WO2022055271A1 - 의료영상 처리 장치와 의료영상 학습 방법 및 의료영상 처리 방법 - Google Patents

의료영상 처리 장치와 의료영상 학습 방법 및 의료영상 처리 방법 Download PDF

Info

Publication number
WO2022055271A1
WO2022055271A1 PCT/KR2021/012271 KR2021012271W WO2022055271A1 WO 2022055271 A1 WO2022055271 A1 WO 2022055271A1 KR 2021012271 W KR2021012271 W KR 2021012271W WO 2022055271 A1 WO2022055271 A1 WO 2022055271A1
Authority
WO
WIPO (PCT)
Prior art keywords
training
chest
image
ray image
input data
Prior art date
Application number
PCT/KR2021/012271
Other languages
English (en)
French (fr)
Inventor
김남국
장미소
김민규
Original Assignee
울산대학교 산학협력단
재단법인 아산사회복지재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산대학교 산학협력단, 재단법인 아산사회복지재단 filed Critical 울산대학교 산학협력단
Priority to US18/264,976 priority Critical patent/US20240225581A9/en
Publication of WO2022055271A1 publication Critical patent/WO2022055271A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5217Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/505Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of bone
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30008Bone

Definitions

  • the present invention relates to a method and apparatus for learning a medical image of a body, and a method and apparatus for processing a medical image of the body.
  • a medical imaging apparatus is a device for acquiring an image of a body internal structure of a subject to be diagnosed.
  • the medical imaging apparatus is a non-invasive examination apparatus, and shows structural details in the body, internal tissues and fluid flow, etc. by photographing and processing the image to the user.
  • a user such as a doctor may diagnose a patient's health condition and disease by using a medical image output from the medical imaging apparatus.
  • an X-ray imaging device that irradiates an object with X-rays and detects X-rays passing through the object to image an image
  • a magnetic resonance imaging (MRI) device for providing a magnetic resonance image
  • Such an aged society and/or a super-aged society is causing various aging problems, and one of them is the increase in the number of osteoporosis patients, and the rapid increase in medical and economic costs for osteoporosis and fractures caused by osteoporosis. there is.
  • Osteoporosis refers to a condition in which bone strength is weakened and fractures are highly likely, and is a systemic bone disease that increases the risk of fracture due to damage to bone strength.
  • osteoporosis is asymptomatic, but when a fracture occurs, there is a high possibility of a secondary fracture and the occurrence of complications increases. For this reason, screening tests for decreased bone density are important.
  • Bone strength is determined by bone quality and bone density, which are determined by bone turnover rate, structure, micro-damage and mineralization.
  • BMD in Korean medical insurance is 1 for women over 65 and men over 70, except when there are high-risk factors.
  • the insurance benefit is recognized as a period of one year or longer for each and follow-up inspection. Therefore, the osteoporosis control rate for women who have an increased risk of osteoporosis after menopause around the age of 50 and men with low disease awareness is inevitably insufficient.
  • the dual energy radiation bone density measurement method known as the most suitable method for measuring bone density for screening for decreased bone density
  • the radiation exposure amount is relatively high. It is not performed as often as radiographic examinations.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2019-154943 (published on 19.09.2019)
  • a medical image learning method and a medical image processing apparatus for learning a chest X-ray image and osteoporosis information or bone density information to an artificial neural network model so as to classify a normal group and a high-risk group for osteoporosis using the chest X-ray image provides
  • a medical image processing method and a medical image processing apparatus in which a trained artificial neural network model acquires osteoporosis information or bone density information from a chest X-ray image of a subject to be diagnosed.
  • the medical image learning method performed by the medical image processing apparatus comprises a first learning input data using a chest X-ray image for training and a bone-emphasized image or bone extraction image obtained from the chest X-ray image for training. preparing as a set; preparing osteoporosis information or bone density information corresponding to the chest X-ray image for training as label data for the first training input data set; and the first training input data set and the label data and training an artificial neural network model using
  • a non-transitory computer-readable recording medium storing computer-executable instructions according to the second aspect, when the computer-executable instructions are executed by a processor, the processor performs the medical image learning method of the medical image processing apparatus to do it
  • the medical image processing method performed by the medical image processing apparatus includes a chest X-ray image for training, a bone-emphasized image or bone extraction image obtained from the chest X-ray image for training, and a chest X-ray image for training.
