WO2022057480A1 - 光伏发电系统pid效应的修复和抑制装置 - Google Patents

光伏发电系统pid效应的修复和抑制装置 Download PDF

Info

Publication number
WO2022057480A1
WO2022057480A1 PCT/CN2021/110185 CN2021110185W WO2022057480A1 WO 2022057480 A1 WO2022057480 A1 WO 2022057480A1 CN 2021110185 W CN2021110185 W CN 2021110185W WO 2022057480 A1 WO2022057480 A1 WO 2022057480A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
voltage
power generation
generation system
photovoltaic power
Prior art date
Application number
PCT/CN2021/110185
Other languages
English (en)
French (fr)
Inventor
陈书生
曾春保
朱秋明
Original Assignee
科华数据股份有限公司
漳州科华技术有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科华数据股份有限公司, 漳州科华技术有限责任公司 filed Critical 科华数据股份有限公司
Publication of WO2022057480A1 publication Critical patent/WO2022057480A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the invention belongs to the technical field of photovoltaic power generation, and particularly relates to a device for repairing and suppressing the PID effect of a photovoltaic power generation system.
  • the PID (potential induced degradation) effect is a phenomenon in which the output characteristics of certain types of panels are attenuated due to potential induction. It will cause the output power of the photovoltaic system to drop; therefore, it needs to be prevented or repaired by PID through inverse PID technology.
  • the output voltage of the photovoltaic substrate is usually compensated.
  • the current PID effect suppression method often makes the inverter off-grid protection, and the suppression effect of the PID effect cannot be well achieved.
  • the embodiments of the present invention provide a device for repairing and suppressing the PID effect of a photovoltaic power generation system, so as to solve the problems of the inverter off-grid protection and the poor PID effect suppression effect in the prior art.
  • the embodiment of the present invention provides a device for repairing and suppressing the PID effect of a photovoltaic power generation system, including:
  • a power supply module a control module and a first voltage sampling module
  • the first voltage sampling module is connected to the input end of the control module, the output end of the control module is connected to the input end of the power module, and the first output end of the power module is connected to the photovoltaic power generation system.
  • the first voltage sampling module is used to collect the negative electrode-to-ground voltage of the photovoltaic power generation system bus
  • the control module is configured to generate a PWM control signal, and adjust the duty cycle of the PWM control signal from zero according to the negative pole-to-ground voltage of the bus;
  • the power module is configured to generate a compensation voltage according to the PWM control signal, so as to adjust the negative electrode-to-ground voltage of the photovoltaic power generation system bus to a preset value.
  • control module is further configured to determine whether the negative electrode-to-ground voltage of the busbar is greater than a preset value, and if the busbar's negative electrode-to-ground voltage is greater than the preset value, the PWM is reduced The duty cycle of the control signal; if the voltage of the negative pole of the bus bar to ground is less than or equal to the preset value, the duty cycle of the PWM control signal is increased.
  • the preset value includes a first preset value and a second preset value; the device further includes a second voltage sampling module;
  • the second voltage sampling module is used to collect the bus voltage of the photovoltaic power generation system
  • the control module is further configured to determine the working state of the photovoltaic power generation system according to the busbar voltage, and if the working state is a power generation state, adjust the PWM according to the working state and the negative electrode-to-ground voltage of the busbar
  • the duty cycle of the control signal is adjusted so that the negative electrode-to-ground voltage of the busbar is adjusted to a first preset value; if the working state is a non-generating state, then the negative electrode-to-ground voltage of the busbar is adjusted according to the working state and the busbar’s negative electrode-to-ground voltage.
  • the duty cycle of the PWM control signal is adjusted, so that the negative electrode-to-ground voltage of the bus bar is adjusted to a second preset value.
  • the preset value includes a first preset value and a second preset value
  • the control module is connected to an inverter control unit of the photovoltaic power generation system
  • the control module is further configured to obtain the working state of the inverter sent by the inverter control unit, and if the working state is a power generation state, adjust the PWM according to the working state and the negative-to-ground voltage of the bus bar
  • the duty cycle of the control signal is adjusted so that the negative electrode-to-ground voltage of the busbar is adjusted to a first preset value; if the working state is a non-generating state, then the negative electrode-to-ground voltage of the busbar is adjusted according to the working state and the busbar’s negative electrode-to-ground voltage.
  • the duty cycle of the PWM control signal is adjusted, so that the negative electrode-to-ground voltage of the bus bar is adjusted to a second preset value.
  • the first preset value is smaller than the second preset value.
  • the apparatus further includes a first diode and a second diode;
  • the first end of the first diode and the first end of the second diode are respectively connected to the first output end of the power module, and the second end of the first diode is connected to the first output end of the power module.
  • the negative pole of the DC side of the inverter is connected, and the second end of the second diode is connected to the positive pole of the DC side of the inverter.
  • the device further comprises a second resistor
  • the second resistor is connected in series between the first diode and the negative electrode of the DC side of the inverter.
  • the device further includes a switching circuit; the switching circuit includes a second switch and a current sampling module;
  • the first end of the second switch is connected to the first output end of the power module, and the second end of the second switch is connected to the DC side of the inverter in the photovoltaic power generation system;
  • the current sampling module The input end is connected with the second output end of the power supply module, and the output end of the current sampling module is connected with the input end of the control module;
  • the current sampling module is used to obtain the compensation current of the power supply module
  • the control module is further configured to control the second switch to be turned off if the compensation current is greater than a preset safety limit.
  • the switching circuit further includes a first switch; the first end of the first switch is connected to the second output end of the power module, and the second end of the first switch is connected to the second output end of the power module.
  • the input terminal of the current sampling module is connected;
  • the control module is further configured to control the first switch and the second switch to turn off simultaneously if the compensation current is greater than a preset safety limit.
  • the apparatus further includes a third voltage sampling module
  • the third voltage sampling module is used to collect the voltage between the first output terminal and the second output terminal of the power supply module; and send the voltage between the first output terminal and the second output terminal of the power supply module to the control module;
  • the control module is further configured to control the second switch to be closed if the voltage between the first output terminal and the second output terminal of the power module is greater than a first voltage threshold.
  • the embodiment of the present invention has the beneficial effect that the device for repairing and suppressing the PID effect of the photovoltaic power generation system provided by the embodiment includes: a power supply module, a control module and a first voltage sampling module; the first voltage The sampling module is used to collect the negative pole-to-ground voltage of the photovoltaic power generation system bus; the control module is used to generate a PWM control signal, and adjust the duty of the PWM control signal from zero according to the negative pole-to-ground voltage of the bus ratio; the power module is configured to generate a compensation voltage according to the PWM control signal, so as to adjust the negative electrode-to-ground voltage of the photovoltaic power generation system bus to a preset value.
