具或者相邻位置较高层集装箱的部分遮挡或全部遮挡目标集装箱的情况,仍然可以保证目标集装箱长边方向单侧边缘点的存在,使用单侧边缘点并结合集装箱宽度或者长度仍可确定集装箱航向角以及中心点位置。
现在参看图6和图7,图6为本发明实施例中目标集装箱和其他集装箱的排位示意图,图7为本发明实施例中目标集装箱的层高示意图。当存在多个集装箱被检测 到时,多线激光雷达扫描到多个集装箱的轮廓,需要对目标集装箱进行区分,而在起重机进行抓箱或者放箱时,通常能预估知道目标集装箱所在的排位和层高,根据目标集装箱所在的排位和层高,能够确定所述目标集装箱的位置,得到航向角以及目标集装箱的中心位置。在具体实施中,通过IPC(Industrial Personal Computer,工控机)输出控制指令给PLC(Programmable Logic Controller,可编程逻辑控制器),对目标集装箱进行抓箱或放箱操作。
现在参看图8,图8为本发明实施例中多线激光雷达的安装示意图。至少两个多线激光雷达是安装于小车上的三维激光雷达,如图8所示激光雷达1和激光雷达2之间成角度以实现分别从横向以及纵向对所述目标集装箱的扫描,激光雷达1和激光雷达2优选为互相垂直地放置,有利于使用两个多线激光雷达对所述目标集装箱进行横向和纵向的扫描。
在具体实施中,激光雷达可以为多个,从而更精准地对目标集装箱进行扫描。多线激光雷达在使用之前,还对多线激光雷达进行校准,多线激光雷达分别扫描到目标集装箱相互垂直的两个面,通过对相互垂直的两个面进行拟合以获取多个多线激光雷达的旋转关系以及位移关系的两个维度,通过测量多个多线激光雷达的位置关系得到第三个维度。
本发明实施例还提供了一种基于多线激光数据融合的集装箱定位装置,使用以上所述的基于多线激光数据融合的集装箱定位方法。
综上,本实施例提供的基于多线激光数据融合的集装箱定位方法及装置,能够获取至少两个多线激光雷达的点云数据并进行点云数据融合,根据融合后的点云数据进行扫描线的聚类并获取目标集装箱顶面或侧面的边缘点以及轮廓,以确定目标集装箱的中心点以及航向角,进而确定目标集装箱的位置,从而实现对目标集装箱的精准定位。
进一步地,根据目标集装箱的长度、宽度、箱高以及目标集装箱的顶面的单侧边缘点及顶面轮廓或侧面的边缘点及侧面轮廓,从而在目标集装箱的顶面部分或全部无法获取时,也能实现对目标集装箱的精准定位。
进一步地,至少两个多线激光雷达之间成角度以实现分别从横向以及纵向对目标集装箱的扫描,从而完整扫描目标集装箱的边缘点以及轮廓,实现对目标集装箱的精准定位。
虽然本发明已以较佳实施例揭示如上,然其并非用以限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围内,当可作些许的修改和完善,因此本发明的保护范围当以权利要求书所界定的为准。

Claims (9)

