WO2022057724A1 - 数据分流方法和装置 - Google Patents

数据分流方法和装置 Download PDF

Info

Publication number
WO2022057724A1
WO2022057724A1 PCT/CN2021/117510 CN2021117510W WO2022057724A1 WO 2022057724 A1 WO2022057724 A1 WO 2022057724A1 CN 2021117510 W CN2021117510 W CN 2021117510W WO 2022057724 A1 WO2022057724 A1 WO 2022057724A1
Authority
WO
WIPO (PCT)
Prior art keywords
app
network element
rule
user plane
message
Prior art date
Application number
PCT/CN2021/117510
Other languages
English (en)
French (fr)
Inventor
胡翔
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21868549.3A priority Critical patent/EP4199475A4/en
Priority to JP2023517374A priority patent/JP2023541662A/ja
Publication of WO2022057724A1 publication Critical patent/WO2022057724A1/zh
Priority to US18/184,257 priority patent/US20230216798A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/64Routing or path finding of packets in data switching networks using an overlay routing layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/645Splitting route computation layer and forwarding layer, e.g. routing according to path computational element [PCE] or based on OpenFlow functionality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a data offloading method and apparatus.
  • MEC Mobile edge computing
  • IT Internet technology
  • MEC Mobile edge computing
  • MEC can deploy some service processing and resource scheduling of applications, content, and mobile broadband services (MBB) to the network edge close to the access network, and improve network performance by processing services close to users.
  • MBB mobile broadband services
  • a new user plane function (UPF) network element can be inserted between the radio access network (RAN) and the protocol data unit (protocol data unit, PDU) session anchor point user plane function (UPF) network element.
  • Uplink classifier (ULCL) ULCL is based on the identification of the upstream characteristics of the service flow and the offloading strategy, and offloads the data to the local data network (data network, DN) or to the remote UPF session anchor.
  • the offloading policy on the ULCL is carried by the application function (application function, AF) network element through the capability opening message of the Traffic Influence of the network capability exposure function (network exposure function, NEF).
  • each APP going online will cause the policy control function (PCF) network element to initiate a policy update process for all eligible sessions, thereby causing the PCF on the N7 interface to push the session management function (session management function) , SMF) the new policy message of the network element and the message of the N4 interface SMF updating the UPF session, thereby causing a large number of signaling transmissions and increasing the network burden.
  • PCF policy control function
  • SMF session management function
  • the present application provides a data offloading method and device, so that the offloading rules of an APP used for data offloading can be issued in a targeted manner, so as to avoid signaling storms caused by the delivery of offloading rules, and reduce the need for the delivery of offloading rules. influence of the network.
  • a first aspect of the present application provides a data distribution method, including:
  • the MEP sends the distribution rule of the APP to the UPF network element.
  • the APP is installed on the MEP.
  • the distribution rule includes the IP address and/or port number corresponding to the APP, and the corresponding IP address and/or port number. shunting action;
  • the MEP receives the service data that is offloaded to the APP by the UPF network element according to the offloading rule of the APP.
  • the MEP before the MEP receives the service data that is offloaded by the UPF network element to the APP according to the offloading rule of the APP, the MEP triggers the UPF network element to activate the offloading rule of the APP.
  • the MEP sends the APP distribution rules to the UPF network element, including:
  • the MEP sends the offloading rule of the APP through the first interface with the UPF network element, and the offloading rule of the APP further includes the identifier of the offloading rule;
  • the MEP triggers the UPF network element to activate the offload rule of the APP, including:
  • the MEP sends the identification of the offload rule to be activated and the first information to the PCF network element through the network capability exposure function NEF network element, where the first information is used by the PCF network element to determine the status of the offload rule to be activated. Effective range.
  • the MEP sends the APP distribution rules to the UPF network element, including:
  • the MEP sends a fifth message to the PCF network element through the network capability exposure function NEF network element, where the fifth message includes the distribution rule of the APP and the first information, and the first information is used for the PCF network element Determine the effective scope of the shunting rules of the APP;
  • the MEP triggers the UPF to activate the shunting rule of the APP, including:
  • the MEP triggers the UPF to activate the offloading rule of the APP through the fifth message.
  • the method further includes: the MEP receiving the UPF network element through the first interface First indication information sent by an interface, where the first indication information is used to instruct the UPF network element to receive the offload rule of the APP.
  • the method further includes: receiving, by the MEP, second indication information sent by an SMF network element, where the second indication information is used to indicate that the offloading rule of the APP has been activated.
  • the method further includes: performing service registration and authentication between the MEP and the UPF network element.
  • the method further includes: the MEP performs service registration and authentication with the NEF network element through the MEP manager.
  • the method further includes: the MEP sends an update message to the PCF network element through the NEF network element, where the update message is used to update the matching condition of the offloading rule of the APP and/or effective scope.
  • the method further includes: the MEP sends a deletion message to the PCF network element through the NEF network element, where the deletion message is used to delete the offload rule of the APP.
  • the MEP sends the APP distribution rules to the UPF network element, including:
  • the MEP sends a second message to the UPF network element through the first interface between the MEP and the UPF network element, where the second message includes the offload rule of the APP, and the offload rule of the APP It also includes the identification of the diversion rule;
  • the MEP triggers the UPF network element to activate the offload rule of the APP, including:
  • the MEP sends a third message to the UPF network element through the first interface, where the third message is used to activate the offload rule of the APP, and the third message includes the offload of the APP to be activated The ID of the rule.
  • the third message further includes first information, where the first information is used by the UPF network element to determine the effective range of the to-be-activated offload rule.
  • the MEP sends the APP distribution rules to the UPF network element, including:
  • the MEP triggers the UPF network element to activate the offload rule of the APP, including:
  • the MEP triggers the UPF network element to activate the offload rule of the APP through the fourth message.
  • the fourth message further includes first information, where the first information is used by the UPF network element to determine the effective range of the to-be-activated offload rule.
  • the fourth message further includes activation indication information, where the activation indication information is used to indicate the shunting rule for activating the APP.
  • the method further includes: receiving, by the MEP through the first interface, third indication information sent by the UPF network element, where the third indication information is used to indicate the Triage rule activated.
  • the method further includes: performing service registration and authentication between the MEP and the UPF network element.
  • the first information includes location information of the MEP and/or service information to be accessed by the UE.
  • the service information to be accessed by the UE includes: data network name DNN, and slice instance ID or single network slice selection assistance information S-NSSAI.
  • the method further includes: the MEP sends an update message to the UPF network element through the first interface, where the update message is used to update the offload rule and/or the APP The effective scope of the shunting rules of the APP.
  • the method further includes: the MEP sends a deletion message to the UPF network element through the first interface, where the deletion message is used to delete the offloading rule of the APP.
  • a second aspect of the present application provides a data distribution method, including:
  • the user plane function UPF network element obtains the distribution rules of the application APP, the APP is installed on the MEP, and the APP distribution rules include the corresponding IP address and/or port number of the APP, and the IP address/or port number Corresponding shunt action;
  • the UPF network element When the UPF network element receives the service data sent by the user equipment, it sends the service data to the APP according to the IP address and/or port number of the service data and the offloading rule of the APP.
  • the UPF network element activates the offloading rule of the APP. .
  • the UPF network element obtains the distribution rules of the APP, including:
  • the UPF network element receives the offload rule of the APP through the first interface between the UPF network element and the MEP, and the offload rule of the APP further includes an identifier of the offload rule;
  • the UPF network element activates the shunting rules of the APP, including:
  • the UPF network element receives an activation message sent by the PCF network element, where the activation message is used to activate the offloading rule of the APP, and the activation message includes an identifier of the offloading rule of the APP;
  • the UPF network element activates the offloading rule of the APP according to the activation message.
  • the UPF network element obtains the distribution rules of the APP, including:
  • the UPF network element receives the offload rule of the APP sent by the PCF network element, the offload rule of the APP further includes the identifier of the offload rule, and the offload rule of the APP is generated by the PCF network element, or the APP
  • the distribution rule is generated by the MEP and sent to the PCF network element;
  • the UPF network element activates the shunting rules of the APP, including:
  • the UPF network element receives an activation message sent by the PCF network element, where the activation message is used to activate the offload rule of the APP, and the activation message includes an identifier of the offload rule of the APP;
  • the UPF network element activates the offloading rule of the APP according to the activation message.
  • the activation message further includes first information, where the first information is used by the UPF network element to determine the effective range of the to-be-activated offload rule.
  • the method further includes: receiving, by the UPF network element, an update message sent by the PC network element F, where the update message is used to update the offloading rule of the APP and/or the The effective scope of the APP's shunting rules.
  • the method further includes: receiving, by the UPF network element, a deletion message sent by the PCF network element, where the deletion message is used to delete the offloading rule of the APP.
  • the UPF network element obtains the distribution rules of the APP, including:
  • the UPF network element receives a second message sent by the MEP through the first interface between the UPF network element and the MEP, where the second message includes the offload rule of the APP, and the offload of the APP
  • the rule also includes the identification of the diversion rule
  • the UPF network element activates the shunting rules of the APP, including:
  • the UPF network element receives a third message sent by the MEP through the first interface, where the third message is used to activate the offloading rule of the APP, and the third message includes the information of the APP to be activated. Identification of the triage rule;
  • the UPF network element activates the offload rule of the APP according to the third message.
  • the third message further includes first information, where the first information is used by the UPF network element to determine the effective range of the to-be-activated offload rule.
  • the UPF network element obtains the distribution rules of the APP, including:
  • the UPF network element activates the shunting rules of the APP, including:
  • the UPF network element activates the offload rule of the APP according to the fourth message.
  • the fourth message further includes first information, where the first information is used by the UPF network element to determine the effective range of the to-be-activated offload rule.
  • the method further includes: receiving, by the UPF network element, an update message sent by the MEP through the first interface, where the update message is used to update the offloading rule and/or the APP. Or the effective scope of the shunting rules of the APP.
  • the method further includes: receiving, by the UPF network element, a deletion message sent by the MEP through the first interface, where the deletion message is used to delete the offloading rule of the APP.
  • the first information includes location information of the MEP and/or service information to be accessed by the UE.
  • the service information to be accessed by the UE includes: data network name DNN, and slice instance ID or single network slice selection assistance information S-NSSAI.
  • a third aspect of the present application provides a data distribution method, including:
  • the PCF network element receives the first message sent by the mobile edge computing platform MEP from the NEF network element, where the first message includes the identifier of the offloading rule of the APP to be activated and the first information;
  • the PCF network element determines, according to the first information, an effective range of the offloading rule of the APP;
  • the PCF network element sends an activation message to the SMF network element, where the activation message includes the identifier of the offloading rule of the APP to be activated and the effective range information of the offloading rule of the APP.
  • the first information includes location information of the MEP and/or service information to be accessed by the UE.
  • the service information to be accessed by the UE includes: data network name DNN, and slice instance ID or single network slice selection assistance information S-NSSAI.
  • the method further includes: generating, by the PCF network element, an offload rule of the APP, and the PCF network element sending the offload rule of the APP to the user plane function UPF network element.
  • the method further includes: the PCF network element receives the offload rule of the APP sent by the MEP, and the PCF network element sends the offload rule of the APP to the UPF network element .
  • a fourth aspect of the present application provides a MEP, comprising:
  • a sending module configured to send a distribution rule of an application APP to the UPF network element, the APP is installed on the MEP, and the distribution rule of the APP includes the IP address and/or port number corresponding to the APP, and the The offloading action corresponding to the IP address/or port number;
  • a receiving module configured to receive the service data that is offloaded to the APP by the UPF network element according to the offloading rule of the APP.
  • the method further includes: a triggering module, configured to trigger the UPF network element to activate the offloading rule of the APP.
  • a triggering module configured to trigger the UPF network element to activate the offloading rule of the APP.
  • the sending module is specifically configured to: send the offload rule of the APP through the first interface between the MEP and the UPF network element, and the offload rule of the APP further includes: Identification of the triage rule;
  • the triggering module is specifically configured to: send the identification of the offloading rule to be activated and the first information to the policy control network element PCF network element through the network capability exposure function NEF network element, where the first information is used for the PCF network element Determine the effective range of the distribution rule to be activated.
  • the sending module is specifically configured to: send a fifth message to the policy control network element PCF network element through the network capability exposure function NEF network element, where the fifth message includes the information of the APP.
  • a distribution rule and first information where the first information is used by the PCF network element to determine the effective range of the distribution rule of the APP;
  • the triggering module is specifically configured to: trigger the UPF to activate the shunting rule of the APP through the fifth message.
  • the receiving module is further configured to: receive first indication information sent by the UPF network element through the first interface, where the first indication information is used to indicate the UPF network element The shunting rule of the APP is received.
  • the receiving module is further configured to: receive second indication information sent by the SMF network element, where the second indication information is used to indicate that the offloading rule of the APP has been activated.
  • an authentication module is further included, configured to perform service registration and authentication with the UPF network element.
  • the authentication module is further configured to perform service registration and authentication with the NEF network element through the MEP manager.
  • the sending module is further configured to: send an update message to the PCF network element through the NEF network element, where the update message is used to update the offloading rule and/or all traffic distribution rules of the APP.
  • the sending module is further configured to: send a deletion message to the PCF network element through the NEF network element, where the deletion message is used to delete the offloading rule of the APP.
  • the sending module is specifically configured to: send a second message to the UPF network element through the first interface between the MEP and the UPF network element, where the second message contains Including the shunting rule of the APP, and the shunting rule of the APP also includes the identification of the shunting rule;
  • the triggering module is specifically configured to: send a third message to the UPF network element through the first interface, where the third message is used to activate the offloading rule of the APP, and the third message includes the to-be-activated The identifier of the shunting rule of the APP.
  • the third message further includes first information, where the first information is used by the UPF network element to determine the effective range of the to-be-activated offload rule.
  • the sending module is specifically configured to: send a fourth message to the UPF network element through the first interface between the MEP and the UPF network element, where the fourth message contains Including the shunting rules of the APP;
  • the triggering module is specifically configured to: trigger the UPF network element to activate the offload rule of the APP through the fourth message.
  • the fourth message further includes first information, where the first information is used by the UPF network element to determine the effective range of the to-be-activated offload rule.
  • the fourth message further includes activation indication information, where the activation indication information is used to indicate a distribution rule for activating the APP.
  • the receiving module is further configured to: receive, through the first interface, third indication information sent by the UPF network element, where the third indication information is used to indicate the offload of the APP Rule is activated.
  • an authentication module is further included, configured to perform service registration and authentication with the UPF network element.
  • the first information includes location information of the MEP and/or service information to be accessed by the UE.
  • the service information to be accessed by the UE includes: data network name DNN, and slice instance ID or single network slice selection assistance information S-NSSAI.
  • the sending module is further configured to: send an update message to the UPF network element through the first interface, where the update message is used to update the matching condition and the matching condition of the offloading rule of the APP. / or effective range.