  • the duty cycle of the PWM control signal is adjusted from zero according to the negative electrode-to-ground voltage of the bus, which can avoid sudden changes in leakage current caused by the sudden voltage loading on the inverter, and improve the suppression effect of the PID effect.
  • FIG. 1 is a schematic structural diagram of a device for repairing and suppressing the PID effect of a photovoltaic power generation system provided by an embodiment of the present invention
  • FIG. 2 is a schematic circuit diagram of a device for repairing and suppressing the PID effect of a photovoltaic power generation system provided by an embodiment of the present invention.
  • FIG. 1 shows the structure of a device 100 for repairing and suppressing the PID effect of a photovoltaic power generation system provided by an embodiment of the present invention, which includes:
  • a power module 110 a control module 120 and a first voltage sampling module 130;
  • the first voltage sampling module is connected to the input end of the control module, the output end of the control module is connected to the input end of the power module, and the first output end of the power module is connected to the photovoltaic power generation system.
  • the first voltage sampling module is used to collect the negative electrode-to-ground voltage of the photovoltaic power generation system bus
  • the control module is configured to generate a PWM control signal, and adjust the duty cycle of the PWM control signal from zero according to the negative pole-to-ground voltage of the bus;
  • the power module is configured to generate a compensation voltage according to the PWM control signal, so as to adjust the negative electrode-to-ground voltage of the photovoltaic power generation system bus to a preset value.
  • this embodiment shows the structure of a photovoltaic power generation system, which includes a photovoltaic substrate, a booster circuit and an inverter; the photovoltaic substrate, the booster circuit and the inverter are connected in series , the output terminal of the inverter is connected to the grid, and the leakage current detection sensor is connected in series between the grid and the output terminal of the inverter.
  • It also includes a third resistor R3, a fourth resistor R4, a first bus capacitor C1 and a second bus capacitor C2; wherein, the first end of the third resistor R3 is connected to the positive electrode of the photovoltaic substrate, and the second end of the third resistor R3 and the The first end of the fourth resistor R4 is grounded through the casing, and the second end of the fourth resistor R4 is connected to the negative electrode of the photovoltaic substrate.
  • the first end of the first bus capacitor C1 is connected to the positive electrode of the bus bar, the second end of the first bus capacitor C1 is connected to the first end of the second bus capacitor C2, and the second end of the second bus capacitor C2 is connected to the negative electrode of the bus bar.
  • the first voltage sampling module 130 is used to collect the negative-to-ground voltage of the bus bar of the photovoltaic power generation system, that is, the voltage from BUS- to PE.
  • the control module 120 provided in this embodiment can generate a PWM control signal according to the voltage of the negative pole of the bus bar to ground, and control the PWM control signal to gradually increase from 0, so as to control the compensation voltage output by the power module 110 to gradually increase from 0V to avoid sudden The inverter off-grid protection caused by the added compensation voltage.
  • the device 100 for repairing and suppressing the PID effect of a photovoltaic power generation system includes: a power supply module 110, a control module 120 and a first voltage sampling module 130; the first voltage sampling module 130 is used for collecting The negative electrode-to-ground voltage of the bus bar of the photovoltaic power generation system; the control module 120 is used to generate a PWM control signal, and adjust the duty cycle of the PWM control signal from zero according to the negative electrode-to-ground voltage of the bus bar; the The power module 110 is configured to generate a compensation voltage according to the PWM control signal, so as to adjust the negative-to-ground voltage of the bus bar of the photovoltaic power generation system to a preset value.
  • the duty cycle of the PWM control signal is adjusted from zero according to the negative electrode-to-ground voltage of the bus, which can avoid sudden changes in leakage current caused by the sudden voltage loading on the inverter, and improve the suppression effect of the PID effect.
  • control module 120 is further configured to determine whether the negative electrode-to-ground voltage of the bus bar is greater than a preset value, and if the negative electrode-to-ground voltage of the bus bar is greater than the preset value, reduce the The duty cycle of the PWM control signal; if the voltage of the negative pole of the bus bar to ground is less than or equal to the preset value, the duty cycle of the PWM control signal is increased.
  • the preset value includes a first preset value and a second preset value; the device further includes a second voltage sampling module 140;
  • the second voltage sampling module 140 is used for collecting the bus voltage of the photovoltaic power generation system
  • the control module 120 is further configured to determine the working state of the photovoltaic power generation system according to the busbar voltage, and if the working state is a power generation state, adjust the working state and the negative-to-ground voltage of the busbar.
  • the duty cycle of the PWM control signal so that the voltage of the negative pole of the bus bar to ground is adjusted to the first preset value;
  • the voltage adjusts the duty ratio of the PWM control signal, so that the negative electrode-to-ground voltage of the bus bar is adjusted to a second preset value.
  • the output voltage of the photovoltaic substrate needs to be compensated for the two working states respectively.
  • the inverter is in grid-connected power generation state, and the PID working process is as follows:
  • the first voltage sampling module 130 detects the voltage between BUS- and PE, that is, the negative electrode-to-ground voltage of the busbar (or collects the negative electrode-to-ground voltage of the photovoltaic substrate, that is, the voltage between PV- and PE), until the negative electrode of the busbar The voltage to ground is higher than PE and reaches the first preset value. After compensation, the voltage between PV- and PE is close to 0 volts.
  • the PV- and PE are in the same potential. voltage) to the second preset value.
  • the second preset value may be 300V.
  • the photovoltaic substrate that has already had the PID effect can be repaired at night when the bus has no power.
  • the preset value includes a first preset value and a second preset value
  • the control module 120 is connected to the inverter control unit of the photovoltaic power generation system
  • the control module 120 is further configured to obtain the working state of the inverter sent by the inverter control unit. If the working state is a power generation state, adjust the working state and the negative-to-ground voltage of the bus bar.
  • the duty cycle of the PWM control signal so that the voltage of the negative pole of the bus bar to ground is adjusted to the first preset value;
  • the voltage adjusts the duty ratio of the PWM control signal, so that the negative electrode-to-ground voltage of the bus bar is adjusted to a second preset value.
  • the control module 120 communicates with the inverter control unit, and the control module 120 determines the working state of the photovoltaic power generation system through a switch control signal in the inverter control unit that controls the inverter.
  • any one of the above methods may be used to determine the working state of the photovoltaic power generation system, or the two methods above may be simultaneously sampled to determine the working state of the photovoltaic power generation system.
