WO2022057487A1 - 路径标识的分配方法、系统、装置、设备以及存储介质 - Google Patents

路径标识的分配方法、系统、装置、设备以及存储介质 Download PDF

Info

Publication number
WO2022057487A1
WO2022057487A1 PCT/CN2021/110662 CN2021110662W WO2022057487A1 WO 2022057487 A1 WO2022057487 A1 WO 2022057487A1 CN 2021110662 W CN2021110662 W CN 2021110662W WO 2022057487 A1 WO2022057487 A1 WO 2022057487A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
identification information
message
path identification
indication information
Prior art date
Application number
PCT/CN2021/110662
Other languages
English (en)
French (fr)
Inventor
沈凯强
贾阳阳
方晟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011545932.6A external-priority patent/CN114257542A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2023517837A priority Critical patent/JP2023542677A/ja
Priority to EP21868316.7A priority patent/EP4207640A4/en
Priority to MX2023003221A priority patent/MX2023003221A/es
Publication of WO2022057487A1 publication Critical patent/WO2022057487A1/zh
Priority to US18/185,818 priority patent/US20230224241A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/26Route discovery packet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/38Flow based routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/34Source routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • H04L45/507Label distribution

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method, system, apparatus, device, and storage medium for allocating path identifiers.
  • Segment routing policy is a new tunnel diversion technology developed on the basis of SR technology.
  • SR Policy is used to indicate at least one candidate path (candidate path), each candidate path (candidate path) has a preference value (preference), the higher the preference value of the candidate path, the more preferred, among them, the valid candidate with the highest preference value
  • Paths are active candidate paths, each candidate path is identified by a segment list (segment list), which is also called a segment identity (SID) list, and each candidate path also has a binding segment identifier (binding-SID, BSID) attribute, the BSID of each candidate path is a kind of identification information of each candidate path, and the BSID of the active candidate path is the identification information of the SR Policy, that is, the BSID of the active candidate path is the BSID of the SR Policy.
  • the BSID plays an important role in the traffic diversion of the SR Policy. For example, after the head node of the at least one candidate path receives a packet, if the packet carries the BSID of the SR Policy, the head node will send the packet to the packet. The BSID in the SR Policy is popped, and the SID list of the active candidate path in the SR Policy is pushed into the packet header of the packet as a label stack to guide the packet to be forwarded from the active candidate path.
  • the candidate path of the text can also be referred to as a label switching path (label switching path, LSP).
  • SR policies there are many types of SR policies, and different types of SR policies are created in different ways, such as segment routing using IPv6 data plan policy based on Internet protocol version 6 (IPv6).
  • IPv6 Internet protocol version 6
  • SRv6 Policy can be created in various ways, such as through path computation element communication protocol (PCEP) creation, through border gateway protocol (BGP) creation or static configuration.
  • PCEP path computation element communication protocol
  • BGP border gateway protocol
  • a path identifier (such as a BSID) is generally allocated to the SRv6 Policy.
  • the path computation element sends the PCEP protocol to the path computation client ( path computation client, PCC) sends a path computation initialization (path computation LSP initiate message, PCInitiate) message, wherein the PCC is the head node of the candidate path indicated by the SRv6 Policy in the network, and the PCInitiate message carries one of the paths indicated by the SRv6 Policy.
  • the BSID of the candidate path but in some possible scenarios, after the PCC receives the BSID sent by the PCE, it may find that the BSID cannot be used normally and the allocation fails. In this case, the PCC can only request the PCE to allocate a new BSID. Then, since the PCE fails to allocate the BSID to the path, the PCC can only request the PCE to re-allocate, resulting in inflexible path ID allocation.
  • the embodiments of the present application provide a method, system, apparatus, device, and storage medium for allocating path identifiers, which can improve the distribution efficiency of path identifiers.
  • the technical solution is as follows:
  • a method for assigning path identifiers is provided, the method is performed by a forwarding node on the path, and the method includes:
  • PCEP message Receives a path calculation unit communication protocol PCEP message, where the PCEP message includes path identification information for identifying the path and indication information associated with the path identification information; determine that the path identification information is unavailable, and determine the path identification information according to the The indication information performs an operation associated with the path identification information.
  • the unavailability of the path identification information may be manifested as unavailability due to conflict, or unavailability due to failure to pass verification.
  • the path identification information of the path conflicts with the path identification information of the other paths, and the path identification information of the path Path identification information is not available.
  • the forwarding node verifies the path identification information of the path, and if the path identification information fails the verification, the path identification information is unavailable.
  • the path identification information does not belong to the range of the path identification information used by the forwarding node when configuring the path identification information for the path, and the path identification information fails the verification. If the data format of the path identification information is set, the path identification information fails the verification.
  • the method receives the PCEP message through the forwarding node on the path, so that the forwarding node, according to the indication information in the PCEP message, when the forwarding node determines that the path identification information of the path is unavailable, executes the matching with the path identification Information association operations, such as determining redistribution of path identifiers by the forwarding node according to the indicated content, or requesting the control node to redistribute path identifiers, etc., improve the flexibility and efficiency of path identifier allocation.
  • the operation associated with the path identification information is a first operation, and the first operation includes reassigning the path identification information to the path.
  • the forwarding node when the forwarding node is explicitly instructed by the first indication information to determine that the path identifier of the path is unavailable, the forwarding node reassigns the path identifier information to the path, and does not need to request the control node to re-allocate the path identifier information.
  • the allocation reduces the number of interactions between the control node and the forwarding node, and improves the allocation efficiency of the path identification.
  • the method further includes:
  • the forwarding node sends an identification update message to the control node, so that the control node updates the stored path identification information of the path to the target path identification information, thereby possibly ensuring the path identification of the path.
  • the information is consistent between the control node and the forwarding node, so that the forwarding node cannot normally forward the data flow due to inconsistent path identification information.
  • the identity update message is a path computation state report (path computation state report, PCRpt) message.
  • the identification update message includes the target path identification information.
  • the identification update message further includes an update identification, and the update identification is used to instruct to update the path identification information to target path identification information.
  • the operation associated with the path identification information includes a second operation, and the second operation includes sending a message to the control node, and the message is used to indicate the identification An error occurred in the allocation of the path identification information for the path described.
  • the forwarding node is explicitly instructed by the second indication information to report the path identification information allocation error of the path to the control node when the forwarding node determines that the path identification of the path is unavailable, so that the control node can re-allocate the path identification information of the path. Allocating new path identification information to the path is beneficial for the control node to uniformly maintain the path identification information of each path in the forwarding network.
  • the path identification information includes the BSID of the path.
  • the indication information is located in a reserved reserved field in the BSID field in the PCEP message.
  • the indication information is located in the flags field of the PCEP message.
  • the indication information occupies at least one bit.
  • the PCEP message includes any one of a PCIInitiate message or a path computation update request (path computation update request, PCUpd) message.
  • the path is a path indicated by an SR Policy
  • the SR Policy includes either a segment routing traffic engineering policy (SR TE Policy) or an SRv6 Policy.
  • the path is candidate path.
  • the path identification information is the identification information of the SR Policy, or the identification information of the candidate path.
  • the determining that the path identification information is unavailable includes:
  • path identification information is already occupied by any path other than the path, it is determined that the path identification information is unavailable.
  • the forwarding node is the head node of the path.
  • a method for assigning path identifiers is provided, the method is executed by a control node, and the method includes:
  • the PCEP message includes path identification information for identifying the path and indication information associated with the path identification information, the The indication information is used to instruct the forwarding node on the path to perform an operation associated with the path identification information when the forwarding node determines that the path identification information is unavailable according to the indication information.
  • the operation associated with the path identification information is a first operation, and the first operation includes reassigning the path identification information to the path.
  • the operation associated with the path identification information is a second operation
  • the second operation includes sending a message to the control node, the message being used to indicate the There was an error in the allocation of the path identification information for the path.
  • the operation associated with the path identification information includes a second operation, and the second operation includes sending a message to the control node, where the message is used to indicate the path identifying the path Error in assignment of identification information.
  • the path identification information includes the BSID of the path.
  • the indication information is located in a reserved field in the BSID field in the PCEP message.
  • the indication information is located in an identification field in the PCEP message.
  • the indication information occupies at least one bit.
  • the PCEP message includes either a PCIInitiate message or a PCUpd message.
  • the path is the path indicated by the SR Policy
  • the SR Policy includes any one of the SR TE Policy or the SRv6 Policy.
  • the path is candidate path.
  • the path identification information is the identification information of the SR Policy, or the identification information of the candidate path.
  • the forwarding node is the head node of the path.
  • the generating a PCEP message includes:
  • the PCEP message is generated.
  • the method further includes:
  • path identification information is reassigned to the path.
  • the method further includes:
  • identification update message is used to instruct to update the path identification information to target path identification information, where the target path identification information is the path identification information reassigned by the forwarding node for the path;
  • the stored path identification information of the path is updated to the target path identification information.
  • the identity update message is a PCRpt message.
  • the identification update message includes the target path identification information.
  • the identification update message further includes an update identification, where the update identification is used to instruct to update the path identification information to target path identification information.
  • a system for distributing path identifiers includes a control node and a forwarding node;
  • the control node is used to:
  • PCEP message includes path identification information for identifying a path and indication information associated with the path identification information;
  • the forwarding node is configured to receive the PCEP message, determine that the path identification information is unavailable, and perform an operation associated with the path identification information according to the indication information.
  • the operation associated with the path identification information is a first operation, and the first operation includes reassigning the path identification information to the path.
  • the operation associated with the path identification information is a second operation
  • the second operation includes sending a message to the control node, the message being used to indicate the There was an error in the allocation of the path identification information for the path.
  • the operation associated with the path identification information includes a second operation, and the second operation includes sending a message to the control node, where the message is used to indicate the path identifying the path Error in assignment of identification information.
  • the path identification information includes the BSID of the path.
  • the indication information is located in a reserved field in the BSID field in the PCEP message.
  • the indication information is located in an identification field in the PCEP message.
  • the indication information occupies at least one bit.
  • the PCEP message includes either a PCIInitiate message or a PCUpd message.
  • the path is the path indicated by the SR Policy
  • the SR Policy includes any one of the SR TE Policy or the SRv6 Policy.
  • the path is candidate path.
  • the path identification information is the identification information of the SR Policy, or the identification information of the candidate path.
  • the forwarding node is the head node of the path.
  • the forwarding node is further configured to send an identification update message to the control node, where the identification update message is used to instruct to update the path identification information to target path identification information, the target path identification The information is path identification information reassigned by the forwarding node for the path.
  • the control node is further configured to receive the identification update message, and update the stored path identification information of the path to the target path identification information based on the identification update message.
  • the identity update message is a PCRpt message.
  • the identification update message includes the target path identification information.
  • the identification update message further includes an update identification, where the update identification is used to instruct to update the path identification information to target path identification information.
  • the forwarding node is further configured to determine that the path identification information is unavailable if the path identification information is already occupied by any path other than the path.
  • the forwarding node is further configured to send a message to the control node, where the message is used to indicate that the path identification information for identifying the path is incorrectly allocated.
  • the control node is further configured to receive the message, and re-allocate path identification information to the path based on the message.
  • control node is further configured to generate the PCEP message if it is detected that the forwarding node restarts due to a failure.
  • an apparatus for allocating path identifiers is provided, the apparatus is configured as a forwarding node on the path, and the apparatus includes:
  • a receiving module configured to receive a path calculation unit communication protocol PCEP message, where the PCEP message includes path identification information for identifying the path and indication information associated with the path identification information;
  • a determining module for determining that the path identification information is unavailable
  • An execution module configured to execute an operation associated with the path identification information according to the indication information.
  • the operation associated with the path identification information is a first operation, and the first operation includes reassigning the path identification information to the path.
  • the operation associated with the path identification information is a second operation
  • the second operation includes sending a message to the control node, the message being used to indicate the There was an error in the allocation of the path identification information for the path.
  • the execution module includes:
  • a sending unit configured to send an identification update message to the control node, where the identification update message is used to instruct to update the path identification information to target path identification information, where the target path identification information is that the forwarding node is Path identification information of the path reallocation.
  • the identity update message is a PCRpt message.
  • the identification update message includes the target path identification information.
  • the identification update message further includes an update identification, where the update identification is used to instruct to update the path identification information to target path identification information.
  • the operation associated with the path identification information includes a second operation, and the second operation includes sending a message to the control node, and the message is used to indicate the identification An error occurred in the allocation of the path identification information for the path described.
  • the path identification information includes the BSID of the path.
  • the indication information is located in a reserved field in the BSID field in the PCEP message.
  • the indication information is located in an identification field in the PCEP message.
  • the indication information occupies at least one bit.
  • the PCEP message includes any one of a PCIInitiate message or a PCUpd message.
  • the path is the path indicated by the SR Policy
  • the SR Policy includes any one of the SR TE Policy or the SRv6 Policy.
  • the path is candidate path.
  • the path identification information is the identification information of the SR Policy, or the identification information of the candidate path.
  • the forwarding node is the head node of the path.
  • a fifth aspect provides an apparatus for allocating path identifiers, the apparatus is configured as a control node, and the apparatus includes:
  • a generating module configured to generate a PCEP message, where the PCEP message includes path identification information for identifying a path and indication information associated with the path identification information, where the indication information is used to indicate a forwarding node on the path According to the indication information, when the forwarding node determines that the path identification information is unavailable, perform an operation associated with the path identification information;
  • a sending module configured to send the PCEP message to the forwarding node.
  • the operation associated with the path identification information is a first operation, and the first operation includes reassigning the path identification information to the path.
  • the operation associated with the path identification information is a second operation
  • the second operation includes sending a message to the control node, the message being used to indicate the There was an error in the allocation of the path identification information for the path.
  • the operation associated with the path identification information includes a second operation, and the second operation includes sending a message to the control node, where the message is used to indicate the path identifying the path Error in assignment of identification information.
  • the path identification information includes the BSID of the path.
  • the indication information is located in a reserved field in the BSID field in the PCEP message.
  • the indication information is located in an identification field in the PCEP message.
  • the indication information occupies at least one bit.
  • the PCEP message includes any one of a PCIInitiate message or a PCUpd message.
  • the path is the path indicated by the SR Policy
  • the SR Policy includes any one of the SR TE Policy or the SRv6 Policy.
  • the path is candidate path.
  • the path identification information is the identification information of the SR Policy, or the identification information of the candidate path.
  • the forwarding node is the head node of the path.
  • the generating module is configured to generate the PCEP message if it is detected that the forwarding node restarts due to a failure.
  • the device further includes:
  • a first receiving module configured to receive a message, where the message is used to indicate that the path identification information of the path is allocated incorrectly;
  • An allocation module configured to re-allocate path identification information to the path based on the message.
  • the device further includes:
  • a second receiving module configured to receive an identification update message, where the identification update message is used to instruct to update the path identification information to target path identification information, where the target path identification information is that the forwarding node is the path redistributed path identification information;
  • An update module configured to update the stored path identification information of the path to the target path identification information based on the identification update message.
  • the identity update message is a PCRpt message.
  • the identification update message includes the target path identification information.
  • the identification update message further includes an update identification, where the update identification is used to instruct to update the path identification information to target path identification information.
  • a network device in a sixth aspect, includes a processor, and the processor invokes a program instruction, so that the network device implements the above-mentioned first aspect or any optional manner of the above-mentioned first aspect.
  • the network device may also include a memory coupled to the processor in which program instructions invoked by the processor are stored.
  • the network device may also include a communication interface for the device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module or other type of communication interface.
  • the above program instructions invoked by the processor may also be pre-stored in an external memory, downloaded from the Internet before use, and stored locally. This application does not limit the source of the instructions in the memory in a unique way.
  • a control device in a seventh aspect, includes a processor, and the processor invokes a program instruction, so that the network device implements the above-mentioned second aspect or any optional manner of the above-mentioned second aspect.
  • the control device may also include a memory coupled to the processor in which program instructions invoked by the processor are stored.
  • the control device may also include a communication interface for the device to communicate with other devices, for example, the communication interface may be a transceiver, circuit, bus, module or other type of communication interface.
  • the above program instructions invoked by the processor may also be pre-stored in an external memory, downloaded from the Internet before use, and stored locally. This application does not limit the source of the instructions in the memory in a unique way.
  • a computer-readable storage medium is provided, and program codes are stored in the storage medium, and the program codes are loaded and executed by a processor, so that the network device realizes any one of the above-mentioned first aspect or the above-mentioned first aspect The operation performed by the assignment method of the path ID provided in an optional way.
  • a computer-readable storage medium in which program codes are stored, and the program codes are loaded and executed by a processor, so that the control device realizes any one of the above-mentioned second aspect or the above-mentioned second aspect
  • the operation performed by the assignment method of the path ID provided in an optional way.
  • a computer program product or computer program includes program code, which, when run on a network device, causes the network device to perform the above-mentioned first aspect or each of the first aspects. methods provided in an optional implementation.
  • a computer program product or computer program includes program code, which, when run on a control device, causes the control device to perform the above-mentioned second aspect or the second aspect.
  • the path identifier assignment method provided by the first aspect or any optional manner of the first aspect may be performed by executing the path identifier assignment method provided by the second aspect or any optional manner of the second aspect.
  • the device on the opposite side of the device is executed, and the solutions provided in the third aspect to the eleventh aspect can be used to implement the path identifier allocation method provided by the first aspect or any optional manner of the first aspect.
  • the beneficial effects are not repeated here.
  • FIG. 1 is a schematic diagram of a system for allocating path identifiers provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a message format of a PCEP message provided by an embodiment of the present application
  • FIG. 3 is a flowchart of a method for allocating path identifiers provided by an embodiment of the present application
  • FIG. 4 is a schematic diagram of a data format of a TE-path-BSID TLV provided by an embodiment of the present application
  • 5 is an interaction flow diagram between the forwarding node and the control node when the indication information provided by the embodiment of the present application is the first indication information
  • FIG. 6 is an interaction flow diagram between the forwarding node and the control node when the indication information provided by the embodiment of the present application is the second indication information;
  • FIG. 7 is a schematic structural diagram of a BISD field provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an apparatus for allocating path identifiers provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an apparatus for allocating path identifiers provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a control device provided by an embodiment of the present application.
  • the present application provides a PCEP packet, where the PCEP packet includes path identification information for identifying a path and indication information associated with the path identification information, so that a forwarding node on the path determines at the forwarding node according to the indication information When the path identification information is unavailable, the operation associated with the path identification information is performed.
  • the operations associated with the path identification information indicated by different indication information are different, so that the assignment of the path identification is more flexible, for example, the following application scenarios 1-3.
  • the control node may generate a path identification including the path when assigning the path identification information to a path. information and the PCEP message of the second indication information, when the control node sends the PCEP message to the forwarding node on the path, so that the forwarding node confirms that the control node assigns the path to the forwarding node according to the second indication information
  • a message is sent to the control node to report an error, so as to request the control node to re-allocate the path identification information for the path.
  • the forwarding node can return a path calculation error (PCEP error, PCErr) message to the control node through the PCEP protocol to indicate that the path identification information allocated by the control node for the path is incorrect, when the control node receives the PCErr message , continue to allocate new path identification information for the path, and deliver the newly allocated path identification information to the forwarding node again until the newly issued path identification information can be used normally.
  • PCEP error path calculation error
  • PCErr path calculation error
  • the control node may generate a path identification information when assigning the path identification information to a path.
  • the PCEP message including the road identification information of the path and the first indication information, when the control node sends the PCEP message to the forwarding node on the path, so that the forwarding node confirms the PCEP message according to the first indication information.
  • the control node When the path identification information allocated by the control node for the path is unavailable, the control node reassigns the path identification information for the path without requesting the control node to re-allocate the path, thereby reducing the number of interactions between the forwarding node and the control node and improving the Efficiency of allocation of path IDs.
  • the forwarding node can also send the path identification information allocated for the path by itself to the control node, and then the control node updates and stores it, so that even if forwarding
  • the node can assign the path identification information to the path by itself, and the control node can still learn the available path identification information of each path in the network, so that the control node can manage it uniformly.
  • the control node may also notify the forwarding node of the path identification information of the path through a PCEP message.
  • the control node can also detect the online status of the forwarding node in real time, and if the control node detects that the forwarding node is offline within the target time period, the control node determines that the forwarding node appears If the control node subsequently detects that the forwarding node is in an online state, the control node determines that the forwarding node fails and restarts.
  • the control node After the control node determines that the forwarding node fails and restarts, in order to avoid the loss of the path identification information of the path locally stored by the forwarding node due to the failure, the control node again announces the path identification information of the path to the forwarding node through a PCEP message.
  • the path identification information of the path in the PCEP packet may be the path identification information used by the forwarding node before the failure of the path.
  • the forwarding node may serve multiple services. After the forwarding node fails and restarts, in order to continue to serve the multiple services, the forwarding node may need to restore the path identification information of the paths corresponding to the multiple services.
  • the timing at which the node restores the path identification information of the paths corresponding to the multiple services is not controllable, which causes the forwarding node to find that the path identification information has been allocated to other services when it receives the path identification information re-issued by the control node. resulting in unavailability.
  • the forwarding node may reassign the path identification information for the path according to the first indication information in the PCEP message and notify the control node, and the control node will update the locally stored path identification information of the path.
  • the path identification information of the path in the PCEP message that is re-sent to the forwarding node may be the path identifier information stored locally by the control node and used by the path before the forwarding node fails. It can also be the path identification information re-allocated by the control node for the path.