  • the sending module is further configured to: send a deletion message to the UPF network element through the first interface, where the deletion message is used to delete the offload rule of the APP.
  • a fifth aspect of the present application provides a UPF network element, including:
  • the acquisition module is used to acquire the distribution rules of the application APP, the APP is installed on the MEP, and the distribution rules of the APP include the corresponding IP address and/or port number of the APP, and the IP address/or port number Corresponding shunt action;
  • the sending module is configured to, when the UPF network element receives the service data sent by the user equipment, according to the IP address and/or port number of the service data and the shunting rule of the APP, send the service data to a the APP.
  • the method further includes: an activation module configured to activate the shunting rules of the APP.
  • the acquiring module is specifically configured to: receive the offload rule of the APP through the first interface between the UPF network element and the MEP, and the offload rule of the APP further includes: Identification of the triage rule;
  • the activation module is specifically configured to: receive an activation message sent by the PCF network element, where the activation message is used to activate the offloading rule of the APP, and the activation message includes an identifier of the offloading rule of the APP, and according to the activation The message activates the shunting rule of the APP.
  • the acquiring module is specifically configured to: receive the offloading rule of the APP sent by the PCF network element, the offloading rule of the APP further includes the identifier of the offloading rule, and the offloading rule of the APP is all is generated by the PCF network element, or the offloading rule of the APP is generated by the mobile edge computing platform and sent to the PCF network element;
  • the activation module is specifically configured to: receive an activation message sent by the PCF network element, where the activation message is used to activate the offloading rule of the APP, and the activation message includes the identifier of the offloading rule of the APP, according to the The activation message activates the shunting rule of the APP.
  • the activation message further includes first information, where the first information is used by the UPF network element to determine the effective range of the to-be-activated offload rule.
  • the method further includes a receiving module, configured to receive an update message sent by the PCF network element, where the update message is used to update the offload rule of the APP and/or the offload rule of the APP. Effective range.
  • the method further includes a receiving module configured to receive a deletion message sent by the PCF network element, where the deletion message is used to delete the offloading rule of the APP.
  • the obtaining module is specifically configured to: receive a second message sent by the MEP through a first interface between the UPF network element and the MEP, where the second message includes The shunting rule of the APP, the shunting rule of the APP also includes the identifier of the shunting rule;
  • the activation module is specifically configured to: receive a third message sent by the MEP through the first interface, where the third message is used to activate the offloading rule of the APP, and the third message includes all the to-be-activated messages.
  • the identifier of the offloading rule of the APP is activated, and the offloading rule of the APP is activated according to the third message.
  • the third message further includes first information, where the first information is used by the UPF to determine the effective range of the to-be-activated offloading rule.
  • the obtaining module is specifically configured to: receive a fourth message sent by the MEP through the first interface between the UPF network element and the MEP, where the fourth message includes the shunting rules of the APP;
  • the activation module is specifically configured to: activate the distribution rule of the APP according to the fourth message.
  • the fourth message further includes first information, where the first information is used by the UPF to determine the effective range of the to-be-activated offloading rule.
  • the method further includes a receiving module, configured to receive an update message sent by the MEP through the first interface, where the update message is used to update the offloading rule of the APP and/or the APP The effective scope of the shunt rule.
  • the method further includes a receiving module configured to receive, through the first interface, a deletion message sent by the MEP, where the deletion message is used to delete the offloading rule of the APP.
  • the first information includes location information of the MEP and/or service information to be accessed by the UE.
  • the service information to be accessed by the UE includes: data network name DNN, and slice instance ID or single network slice selection assistance information S-NSSAI.
  • a sixth aspect of the present application provides a PCF network element, including:
  • a receiving module configured to receive a first message sent by the MEP from the NEF network element, where the first message includes the identifier of the offloading rule of the APP to be activated and the first information;
  • a determining module configured to determine the effective range of the shunting rule of the APP according to the first information
  • the sending module is configured to send an activation message to the SMF network element, where the activation message includes the identifier of the offloading rule of the APP to be activated and the effective range information of the offloading rule of the APP.
  • the first information includes location information of the MEP and/or service information to be accessed by the UE.
  • the service information to be accessed by the UE includes: data network name DNN, and slice instance ID or single network slice selection assistance information S-NSSAI.
  • the method further includes a generating module configured to generate the offloading rule of the APP, and the sending module is further configured to: send the offloading rule of the APP to the user plane function UPF network element.
  • the receiving module is further configured to receive the offload rule of the APP sent by the MEP, and the PCF network element sends the offload rule of the APP to the UPF network element.
  • a seventh aspect of the present application provides an MEP, including a processor, a memory, and a transceiver, where the memory is used to store instructions, the transceiver is used to communicate with other devices, and the processor is used to execute the instructions stored in the memory , so that the MEP performs the method as provided in the first aspect and each exemplary manner of the present application.
  • An eighth aspect of the present application provides a UPF network element, including a processor, a memory and a transceiver, where the memory is used for storing instructions, the transceiver is used for communicating with other devices, and the processor is used for executing the storage in the memory to make the UPF network element execute the method provided in the second aspect and various exemplary manners of the present application.
  • a ninth aspect of the present application provides a PCF network element, including a processor, a memory, and a transceiver, where the memory is used to store instructions, the transceiver is used to communicate with other devices, and the processor is used to execute the storage in the memory. instruction, so that the PCF network element executes the method provided by the third aspect and each exemplary manner of the present application.
  • a tenth aspect of the present application provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the instructions are executed, cause a computer to execute the first, second, and third aspects of the present application and any method provided by each exemplary manner.
  • An eleventh aspect of the present application provides a computer program product, which is applied in a MEP, the computer program product including instructions, and when the instructions are executed by a computing device, the MEP is made to perform as described in the first aspect or the first aspect of the present application.
  • the methods described in various exemplary modes of the aspect are described in various exemplary modes of the aspect.
  • a twelfth aspect of the present application provides a computer program product, which is applied in a UPF network element.
  • the computer program product includes an instruction, and when the instruction is executed by a computing device, the UPF network element executes the same as the second application in the present application.
  • a thirteenth aspect of the present application provides a computer program product, which is applied in a PCF network element.
  • the computer program product includes an instruction, and when the instruction is executed by a computing device, the PCF network element executes the same as the third aspect of the present application.
  • a fourteenth aspect of the present application provides a communication system, where the communication system includes an MEP and a UPF network element, where the MEP is configured to execute the method described in the first aspect or each exemplary manner of the first aspect, the The UPF network element is configured to execute the method described in the second aspect or each exemplary manner of the second aspect.
  • the communication system further includes a PCF network element, where the PCF network element is configured to execute the method described in the third aspect or each of the exemplary manners of the third aspect.
  • the communication system further includes NEF network elements and SMF network elements.
  • the embodiments of the present application provide a data offloading method and device.
  • a MEP sends a traffic offloading rule of an APP to a UPF network element, the APP is installed on the MEP, and the offloading rule of the APP includes the IP address and/or port corresponding to the APP. number, and the offload action corresponding to the IP address/or port number, the MEP receives the service data offloaded by the UPF network element to the APP according to the offload rule of the APP, and the APP processes the offloaded service data.
  • the distribution rule is only for a specific session, which will not cause a signaling storm, thereby reducing the impact of the update of the distribution rule on the network.
  • Figure 1 is a schematic diagram of a 5G network architecture
  • Fig. 2 is a kind of schematic diagram of MEC system architecture
  • FIG. 3 is a flowchart of a data offloading method provided in Embodiment 1 of the present application.
  • FIG. 4 is a signaling flowchart of a data offloading method provided in Embodiment 2 of the present application.
  • FIG. 5 is a signaling flowchart of a data offloading method provided in Embodiment 3 of the present application.
  • FIG. 6 is a signaling flowchart of the data offloading method provided in Embodiment 4 of the present application.
  • FIG. 7 is a schematic structural diagram of a MEP provided in Embodiment 8 of the present application.
  • FIG. 8 is a schematic structural diagram of a UPF network element according to Embodiment 9 of the present application.
  • FIG. 9 is a schematic structural diagram of a PCF network element according to Embodiment 10 of the present application.
  • the embodiments of the present application provide a data offloading method, which can be applied in the MEC system.
  • the MEC is an edge cloud platform.
  • the access network provides the IT services and cloud computing functions required by telecom users nearby, thereby creating a carrier-class service environment with high performance, low latency and high bandwidth, allowing consumers to enjoy high-quality service experience.
  • Local offload capability is the core capability of MEC.
  • MEC mobile phone
  • BP branch-point
  • FIG. 1 is a schematic diagram of a 5G network architecture, and a 5G system is also referred to as a new wireless communication system, a new access technology (New Radio, NR) or a next-generation mobile communication system.
  • the 5G system includes user equipment (UE), (radio access network, (R)AN) and 5G core network.
  • UE user equipment
  • R radio access network
  • 5G core network 5G core network
  • the 5G core network includes access and mobility management function (AMF) network elements, session management function (SMF) network elements, user plane function (UPF) network elements, authentication Authentication server function (AUSF) network element, policy control function (PCF) network element, application function (AF) network element, unified data management function (unified data management, UDM) network element , network slice selection function (NSSF) network element and other functional units.
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • PCF policy control function
  • AF application function
  • UDM network slice selection function
  • NSSF network slice selection function
  • the AMF network element is mainly responsible for services such as mobility management and access management.
  • the SMF network element is mainly responsible for session management, UE address management and allocation, dynamic host configuration protocol function, and user plane function selection and control.
  • the UPF network element is mainly responsible for external connection to the DN and data packet routing and forwarding on the user plane, packet filtering, and performing quality of service (QoS) control related functions.
  • the AUSF network element is mainly responsible for the authentication function of the terminal equipment.
  • the PCF network element is mainly responsible for providing a unified policy framework for network behavior management, providing policy rules for control plane functions, and acquiring registration information related to policy decisions. It should be noted that these functional units can work independently, or can be combined to implement certain control functions, such as access control and mobility management functions such as access authentication, security encryption, location registration, etc. Session management functions such as establishment, release, and modification of plane transmission paths.
  • the functional units in 5GC can communicate through the next generation network (NG) interface.
  • the UE can transmit control plane messages with the AMF network element through the NG interface 1 (N1 for short), and the RAN equipment can communicate through the NG interface.
  • Interface 3 (referred to as N3) establishes a user plane data transmission channel with the UPF network element
  • AN/RAN equipment can establish a control plane signaling connection with the AMF network element through the NG interface 2 (referred to as N2)
  • the UPF network element can use the NG interface 4 ( N4 for short) exchanges information with SMF network elements
  • UPF network elements can exchange user plane data with data network DN through NG interface 6 (referred to as N6)
  • AMF network elements can exchange information with SMF network elements through NG interface 11 (N11 for short)
  • the SMF network element can exchange information with the PCF through the NG interface 7 (N7 for short), and the AMF network element can exchange information with the AUSF network element through the NG interface 12 (N12 for short).
  • the network architecture is not limited to the network architecture based on reference points, but also the network architecture based on service interfaces.
  • the architecture shown in Figure 1 is the network architecture based on service interfaces.
  • the core network of the 5G system also includes Network exposure function (NEF) network element and network storage function (network repository function, NRF) network element.
  • NEF Network exposure function
  • NRF network repository function
  • some network elements in the 5G core network are connected through a bus.
  • AUSF network elements, AMF network elements, SMF network elements, AF network elements, UDM network elements, and PC network elements , and NSSF network elements are interconnected through the bus, and the network elements adopt service interfaces when interconnected through the bus, for example, the AUSF network elements are connected to the bus through the Nausf interface, and the AMF network elements are connected to the bus through the Namf interface,
  • the SMF network element is connected to the bus through the Nsmf interface
  • the AF network element is connected to the bus through the NAF network element interface
  • the UDM network element is connected to the bus through the Nudm interface
  • the PCF network element is connected to the bus through the NPCF interface
  • the NRF network element is connected to the bus through the NPCF interface.
  • the Nnrf interface is connected to the bus
  • the NEF network element is connected to the bus through the Nnef interface
  • the NSSF network element is connected to the bus through the Nnssf interface.
  • a ULCL can be inserted between the RAN and the PDU session anchor.
  • the PDU session anchor in the 5G system is the UPF network element. Based on the identification of the upstream characteristics of the service flow, the ULCL can offload data to the local DN or to the remote UPF session anchor. At the same time, ULCL also needs to aggregate the downstream flow.
  • IPV6 exists in the user plane and Internet Protocol Version 4 (IPV4) as follows: Difference: For IPv4 or IPv6 type PDU sessions, the PDU session anchor may be the IP anchor of the IP address/prefix assigned to the UE. Wherein, for an IPv4-type PDU session or a non-Multi-homed IPv6 PDU session, when multiple PDU session anchors are used, only one PDU session anchor is an IP anchor. However, for an IPv6 Multi-homed PDU session, there can be multiple IP anchors.
  • FIG. 2 is a schematic diagram of the MEC system architecture. As shown in FIG. 2, the MEC system includes: a MEC system level (MEC system level) and a MEC host level (MEC host level).
  • MEC system level MEC system level
  • MEC host level MEC host level
  • the MEC system layer includes an operation support system (OSS) and a multi-access edge orchestrator.
  • the CFS portal communicates with the operation support system through the Mx1 interface
  • the device APP communicates with the user APP LCM through the Mx2 interface.
  • the proxy (user APP LCM proxy) is connected.
  • the user APP LCM proxy is connected to the operation support system and the multi-access edge coordinator through the Mm8 interface and the Mm9 interface, respectively.
  • the operation support system and the multi-access edge coordinator communicate through the Mm1 interface.
  • the operation support system is also connected with the MEPM through the Mm2 interface
  • the multi-access edge coordinator is connected with the MEPM through the Mm3 interface
  • the multi-access edge coordinator is also connected with the MEPM through the Mm4 interface.
  • the device APP here refers to the APP installed on the terminal device (or user equipment (UE)), and the terminal device can be a mobile phone, a tablet computer, a vehicle-mounted device or a wearable device, virtual reality (virtual reality, VR) terminal equipment, augmented reality (AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, Wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, etc.
  • VR virtual reality
  • AR augmented reality
  • the MEC host layer includes: a MEC platform manager (MEC platform Manager, MEPM), a virtualisation infrastructure manager (virtualisation infrastructure manager), and one or more MEC hosts.
  • MEC platform Manager MEC platform Manager
  • virtualisation infrastructure manager virtualisation infrastructure manager
  • the MEC host includes: a MEC platform (MEC platform, MEP), multiple MEC APPs, a virtualisation infrastructure, and the MEPM connects and communicates with the MEP through the Mm5 interface.
  • MEC platform MEC platform, MEP
  • MEC APPs multiple MEC APPs
  • a virtualisation infrastructure MEC platform
  • MEPM connects and communicates with the MEP through the Mm5 interface.
  • MEPM conducts MEC APP life cycle management, MEC APP rule and request management, and MEC platform element management through the Mm5 interface.
  • MEP is used to run the MEC service (MEC service), perform service registry (service registry), traffic rules control (traffic rules control), and DNS processing.
  • MEC service MEC service
  • service registry service registry
  • traffic rules control traffic rules control
  • DNS processing DNS processing
  • the MEP has the AF function in the 5G network.
  • the AF function in the MEP is implemented through the APP on the MEP (also known as the MEC APP).
  • the APP on the UE can access the APP on the MEP through the network, and the MEP and the MEC APP are connected through the Mp1 Interface communication, realize the management of MEC APP, and run specific services on MEC APP.
  • the MEP communicates with the user plane (data plane) in the virtualization infrastructure through the Mp2 interface, and the data plan is implemented through the user plane function (UPF). Therefore, the Mp2 interface can also be understood as the interface between the MEP and the UPF. Interface, UPF in MEC host refers to UPF deployed at edge location. The MEPs of the two MEC hosts communicate through the Mp3 interface.