  • the first preset value is smaller than the second preset value.
  • the device further includes a first diode D1 and a second diode D2;
  • the first end of the first diode D1 and the first end of the second diode D2 are respectively connected to the first output end of the power module 110, and the second end of the first diode D1
  • the terminal is connected to the negative pole of the DC side of the inverter, and the second terminal of the second diode D2 is connected to the positive pole of the DC side of the inverter.
  • the device further comprises a second resistor R2;
  • the second resistor R2 is connected in series between the first diode D1 and the negative electrode of the DC side of the inverter.
  • the first diode D1 and the second diode D2 are anti-reverse diodes, which are used to prevent the inverter bus voltage from being reversely supplied to the power module 110 .
  • the second resistor R2 is a balance resistor, which is used to balance the current during the daytime compensation, so that the currents applied to PV+ and PV- are nearly equal.
  • the second diode D2 is in a reverse biased state.
  • the voltage between PV- and PE is the result of the combined action of the input voltage PV and the compensation voltage output by the power module 110. After compensation, the voltage between PV- and PE is close to 0 volts.
  • the presence of the second resistor R2 just compensates and balances the impedance.
  • the compensation voltage output by the power module 110 will be loaded to PV- through the first diode D1 and the second resistor R2, and loaded to BUS+ through the second diode D2, because the compensation current will be at the second resistor R2 A voltage drop is generated, and the voltage applied to PV- will be lower than the voltage of BUS+, so the bus capacitor is in a forward biased state, so that the photovoltaic substrate with PID effect has been repaired when the bus has no power at night.
  • the device further includes a switching circuit; the switching circuit includes a second switch K2 and a current sampling module;
  • the first end of the second switch K2 is connected to the first output end of the power module 110, and the second end of the second switch K2 is connected to the DC side of the inverter in the photovoltaic power generation system;
  • the input end of the current sampling module is connected to the second output end of the power supply module 110, and the output end of the current sampling module is connected to the input end of the control module 120;
  • the current sampling module is used to obtain the compensation current of the power supply module
  • the control module 120 is further configured to control the second switch K2 to be turned off if the compensation current is greater than a preset safety limit.
  • the switching circuit further includes a first switch K1; the first end of the first switch K1 is connected to the second output end of the power module 110, and the second The terminal is connected to the input terminal of the current sampling module;
  • the control module 120 is further configured to control the first switch K1 and the second switch K2 to be turned off simultaneously if the compensation current is greater than a preset safety limit.
  • the apparatus further includes a third voltage sampling module 150;
  • the third voltage sampling module 150 is used to collect the voltage between the first output terminal and the second output terminal of the power supply module 110; The voltage is sent to the control module 120;
  • the control module 120 is further configured to control the second switch K2 to be closed if the voltage between the first output terminal and the second output terminal of the power module 110 is greater than a first voltage threshold.
  • the first switch K1 and the second switch K2 are both controllable switches, which are used to control whether the power module 110 is connected to the photovoltaic power generation system.
  • the control module 120 controls the first switch K1 and the second switch K2 to be disconnected, and the power module 110 and the photovoltaic power generation system are safely connected disengage to protect personal safety.
  • the first output terminal of the power module 110 is a positive output terminal
  • the second output terminal is a negative output terminal. Therefore, the voltage between the first output terminal and the second output terminal of the power supply module 110 is the voltage between the positive and negative poles of the power supply module 110 .
  • the switching states of the power module 110 may include the following three types:
  • the first type both the first switch K1 and the second switch K2 are in the closed state at the beginning, and the power module 110 provides compensation voltage for the photovoltaic power generation system from the beginning; if the compensation current of the power module 110 is greater than the preset safety limit , the first switch K1 and the second switch K2 are controlled to be turned off.
  • the second type at the beginning, the first switch K1 is in the closed state, the second switch K2 is in the open state, the control module 120 controls the power supply module 110 in the off-grid state to continuously increase the compensation voltage, and then the third voltage sampling module 150 The voltage between the positive and negative poles of the power supply module 110 is obtained, and when the voltage between the positive and negative poles of the power supply module 110 is greater than the first voltage threshold, the second switch K2 is closed, so that the power supply module 110 is put into the photovoltaic power generation system; When the compensation current is greater than the preset safety limit, the first switch K1 and the second switch K2 are controlled to be disconnected.
  • the third type both the first switch K1 and the second switch K2 are in the off state at the beginning, the control module 120 controls the power supply module 110 in the off-grid state to continuously increase the compensation voltage, and then obtains the power supply through the third voltage sampling module 150
  • the voltage between the positive and negative poles of the module 110 when the voltage between the positive and negative poles of the power module 110 is greater than the first voltage threshold, the first switch K1 and the second switch K2 are closed at the same time, so that the power module 110 is put into the photovoltaic power generation system; if When the compensation current of the power module 110 is greater than the preset safety limit, the first switch K1 and the second switch K2 are controlled to be turned off.
  • the current sampling module includes a first resistor R1 and an amplifier A1;
  • the first end of the first resistor R1 and the positive electrode of the amplifier A1 are respectively connected to the input end of the current sampling module, the second end of the first resistor R1 and the negative electrode of the amplifier A1 are respectively grounded, so the The output end of the amplifier A1 is connected to the output end of the current sampling module.
  • the first resistor R1 is a sampling resistor, used to collect the compensation voltage of the power module 110, and can also be used as a current limiting resistor to limit the current flowing into the PE through the casing.
  • both the first switch K1 and the second switch K2 are normally closed switches.
  • the device 100 for repairing and suppressing the PID effect of the photovoltaic power generation system provided in this embodiment can effectively suppress the PID effect of the photovoltaic components in the photovoltaic power generation system and increase the power generation of the photovoltaic power generation system.
  • the sudden compensation voltage causes the Hall sensor to detect the sudden leakage current, which leads to the protection of the output leakage current sensor and the protection of the inverter off-grid.
  • the first switch K1 and the second switch K2 are controlled to be disconnected, the power module 110 is safely separated from the inverter, and personal safety is protected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明适用于光伏发电技术领域,提供了一种光伏发电系统PID效应的修复和抑制装置,包括:电源模块、控制模块和第一电压采样模块;所述第一电压采样模块用于采集所述光伏发电系统母线的负极对地电压;所述控制模块用于生成PWM控制信号,并根据所述母线的负极对地电压从零开始调节所述PWM控制信号的占空比;所述电源模块用于根据所述PWM控制信号生成补偿电压,以使所述光伏发电系统母线的负极对地电压调节至预设值。本申请根据所述母线的负极对地电压从零开始调节所述PWM控制信号的占空比,能够避免突变的电压加载到逆变器而引起漏电流突变,改善PID效应的抑制效果。