  • FIG. 1 is a schematic diagram of a system for allocating path identifiers provided by an embodiment of the present application.
  • the system 100 includes a forwarding network 101 and a control network 102 .
  • the forwarding network 101 includes a plurality of forwarding nodes 1011 (such as the forwarding nodes AH in FIG. 1 ), and the plurality of forwarding nodes 1011 may form multiple paths, and each path is composed of some forwarding nodes in the plurality of forwarding nodes 1011 , the multiple paths may also have the same forwarding node 1011.
  • path 1 in FIG. 1 includes forwarding nodes A, B, F, C, and D
  • path 2 includes forwarding nodes F, C, and D. Nodes F, C and D are the same forwarding nodes on path 1 and path 2.
  • each forwarding node 1011 on the any path can be divided into a head node, an intermediate node and a tail node, wherein the head node 1011
  • the node is the first forwarding node on the any path
  • the intermediate node is the forwarding node except the first forwarding node and the last forwarding node on the any path
  • the tail node is the last forwarding node on the any path.
  • the path may be a part of the end-to-end forwarding path of the packet, such as a tunnel.
  • the control network 102 is configured to send a control message to each forwarding node 1011 in the forwarding network 101, so that each forwarding node 1011 performs a corresponding operation based on the control message.
  • the control network 102 includes a control node 1021 , which can collect topology information of the forwarding network 101 during an initialization phase.
  • the control node 1021 collects topology information of the forwarding network 101 according to a border gateway protocol (BGP)-link-state (LS) protocol, wherein the BGP-LS The protocol is a multi-protocol extension of BGP that transmits the state of the interior gateway protocol (IGP) link through the BGP protocol.
  • BGP border gateway protocol
  • LS link-state
  • the forwarding network 101 includes multiple IGP areas, and for the forwarding node 1011 that has a BGP-LS neighbor relationship with the control node 1021 in any IGP area, the forwarding node 1011 collects the information about any one of the IGP areas through the IGP protocol.
  • the topology information of the IGP area, the collected topology information is encapsulated in a BGP-LS route, and the BGP-LS route is sent to the control node 1021, so that the control node 1021 can obtain the topology information of each IGP area in the forwarding network 101 , the control node 1021 obtains the topology information of the forwarding network 101 by integrating the topology information of each IGP area.
  • the forwarding nodes G, C and D in FIG. 1 report the topology information of the IGP area to which they belong to the control node by sending the BGP-LS route to the control node 1021 after collecting the topology information of the IGP area to which they belong. 1021.
  • the control node 1021 may determine, according to the transmission requirements of the data stream, the forwarding network 101 for receiving the data stream.
  • the forwarding node of the data flow and the forwarding node for outputting the data flow and based on the positions of the two forwarding nodes in the forwarding network 101, at least one candidate path is allocated to the data flow, wherein the head node of each candidate path is
  • the tail node of each candidate path is the determined forwarding node for outputting the data stream; the control node 1021 may also generate based on the at least one candidate path.
  • An SR Policy which indicates at least one candidate path for forwarding the data flow, and delivers the SR Policy to the head node of the at least one candidate path.
  • the control node 1021 may also assign a path identification information (eg, BSID) to each candidate path in the at least one candidate path.
  • a path identification information eg, BSID
  • the control node 1021 uses a PCEP message to notify the head node of the path identification information allocated by the control node 1021 for the candidate path.
  • the PCEP message includes path identification information for identifying the candidate path and indication information associated with the path identification information.
  • the head node When the head node receives the PCEP message, it determines whether the path identification information of the candidate path in the PCEP message has been occupied by other paths. If it has been occupied, the path identification information of the candidate path is unavailable. The path identification information of the candidate path is unavailable, and the head node performs an operation associated with the path identification information according to the indication information associated with the path identification information in the PCEP message, and the operation may be that the head node reassigns the candidate path.
  • the path assignment path identification information may also be that the head node sends a message to the control node 1021 to indicate that the path identification information of the candidate path is allocated incorrectly, and then the control node re-allocates the path identification information to the candidate path.
  • the head node re-allocates the path identification information for the candidate path, after the head node has allocated the path identification information for the candidate path, the head node sends the control node 1021 that the head node is the candidate path
  • the path identification information allocated to the path is stored by the control node 1021 .
  • the control node 1021 sends a PCEP packet to the forwarding node A (head node) on the path 1 to inform the control node 1021 of the path identification information allocated for the path 1. If the forwarding node A determines The path identification information allocated by the control node 1021 for the path 1 is unavailable, and the forwarding node A reallocates a new path identification information for the path 1 according to the indication information associated with the path identification information in the PCEP packet, and transfers the new path identification information to the path 1. The path identification information is sent to the control node 1021 and stored by the control node 1021 .
  • the control node 1021 for the path 2 if the BSID allocated by the control node 1021 for the path 2 is 10011, the control node sends a PCEP message to the forwarding node F (head node) on the path 2, The PCEP message carries the 10011 allocated by the control node 1021 for path 2 and the indication information associated with the 10011.
  • the forwarding node F determines that 10011 has been occupied by a path other than path 2, the forwarding node F according to the PCEP message and 10011 The associated indication information is to re-assign a new BSID for the path 2, the new BSID is 10012, the forwarding node F sends the 10012 allocated by the forwarding node F for the path 2 to the control node 1021, and the control node sends the path 2 to the control node.
  • the BSID is stored as 10012.
  • the path identification information of the active candidate path in the SR Policy is used as the identification information of the SR Policy, and is sent to the user of any service.
  • the sender of the data stream for example, the tunnel head node corresponding to the SR Policy, the sender adds the path identification information of the SR Policy to the message in the data stream.
  • the path identification information carried in the message is ejected, and the SID list of the candidate paths identified by the path identification information is used as a label stack, and is pushed into the message header of the message to guide the message from the
  • the forwarding network 101 is forwarded on the candidate path.
  • the head node of each path in the forwarding network 101 interacts with the control node 1021 according to the PCEP protocol.
  • the head node is called PCC
  • the control node 1021 is called PCE.
  • control network 102 can be regarded as a control center, such as a network cloud engine.
  • control network 102 may also include a control node with other control functions, such as a control node that sends a specific control message to the head node, where the specific control message is used to instruct the head node to send a message according to the control node 1021
  • the candidate path indicated by the SR Policy forwards the data flow of any service, or instructs the head node to forward the data flow of any service according to the manually configured path.
  • control node 1021 is a node in the control network 102 used for issuing the SR Policy for the control network 102 and for allocating path identification information for each candidate path indicated by the SR Policy.
  • Control device if the control network 102 is implemented by a control device, the control node 1021 is a control module in the one control device.
  • the PCEP message includes path identification information for identifying a path and indication information associated with the path identification information, wherein, when the path identification information of the path is a BSID, the path identification information
  • the information may be located in a reserved field within the BSID field in the PCEP message.
  • the PCEP packet may include at least one PCEP object (object), such as an LSP object, and each PCEP object in the PCEP packet may carry at least one type-length-value (type-length-value, TLV), optionally , the TLV in the LSP object includes traffic engineering (traffic engineering, TE)-path (path)-BSID TLV, and the TE-path-BSID TLV can be regarded as the BSID field in the PCEP packet.
  • object such as an LSP object
  • TLV type-length-value
  • TLV type-length-value
  • the TLV in the LSP object includes traffic engineering (traffic engineering, TE)-path (path)-BSID TLV
  • the PCEP message shown in FIG. 2 includes a message header and a PCEP object, wherein the message header includes a version number (version, Ver) field, a flags (flags) field, a message-type (message-type) field, and a message length field ( message-length) field.
  • the message header includes a version number (version, Ver) field, a flags (flags) field, a message-type (message-type) field, and a message length field ( message-length) field.
  • the Ver field is used to store the version number of PCEP, occupying 3 bits (bits); the identification field in the message header is not currently defined, and each bit in the identification field in the message header can be all set to 0, Occupies 5 bits; the message type field is used to store the type identifier of the PCEP message and occupies 8 bits.
  • the PCEP message is divided into a PCIInitiate message, a PCUpd message and a PCRpt message. The different type identifiers of the PCEP message are used to identify different types of PCEP messages.
  • the PCEP message is a PCIInitiate message
  • the PCEP message is a PCUpd message
  • the type identifier stored in the message type field is 10
  • the PCEP message is a PCRpt message.
  • At least one PCEP object in a PCEP message has a common format
  • the at least one PCEP object starts with a common object header, and then defines object-specific fields for different PCEP objects, such as the common object header in the PCEP message shown in Figure 2 (common object header) includes object class (object-class) field, object type field (object-type, OT) field, reserved field (reserved, Res) field, implementation rule (processing-rule, P) mark field, ignore (ignore, I) flag field, object length (object length) field.
  • the object category field is used to store the category identifier of the PCEP object, occupying 8 bits;
  • the object type field is used to store the type identifier of the object, occupying 4 bits, the object category field and the content stored in the object type field are used for To uniquely identify a PCEP object, for example, if the category identifier stored in the object category field is 32, and the type identifier stored in the object type field is 1, then the PCEP object is an LSP object;
  • the reserved field occupies 2 bits, which are reserved bits and can be set to 0;
  • the P flag field is used to store the P flag and occupies 1 bit.
  • the PCEP object When the P flag is set, the PCEP object must When not set, the PCEP object can be ignored; the I flag field is used to store the I flag, and the I flag is used to determine whether the PCEP object is to be processed, occupying 1 bit; the object length field is used to store the length of the PCEP object. Length (represented by the number of bytes), occupying 16 bits.
  • the object-specific fields defined by the LSP object include a PCEP-specific identifier for the LSP (a PCEP-specific identifier for the LSP, PLSP-ID), an identification field, and a TLV field, where the PLSP-ID stored in the PLSP-ID field
  • the ID is used to identify an LSP within the lifetime of each PCEP session, occupying 20 bits; the identification field in the LSP object occupies a total of 12 bits, including the 3-bit operation (operational, O) bit, length It is a 1-bit management (administrative, A), romove (R) bit, state synchronization (state synchronization, S) flag bit and a delegate (Delegate, D) flag bit, and the rest are set to 0, where A The bit is used to identify the operating state of the LSP, the R flag bit is used to indicate that this LSP is deleted from the database, the S flag bit is used to mark the LSP state synchronization, and the D flag bit is used to indicate that the LSP is in the
  • the TLV field shown in FIG. 2 is a TE-path-BSID TLV, including a type field, a length field, a binding type (binding type, BT) field, a reserved field, and a binding value (binding value) field.
  • the type field is used to store the type identifier of the TLV. If the type identifier of the TLV is 1011, the TLV field is the TE-path-BSID TLV.
  • the length field is used to store the length of the TLV field.
  • the BT field is used to store the identification of the binding type
  • the second reserved field is a field reserved for extending the TLV function, and the indication information associated with the path identification information can be stored in the second reserved field, for example, in Fig.
  • the indication information in 2 is used to represent F, and F is stored in the last bit of the second reserved field. Of course, F can also be located at any position in the second reserved field.
  • the binding value field is used to store path identification information (eg, BSID) of the path, and the lengths of BSIDs of different binding types are different. Therefore, the length of the BSID stored in the binding value field is variable.
  • the format of the PCEP message shown in Figure 2 is not the complete message format of the PCEP message. Only some fields are shown in Figure 2, and the remaining fields of the PCEP message are not shown in Figure 2.
  • the header of the PCEP packet may also include other fields, and the PCEP packet may include multiple PCEP objects. Only the LSP objects are shown in FIG. 2 , and the corresponding LSPs shown in FIG. 2 may also include TE-path objects. - Other TLVs than the BSID TLV, only the data format of the TE-path-BSID TLV is shown in Figure 2.
  • the indication information associated with the path identification information is located in the reserved field of the TE-path-BSID TLV.
  • the indication information may also be located in other reserved fields in the PCEP message, such as reserved fields in the common object header of the PCEP message.
  • the indication information may also be located in an identification field in a PCEP packet, for example, an identification field in an LSP object or an identification field in a packet header of a PCEP packet.
  • the indication information occupies one bit.
  • the path identification information may occupy multiple bits. Regarding the number of bits occupied by the indication information, the following combination The method embodiment will be described, and no further description will be given here.
  • the control node sends the path identification information allocated by the control node for the path to the forwarding node on the path through a PCEP packet, and the PCEP packet also carries the indication information associated with the path identification information.
  • the forwarding node to explicitly instruct the forwarding node to perform an operation associated with the path identification information when the forwarding node determines that the path identification information is unavailable according to the instruction information.
  • FIG. 3 A flow chart of a method for allocating path identifiers is provided.
  • the control node allocates path identification information for identifying the path to the path.
  • the path can be any path in the forwarding network.
  • the path is a path indicated by an SR Policy.
  • the SR Policy may be the SR Policy allocated by the control node for any service.
  • the SR Policy is used to indicate at least one candidate path, and the path is any candidate path in the at least one candidate path.
  • the SR Policy may include either a segment routing traffic engineering policy (SR TE policy) or an SRv6 Policy, and the embodiment of the present application does not specifically limit the type of the SR Policy.
  • the path identification information of the path includes the BSID of the path.
  • the path identification information of the path may also be other identification information of the path, which is not specifically limited in this embodiment of the present application.
  • a path identification set is set in the control node, the path identification set includes multiple path identification information, and the control node assigns any one of the multiple path identification information to the path identification information. path.
  • the path identification information as BSID as an example, if the BSID in the path identification set belongs to [0000, 9999], the control node randomly assigns 1000 in the path identification set to the path as the BSID of the path.
  • the control node allocates path identification information to the path from the plurality of path identification information according to a preset allocation rule.
  • the control node assigns the largest path identification information among the multiple path identification information to the path, or the control node assigns the maximum path identification information among the multiple path identification information. The minimum path identification information assigned to this path.
  • the control node may also delete the path identification information assigned to the path from the path identification set, so as to avoid subsequent path identification information for paths other than the path based on the path identification set, The path identification information of the path is assigned to paths other than this path.
  • the control node may also store the path in association with the path identification information of the path.
  • the control node when the path is a candidate path (candidate path) in the SR Policy, stores the path identification information of the path in the SR Policy to which the path belongs, and stores the SR Policy path in the SR Policy.
  • the existing related information of the path is associated with the path identification information of the path, wherein the existing related information of the path includes at least one of the preference value of the path in the SR Policy and the SID list of the path.
  • control node will allocate a path identification information to each candidate path indicated by the SR Policy, that is, step 301 is performed for each candidate path.
  • the control node when assigning path identification information to each candidate path indicated by the SR Policy, assigns the same path identification information to each candidate path.
  • the control node allocates path identification information to a candidate path indicated by the SR Policy through this step 301, and uses the path identification information allocated for the candidate path as each candidate indicated by the SR Policy Path identification information of the path, the control node can also use the path identification information of the candidate path as the identification information of the SR Policy.
  • the control node allocates identification information for the SR Policy through this step 301, and uses the identification information allocated for the SR Policy as the path identification information of each candidate path indicated by the SR Policy. For example, the control node takes 1000 as the BSID of each candidate path indicated by the SR Policy, and takes 1000 as the BSID of the SR Policy.
  • the control node when assigning path identification information to each candidate path indicated by the SR Policy, assigns different path identification information to each candidate path.
  • the control node allocates different path identification information to each candidate path indicated by the SR Policy through step 301, and uses the path identification information of the active candidate path indicated by the SR Policy as the SR Policy identification information.
  • the path in this step 301 has the highest preference value in the SR Policy to which it belongs, then the path is the active candidate path indicated by the SR Policy, and the control node uses the path identification information of the path as the SR
  • the identification information of the Policy that is, the path identification information of the path is the identification information of the SR Policy to which the path belongs.
  • the candidate paths indicated by the SR Policy include candidate paths 1-3, wherein the preference values of the candidate paths 1-3 in the SR Policy are 0.2, 0.3, and 0.5, respectively, and the candidate path 3 is an active candidate path. If The control node uses 1000, 1001 and 1002 as the BSIDs of the candidate paths 1-3 respectively, and the control node also uses 1002 assigned to the candidate path 3 as the BSID of the SR Policy.
  • the control node generates a PCEP message, where the PCEP message includes path identification information for identifying the path and indication information associated with the path identification information, and the indication information is used to instruct the forwarding node on the path according to the instruction. information, and when the forwarding node determines that the path identification information is unavailable, an operation associated with the path identification information is performed.
  • the indication information is located in the reserved field in the BSID field in the PCEP message, for example, the path identification information of the path is located in the binding value field in the TE-path-BSID TLV (BSID field) of the PCEP message, the indication information For the reserved field located in the TE-path-BSID TLV, since both the indication information and the path information are located in the TE-path-BSID TLV, the indication information is associated with the path identification information.
  • the indication information is located in a reserved field in the common object header of the PCEP message. In some other embodiments, the indication information is located in an identification field in the PCEP packet, for example, an identification field in an LSP object or an identification field in a packet header of a PCEP packet. As long as the indication information is associated with the path identifier of the path in the PCEP message, the position of the indication information in the PCEP message is not specifically limited in this embodiment of the present application.
  • the indication information occupies at least one bit. For example, if the indication information is 1, it occupies one bit. In some embodiments, the indication information occupies multiple bits. For example, if the indication information is 11, it occupies 2 bits. In some embodiments, if the indication information occupies multiple bits, the multiple bits may include valid indication bits, for example, the indication information occupies 2 bits, wherein the last bit of the 2 bits is a valid indication bit, if the valid indication bit is 0, the indication information is invalid; if the valid indication bit is 1, the indication information is invalid.
  • the operation associated with the path identification information includes a first operation, and the first operation includes reassigning the path identification information for the path; if the indication information is the second indication information, and The operation associated with the path identification information includes the second operation, and the message is used to indicate that the path identification information of the path is allocated in error.
  • different types of indication information indicate that the forwarding node performs different operations.
  • the first indication information is used to indicate that when it is determined that the path identification information is unavailable, perform the first operation associated with the path identification
  • the second The indication information is used to instruct to perform a second operation associated with the path identification when it is determined that the path identification information is unavailable.
  • the first indication information and the second indication information are represented in different ways to distinguish indication information of different indication types.
  • the first indication information is 1 and the second indication information is 0. If the indication information occupies one bit, then Directly use 1 as the first indication information, and directly use 0 as the second indication information; if the indication information occupies multiple bits (for example, 2 bits), when the first indication information is 10, it means that the first indication information The indication information is invalid. When the first indication information is 11, it means that the first indication information is valid. Similarly, when the second indication information is 00, it means that the second indication information is invalid. When the second indication information is 01 , it indicates that the second indication information is valid. 0 and 1 are only examples to facilitate understanding of the first indication information and the second indication information.
  • the first indication information and the second indication information may also have other representations, for example, indication information with a length of 2 bits. Can be used to represent four different indications, each of which can correspond to a different refinement operation indication.
  • the embodiments of the present application do not specifically limit the representations of the first indication information and the second indication information.
  • the presence or absence of the field where the indication information is located in the PCEP message may also indicate the operation performed by the forwarding node.
  • the forwarding node defaults the indication information in this field as the first indication information.
  • the path identification information of the path in the PCEP message is unavailable, and the forwarding node performs the first operation associated with the path identification information.
  • the forwarding node defaults: if it is determined that the path identification information of the path in the PCEP message is unavailable, the forwarding node executes the path identification information associated with the path identification information. Second operation.
  • the control node generates the PCEP message according to the message format of the PCEP message based on the path identification information allocated to the forwarding node and the indication information. Taking the path identification information as the BSID and the indication information as the first indication information as an example, the BSID allocated by the control node for the path is 1000, and the first indication information is marked as 1, and the control node is in accordance with the message format of the PCEP message.
  • the first indication information is, for example, a schematic diagram of a data format of a TE-path-BSID TLV provided by an embodiment of the present application shown in FIG. 4 .
  • the packet types of the PCEP packets generated by the control node are different. If the control node allocates path identification information for the path for the first time, the control node adds the type identifier (for example, 12) of the PCIInitiate message in the message type field of the PCEP message, and the PCEP message is PCIInitiate message. If it is not the first time that the control node allocates path identification information for the path, the control node adds the type identification (for example, 11) of the PCUpd message in the message type field of the PCEP message, and the PCEP message is PCUpd message.
  • the type identifier for example, 12
  • the type identification for example, 11
  • the control node sends the PCEP message to the forwarding node on the path.
  • the forwarding node may be the head node of the path.
  • the forwarding node receives the PCEP message.
  • the forwarding node determines that the path identification information of the path carried in the PCEP packet is unavailable.
  • the forwarding node After receiving the PCEP message, the forwarding node obtains the path identification information of the path from the PCEP message, for example, the forwarding node reads the binding value field of the TE-path-BSID TLV in the PCEP message The path identification information 1000.
  • the forwarding node determines whether the path identification information is available by querying the occupied path identification information, which can also be understood as determining whether the path identification information is available. to use for this path.
  • the occupied path identification information may be path identification information of each allocated path stored by the forwarding node.
  • the forwarding node queries whether the path identification information exists in the occupied path identification information. If there is, it means that the path identification information has been occupied by any path other than the path, and the forwarding node determines the path. The identifier is unavailable, otherwise it means that the path identifier has not been occupied by other paths, and the forwarding node determines that the path identifier is available.
  • the forwarding node verifies the path identification information according to preset conditions, and if the path identification information does not meet the preset conditions, the path identification information fails the verification, and the forwarding node determines the path identification information information is not available, otherwise it is determined that the path identification information is available.
  • the preset condition may include that the path identification information belongs to the range of path identification information used by the forwarding node when configuring the path identification information for the path, or that the data format of the path identification information is at least one of the target data formats.
  • each forwarding node is set with a range of path identification information.
  • the range of path identification information set in each forwarding node may be the same or different.
  • the range of path identification information set in each forwarding node is the range of each forwarding node.
  • the range interval used when configuring the path identification information of the path if the path identification information is 1000, and the path identification information set in the forwarding node is in the range of [2000, 3000], because the path identification information 1000 does not belong to [200] , 3000], then the forwarding node determines that the path identification information does not meet the preset conditions, and the path identification information fails the verification.
  • the data format of the path identification information is not the target data format
  • the forwarding node determines that the path identification information does not meet the preset condition, and the path identification information fails the verification.
  • the forwarding node determines that the path identification information is available, that is, determines that the path identification information can be used by the path, the path identification information of the path is allocated, and the forwarding node can also use the path identification information.
  • the associated storage is performed with the path, and the associated storage manner may be the manner in which the control node performs associated storage of the path identification information as described above.
  • the forwarding node performs an operation associated with the path identification information according to the indication information.
  • a PCEP message is received by a forwarding node on a path, so that the forwarding node, according to the indication information in the PCEP message, when the forwarding node determines that the path identification information of the path is unavailable, executes the same procedure as the path identification information.
  • the operations associated with the identification information such as determining redistribution of the path identification by the forwarding node according to the indicated content, or requesting the control node to redistribute the path identification, etc., improve the flexibility and efficiency of path identification allocation.
  • step 306 when the forwarding node determines that the path identification information is unavailable, the operations indicated by different types of indication information are different.
  • the operations indicated by different types of indication information are different.
  • FIG. 6 is the indication information provided by the embodiment of the present application is the second indication information.