  • the APP on the UE can be understood as a client
  • the APP on the MEP can be understood as a server or a server side
  • the APP on the UE accesses the services provided by the APP on the MEP through the network.
  • the IP address corresponding to the APP on the MEP can be understood as the IP address of the server, which is the IP address of the APP on the MEP that provides services to the outside world.
  • the port number corresponding to the APP on the MEP refers to the number or identification of the port that provides the service corresponding to the APP on the MEP
  • the port number corresponding to the APP on the MEP can be understood as the port number of the server.
  • the MEP has the function of AF in the 5G network, and the MEP provides services to the user equipment in the form of an APP. It can be understood that the MEP can also provide services to the user equipment in other forms.
  • Embodiment 1 of the present application provides a data offloading method.
  • the data offloading method provided by this embodiment may include the following steps:
  • the MEP sends the offloading rule of the APP to the UPF network element.
  • the APP is installed on the MEP.
  • the offloading rule of the APP includes the IP address and/or port number corresponding to the APP, and the offloading action corresponding to the IP address/or port number. .
  • the MEP can send the offloading rules of the APP to the UPF network element to update the UPF when the offloading rules of the APP need to be updated due to changes in the IP address range corresponding to the APP or the port number corresponding to the APP when the APP goes online, the expansion or reduction of the capacity of the APP, etc.
  • Local traffic distribution rules for NEs The APP running on the MEP can communicate with the MEP through the Mp1 interface, and the MEP can perceive the online, offline, expansion, and reduction of the locally installed APP.
  • the APP launch refers to the initial launch of the APP on the MEP, that is, the situation where an APP is newly added on the MEP.
  • APP expansion refers to expanding the range of IP addresses corresponding to the APP
  • APP shrinking refers to reducing the range of IP addresses corresponding to the APP.
  • the MEP can send the offload rule of the APP to the UPF network element through the following two transmission paths: Path 1, the MEP sends the offload rule of the APP to the UPF network element through the first interface between the MEP and the UPF network element, The first interface may be an Mp2 interface; in path 2, the MEP sends the traffic distribution rule of the APP to the UPF network element through the NEF network element, the PCF network element and the SMF network element.
  • the IP address and/or port number corresponding to the APP can be understood as a matching condition or an offload policy, and the offload flow corresponding to the IP address and/or port number is regarded as an action corresponding to the matching condition or the offload policy.
  • the UPF network element receives the service data sent by the UE, it matches the destination IP address and/or destination port number in the service data with the matching conditions in the offloading rules of the APP. If the matching is successful, the UPF network element executes the corresponding The traffic distribution action, where the matching is successful means that the destination IP address and/or destination port number in the service data are the same as the IP address and/or port number in the matching condition.
  • the shunting rule of the APP also includes an identifier of the shunting rule, and the identifier of the shunting rule can uniquely identify a shunting rule, and subsequently the shunting rule can be identified according to the identifier of the shunting rule, or the shunting rule can be updated or deleted.
  • the identifier of the distribution rule may be an APP ID or other identifiers, which are not limited in this embodiment.
  • the MEP receives the service data that is offloaded to the APP by the UPF network element according to the offloading rule of the APP.
  • the MEP triggers the UPF network element to activate the offload rule of the APP.
  • the distribution and activation of the distribution rules of the APP can be implemented through a message, that is, the distribution rules of the APP are activated at the same time as the distribution rules of the APP are distributed.
  • the distribution and activation of APP distribution rules can also be implemented through two messages.
  • the MEP can issue APP distribution rules when the APP goes online. When a UE wants to access the APP on the MEP, it needs to activate the APP on the UPF network element first. shunting rules.
  • Activating the offload rule of the APP can be understood as adding or installing the offload rule of the APP to the rule list of the session to be activated by the UPF network element.
  • the session can be a PDN session.
  • a UE can establish one or more PDN sessions. Each session Correspondingly, a list of rules is established.
  • the offload rule of the APP has a certain effective range.
  • the UPF network element only needs to activate the offload rule of the APP for the sessions within the effective range, that is, add the offload rule of the APP to the session list of the sessions within the effective range, and the offload rule of the APP takes effect.
  • the range can be determined by the PCF network element or by the UPF network element,
  • the UPF network element After the offloading rule of the APP is activated, that is, after adding or installing the offloading rule of the APP to the rule list of the session that needs to be activated, when the UPF network element receives the service data sent by the UE, it obtains the packet detection information (Packet Detection Information) in the service data.
  • Information, PDI) includes a service data flow (service data flow, SDF) filter (filter), and the SDF filter includes the identification information of the business data, and the identification information can be quintuple information, namely source IP address, destination IP address, source port number, destination port number, and protocol number.
  • the identification information may also be quadruple information, and the quadruple ancestor information includes an IP address, a destination IP address, a source port, and a destination port.
  • the source IP address and source port number of the data packet refer to the IP address and port number of the UE sending the data packet, and the destination IP address and destination port number of the data packet may be the IP address and port number of the server to be accessed by the UE.
  • the PDI also includes the identifier of the APP.
  • the UPF network element After the UPF network element obtains the PDI of the service data, the UPF network element compares the destination IP address and/or destination port number of the service data with the IP address and/or the IP address included in the offloading rules of the APP included in the rule list of the session with the UE. or port number to match or compare. If the matching is successful, the UPF executes the offloading action, wherein the matching success refers to the IP address and/or the destination port number of the service data and the IP address and/or the IP address and/or the IP address and/or the APP offloading rule included in the rule list of a certain session of the UE. If the port numbers are the same, the UPF network element performs the offloading action, which means that the UPF network element sends the service data to the MEP, and the APP on the MEP processes the service data.
  • the MEP sends the distribution rule of the APP to the UPF network element, the APP is installed on the MEP, and the distribution rule of the APP includes the IP address and/or port number corresponding to the APP, and the corresponding IP address/or port number.
  • the MEP receives the service data offloaded by the UPF network element to the APP according to the offloading rule of the APP, and the APP processes the offloaded service data.
  • the distribution rule is only for a specific session, which will not cause a signaling storm, thereby reducing the impact of the update of the distribution rule on the network.
  • FIG. 4 is a signaling flowchart of the data offloading method provided by Embodiment 2 of the present application. As shown in FIG. 4 , the method provided by this embodiment includes the following steps:
  • the MEP and MEPM after the MEP and MEPM are deployed online, they can discover the NEF network element by querying or subscribing to the NRF network element, and can also obtain the IP address of the NEF network element in a pre-configured manner. After the NEF network element is discovered, the authentication process of the MEP or MEPM as the AF in the NEF can be implemented through the service interface provided by the NEF network element. activation.
  • a registration and authentication process of capability openness between the MEP and the UPF is added.
  • the discovery process of the UPF network elements connected to the front end can be realized by querying or subscribing to the NRF network elements, or the IP address information of the front end UPF network elements can be obtained by pre-configuration.
  • the pre-configured authentication and authorization codes can be used between the UPF NE and the MEP to implement the authentication process for both parties, ensuring that the MEP can use the UPF NE's open capability to update the distribution rules, or update the APP ID and the packet or flow description. The ability to map relationships of information.
  • Steps S202 and S203 are executed in no order.
  • the MEP sends a start instruction to the APP through the Mp1 interface.
  • the MEP After receiving the APP online request sent by the MEC controller, the MEP sends a start instruction to the APP through the Mp1 interface between the MEP and the APP, and the start instruction is used to start the APP.
  • the MEP assigns an ID to the APP when the APP is initially online, and recycles the ID assigned to the APP when the APP goes offline.
  • the IP address corresponding to the APP can be allocated by the MEP, or it can be pre-configured by the operator during the APP installation or instantiation process. In the latter method, the IP address corresponding to the pre-configured APP needs to be notified to the MEP. Actively sent by the APP to the MEP.
  • S207 The MEP sends the offload rule of the APP to the UPF network element through the first interface.
  • the MEP When an APP is newly launched on the MEP, the MEP generates a distribution rule for the APP according to the ID of the APP, the IP address corresponding to the APP, and the port number.
  • the distribution rule includes the APP ID, the IP address and/or port number corresponding to the APP, and the The shunting action corresponding to the IP address and/or port number, the APP ID is the identifier of the shunting rule, and the IP address and/or port number corresponding to the APP is the matching condition.
  • the MEP may send a message for adding an APP distribution rule to the UPF through a first interface, where the message includes an APP distribution rule, and the first interface may be an Mp2 interface.
  • the UPF network element sends the first indication information to the MEP through the first interface.
  • the UPF network element After receiving the offload rule of the APP, the UPF network element adds the offload rule of the APP to the local offload rule, and returns the first indication information to the MEP, where the first indication information is used to instruct the UPF network element to receive the offload rule of the APP Or used to indicate that the shunting rule of the APP has been added successfully.
  • step S208 is an optional step.
  • the UPF network element may receive the offloading rule of the APP by default after a preset time, and the UPF does not need to send the first indication information to the MEP.
  • the MEP sends a first message to the MEPM, where the first message includes an identifier of the offload rule to be activated and first information, where the first information is used by the PCF network element to determine the effective range of the offload rule to be activated.
  • the effective scope of the offload rule refers to the session of the UE to which the offload rule applies.
  • the MEPM sends the first message to the NEF network element.
  • the NEF network element sends the first message to the PCF network element.
  • the PCF determines the effective range of the offloading rule of the APP according to the first information.
  • the MEP may send the first message after the UE goes online, where the UE going online means that the UE starts to access the APP.
  • the first information includes location information of the MEP and/or service information to be accessed by the UE.
  • the location information of the MEP can also be replaced by the location information of the APP.
  • the APP is installed on the MEP. Therefore, the location information of the APP is equivalent to the location information of the MEP.
  • the MEP is usually deployed near the RAN. Therefore, the PCF network element can determine the session of the UE to which the offloading rule of the APP is applicable according to the location information of the MEP. Scope.
  • the service information to be accessed by the UE includes a data network name (data network name, DNN), and a slice instance ID or single network slice selection assistance information (Single Network Slice Selection Assistance Information, S-NSSAI).
  • DNN data network name
  • S-NSSAI Single Network Slice Selection Assistance Information
  • the PCF network element determines the data network where the service to be accessed by the UE is located and the corresponding slice instance in the data network according to the DNN and the slice instance ID. Alternatively, the PCF network element determines the data network where the service to be accessed by the UE is located and the corresponding slice instance in the data network according to the DNN and the S-NSSAI, and the network where the service data to be accessed by the UE is located is called the target network, and the UE can access the data network.
  • the slice instances in this target network are called target switching instances.
  • the PCF network element queries the user subscription information, the user subscription information includes the subscription information of multiple UEs, and the PCF network element determines the target UE's access to the target data network and the target slice instance from the plurality of UEs according to the user subscription information. session, and the session of the target UE is used as the effective scope of the offloading rule.
  • the PCF network element may also jointly determine the effective range of the offloading rule in combination with the location information of the MEP and the service information to be accessed by the UE.
  • the effective range of the offloading rule determined by the PCF network element may be a session of a UE in a specific subscriber number segment, a session of a UE in a specific cell, or a specific radio access technology (RAT) ) a session of an accessing UE, a session of a UE using a specific slice, or a session of a UE using a specific DN network, etc.
  • the PCF network element determines the effective range of the offload rule, it only activates the offload rule of the session of the UE corresponding to the effective range of the offload rule, thereby reducing the resource consumption of the core network element for the offload rule activation.
  • the PCF network element sends an activation message to the SMF network element, where the activation message includes the ID of the APP to be activated and the information on the effective range of the offloading rule of the APP.
  • the activation message is used to activate the distribution rule of the APP to be activated.
  • the PCF network element can send the ID of the APP to be activated and the effective range information of the offloading rule of the APP to the SMF network element through the policy control and charging (PCC) rule.
  • the effective range information of the offloading rule of the APP includes the UE.
  • the activation message further includes service information to be accessed by the UE.
  • the SMF network element may also acquire the service information to be accessed by the UE according to the identifier of the UE session.
  • the SMF After receiving the PCC rule sent by the PCF network element, the SMF can convert the PCC rule into a packet detection rule (PDR) rule.
  • PDR packet detection rule
  • the SMF network element sends the activation message to the UPF network element.
  • the UPF network element activates the offloading rule of the APP according to the activation message.
  • the activation message includes the PDR rule.
  • the UPF network element After receiving the PDR rule, the UPF network element installs the APP distribution rule delivered by the MEP into the session rule list according to the PDR rule, thereby completing the activation of the APP distribution rule.
  • the identifier of the distribution rule to be activated is carried in the Activate Predefined Rules of the PDR rule.
  • the UPF network element After receiving the PDR rule, the UPF network element will correspond to the identifier of the distribution rule according to the identifier of the distribution rule carried in the Activate Predefined Rules.
  • the shunting rules of the APP are installed into the rule list of the corresponding session.
  • the predefined rules to be activated are carried in the Predefined Rules of the PDR rules, and the predefined rules include the identifier and the policy of the distribution rule to be activated, and the policy is used to describe the path information of the data distribution, and the policy can be Including the IP addresses corresponding to the DNN and APP.
  • the UPF network element After receiving the PDR rule, the UPF network element installs the APP traffic distribution rule into the rule list of the corresponding session according to the predefined rule carried in the Predefined Rules.
  • the SMF network element sends the second indication information to the MEP through the PCF network element, the NEF network element, and the MEMP.
  • the second indication information is used to indicate that the offload rule of the APP has been activated. After the offload rule of the APP is activated, the UPF network element can use the offload rule of the APP to offload the traffic.
  • the UPF network element sends the service data to the APP.
  • the UPF network element When the UE accesses the APP on the MEP through the UPF network element, the UPF network element offloads the service data with the same IP address and/or port number as the IP address and/or port number in the offloading rule to the APP of the MEP according to the offloading rule of the APP.
  • the UPF network element matches the destination IP address and/or destination port number of the service data sent by the UE with the offload rule of the APP in the rule list of the session of the UE, and if the match is successful, the service data is offloaded to the MEP On the APP on the MEP, the offloaded service data (that is, the service data that is successfully matched) is sent to the APP on the MEP, and the APP on the MEP processes the service data.
  • the APP ID is used as the identifier of the distribution rule of the APP.
  • the identifier of the distribution rule of the APP can also be other identifiers, which is not set in this embodiment.
  • the MEP when the APP is initially online on the MEP, the MEP sends the distribution rules of the APP to the UPF network element through the interface with the UPF network element.
  • the MEP passes the MEPM, NEF network element, PCF network element
  • the path composed of the network element and the SMF network element activates the offloading rule of the APP on the UPF network element.
  • the UPF network element receives the service data sent by the UE, the UPF network element will be based on the service data.
  • the IP address and/or port number, as well as the offloading rules of the APP offload service data to the APP for execution.
  • the distribution rules of the APP are implemented through the interface between the MEP and the UPF network element, which reduces the resource consumption of the core network elements due to the distribution of the distribution rules.
  • the PCF determines the effective range of the offloading rule of the APP according to the first message sent by the MEP, and then only activates the offloading rule of the UE session within the effective range of the offloading rule of the APP, and the activation is more targeted. The resource consumption of the core network elements due to the activation of the offload rule is reduced.
  • the process of adding a new traffic distribution rule to the APP by the MEP is used as an example for description.
  • Updating the distribution rules refers to updating the IP address and/or the distribution rules in the distribution rules The port number.
  • the activation process of the distribution rules of the APP in the above process is also applicable to the update process of the distribution rules of the APP.