Description

光伏发电系统PID效应的修复和抑制装置 技术领域
本发明属于光伏发电技术领域,尤其涉及一种光伏发电系统PID效应的修复和抑制装置。
背景技术
随着光伏行业的不断发展,光伏电站的应用地从荒无人烟的戈壁大漠到阳光灿烂的内陆、沿海城市,应用环境的不同造成了光伏电站发电效率的差异性,光伏组件的PID效应作为影响电站发电的重要因素之一,受到了业界的广泛关注。
PID(potential induced degradation,电位诱导降解)效应是某些类型电池板由于电势诱导而表现出的输出特性衰减的现象。会导致光伏系统的输出功率下降;因此需要通过反PID技术对其进行PID预防或者修复。
为了抑制PID效应,现有技术中通常对光伏基板的输出电压进行补偿,但是目前的PID效应抑制方法往往会使逆变器脱网保护,无法很好的实现PID效应的抑制效果。
发明内容
有鉴于此,本发明实施例提供了一种光伏发电系统PID效应的修复和抑制装置,以解决现有技术中逆变器脱网保护、PID效应抑制效果差的问题。
本发明实施例提供了一种光伏发电系统PID效应的修复和抑制装置,包括:
电源模块、控制模块和第一电压采样模块;
所述第一电压采样模块与所述控制模块的输入端连接,所述控制模块的输出端与所述电源模块的输入端连接,所述电源模块的第一输出端与所述光伏发 电系统中的逆变器直流侧连接;
所述第一电压采样模块用于采集所述光伏发电系统母线的负极对地电压;
所述控制模块用于生成PWM控制信号,并根据所述母线的负极对地电压从零开始调节所述PWM控制信号的占空比;
所述电源模块用于根据所述PWM控制信号生成补偿电压,以使所述光伏发电系统母线的负极对地电压调节至预设值。
在一个实施例中,所述控制模块还用于判断所述母线的负极对地电压是否大于预设值,若所述母线的负极对地电压大于所述预设值,则调小所述PWM控制信号的占空比;若所述母线的负极对地电压小于或等于所述预设值,则调大所述PWM控制信号的占空比。
在一个实施例中,所述预设值包括第一预设值和第二预设值;所述装置还包括第二电压采样模块;
所述第二电压采样模块用于采集所述光伏发电系统的母线电压;
所述控制模块还用于根据所述母线电压确定所述光伏发电系统的工作状态,若所述工作状态为发电状态,则根据所述工作状态和所述母线的负极对地电压调节所述PWM控制信号的占空比,以使所述母线的负极对地电压调节至第一预设值;若所述工作状态为未发电状态,则根据所述工作状态和所述母线的负极对地电压调节所述PWM控制信号的占空比,以使所述母线的负极对地电压调节至第二预设值。
在一个实施例中,所述预设值包括第一预设值和第二预设值;所述控制模块与所述光伏发电系统的逆变控制单元连接;
所述控制模块还用于获取所述逆变控制单元发送的逆变器工作状态,若所述工作状态为发电状态,则根据所述工作状态和所述母线的负极对地电压调节所述PWM控制信号的占空比,以使所述母线的负极对地电压调节至第一预设值;若所述工作状态为未发电状态,则根据所述工作状态和所述母线的负极对地电压调节所述PWM控制信号的占空比,以使所述母线的负极对地电压调节 至第二预设值。
在一个实施例中,所述第一预设值小于所述第二预设值。
在一个实施例中,所述装置还包括第一二极管和第二二极管;
所述第一二极管的第一端和所述第二二极管的第一端分别与所述电源模块的第一输出端连接,所述第一二极管的第二端与所述逆变器直流侧负极连接,所述第二二极管的第二端与所述逆变器直流侧正极连接。
在一个实施例中,所述装置还包括第二电阻;
所述第二电阻串联于所述第一二极管和所述逆变器直流侧负极之间。
在一个实施例中,所述装置还包括投切电路;所述投切电路包括第二开关和电流采样模块;
所述第二开关的第一端与所述电源模块的第一输出端连接,所述第二开关的第二端与所述光伏发电系统中的逆变器直流侧连接;所述电流采样模块的输入端与所述电源模块的第二输出端连接,所述电流采样模块的输出端与所述控制模块的输入端连接;
所述电流采样模块用于获取所述电源模块的补偿电流;
所述控制模块还用于若所述补偿电流大于预设安全限值,则控制所述第二开关断开。
在一个实施例中,所述投切电路还包括第一开关;所述第一开关的第一端与所述电源模块的第二输出端连接,所述第一开关的第二端与所述电流采样模块的输入端连接;
所述控制模块还用于若所述补偿电流大于预设安全限值,则控制所述第一开关和所述第二开关同时断开。
在一个实施例中,所述装置还包括第三电压采样模块;
所述第三电压采样模块用于采集所述电源模块的第一输出端和第二输出端之间的电压;并将所述电源模块的第一输出端和第二输出端之间的电压发送至所述控制模块;
所述控制模块还用于若所述电源模块的第一输出端和第二输出端之间的电压大于第一电压阈值,则控制所述第二开关闭合。
本发明实施例与现有技术相比存在的有益效果是:本实施例提供的光伏发电系统PID效应的修复和抑制装置包括:电源模块、控制模块和第一电压采样模块;所述第一电压采样模块用于采集所述光伏发电系统母线的负极对地电压;所述控制模块用于生成PWM控制信号,并根据所述母线的负极对地电压从零开始调节所述PWM控制信号的占空比;所述电源模块用于根据所述PWM控制信号生成补偿电压,以使所述光伏发电系统母线的负极对地电压调节至预设值。本实施例根据所述母线的负极对地电压从零开始调节所述PWM控制信号的占空比,能够避免突变的电压加载到逆变器而引起漏电流突变,改善PID效应的抑制效果。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供光伏发电系统PID效应的修复和抑制装置的结构示意图;