  • the process shown in Figure 5 may include the following steps 501-504:
  • the indication information is first indication information
  • the first indication information is used to indicate that the forwarding node determines that the path identification information is unavailable, and executes the first operation associated with the path identification information, if the forwarding node determines that the path identification information is unavailable, If it is determined that the path identification information is unavailable, the forwarding node reassigns the path identification information to the path.
  • the first operation is to reassign path identification information for the path. It can be understood that, when the indication information is the first indication information and the operation is the first operation, the forwarding node has the authority to assign the path identification information to the path.
  • the forwarding node When the forwarding node determines that the path identification information is unavailable, the forwarding node performs the first operation associated with the path identification information according to the indication of the first indication information, that is, the forwarding node reassigns the path identification information to the path.
  • the process of reassigning the path identification information by the forwarding node to the path is similar to the process of allocating the path identification information to the path by the control node in the above step 301.
  • the embodiment of the present application reassigns the path identification to the forwarding node for the path. The information process will not be described in detail.
  • step 501 that is, when the indication information is the first indication information and the operation is the first operation, when the forwarding node determines that the path identification information is unavailable, execute the first process of operation.
  • the forwarding node sends an identification update message to the control node, where the identification update message is used to instruct the path identification information to be updated to target path identification information, and the target path identification information is reassigned by the forwarding node for the path. Path identification information.
  • the identification update message includes the target path identification information.
  • the data format of the identification update message or the identification update message itself is used to indicate that the path identification information is updated to the target path identification information.
  • the identification update message is a PCRpt message.
  • the forwarding node adds the type identifier (for example, 10) of the PCRp message in the message type field of the PCEP message, and adds the target path identifier information in the BISD field of the PCEP message, thereby obtaining PCRpt message (that is, an identification update message). For example, as shown in FIG.
  • FIG. 7 is a schematic structural diagram of a BISD field provided by an embodiment of the present application, if the target path identification information is a BSID, and the value of the BSID is 1001, the forwarding node can bind a value in the BISD field The field adds 1001 to indicate that the forwarding node has reassigned a BSID of 1001 for this path.
  • the identifier update message further includes an update identifier, and the update identifier is used to instruct the path identifier information to be updated to the target path identifier information.
  • the identifier update message and the update identifier can be used together. Indicates that the path identification information is updated to the target path identification information.
  • the forwarding node generates the identification update message based on the target path identification information and the update identification, and sends the identification update message to the control node to instruct the control node to store the identification update message.
  • the path identification information of the path is updated to the target path identification information.
  • the control node receives the identity update message.
  • the control node updates the path identification information to target path identification information based on the identification update message.
  • the control node learns that the forwarding node has re-allocated a target path identity information for the path. In order to ensure the consistency of use, the control node The path identification information of the path stored locally needs to be updated to the target path identification information.
  • the control node may obtain the target path identification information from the identification update message, and query the SR Policy to which the path belongs from each SR Policy stored by the control node, and in The obtained target path identification information is added to the queried SR Policy, and the target path identification information is associated with the path in the queried SR Policy, so that the path identification information allocated to the path is updated to the target path identification information.
  • the processes shown in the above 502-504 are that the forwarding node sends an identification update message to the control node, and the control node updates the locally stored path identification information of the path to the target path identification information according to the identification update message.
  • the forwarding node does not send an identification update message to the control node, but the forwarding node adds the target path identification information of the path in the locally stored SR Policy to obtain the target SR Policy, and converts the target
  • the SR Policy is sent to the control node, and the control node queries the locally stored SR Policy to which the path belongs, and updates the queried SR Policy to the target SR Policy.
  • the control node queried the SR Policy Since the control node queried the SR Policy, the control node is The path identification information allocated by the path, and the target SR Policy is the SR Policy after the path identification information is updated to the target path identification. Therefore, by updating the queried SR Policy to the target SR Policy, to achieve The path identification information allocated by the path is updated to the target path identification information.
  • the forwarding node directly reassigns a new path identifier to the path when it determines that the path identifier information is unavailable information, and there is no need to request the control node to redistribute, which reduces the number of interactions between the control node and the forwarding node, and improves the allocation efficiency of the path identification.
  • the process shown in FIG. 6 may include the following steps 601-603:
  • the indication information is second indication information
  • the second indication information is used to indicate that the forwarding node determines that the path identification information is unavailable, and performs a second operation associated with the path identification information, if the forwarding node If it is determined that the path identification information is unavailable, the forwarding node sends a message to the control node, where the message is used to indicate that the path identification information identifying the path is allocated incorrectly.
  • the second operation is to send a message to the control node.
  • the message is a PCErr message.
  • the message may include a list of SIDs of the path and an error identifier, where the error identifier is used to indicate that the path identifier information of the path is allocated in error.
  • step 601 the process shown in this step 601, that is, when the indication information is the second indication information and the operation is the second operation, when the forwarding node determines that the path identification information is unavailable, execute the second process of operation.
  • the forwarding node does not have the authority to assign the path identification information to the path. If the path identification information of the path is unavailable, the forwarding node sends a message to the control node to report an error, so that the subsequent control node re-allocates new path identification information to the forwarding node.
  • the control node receives the message.
  • control node Based on the message, the control node re-allocates path identification information for the path.
  • control node When the control node receives the message, it learns that the path identification information allocated by the control node for the path before is wrong through the SID list and the error identifier in the message, and then the control node re-assigns a new path to the path identification information. After the control node assigns new path identification information to the path, the control node can query the locally stored path identification information of the path in the SR Policy to which the path belongs through the SID list, and use the queried path identification The information is updated to the new path identification information.
  • control node when the control node receives the message, it jumps to execute the above-mentioned step 301, that is, the process shown in FIG. 3 is re-executed.
  • the forwarding node directly sends a message to the control node when determining that the path identification information is unavailable , the control node re-allocates new path identification information to the path based on the message, which is beneficial for the control node to uniformly maintain the path identification information of each path in the network.
  • the apparatus 800 is configured with forwarding nodes on the path, and the apparatus 800 includes:
  • a determination module 802 configured to perform the above step 305;
  • the execution module 803 is configured to execute the above step 306 .
  • the determining module 802 is configured to determine that the path identification information is unavailable if the path identification information is already occupied by any path other than the path.
  • the executing module 803 includes an allocating unit, and the allocating unit is configured to execute the above step 501 .
  • the executing module 803 further includes a sending unit, and the sending unit is configured to execute the above steps 502 and 601 .
  • apparatus 800 corresponds to the forwarding node in the foregoing method embodiments, and each module in the apparatus 800 and the other operations and/or functions described above are respectively implemented to implement various steps and methods performed by the forwarding node in the method embodiments.
  • each module in the apparatus 800 and the other operations and/or functions described above are respectively implemented to implement various steps and methods performed by the forwarding node in the method embodiments.
  • the apparatus 800 performs the operation associated with the path identification information according to the instruction of the instruction information, it is only illustrated by the division of the above-mentioned functional modules. To complete, that is, to divide the internal structure of the apparatus 800 into different functional modules to complete all or part of the functions described above.
  • the device 800 provided in the foregoing embodiment belongs to the same concept as the foregoing method embodiment, and the specific implementation process thereof is detailed in the foregoing method embodiment, which will not be repeated here.
  • apparatus 800 may be equivalent to the forwarding node 1011 in the system 100 , or may be equivalent to an execution component in the forwarding node 1011 .
  • FIG. 9 is a schematic structural diagram of an apparatus for allocating path identifiers provided by an embodiment of the present application.
  • the apparatus 900 is configured as a control node, and the apparatus 900 includes: a generating module 901 for performing the above step 302;
  • the sending module 902 is configured to execute the above step 303 .
  • the generating module 901 is configured to generate the PCEP packet if it is detected that the forwarding node restarts due to a failure.
  • the apparatus 900 further includes:
  • a first receiving module configured to perform the above step 602;
  • the allocation module is used to execute the above step 301 or step 603.
  • the apparatus 900 further includes:
  • a second receiving module configured to perform the above step 503;
  • the update module is used to perform the above step 504 .
  • first receiving module and second receiving module may be the same receiving module, or may be two sub-modules in the same receiving module, or may be two independent receiving modules.
  • the positional relationship between the first receiving module and the second receiving module is not specifically limited.
  • the apparatus 900 corresponds to the control node in the above method embodiments, and each module in the apparatus 900 and the above other operations and/or functions are respectively implemented to implement various steps and methods performed by the control node in the method embodiments.
  • each module in the apparatus 900 and the above other operations and/or functions are respectively implemented to implement various steps and methods performed by the control node in the method embodiments.
  • the device 900 allocates the path identification information for the path and generates the PCEP message, it is only illustrated by the division of the above-mentioned functional modules. That is, the internal structure of the apparatus 900 is divided into different functional modules to complete all or part of the functions described above.
  • the apparatus 900 provided in the foregoing embodiment belongs to the same concept as the foregoing method embodiment, and the specific implementation process thereof is detailed in the method embodiment, which will not be repeated here.
  • the apparatus 900 may be equivalent to the control node 1021 in the system 100 , or may be equivalent to an execution component in the control node 1021 .
  • the embodiments of the present application further provide a network device, and the hardware structure of the network device is introduced below.
  • the network device 1000 corresponds to the forwarding node in the foregoing method embodiments, and each hardware, module, and the foregoing other operations and/or functions in the network device 1000 are respectively implemented to implement various steps and methods performed by the forwarding node in the method embodiment,
  • the specific details can refer to the above method embodiments, which are not repeated here for brevity.
  • each step performed by the forwarding node in the above method embodiment is completed by an integrated logic circuit of hardware in the processor of the network device 1000 or an instruction in the form of software.
  • the steps performed by the forwarding node in the method disclosed in conjunction with the embodiments of the present application may be directly embodied as being performed by a hardware processor, or performed by a combination of hardware and software modules in the processor.
  • the software module may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, detailed description is omitted here.
  • the network device 1000 corresponds to the device 800 in the above virtual device embodiment, and all or part of the functional modules in the device 800 may actually be implemented by software, hardware or a combination of software and hardware in the network device 1000 .
  • all or part of the functional modules in the apparatus 800 are implemented by software of the network device 1000.
  • the functional modules included in the apparatus 800 may be generated after the processor of the network device 1000 reads program codes stored in the memory.
  • FIG. 10 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device 1000 may be configured as a forwarding node on a path.
  • the network device 1000 includes: a main control board 1010 and an interface board 1030 .
  • the main control board 1010 is also called a main processing unit (MPU) or a route processing card (route processor card).
  • the main control board 1010 controls and manages various components in the network device 1000, including route calculation, Equipment maintenance, protocol processing functions.
  • the main control board 1010 includes: a central processing unit 1011 and a memory 1012 .
  • the interface board 1030 is also called a line processing unit (LPU), a line card (line card) or a service board.
  • the interface board 1030 is used to provide various service interfaces and realize data packet forwarding.
  • the service interface includes, but is not limited to, an Ethernet interface, a POS (packet over SONET/SDH) interface, etc.
  • the Ethernet interface is, for example, a flexible Ethernet service interface (flexible ethernet clients, FlexE Clients).
  • the interface board 1030 includes: a central processing unit 1031 , a network processor 1032 , a forwarding table entry memory 1034 and a physical interface card (ph10sical interface card, PIC) 1033 .
  • the central processing unit 1031 on the interface board 1030 is used to control and manage the interface board 1030 and communicate with the central processing unit 1011 on the main control board 1010 .
  • the network processor 1032 is used to implement packet forwarding processing.
  • the form of the network processor 1032 may be a forwarding chip.
  • the processing of the uplink packet includes: processing the incoming interface of the packet, and searching the forwarding table; processing of the downlink packet: searching the forwarding table, and so on.
  • the physical interface card 1033 is used to realize the interconnection function of the physical layer, the original traffic enters the interface board 1030 through this, and the processed packets are sent from the physical interface card 1033 .
  • the physical interface card 1033 includes at least one physical interface, which is also called a physical port.
  • the physical interface card 1033 is also called a daughter card, which can be installed on the interface board 1030 and is responsible for converting the optoelectronic signal into a message and forwarding the message to the network processor 1032 for processing after checking the validity of the message.
  • the central processing unit 1031 of the interface board 1003 can also perform the functions of the network processor 1032 , such as implementing software forwarding based on a general-purpose CPU, so that the network processor 1032 is not required in the physical interface card 1033 .
  • the network device 1000 includes multiple interface boards, for example, the network device 1000 further includes an interface board 1040 , and the interface board 1040 includes a central processing unit 1041 , a network processor 1042 , a forwarding table entry storage 1044 and a physical interface card 1043 .
  • the network device 1000 further includes a switch fabric board 1020 .
  • the switch fabric unit 1020 may also be referred to as a switch fabric unit (switch fabric unit, SFU).
  • SFU switch fabric unit
  • the switch fabric board 1020 is used to complete data exchange between the interface boards.
  • the interface board 1030 and the interface board 1040 may communicate through the switch fabric board 1020 .
  • the main control board 1010 and the interface board 1030 are coupled.
  • the main control board 1010 , the interface board 1030 , the interface board 1040 , and the switch fabric board 1020 are connected to the system backplane through a system bus to implement intercommunication.
  • an inter-process communication (inter-process communication, IPC) channel is established between the main control board 1010 and the interface board 1030, and the main control board 1010 and the interface board 1030 communicate through the IPC channel.
  • IPC inter-process communication
  • the network device 1000 includes a control plane and a forwarding plane
  • the control plane includes the main control board 1010 and the central processing unit 1031
  • the forwarding plane includes various components that perform forwarding, such as the forwarding entry storage 1034, the physical interface card 1033 and the network processing device 1032.
  • the control plane performs functions such as routers, generating forwarding tables, processing signaling and protocol packets, configuring and maintaining device status, etc.
  • the control plane delivers the generated forwarding tables to the forwarding plane.
  • the network processor 1032 is based on the control plane.
  • the delivered forwarding table forwards the packets received by the physical interface card 1033 by looking up the table.
  • the forwarding table issued by the control plane may be stored in the forwarding table entry storage 1034 .
  • the control plane and forwarding plane may be completely separate and not on the same device.
  • the central processor 1011 performs an operation associated with the path identification information when the forwarding node determines that the path identification information is unavailable according to the indication information.
  • the network processor 1032 triggers the physical interface card 1033 to receive the PCEP message, send the message, and send the identity update message.
  • the receiving module 801 in the apparatus 800 is equivalent to the physical interface card 1033 or the physical interface card 1043 in the network device 1000 ; the determining module 802 and the execution unit 803 in the apparatus 800 may be equivalent to the central processing unit 1011 in the network device 1000 or the central processing unit 1031.
  • the operations on the interface board 1040 in this embodiment of the present application are the same as the operations on the interface board 1030, and for brevity, details are not repeated here.
  • the network device 1000 in this embodiment may correspond to the forwarding node in the foregoing method embodiments, and the main control board 1010 , the interface board 1030 and/or the interface board 1040 in the network device 1000 may implement the foregoing method embodiments
  • the functions and/or various steps performed by the forwarding nodes in the are the same as the operations on the interface board 1030, and for brevity, details are not repeated here.
  • the network device 1000 in this embodiment may correspond to the forwarding node in the foregoing method embodiments, and the main control board 1010 , the interface board 1030 and/or the interface board 1040 in the network device 1000 may implement the foregoing method embodiments
  • the functions and/or various steps performed by the forwarding nodes in the are the same as the operations on the interface board 1030, and for brevity, details are not repeated here.
  • main control boards there may be one or more main control boards, and when there are multiple main control boards, they may include the main main control board and the backup main control board.
  • a network device can have at least one switch fabric board, and the switch fabric board realizes data exchange between multiple interface boards, providing large-capacity data exchange and processing capabilities. Therefore, the data access and processing capabilities of network devices in a distributed architecture are greater than those in a centralized architecture.
  • the form of the network device can also be that there is only one board, that is, there is no switching network board, and the functions of the interface board and the main control board are integrated on this board.
  • the central processing unit on the board can be combined into a central processing unit on this board to perform the functions of the two superimposed, the data exchange and processing capacity of this form of equipment is low (for example, low-end switches or routers and other networks. equipment).
  • the specific architecture used depends on the specific networking deployment scenario, and there is no restriction here.
  • the embodiments of the present application further provide a control device, and the hardware structure of the control device is introduced below.
  • each hardware, module and the above other operations and/or functions in the control device 1100 are respectively implemented in order to implement various steps and methods implemented by the control node in the method embodiment , for the detailed process of how the control device 1100 allocates path identification information to a path and generates a PCEP packet, the specific details can be found in the above method embodiments, which are not repeated here for brevity.
  • each step of the above method embodiment is completed by an integrated logic circuit of hardware in the processor of the control device 1100 or an instruction in the form of software.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, detailed description is omitted here.
  • the control device 1100 corresponds to the device 900 in the above virtual device embodiment, and all or part of the functional modules in the device 900 may actually be implemented by software, hardware or a combination of software and hardware in the control device 1100 .
  • all or part of the functional modules in the apparatus 900 are implemented by software of the control device 1100.
  • the functional modules included in the apparatus 900 may be generated after the processor of the control device 1100 reads program codes stored in the memory.
  • FIG. 11 is a schematic structural diagram of a control device provided by an embodiment of the present application, and the control device 1100 may be configured as a control node.
  • the control device 1100 includes at least one processor 1101 , a communication bus 1102 , a memory 1103 and at least one physical interface 1104 .
  • the processor 1101 may be a general-purpose central processing unit (CPU), a network processor (NP), a microprocessor, or may be one or more integrated circuits for implementing the solution of the present application, for example, Application-specific integrated circuit (ASIC), programmable logic device (PLD) or a combination thereof.
  • the above-mentioned PLD can be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general-purpose array logic (generic array logic, GAL) or any combination thereof.
  • a communication bus 1102 is used to transfer information between the aforementioned components.
  • the communication bus 1102 can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in the figure, but it does not mean that there is only one bus or one type of bus.
  • the memory 1103 can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, or can be random access memory (RAM) or can store information and instructions Other types of dynamic storage devices, it can also be electrically erasable programmable read-only memory (electrically erasable programmable read-only memory, EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage , optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, blu-ray disc, etc.), magnetic disk storage medium or other magnetic storage device, or can be used to carry or store desired program code in the form of instructions or data structures and any other medium that can be accessed by a computer, but is not limited thereto.
  • the memory 1103 may exist independently and be connected to the processor 1101 through the communication bus 1102 .
  • the memory 1103 may also be integrated with the processor 1101 .
  • the physical interface 1104 uses any transceiver-like device for communicating with other devices or communication networks.
  • the physical interface 1104 includes a wired communication interface and may also include a wireless communication interface.
  • the wired communication interface may be, for example, an Ethernet interface.
  • the Ethernet interface can be an optical interface, an electrical interface or a combination thereof.
  • the wireless communication interface may be a wireless local area network (wireless local area networks, WLAN) interface, a cellular network communication interface or a combination thereof, and the like.
  • the physical interface 1104 is also referred to as a physical port.
  • the processor 1101 may include one or more CPUs, such as CPU0 and CPU1 as shown in FIG. 11 .
  • control device 1100 may include multiple processors, such as the processor 1101 and the processor 1105 as shown in FIG. 11 .
  • processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the control device 1100 may further include an output device 1106 and an input device 1107 .
  • the output device 1106 is in communication with the processor 1101 and can display information in a variety of ways.
  • the output device 1106 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, a projector, or the like .
  • Input device 1107 is in communication with processor 1101 and can receive user input in a variety of ways.
  • the input device 1107 may be a mouse, a keyboard, a touch screen device or a sensing device, or the like.
  • the memory 1103 is used to store the program code 1110 for executing the solutions of the present application, and the processor 1101 may execute the program code 1110 stored in the memory 1103 to implement corresponding functions.
  • the program stored in the program code 1110 can be called to implement the function of the generation module 901 , the distribution module, and the function of the update module in the apparatus 900 . That is, the control device 1100 may cooperate to implement the methods provided by the foregoing method embodiments through the processor 1101 and the program code 1110 in the memory 1103 .
  • control device 1100 in this embodiment of the present application may correspond to the control node in each of the foregoing method embodiments, and the processor 1101, the physical interface 1104, etc. in the control device 1100 may implement the control nodes in the foregoing method embodiments. functions and/or the various steps and methods implemented. For brevity, details are not repeated here.
  • the generating module 901 , the allocation module and the updating module in the apparatus 900 may be equivalent to the processor 1101 in the control device 1100 ; the sending module 902 , the first receiving module and the second receiving module in the apparatus 900 are equivalent to The physical interface 1104 in the control device 1100 is controlled.
  • the above-mentioned forwarding node or control node may be implemented as a virtualized device.
  • the virtualization device may be a virtual machine (virtual machine, VM) running a program for sending a message, and the virtual machine is deployed on a hardware device (eg, a physical server).
  • a virtual machine refers to a complete computer system with complete hardware system functions simulated by software and running in a completely isolated environment.
  • a virtual machine can be configured as a forwarding node or a control node.
  • a forwarding node or a control node can be implemented based on a general-purpose physical server combined with a network functions virtualization (NFV) technology.
  • NFV network functions virtualization
  • the forwarding node or control node is a virtual host, a virtual router or a virtual switch.
  • Those skilled in the art can virtualize a forwarding node or a control node with the above functions on a general physical server in combination with the NFV technology by reading this application. It will not be repeated here.
  • network devices in the above-mentioned various product forms respectively have any functions of the forwarding node or the control node in the above-mentioned method embodiments, which will not be repeated here.
  • the embodiments of the present application provide a computer program product, which, when the computer program product runs on a network device, enables the network device to execute the method executed by the forwarding node in the foregoing method embodiments.
  • the embodiments of the present application provide a computer program product, which, when the computer program product runs on a control device, enables the network device to execute the method executed by the control node in the above method embodiments.
  • the embodiment of the present application also provides a chip, including a processor and an interface circuit, the interface circuit is used to receive instructions and transmit them to the processor; the processor can be used to execute the above-mentioned application to the instruction forwarding node or the control node execution path identification allocation method.
  • the processor is coupled to a memory, and the memory is used to store programs or instructions, and when the programs or instructions are executed by the processor, the chip system enables the method in any of the foregoing method embodiments.
  • the number of processors in the chip system may be one or more.
  • the processor can be implemented by hardware or by software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor implemented by reading software codes stored in memory.
  • the memory may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory can be a non-transitory processor, such as a read-only memory ROM, which can be integrated with the processor on the same chip, or can be provided on different chips.
  • the setting method of the processor is not particularly limited.
  • the system-on-chip may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC), It can also be a CPU, an NP, a digital signal processor (DSP), a microcontroller (MCU), or a programmable logic device. , PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processing unit
  • NP a digital signal processor
  • MCU microcontroller
  • PLD programmable logic device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种路径标识的分配方法、系统、装置、设备以及存储介质,属于通信技术领域。本方法通过路径上的转发节点接收PCEP报文,以便该转发节点根据该PCEP报文中指示信息,在该转发节点确定该路径的路径标识信息不可用时,执行与该路径标识信息关联的操作,如根据指示的内容确定由转发节点重新分配路径标识,或请求控制节点进行路径标识重分配等,从而提高了路径标识分配的灵活性和分配效率。