  • the update process of the distribution rules of the APP is the same as the transmission path of the message in the activation process. The difference is that the network element in the activation process and the update process The messages used may differ between them.
  • the MEP sends an update message to the PCF network element through the NEF network element, where the update message is used to update the offload rule of the APP and/or the effective range of the offload rule of the APP.
  • the update message may include the APP ID and the IP address and/or port number corresponding to the updated APP, and the APP ID is used to indicate which APP's offloading rule is to be updated.
  • the MEP may carry the updated first information in the update message, and the PCF network element determines a new effective range for the offloading rule of the APP according to the updated first information.
  • the MEP can also trigger the deletion of the offload rule of the APP.
  • the deletion process of the offload rule of the APP is the same as the transmission path of the message during the activation process.
  • the MEP sends a delete message to the PCF network element through the NEF network element.
  • the delete message is used to delete the offload rule of the APP.
  • the delete message includes the identifier of the offload rule of the APP to be deleted.
  • the identifier of the offload rule can be: APP ID.
  • the PCF network element can determine the offload rules corresponding to the sessions of those UEs to be deleted, and then send a deletion instruction to the SMF network element.
  • the network element sends a deletion instruction, and the UPF deletes the offload rule of the APP in the rule list of the corresponding session according to the deletion instruction.
  • the PCF network element determines the offloading rules corresponding to the sessions of which UEs are activated. Therefore, the PCF network element can know which offloading rules corresponding to the sessions of the UEs are deleted.
  • the distribution rule of the APP is generated by the MEP and sent to the UPF network element. It can be understood that the distribution rule of the APP can also be pre-generated by the PCF network element and sent to the UPF network element.
  • FIG. 5 is a signaling flow chart of the data offloading method provided by the third embodiment of the present application.
  • the difference between this embodiment and the second embodiment is that in this embodiment, the distribution and activation of the offloading rules of the APP pass through the network element between the MEP and the UPF. The interface between the two is completed, and it does not need to pass through other core network elements.
  • the method provided by this embodiment includes the following steps:
  • Service registration and authentication procedures are performed between S301, MEP, and UPF network elements.
  • a registration and authentication process of capability opening between the MEP and the UPF network element is added.
  • the discovery process of the UPF network elements connected to the front end can be realized by querying or subscribing to the NRF network elements, or the IP address information of the front end UPF network elements can be obtained by pre-configuration.
  • the pre-configured authentication and authorization codes can be used between the UPF NE and the MEP to implement the authentication process for both parties, ensuring that the MEP can use the UPF NE's open capability to update the distribution rules, or update the APP ID and the packet or flow description. The ability to map relationships of information.
  • the MEP sends a start instruction to the APP through the Mp1 interface.
  • the APP returns a startup response to the MEP through Mp1.
  • S305 The MEP sends a fourth message to the UPF network element through the first interface (for example, the Mp2 interface), where the fourth message includes the traffic distribution rule of the APP.
  • the UPF network element can decide by itself whether to activate the offloading rule of the APP, and determine the effective range of the offloading rule of the APP.
  • the UPF network element receives the offload rule of the APP carried in the fourth message, activates the offload rule of the APP by default, and determines the effective range of the offload rule of the APP.
  • activation indication information may be carried in the fourth message, where the activation indication information is used to indicate a distribution rule for activating the APP.
  • the activation indication information may be represented by one or more bits, for example, the activation indication information is represented by one bit, and when the value of the bit is 0 or 1, it indicates that the shunting rule of the APP is activated.
  • the fourth message further includes first information, where the first information is used to determine the effective range of the traffic distribution rule to be activated, and the UPF network element according to the first information Determine the effective scope of the shunting rules of the APP.
  • the UPF network element can also determine the effective range of the offload rule of the APP according to other methods, and the information that the UPF determines the effective range of the offload rule of the APP can also be obtained from other devices, which is not limited in this embodiment.
  • the first information includes location information of the MEP and/or service information to be accessed by the UE.
  • the service information to be accessed by the UE includes DNN, and slice instance ID or S-NSSAI.
  • the method for the UPF network element to determine the effective range of the offload rule of the APP according to the first information refers to the method of the PCF network element to determine the effective range of the offload rule of the APP according to the first information in the second embodiment. Repeat.
  • the fourth message includes the distribution rule of the APP and the first information.
  • the UPF network element determines, according to the first information, to activate the APP.
  • the distribution rule is determined, and the effective range of the distribution rule of the APP is further determined according to the first information.
  • the UPF network element activates the offloading rule of the APP.
  • the offload rule of the APP is added to the rule list of the session of the UE within the effective range.
  • the UPF network element sends the third indication information to the MEP through the first interface.
  • the third indication information is used to indicate that the offload rule of the APP has been activated, or it is used to indicate that the UPF network element has received the offload rule of the APP.
  • the UPF network element sends the service data to the APP.
  • the UPF network element When the UE accesses the APP on the MEP through the UPF network element, the UPF network element sends the service data matching the APP's offloading rules to the MEP's APP according to the APP's offloading rules and the IP address and/or port number of the service data. For example, the UPF network element matches the destination IP address and/or destination port number of the service data sent by the UE with the offloading rule of the APP in the rule list of the session of the UE, and if the match is successful, the service data is offloaded to On the APP of the MEP, the APP on the MEP processes the service data.
  • the MEP sends a fourth message through the first interface with the UPF network element to send the offload rule of the APP to the UPF network element, and activates the offload rule of the APP through the fourth message.
  • the UPF network element After activation, when the UE accesses the APP on the MEP, the UPF network element offloads the service data to the APP on the MEP according to the IP address and/or port number of the service data and the offloading rule of the APP.
  • the distribution and activation of the distribution rules of the APP are realized through the interface between the MEP and the PUF network element, which reduces the resource consumption of the core network elements due to the distribution and activation of the distribution rules.
  • the process of adding a new traffic distribution rule to the APP by the MEP is used as an example for description.
  • the capacity of the APP is expanded or reduced, or the ports opened by the APP change, it is necessary to update the distribution rules of the APP or update the effective range of the distribution rules of the APP.
  • the above process is also applicable to the update process of the distribution rule of the APP or the effective range of the distribution rule of the APP, for example, the MEP sends an update message to the UPF network element through the first interface, and the update message is used to update the distribution rule of the APP and/or The effective scope of the APP's shunting rules.
  • the update message may include the APP ID and the IP address and/or port number corresponding to the updated APP, and the APP ID is used to indicate which APP's offloading rule is to be updated.
  • the MEP may carry the updated first message in the update message, and the updated first message is used for the UPF network element to determine a new effective range for the offloading rule of the APP.
  • MEPs can also trigger offload rules for deleting APPs.
  • the MEP sends a delete message to the UPF network element through the first interface, where the delete message is used to delete the offload rule of the APP, and the delete message includes the identifier of the offload rule of the APP to be deleted, and the identifier of the offload rule may be: is the APP ID.
  • the UPF network element deletes the offload rule of the APP from the rule list of the locally activated session.
  • the distribution and activation of the distribution rules of the APP are implemented through one message as an example for illustration.
  • the distribution and activation of the distribution rules of the APP can be implemented through two independent messages.
  • the MEP first sends a second message to the UPF network element through the first interface between the MEP and the UPF network element, where the second message includes the offloading rule of the APP, and the offloading rule of the APP also includes the identifier of the offloading rule.
  • the MEP sends a third message to the UPF network element through the first interface, where the third message is used to activate the offload rule of the APP, and the third message includes the identifier of the offload rule of the APP to be activated.
  • the third message may be a dedicated message dedicated to activating the shunting rule of the APP.
  • the third message may also be a non-dedicated message, and the third message carries activation indication information, where the activation indication information is used to indicate a distribution rule for activating the APP.
  • the third message further includes first information, where the first information is used to determine the effective range of the offload rule to be activated, and the UPF network element determines the effective range of the offload rule of the APP according to the first information.
  • FIG. 6 is a signaling flowchart of the data offloading method provided in Embodiment 4 of the present application.
  • the difference between this embodiment and Embodiment 1 is that in this embodiment, the distribution and activation of the offloading rules of the APP pass through the NEF network element and the PCF network.
  • Elements and other core network elements, as shown in FIG. 6 the method provided by this embodiment includes the following steps:
  • the MEP sends a start instruction to the APP through the Mp1 interface.
  • the MEP sends a fifth message to the MEPM, where the fifth message includes the offloading rule of the APP and the first information, and the first information is used by the PCF network element to determine the effective range of the offloading rule of the APP.
  • the MEPM sends the fifth message to the NEF network element.
  • the NEF sends the fifth message to the PCF.
  • the shunting rule of the APP includes an identifier of the shunting rule.
  • the PCF network element determines the effective range of the offloading rule of the APP according to the first information.
  • the PCF network element After receiving the fifth message, the PCF network element determines the effective range of the offloading rule of the APP according to the first information carried in the fifth message.
  • the first information includes location information of the MEP and/or service information to be accessed by the UE.
  • the service information to be accessed by the UE includes DNN, and slice instance ID or S-NSSAI.
  • the fifth message is also used to trigger the offloading rule for activating the APP.
  • the offloading rule for activating the APP implied by the first information that is, after receiving the fifth message, the PCF network element determines according to the first information.
  • the shunting rules of the APP need to be activated.
  • the fifth message includes first information and activation indication information, and the PCF network element determines the offload rule for activating the APP according to the activation indication information, and then determines the effective range of the offload rule for the APP according to the first information.
  • the PCF network element sends an activation message to the SMF network element, where the activation message includes the offloading rule of the APP and the effective range information of the offloading rule of the APP.
  • the activation message is used to activate the distribution rule of the APP to be activated.
  • the SMF network element sends the activation message to the UPF network element.
  • the activation message sent by the SMF network element includes the PDR rule.
  • the UPF network element After receiving the PDR rule, the UPF network element installs the APP distribution rule issued by the MEP into the session rule list according to the PDR rule, thereby completing the APP distribution rule. activation.
  • the SMF network element sends the second indication information to the MEP through the PCF network element, the NEF network element, and the MEMP.
  • the second indication information is used to indicate that the offload rule of the APP has been activated, or used to indicate that the offload rule of the APP has been received, or used to indicate that the offload rule of the APP has been added.
  • the UPF network element You can use the shunting rules of the APP for shunting.
  • the UPF network element sends the service data to the APP.
  • the UPF network element After the offload rule of the APP is activated, the UPF network element offloads the service data to the APP of the MEP according to the offload rule of the APP and the IP address and/or port number of the service data.
  • the MEP delivers and activates the offload rule of the APP through the path composed of the MEPM, the NEF network element, the PCF network element, and the SMF network element.
  • the offload rule of the APP is activated, when the UE accesses the services on the APP on the MEP
  • the UPF network element distributes the service data to the APP on the MEP according to the IP address and/or port number of the service data sent by the UE and the distribution rule of the APP.
  • the first information is carried along with the distribution rules of the APP, so that the PCF network element can accurately determine the effective range of the distribution rules of the APP according to the first information, and issue the distribution rules of the APP according to the effective range, so as to avoid It will cause a signaling storm and reduce the impact of the update of the distribution rules on the network.
  • the distribution and activation of the distribution rules of the APP are implemented through one message as an example for illustration.
  • the distribution and activation of the distribution rules of the APP can also be implemented through two independent messages.
  • the MEP sends two messages respectively through paths composed of MEPM, NEF, PCF, and SMF. One message is used to deliver the offload rule of the APP, and the other message is used to activate the offload rule of the APP.
  • Embodiment 5 of the present application provides an MEP, where the MEP includes functional modules for implementing the methods for executing the MEP in Embodiments 1 to 4.
  • Embodiment 6 of the present application provides a UPF network element, where the UPF includes functional modules for implementing the methods performed by the UPF network element in Embodiments 1 to 4.
  • Embodiment 7 of the present application provides a PCF network element, where the PCF network element includes functional modules for implementing the methods performed by the PCF network element in Embodiments 1 to 4.
  • FIG. 7 is a schematic structural diagram of a MEP according to Embodiment 8 of the present application.
  • the MEP includes: a processor 11, a memory 12, and a transceiver 13.
  • the memory 12 is used to store instructions, and the transceiver
  • the processor 13 is used to communicate with other devices, and the processor 11 is used to execute the instructions stored in the memory 12, so that the MEP performs the method steps performed by the MEP in the above-mentioned Embodiment 1 to Embodiment 4.
  • the specific implementation and The technical effect is similar and will not be repeated here.
  • FIG. 8 is a schematic structural diagram of a UPF network element according to Embodiment 9 of the present application.
  • the UPF network element includes: a processor 21, a memory 22, and a transceiver 23, where the memory 22 is used to store instructions , the transceiver 23 is configured to communicate with other devices, and the processor 21 is configured to execute the instructions stored in the memory 22, so that the UPF executes the method executed by the UPF network element in the foregoing Embodiment 1 to Embodiment 4
  • the steps, specific implementation manners and technical effects are similar, and are not repeated here.
  • FIG. 9 is a schematic structural diagram of a PCF network element according to Embodiment 10 of the present application.
  • the PCF network element includes: a processor 31, a memory 32, and a transceiver 33, where the memory 32 is used to store instructions , the transceiver 32 is configured to communicate with other devices, and the processor 31 is configured to execute the instructions stored in the memory 32, so that the PCF network element executes the execution of the PCF network element in the first embodiment to the fourth embodiment.
  • the method steps, the specific implementation manner and the technical effect are similar, and are not repeated here.
  • Embodiment 11 of the present application provides a computer-readable storage medium, which is applied in a MEP, where the computer-readable storage medium stores instructions, and when the instructions are executed by a computing device, the MEP is made to execute as in the above-mentioned embodiments
  • the specific implementation manners and technical effects of the method steps performed by the MEP in Embodiments 1 to 4 are similar, and will not be repeated here.
  • the twelfth embodiment of the present application provides a computer-readable storage medium, which is applied in a UPF network element.
  • the computer-readable storage medium stores an instruction, and when the instruction is executed by a computing device, the UPF network element executes the instruction.
  • the specific implementation manner and technical effect are similar, and are not repeated here.
  • the thirteenth embodiment of the present application provides a computer-readable storage medium, which is applied in a PCF network element.
  • the computer-readable storage medium stores an instruction, and when the instruction is executed by a computing device, the PCF network element executes the instruction.
  • the specific implementation manner and technical effect are similar, and are not repeated here.
  • the processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) Or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present invention may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • Software modules can be located in random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read-Only Memory, ROM), programmable read-only memory or electrically erasable programmable memory, registers, etc. mature in the field. in the storage medium.
  • the storage medium is located in the memory 1002, and the processor 1001 reads the instructions in the memory 1002, and completes the steps of the above method in combination with its hardware.
  • the bus described in this application can be an Industry Standard Architecture (Industry Standard Architecture, ISA) bus, a Peripheral Component (Peripheral Component, PCI) bus or an Extended Industry Standard Architecture (Extended Industry Standard Architecture, EISA) bus and the like.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus and so on.
  • the buses in the drawings of the present application are not limited to only one bus or one type of bus.
  • the disclosed apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例中提供一种数据分流方法和装置,所述方法包括:MEP向UPF网元发送APP的分流规则,该APP安装在所述MEP上,该APP的分流规则中包括APP对应的IP地址和/或端口号,以及该IP地址/或端口号对应的分流动作,MEP接收UPF网元根据APP的分流规则分流到该APP上的业务数据,该由APP对分流过来的业务数据进行处理。所述方法中,分流规则的下发只针对特定的会话,不会引起信令风暴,减少了分流规则更新对网络的影响。