图2是本发明实施例提供的光伏发电系统PID效应的修复和抑制装置的电路示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本发明实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中, 省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。
为了说明本发明所述的技术方案,下面通过具体实施例来进行说明。
如图1所示,图1示出了本发明实施例提供的一种光伏发电系统PID效应的修复和抑制装置100的结构,其包括:
电源模块110、控制模块120和第一电压采样模块130;
所述第一电压采样模块与所述控制模块的输入端连接,所述控制模块的输出端与所述电源模块的输入端连接,所述电源模块的第一输出端与所述光伏发电系统中的逆变器直流侧连接;
所述第一电压采样模块用于采集所述光伏发电系统母线的负极对地电压;
所述控制模块用于生成PWM控制信号,并根据所述母线的负极对地电压从零开始调节所述PWM控制信号的占空比;
所述电源模块用于根据所述PWM控制信号生成补偿电压,以使所述光伏发电系统母线的负极对地电压调节至预设值。
在本实施例中,如图1所示,本实施例示出了一种光伏发电系统的结构,其包括光伏基板、升压电路和逆变器;光伏基板、升压电路和逆变器串联连接,逆变器的输出端与电网连接,漏电流检测传感器串联在电网和逆变器输出端之间。还包括第三电阻R3、第四电阻R4、第一母线电容C1和第二母线电容C2;其中,第三电阻R3的第一端与光伏基板的正极连接,第三电阻R3的第二端和第四电阻R4的第一端均通过机壳接地,第四电阻R4的第二端连接光伏基板的负极。第一母线电容C1的第一端与母线正极连接,第一母线电容C1的第二端与第二母线电容C2的第一端连接,第二母线电容C2的第二端与母线负极连接。
在本实施例中,如图1所示,第一电压采样模块130用于采集光伏发电系统母线的负极对地电压,即BUS-到PE的电压。
本实施例提供的控制模块120能够根据母线的负极对地电压生成PWM控制信号,并控制该PWM控制信号从0逐步增大,从而控制电源模块110输出 的补偿电压从0V逐渐升高,避免突加的补偿电压造成的逆变器脱网保护。
从上述实施例可知,本实施例提供的光伏发电系统PID效应的修复和抑制装置100包括:电源模块110、控制模块120和第一电压采样模块130;所述第一电压采样模块130用于采集所述光伏发电系统母线的负极对地电压;所述控制模块120用于生成PWM控制信号,并根据所述母线的负极对地电压从零开始调节所述PWM控制信号的占空比;所述电源模块110用于根据所述PWM控制信号生成补偿电压,以使所述光伏发电系统母线的负极对地电压调节至预设值。本实施例根据所述母线的负极对地电压从零开始调节所述PWM控制信号的占空比,能够避免突变的电压加载到逆变器而引起漏电流突变,改善PID效应的抑制效果。
在一个实施例中,所述控制模块120还用于判断所述母线的负极对地电压是否大于预设值,若所述母线的负极对地电压大于所述预设值,则调小所述PWM控制信号的占空比;若所述母线的负极对地电压小于或等于所述预设值,则调大所述PWM控制信号的占空比。
在一个实施例中,如图2所示,所述预设值包括第一预设值和第二预设值;所述装置还包括第二电压采样模块140;
所述第二电压采样模块140用于采集所述光伏发电系统的母线电压;
所述控制模块120还用于根据所述母线电压确定所述光伏发电系统的工作状态,若所述工作状态为发电状态,则根据所述工作状态和所述母线的负极对地电压调节所述PWM控制信号的占空比,以使所述母线的负极对地电压调节至第一预设值;若所述工作状态为未发电状态,则根据所述工作状态和所述母线的负极对地电压调节所述PWM控制信号的占空比,以使所述母线的负极对地电压调节至第二预设值。
在本实施例中,由于白天和夜晚逆变器工作状态不同,因此需要分别针对两种工作状态对光伏基板输出电压进行补偿。
具体地,白天时,由于母线电容有电,逆变器处于并网发电状态,PID工 作过程如下:
通过第一电压采样模块130检测BUS-和PE之间的电压,即母线的负极对地电压(或采集光伏基板的负极对地电压,即PV-和PE之间的电压),直到母线的负极对地电压高于PE,达到第一预设值。补偿后,PV-和PE之间的电压接近0伏。
在夜间时,由于母线无电,在无光伏发电系统PID效应的修复和抑制装置100时,PV-和PE处于等电位,为了修复光伏组件,需要将PV-对PE电压(BUS-至PE间的电压)提升到第二预设值。
示例性的,第二预设值可以为300V。
通过将PV-对PE电压(BUS-至PE间的电压)提升到第二预设值,能够在夜间母线无电时对已经发生了PID效应的光伏基板进行修复。
在一个实施例中,如图2所示,所述预设值包括第一预设值和第二预设值;所述控制模块120与所述光伏发电系统的逆变控制单元连接;
所述控制模块120还用于获取所述逆变控制单元发送的逆变器工作状态,若所述工作状态为发电状态,则根据所述工作状态和所述母线的负极对地电压调节所述PWM控制信号的占空比,以使所述母线的负极对地电压调节至第一预设值;若所述工作状态为未发电状态,则根据所述工作状态和所述母线的负极对地电压调节所述PWM控制信号的占空比,以使所述母线的负极对地电压调节至第二预设值。