  1. 一种基于多线激光数据融合的集装箱定位方法,其特征在于,包括:
    获取至少两个多线激光雷达的点云数据,根据所述至少两个激光雷达之间的坐标系关系进行点云数据融合;
    根据融合后的点云数据进行扫描线的聚类,根据聚类后的扫描线获取目标集装箱顶面或侧面的边缘点;
    根据所述目标集装箱的顶面或侧面的边缘点获取所述目标集装箱的顶面或侧面的轮廓,以确定所述目标集装箱的中心点以及航向角,从而确定所述目标集装箱的位置;
    所述聚类后的扫描线与所述目标集装箱顶面长边相交得到第一组边缘点和/或第二组边缘点,所述聚类后的扫描线与所述集装箱顶面短边相交得到的第三组边缘点和/或第四组边缘点,所述第一组边缘点和/或第二组边缘点至少为两个,所述第三组边缘点和/或第四组边缘点至少为一个;或
    所述聚类后的扫描线与所述目标集装箱侧面相交得到第五组边缘点和/或第六组边缘点,所述聚类后扫描线与所述目标集装箱底面相交得到第七组边缘点,所述第五组和/或第六组边缘点至少为一个,所述第七组边缘点至少为两个。
  2. 根据权利要求1所述的基于多线激光数据融合的集装箱定位方法,其特征在于,
    当所述目标集装箱的顶面部分无法获取时,根据所述目标集装箱的长度、宽度、箱高以及所述目标集装箱的顶面的单侧边缘点获取所述目标集装箱的顶面轮廓;
    当所述目标集装箱顶面全部无法获取时,根据所述目标集装箱宽度、长度、箱高以及所述目标集装箱的侧面的边缘点获取所述目标集装箱的侧面轮廓。
  3. 根据权利要求1所述的基于多线激光数据融合的集装箱定位方法,其特征在于:
    当所述至少两个多线激光雷达扫描到多个集装箱的轮廓时,根据所述目标集装箱所在的排位和层高确定所述目标集装箱的位置。
  4. 根据权利要求1所述的基于多线激光数据融合的集装箱定位方法,其特征在于,还包括:
    根据所述目标集装箱的预估位置选取点云ROI,去除明显未打在所述目标集装 箱上的点云数据;
    将所述点云ROI区域内的点云数据根据所述目标集装箱宽度、长度、箱高进行聚类,得到所述点云ROI区域内打在所述目标集装箱顶面或侧面的激光线。
  5. 根据权利要求1所述的基于多线激光数据融合的集装箱定位方法,其特征在于,将所述第一组边缘点和/或所述第二组边缘点进行直线拟合以获取所述目标集装箱的航向角或将所述第七组边缘点进行直线拟合以获取所述目标集装箱的航向角。
  6. 根据权利要求1所述的基于多线激光数据融合的集装箱定位方法,其特征在于,所述至少两个多线激光雷达是安装于小车上的三维激光雷达。
  7. 根据权利要求1所述的基于多线激光数据融合的集装箱定位方法,其特征在于,所述至少两个多线激光雷达之间成角度以实现分别从横向以及纵向对所述目标集装箱的扫描。
  8. 根据权利要求1所述的基于多线激光数据融合的集装箱定位方法,其特征在于,还包括:
    对所述至少两个多线激光雷达进行校准,所述至少两个多线激光雷达分别扫描到所述目标集装箱相互垂直的两个面,通过对所述相互垂直的两个面进行拟合以获取所述至少两个多线激光雷达的旋转关系以及位移关系的两个维度,通过测量所述至少两个多线激光雷达的位置关系得到第三个维度。
  9. 一种基于多线激光数据融合的集装箱定位装置,使用如权利要求1-8任一项所述的基于多线激光数据融合的集装箱定位方法。
PCT/CN2021/117872 2020-09-17 2021-09-12 一种基于多线激光数据融合的集装箱定位方法及装置 WO2022057747A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/023,938 US11841436B2 (en) 2020-09-17 2021-09-12 Container positioning method and apparatus based on multi-line laser data fusion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010977538.3A CN111830526B (zh) 2020-09-17 2020-09-17 一种基于多线激光数据融合的集装箱定位方法及装置
CN202010977538.3 2020-09-17

Publications (1)

Publication Number Publication Date
WO2022057747A1 true WO2022057747A1 (zh) 2022-03-24

Family

ID=72918489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117872 WO2022057747A1 (zh) 2020-09-17 2021-09-12 一种基于多线激光数据融合的集装箱定位方法及装置

Country Status (3)