Description

路径标识的分配方法、系统、装置、设备以及存储介质
本申请要求于2020年09月19日提交的申请号为202010990879.4、发明名称为“一种网络设备分配标识的方法和设备”的中国专利申请的优先权和于2020年12月23日提交的申请号为202011545932.6、发明名称为“路径标识的分配方法、系统、装置、设备以及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种路径标识的分配方法、系统、装置、设备以及存储介质。
背景技术
段路由策略(segment routing policy,SR Policy)是在SR技术基础上发展的一种新的隧道引流技术。SR Policy用于指示至少一条候选路径(candidate path),每条候选路径(candidate path)具有一个偏好值(preference),候选路径的偏好值越高则越优选,其中,具有最高偏好值的有效候选路径是活动候选路径,每条候选路径用段列表(segment list)来标识,段列表又称为段标识(segment identity,SID)列表,每条候选路径还具有绑定段标识(binding-SID,BSID)属性,每条候选路径的BSID为每条候选路径的一种标识信息,且活动候选路径的BSID为SR Policy的标识信息,也即是活动候选路径的BSID为SR Policy的BSID。其中,BSID在SR Policy的引流中起着重要作用,例如,该至少一条候选路径的头节点接收到一个报文后,若该报文携带该SR Policy的BSID,则该头节点将该报文中的BSID弹出,并将该SR Policy中活动候选路径的SID列表作为标签栈压入该报文的报文头,以引导该报文从该活动候选路径上转发,这种基于标签栈转发报文的候选路径也可以称为为标签交换路径(label switching path,LSP)。
目前,SR Policy的种类比较多,不同种类的SR Policy的创建方式有所不同,例如基于互特网协议第6版(internet protocol version 6,IPv6)的段路由策略(segment routing using IPv6 data plan policy,SRv6 Policy),SRv6 Policy的创建方式有多种,例如通过路径计算单元通信协议(path computation element communication protocol,PCEP)创建、通过边界网关协议(border gateway protocol,BGP)创建或静态配置。
在创建SRv6 Policy的过程中,一般会为SRv6 Policy分配路径标识(例如BSID),以通过PCEP创建SRv6 Policy为例,路径计算单元(path computation element,PCE)通过PCEP协议,向路径计算客户端(path computation client,PCC)发送路径计算初始化(path computation LSP initiate message,PCInitiate)报文,其中,PCC为网络中SRv6 Policy所指示的候选路径的头节点,该PCInitiate报文携带SRv6 Policy所指示的一个候选路径的BSID,但在一些可能的场景下,PCC在接收到PCE发送的BSID后,可能会发现该BSID无法正常使用而导致分配失败,此时只能由PCC向PCE请求分配新的BSID,那么,由于PCE在为路径分配BSID失败时,PCC只能请求PCE重新分配,导致路径标识分配不灵活。
发明内容
本申请实施例提供了一种路径标识的分配方法、系统、装置、设备以及存储介质,能够提高路径标识的分配效率。该技术方案如下:
第一方面,提供了一种路径标识的分配方法,所述方法由路径上的转发节点执行,所述方法包括:
接收路径计算单元通信协议PCEP报文,所述PCEP报文包括用于标识所述路径的路径标识信息以及与所述路径标识信息关联的指示信息;确定所述路径标识信息不可用,并根据所述指示信息执行与所述路径标识信息关联的操作。
所述路径标识信息不可用可以表现为因冲突所导致的不可用,或者,因未通过验证所导致的不可用。在一些情形中,若所述路径标识信息已经被所述路径以外的其它路径占用,则所述路径的所述路径标识信息与所述其它路径的路径标识信息发生冲突,所述路径的所述路径标识信息不可用。在另外一些情形中,所述转发节点对所述路径的所述路径标识信息进行验证,若所述路径标识信息未通过验证,则所述路径标识信息不可用。例如所述路径标识信息不属于所述转发节点在为路径配置路径标识信息时所使用的路径标识信息范围内,则所述路径标识信息未通过验证,再例如,所述路径标识信息不符合预先设置的路径标识信息的数据格式,则所述路径标识信息未通过验证。
本方法通过路径上的转发节点接收PCEP报文,以便所述转发节点根据所述PCEP报文中指示信息,在所述转发节点确定所述路径的路径标识信息不可用时,执行与所述路径标识信息关联的操作,如根据指示的内容确定由转发节点重新分配路径标识,或请求控制节点进行路径标识重分配等,从而提高了路径标识分配的灵活性和分配效率。
可选地,若所述指示信息为第一指示信息,则与所述路径标识信息关联的操作为第一操作,所述第一操作包括为所述路径重新分配路径标识信息。
基于上述可选地实现方式,通过第一指示信息明确指示所述转发节点在确定所述路径的路径标识不可用时,所述转发节点为所述路径重新分配路径标识信息,且无需请求控制节点重新分配,减少了控制节点与转发节点之间的交互次数,提高了路径标识的分配效率。
可选地,所述根据所述指示信息执行与所述路径标识信息关联的操作之后,所述方法还包括:
向控制节点发送标识更新报文,所述标识更新报文用于指示将所述路径标识信息更新为目标路径标识信息,所述目标路径标识信息是所述转发节点为所述路径重新分配的路径标识信息。
基于上述可选地实现方式,所述转发节点通过向控制节点发送标识更新报文,以便控制节点将存储的所述路径的路径标识信息更新为目标路径标识信息,从而可能保证该路径的路径标识信息在控制节点和转发节点一致,避免所述转发节点因路径标识信息不一致出现不能正常转发数据流的情况。
可选地,所述标识更新报文为路径计算状态通告(path computation state report,PCRpt)报文。
可选地,所述标识更新报文包括所述目标路径标识信息。在一些实施例中,所述标识更新报文还包括更新标识,所述更新标识用于指示将所述路径标识信息更新为目标路径标识信 息。
基于上述可选地实现方式,提供多种标识更新报文,以适应各个应用场景的对该标识更新报文的需求。
可选地,若所述指示信息为第二指示信息,则与所述路径标识信息关联的操作包括第二操作,所述第二操作包括向控制节点发送消息,所述消息用于指示识所述路径的路径标识信息分配出错。
基于上述可选地实现方式,通过第二指示信息明确指示所述转发节点在确定所述路径的路径标识不可用时,转发节点向控制节点上报所述路径的路径标识信息分配出错,以便控制节点重新为所述路径分配新的路径标识信息,有利于控制节点统一维护转发网络中各个路径的路径标识信息。
可选地,所述路径标识信息包括所述路径的BSID。
可选地,所述指示信息位于所述PCEP报文中BSID字段内的预留reserved字段。
可选地,所述指示信息位于所述PCEP报文中的标识flags字段。
可选地,所述指示信息占用至少一个比特位。
可选地,所述PCEP报文包括PCIInitiate报文或路径计算更新请求(path computation update request,PCUpd)报文中的任一个。
可选地,所述路径为SR Policy所指示的路径,所述SR Policy包括段路由流量工程策略(SR TE Policy)或SRv6 Policy中任一个。
可选地,所述路径为candidate path。
可选地,所述路径标识信息为所述SR Policy的标识信息,或所述candidate path的标识信息。
可选地,所述确定所述路径标识信息不可用包括:
若所述路径标识信息已经被所述路径之外的任一路径占用,确定所述路径标识信息不可用。
可选地,所述转发节点为所述路径的头节点。
第二方面,提供了一种路径标识的分配方法,所述方法由控制节点执行,所述方法包括:
生成PCEP报文;向路径上的转发节点发送所述PCEP报文,其中,所述PCEP报文包括用于标识所述路径的路径标识信息以及与所述路径标识信息关联的指示信息,所述指示信息用于指示所述路径上的转发节点根据所述指示信息,在所述转发节点确定所述路径标识信息不可用时,执行与所述路径标识信息关联的操作。
可选地,若所述指示信息为第一指示信息,则与所述路径标识信息关联的操作为第一操作,所述第一操作包括为所述路径重新分配路径标识信息。
可选地,若所述指示信息为第一指示信息,则与所述路径标识信息关联的操作为第二操作,所述第二操作包括向控制节点发送消息,所述消息用于指示所述路径的路径标识信息分配出错。
若所述指示信息为第二指示信息,则与所述路径标识信息关联的操作包括第二操作,所述第二操作包括向控制节点发送消息,所述消息用于指示识所述路径的路径标识信息分配出错。
可选地,所述路径标识信息包括所述路径的BSID。
可选地,所述指示信息位于所述PCEP报文中BSID字段内的预留字段。
可选地,所述指示信息位于所述PCEP报文中的标识字段。
可选地,所述指示信息占用至少一个比特位。
可选地,所述PCEP报文包括PCIInitiate报文或PCUpd报文中的任一个。
可选地,所述路径为SR Policy所指示的路径,所述SR Policy包括SR TE Policy或SRv6 Policy中任一个。
可选地,所述路径为candidate path。
可选地,所述路径标识信息为所述SR Policy的标识信息,或所述candidate path的标识信息。
可选地,所述转发节点为所述路径的头节点。
可选地,所述生成PCEP报文包括:
若检测到所述转发节点发生故障重启,生成所述PCEP报文。
可选地,所述向所述转发节点发送所述PCEP报文之后,所述方法还包括:
接收消息,所述消息用于指示所述路径的路径标识信息分配出错;
基于所述消息,重新为所述路径分配路径标识信息。
可选地,所述向所述转发节点发送所述PCEP报文之后,所述方法还包括:
接收标识更新报文,所述标识更新报文用于指示将所述路径标识信息更新为目标路径标识信息,所述目标路径标识信息是所述转发节点为所述路径重新分配的路径标识信息;
基于所述标识更新报文,将存储的所述路径的所述路径标识信息更新为所述目标路径标识信息。
可选地,所述标识更新报文为PCRpt报文。
可选地,所述标识更新报文包括所述目标路径标识信息。在一些实施例中,所述标识更新报文还包括更新标识,所述更新标识用于指示将所述路径标识信息更新为目标路径标识信息。
第三方面,提供了一种路径标识的分配系统,所述分配系统包括控制节点和转发节点;
所述控制节点用于:
生成PCEP报文,所述PCEP报文包括用于标识路径的路径标识信息以及与所述路径标识信息关联的指示信息;
向所述路径上的转发节点发送所述PCEP报文;
所述转发节点,用于接收所述PCEP报文,确定所述路径标识信息不可用,并根据所述指示信息执行与所述路径标识信息关联的操作。
可选地,若所述指示信息为第一指示信息,则与所述路径标识信息关联的操作为第一操作,所述第一操作包括为所述路径重新分配路径标识信息。
可选地,若所述指示信息为第一指示信息,则与所述路径标识信息关联的操作为第二操作,所述第二操作包括向控制节点发送消息,所述消息用于指示所述路径的路径标识信息分配出错。
若所述指示信息为第二指示信息,则与所述路径标识信息关联的操作包括第二操作,所述第二操作包括向控制节点发送消息,所述消息用于指示识所述路径的路径标识信息分配出错。
可选地,所述路径标识信息包括所述路径的BSID。
可选地,所述指示信息位于所述PCEP报文中BSID字段内的预留字段。
可选地,所述指示信息位于所述PCEP报文中的标识字段。
可选地,所述指示信息占用至少一个比特位。
可选地,所述PCEP报文包括PCIInitiate报文或PCUpd报文中的任一个。
可选地,所述路径为SR Policy所指示的路径,所述SR Policy包括SR TE Policy或SRv6 Policy中任一个。
可选地,所述路径为candidate path。
可选地,所述路径标识信息为所述SR Policy的标识信息,或所述candidate path的标识信息。
可选地,所述转发节点为所述路径的头节点。
可选地,所述转发节点,还用于向所述控制节点发送标识更新报文,所述标识更新报文用于指示将所述路径标识信息更新为目标路径标识信息,所述目标路径标识信息是所述转发节点为所述路径重新分配的路径标识信息。
所述控制节点,还用于接收所述标识更新报文,基于所述标识更新报文,将存储的所述路径的所述路径标识信息更新为所述目标路径标识信息。
可选地,所述标识更新报文为PCRpt报文。
可选地,所述标识更新报文包括所述目标路径标识信息。在一些实施例中,所述标识更新报文还包括更新标识,所述更新标识用于指示将所述路径标识信息更新为目标路径标识信息。
可选地,所述转发节点,还用于若所述路径标识信息已经被所述路径之外的任一路径占用,确定所述路径标识信息不可用。
可选地,所述转发节点,还用于向所述控制节点发送消息,所述消息用于指示识所述路径的路径标识信息分配出错。
所述控制节点,还用于接收所述消息,基于所述消息重新为所述路径分配路径标识信息。
可选地,所述控制节点,还用于若检测到所述转发节点发生故障重启,生成所述PCEP报文。
第四方面,提供了一种路径标识的分配装置,所述装置被配置为路径上的转发节点,所述装置包括:
接收模块,用于接收路径计算单元通信协议PCEP报文,所述PCEP报文包括用于标识所述路径的路径标识信息以及与所述路径标识信息关联的指示信息;
确定模块,用于确定所述路径标识信息不可用;
执行模块,用于根据所述指示信息执行与所述路径标识信息关联的操作。
可选地,若所述指示信息为第一指示信息,则与所述路径标识信息关联的操作为第一操作,所述第一操作包括为所述路径重新分配路径标识信息。
可选地,若所述指示信息为第一指示信息,则与所述路径标识信息关联的操作为第二操作,所述第二操作包括向控制节点发送消息,所述消息用于指示所述路径的路径标识信息分配出错。
可选地,所述执行模块包括:
发送单元,用于向所述控制节点发送标识更新报文,所述标识更新报文用于指示将所述路径标识信息更新为目标路径标识信息,所述目标路径标识信息是所述转发节点为所述路径重新分配的路径标识信息。
可选地,所述标识更新报文为PCRpt报文。
可选地,所述标识更新报文包括所述目标路径标识信息。在一些实施例中,所述标识更新报文还包括更新标识,所述更新标识用于指示将所述路径标识信息更新为目标路径标识信息。
可选地,若所述指示信息为第二指示信息,则与所述路径标识信息关联的操作包括第二操作,所述第二操作包括向控制节点发送消息,所述消息用于指示识所述路径的路径标识信息分配出错。
可选地,所述路径标识信息包括所述路径的BSID。
可选地,所述指示信息位于所述PCEP报文中BSID字段内的预留字段。
可选地,所述指示信息位于所述PCEP报文中的标识字段。
可选地,所述指示信息占用至少一个比特位。
可选地,所述PCEP报文包括PCIInitiate报文或PCUpd报文中的任一个。
可选地,所述路径为SR Policy所指示的路径,所述SR Policy包括SR TE Policy或SRv6 Policy中任一个。
可选地,所述路径为candidate path。
可选地,所述路径标识信息为所述SR Policy的标识信息,或所述candidate path的标识信息。
可选地,所述转发节点为所述路径的头节点。
第五方面,提供了一种路径标识的分配装置,所述装置被配置为控制节点,装置包括:
生成模块,用于生成PCEP报文,所述PCEP报文包括用于标识路径的路径标识信息以及与所述路径标识信息关联的指示信息,所述指示信息用于指示所述路径上的转发节点根据所述指示信息,在所述转发节点确定所述路径标识信息不可用时,执行与所述路径标识信息关联的操作;
发送模块,用于向所述转发节点发送所述PCEP报文。
可选地,若所述指示信息为第一指示信息,则与所述路径标识信息关联的操作为第一操作,所述第一操作包括为所述路径重新分配路径标识信息。
可选地,若所述指示信息为第一指示信息,则与所述路径标识信息关联的操作为第二操作,所述第二操作包括向控制节点发送消息,所述消息用于指示所述路径的路径标识信息分配出错。
若所述指示信息为第二指示信息,则与所述路径标识信息关联的操作包括第二操作,所述第二操作包括向控制节点发送消息,所述消息用于指示识所述路径的路径标识信息分配出错。
可选地,所述路径标识信息包括所述路径的BSID。
可选地,所述指示信息位于所述PCEP报文中BSID字段内的预留字段。
可选地,所述指示信息位于所述PCEP报文中的标识字段。
可选地,所述指示信息占用至少一个比特位。
可选地,所述PCEP报文包括PCIInitiate报文或PCUpd报文中的任一个。
可选地,所述路径为SR Policy所指示的路径,所述SR Policy包括SR TE Policy或SRv6 Policy中任一个。
可选地,所述路径为candidate path。
可选地,所述路径标识信息为所述SR Policy的标识信息,或所述candidate path的标识信息。
可选地,所述转发节点为所述路径的头节点。
可选地,所述生成模块,用于若检测到所述转发节点发生故障重启,生成所述PCEP报文。
可选地,所述装置还包括:
第一接收模块,用于接收消息,所述消息用于指示所述路径的路径标识信息分配出错;
分配模块,用于基于所述消息,重新为所述路径分配路径标识信息。
可选地,所述装置还包括:
第二接收模块,用于接收标识更新报文,所述标识更新报文用于指示将所述路径标识信息更新为目标路径标识信息,所述目标路径标识信息是所述转发节点为所述路径重新分配的路径标识信息;
更新模块,用于基于所述标识更新报文,将存储的所述路径的所述路径标识信息更新为所述目标路径标识信息。
可选地,所述标识更新报文为PCRpt报文。
可选地,所述标识更新报文包括所述目标路径标识信息。在一些实施例中,所述标识更新报文还包括更新标识,所述更新标识用于指示将所述路径标识信息更新为目标路径标识信息。
第六方面,提供一种网络设备,该网络设备包括处理器,所述处理器调用程序指令,以使得该网络设备实现如上述第一方面或上述第一方面的任一种可选方式提供的路径标识的分配方法所执行的操作。该网络设备还可以包括存储器,存储器与处理器耦合,处理器调用的程序指令存储在该存储器中。该网络设备还可以包括通信接口,通信接口用于该设备与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。上述由所述处理器调用的程序指令也可以预先存储在外部存储器中,在使用前从互联网下载后存储在本地,本申请对于存储器中指令的来源不进行唯一方式的限定。
第七方面,提供一种控制设备,该控制设备包括处理器,所述处理器调用程序指令,以使得该网络设备实现如上述第二方面或上述第二方面的任一种可选方式提供的路径标识的分配方法所执行的操作。该控制设备还可以包括存储器,存储器与处理器耦合,处理器调用的程序指令存储在该存储器中。该控制设备还可以包括通信接口,通信接口用于该设备与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。上述由所述处理器调用的程序指令也可以预先存储在外部存储器中,在使用前从互联网下载后存储在本地,本申请对于存储器中指令的来源不进行唯一方式的限定。
第八方面,提供一种计算机可读存储介质,该存储介质中存储有程序代码,该程序代码由处理器加载并执行,以使得网络设备实现如上述第一方面或上述第一方面的任一种可选方式提供的路径标识的分配方法所执行的操作。
第九方面,提供一种计算机可读存储介质,该存储介质中存储有程序代码,该程序代码由处理器加载并执行,以使得控制设备实现如上述第二方面或上述第二方面的任一种可选方式提供的路径标识的分配方法所执行的操作。
第十方面,提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括程序代码,当其在网络设备上运行时,使得该网络设备执行上述第一方面或者第一方面的各种可选实现方式中提供的方法。
第十一方面,提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括程序代码,当其在控制设备上运行时,使得该控制设备执行上述第二方面或者第二方面的各种可选实现方式中提供的方法。
上述第一方面或上述第一方面的任一种可选方式提供的路径标识的分配方法可以由执行上述第二方面或上述第二方面的任一种可选方式提供的路径标识的分配方法的设备的对侧设备来执行,而上述第三方面至第十一方面提供的方案,能够用于实现上述第一方面或上述第一方面的任一种可选方式提供的路径标识的分配方法,或用于实现上述第二方面或上述第二方面的任一种可选方式提供的路径标识的分配方法,因此可以实现与第一方面或上述第一方面的任一种可选方式达到相同的有益效果,在此不再进行赘述。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种路径标识的分配系统的示意图;
图2是本申请实施例提供的一种PCEP报文的报文格式示意图;
图3是本申请实施例提供的一种路径标识的分配方法的流程图;
图4是本申请实施例提供的一种TE-path-BSID TLV的数据格式示意图;
图5是本申请实施例提供的一种指示信息为第一指示信息时该转发节点与控制节点之间的交互流程图;
图6是本申请实施例提供的一种指示信息为第二指示信息时该转发节点与控制节点之间的交互流程图;
图7是本申请实施例提供的一种BISD字段的结构示意图;
图8是本申请实施例提供的一种路径标识的分配装置的结构示意图;
图9是本申请实施例提供的一种路径标识的分配装置的结构示意图;
图10是本申请实施例提供的一种网络设备的结构示意图;
图11是本申请实施例提供的一种控制设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
本申请提供一种PCEP报文,该PCEP报文包括用于标识路径的路径标识信息以及与该路径标识信息关联的指示信息,以便该路径上的转发节点根据该指示信息,在该转发节点确 定该路径标识信息不可用时,执行与该路径标识信息关联的操作。在不同的应用场景下,不同的指示信息所指示的与该路径标识信息关联的操作有所不同,从而使得路径标识的分配较为灵活,例如下述应用场景1-3。
应用场景1、在一些实施例中,控制节点为了给整个网络中的各个路径统一分配和管理路径标识信息,则控制节点在为一个路径分配路径标识信息时,可以生成一个包括该路径的路径标识信息以及第二指示信息的PCEP报文,当该控制节点将该PCEP报文发送给该路径上的转发节点时,以便该转发节点根据该第二指示信息,在确认该控制节点为该路径分配的路径标识信息不可用时,向控制节点发送消息来报错,以请求控制节点重新为该路径分配路径标识信息。例如,在此情形下转发节点可以通过PCEP协议,向控制节点返回路径计算差错(PCEP error,PCErr)消息,以指示控制节点为该路径分配的路径标识信息出错,当控制节点接收到PCErr消息后,继续为该路径分配新的路径标识信息,并将新分配的路径标识信息再次下发至该转发节点,直至新下发的路径标识信息可以正常使用为止。
应用场景2、在一些实施例中,若为了避免因控制节点为路径分配的路径标识信息不可用所导致的控制节点重新分配的情形,控制节点在为一个路径分配路径标识信息时,可以生成一个包括该路径的路标识信息以及第一指示信息的PCEP报文,当该控制节点将该PCEP报文发送给该路径上的转发节点时,以便该转发节点根据该第一指示信息,在确认该控制节点为该路径分配的路径标识信息不可用时,自行为该路径重新分配路径标识信息,而无需请求控制节点重新为该路径分配,从而降低了转发节点与控制节点之间的交互次数,提高了路径标识的分配效率。并且在此情形下,该转发节点在重新为该路径分配路径标识信息后,该转发节点还可以将自己为该路径分配的路径标识信息发送给控制节点,再由控制节点更新存储,从而即使转发节点能够自行为路径分配路径标识信息,该控制节点依然能够获悉网络中各个路径可用的路径标识信息,以便控制节点统一管理。
应用场景3、在一些实施例中,在转发节点发生故障重启的场景下,控制节点也可以通过PCEP报文向该转发节点通告路径的路径标识信息。在一种可能的实现方式中,该控制节点还能够实时检测该转发节点的在线状态,若该控制节点在目标时长内检测到该转发节点处于下线状态,则该控制节点确定该转发节点出现故障,若后续该控制节点检测到该转发节点处于在线状态,则该控制节点确定该转发节点发生故障重启。控制节点在确定该转发节点发生故障重启后,为了避免因故障导致转发节点本地存储的该路径的路径标识信息丢失,则该控制节点再次通过PCEP报文向该转发节点通告该路径的路径标识信息,这个PCEP报文中该路径的路径标识信息可以为该转发节点在故障之前该路径所使用的路径标识信息。但是,该转发节点可能服务于多个业务,在转发节点发生故障重启后为了能够继续服务于这多个业务,该转发节点自身可能要重新恢复多个业务对应的路径的路径标识信息,由于转发节点重新恢复这多个业务对应的路径的路径标识信息的时序并不可控,这导致转发节点在接收到控制节点重新下发的路径标识信息时,会发现该路径标识信息由于已分配给其他业务而导致不可用。此情形下,转发节点可以根据PCEP报文中第一指示信息,为该路径重分配路径标识信息并告知给控制节点,由控制节点更新本地存储的该路径的路径标识信息。需要说明的是,控制节点在确定转发节点发生故障重启后,重新向该转发节点发送的PCEP报文中该路径的路径标识信息可以是该控制节点本地存储的在转发节点故障之前该路径所使用的路径标识信息,也可以是该控制节点重新为该路径分配的路径标识信息。