在本实施例中,对光伏发电系统工作状态的获取可以为两种,第一种是采集母线电压,通过母线电压的有无确定光伏发电系统是处于发电状态还是未发电状态;第二种是控制模块120与逆变器控制单元通信,控制模块120通过逆变器控制单元中控制逆变器的开关控制信号确定光伏发电系统的工作状态。
在本实施例中,可以采用上述任一种方法确定光伏发电系统工作状态,也可以同时采样上述两种方法确定光伏发电系统工作状态。
在一个实施例中,所述第一预设值小于所述第二预设值。
在一个实施例中,如图2所示,所述装置还包括第一二极管D1和第二二极管D2;
所述第一二极管D1的第一端和所述第二二极管D2的第一端分别与所述电源模块110的第一输出端连接,所述第一二极管D1的第二端与所述逆变器直流侧负极连接,所述第二二极管D2的第二端与所述逆变器直流侧正极连接。
在一个实施例中,所述装置还包括第二电阻R2;
所述第二电阻R2串联于所述第一二极管D1和所述逆变器直流侧负极之间。
在本实施例中,第一二极管D1和第二二极管D2为防反二极管,用于防止逆变器母线电压反灌到电源模块110。第二电阻R2为平衡电阻,用于在白天补偿时,平衡电流,使加到PV+和PV-的电流接近相等。
具体地,在白天时,由于母线电容有电,且其电压高于电源模块110的补偿电压,因此第二二极管D2处于反偏状态。PV-与PE之间的电压是输入电压PV与电源模块110输出的补偿电压共同作用的结果,补偿后,PV-和PE之间的电压接近0伏,近似将第四电阻R4短接,第二电阻R2的存在刚好补偿,使阻抗平衡。
在夜间时,电源模块110输出的补偿电压会通过第一二极管D1和第二电阻R2加载到PV-,通过第二二极管D2加载到BUS+,由于补偿电流会在第二电阻R2处产生电压降,加载到PV-的电压会低于BUS+的电压,因此母线电容处于正偏状态,从而在夜间母线无电时对已经发生了PID效应的光伏基板进行修复。
在一个实施例中,如图2所示,所述装置还包括投切电路;所述投切电路包括第二开关K2和电流采样模块;
所述第二开关K2的第一端与所述电源模块110的第一输出端连接,所述第二开关K2的第二端与所述光伏发电系统中的逆变器直流侧连接;所述电流采样模块的输入端与所述电源模块110的第二输出端连接,所述电流采样模块的输出端与所述控制模块120的输入端连接;
所述电流采样模块用于获取所述电源模块的补偿电流;
所述控制模块120还用于若所述补偿电流大于预设安全限值,则控制所述第二开关K2断开。
在一个实施例中,所述投切电路还包括第一开关K1;所述第一开关K1的第一端与所述电源模块110的第二输出端连接,所述第一开关K1的第二端与所述电流采样模块的输入端连接;
所述控制模块120还用于若所述补偿电流大于预设安全限值,则控制所述第一开关K1和所述第二开关K2同时断开。
在一个实施例中,所述装置还包括第三电压采样模块150;
所述第三电压采样模块150用于采集所述电源模块110的第一输出端和第二输出端之间的电压;并将所述电源模块110的第一输出端和第二输出端之间的电压发送至所述控制模块120;
所述控制模块120还用于若所述电源模块110的第一输出端和第二输出端之间的电压大于第一电压阈值,则控制所述第二开关K2闭合。
在本实施例中,第一开关K1和第二开关K2均为可控开关,用于控制电源模块110是否接入光伏发电系统。
具体地,夜间时段会有电流从逆变器机壳通过PE线流到大地,当接地电阻较大时,人触摸到机壳可能会导致触电事故。为了保证人身安全,在电源模块110输出的静态或突变的补偿电流超出预设安全限值时,控制模块120控制第一开关K1和第二开关K2断开,将电源模块110与光伏发电系统安全脱离,从而保护人身安全。
在本实施例中,电源模块110的第一输出端为正极输出端,第二输出端为负极输出端。因此电源模块110的第一输出端和第二输出端之间的电压即电源模块110的正负极间电压。
在本实施例中,电源模块110的投切状态可以包括以下三种:
第一种:起始时刻第一开关K1和第二开关K2均处于闭合状态,电源模块 110从起始时刻即为光伏发电系统提供补偿电压;若电源模块110的补偿电流大于预设安全限值,则控制第一开关K1和第二开关K2断开。
第二种:起始时刻第一开关K1处于闭合状态,第二开关K2处于断开状态,控制模块120控制离网状态下的电源模块110不断增大补偿电压,然后通过第三电压采样模块150获取电源模块110的正负极间电压,当电源模块110的正负极间电压大于第一电压阈值时,则闭合第二开关K2,使电源模块110投入光伏发电系统中;若电源模块110的补偿电流大于预设安全限值,则控制第一开关K1和第二开关K2断开。
第三种:起始时刻第一开关K1和第二开关K2均处于断开状态,控制模块120控制离网状态下的电源模块110不断增大补偿电压,然后通过第三电压采样模块150获取电源模块110的正负极间电压,当电源模块110的正负极间电压大于第一电压阈值时,则同时闭合第一开关K1和第二开关K2,使电源模块110投入光伏发电系统中;若电源模块110的补偿电流大于预设安全限值,则控制第一开关K1和第二开关K2断开。
在一个实施例中,如图2所示,所述电流采样模块包括第一电阻R1和放大器A1;
所述第一电阻R1的第一端和所述放大器A1的正极分别与所述电流采样模块的输入端连接,所述第一电阻R1的第二端和所述放大器A1的负极分别接地,所述放大器A1的输出端与所述电流采样模块的输出端连接。
在本实施例中,第一电阻R1为采样电阻,用于采集电源模块110的补偿电压,同时也可以作为限流电阻,限制通过机壳流入PE的电流。
在一个实施例中,所述第一开关K1和所述第二开关K2均为常闭开关。