Country Link
US (1) US11841436B2 (zh)
CN (1) CN111830526B (zh)
WO (1) WO2022057747A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116452467A (zh) * 2023-06-16 2023-07-18 山东曙岳车辆有限公司 基于激光数据的集装箱实时定位方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111830526B (zh) * 2020-09-17 2020-12-29 上海驭矩信息科技有限公司 一种基于多线激光数据融合的集装箱定位方法及装置
CN112462373A (zh) * 2021-02-02 2021-03-09 聚时科技(江苏)有限公司 基于多传感器融合的船舱位检测方法
WO2022238620A1 (en) * 2021-05-10 2022-11-17 Konecranes Global Corporation Determining position of a container handling equipment
CN113289793A (zh) * 2021-05-11 2021-08-24 山东华锐智能技术有限公司 适用于钢构件自动喷涂装置的轨迹实时提取方法
CN113721248B (zh) * 2021-08-30 2024-05-14 浙江吉利控股集团有限公司 一种基于多源异构传感器的融合定位方法及系统
CN114647011B (zh) * 2022-02-28 2024-02-02 三一海洋重工有限公司 集卡防吊监控方法、装置及系统
CN116051610A (zh) * 2023-02-17 2023-05-02 上海西井信息科技有限公司 基于点云的集装箱对位控制方法、系统、设备及存储介质

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312521A (ja) * 2005-05-09 2006-11-16 Ishikawajima Transport Machinery Co Ltd コンテナクレーンの対象物位置計測装置と該対象物位置計測装置を用いた自動荷役装置
CN206019594U (zh) * 2015-12-30 2017-03-15 南京理工大学 一种拖挂车轮廓及轴距自动测量系统
CN108955685A (zh) * 2018-05-04 2018-12-07 北京航空航天大学 一种基于立体视觉的加油飞机锥套位姿测量方法
CN109410183A (zh) * 2018-10-08 2019-03-01 香港理工大学 基于点云数据的平面提取方法、系统、装置及存储介质
KR20190049221A (ko) * 2017-11-01 2019-05-09 주식회사 이노베스트 자율주행 차량의 보행자 인식 방법
CN110579750A (zh) * 2019-10-14 2019-12-17 中国科学院半导体研究所 一种利用单线雷达实现立体全方位扫描的方法
CN110865388A (zh) * 2019-11-28 2020-03-06 芜湖汽车前瞻技术研究院有限公司 摄像机与激光雷达的联合标定方法、装置及存储介质
CN110889831A (zh) * 2019-11-18 2020-03-17 南京和光智能制造研究院有限公司 三维激光集装箱码头轮胎吊障碍物检测和定位方法及系统
CN111007534A (zh) * 2019-11-19 2020-04-14 武汉光庭科技有限公司 一种利用十六线激光雷达的障碍物检测方法及系统
CN111115300A (zh) * 2020-03-31 2020-05-08 上海驭矩信息科技有限公司 一种自动化集装箱装卸装置及方法
CN111175725A (zh) * 2019-12-23 2020-05-19 吉林大学 一种车载多线激光雷达自动标定系统及标定方法
CN111288930A (zh) * 2018-11-20 2020-06-16 北京图森智途科技有限公司 一种挂车夹角的测量方法、装置及车辆
CN111366938A (zh) * 2018-12-10 2020-07-03 北京图森智途科技有限公司 一种挂车夹角的测量方法、装置及车辆
CN111830526A (zh) * 2020-09-17 2020-10-27 上海驭矩信息科技有限公司 一种基于多线激光数据融合的集装箱定位方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140267703A1 (en) * 2013-03-15 2014-09-18 Robert M. Taylor Method and Apparatus of Mapping Landmark Position and Orientation
CN110148144B (zh) * 2018-08-27 2024-02-13 腾讯大地通途(北京)科技有限公司 点云数据的分割方法和装置、存储介质、电子装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312521A (ja) * 2005-05-09 2006-11-16 Ishikawajima Transport Machinery Co Ltd コンテナクレーンの対象物位置計測装置と該対象物位置計測装置を用いた自動荷役装置
CN206019594U (zh) * 2015-12-30 2017-03-15 南京理工大学 一种拖挂车轮廓及轴距自动测量系统
KR20190049221A (ko) * 2017-11-01 2019-05-09 주식회사 이노베스트 자율주행 차량의 보행자 인식 방법
CN108955685A (zh) * 2018-05-04 2018-12-07 北京航空航天大学 一种基于立体视觉的加油飞机锥套位姿测量方法
CN109410183A (zh) * 2018-10-08 2019-03-01 香港理工大学 基于点云数据的平面提取方法、系统、装置及存储介质
CN111288930A (zh) * 2018-11-20 2020-06-16 北京图森智途科技有限公司 一种挂车夹角的测量方法、装置及车辆
CN111366938A (zh) * 2018-12-10 2020-07-03 北京图森智途科技有限公司 一种挂车夹角的测量方法、装置及车辆
CN110579750A (zh) * 2019-10-14 2019-12-17 中国科学院半导体研究所 一种利用单线雷达实现立体全方位扫描的方法
CN110889831A (zh) * 2019-11-18 2020-03-17 南京和光智能制造研究院有限公司 三维激光集装箱码头轮胎吊障碍物检测和定位方法及系统
CN111007534A (zh) * 2019-11-19 2020-04-14 武汉光庭科技有限公司 一种利用十六线激光雷达的障碍物检测方法及系统
CN110865388A (zh) * 2019-11-28 2020-03-06 芜湖汽车前瞻技术研究院有限公司 摄像机与激光雷达的联合标定方法、装置及存储介质
CN111175725A (zh) * 2019-12-23 2020-05-19 吉林大学 一种车载多线激光雷达自动标定系统及标定方法
CN111115300A (zh) * 2020-03-31 2020-05-08 上海驭矩信息科技有限公司 一种自动化集装箱装卸装置及方法
CN111830526A (zh) * 2020-09-17 2020-10-27 上海驭矩信息科技有限公司 一种基于多线激光数据融合的集装箱定位方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116452467A (zh) * 2023-06-16 2023-07-18 山东曙岳车辆有限公司 基于激光数据的集装箱实时定位方法
CN116452467B (zh) * 2023-06-16 2023-09-22 山东曙岳车辆有限公司 基于激光数据的集装箱实时定位方法