为了进一步说明在各种应用场景下该PCEP报文的使用过程,下面结合具体地实施例进行细节性描述。
图1是本申请实施例提供的一种路径标识的分配系统的示意图,参见图1,该系统100包括转发网络101和控制网络102。其中,转发网络101包括多个转发节点1011(如图1中的转发节点A-H),该多个转发节点1011可以组成多个路径,每个路径由该多个转发节点1011中的部分转发节点组成,该多个路径之间也可以具有相同的转发节点1011,例如图1中的路径1包括转发节点A、B、F、C以及D,路径2包括转发节点F、C以及D,其中,转发节点F、C以及D为路径1和路径2上相同的转发节点。
对于该转发网络101中的任一路径,根据该任一路径上各个转发节点1011的位置,可以将该任一路径上的各个转发节点1011划分为头节点、中间节点以及尾节点,其中,头节点为该任一路径上的第一个转发节点,该中间节点为该任一路径上除第一个转发节点和最后一个转发节点以外的转发节点,该尾节点为该任一路径上的最后一个转发节点。该路径可以是报文端到端转发路径上的一部分,例如可以是隧道。
控制网络102用于向转发网络101中的各个转发节点1011发送控制消息,以便各个转发节点1011基于控制消息执行相应的操作。该控制网络102包括控制节点1021,在初始化阶段,该控制节点1021可以收集转发网络101的拓扑信息。在一种可能的实现方式中,该控制节点1021根据边界网关协议(border gateway protocol,BGP)-链路状态(link-state,LS)协议来收集转发网络101的拓扑信息,其中,BGP-LS协议是通过BGP协议来传递内部网关协议(interior gateway protocol,IGP)链路状态的一种BGP多协议扩展。在一种可能的实现方式中,转发网络101包括多个IGP区域,对于任一IGP区域内与控制节点1021具有BGP-LS邻居关系的转发节点1011,该转发节点1011通过IGP协议收集该任一IGP区域的拓扑信息,将收集到的拓扑信息封装在BGP-LS路由中,并向控制节点1021发送该BGP-LS路由,从而控制节点1021能够获取到该转发网络101中各个IGP区域的拓扑信息,控制节点1021通过整合各个IGP区域的拓扑信息,以得到该转发网络101的拓扑信息。例如图1中的转发节点G、C以及D在收集到各自所属的IGP区域的拓扑信息后,通过向控制节点1021发送BGP-LS路由,来将各自所属的IGP区域的拓扑信息上报给控制节点1021。
对于该转发网络101所服务的任一业务,该转发网络101在转发该任一业务的数据流之前,该控制节点1021可以根据该数据流的传输要求,确定该转发网络101中用于接收该数据流的转发节点以及用于输出该数据流的转发节点,并基于这两个转发节点在转发网络101中位置,为该数据流分配至少一个候选路径,其中,每个候选路径的头节点均为确定出的用于接收该数据流的转发节点,每个候选路径的尾节点均为确定出的用于输出该数据流的转发节点;该控制节点1021还可以基于该至少一个候选路径,生成一个SR Policy,由该SR Policy来指示用于转发该数据流的至少一个候选路径,并将该SR Policy下发至该至少一个候选路径的头节点。
该控制节点1021除了可以向该至少一个候选路径的头节点发送该SR Policy以外,还可以为该至少一个候选路径中的每个候选路径分配一个路径标识信息(例如BSID)。在一种可能的实现方式中,对于该至少一个候选路径中的任一候选路径,该控制节点1021采用PCEP报文,向该头节点通告控制节点1021为该候选路径所分配的路径标识信息。其中,该PCEP报文包括用于标识该候选路径的路径标识信息以及与该路径标识信息关联的指示信息。
当该头节点接收到PCEP报文后,确定该PCEP报文中该候选路径的该路径标识信息是否已经被其他路径占用,若已经被占用,则该候选路径的该路径标识信息不可用,若该候选路径的该路径标识信息不可用,该头节点根据该PCEP报文中与该路径标识信息关联的指示信息,执行与该路径标识信息关联的操作,操作可以是该头节点重新为该候选路径分配路径标识信息,也可以是该头节点向控制节点1021发送消息,以指示该候选路径的路径标识信息分配出错,再由控制节点重新为该候选路径分配路径标识信息。
需要说明的是,若是由该头节点重新为该候选路径分配路径标识信息,则当该头节点为该候选路径分配完路径标识信息后,该头节点向控制节点1021发送该头节点为该候选路径所分配的路径标识信息,由控制节点1021存储。
例如对于图1中的路径1,控制节点1021向路径1上的转发节点A(头节点)发送一个PCEP报文,以告知控制节点1021为该路径1分配的路径标识信息,若转发节点A确定控制节点1021为该路径1分配的路径标识信息不可用,转发节点A根据该PCEP报文中该路径标识信息关联的指示信息,为该路径1重新分配一个新的路径标识信息,并将该新的路径标识信息发送给控制节点1021,由控制节点1021存储。
以路径标识信息为BSID为例,对于图1中的路径2,若控制节点1021为路径2分配的BSID为10011,控制节点向路径2上的转发节点F(头节点)发送一个PCEP报文,该PCEP报文携带该控制节点1021为路径2分配的10011以及与该10011关联的指示信息,若转发节点F确定10011已经被路径2以外的路径占用,转发节点F根据该PCEP报文中与10011关联的指示信息,为该路径2重新分配一个新的BSID,该新的BSID为10012,转发节点F向该控制节点1021发送转发节点F为路径2分配的10012,由控制节点将该路径2的BSID存储为10012。
当该控制节点1021确定存储的该SR Policy中各个候选路径的路径标识信息均可用后,将该SR Policy中活动候选路径的路径标识信息作为该SR Policy的标识信息,发送给该任一业务的数据流的发送端,例如对应于该SR Policy的隧道头节点,由该发送端将该SR Policy的路径标识信息添加在该数据流中的报文内,当头节点接收到该数据流中的报文后,将该报文中携带的路径标识信息弹出,并将该路径标识信息所标识的候选路径的SID列表作为标签栈,压入该报文的报文头,以引导该报文从该候选路径上转发出该转发网络101。
需要说明的是,转发网络101内的各个路径的头节点根据PCEP协议,与控制节点1021进行交互,在一些实施例中,该头节点被称为PCC,该控制节点1021被称为PCE。
在一些实施例中,该控制网络102可以视为一个控制中心,例如网络云化引擎(network cloud engine)。该控制网络102除了包括该控制节点1021以外,还可以包括具有其他控制功能的控制节点,例如向头节点发送特定控制消息的控制节点,该特定控制消息用于指示头节点根据控制节点1021下发的SR Policy所指示的候选路径,转发该任一业务的数据流,或者是指示头节点根据人工配置的路径转发该任一业务的数据流。可以理解的是,若该控制网络102包括多个控制设备,该控制节点1021为控制网络102中用于为控制网络102下发SR Policy以及为SR Policy所指示的各个候选路径分配路径标识信息的控制设备,若该控制网络102由一个控制设备来实现,则该控制节点1021为该一个控制设备中的一个控制模块。
对于本申请中涉及到PCEP报文,该PCEP报文包括用于标识路径的路径标识信息以及与该路径标识信息关联的指示信息,其中,当该路径的路径标识信息为BSID时,该路径标 识信息可以位于该PCEP报文中BSID字段内的预留(reserved)字段。该PCEP报文可以包括至少一个PCEP对象(object),例如LSP对象,PCEP报文中的每个PCEP对象可携带有至少一个类型-长度-值(type-length-value,TLV),可选地,LSP对象中的TLV包括流量工程(traffic engineering,TE)-路径(path)-BSID TLV,该TE-path-BSID TLV可以视为该PCEP报文中的BSID字段。
参见图2所示的本申请实施例提供的一种PCEP报文的报文格式示意图。图2所示的PCEP报文包括报文头和PCEP对象,其中,报文头包括版本号(version,Ver)字段、标识(flags)字段、消息类型(message-type)字段以及消息长度字段(message-length)字段。其中,Ver字段用于存储PCEP的版本号,占用3比特位(bits);该报文头中的标识字段当前未被定义,该报文头中的标识字段中的各个位可全置0,占用5比特位;消息类型字段用于存储该PCEP报文的类型标识,占用8比特位。该PCEP报文分为PCIInitiate报文、PCUpd报文以及PCRpt报文,PCEP报文的不同类型标识用于标识不同的类型的PCEP报文,例如,若该消息类型字段中存储的类型标识为12,则该PCEP报文为PCIInitiate报文,若该消息类型字段中存储的类型标识为11,则该PCEP报文为PCUpd报文,若该消息类型字段中存储的类型标识为10,则该PCEP报文为PCRpt报文。
PCEP报文中的至少一个PCEP对象具有公共格式,该至少一个PCEP对象开始于一个公共对象头,然后为不同的PCEP对象定义对象特定字段,例如图2所示的PCEP报文中的公共对象头(common object header)包括对象类别(object-class)字段、对象类型字段(object-type,OT)字段、预留字段(reserved,Res)字段、实施规则(processing-rule,P)标记字段、忽略(ignore,I)标记字段,对象长度(object length)字段。其中,该对象类别字段用于存储PCEP对象的类别标识,占用8比特位;对象类型字段用于存储对象的类型标识,占用4比特位,该对象类别字段以及该对象类型字段中存储的内容用于唯一标识一个PCEP对象,例如,若该对象类别字段中存储的类别标识为32,且该对象类型字段中存储的类型标识为1,则该PCEP对象为LSP对象;该公共对象头中的预留字段占用2比特位,这2比特位为保留位,可全置0;P标记字段用于存储P标记,占用1比特位,当P标记置位时,该PCEP对象必须考虑,当P标记未置位时,该PCEP对象可以被忽略;I标记字段用于存储I标记,I标记用来确定该PCEP对象是否要被处理,占用1比特位;该对象长度字段用于存储该PCEP对象的长度(用字节(bytes)数来表示),占用16比特位。
如图2所示,LSP对象定义的对象特定字段包括PCEP特定标识符(a PCEP-specific identifier for the LSP,PLSP-ID)、标识字段以及TLV字段,其中,PLSP-ID字段中存储的PLSP-ID在每个PCEP会话生存期内,用来标识一条LSP,占用20比特位;该LSP对象中的标识字段共占用12比特位,包括长度为3比特位的操作(operational,O)位、长度为1比特位的管理(administrative,A)、罗莫夫(romove,R)位、状态同步(state synchronization,S)标记位以及托管(delegate,D)标记位,其余置位0,其中,A位用于标识LSP的操作状态,R标记位为用于指示从数据库中删除这条LSP,S标记位用于标记LSP状态同步,D标记位用于标识LSP处于托管状态。图2所示的TLV字段为TE-path-BSID TLV,包括类型字段,长度字段、绑定类型(binding type,BT)字段、预留字段以及绑定值(binding value)字段。其中,该类型字段用于存储TLV的类型标识,若TLV的类型标识为1011,则该TLV字段为TE-path-BSID TLV。该长度字段用于存储TLV字段的长度。BT字段用于存储绑定类 型的标识,该第二预留字段是为了扩展TLV功能所预留的字段,与路径标识信息关联的指示信息可以存储于该第二预留字段中,例如在图2中指示信息用于F表示,F被存储在第二预留字段的最后一位,当然F也可以位于该第二预留字段中的任一位置。绑定值字段用于存储路径的路径标识信息(例如BSID),不同绑定类型的BSID的长度有所不同,因此,该绑定值字段中存储的BSID的长度是可变的。
需要说明的是,图2所示的PCEP报文格式并不是PCEP报文的完整报文格式,在图2中仅展示了部分字段,PCEP报文的其余字段未在图2中展示,例如,该PCEP报文的报文头还可以包括其他字段,该PCEP报文可以包括多个PCEP对象,仅在图2中展示了LSP对象,且图2中展示的LSP对应也可以包括除TE-path-BSID TLV以外的其他TLV,仅在图2中展示了TE-path-BSID TLV的数据格式。
另外需要说明的是,在图2所示的PCEP报文中,与路径标识信息关联的指示信息位于TE-path-BSID TLV的预留字段内。在一些实施例中,该指示信息还可以位于PCEP报文中的其他预留字段内,例如PCEP报文的公共对象头内的预留字段。在一些实施例中,该指示信息还可以位于PCEP报文中的标识字段内,例如LSP对象中的标识字段或PCEP报文的报文头内的标识字段。在图2所示的PCEP报文中,该指示信息占用一个比特位,在一些实施例中,该路径标识信息可以占用多个比特位,关于指示信息所占用的比特位的个数,后续结合方法实施例进行说明,在此不再进行举例说明。
对于任一路径,控制节点通过PCEP报文,向该路径上的转发节点下发该控制节点为该路径分配的路径标识信息,且该PCEP报文还携带有与该路径标识信息关联的指示信息,以明确指示该转发节点根据该指示信息,在该转发节点确定该路径标识信息不可用时,执行与该路径标识信息关联的操作,为了进一步说明该过程,参见图3所示的本申请实施例提供的一种路径标识的分配方法的流程图。
301、该控制节点为路径分配用于标识该路径的路径标识信息。
该路径可以是转发网络中的任一路径。在一种可能的实现方式中,该路径为一个SR Policy所指示的路径。该SR Policy可以是该控制节点为任一业务所分配的SR Policy,可选地,该SR Policy用于指示至少一个候选路径,该路径为该至少一个候选路径中的任一候选路径。SR Policy可以包括段路由流量工程策略(SR TE policy)或SRv6 Policy中任一个,本申请实施例对该SR Policy的类型不作具体限定。
该路径的路径标识信息包括路径的BSID,在一些实施例中,该路径的路径标识信息还可以是该路径的其他标识信息,在此本申请实施例对该路径的其他标识信息不作具体限定。
在一种可能的实现方式中,该控制节点内设置有路径标识集合,该路径标识集合包括多个路径标识信息,该控制节点将该多个路径标识信息中的任一路径标识信息分配给该路径。以路径标识信息为BSID为例,若该路径标识集合中的BSID属于[0000,9999],该控制节点随机将路径标识集合中的1000分配给该路径,作为该路径的BSID。
在另一种可能的实现方式中,该控制节点按照预设的分配规则,从该多个路径标识信息中为该路径分配路径标识信息。可选地,若该多个路径标识信息具有大小之分,该控制节点将该多个路径标识信息中的最大路径标识信息分配给该路径,或者,该控制节点将该多个路径标识信息中的最小路径标识信息分配给该路径。在一些实施例中,该控制节点还可以将分配给该路径的路径标识信息从该路径标识集合中删除,以避免后续在基于该路径标识集合为 除该路径以外的路径分配路径标识信息时,将该路径的路径标识信息分配给除该路径以外的路径。
当该控制节点为该路径分配完路径标识信息后,该控制节点还可以将该路径与该路径的路径标识信息进行关联存储。在一种可能的实现方式中,当该路径为SR Policy中的一个候选路径(candidate path)时,控制节点将该路径的路径标识信息存储在该路径所属的SR Policy中,并将该SR Policy中该路径的已有相关信息与将该路径的路径标识信息进行关联,其中,该路径的已有相关信息包括该SR Policy中该路径的偏好值、该路径的SID列表中的至少一个。
需要说明的是,对于一个SR Policy,该控制节点会为该SR Policy所指示的每个候选路径分别分配一个路径标识信息,也即是对每个候选路径均执行本步骤301。
在一些实施例中,该控制节点在为该SR Policy所指示的每个候选路径分配路径标识信息时,为每个候选路径分配相同的路径标识信息。在一种可能实现方式中,该控制节点通过本步骤301为该SR Policy所指示的一个候选路径分配路径标识信息,并将为该候选路径分配的路径标识信息作为该SR Policy所指示的各个候选路径的路径标识信息,该控制节点还可以将该候选路径的路径标识信息作为该SR Policy的标识信息。也可以理解为,该控制节点通过本步骤301为该SR Policy分配标识信息,并将为该SR Policy分配的标识信息作为该SR Policy所指示的各个候选路径的路径标识信息。例如,该控制节点将1000作为SR Policy所指示的各个候选路径的BSID,并将1000作为SR Policy的BSID。
在一些实施例中,该控制节点在为该SR Policy所指示的每个候选路径分配路径标识信息时,为每个候选路径分配不同的路径标识信息。在一种可能实现方式中,该控制节点通过本步骤301为该SR Policy所指示的每个候选路径分配不同的路径标识信息,并将SR Policy所指示的活动候选路径的路径标识信息作为该SR Policy的标识信息。对于这种情况,若本步骤301中的该路径在所属的SR Policy的偏好值最高,则该路径为该SR Policy所指示的活动候选路径,该控制节点将该路径的路径标识信息作为该SR Policy的标识信息,也即是该路径的路径标识信息为该路径所属的SR Policy的标识信息。例如,SR Policy所指示的候选路径包括候选路径1-3,其中,候选路径1-3在该SR Policy中的偏好值分别为0.2、0.3以及0.5,则该候选路径3为活动候选路径,若该控制节点将1000、1001以及1002分别作为候选路径1-3的BSID,则该控制节点还将分配给候选路径3的1002作为该SR Policy的BSID。
302、该控制节点生成PCEP报文,该PCEP报文包括用于标识该路径的路径标识信息以及与该路径标识信息关联的指示信息,该指示信息用于指示该路径上的转发节点根据该指示信息,在该转发节点确定该路径标识信息不可用时,执行与该路径标识信息关联的操作。
该指示信息位于该PCEP报文中BSID字段内的预留字段,例如,该路径的路径标识信息位于PCEP报文的TE-path-BSID TLV(BSID字段)内的绑定值字段,该指示信息位于该TE-path-BSID TLV内的预留字段,由于指示信息和路径信息均位于TE-path-BSID TLV中,从而指示信息与该路径标识信息相关联。
在一些实施例中,该指示信息位于该PCEP报文的公共对象头内的预留字段。在另外一些实施例中,该指示信息位于该PCEP报文中的标识字段,例如LSP对象中的标识字段或PCEP报文的报文头内的标识字段。只要在该PCEP报文中该指示信息与该路径的路径标识关联即可,在此,本申请实施例对该指示信息在该PCEP报文中的位置不作具体限定。
该指示信息占用至少一个比特位,例如指示信息为1,则占用一个比特位,在一些实施 例中指示信息占用多个比特位,例如指示信息为11,占用2个比特位。在一些实施例中,若该指示信息占用多个比特位,该多个比特位可以包括有效指示位,例如指示信息占用2个比特位,其中,该2个比特位的最后一位为有效指示位,若该有效指示位置0,则该指示信息无效,若该有效指示位置1,则该指示信息无效。
若该指示信息为第一指示信息,则与该路径标识信息关联的操作包括第一操作,该第一操作包括为该路径重新分配路径标识信息;若该指示信息为第二指示信息,则与该路径标识信息关联的操作包括该第二操作,该消息用于指示该路径的路径标识信息分配出错。或者也可以理解为,不同类型的指示信息指示转发节点执行的操作不同,例如,第一指示信息用于指示在确定该路径标识信息不可用时,执行与该路径标识关联的第一操作,第二指示信息用于指示在确定该路径标识信息不可用时,执行与该路径标识关联的第二操作。
该第一指示信息和第二指示信息的表示方式不同,以区分开不同指示类型的指示信息,例如第一指示信息为1,第二指示信息为0,若该指示信息占用一个比特位,则直接用1作为第一指示信息,直接用于0作为第二指示信息;若该指示信息占用多个比特位(例如2个比特位),当第一指示信息为10时,则表示该第一指示信息无效,当第一指示信息为11时,则表示第一指示信息有效,同理,当第二指示信息为00时,则表示该第二指示信息无效,当第二指示信息为01时,则表示第二指示信息有效。0和1仅是为了利于理解对第一指示信息和第二指示信息所进行的举例,该第一指示信息和第二指示信息也可以有其他的表示方式,例如,2比特位长度的指示信息可以用于表示四种不同的指示,其中每种指示可以对应于不同的细化操作指示。在此,本申请实施例对该第一指示信息和第二指示信息的表示方式不作具体限定。
在一些实施例中,该PCEP报文中该指示信息所在字段的有无也可以指示转发节点所执行的操作。例如,当该PCEP报文包括该指示信息所在的字段时,但不限定该字段中指示信息的表示方式,则转发节点默认该字段中的指示信息为第一指示信息,若该转发节点确定该PCEP报文中该路径的路径标识信息不可用,则该转发节点执行与该路径标识信息关联的第一操作。再例如当该PCEP报文不包括该指示信息所在的字段时,则该转发节点默认:若确定该PCEP报文中该路径的路径标识信息不可用,该转发节点执行与该路径标识信息关联的第二操作。
该控制节点基于为该转发节点分配的路径标识信息以及该指示信息,按照PCEP报文的报文格式,生成该PCEP报文。以路径标识信息为BSID,指示信息为第一指示信息为例,该控制节点为该路径分配的BSID为1000,第一指示信息记为1,该控制节点按照PCEP报文的报文格式,在PCEP报文中的TE-path-BSID TLV内的绑定值字段中添加1000,以指示路径的BSID为1000,并将TE-path-BSID TLV内的预留字段的最后一位置1,以作为第一指示信息,例如图4所示的本申请实施例提供的一种TE-path-BSID TLV的数据格式示意图。当该控制节点将PCEP报文的各个字段中的内容均添加完成后,也即是生成了该PCEP报文。
在不同的应用场景下,该控制节点生成的PCEP报文的报文类型不同。若该控制节点是第一次为该路径分配路径标识信息,则该控制节点在该PCEP报文的消息类型字段中添加PCIInitiate报文的类型标识(例如12),此时该PCEP报文为PCIInitiate报文。若该控制节点并是非第一次为该路径分配路径标识信息,则该控制节点在该PCEP报文的消息类型字段中添加PCUpd报文的类型标识(例如11),此时该PCEP报文为PCUpd报文。
303、控制节点向该路径上的转发节点发送该PCEP报文。
该转发节点可以是该路径的头节点。
304、该转发节点接收该PCEP报文。
305、该转发节点确定该PCEP报文携带的该路径的路径标识信息不可用。
当接收到该PCEP报文后,该转发节点从该PCEP报文中获取该路径的路径标识信息,例如该转发节点从该PCEP报文的TE-path-BSID TLV的绑定值字段中读取该路径标识信息1000。
当该转发节点从该PCEP报文中获取到该路径标识信息后,该转发节点通过查询已占用的路径标识信息,来确定该路径标识信息是否可用,也可以理解为确定该路径标识信息是否能够给该路径使用。其中,该已占用的路径标识信息可以是该转发节点所存储的已分配完成的各个路径的路径标识信息。
在一些实施例中,该转发节点查询已占用的路径标识信息中是否存在该路径标识信息,若存在,则说明该路径标识信息已经被该路径以外的任一路径占用,该转发节点确定该路径标识不可用,否则说明该路径标识还未被其他路径占用,则该转发节点确定该路径标识可用。
在另外一些实施例中,该转发节点根据预设条件,对该路径标识信息进行验证,若该路径标识信息不符合预设条件,则该路径标识信息未通过验证,该转发节点确定该路径标识信息不可用,否则确定该路径标识信息可用。其中,该预设条件可以包括该路径标识信息属于该转发节点在为路径配置路径标识信息时所使用的路径标识信息范围,或,该路径标识信息的数据格式为目标数据格式中的至少一个。例如,每个转发节点内都设置有一个路径标识信息范围,每个转发节点内设置的路径标识信息范围可以相同,也可以不同,每个转发节点内设置的路径标识信息范围为每个转发节点在配置路径的路径标识信息时所使用的范围区间,若该路径标识信息为1000,而该转发节点内设置的路径标识信息范围为[2000,3000],由于该路径标识信息1000不属于[200,3000],则该转发节点确定该路径标识信息不符合预设条件,该路径标识信息未通过验证。再例如,该路径标识信息的数据格式不是目标数据格式,则该转发节点确定该路径标识信息不符合预设条件,该路径标识信息未通过验证。