Description

数据分流方法和装置
本申请要求于2020年09月16日提交中国专利局、申请号为202010976179.X、申请名称为“数据分流方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据分流方法和装置。
背景技术
移动边缘计算(mobile edge computing,MEC)作为云计算的演进,将应用程序托管从集中式数据中心下沉到网络边缘,更接近消费者和应用程序生成的数据,在靠近移动用户的网络边缘提供互联网技术(internet technology,IT)和云计算的能力,并利用网络能力开放获得高带宽、低延迟、近端部署优势。MEC能够将应用、内容、移动宽带业务(mobile broad band,MBB)的部分业务处理和资源调度部署到靠近接入网的网络边缘,通过业务靠近用户处理提升了网络性能。
现有技术中,在无线接入网(radio access network,RAN)与协议数据单元(protocol data unit,PDU)会话锚点用户面功能(user plane function,UPF)网元之间可以插入一个新的上行分类器(uplink classifier,ULCL),ULCL基于对业务流上行特征的识别和分流策略,分流数据到本地数据网络data network,DN)或是到远端UPF会话锚点。其中,ULCL上的分流策略由应用功能(application function,AF)网元通过网络能力开放功能(network exposure function,NEF)的Traffic Influence的能力开放消息携带分流策略。但是,该架构下,每个APP上线都会引起策略控制功能(policy control function,PCF)网元针对所有符合条件的会话发起策略更新流程,从而引发N7接口上PCF推送到会话管理功能(session management function,SMF)网元新的策略消息、N4接口SMF更新UPF会话的消息,从而引起大量信令传输,增加网络负担。
所以,AF的分流策略更新方式并不能直接应用在MEC平台(MEC platform,MEP)上。
发明内容
本申请提供一种数据分流方法和装置,使得用于进行数据分流的APP的分流规则的下发具有针对性,避免分流规则的下发活引起的信令风暴,减少了分流规则的下发对网络的影响。
本申请第一方面提供一种数据分流方法,包括:
MEP向UPF网元发送APP的分流规则,所述APP安装在所述MEP上,所述分流规则中包括所述APP对应的IP地址和/或端口号,以及所述IP地址/或端口号对应的分流动作;
所述MEP接收所述UPF网元根据所述APP的分流规则分流到所述APP上的业务数据。
可选的,所述MEP接收所述UPF网元根据所述APP的分流规则分流到所述APP上的业务数据之前,所述MEP触发所述UPF网元激活所述APP的分流规则。
在一种可能的实现方式中,所述MEP向UPF网元发送APP的分流规则,包括:
所述MEP通过与所述UPF网元之间的第一接口发送所述APP的分流规则,所述APP的分流规则中还包括分流规则的标识;
所述MEP触发所述UPF网元激活所述APP的分流规则,包括:
所述MEP通过网络能力开放功能NEF网元向PCF网元发送待激活的分流规则的标识以及以及第一信息,所述第一信息用于所述PCF网元确定所述待激活的分流规则的生效范围。
在另一种可能的实现方式中,所述MEP向UPF网元发送APP的分流规则,包括:
所述MEP通过网络能力开放功能NEF网元向PCF网元发送第五消息,所述第五消息中包括所述APP的分流规则和第一信息,所述第一信息用于所述PCF网元确定所述APP的分流规则的生效范围;
所述MEP触发所述UPF激活所述APP的分流规则,包括:
所述MEP通过所述第五消息触发所述UPF激活所述APP的分流规则。
在一种可能的实现方式中,所述MEP通过与所述UPF网元之间的第一接口发送所述APP的分流规则之后,还包括:所述MEP接收所述UPF网元通过所述第一接口发送的第一指示信息,所述第一指示信息用于指示所述UPF网元接收到所述APP的分流规则。
在一种可能的实现方式中,所述方法还包括:所述MEP接收SMF网元发送的第二指示信息,所述第二指示信息用于指示所述APP的分流规则已激活。
在一种可能的实现方式中,所述方法还包括:所述MEP与所述UPF网元进行服务注册和鉴权。
在一种可能的实现方式中,所述方法还包括:所述MEP通过MEP管理器与所述NEF网元进行服务注册和鉴权。
在一种可能的实现方式中,所述方法还包括:所述MEP通过所述NEF网元向所述PCF网元发送更新消息,所述更新消息用于更新所述APP的分流规则的匹配条件和/或生效范围。
在一种可能的实现方式中,所述方法还包括:所述MEP通过所述NEF网元向所述PCF网元发送删除消息,所述删除消息用于删除所述APP的分流规则。
在一种可能的实现方式中,所述MEP向UPF网元发送APP的分流规则,包括:
所述MEP通过所述MEP与所述UPF网元之间的第一接口向所述UPF网元发送第二消息,所述第二消息中包括所述APP的分流规则,所述APP的分流规则中还包括分流规则的标识;
所述MEP触发所述UPF网元激活所述APP的分流规则,包括:
所述MEP通过所述第一接口向所述UPF网元发送第三消息,所述第三消息用于激活所述APP的分流规则,所述第三消息中包括待激活的所述APP的分流规则的标 识。
在一种可能的实现方式中,所述第三消息中还包括第一信息,所述第一信息用于所述UPF网元确定所述待激活的分流规则的生效范围。
在一种可能的实现方式中,所述MEP向UPF网元发送APP的分流规则,包括:
所述MEP通过所述MEP与所述UPF网元之间的第一接口向所述UPF网元发送第四消息,所述第四消息中包括所述APP的分流规则;
所述MEP触发所述UPF网元激活所述APP的分流规则,包括:
所述MEP通过所述第四消息触发所述UPF网元激活所述APP的分流规则。
在一种可能的实现方式中,所述第四消息中还包括第一信息,所述第一信息用于所述UPF网元确定所述待激活的分流规则的生效范围。
在一种可能的实现方式中,所述第四消息中还包括激活指示信息,所述激活指示信息用于指示激活所述APP的分流规则。
在一种可能的实现方式中,所述方法还包括:所述MEP通过所述第一接口接收所述UPF网元发送的第三指示信息,所述第三指示信息用于指示所述APP的分流规则已激活。
在一种可能的实现方式中,所述方法还包括:所述MEP与所述UPF网元进行服务注册和鉴权。
在一种可能的实现方式中,所述第一信息包括所述MEP的位置信息和/或UE要访问的业务信息。
在一种可能的实现方式中,所述UE要访问的业务信息包括:数据网络名称DNN,以及切片实例ID或者单个网络切片选择协助信息S-NSSAI。
在一种可能的实现方式中,所述方法还包括:所述MEP通过所述第一接口向所述UPF网元发送更新消息,所述更新消息用于更新所述APP的分流规则和/或所述APP的分流规则的生效范围。
在一种可能的实现方式中,还包括:所述MEP通过所述第一接口向所述UPF网元发送删除消息,所述删除消息用于删除所述APP的分流规则。
本申请第二方面提供一种数据分流方法,包括:
用户面功能UPF网元获取应用APP的分流规则,所述APP安装在MEP上,所述APP分流规则中包括所述APP对应的IP地址和/或端口号,以及所述IP地址/或端口号对应的分流动作;
当所述UPF网元接收到用户设备发送的业务数据时,根据所述业务数据的IP地址和/或端口号,以及所述APP的分流规则,将所述业务数据发送到所述APP。
可选的,根据所述业务数据的IP地址和/或端口号,以及所述APP的分流规则,将所述业务数据发送到所述APP之前,所述UPF网元激活所述APP的分流规则。
在一种可能的实现方式中,所述UPF网元获取APP的分流规则,包括:
所述UPF网元通过所述UPF网元与所述MEP之间的第一接口接收所述APP的分流规则,所述APP的分流规则中还包括分流规则的标识;
所述UPF网元激活所述APP的分流规则,包括:
所述UPF网元接收PCF网元发送的激活消息,所述激活消息用于激活所述APP 的分流规则,所述激活消息中包括所述APP的分流规则的标识;
所述UPF网元根据所述激活消息激活所述APP的分流规则。
在一种可能的实现方式中,所述UPF网元获取APP的分流规则,包括:
所述UPF网元接收PCF网元发送的APP的分流规则,所述APP的分流规则中还包括分流规则的标识,所述APP的分流规则是所述PCF网元生成的,或者,所述APP的分流规则是所述MEP生成并发送给所述PCF网元的;
所述UPF网元激活所述APP的分流规则,包括:
所述UPF网元接收所述PCF网元发送的激活消息,所述激活消息用于激活所述APP的分流规则,所述激活消息中包括所述APP的分流规则的标识;
所述UPF网元根据所述激活消息激活所述APP的分流规则。
在一种可能的实现方式中,所述激活消息中还包括第一信息,所述第一信息用于所述UPF网元确定所述待激活的分流规则的生效范围。
在一种可能的实现方式中,所述方法还包括:所述UPF网元接收所述PC网元F发送的更新消息,所述更新消息用于更新所述APP的分流规则和/或所述APP的分流规则的生效范围。
在一种可能的实现方式中,所述方法还包括:所述UPF网元接收所述PCF网元发送的删除消息,所述删除消息用于删除所述APP的分流规则。
在一种可能的实现方式中,所述UPF网元获取APP的分流规则,包括:
所述UPF网元通过所述UPF网元与所述MEP之间的第一接口接收所述MEP发送的第二消息,所述第二消息中包括所述APP的分流规则,所述APP的分流规则中还包括分流规则的标识;
所述UPF网元激活所述APP的分流规则,包括:
所述UPF网元通过所述第一接口接收所述MEP发送的第三消息,所述第三消息用于激活所述APP的分流规则,所述第三消息中包括待激活的所述APP的分流规则的标识;
所述UPF网元根据所述第三消息激活所述APP的分流规则。
在一种可能的实现方式中,所述第三消息中还包括第一信息,所述第一信息用于所述UPF网元确定所述待激活的分流规则的生效范围。
在一种可能的实现方式中,所述UPF网元获取APP的分流规则,包括:
所述UPF网元通过所述UPF网元与所述MEP之间的第一接口接收所述MEP发送的第四消息,所述第四消息中包括所述APP的分流规则;
所述UPF网元激活所述APP的分流规则,包括:
所述UPF网元根据所述第四消息激活所述APP的分流规则。
在一种可能的实现方式中,所述第四消息中还包括第一信息,所述第一信息用于所述UPF网元确定所述待激活的分流规则的生效范围。
在一种可能的实现方式中,所述方法还包括:所述UPF网元通过所述第一接口接收所述MEP发送的更新消息,所述更新消息用于更新所述APP的分流规则和/或所述APP的分流规则生效范围。
在一种可能的实现方式中,所述方法还包括:所述UPF网元通过所述第一接口接 收所述MEP发送的删除消息,所述删除消息用于删除所述APP的分流规则。
在一种可能的实现方式中,所述第一信息包括所述MEP的位置信息和/或UE要访问的业务信息。
在一种可能的实现方式中,所述UE要访问的业务信息包括:数据网络名称DNN,以及切片实例ID或者单个网络切片选择协助信息S-NSSAI。
本申请第三方面提供一种数据分流方法,包括:
PCF网元从NEF网元接收移动边缘计算平台MEP发送的第一消息,所述第一消息中包括待激活的APP的分流规则的标识以及以及第一信息;
所述PCF网元根据所述第一信息确定所述APP的分流规则的生效范围;
所述PCF网元向SMF网元发送激活消息,所述激活消息中包括所述待激活的APP的分流规则的标识以及所述APP的分流规则的生效范围信息。
在一种可能的实现方式中,所述第一信息包括所述MEP的位置信息和/或UE要访问的业务信息。
在一种可能的实现方式中,所述UE要访问的业务信息包括:数据网络名称DNN,以及切片实例ID或者单个网络切片选择协助信息S-NSSAI。
在一种可能的实现方式中,所述方法还包括:所述PCF网元生成所述APP的分流规则,所述PCF网元将所述APP的分流规则发送给用户面功能UPF网元。
在一种可能的实现方式中,所述方法还包括:所述PCF网元接收所述MEP发送的所述APP的分流规则,所述PCF网元将所述APP的分流规则发送给UPF网元。
本申请第四方面提供一种MEP,包括:
发送模块,用于向UPF网元发送应用APP的分流规则,所述APP安装在所述MEP上,所述APP的分流规则中包括所述APP对应的IP地址和/或端口号,以及所述IP地址/或端口号对应的分流动作;
接收模块,用于接收所述UPF网元根据所述APP的分流规则分流到所述APP上的业务数据。
可选的,还包括:触发模块,用于触发所述UPF网元激活所述APP的分流规则。
在一种可能的实现方式中,所述发送模块具体用于:通过所述MEP与所述UPF网元之间的第一接口发送所述APP的分流规则,所述APP的分流规则中还包括分流规则的标识;
所述触发模块具体用于:通过网络能力开放功能NEF网元向策略控制网元PCF网元发送待激活的分流规则的标识以及以及第一信息,所述第一信息用于所述PCF网元确定所述待激活的分流规则的生效范围。
在另一种可能的实现方式中,所述发送模块具体用于:通过网络能力开放功能NEF网元向策略控制网元PCF网元发送第五消息,所述第五消息中包括所述APP的分流规则和第一信息,所述第一信息用于所述PCF网元确定所述APP的分流规则的生效范围;
所述触发模块具体用于:通过所述第五消息触发所述UPF激活所述APP的分流规则。
在一种可能的实现方式中,所述接收模块还用于:接收所述UPF网元通过所述第一接口发送的第一指示信息,所述第一指示信息用于指示所述UPF网元接收到所述 APP的分流规则。
在一种可能的实现方式中,所述接收模块还用于:接收SMF网元发送的第二指示信息,所述第二指示信息用于指示所述APP的分流规则已激活。
在一种可能的实现方式中,还包括鉴权模块,用于与所述UPF网元进行服务注册和鉴权。
在一种可能的实现方式中,所述鉴权模块还用于:通过MEP管理器与所述NEF网元进行服务注册和鉴权。
在一种可能的实现方式中,所述发送模块还用于:通过所述NEF网元向所述PCF网元发送更新消息,所述更新消息用于更新所述APP的分流规则和/或所述APP的分流规则的生效范围。
在一种可能的实现方式中,所述发送模块还用于:通过所述NEF网元向所述PCF网元发送删除消息,所述删除消息用于删除所述APP的分流规则。
在一种可能的实现方式中,所述发送模块具体用于:通过所述MEP与所述UPF网元之间的第一接口向所述UPF网元发送第二消息,所述第二消息中包括所述APP的分流规则,所述APP的分流规则中还包括分流规则的标识;
所述触发模块具体用于:通过所述第一接口向所述UPF网元发送第三消息,所述第三消息用于激活所述APP的分流规则,所述第三消息中包括待激活的所述APP的分流规则的标识。
在一种可能的实现方式中,所述第三消息中还包括第一信息,所述第一信息用于所述UPF网元确定所述待激活的分流规则的生效范围。
在一种可能的实现方式中,所述发送模块具体用于:通过所述MEP与所述UPF网元之间的第一接口向所述UPF网元发送第四消息,所述第四消息中包括所述APP的分流规则;
所述触发模块具体用于:通过所述第四消息触发所述UPF网元激活所述APP的分流规则。
在一种可能的实现方式中,所述第四消息中还包括第一信息,所述第一信息用于所述UPF网元确定所述待激活的分流规则的生效范围。
在一种可能的实现方式中,所述第四消息中还包括激活指示信息,所述激活指示信息用于指示激活所述APP的分流规则。
在一种可能的实现方式中,所述接收模块还用于:通过所述第一接口接收所述UPF网元发送的第三指示信息,所述第三指示信息用于指示所述APP的分流规则已激活。
在一种可能的实现方式中,还包括鉴权模块,用于与所述UPF网元进行服务注册和鉴权。
在一种可能的实现方式中,所述第一信息包括所述MEP的位置信息和/或UE要访问的业务信息。
在一种可能的实现方式中,所述UE要访问的业务信息包括:数据网络名称DNN,以及切片实例ID或者单个网络切片选择协助信息S-NSSAI。
在一种可能的实现方式中,所述发送模块还用于:通过所述第一接口向所述UPF网元发送更新消息,所述更新消息用于更新所述APP的分流规则的匹配条件和/或生效 范围。
在一种可能的实现方式中,所述发送模块还用于:通过所述第一接口向所述UPF网元发送删除消息,所述删除消息用于删除所述APP的分流规则。
本申请第五方面提供一种UPF网元,包括:
获取模块,用于获取应用APP的分流规则,所述APP安装在MEP上,所述APP的分流规则中包括所述APP对应的IP地址和/或端口号,以及所述IP地址/或端口号对应的分流动作;
发送模块,用于当所述UPF网元接收到用户设备发送的业务数据时,根据所述业务数据的IP地址和/或端口号,以及所述APP的分流规则,将所述业务数据发送到所述APP。
可选的,还包括:激活模块,用于激活所述APP的分流规则。
在一种可能的实现方式中,所述获取模块具体用于:通过所述UPF网元与所述MEP之间的第一接口接收所述APP的分流规则,所述APP的分流规则中还包括分流规则的标识;
所述激活模块具体用于:接收PCF网元发送的激活消息,所述激活消息用于激活所述APP的分流规则,所述激活消息中包括所述APP的分流规则的标识,根据所述激活消息激活所述APP的分流规则。
在一种可能的实现方式中,所述获取模块具体用于:接收PCF网元发送的APP的分流规则,所述APP的分流规则中还包括分流规则的标识,所述APP的分流规则是所述PCF网元生成的,或者,所述APP的分流规则是所述移动边缘计算平台生成并发送给所述PCF网元的;
所述激活模块具体用于:接收所述PCF网元发送的激活消息,所述激活消息用于激活所述APP的分流规则,所述激活消息中包括所述APP的分流规则的标识,根据所述激活消息激活所述APP的分流规则。
在一种可能的实现方式中,所述激活消息中还包括第一信息,所述第一信息用于所述UPF网元确定所述待激活的分流规则的生效范围。
在一种可能的实现方式中,还包括接收模块,用于接收所述PCF网元发送的更新消息,所述更新消息用于更新所述APP的分流规则和/或所述APP的分流规则的生效范围。
在一种可能的实现方式中,还包括接收模块,用于接收所述PCF网元发送的删除消息,所述删除消息用于删除所述APP的分流规则。
在一种可能的实现方式中,所述获取模块具体用于:通过所述UPF网元与所述MEP之间的第一接口接收所述MEP发送的第二消息,所述第二消息中包括所述APP的分流规则,所述APP的分流规则中还包括分流规则的标识;
所述激活模块具体用于:通过所述第一接口接收所述MEP发送的第三消息,所述第三消息用于激活所述APP的分流规则,所述第三消息中包括待激活的所述APP的分流规则的标识,根据所述第三消息激活所述APP的分流规则。
在一种可能的实现方式中,所述第三消息中还包括第一信息,所述第一信息用于所述UPF确定所述待激活的分流规则的生效范围。
在一种可能的实现方式中,所述获取模块具体用于:通过所述UPF网元与所述MEP之间的第一接口接收所述MEP发送的第四消息,所述第四消息中包括所述APP的分流规则;
所述激活模块具体用于:根据所述第四消息激活所述APP的分流规则。
在一种可能的实现方式中,所述第四消息中还包括第一信息,所述第一信息用于所述UPF确定所述待激活的分流规则的生效范围。
在一种可能的实现方式中,还包括接收模块,用于通过所述第一接口接收所述MEP发送的更新消息,所述更新消息用于更新所述APP的分流规则和/或所述APP的分流规则的生效范围。
在一种可能的实现方式中,还包括接收模块,用于通过所述第一接口接收所述MEP发送的删除消息,所述删除消息用于删除所述APP的分流规则。
在一种可能的实现方式中,所述第一信息包括所述MEP的位置信息和/或UE要访问的业务信息。
在一种可能的实现方式中,所述UE要访问的业务信息包括:数据网络名称DNN,以及切片实例ID或者单个网络切片选择协助信息S-NSSAI。
本申请第六方面提供一种PCF网元,包括:
接收模块,用于从NEF网元接收MEP发送的第一消息,所述第一消息中包括待激活的APP的分流规则的标识以及以及第一信息;
确定模块,用于根据所述第一信息确定所述APP的分流规则的生效范围;
发送模块,用于向SMF网元发送激活消息,所述激活消息中包括所述待激活的APP的分流规则的标识以及所述APP的分流规则的生效范围信息。
在一种可能的实现方式中,所述第一信息包括所述MEP的位置信息和/或UE要访问的业务信息。