  • the acquired soft tissue image and the training input data set including at least two kinds of images among the slice images including only some of the plurality of bones included in the chest X-ray image for training and the artificial neural network model from which the label data is learned.
  • the method includes receiving a chest X-ray image, and outputting osteoporosis information or bone density information obtained by the artificial neural network model from the chest X-ray image of the subject to be diagnosed.
  • a non-transitory computer-readable recording medium storing computer-executable instructions according to a fourth aspect includes, when the computer-executable instructions are executed by a processor, the processor performs a medical image processing method using the medical image processing apparatus. to do it
  • a medical image processing apparatus receives a chest X-ray image for training and a bone-emphasized image or a bone extraction image obtained from the training chest X-ray image as a first input data set for learning, and the first input data for learning
  • a medical image processing apparatus includes an input unit for receiving a chest X-ray image of a subject to be diagnosed, a chest X-ray image for learning, a bone-emphasized image or bone extraction image obtained from the chest X-ray image for learning, and the learning use
  • An artificial neural network in which an input data set for learning including at least two types of images from among soft tissue images obtained from a chest X-ray image and a slice image including only some of a plurality of bones included in the training chest X-ray image and label data are learned
  • An artificial neural network model unit for acquiring osteoporosis information or bone density information of the diagnosis subject from the chest X-ray image of the diagnosis subject received by the model input unit, and osteoporosis information of the diagnosis subject obtained by the artificial neural network model unit, or It includes an output unit for outputting bone density information.
  • the artificial neural network model is trained so that the learned artificial neural network model can acquire osteoporosis information or bone density information from a chest X-ray image of a subject to be diagnosed. Accordingly, osteoporosis information or bone density information of the subject to be diagnosed may be output, or the chest X-ray image of the subject to be diagnosed may be classified into a normal group and an osteoporosis risk group and output.
  • the X-ray image of a subject to be diagnosed can be classified into a normal group and a high-risk group for osteoporosis without using a bone density test method such as dual energy X-ray absorptiometry or quantitative computed tomography.
  • FIG. 1 is a block diagram of a medical image processing apparatus according to an exemplary embodiment.
  • FIG. 2 is a flowchart illustrating a method for learning a medical image performed by a medical image processing apparatus according to an exemplary embodiment.
  • FIG. 3 is a flowchart illustrating a medical image processing method performed by a medical image processing apparatus according to an exemplary embodiment.
  • 4A to 4C and 5A to 5D are examples of various X-ray images that the medical image processing apparatus according to an embodiment can use for learning a medical image.
  • 'unit' used in the specification means software or a hardware component such as an FPGA or ASIC, and 'unit' performs certain roles.
  • 'part' is not limited to software or hardware.
  • the 'unit' may be configured to reside on an addressable storage medium or it may be configured to refresh one or more processors.
  • 'part' refers to components such as software components, object-oriented software components, class components and task components, processes, functions, properties, procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays and variables. Functions provided within components and 'units' may be combined into a smaller number of components and 'units' or further divided into additional components and 'units'.
  • a subject or patient to be diagnosed may include a human or an animal, or a part of a human or animal.
  • 'image' may mean multi-dimensional data composed of discrete image elements (eg, pixels in a two-dimensional image and voxels in a three-dimensional image). there is.
  • FIG. 1 illustrates a configuration of a medical image processing apparatus 100 according to an exemplary embodiment.
  • the medical image processing apparatus 100 may be implemented in a PC or a server, or may include a PC or a server.
  • the medical image processing apparatus 100 includes an input unit 110 and an artificial neutral network model unit 120 , and according to an embodiment, an output unit 130 and an information processing unit ( 140) and the storage unit 150 may further include one or more.