需要说明的是,若该转发节点确定该路径标识信息可用,也即是确定该路径标识信息能够被该路径使用,则该路径的路径标识信息分配完成,该转发节点还可以将该路径标识信息与该路径进行关联存储,其关联存储的方式可以是上述描述的控制节点对路径标识信息进行关联存储的方式。
306、该转发节点根据该指示信息执行与该路径标识信息关联的操作。
本申请实施例提供的方法,通过路径上的转发节点接收PCEP报文,以便该转发节点根据该PCEP报文中指示信息,在该转发节点确定该路径的路径标识信息不可用时,执行与该路径标识信息关联的操作,如根据指示的内容确定由转发节点重新分配路径标识,或请求控制节点进行路径标识重分配等,从而提高了路径标识分配的灵活性和分配效率。
对于上述步骤306,在该转发节点确定该路径标识信息不可用时,不同类型的指示信息所指示的操作有所不同,为了进一步体现该转发节点在不同类型的指示信息下所进行的不同操作,分别参见下述图5-图6所示的实施过程。其中,图5是本申请实施例提供的一种指示信息为第一指示信息时该转发节点与控制节点之间的交互流程图,图6是本申请实施例提供的一种指示信息为第二指示信息时该转发节点与控制节点之间的交互流程图。
图5所示的过程可以包括下述步骤501-504:
501、当该指示信息为第一指示信息,且该第一指示信息用于指示在该转发节点确定该路径标识信息不可用,执行与该路径标识信息关联的第一操作时,若该转发节点确定该路径标识信息不可用,则该转发节点为该路径重新分配路径标识信息。
其中,该第一操作也即是为该路径重新分配路径标识信息。可以理解的是,当该指示信息为第一指示信息,且该操作为第一操作时,该转发节点具有为该路径分配路径标识信息的权限。
该转发节点在确定该路径标识信息不可用时,则根据该第一指示信息的指示执行与该路径标识信息关联的第一操作,也即是该转发节点为该路径重新分配路径标识信息。其中,该转发节点为该路径重新分配路径标识信息的过程与上述步骤301中控制节点为路径分配路径标识信息的过程类似,在此,本申请实施例对该转发节点为该路径重新分配路径标识信息的过程不作赘述。
需要说明的是,本步骤501所示的过程,也即是当该指示信息为第一指示信息,且该操作为第一操作时,该转发节点在确定该路径标识信息不可用时,执行第一操作的过程。
502、该转发节点向该控制节点发送标识更新报文,该标识更新报文用于指示将该路径标识信息更新为目标路径标识信息,该目标路径标识信息是该转发节点为该路径重新分配的路径标识信息。
该标识更新报文包括该目标路径标识信息,此时该标识更新报文的数据格式或者说该标识更新报文本身用于指示将该路径标识信息更新为目标路径标识信息。在一种可能的实现方式中,该标识更新报文为PCRpt报文。该转发节点按照PCEP报文的报文格式,在PCEP报文的消息类型字段中添加PCRp报文的类型标识(例如10),并在PCEP报文的BISD字段内添加目标路径标识信息,从而得到PCRpt报文(也即是标识更新报文)。例如图7所示的本申请实施例提供的一种BISD字段的结构示意图,若该目标路径标识信息为BSID,且BSID的取值为1001,则该转发节点可以在该BISD字段内绑定值字段添加1001,以指示该转发节点为该路径重新分配的BSID为1001。
在一些实施例中,该标识更新报文还包括更新标识,该更新标识用于指示将该路径标识信息更新为目标路径标识信息,此时,该标识更新报文以及该更新标识两者可以共同指示将该路径标识信息更新为目标路径标识信息。在一种可能的实现方式中,该转发节点基于该目标路径标识信息以及该更新标识,生成该标识更新报文,并向该控制节点发送该标识更新报文,以指示控制节点将存储的该路径的路径标识信息更新为目标路径标识信息。
503、控制节点接收标识更新报文。
504、该控制节点基于该标识更新报文,将该路径标识信息更新为目标路径标识信息。
若该标识更新报文为PCRpt报文,或者该标识更新报文包括更新标识,则该控制节点获悉该转发节点已经重新为该路径分配一个目标路径标识信息,为了保证使用一致性,该控制节点需要将本地存储的该路径的路径标识信息更新为该目标路径标识信息。
在一种可能的实现方式中,该控制节点可以从该标识更新报文中获取到该目标路径标识信息,并从该控制节点已存储的各个SR Policy中查询该路径所属的SR Policy,并在查询到的SR Policy中添加获取到的目标路径标识信息,且在查询到的SR Policy中该目标路径标识信息与该路径关联,以实现将为该路径分配的路径标识信息更新为该目标路径标识信息。
上述502-504所示的过程为转发节点通过向控制节点发送标识更新报文,由控制节点根据标识更新报文将本地存储的该路径的路径标识信息更新为该目标路径标识信息的过程。而在一些实施例中,该转发节点不向该控制节点发送标识更新报文,而是转发节点在本地存储的SR Policy中添加该路径的目标路径标识信息,得到目标SR Policy,并将该目标SR Policy发送给控制节点,由该控制节点查询本地已存储的该路径所属的SR Policy,并将查询到的SR Policy更新为该目标SR Policy,由于该控制节点查询到SR Policy包括该控制节点为该路径分配的该路径标识信息,而目标SR Policy为将该路径标识信息更新为该目标路径标识后的该SR Policy,因此,通过将查询到SR Policy更新为该目标SR Policy,以实现将为该路径分配的路径标识信息更新为该目标路径标识信息。
本申请实施例提供的方法,通过若该指示信息为第一指示信息,且该操作为第一操作,则该转发节点在确定该路径标识信息不可用时,直接为该路径重新分配新的路径标识信息,且无需请求控制节点重新分配,减少了控制节点与转发节点之间的交互次数,提高了路径标识的分配效率。
图6所示的过程可以包括下述步骤601-603:
601、当该指示信息为第二指示信息,且该第二指示信息用于指示在该转发节点确定该路径标识信息不可用,执行与该路径标识信息关联的第二操作时,若该转发节点确定路径标识信息不可用,则该转发节点向控制节点发送消息,该消息用于指示识该路径的路径标识信息分配出错。
其中,该第二操作也即是向控制节点发送消息。可选地,该消息为PCErr消息。该消息可以包括该路径的SID列表以及错误标识,该错误标识用于指示该路径的路径标识信息分配出错。
需要说明的是,本步骤601所示的过程,也即是当该指示信息为第二指示信息,且该操作为第二操作时,该转发节点在确定该路径标识信息不可用时,执行第二操作的过程。
可以理解的是,当该指示信息为第二指示信息,且该操作为第二操作时,该转发节点不具有为该路径分配路径标识信息的权限,若该转发节点确定该控制节点下发的该路径的路径标识信息不可用,则转发节点通过向控制节点发送消息,以进行报错,以便后续控制节点重新为该转发节点分配新的路径标识信息。
602、该控制节点接收该消息。
603、该控制节点基于该消息,重新为该路径分配路径标识信息。
当该控制节点接收到该消息后,通过该消息中的SID列表以及错误标识,获悉该控制节点之前为该路径所分配的路径标识信息分配出错,则该控制节点重新为该路径分配新的路径标识信息。当该控制节点为该路径分配完新的路径标识信息后,该控制节点可以通过该SID列表,查询本地存储的该路径所属的SR Policy中该路径的路径标识信息,并将查询到的路径标识信息更新为该新的路径标识信息。
可以理解的是,当该控制节点接收到消息后跳转执行上述步骤301,也即是重新执行图3所示的过程。
本申请实施例提供的方法,通过若指示信息为第二指示信息,与该路径标识信息关联的操作为第二操作,则该转发节点在确定该路径标识信息不可用时,直接向控制节点发送消息,由控制节点基于该消息重新为该路径分配新的路径标识信息,有利于控制节点统一维护网络 中各个路径的路径标识信息。
以上介绍了本申请实施例的方法,以下介绍本申请实施例的装置,应理解,以下介绍的装置具有上述方法中转发节点或控制节点的任意功能。
图8是本申请实施例提供的一种路径标识的分配装置的结构示意图,该装置800被配置路径上的转发节点,该装置800包括:
接收模块801,用于执行上述步骤304;
确定模块802,用于执行上述步骤305;
执行模块803,用于执行上述步骤306。
可选地,所述确定模块802,用于若所述路径标识信息已经被所述路径之外的任一路径占用,确定所述路径标识信息不可用。
可选地,所述执行模块803包括分配单元,所述分配单元用于执行上述步骤501。
可选地,所述执行模块803还包括发送单元,所述发送单元用于执行上述步骤502和步骤601。
应理解,装置800对应于上述方法实施例中的转发节点,装置800中的各模块和上述其他操作和/或功能分别为了实现方法实施例中的转发节点所实施的各种步骤和方法,具体细节可参见上述方法实施例,为了简洁,在此不再赘述。
应理解,装置800在根据指示信息的指示执行与路径标识信息关联的操作时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置800的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的装800与上述方法实施例属于同一构思,其具体实现过程详见上述方法实施例,这里不再赘述。
应理解,装置800可以相当于系统100中的转发节点1011,或者相当于转发节点1011中的执行部件。
图9是本申请实施例提供的一种路径标识的分配装置的结构示意图,如图9所示,装置900被配置为控制节点,该装置900包括:生成模块901,用于执行上述步骤302;发送模块902,用于执行上述步骤303。
可选地,所述生成模块901,用于若检测到所述转发节点发生故障重启,生成所述PCEP报文。
可选地,所述装置900还包括:
第一接收模块,用于执行上述步骤602;
分配模块,用于执行上述步骤301或步骤603。
可选地,所述装置900还包括:
第二接收模块,用于执行上述步骤503;
更新模块,用于执行上述步骤504。
需要说明的是,上述的第一接收模块和第二接收模块可以是同一个接收模块,也可以是同一个接收模块中的两个子模块,也可以是两个独立的接收模块,本申请实施例对第一接收模块、第二接收模块之间的位置关系不作具体限定。
应理解,装置900对应于上述方法实施例中的控制节点,装置900中的各模块和上述其他操作和/或功能分别为了实现方法实施例中的控制节点所实施的各种步骤和方法,具体细节 可参见上述方法实施例,为了简洁,在此不再赘述。
应理解,装置900在为路径分配路径标识信息以及生成PCEP报文时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置900的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的装置900与上述方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
应理解,装置900可以相当于系统100中的控制节点1021,或者相当于控制节点1021中的执行部件。
与本申请提供的方法实施例以及虚拟装置实施例相对应,本申请实施例还提供了一种网络设备,下面对网络设备硬件结构进行介绍。
网络设备1000对应于上述方法实施例中的转发节点,网络设备1000中的各硬件、模块和上述其他操作和/或功能分别为了实现方法实施例中的转发节点所实施的各种步骤和方法,关于网络设备1000如何根据指示信息执行路径标识信息关联操作的详细流程,具体细节可参见上述方法实施例,为了简洁,在此不再赘述。其中,上文方法实施例中转发节点所执行的各步骤通过网络设备1000的处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法中转发节点所执行的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
网络设备1000对应于上述虚拟装置实施例中的装置800,装置800中的全部或部分功能模块实际可以采用网络设备1000中的软件、硬件或软硬件的结合的方式来实现。可选地,装置800中的全部或部分功能模块采用网络设备1000的软件实现,例如,装置800包括的功能模块可以为网络设备1000的处理器读取存储器中存储的程序代码后生成的。
参见图10,图10是本申请实施例提供的一种网络设备的结构示意图,网络设备1000可以配置为路径上的转发节点。
网络设备1000包括:主控板1010和接口板1030。
主控板1010也称为主处理单元(main processing unit,MPU)或路由处理卡(route processor card),主控板1010对网络设备1000中各个组件的控制和管理,包括路由计算、设备管理、设备维护、协议处理功能。主控板1010包括:中央处理器1011和存储器1012。
接口板1030也称为线路接口单元卡(line processing unit,LPU)、线卡(line card)或业务板。接口板1030用于提供各种业务接口并实现数据包的转发。业务接口包括而不限于以太网接口、POS(packet over SONET/SDH)接口等,以太网接口例如是灵活以太网业务接口(flexible ethernet clients,FlexE Clients)。接口板1030包括:中央处理器1031、网络处理器1032、转发表项存储器1034和物理接口卡(ph10sical interface card,PIC)1033。
接口板1030上的中央处理器1031用于对接口板1030进行控制管理并与主控板1010上的中央处理器1011进行通信。
网络处理器1032用于实现报文的转发处理。网络处理器1032的形态可以是转发芯片。具体而言,上行报文的处理包括:报文入接口的处理,转发表查找;下行报文的处理:转发 表查找等等。
物理接口卡1033用于实现物理层的对接功能,原始的流量由此进入接口板1030,以及处理后的报文从该物理接口卡1033发出。物理接口卡1033包括至少一个物理接口,物理接口也称物理口。物理接口卡1033也称为子卡,可安装在接口板1030上,负责将光电信号转换为报文并对报文进行合法性检查后转发给网络处理器1032处理。在一些实施例中,接口板1003的中央处理器1031也可执行网络处理器1032的功能,比如基于通用CPU实现软件转发,从而物理接口卡1033中不需要网络处理器1032。
可选地,网络设备1000包括多个接口板,例如网络设备1000还包括接口板1040,接口板1040包括:中央处理器1041、网络处理器1042、转发表项存储器1044和物理接口卡1043。
可选地,网络设备1000还包括交换网板1020。交换网板1020也可以称为交换网板单元(switch fabric unit,SFU)。在网络设备1000有多个接口板1030的情况下,交换网板1020用于完成各接口板之间的数据交换。例如,接口板1030和接口板1040之间可以通过交换网板1020通信。
主控板1010和接口板1030耦合。例如。主控板1010、接口板1030和接口板1040,以及交换网板1020之间通过系统总线与系统背板相连实现互通。在一种可能的实现方式中,主控板1010和接口板1030之间建立进程间通信协议(inter-process communication,IPC)通道,主控板1010和接口板1030之间通过IPC通道进行通信。
在逻辑上,网络设备1000包括控制面和转发面,控制面包括主控板1010和中央处理器1031,转发面包括执行转发的各个组件,比如转发表项存储器1034、物理接口卡1033和网络处理器1032。控制面执行路由器、生成转发表、处理信令和协议报文、配置与维护设备的状态等功能,控制面将生成的转发表下发给转发面,在转发面,网络处理器1032基于控制面下发的转发表对物理接口卡1033收到的报文查表转发。控制面下发的转发表可以保存在转发表项存储器1034中。在有些实施例中,控制面和转发面可以完全分离,不在同一设备上。
如果网络设备1000被配置为转发节点,中央处理器1011根据所述指示信息,在所述转发节点确定所述路径标识信息不可用时,执行与所述路径标识信息关联的操作。网络处理器1032触发物理接口卡1033接收PCEP报文、发送消息、发送标识更新报文。
应理解,装置800中的接收模块801相当于网络设备1000中的物理接口卡1033或物理接口卡1043;装置800中的确定模块802以及执行单元803可以相当于网络设备1000中的中央处理器1011或中央处理器1031。
应理解,本申请实施例中接口板1040上的操作与接口板1030的操作一致,为了简洁,不再赘述。应理解,本实施例的网络设备1000可对应于上述各个方法实施例中的转发节点,该网络设备1000中的主控板1010、接口板1030和/或接口板1040可以实现上述各个方法实施例中的转发节点所具有的功能和/或所实施的各种步骤,为了简洁,在此不再赘述。
值得说明的是,主控板可能有一块或多块,有多块的时候可以包括主用主控板和备用主控板。接口板可能有一块或多块,网络设备的数据处理能力越强,提供的接口板越多。接口板上的物理接口卡也可以有一块或多块。交换网板可能没有,也可能有一块或多块,有多块的时候可以共同实现负荷分担冗余备份。在集中式转发架构下,网络设备可以不需要交换网板,接口板承担整个系统的业务数据的处理功能。在分布式转发架构下,网络设备可以有至 少一块交换网板,通过交换网板实现多块接口板之间的数据交换,提供大容量的数据交换和处理能力。所以,分布式架构的网络设备的数据接入和处理能力要大于集中式架构的设备。可选地,网络设备的形态也可以是只有一块板卡,即没有交换网板,接口板和主控板的功能集成在该一块板卡上,此时接口板上的中央处理器和主控板上的中央处理器在该一块板卡上可以合并为一个中央处理器,执行两者叠加后的功能,这种形态设备的数据交换和处理能力较低(例如,低端交换机或路由器等网络设备)。具体采用哪种架构,取决于具体的组网部署场景,此处不做任何限定。
与本申请提供的方法实施例以及虚拟装置实施例相对应,本申请实施例还提供了一种控制设备,下面对控制设备的硬件结构进行介绍。
控制设备1100或对应于上述方法实施例中的控制节点,控制设备1100中的各硬件、模块和上述其他操作和/或功能分别为了实现方法实施例中的控制节点所实施的各种步骤和方法,关于控制设备1100如何为路径分配路径标识信息以及生成PCEP报文的详细流程,具体细节可参见上述方法实施例,为了简洁,在此不再赘述。其中,上文方法实施例的各步骤通过控制设备1100的处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
控制设备1100对应于上述虚拟装置实施例中的装置900,装置900中的全部或部分功能模块实际可以采用控制设备1100中的软件、硬件或软硬件的结合的方式来实现。可选地,装置900中的全部或部分功能模块采用控制设备1100的软件实现,例如,装置900包括的功能模块可以为控制设备1100的处理器读取存储器中存储的程序代码后生成的。
参见图11,图11是本申请实施例提供的一种控制设备的结构示意图,该控制设备1100可以配置为控制节点。
控制设备1100包括至少一个处理器1101、通信总线1102、存储器1103以及至少一个物理接口1104。
处理器1101可以是一个通用中央处理器(central processing unit,CPU)、网络处理器(network processor,NP)、微处理器或者可以是一个或多个用于实现本申请方案的集成电路,例如,专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
通信总线1102用于在上述组件之间传送信息。通信总线1102可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
存储器1103可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其它类型的静态存储设备,也可以是随机存取存储器(random access memory,RAM)或者可存储信息和指令的其它类型的动态存储设备,也可以是电可擦可编程只读存储器 (electrically erasable programmable read-only Memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其它光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其它磁存储设备,或者是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其它介质,但不限于此。存储器1103可以是独立存在,并通过通信总线1102与处理器1101相连接。存储器1103也可以和处理器1101集成在一起。
物理接口1104使用任何收发器一类的装置,用于与其它设备或通信网络通信。物理接口1104包括有线通信接口,还可以包括无线通信接口。其中,有线通信接口例如可以为以太网接口。以太网接口可以是光接口,电接口或其组合。无线通信接口可以为无线局域网(wireless local area networks,WLAN)接口,蜂窝网络通信接口或其组合等。物理接口1104也称物理口。
在具体实现中,作为一种实施例,处理器1101可以包括一个或多个CPU,如图11中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,控制设备1100可以包括多个处理器,如图11中所示的处理器1101和处理器1105。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,控制设备1100还可以包括输出设备1106和输入设备1107。输出设备1106和处理器1101通信,可以以多种方式来显示信息。例如,输出设备1106可以是液晶显示器(liquid crystal display,LCD)、发光二级管(light emitting diode,LED)显示设备、阴极射线管(cathode ray tube,CRT)显示设备或投影仪(projector)等。输入设备1107和处理器1101通信,可以以多种方式接收用户的输入。例如,输入设备1107可以是鼠标、键盘、触摸屏设备或传感设备等。
在一些实施例中,存储器1103用于存储执行本申请方案的程序代码1110,处理器1101可以执行存储器1103中存储的程序代码1110以实现相应的功能。例如,程序代码1110中存储的程序可以被调用以实现装置900中生成模块901的功能、分配模块以及更新模块的功能。也即是,控制设备1100可以通过处理器1101以及存储器1103中的程序代码1110,来配合实现前述方法实施例提供的方法。
本申请实施例的控制设备1100可对应于上述各个方法实施例中的控制节点,并且,该控制设备1100中的处理器1101、物理接口1104等可以实现上述各个方法实施例中的控制节点所具有的功能和/或所实施的各种步骤和方法。为了简洁,在此不再赘述。
在一些实施例中,装置900中的生成模块901、分配模块以及更新模块可以相当于控制设备1100中的处理器1101;装置900中的发送模块902、第一接收模块以及第二接收模块相当于控制设备1100中的物理接口1104。
在一些可能的实施例中,上述转发节点或控制节点可以实现为虚拟化设备。例如,虚拟化设备可以是运行有用于发送报文功能的程序的虚拟机(virtual machine,VM),虚拟机部署在硬件设备上(例如,物理服务器)。虚拟机指通过软件模拟的具有完整硬件系统功能的、运行在一个完全隔离环境中的完整计算机系统。可以将虚拟机配置为转发节点或控制节点。例如,可以基于通用的物理服务器结合网络功能虚拟化(network functions virtualization,NFV) 技术来实现转发节点或控制节点。转发节点或控制节点为虚拟主机、虚拟路由器或虚拟交换机。本领域技术人员通过阅读本申请即可结合NFV技术在通用物理服务器上虚拟出具有上述功能的转发节点或控制节点。此处不再赘述。
应理解,上述各种产品形态的网络设备,分别具有上述方法实施例中转发节点或控制节点的任意功能,此处不再赘述。
本申请实施例提供了一种计算机程序产品,当该计算机程序产品在网络设备上运行时,使得网络设备执行上述方法实施例中转发节点执行的方法。
本申请实施例提供了一种计算机程序产品,当该计算机程序产品在控制设备上运行时,使得网络设备执行上述方法实施例中控制节点执行的方法。
本申请实施例还提供了一种芯片,包括处理器和接口电路,接口电路,用于接收指令并传输至处理器;处理器,可以用于执行上述应用于指令转发节点或控制节点执行路径标识的分配方法。其中,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述任一方法实施例中的方法。
可选地,该芯片系统中的处理器可以为一个或多个。该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
示例性的,该芯片系统可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是CPU,还可以是NP,还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (30)