在一种可能的实现方式中,所述UE要访问的业务信息包括:数据网络名称DNN,以及切片实例ID或者单个网络切片选择协助信息S-NSSAI。
在一种可能的实现方式中,还包括生成模块,用于生成所述APP的分流规则,所述发送模块还用于:将所述APP的分流规则发送给用户面功能UPF网元。
在一种可能的实现方式中,所述接收模块,还用于接收所述MEP发送的所述APP的分流规则,所述PCF网元将所述APP的分流规则发送给UPF网元。
本申请第七方面提供一种MEP,包括处理器、存储器和收发器,所述存储器用于存储指令,所述收发器用于和其他设备通信,所述处理器用于执行所述存储器中存储的指令,以使所述MEP执行如本申请第一方面以及各示例性方式提供的方法。
本申请第八方面提供一种UPF网元,包括处理器、存储器和收发器,所述存储器用于存储指令,所述收发器用于和其他设备通信,所述处理器用于执行所述存储器中存储的指令,以使所述UPF网元执行如本申请第二方面以及各示例性方式提供的方法。
本申请第九方面提供一种PCF网元,包括处理器、存储器和收发器,所述存储器用于存储指令,所述收发器用于和其他设备通信,所述处理器用于执行所述存储器中存储的指令,以使所述PCF网元执行如本申请第三方面以及各示例性方式提供的方法。
本申请第十方面提供一种计算机可读存储介质,所述计算机可读存储介质存储有 指令,当所述指令被执行时,使得计算机执行如本申请第一方面、第二方面、第三方面以及各示例性方式提供的任一方法。
本申请第十一方面提供一种计算机程序产品,应用在MEP中,所述计算机程序产品包括指令,当所述指令被计算装置执行时,使得所述MEP执行如本申请第一方面或第一方面的各示例性方式所述的方法。
本申请第十二方面提供一种计算机程序产品,应用在UPF网元中,所述计算机程序产品包括指令,当所述指令被计算装置执行时,使得所述UPF网元执行如本申请第二方面或第二方面的各示例性方式所述的方法。
本申请第十三方面提供一种计算机程序产品,应用在PCF网元中,所述计算机程序产品包括指令,当所述指令被计算装置执行时,使得所述PCF网元执行如本申请第三方面或第三方面的各示例性方式所述的方法。
本申请第十四方面提供一种通信系统,所述通信系统包括MEP和UPF网元,所述MEP用于执行上述的第一方面或第一方面的各示例性方式所述的方法,所述UPF网元用于执行上述第二方面或第二方面的各示例性方式所述的方法。
可选的,该通信系统还包括PCF网元,所述PCF网元用于执行如上述第三方面或第三方面的各示例性方式所述的方法。
可选的,该通信系统还包括NEF网元和SMF网元。
本申请实施例中提供一种数据分流方法和装置,MEP向UPF网元发送APP的分流规则,该APP安装在所述MEP上,该APP的分流规则中包括APP对应的IP地址和/或端口号,以及该IP地址/或端口号对应的分流动作,MEP接收UPF网元根据APP的分流规则分流到该APP上的业务数据,该由APP对分流过来的业务数据进行处理。本实施例中,分流规则的下发只针对特定的会话,不会引起信令风暴,减少了分流规则更新对网络的影响。
附图说明
图1为5G网络架构的一种示意图;
图2为MEC系统架构的一种示意图;
图3为本申请实施例一提供的一种数据分流方法的流程图;
图4为本申请实施例二提供的数据分流方法的信令流程图;
图5为本申请实施例三提供的数据分流方法的信令流程图;
图6为本申请实施例四提供的数据分流方法的信令流程图;
图7为本申请实施例八提供的一种MEP的结构示意图;
图8为本申请实施例九提供的一种UPF网元的结构示意图;
图9为本申请实施例十提供的一种PCF网元的结构示意图。
具体实施方式
本申请实施例提供一种数据分流方法,可以应用在MEC系统中,MEC是一个边缘云平台,通过与运营商网络结合(数据面功能是结合点),提供一种新的网络架构, 利用无线接入网络就近提供电信用户所需IT服务和云端计算功能,从而创造出一个具备高性能、低延迟与高带宽的电信级服务环境,让消费者能够享有高质量的业务体验。
本地分流能力是MEC的核心能力,对于本地计算或企业园区之类的应用场景,首先需要解决业务数据流如何灵活高效地进行本地卸载,就近接入问题。面向5G的UPF方案,通过UPF上的ULCL实现分流或分支点(branch-point,BP)实现分流。
图1为5G网络架构的一种示意图,5G系统也称为新无线通信系统、新接入技术(New Radio,NR)或者下一代移动通信系统。5G系统包括用户设备(user equipment,UE)、(无线)接入网(radio access network,(R)AN)和5G核心网。
5G核心网包括接入和移动性管理功能(access and mobility management function,AMF)网元、会话管理功能(session management function,SMF)网元、用户面功能(user plane function,UPF)网元、鉴权服务器功能(authentication server function,AUSF)网元、策略控制功能(policy control function,PCF)网元、应用功能(APPlication function,AF)网元、统一数据管理功能(unified data management,UDM)网元、网络切片选择功能(network slice selection function,NSSF)网元等多个功能单元。
AMF网元主要负责移动性管理、接入管理等服务。SMF网元主要负责会话管理、UE地址管理和分配、动态主机配置协议功能、用户面功能的选择和控制等。UPF网元主要负责对外连接到DN以及用户面的数据包路由转发、报文过滤、执行服务质量(quality of service,QoS)控制相关功能等。AUSF网元主要负责对终端设备的认证功能等。PCF网元主要负责为网络行为管理提供统一的策略框架、提供控制面功能的策略规则、获取与策略决策相关的注册信息等。需要说明的是,这些功能单元可以独立工作,也可以组合在一起实现某些控制功能,如对终端设备的接入鉴权、安全加密、位置注册等接入控制和移动性管理功能,以及用户面传输路径的建立、释放和更改等会话管理功能。
5GC中各功能单元之间可以通过下一代网络(next generation,NG)接口进行通信,如:UE可以通过NG接口1(简称N1)与AMF网元进行控制面消息的传输,RAN设备可以通过NG接口3(简称N3)与UPF网元建立用户面数据传输通道,AN/RAN设备可以通过NG接口2(简称N2)与AMF网元建立控制面信令连接,UPF网元可以通过NG接口4(简称N4)与SMF网元进行信息交互,UPF网元可以通过NG接口6(简称N6)与数据网络DN交互用户面数据,AMF网元可以通过NG接口11(简称N11)与SMF网元进行信息交互,SMF网元可以通过NG接口7(简称N7)与PCF进行信息交互,AMF网元可以通过NG接口12(简称N12)与AUSF网元进行信息交互。需要说明的是,图1仅为示例性架构图,除图1中所示功能单元之外,该网络架构还可以包括其他功能单元。
网络架构不限于基于参考点的网络架构,也可以采用基于服务化接口的网络架构,图1所示架构是基于服务化接口的网络架构,基于服务化接口场景下,5G系统的核心网还包括网络开放功能(network exposure function,NEF)网元和网络存储功能(network repository function,NRF)网元。基于服务化接口的场景下,5G核心网中的部分网元通过总线方式连接,如图1所示,AUSF网元、AMF网元、SMF网元、AF网元、UDM网元、PC网元、和NSSF网元通过总线互连,所述网元在通过总线互连时,采用服务 化接口,例如,AUSF网元通过Nausf接口连接到总线上,AMF网元采用Namf接口连接到总线上,SMF网元通过Nsmf接口连接到总线上,AF网元采用NAF网元接口连接到总线上,UDM网元采用Nudm接口连接到总线上,PCF网元通过NPCF接口连接到总线上,NRF网元通过Nnrf接口连接到总线上,NEF网元通过Nnef接口连接到总线上,NSSF网元通过Nnssf接口连接到总线上。
在RAN与PDU会话锚点之间可以插入一个ULCL,5G系统中的PDU会话锚点为UPF网元,ULCL基于对业务流上行特征的识别,分流数据到本地DN或是到远端UPF会话锚点,同时,ULCL还需要对下行流进行聚合处理。
BP与ULCL的作用是一样的,只是BP是针对互联网协议第六版(internet protocol version 6,IPV6)的分流点插入,IPV6在用户面和互联网协议第四版(internet protocol version4,IPV4)存在以下差异:对于IPv4或者IPv6类型的PDU会话,PDU会话锚点可以是分配给UE的IP地址/前缀的IP锚点。其中,对于IPv4类型的PDU会话或者不是Multi-homed的IPv6的PDU会话,当多个PDU会话锚点被使用时,仅有一个PDU会话锚点是IP锚点。但是,对于一个IPv6的Multi-homed的PDU会话,则可以有多个IP锚点。
图2为MEC系统架构的一种示意图,如图2所示MEC系统包括:MEC系统层(MEC system level)和MEC主机层(MEC host level)。
MEC系统层包括运营支持系统(operation support system,OSS)和多路访问边缘协调器(multi-access edge orchestrator),CFS门户网站通过Mx1接口与运营支持系统通信,设备APP通过Mx2接口与用户APP LCM代理(user APP LCM proxy)连接,用户APP LCM代理通过Mm8接口、Mm9接口分别与运营支持系统和多路访问边缘协调器连接,运营支持系统和多路访问边缘协调器之间通过Mm1接口通信,运行支持系统还通过Mm2接口与MEPM连接,多路访问边缘协调器通过Mm3接口与MEPM连接,多路访问边缘协调器还通过Mm4接口与MEPM连接。其中,这里设备APP是指终端设备(或者称为用户设备(user equipment,UE))上安装的APP,该终端设备可以是手机、平板电脑、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。本申请实施例中不做具体限定。
MEC主机层包括:MEC平台管理器(MEC platform Manager,MEPM)、虚拟化基础架构管理器(virtualisation infrastructure manager)、一个或者多个MEC主机。
MEC主机包括:MEC平台(MEC platform,MEP)、多个MEC APP、虚拟化基础架构(virtualisation infrastructure),MEPM通过Mm5接口与MEP连接通信。MEPM通过Mm5接口进行MEC APP的生命周期管理、MEC APP的规则和请求管理以及MEC平台元素管理。
MEP用于运行MEC服务(MEC service),进行服务注册(service registry)、分流规则控制(traffic rules control)以及DNS处理等。
MEP具有5G网络中AF的功能,MEP中的AF功能通过MEP上的APP(也可以称为MEC APP)实现,UE上的APP可以通过网络访问MEP上的APP,MEP和MEC APP之间通过Mp1接口通信,实现对MEC APP的管理,MEC APP上运行具体的服务。
MEP通过Mp2接口与虚拟化基础架构中的用户面(data plane)进行通信,该data plan通过用户面功能(User Plane Function,UPF)实现,因此,Mp2接口也可以理解为MEP和UPF之间的接口,MEC主机中的UPF指部署在边缘位置的UPF。两个MEC主机的MEP之间通过Mp3接口通信。
在本申请实施例中,UE上的APP可以理解为客户端,MEP上的APP可以理解为服务端或者服务器侧,UE上的APP通过网络访问MEP上的APP所提供的服务。所以,本申请实施例中,MEP上的APP对应的IP地址可以理解为服务器的IP地址,是MEP上的APP对外提供服务的IP地址。同样,MEP上的APP对应的端口号是指MEP上的APP对应提供服务的端口的编号或者标识,MEP上的APP对应的端口号可以理解为服务器的端口号。
本申请实施例中,MEP具有5G网络中AF的功能,MEP通过APP的形式向用户设备提供服务,可以理解,MEP也可以通过其他形式向用户设备提供服务。
基于图1和图2所示的架构,本申请实施例一提供一种数据分流方法,如图3所示,本实施例提供的数据分流方法可以包括以下步骤:
S101、MEP向UPF网元发送APP的分流规则,该APP安装在MEP上,该APP的分流规则中包APP对应的IP地址和/或端口号,以及该IP地址/或端口号对应的分流动作。
MEP可以在APP上线、APP扩容或缩容导致APP对应的IP地址范围变化、APP对应的端口号变化等需要更新APP的分流规则的情况下,向UPF网元发送APP的分流规则,以更新UPF网元的本地分流规则。MEP上运行的APP可以通过Mp1接口与MEP进行通信,MEP能够感知到本地安装的APP的上线、下线、扩容、缩容等操作。
其中,APP上线是指APP在MEP上初次上线,即MEP上新增一个APP的情况。APP扩容是指扩大APP对应的IP地址的范围,APP缩容是指缩小APP对应的IP地址范围。
本实施例中,MEP可以通过如下两种传输路径将APP的分流规则发送给UPF网元:路径一,MEP通过和UPF网元之间的第一接口将APP的分流规则发送给UPF网元,该第一接口可以为Mp2接口;路径二,MEP通过NEF网元、PCF网元和SMF网元将APP的分流规则发送给UPF网元。
APP对应的IP地址和/或端口号可以理解为匹配条件或者分流策略,IP地址和/或端口号对应的分流动作为匹配条件或者分流策略对应的动作。当UPF网元接收到UE发送的业务数据时,将业务数据中的目的IP地址和/或目的端口号与APP的分流规则中的匹配条件进行匹配,如果匹配成功,则UPF网元执行对应的分流动作,其中,匹配成功是指业务数据中的目的IP地址和/目的端口号与匹配条件中的IP地址和/或端口号相同。
可选的,APP的分流规则中还包括分流规则的标识,分流规则的标识能够唯一标识一个分流规则,后续可以根据该分流规则的标识识别分流规则,或者更新分流规则, 或者删除分流规则。该分流规则的标识可以是APP ID,还可以是其他标识,本实施例不对此进行限制。
S102、MEP接收UPF网元根据APP的分流规则分流到该APP上的业务数据。
可选的,在步骤S102之前,MEP触发UPF网元激活APP的分流规则。本实施例中,APP的分流规则的下发和激活可以通过一条消息实现,即在下发APP的分流规则的同时激活APP的分流规则。APP的分流规则的下发和激活也可以通过两条消息实现,MEP可以在APP上线时下发APP的分流规则,当有UE要访问MEP上的该APP时,需要先激活UPF网元上的APP的分流规则。
激活APP的分流规则可以理解为UPF网元将APP的分流规则添加或者安装到需要激活的会话的规则列表中,该会话可以为PDN会话,一个UE可以建立一个或者多个PDN会话,每个会话对应建立有一个规则列表。
APP的分流规则具有一定的生效范围,UPF网元只需要为生效范围内的会话激活APP的分流规则,即将APP的分流规则添加到生效范围内的会话的会话列表中,APP的分流规则的生效范围可以由PCF网元确定,也可以由UPF网元确定,
在APP的分流规则激活之后,即将APP的分流规则添加或者安装到需要激活的会话的规则列表之后,当UPF网元接收到UE发送的业务数据时,获取业务数据中的包检测信息(Packet Detection Information,PDI),该PDI中包括服务数据流(service data flow,SDF)过滤器(filter),SDF filter包括业务数据的标识信息,该标识信息可以为五元组信息,即源IP地址、目的IP地址、源端口号、目的端口号以及协议号。该标识信息还可以为四元组信息,四元祖信息包括IP地址、目的IP地址、源端口和目的端口。
数据包的源IP地址和源端口号是指发送数据包的UE的IP地址和端口号,数据包的目的IP地址和目的端口号可以是UE要访问的服务器的IP地址和端口号。可选的,PDI中还包括APP的标识。
UPF网元获取到业务数据的PDI后,UPF网元将业务数据的目的IP地址和/或目的端口号,与该UE的会话的规则列表中包括的APP的分流规则中包括的IP地址和/或端口号进行匹配或者比较。如果匹配成功,则UPF执行分流动作,其中,匹配成功是指业务数据的IP地址和/或目的端口号与该UE的某个会话的规则列表中包括的APP分流规则包括的IP地址和/或端口号相同,UPF网元执行分流动作是指UPF网元将该业务数据发送到MEP,由MEP上的APP对业务数据进行处理。
本实施例中,MEP向UPF网元发送APP的分流规则,该APP安装在MEP上,该APP的分流规则中包括APP对应的IP地址和/或端口号,以及IP地址/或端口号对应的分流动作,MEP接收UPF网元根据APP的分流规则分流到该APP上的业务数据,该由APP对分流过来的业务数据进行处理。本实施例中,分流规则的下发只针对特定的会话,不会引起信令风暴,减少了分流规则更新对网络的影响。
图4为本申请实施例二提供的数据分流方法的信令流程图,如图4所示,本实施例提供的方法包括以下步骤:
S201、MEP与MEPM之间进行服务注册和鉴权流程。
S202、MEPM与NEF网元之间进行能力开放的注册和鉴权流程。
本实施例中,MEP和MEPM在上线部署之后,可以通过向NRF网元查询或者订阅的方式发现NEF网元,也可以通过预配置的方式获取NEF网元的IP地址。在发现NEF网元之后,可以通过NEF网元提供的服务接口实现MEP或者MEPM作为AF在NEF的鉴权流程,在鉴权通过后,MEP或者MEPM可以通过NEF网元实现对分流规则下发或者激活。
S203、MEP和UPF网元之间进行服务注册和鉴权流程。
本实施例中,新增MEP与UPF之间的能力开放的注册和鉴权流程。MEP上线部署之后,可以通过向NRF网元查询或订阅的方式实现对其前端连接的UPF网元的发现流程,也可以通过预配置的方式获取前端UPF网元的IP地址信息。UPF网元和MEP之间可以通过预配置的鉴权和授权码实现对双方的鉴权流程,确保MEP可以使用UPF网元开放的更新分流规则的能力,或者更新APP ID与报文或流描述信息映射关系的能力。
步骤S202和S203在执行时并没有先后顺序。
S204、MEP通过Mp1接口向APP发送启动指令。
MEP收到MEC控制器发送的APP上线请求后,通过MEP和APP之间的Mp1接口向APP发送启动指令,该启动指令用于启动APP。MEP在APP初始上线时为该APP分配ID,在APP下线时,回收为该APP分配的ID。
S205、APP启动后完成服务注册和鉴权流程,获取APP对应的IP地址。
APP对应的IP地址可以是MEP分配的,也可以是在APP安装或者实例化过程中,操作人员预先配置的,后一种方式中,该预先配置的APP对应的IP地址需要通知给MEP,可以由APP主动发送给MEP。
S206、APP通过Mp1向MEP返回启动响应。
S207、MEP通过第一接口向UPF网元发送APP的分流规则。
当MEP上新上线一个APP时,MEP根据APP的ID、APP对应的IP地址以及端口号等生成APP的分流规则,分流规则中包括APP ID、APP对应的IP地址和/或端口号,以及该IP地址和/或端口号对应的分流动作,APP ID为分流规则的标识,APP对应的IP地址和/或端口号为匹配条件。MEP可以通过第一接口向UPF发送用于增加APP分流规则的消息,该消息中包括APP的分流规则,该第一接口可以为Mp2接口。
S208、UPF网元通过第一接口向MEP发送第一指示信息。
UPF网元接收到APP的分流规则后,在本地的分流规则中增加该APP的分流规则,并向MEP返回第一指示信息,该第一指示信息用于指示UPF网元接收到APP的分流规则或者用于指示APP的分流规则添加成功。
其中,步骤S208为可选步骤,MEP发送APP的分流规则后,也可以在预设时间后默认UPF网元接收到了APP的分流规则,则UPF不需要向MEP发送该第一指示信息。
S209、MEP向MEPM发送第一消息,该第一消息中包括待激活的分流规则的标识以及以及第一信息,该第一信息用于PCF网元确定待激活的分流规则的生效范围。
其中,分流规则的生效范围是指该分流规则适用的UE的会话。
S210、MEPM向NEF网元发送该第一消息。
S211、NEF网元向PCF网元发送该第一消息。