Also Published As

Publication number Publication date
US11841436B2 (en) 2023-12-12
US20230324554A1 (en) 2023-10-12
CN111830526A (zh) 2020-10-27
CN111830526B (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
WO2022057747A1 (zh) 一种基于多线激光数据融合的集装箱定位方法及装置
WO2021196938A1 (zh) 一种自动化集装箱装卸装置及方法
US11667503B2 (en) Vehicle-mounted device, cargo handling machine, control circuit, control method, and program thereof
US7864302B2 (en) Method for detecting objects with a pivotable sensor device
CN111366938B (zh) 一种挂车夹角的测量方法、装置及车辆
CN105431370A (zh) 用于使用集装箱起重机将集装箱自动地卸货在卸货目标上的方法和系统
CN110815202B (zh) 障碍物检测方法及装置
CN112417591A (zh) 基于云台与扫描仪的车辆建模方法、系统、介质及设备
US20220113711A1 (en) Automatic Teaching System
CN207293963U (zh) 自动化装卸作业的自动着箱和防吊起系统
CN111381244B (zh) 车辆的定位增强方法、装置、车辆和可读存储介质
US11668794B2 (en) Sensor calibration
CN115631329B (zh) 一种用于开放式车厢的装载控制方法、系统和存储介质
US20230068916A1 (en) Forklift and stowage position detecting method for forklift
CN114873401A (zh) 一种基于重力储能的升降电梯定位系统及方法
CN114555511B (zh) 吊具位置控制
CN213325730U (zh) 一种自动装车定位系统
CN114803867A (zh) 吊具运行防撞方法、装置、设备和起重机
CN108861280B (zh) 一种基于激光扫描的自动指挥工件入库系统及方法
JP2021085828A (ja) 障害物検出装置
CN112623794A (zh) 一种车厢位置检测设备、自动出库及装车系统及其方法
JP2021076532A (ja) 計測装置
Park et al. Container chassis alignment and measurement based on vision for loading and unloading containers automatically
WO2023090122A1 (ja) 連結車両の連結角検出装置、連結車両、および連結車両の連結角検出方法
Song et al. Implementation of distributed architecture based on CAN networks for unmanned forklift

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21868572

Country of ref document: EP

Kind code of ref document: A1