  1. 一种路径标识的分配方法,其特征在于,所述方法由路径上的转发节点执行,所述方法包括:
    接收路径计算单元通信协议PCEP报文,所述PCEP报文包括用于标识所述路径的路径标识信息以及与所述路径标识信息关联的指示信息;
    确定所述路径标识信息不可用,并根据所述指示信息执行与所述路径标识信息关联的操作。
  2. 根据权利要求1所述的方法,其特征在于,若所述指示信息为第一指示信息,则与所述路径标识信息关联的操作包括第一操作,所述第一操作包括为所述路径重新分配路径标识信息。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述指示信息执行与所述路径标识信息关联的操作之后,所述方法还包括:
    向控制节点发送标识更新报文,所述标识更新报文用于指示将所述路径标识信息更新为目标路径标识信息,所述目标路径标识信息是所述转发节点为所述路径重新分配的路径标识信息。
  4. 根据权利要求1所述的方法,其特征在于,若所述指示信息为第二指示信息,则与所述路径标识信息关联的操作包括第二操作,所述第二操作包括向控制节点发送消息,所述消息用于指示识所述路径的路径标识信息分配出错。
  5. 根据权利要求1-4任一项权利要求所述的方法,其特征在于,所述路径标识信息包括所述路径的绑定段标识BSID。
  6. 根据权利要求5所述的方法,其特征在于,所述指示信息位于所述PCEP报文中BSID字段内的预留reserved字段。
  7. 根据权利要求1-5任一项权利要求所述的方法,其特征在于,所述指示信息位于所述PCEP报文中的标识flags字段。
  8. 根据权利要求1-7任一项权利要求所述的方法,其特征在于,所述指示信息占用至少一个比特位。
  9. 根据权利要求1-8任一项权利要求所述的方法,其特征在于,所述PCEP报文包括路径计算标签转换路径初始化PCIInitiate报文或路径计算更新请求PCUpd报文中的任一个。
  10. 根据权利要求1-9任一项权利要求所述的方法,其特征在于,所述路径为SR Policy所指示的路径,所述SR Policy包括段路由流量工程策略SR TE Policy或基于互联网协议第6版的段路由策略SRv6 Policy中任一个。
  11. 根据权利要求10所述的方法,其特征在于,所述路径为候选路径candidate path。
  12. 根据权利要求10或11所述的方法,其特征在于,所述路径标识信息为所述SR Policy的标识信息,或所述candidate path的标识信息。
  13. 根据权利要求1-12任一项权利要求所述的方法,其特征在于,所述确定所述路径标识信息不可用包括:
    若所述路径标识信息已经被所述路径之外的任一路径占用,确定所述路径标识信息不可用。
  14. 根据权利要求1-13任一项权利要求所述的方法,其特征在于,所述转发节点为所述路径的头节点。
  15. 一种路径标识的分配方法,其特征在于,所述方法由控制节点执行,所述方法包括:
    生成PCEP报文,所述PCEP报文包括用于标识路径的路径标识信息以及与所述路径标识信息关联的指示信息,所述指示信息用于指示所述路径上的转发节点根据所述指示信息,在所述转发节点确定所述路径标识信息不可用时,执行与所述路径标识信息关联的操作;
    向所述转发节点发送所述PCEP报文。
  16. 根据权利要求15所述的方法,其特征在于,所述生成PCEP报文包括:
    若检测到所述转发节点发生故障重启,生成所述PCEP报文。
  17. 根据权利要求15或16所述的方法,其特征在于,所述向所述转发节点发送所述PCEP报文之后,所述方法还包括:
    接收标识更新报文,所述标识更新报文用于指示将所述路径标识信息更新为目标路径标识信息,所述目标路径标识信息是所述转发节点为所述路径重新分配的路径标识信息;
    基于所述标识更新报文,将存储的所述路径的所述路径标识信息更新为所述目标路径标识信息。
  18. 根据权利要求15或16所述的方法,其特征在于,所述向所述转发节点发送所述PCEP报文之后,所述方法还包括:
    接收消息,所述消息用于指示所述路径的路径标识信息分配出错;
    基于所述消息,重新为所述路径分配路径标识信息。
  19. 根据权利要求15-17任一项权利要求所述的方法,其特征在于,若所述指示信息为第 一指示信息,则与所述路径标识信息关联的操作包括第一操作,所述第一操作包括为所述路径重新分配路径标识信息。
  20. 根据权利要求15-18任一项权利要求所述的方法,其特征在于,若所述指示信息为第二指示信息,则与所述路径标识信息关联的操作包括第二操作,所述第二操作包括向所述控制节点发送消息,所述消息用于指示识所述路径的路径标识信息分配出错。
  21. 根据权利要求15-20任一项权利要求所述的方法,其特征在于,所述路径标识信息包括所述路径的绑定段标识BSID。
  22. 根据权利要求21所述的方法,其特征在于,所述指示信息位于所述PCEP报文中BSID字段内的预留reserved字段。
  23. 根据权利要求15-21任一项权利要求所述的方法,其特征在于,所述指示信息位于所述PCEP报文中的标识flags字段。
  24. 根据权利要求15-23任一项权利要求所述的方法,其特征在于,所述指示信息占用至少一个比特位。
  25. 一种路径标识的分配系统,其特征在于,所述分配系统包括控制节点和转发节点;
    所述控制节点用于:
    生成PCEP报文,所述PCEP报文包括用于标识路径的路径标识信息以及与所述路径标识信息关联的指示信息;
    向所述路径上的转发节点发送所述PCEP报文;
    所述转发节点,用于接收所述PCEP报文,确定所述路径标识信息不可用,并根据所述指示信息执行与所述路径标识信息关联的操作。
  26. 一种路径标识的分配装置,其特征在于,所述装置被配置为路径上的转发节点,所述装置包括:
    接收模块,用于接收路径计算单元通信协议PCEP报文,所述PCEP报文包括用于标识所述路径的路径标识信息以及与所述路径标识信息关联的指示信息;
    确定模块,用于确定所述路径标识信息不可用;
    执行模块,用于根据所述指示信息执行与所述路径标识信息关联的操作。
  27. 一种路径标识的分配装置,其特征在于,所述装置被配置为控制节点,装置包括:
    生成模块,用于生成PCEP报文,所述PCEP报文包括用于标识路径的路径标识信息以及与所述路径标识信息关联的指示信息,所述指示信息用于指示所述路径上的转发节点根据所述指示信息,在所述转发节点确定所述路径标识信息不可用时,执行与所述路径标识信息关联的操作;
    发送模块,用于向所述转发节点发送所述PCEP报文。
  28. 一种网络设备,其特征在于,所述网络设备包括处理器和存储器,所述存储器中存储有程序代码,所述程序代码由所述处理器加载并执行,以使得所述网络设备实现如权利要求1至权利要求14任一项所述的路径标识的分配方法。
  29. 一种控制设备,其特征在于,所述控制设备包括处理器和存储器,所述存储器中存储有程序代码,所述程序代码由所述处理器加载并执行,以使得所述网络设备实现如权利要求15至权利要求24任一项所述的路径标识的分配方法。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有程序代码,当其在计算机上运行时,使得所述计算机执行如权利要求1至权利要求24任一项所述的路径标识的分配方法。
PCT/CN2021/110662 2020-09-19 2021-08-04 路径标识的分配方法、系统、装置、设备以及存储介质 WO2022057487A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023517837A JP2023542677A (ja) 2020-09-19 2021-08-04 経路識別割振り方法、システム、および装置、デバイス、ならびに記憶媒体
EP21868316.7A EP4207640A4 (en) 2020-09-19 2021-08-04 METHOD, SYSTEM, APPARATUS AND APPARATUS FOR ASSIGNING PATH IDENTIFIERS AND STORAGE MEDIUM
MX2023003221A MX2023003221A (es) 2020-09-19 2021-08-04 Método de asignación de identidad de ruta, sistema y dispositivo, dispositivo y medio de almacenamiento.
US18/185,818 US20230224241A1 (en) 2020-09-19 2023-03-17 Path Identity Allocation Method, System, and Apparatus, Device, and Storage Medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010990879.4 2020-09-19
CN202010990879 2020-09-19
CN202011545932.6A CN114257542A (zh) 2020-09-19 2020-12-23 路径标识的分配方法、系统、装置、设备以及存储介质
CN202011545932.6 2020-12-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/185,818 Continuation US20230224241A1 (en) 2020-09-19 2023-03-17 Path Identity Allocation Method, System, and Apparatus, Device, and Storage Medium