从上述实施例可知,通过本实施例提供的光伏发电系统PID效应的修复和抑制装置100能够有效的抑制光伏发电系统中光伏组件的PID效应,提高光伏发电系统的发电量。同时避免突加的补偿电压使霍尔传感器检测到突变的漏电流,导致输出漏电流传感器保护,使逆变器脱网保护。并且当检测到静态或突 变补偿电流超过安全值时,控制第一开关K1和第二开关K2断开,将电源模块110与逆变器安全脱离,保护人身安全。
以上所述实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种光伏发电系统PID效应的修复和抑制装置,其特征在于,包括:电源模块、控制模块和第一电压采样模块;
    所述第一电压采样模块与所述控制模块的输入端连接,所述控制模块的输出端与所述电源模块的输入端连接,所述电源模块的第一输出端与所述光伏发电系统中的逆变器直流侧连接;
    所述第一电压采样模块用于采集所述光伏发电系统母线的负极对地电压;
    所述控制模块用于生成PWM控制信号,并根据所述母线的负极对地电压从零开始调节所述PWM控制信号的占空比;
    所述电源模块用于根据所述PWM控制信号生成补偿电压,以使所述光伏发电系统母线的负极对地电压调节至预设值。
  2. 如权利要求1所述的光伏发电系统PID效应的修复和抑制装置,其特征在于,所述控制模块还用于判断所述母线的负极对地电压是否大于所述预设值,若所述母线的负极对地电压大于所述预设值,则调小所述PWM控制信号的占空比;若所述母线的负极对地电压小于或等于所述预设值,则调大所述PWM控制信号的占空比。
  3. 如权利要求1所述的光伏发电系统PID效应的修复和抑制装置,其特征在于,所述预设值包括第一预设值和第二预设值;所述装置还包括第二电压采样模块;
    所述第二电压采样模块用于采集所述光伏发电系统的母线电压;
    所述控制模块还用于根据所述母线电压确定所述光伏发电系统的工作状态,若所述工作状态为发电状态,则根据所述工作状态和所述母线的负极对地电压调节所述PWM控制信号的占空比,以使所述母线的负极对地电压调节至第一预设值;若所述工作状态为未发电状态,则根据所述工作状态和所述母线的负极对地电压调节所述PWM控制信号的占空比,以使所述母线的负极对地电压 调节至第二预设值。
  4. 如权利要求1所述的光伏发电系统PID效应的修复和抑制装置,其特征在于,所述预设值包括第一预设值和第二预设值;所述控制模块与所述光伏发电系统的逆变控制单元连接;
    所述控制模块还用于获取所述逆变控制单元发送的逆变器工作状态,若所述工作状态为发电状态,则根据所述工作状态和所述母线的负极对地电压调节所述PWM控制信号的占空比,以使所述母线的负极对地电压调节至第一预设值;若所述工作状态为未发电状态,则根据所述工作状态和所述母线的负极对地电压调节所述PWM控制信号的占空比,以使所述母线的负极对地电压调节至第二预设值。
  5. 如权利要求3或4任一项所述的光伏发电系统PID效应的修复和抑制装置,其特征在于,所述第一预设值小于所述第二预设值。
  6. 如权利要求1所述的光伏发电系统PID效应的修复和抑制装置,其特征在于,所述装置还包括第一二极管和第二二极管;
    所述第一二极管的第一端和所述第二二极管的第一端分别与所述电源模块的第一输出端连接,所述第一二极管的第二端与所述逆变器直流侧负极连接,所述第二二极管的第二端与所述逆变器直流侧正极连接。
  7. 如权利要求6所述的光伏发电系统PID效应的修复和抑制装置,其特征在于,所述装置还包括第二电阻;
    所述第二电阻串联于所述第一二极管和所述逆变器直流侧负极之间。
  8. 如权利要求1所述的光伏发电系统PID效应的修复和抑制装置,其特征在于,所述装置还包括投切电路;所述投切电路包括第二开关和电流采样模块;
    所述第二开关的第一端与所述电源模块的第一输出端连接,所述第二开关的第二端与所述光伏发电系统中的逆变器直流侧连接;所述电流采样模块的输入端与所述电源模块的第二输出端连接,所述电流采样模块的输出端与所述控制模块的输入端连接;
    所述电流采样模块用于获取所述电源模块的补偿电流;
    所述控制模块还用于若所述补偿电流大于预设安全限值,则控制所述第二开关断开。
  9. 如权利要求8所述的光伏发电系统PID效应的修复和抑制装置,其特征在于,所述投切电路还包括第一开关;所述第一开关的第一端与所述电源模块的第二输出端连接,所述第一开关的第二端与所述电流采样模块的输入端连接;
    所述控制模块还用于若所述补偿电流大于预设安全限值,则控制所述第一开关和所述第二开关同时断开。
  10. 如权利要求9所述的光伏发电系统PID效应的修复和抑制装置,其特征在于,所述装置还包括第三电压采样模块;
    所述第三电压采样模块用于采集所述电源模块的第一输出端和第二输出端之间的电压;并将所述电源模块的第一输出端和第二输出端之间的电压发送至所述控制模块;
    所述控制模块还用于若所述电源模块的第一输出端和第二输出端之间的电压大于第一电压阈值,则控制所述第二开关闭合。
PCT/CN2021/110185 2020-09-17 2021-08-03 光伏发电系统pid效应的修复和抑制装置 WO2022057480A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010980992.4 2020-09-17
CN202010980992.4A CN112152260A (zh) 2020-09-17 2020-09-17 光伏发电系统pid效应的修复和抑制装置