  • the input unit 110 receives an input data set for learning and label data for learning the artificial neural network model of the artificial neural network model unit 120 .
  • the input unit 110 receives the body X-ray image of the subject to be diagnosed to be input to the learned artificial neural network model.
  • the input unit 110 may receive a first input data set for learning and a second input data set for learning.
  • the first training input data set may be a chest X-ray image for training, a bone-emphasized image or a bone extraction image obtained from a chest X-ray image for training, and a soft tissue image obtained from a chest X-ray image for training, and the first input data set for training Label data corresponding to may be osteoporosis information or bone density information corresponding to a chest X-ray image for training.
  • the second training input data set may be a sliced image such that only a portion of a plurality of bones included in the training chest X-ray image is included, and the label data corresponding to the second training input data set is a training chest X-ray image and/or a slice It may be osteoporosis information or bone density information corresponding to the image.
  • the artificial neural network model unit 120 includes an artificial neural network model for learning an input data set for learning received through the input unit 110 and label data.
  • the artificial neural network model unit 120 may include a memory for storing instructions programmed to perform a function as an artificial neural network model, and a microprocessor for executing these instructions.
  • the training input data set that the artificial neural network model of the artificial neural network model unit 120 learns is the learning input data set that the input unit 110 receives, for example, the first input data set for learning and/or the second input data set for learning.
  • the first input data set for training and/or the second input data set for training may be chest X-ray images for training, as exemplified above.
  • the artificial neural network model may post-train the first input data set and label data after pre-learning the second training input data set and label data.
  • the chest X-ray image has more information than the slice image of the second training input data set that can be extracted therefrom. Therefore, the artificial neural network model is easier to learn on the second training input data set than on the first training input data set.
  • the artificial neural network model performs learning using curriculum learning, in which, after pre-learning the relatively easy second learning input data set, and then post-learning the relatively difficult first learning input data set.
  • the artificial neural network model may be configured to include convolution blocks and global average pooling.
  • the artificial neural network model unit 120 is an artificial neural network model obtained from a chest X-ray image for learning, a bone-emphasized image or a bone extraction image obtained from a chest X-ray image for learning, a soft tissue image obtained from a chest X-ray image for learning, and for learning At least two types of images and label data among fragment images including only some of a plurality of bones included in the chest X-ray image may be learned.
  • the bone-emphasized image represents an image in which bones are emphasized from the chest X-ray image for training
  • the bone extraction image represents an image extracted from the chest X-ray image for training
  • the soft tissue image represents an image obtained by extracting soft tissue from the chest X-ray image for training. indicates.
  • the artificial neural network model unit 120 may acquire osteoporosis information or bone density information from the chest X-ray image of the subject to be diagnosed, to which the learned artificial neural network model is input through the input unit 110 .
  • the information processing unit 130 divides the chest X-ray image of the diagnosed subject into a normal group and an osteoporosis risk group based on osteoporosis information or bone density information on the chest X-ray image of the diagnosed subject obtained by the learned artificial neural network model.
  • Class Activation Map can be created.
  • the information processing unit 140 may include a memory for storing instructions programmed to perform a function of processing various types of information into a predetermined form and a microprocessor for executing these instructions.
  • the output unit 140 may output osteoporosis information or bone density information of the subject to be diagnosed obtained by the artificial neural network model unit 120 to the outside.
  • the output unit 130 may output the CAM for the normal group and the osteoporosis risk group generated by the information processing unit 130 based on the osteoporosis information or the bone density information acquired by the artificial neural network model to the outside.
  • the output unit 140 may include a port for outputting various information such as osteoporosis information, bone density information, CAM classified into a normal group and an osteoporosis risk group, a wired communication module or a wireless communication module, etc. of the subject to be diagnosed.
  • the output unit 140 may include an image display device capable of outputting various types of information such as osteoporosis information, bone density information, and CAM classified into a normal group and an osteoporosis risk group in the form of an image.