Publications (1)

Publication Number Publication Date
WO2022057487A1 true WO2022057487A1 (zh) 2022-03-24

Family

ID=80777467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110662 WO2022057487A1 (zh) 2020-09-19 2021-08-04 路径标识的分配方法、系统、装置、设备以及存储介质

Country Status (5)

Country Link
US (1) US20230224241A1 (zh)
EP (1) EP4207640A4 (zh)
JP (1) JP2023542677A (zh)
MX (1) MX2023003221A (zh)
WO (1) WO2022057487A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116709336B (zh) * 2023-08-03 2023-09-29 深圳市瑞迅通信息技术有限公司 一种无线通信安全监测方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106603412A (zh) * 2015-10-16 2017-04-26 华为技术有限公司 流规则发送的方法、路径计算单元和路径计算客户端
CN109218175A (zh) * 2017-06-30 2019-01-15 华为技术有限公司 一种路径数据的删除方法、一种消息转发方法和装置
US20190312806A1 (en) * 2016-05-26 2019-10-10 Cisco Technology, Inc. Enforcing strict shortest path forwarding using strict segment identifiers
CN110995596A (zh) * 2019-12-20 2020-04-10 锐捷网络股份有限公司 基于SRv6网络的SID分配方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106603412A (zh) * 2015-10-16 2017-04-26 华为技术有限公司 流规则发送的方法、路径计算单元和路径计算客户端
US20190312806A1 (en) * 2016-05-26 2019-10-10 Cisco Technology, Inc. Enforcing strict shortest path forwarding using strict segment identifiers
CN109218175A (zh) * 2017-06-30 2019-01-15 华为技术有限公司 一种路径数据的删除方法、一种消息转发方法和装置
CN110995596A (zh) * 2019-12-20 2020-04-10 锐捷网络股份有限公司 基于SRv6网络的SID分配方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4207640A4

Also Published As

Publication number Publication date
EP4207640A4 (en) 2024-02-28
JP2023542677A (ja) 2023-10-11
EP4207640A1 (en) 2023-07-05
US20230224241A1 (en) 2023-07-13
MX2023003221A (es) 2023-06-22

Similar Documents

Publication Publication Date Title
US11949530B2 (en) System and method to provide multicast group membership defined relative to partition membership in a high performance computing environment
US10868685B2 (en) System and method to provide explicit multicast local identifier assignment for per-partition default multicast local identifiers defined as subnet manager policy input in a high performance computing environment
US20220021586A1 (en) Multi-edge etherchannel (meec) creation and management
JP2019503596A (ja) 高性能コンピューティング環境におけるサブネット間パーティションをサポートするためのシステムおよび方法
US20220255862A1 (en) Packet forwarding method, device, storage medium, and system
WO2022078415A1 (zh) 报文转发方法以及网络设备
WO2022012489A1 (zh) 一种能力通告方法及相关设备
WO2022012689A1 (zh) 一种路由通告方法及相关设备
US20230208751A1 (en) Packet forwarding method, device, and system
WO2022057487A1 (zh) 路径标识的分配方法、系统、装置、设备以及存储介质
JP7204871B2 (ja) パケット伝送方法、装置、およびシステム、ならびに記憶媒体
CN112751766A (zh) 报文转发方法、装置及计算机存储介质
WO2022166465A1 (zh) 一种报文处理方法及相关装置
WO2022088685A1 (zh) 一种语义名称获取方法、装置、设备及存储介质
US11968132B2 (en) System and method to use queue pair 1 for receiving multicast based announcements in multiple partitions in a high performance computing environment
CN115473765A (zh) 报文传输方法、设备及系统
CN114257542A (zh) 路径标识的分配方法、系统、装置、设备以及存储介质
WO2024087691A1 (zh) 一种报文处理方法及相关设备
WO2022143572A1 (zh) 一种报文处理方法及相关设备
KR20140073156A (ko) 가상 라우터 기반의 네트워크 가상화 방법
US11996993B2 (en) Packet transmission method, apparatus, and system, and storage medium
CN116633901A (zh) 容器网络管理方法、装置、设备以及计算机存储介质
JP2024500907A (ja) ルート伝送方法および装置
CN116158062A (zh) 一种报文传输方法及装置
CN111641560A (zh) 网络逻辑分层方法、装置、网络设备及存储介质

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023517837

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021868316

Country of ref document: EP

Effective date: 20230328