S212、PCF根据第一信息确定该APP的分流规则的生效范围。
MEP可以在UE上线后发送第一消息,这里UE上线是指UE开始访问该APP。第一信息包括MEP的位置信息和/或UE要访问的业务信息,MEP的位置信息也可以替换为APP的位置信息,APP安装在MEP上,因此,APP的位置信息相当于MEP的位置信息。
MEP通常部署在靠近RAN的位置,因此,PCF网元可以根据MEP的位置信息确定该APP的分流规则适用的UE的会话,该APP的分流规则适用的UE的会话即该APP的分流规则的生效范围。
可选的,UE要访问的业务信息包括数据网络名称(data network name,DNN),以及切片实例ID或者单个网络切片选择协助信息(Single Network Slice Selection Assistance Information,S-NSSAI)。DNN用于确定UE要访问的业务所在的数据网络,切片实例ID或者S-NSSAI用于确定UE要访问的业务对应的切片实例。
PCF网元根据DNN和切片实例ID确定UE要访问的业务所在的数据网络以及在数据网络中对应的切片实例。或者,PCF网元根据DNN和S-NSSAI确定UE要访问的业务所在的数据网络以及在数据网络中对应的切片实例,将UE要访问的业务数据所在的网络称为目标网络,将UE能够访问的该目标网络中的切片实例称为目标切换实例。进而,PCF网元查询用户签约信息,用户签约信息中包括多个UE的签约信息,PCF网元根据用户签约信息从该多个UE中确定能够访问该目标数据网络和目标切片实例的目标UE的会话,将该目标UE的会话作为分流规则的生效范围。
或者,PCF网元还可以结合MEP的位置信息和UE要访问的业务信息共同确定分流规则的生效范围。
本实施例中,PCF网元确定的分流规则的生效范围可以为特定的用户号码段内的UE的会话、特定的小区内的UE的会话、使用特定的无线接入技术(radio access technology,RAT)接入的UE的会话、使用特定切片的UE的会话或者使用特定DN网络的UE的会话等。PCF网元确定分流规则的生效范围后,只激活该分流规则的生效范围内对应的UE的会话的分流规则,从而降低了分流规则激活对核心网网元的资源消耗。
S213、PCF网元向SMF网元发送激活消息,该激活消息中包括待激活的APP的ID以及APP的分流规则的生效范围信息。
该激活消息用于激活待激活的APP的分流规则。PCF网元可以通过策略控制计费(policy control and charging,PCC)规则将待激活的APP的ID以及APP的分流规则的生效范围信息发送给SMF网元,APP的分流规则的生效范围信息包括UE会话的标识。可选的,激活消息中还包括UE要访问的业务信息。
如果激活消息中不包括UE要访问的业务信息,SMF网元还可以根据UE会话的标识获取到UE要访问的业务信息。
SMF接收到PCF网元发送的PCC规则后,可以将PCC规则转换成报文检测规则(packet detection rule PDR)规则。
S214、SMF网元向UPF网元发送该激活消息。
S215、UPF网元根据该激活消息激活APP的分流规则。
该激活消息中包括PDR规则,UPF网元接收到PDR规则后,根据PDR规则将MEP下发的APP的分流规则安装到会话的规则列表中,从而完成了APP的分流规则的激活。
一种方式中,在PDR规则的Activate Predefined Rules中携带要激活的分流规则的标识,UPF网元接收到该PDR规则后,根据Activate Predefined Rules中携带的分流规则的标识将分流规则的标识对应的APP的分流规则安装到对应的会话的规则列表中。
另一种方式中,在PDR规则的Predefined Rules中携带要激活的预定义规则,该预定义规则包括要激活的分流规则的标识和策略,该策略用于描述数据分流的路径信息,该策略可以包括DNN和APP对应的IP地址。UPF网元接收到该PDR规则后,根据Predefined Rules中携带的预定义规则将APP的分流规则安装到对应的会话的规则列表中。
S216、SMF网元经过PCF网元、NEF网元、MEMP向MEP发送第二指示信息。
该第二指示信息用于指示APP的分流规则已激活,在APP的分流规则被激活之后,UPF网元可以使用APP的分流规则进行分流。
S217、UPF网元将业务数据发送给APP。
当UE通过UPF网元访问MEP上的APP时,UPF网元根据APP的分流规则将与该分流规则中的IP地址和/或端口号相同的业务数据分流到MEP的APP上。例如,UPF网元将UE发送的业务数据的目的IP地址和/或目的端口号与该UE的会话的规则列表中的APP的分流规则进行匹配,如果匹配成功,则将该业务数据分流到MEP的APP上,即将分流的业务数据(即匹配成功的业务数据)发送给MEP上的APP,由MEP上的APP对业务数据进行处理。
本实施例中,以APP ID作为APP的分流规则的标识,当然,APP的分流规则的标识还可以是其他标识,本实施例不对此进行设置。
本实施例中,当APP在MEP上初始上线时,MEP通过与UPF网元之间的接口将APP的分流规则发送给UPF网元,在UE访问APP时,MEP通过MEPM、NEF网元、PCF网元、SMF网元组成的路径激活UPF网元上的该APP的分流规则,在APP的分流规则激活之后,当UPF网元接收到该UE发送的业务数据时,UPF网元根据业务数据的IP地址和/或端口号,以及APP的分流规则将业务数据分流到该APP执行。该方法中,APP的分流规则的下发通过MEP与UPF网元之间接口实现,降低了核心网网元由于分流规则下发带来的资源消耗。在分流规则激活时,由PCF根据MEP发送的第一消息确定APP的分流规则的生效范围,后续只激活APP的分流规则的生效范围内的UE的会话的分流规则,激活更有针对性,从而降低了分流规则激活对核心网网元的资源消耗。
本实施例以MEP上新增APP时,MEP为该APP添加新的分流规则的过程为例进行说明。在实际应用中,APP扩容或者缩容、APP开放的端口发生变化时,需要更新APP的分流规则或者更新APP的分流规则的生效范围,更新分流规则是指更新分流规则中的IP地址和/或端口号。上述流程中APP的分流规则的激活过程同样适用于APP 的分流规则的更新过程,APP的分流规则的更新过程和激活过程中消息的传输路径相同,不同的是,激活过程和更新过程中网元之间使用的消息可能不同。
示例性的,MEP通过NEF网元向PCF网元发送更新消息,该更新消息用于更新APP的分流规则和/或APP的分流规则的生效范围。在更新APP的分流规则时,该更新消息中可以包括APP ID以及更新后的APP对应的IP地址和/或端口号,APP ID用于指示对哪个APP的分流规则进行更新。在更新APP的分流规则的生效范围时,MEP可以在更新消息中携带更新后的第一信息,PCF网元根据更新后的第一信息为APP的分流规则确定新的生效范围。
同样,MEP也可以触发删除APP的分流规则,APP的分流规则的删除过程和激活过程中消息的传输路径相同。可选的,MEP通过NEF网元向PCF网元发送删除消息,该删除消息用于删除APP的分流规则,该删除消息中包括待删除的APP的分流规则的标识,该分流规则的标识可以为APP ID。PCF网元根据该删除消息可以确定删除那些UE的会话对应的分流规则,进而向SMF网元发送删除指示,该删除指示中可以包括需要删除分流规则的UE的会话的信息,SMF网元向UPF网元发送删除指示,UPF根据删除指示删除对应的会话的规则列表中的APP的分流规则。
其中,在激活APP的分流规则时,由PCF网元确定激活了哪些UE的会话对应的分流规则,因此,PCF网元能够获知删除哪些UE的会话对应的分流规则。
实施例二中,APP的分流规则由MEP生成并发送给UPF网元,可以理解,APP的分流规则也可以由PCF网元预先生成并发送给UPF网元。
图5为本申请实施例三提供的数据分流方法的信令流程图,本实施例与实施二不同的是:本实施例中APP的分流规则的下发和激活都通过MEP和UPF网元之间的接口完成,不需要通过其他核心网网元,如图5所示,本实施例提供的方法包括以下步骤:
S301、MEP和UPF网元之间进行服务注册和鉴权流程。
本实施例中,新增MEP与UPF网元之间的能力开放的注册和鉴权流程。MEP上线部署之后,可以通过向NRF网元查询或订阅的方式实现对其前端连接的UPF网元的发现流程,也可以通过预配置的方式获取前端UPF网元的IP地址信息。UPF网元和MEP之间可以通过预配置的鉴权和授权码实现对双方的鉴权流程,确保MEP可以使用UPF网元开放的更新分流规则的能力,或者更新APP ID与报文或流描述信息映射关系的能力。
S302、MEP通过Mp1接口向APP发送启动指令。
S303、APP启动后完成服务注册和鉴权流程,获取对应的IP地址。
S304、APP通过Mp1向MEP返回启动响应。
S305、MEP通过第一接口(例如Mp2接口)向UPF网元发送第四消息,该第四消息中包括APP的分流规则。
一种示例性的方式中,UPF网元接收到该APP的分流规则中,可以自己决定是否激活该APP的分流规则,并确定该APP的分流规则的生效范围。
另一种示例性的方式中,UPF网元接收到第四消息中携带的APP的分流规则中, 默认激活该APP的分流规则,并确定该APP的分流规则的生效范围。
又一种示例性的方式中,可以在第四消息中携带激活指示信息,该激活指示信息用于指示激活APP的分流规则。该激活指示信息可以通过一个或者多个比特位表示,例如,通过一个比特位表示该激活指示信息,当该比特位的取值为0或1时表示激活该APP的分流规则。
在前述三种示例性的方式的基础上,可选的,第四消息中还包括第一信息,该第一信息用于确定待激活的分流规则的生效范围,UPF网元根据该第一信息确定该APP的分流规则的生效范围。可以理解,UPF网元还可以根据其他方式确定该APP的分流规则的生效范围,UPF确定该APP的分流规则的生效范围的信息也可以从其他设备获取,本实施例不对此进行限制。
第一信息包括MEP的位置信息和/或UE要访问的业务信息。可选的,UE要访问的业务信息包括DNN,以及切片实例ID或者S-NSSAI。本实施例中,UPF网元根据第一信息确定该APP的分流规则的生效范围的方式参照实施例二中PCF网元的根据第一信息确定该APP的分流规则的生效范围的方式,这里不再赘述。
在本实施例一种可能的实现方式中,第四消息中包括该APP的分流规则和该第一信息,UPF网元接收到该第四消息后,根据该第一信息确定要激活该APP的分流规则,并进一步根据该第一信息确定该APP的分流规则的生效范围。
S306、UPF网元激活APP的分流规则。
UPF网元确定该APP的分流规则的生效范围后,将该APP的分流规则添加到生效范围内的UE的会话的规则列表中。
S307、UPF网元通过第一接口向MEP发送第三指示信息。
该第三指示信息用于指示APP的分流规则已激活,或者,用于指示UPF网元已经接收到APP的分流规则。
S308、UPF网元将业务数据发送给APP。
当UE通过UPF网元访问MEP上的APP时,UPF网元根据APP的分流规则,以及业务数据的IP地址和/或端口号,将与APP的分流规则匹配的业务数据发送到MEP的APP上,例如,UPF网元将UE发送的业务数据的目的IP地址和/或目的端口号与该UE的会话的规则列表中的APP的分流规则进行匹配,如果匹配成功,则将该业务数据分流到MEP的APP上,由MEP上的APP对业务数据进行处理。
本实施例中,MEP通过与UPF网元之间的第一接口发送第四消息将APP的分流规则发送给UPF网元,并通过该第四消息激活该APP的分流规则,在APP的分流规则激活之后,当UE访问MEP上的APP时,UPF网元根据业务数据的IP地址和/或端口号,以及APP的分流规则,将业务数据分流到MEP上的APP执行。该方法中,APP的分流规则的下发和激活均通过MEP与PUF网元之间接口实现,降低了核心网网元由于分流规则下发和激活带来的资源消耗。
本实施例以MEP上新增APP时,MEP为该APP添加新的分流规则的过程为例进行说明。在实际应用中,APP扩容或者缩容、APP开放的端口发生变化时,需要更新APP的分流规则或者更新APP的分流规则的生效范围。上述流程同样适用于APP的分流规则或者APP的分流规则的生效范围的更新过程,例如,MEP通过该第一接口向 UPF网元发送更新消息,该更新消息用于更新APP的分流规则和/或APP的分流规则的生效范围。
在更新APP的分流规则时,该更新消息中可以包括APP ID以及更新后的APP对应的IP地址和/或端口号,APP ID用于指示对哪个APP的分流规则进行更新。在更新APP的分流规则的生效范围时,MEP可以在更新消息中携带更新后的第一消息,该更新后的第一消息用于UPF网元为APP的分流规则确定新的的生效范围。
同样,MEP也可以触发删除APP的分流规则。可选的,MEP通过该第一接口向UPF网元发送删除消息,该删除消息用于删除APP的分流规则,该删除消息中包括待删除的APP的分流规则的标识,该分流规则的标识可以为APP ID。UPF网元接收到删除消息后,从本地已经激活的会话的规则列表中该APP的分流规则删除。
实施例三的方式中,以APP的分流规则的下发和激活通过一条消息实现为例进行说明,可选的,APP的分流规则的下发和激活可以通过两条独立消息实现。例如,MEP先通过MEP与UPF网元之间的第一接口向UPF网元发送第二消息,该第二消息中包括APP的分流规则,APP的分流规则中还包括分流规则的标识。然后,MEP通过该第一接口向UPF网元发送第三消息,该第三消息用于激活该APP的分流规则,该第三消息中包括待激活的APP的分流规则的标识。
该第三消息可以是专用消息,专用于激活APP的分流规则。该第三消息还可以是非专用消息,在该第三消息中携带有激活指示信息,该激活指示信息用于指示激活APP的分流规则。
可选的,该第三消息中还包括第一信息,该第一信息用于确定待激活的分流规则的生效范围,UPF网元根据该第一信息确定该APP的分流规则的生效范围。
图6为本申请实施例四提供的数据分流方法的信令流程图,本实施例与实施一不同的是:本实施例中APP的分流规则的下发和激活都通过NEF网元、PCF网元等核心网网元发送,如图6所示,本实施例提供的方法包括以下步骤:
S401、MEP与MEPM之间进行服务注册和鉴权流程。
S402、MEPM与NEF网元之间进行能力开放的注册和鉴权流程。
S403、MEP通过Mp1接口向APP发送启动指令。
S404、APP启动后完成服务注册和鉴权流程,获取对应的IP地址。
S405、APP通过Mp1向MEP返回启动响应。
S406、MEP向MEPM发送第五消息,该第五消息中包括APP的分流规则和第一信息,该第一信息用于PCF网元确定APP的分流规则的生效范围。
S407、MEPM向NEF网元发送该第五消息。
S408、NEF向PCF发送该第五消息。
可选的,该APP的分流规则中包括分流规则的标识。
S409、PCF网元根据第一信息确定APP的分流规则的生效范围。
PCF网元接收到第五消息后,根据第五消息中携带的第一信息确定APP的分流规则的生效范围。第一信息包括MEP的位置信息和/或UE要访问的业务信息。可选的,UE要访问的业务信息包括DNN,以及切片实例ID或者S-NSSAI。
该第五消息还用于触发激活APP的分流规则,一种实现方式中,通过该第一信息隐示的激活APP的分流规则,即PCF网元接收到第五消息后,根据第一信息确定需要激活该APP的分流规则。另一种实现方式中,该第五消息中包括第一信息和激活指示信息,PCF网元根据该激活指示信息确定激活APP的分流规则,进而根据第一信息确定APP的分流规则的生效范围。
S410、PCF网元向SMF网元发送激活消息,该激活消息中包括APP的分流规则以及APP的分流规则的生效范围信息。
该激活消息用于激活待激活的APP的分流规则。
S411、SMF网元向UPF网元发送该激活消息。
SMF网元发送的该激活消息中包括PDR规则,UPF网元接收到PDR规则后,根据PDR规则将MEP下发的APP的分流规则安装到会话的规则列表中,从而完成了APP的分流规则的激活。
S412、SMF网元经过PCF网元、NEF网元、MEMP向MEP发送第二指示信息。
该第二指示信息用于指示APP的分流规则已激活,或者,用于指示接收到了APP的分流规则,或者用于指示已添加APP的分流规则,在APP的分流规则被激活之后,UPF网元可以使用APP的分流规则进行分流。
S413、UPF网元将业务数据发送给APP。
在APP的分流规则激活之后,UPF网元根据APP的分流规则,以及业务数据的IP地址和/或端口号,将业务数据分流到MEP的APP上。
本实施例中,MEP通过MEPM、NEF网元、PCF网元、SMF网元组成的路径下发并激活APP的分流规则,在APP的分流规则激活之后,当UE访问MEP上的APP上的业务时,UPF网元根据UE发送的业务数据的IP地址和/或端口号,以及APP的分流规则,将业务数据分流到MEP上的APP。该方式中,在下发APP的分流规则的同时携带第一信息,使得PCF网元根据第一信息能够准确的确定APP的分流规则的生效范围,根据该生效范围下发APP的分流规则,从而不会引起信令风暴,减少了分流规则更新对网络的影响。
实施例四的方式中,以APP的分流规则的下发和激活通过一条消息实现为例进行说明,可选的,APP的分流规则的下发和激活还可以通过两条独立消息实现。例如,MEP通过MEPM、NEF网元、PCF网元、SMF网元组成的路径分别发送两条消息,一条消息用于下发APP的分流规则,一另一条消息用于激活APP的分流规则。
本申请实施例五提供一种MEP,该MEP包括用于实现实施例一至实施例四中MEP执行的方法的功能模块。
本申请实施例六提供一种UPF网元,该UPF包括用于实现实施例一至实施例四中UPF网元执行的方法的功能模块。
本申请实施例七提供一种PCF网元,该PCF网元包括用于实现实施例一至实施例四中PCF网元执行的方法的功能模块。
图7为本申请实施例八提供的一种MEP的结构示意图,如图7所示,该MEP包括:处理器11、存储器12和收发器13,所述存储器12用于存储指令,所述收发器13用于和其他设备通信,所述处理器11用于执行所述存储器12中存储的指令,以使 所述MEP执行上述实施例一至实施例四中MEP执行的方法步骤,具体实现方式和技术效果类似,这里不再赘述。
图8为本申请实施例九提供的一种UPF网元的结构示意图,如图8所示,该UPF网元包括:处理器21、存储器22和收发器23,所述存储器22用于存储指令,所述收发器23用于和其他设备通信,所述处理器21用于执行所述存储器22中存储的指令,以使所述UPF执行上述实施例一至实施例四中UPF网元执行的方法步骤,具体实现方式和技术效果类似,这里不再赘述。
图9为本申请实施例十提供的一种PCF网元的结构示意图,如图9所示,该PCF网元包括:处理器31、存储器32和收发器33,所述存储器32用于存储指令,所述收发器32用于和其他设备通信,所述处理器31用于执行所述存储器32中存储的指令,以使所述PCF网元执行上述实施例一至实施例四中PCF网元执行的方法步骤,具体实现方式和技术效果类似,这里不再赘述。
本申请实施例十一提供一种计算机可读存储介质,应用在MEP中,所述计算机可读存储介质存储有指令,当所述指令被计算装置执行时,使得所述MEP执行如上述实施例一至实施例四中MEP执行的方法步骤,具体实现方式和技术效果类似,这里不再赘述。
本申请实施例十二提供一种计算机可读存储介质,应用在UPF网元中,所述计算机可读存储介质存储有指令,当所述指令被计算装置执行时,使得所述UPF网元执行如上述实施例一至实施例四中UPF网元执行的方法步骤,具体实现方式和技术效果类似,这里不再赘述。
本申请实施例十三提供一种计算机可读存储介质,应用在PCF网元中,所述计算机可读存储介质存储有指令,当所述指令被计算装置执行时,使得所述PCF网元执行如上述实施例一至实施例四中PCF网元执行的方法步骤,具体实现方式和技术效果类似,这里不再赘述。
上述各个实施例中处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1002,处理器1001读取存储器1002中的指令,结合其硬件完成上述方法的步骤。
本申请所述的总线可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,本申请附图中的总线并不限定仅有一根总线或 一种类型的总线。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。