Publications (1)

Publication Number Publication Date
WO2022057480A1 true WO2022057480A1 (zh) 2022-03-24

Family

ID=73893912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110185 WO2022057480A1 (zh) 2020-09-17 2021-08-03 光伏发电系统pid效应的修复和抑制装置

Country Status (2)

Country Link
CN (1) CN112152260A (zh)
WO (1) WO2022057480A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116207789A (zh) * 2023-05-06 2023-06-02 锦浪科技股份有限公司 一种基于零序的pid效应抑制方法
CN116722590A (zh) * 2023-08-08 2023-09-08 锦浪科技股份有限公司 一种pid效应抑制方法、系统及光伏系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112152260A (zh) * 2020-09-17 2020-12-29 科华恒盛股份有限公司 光伏发电系统pid效应的修复和抑制装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013152839A1 (de) * 2012-04-13 2013-10-17 Adensis Gmbh Photovoltaikanlage mit steuerbarer minuspolerdung
CN103414364A (zh) * 2013-09-02 2013-11-27 阳光电源(上海)有限公司 一种单相并网逆变器
CN106849167A (zh) * 2017-03-06 2017-06-13 华为技术有限公司 一种供电系统及供电方法
CN108011583A (zh) * 2017-12-27 2018-05-08 阳光电源股份有限公司 一种抑制pid效应的装置
CN109713997A (zh) * 2019-01-23 2019-05-03 深圳创动科技有限公司 一种电势诱导衰减的抑制方法、装置及供电系统
JP2019169103A (ja) * 2018-03-26 2019-10-03 シャープ株式会社 電力制御装置、太陽光発電システム、およびプログラム
CN112152260A (zh) * 2020-09-17 2020-12-29 科华恒盛股份有限公司 光伏发电系统pid效应的修复和抑制装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106505626B (zh) * 2016-12-21 2019-04-09 阳光电源股份有限公司 一种光伏逆变系统及其pid效应补偿方法和装置
CN107492907B (zh) * 2017-08-29 2024-04-12 武汉协鑫新能源电力设计有限公司 一种具有pid抑制及修复功能的控制装置及其控制方法
CN107493057A (zh) * 2017-09-22 2017-12-19 北京铂阳顶荣光伏科技有限公司 一种光伏发电的电势诱导衰减的电气调节系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013152839A1 (de) * 2012-04-13 2013-10-17 Adensis Gmbh Photovoltaikanlage mit steuerbarer minuspolerdung
CN103414364A (zh) * 2013-09-02 2013-11-27 阳光电源(上海)有限公司 一种单相并网逆变器
CN106849167A (zh) * 2017-03-06 2017-06-13 华为技术有限公司 一种供电系统及供电方法
CN108011583A (zh) * 2017-12-27 2018-05-08 阳光电源股份有限公司 一种抑制pid效应的装置
JP2019169103A (ja) * 2018-03-26 2019-10-03 シャープ株式会社 電力制御装置、太陽光発電システム、およびプログラム
CN109713997A (zh) * 2019-01-23 2019-05-03 深圳创动科技有限公司 一种电势诱导衰减的抑制方法、装置及供电系统
CN112152260A (zh) * 2020-09-17 2020-12-29 科华恒盛股份有限公司 光伏发电系统pid效应的修复和抑制装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116207789A (zh) * 2023-05-06 2023-06-02 锦浪科技股份有限公司 一种基于零序的pid效应抑制方法
CN116722590A (zh) * 2023-08-08 2023-09-08 锦浪科技股份有限公司 一种pid效应抑制方法、系统及光伏系统
CN116722590B (zh) * 2023-08-08 2023-12-05 锦浪科技股份有限公司 一种pid效应抑制方法、系统及光伏系统

Also Published As

Publication number Publication date
CN112152260A (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
WO2022057480A1 (zh) 光伏发电系统pid效应的修复和抑制装置
CN108011583B (zh) 一种抑制pid效应的装置
CN109638786B (zh) 一种光伏组件关断保护电路及组件关断器
US9966866B2 (en) Distributed power system, DC-DC converter, and power conditioner
CN103973217A (zh) 一种抑制电池板pid效应的装置
CN206164112U (zh) 一种用于光伏发电系统的抗电势诱导衰减装置
CN105098832A (zh) 一种多机并网功率变换器低电压穿越控制系统及方法
CN212543724U (zh) Pid效应抑制装置及光伏发电系统
CN104333213A (zh) 一种pv阵列输出过压时的保护方法、设备及系统
US20210313929A1 (en) Compensation circuit and method for potential induced degradation, power module, and photovoltaic system
CN104795985B (zh) 一种防pid效应的光伏系统
CN106160651A (zh) 一种抑制光伏电池板pid效应的系统
CN113964863A (zh) 一种可自动实现组件级关断的串联型光伏系统
CN102427233B (zh) 一种具有谐波抑制和稳压功能的节电装置
CN113872241A (zh) 防光伏组件电势诱导衰减的并网逆变系统
CN116626533B (zh) 一种电力开关柜漏电智能检测电路
CN206099881U (zh) 一种抑制光伏电池板pid效应的装置
CN203423482U (zh) 一种功率管保护电路及应用该电路的开关电源电路
CN104660025B (zh) 不间断电源的母线电压软启动方法
CN202872325U (zh) 用于光伏发电系统的直流接地检测保护装置
CN209982435U (zh) 光伏系统的防pid装置及光伏系统
CN107765094B (zh) 一种光伏电池板pid修复装置
CN203301209U (zh) 超级电容充电装置
CN211481228U (zh) 一种电势诱导衰减修复电路及一种光伏逆变器
CN114400913A (zh) 光伏逆变器和应用其的光伏并网逆变系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21868309

Country of ref document: EP

Kind code of ref document: A1