Claims (44)

  1. 一种数据分流方法,其特征在于,包括:
    移动边缘计算平台向用户面功能网元发送应用APP的分流规则,所述APP安装在所述移动边缘计算平台上,所述APP的分流规则中包括所述APP对应的网际协议IP地址和/或端口号,以及所述IP地址/或端口号对应的分流动作;
    所述移动边缘计算平台接收所述用户面功能网元根据所述APP的分流规则分流到所述APP上的业务数据。
  2. 根据权利要求1所述的方法,其特征在于,所述移动边缘计算平台接收所述用户面功能网元根据所述APP的分流规则分流到所述APP上的业务数据之前,还包括:
    所述移动边缘计算平台触发所述用户面功能网元激活所述APP的分流规则。
  3. 根据权利要求2所述的方法,其特征在于,所述移动边缘计算平台向用户面功能网元发送APP的分流规则,包括:
    所述移动边缘计算平台通过与所述用户面功能网元之间的第一接口发送所述APP的分流规则,所述APP的分流规则中还包括分流规则的标识;
    所述移动边缘计算平台触发所述用户面功能网元激活所述APP的分流规则,包括:
    所述移动边缘计算平台通过网络能力开放功能网元向策略控制网元发送待激活的分流规则的标识以及以及第一信息,所述第一信息用于所述策略控制网元确定所述待激活的分流规则的生效范围。
  4. 根据权利要求2所述的方法,其特征在于,所述移动边缘计算平台向用户面功能网元发送所述移动边缘计算平台上安装的APP的分流规则,包括:
    所述移动边缘计算平台通过网络能力开放功能网元向策略控制网元发送第五消息,所述第五消息中包括所述APP的分流规则和第一信息,所述第一信息用于所述策略控制网元确定所述APP的分流规则的生效范围;
    所述移动边缘计算平台触发所述用户面功能网元激活所述APP的分流规则,包括:
    所述移动边缘计算平台通过所述第五消息触发所述用户面功能网元激活所述APP的分流规则。
  5. 根据权利要求3所述的方法,其特征在于,所述移动边缘计算平台通过与所述用户面功能网元之间的第一接口发送所述APP的分流规则之后,还包括:
    所述移动边缘计算平台接收所述用户面功能网元通过所述第一接口发送的第一指示信息,所述第一指示信息用于指示所述用户面功能网元接收到所述APP的分流规则。
  6. 根据权利要求3-5任一项所述的方法,其特征在于,还包括:
    所述移动边缘计算平台接收会话管理功能网元发送的第二指示信息,所述第二指示信息用于指示所述APP的分流规则已激活。
  7. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述移动边缘计算平台与所述用户面功能网元进行服务注册和鉴权。
  8. 根据权利要求3或4所述的方法,其特征在于,所述方法还包括:
    所述移动边缘计算平台通过移动边缘计算平台管理器与所述网络能力开放功能网元进行服务注册和鉴权。
  9. 根据权利要求3或4所述的方法,其特征在于,还包括:
    所述移动边缘计算平台通过所述网络能力开放功能网元向所述策略控制网元发送更新消息,所述更新消息用于更新所述APP的分流规则和/或所述APP的分流规则的生效范围。
  10. 根据权利要求3或4所述的方法,其特征在于,还包括:
    所述移动边缘计算平台通过所述网络能力开放功能网元向所述策略控制网元发送删除消息,所述删除消息用于删除所述APP的分流规则。
  11. 根据权利要求2所述的方法,其特征在于,所述移动边缘计算平台向用户面功能网元发送所述移动边缘计算平台上安装的APP的分流规则,包括:
    所述移动边缘计算平台通过所述移动边缘计算平台与所述用户面功能网元之间的第一接口向所述用户面功能网元发送第二消息,所述第二消息中包括所述APP的分流规则,所述APP的分流规则中还包括分流规则的标识;
    所述移动边缘计算平台触发所述用户面功能网元激活所述APP的分流规则,包括:
    所述移动边缘计算平台通过所述第一接口向所述用户面功能网元发送第三消息,所述第三消息用于激活所述APP的分流规则,所述第三消息中包括待激活的所述APP的分流规则的标识。
  12. 根据权利要求11所述的方法,其特征在于,所述第三消息中还包括第一信息,所述第一信息用于所述用户面功能网元确定所述待激活的分流规则的生效范围。
  13. 根据权利要求2所述的方法,其特征在于,所述移动边缘计算平台向用户面功能网元发送APP的分流规则,包括:
    所述移动边缘计算平台通过所述移动边缘计算平台与所述用户面功能网元之间的第一接口向所述用户面功能网元发送第四消息,所述第四消息中包括所述APP的分流规则;
    所述移动边缘计算平台触发所述用户面功能网元激活所述APP的分流规则,包括:
    所述移动边缘计算平台通过所述第四消息触发所述用户面功能网元激活所述APP的分流规则。
  14. 根据权利要求13所述的方法,其特征在于,所述第四消息中还包括第一信息,所述第一信息用于所述用户面功能网元确定所述待激活的分流规则的生效范围。
  15. 根据权利要求13所述的方法,其特征在于,所述第四消息中还包括激活指示信息,所述激活指示信息用于指示激活所述APP的分流规则。
  16. 根据权利要求11-15任一项所述的方法,其特征在于,还包括:
    所述移动边缘计算平台通过所述第一接口接收所述用户面功能网元发送的第三指示信息,所述第三指示信息用于指示所述APP的分流规则已激活。
  17. 根据权利要求11-16任一项所述的方法,其特征在于,所述方法还包括:
    所述移动边缘计算平台与所述用户面功能网元进行服务注册和鉴权。
  18. 根据权利要求3、4、12或14中任一项所述的方法,其特征在于,所述第一信息包括所述移动边缘计算平台的位置信息和/或UE要访问的业务信息。
  19. 根据权利要求18所述的方法,其特征在于,所述UE要访问的业务信息包括:数据网络名称DNN,以及切片实例ID或者单个网络切片选择协助信息S-NSSAI。
  20. 根据权利要求11-17任一项所述的方法,其特征在于,还包括:
    所述移动边缘计算平台通过所述第一接口向所述用户面功能网元发送更新消息,所述更新消息用于更新所述APP的分流规则的匹配条件和/或生效范围。
  21. 根据权利要求11-17任一项所述的方法,其特征在于,还包括:
    所述移动边缘计算平台通过所述第一接口向所述用户面功能网元发送删除消息,所述删除消息用于删除所述APP的分流规则。
  22. 一种数据分流方法,其特征在于,包括:
    用户面功能网元获取应用APP的分流规则,所述APP安装在移动边缘计算平台上,所述APP的分流规则中包括所述APP对应的IP地址和/或端口号,以及所述IP地址/或端口号对应的分流动作;
    当所述用户面功能网元接收到用户设备发送的业务数据时,根据所述业务数据的IP地址和/或端口号,以及所述APP的分流规则,将所述业务数据发送到所述APP。
  23. 根据权利要求22所述的方法,其特征在于,所述根据所述业务数据的IP地址和/或端口号,以及所述APP的分流规则,将所述业务数据发送到所述APP之前,还包括:
    所述用户面功能网元激活所述APP的分流规则。
  24. 根据权利要求23所述的方法,其特征在于,所述用户面功能网元获取APP的分流规则,包括:
    所述用户面功能网元通过所述用户面功能网元与所述移动边缘计算平台之间的第一接口接收所述APP的分流规则,所述APP的分流规则中还包括分流规则的标识;
    所述用户面功能网元激活所述APP的分流规则,包括:
    所述用户面功能网元接收策略控制网元发送的激活消息,所述激活消息用于激活所述APP的分流规则,所述激活消息中包括所述APP的分流规则的标识;
    所述用户面功能网元根据所述激活消息激活所述APP的分流规则。
  25. 根据权利要求23所述的方法,其特征在于,所述用户面功能网元获取APP的分流规则,包括:
    所述用户面功能网元接收策略控制网元发送的APP的分流规则,所述APP的分流规则中还包括分流规则的标识,所述APP的分流规则是所述策略控制网元生成的,或者,所述APP的分流规则是所述移动边缘计算平台生成并发送给所述策略控制网元的;
    所述用户面功能网元激活所述APP的分流规则,包括:
    所述用户面功能网元接收所述策略控制网元发送的激活消息,所述激活消息用于激活所述APP的分流规则,所述激活消息中包括所述APP的分流规则的标识;
    所述用户面功能网元根据所述激活消息激活所述APP的分流规则。
  26. 根据权利要求24或25所述的方法,其特征在于,所述激活消息中还包括第一信息,所述第一信息用于所述用户面功能网元确定所述待激活的分流规则的生效范围。
  27. 根据权利要求24-26任一项所述的方法,其特征在于,还包括:
    所述用户面功能网元接收所述策略控制网元发送的更新消息,所述更新消息用于更新所述APP的分流规则和/或所述APP的分流规则的生效范围。
  28. 根据权利要求24-26任一项所述的方法,其特征在于,还包括:
    所述用户面功能网元接收所述策略控制网元发送的删除消息,所述删除消息用于删除所述APP的分流规则。
  29. 根据权利要求22所述的方法,其特征在于,所述用户面功能网元获取APP的分流规则,包括:
    所述用户面功能网元通过所述用户面功能网元与所述移动边缘计算平台之间的第一接口接收所述移动边缘计算平台发送的第二消息,所述第二消息中包括所述APP的分流规则,所述APP的分流规则中还包括分流规则的标识;
    所述用户面功能网元激活所述APP的分流规则,包括:
    所述用户面功能网元通过所述第一接口接收所述移动边缘计算平台发送的第三消息,所述第三消息用于激活所述APP的分流规则,所述第三消息中包括待激活的所述APP的分流规则的标识;
    所述用户面功能网元根据所述第三消息激活所述APP的分流规则。
  30. 根据权利要求29所述的方法,其特征在于,所述第三消息中还包括第一信息,所述第一信息用于所述用户面功能网元确定所述待激活的分流规则的生效范围。
  31. 根据权利要求22所述的方法,其特征在于,所述用户面功能网元获取APP的分流规则,包括:
    所述用户面功能网元通过所述用户面功能网元与所述移动边缘计算平台之间的第一接口接收所述移动边缘计算平台发送的第四消息,所述第四消息中包括所述APP的分流规则;
    所述用户面功能网元激活所述APP的分流规则,包括:
    所述用户面功能网元根据所述第四消息激活所述APP的分流规则。
  32. 根据权利要求31所述的方法,其特征在于,所述第四消息中还包括第一信息,所述第一信息用于所述用户面功能网元确定所述待激活的分流规则的生效范围。
  33. 根据权利要求29-32任一项所述的方法,其特征在于,还包括:
    所述用户面功能网元通过所述第一接口接收所述移动边缘计算平台发送的更新消息,所述更新消息用于更新所述APP的分流规则的匹配条件和/或生效范围。
  34. 根据权利要求29-32任一项所述的方法,其特征在于,还包括:
    所述用户面功能网元通过所述第一接口接收所述移动边缘计算平台发送的删除消息,所述删除消息用于删除所述APP的分流规则。
  35. 根据权利要求26、30、32中任一项所述的方法,其特征在于,所述第一信息包括所述移动边缘计算平台的位置信息和/或UE要访问的业务信息。
  36. 根据权利要求35所述的方法,其特征在于,所述UE要访问的业务信息包括:数据网络名称DNN,以及切片实例ID或者单个网络切片选择协助信息S-NSSAI。
  37. 一种数据分流方法,其特征在于,包括:
    策略控制网元从网络能力开放功能网元接收移动边缘计算平台移动边缘计算平台发送的第一消息,所述第一消息中包括待激活的APP的分流规则的标识以及以及第一信息;
    所述策略控制网元根据所述第一信息确定所述APP的分流规则的生效范围;
    所述策略控制网元向会话管理功能网元发送激活消息,所述激活消息中包括所述待激活的APP的分流规则的标识以及所述APP的分流规则的生效范围信息。
  38. 根据权利要求37所述的方法,其特征在于,所述第一信息包括所述移动边缘计算平台的位置信息和/或UE要访问的业务信息。
  39. 根据权利要求38所述的方法,其特征在于,所述UE要访问的业务信息包括:数据网络名称DNN,以及切片实例ID或者单个网络切片选择协助信息S-NSSAI。
  40. 根据权利要求37所述的方法,其特征在于,还包括:
    所述策略控制网元生成所述APP的分流规则;
    所述策略控制网元将所述APP的分流规则发送给用户面功能网元。
  41. 根据权利要求37所述的方法,其特征在于,还包括:
    所述策略控制网元接收所述移动边缘计算平台发送的所述APP的分流规则;
    所述策略控制网元将所述APP的分流规则发送给用户面功能网元。
  42. 一种装置,其特征在于,所述装置用于执行权利要求1-21任一项所述的方法。
  43. 一种装置,其特征在于,所述装置用于执行权利要求22-36任一项所述的方法。
  44. 一种装置,其特征在于,所述装置用于执行权利要求37-41任一项所述的方法。
PCT/CN2021/117510 2020-09-16 2021-09-09 数据分流方法和装置 WO2022057724A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21868549.3A EP4199475A4 (en) 2020-09-16 2021-09-09 METHOD AND DEVICE FOR DATA OFFLOADING
JP2023517374A JP2023541662A (ja) 2020-09-16 2021-09-09 データステアリング方法および装置
US18/184,257 US20230216798A1 (en) 2020-09-16 2023-03-15 Data Steering Method and Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010976179.X 2020-09-16
CN202010976179.XA CN114268591B (zh) 2020-09-16 2020-09-16 数据分流方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/184,257 Continuation US20230216798A1 (en) 2020-09-16 2023-03-15 Data Steering Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2022057724A1 true WO2022057724A1 (zh) 2022-03-24

Family

ID=80775877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117510 WO2022057724A1 (zh) 2020-09-16 2021-09-09 数据分流方法和装置

Country Status (5)

Country Link
US (1) US20230216798A1 (zh)
EP (1) EP4199475A4 (zh)
JP (1) JP2023541662A (zh)
CN (1) CN114268591B (zh)
WO (1) WO2022057724A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116193457A (zh) * 2023-02-07 2023-05-30 浙江九州云信息科技有限公司 一种Metaverse元宇宙底座算力平台的访问控制系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019127068A1 (en) * 2017-12-27 2019-07-04 Intel Corporation User plane apparatus for edge computing
CN111615128A (zh) * 2020-05-25 2020-09-01 浙江九州云信息科技有限公司 一种多接入边缘计算方法、平台及系统
CN111629401A (zh) * 2019-02-27 2020-09-04 大唐移动通信设备有限公司 一种边缘应用的数据分流方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10531420B2 (en) * 2017-01-05 2020-01-07 Huawei Technologies Co., Ltd. Systems and methods for application-friendly protocol data unit (PDU) session management
CN109640319B (zh) * 2019-01-16 2021-08-31 腾讯科技(深圳)有限公司 基于接入信息的调度方法、装置及电子设备
CN110290140B (zh) * 2019-06-28 2021-09-24 腾讯科技(深圳)有限公司 多媒体数据处理方法及装置、存储介质、电子设备
CN111586670A (zh) * 2020-04-30 2020-08-25 腾讯科技(深圳)有限公司 用于实现业务连续性的方法及相关设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019127068A1 (en) * 2017-12-27 2019-07-04 Intel Corporation User plane apparatus for edge computing
CN111629401A (zh) * 2019-02-27 2020-09-04 大唐移动通信设备有限公司 一种边缘应用的数据分流方法及系统
CN111615128A (zh) * 2020-05-25 2020-09-01 浙江九州云信息科技有限公司 一种多接入边缘计算方法、平台及系统

Also Published As

Publication number Publication date
JP2023541662A (ja) 2023-10-03
CN114268591A (zh) 2022-04-01
EP4199475A1 (en) 2023-06-21
US20230216798A1 (en) 2023-07-06
EP4199475A4 (en) 2023-07-26
CN114268591B (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
US20200228405A1 (en) Network slice management method and apparatus
US11765686B2 (en) Packet transmission method and apparatus for communicating between terminals of a same 5G LAN group
CN109842906B (zh) 一种通信的方法、装置及系统
US20230093339A1 (en) Session Management Method, Apparatus, and System
EP3691333A1 (en) Data transmission channel processing method, apparatus and system
EP4024956A1 (en) Communication method, apparatus, and system
JP7427082B2 (ja) サービスオフロード方法、装置、システム、電子機器、及びコンピュータプログラム
WO2023000935A1 (zh) 一种数据处理方法、网元设备以及可读存储介质
US11800587B2 (en) Method for establishing subflow of multipath connection, apparatus, and system
EP3720203A1 (en) Session establishment method, device and system
WO2022105897A1 (zh) 业务路径建立方法、通信装置及存储介质
CN113906717A (zh) 本地用户平面功能控制
US20230156828A1 (en) Session establishment method and apparatus, system, and computer storage medium
WO2018233451A1 (zh) 通信方法、装置和系统
WO2021197155A1 (zh) 一种通信方法及装置
CN114342332A (zh) 一种通信方法、装置及系统
WO2022057724A1 (zh) 数据分流方法和装置
CN109587028B (zh) 一种控制客户端流量的方法和装置
CN107666443B (zh) 一种报文转发方法及装置
CN116867108A (zh) 一种重构用户面功能网元关键服务能力的方法及通信装置
US11095514B2 (en) System and method for propagating anima network objective changes
CN115915196A (zh) 一种链路状态检测方法、通信装置及通信系统
CN114449585A (zh) 应用接入网络的方法、装置及系统
CN114125038B (zh) 一种服务调度方法、装置及存储介质
WO2024114535A2 (zh) 数据转发方法、设备及计算机可读存储介质

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023517374

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021868549

Country of ref document: EP

Effective date: 20230316

NENP Non-entry into the national phase

Ref country code: DE