  • the storage unit 150 stores commands programmed so that the medical image processing apparatus 100 performs various functions, stores various information such as images received through the input unit 110 , or the artificial neural network model unit 120 . It is possible to store the calculation and processing results by .
  • the storage unit 150 includes magnetic media such as hard disks, floppy disks and magnetic tapes, optical media such as CD-ROMs and DVDs, and floppy disks. It may be a computer-readable recording medium, such as a hardware device specially configured to store and execute program instructions, such as a magneto-optical medium or a flash memory.
  • FIG. 2 is a flowchart illustrating a method for learning a medical image performed by the medical image processing apparatus 100 according to an embodiment
  • FIG. 3 is a medical image performed by the medical image processing apparatus 100 according to an embodiment. It is a flowchart for explaining an image processing method
  • FIGS. 4A to 4C and 5A to 5D are examples of various X-ray images that the medical image processing apparatus 100 according to an embodiment can use for learning a medical image.
  • a medical image learning method of the medical image processing apparatus 100 will be described according to the flow sequence of FIG. 2 .
  • the chest X-ray image among the first training input data set has a greater amount of information than the slice image among the second training input data sets that can be extracted therefrom. Therefore, the artificial neural network model is easier to learn the second training input data set than the first training input data set. Accordingly, the artificial neural network model performs learning by pre-learning the relatively easier second input data set for learning and then using curriculum learning to post-learning the relatively more difficult first input data set for learning.
  • curriculum learning an embodiment using curriculum learning as described above will be described.
  • the medical image processing apparatus 100 learns only one of the first input data set for learning and the second input data set for learning, or after pre-learning the first input data set for learning, the second input data set for learning can be post-learning.
  • an input data set for learning for learning the artificial neural network model of the artificial neural network model unit 120 of the medical image processing apparatus 100 is prepared.
  • the slice images of FIGS. 4A to 4C and the chest X-ray image for training as a slice image so that only some of the plurality of bones included in the chest X-ray image for training are included as an input data set for training are a plurality of input data sets for training.
  • as label data corresponding to a plurality of input data sets for learning osteoporosis information or bone density information corresponding to each of the training chest X-ray images can be prepared (S220).
  • the engraving image may be an image in which two or less of the clavicle, cervical vertebrae, thoracic vertebrae, and scapula are included in the chest X-ray image for training.
  • the input data set and label data for learning prepared through steps S210 and S220 are input through the input unit 110 and provided to the artificial neural network model unit 120, and the artificial neural network model of the artificial neural network model unit 120 is provided in the step Pre-learning the input data set for learning and the label data of steps S210 and S220 (S230).
  • a training input data set and label data for learning the artificial neural network model of the artificial neural network model unit 120 of the medical image processing apparatus 100 are newly inputted through the input unit 110 and prepared.
  • a chest X-ray image for training FIG. 5A
  • a bone-emphasized image FIG. 5B
  • a bone extraction image FIG. 5C
  • a plurality of input data sets for learning may be prepared using the image (FIG.
  • FIG. 5D as an input data set for learning (S240), and chest X-ray images for learning (eg, as label data corresponding to the plurality of input data sets for learning) Osteoporosis information or bone density information corresponding to each of Figure 5a) may be prepared (S250).
  • the bone extraction image (FIG. 5C) is prepared as an input data set for learning in step S240
  • the soft tissue image (FIG. 5D) is prepared together and then the bone extraction image (FIG. 5C) and the soft tissue image (FIG. 5D) are artificially prepared. You can enable neural network models to learn together.
  • the input data set and label data for learning prepared through steps S240 and S250 are input through the input unit 110 and provided to the artificial neural network model unit 120, and the artificial neural network model of the artificial neural network model unit 120 is performed in the step After learning the input data set and label data for training in S240 and S250 (S260).
  • the artificial neural network model of the artificial neural network model unit 120 uses chest X-ray images for training as input data for training and chest X-ray images for training as label data. Osteoporosis information or bone density information corresponding to each of the images is learned (S310).
  • the chest X-ray image of the subject to be diagnosed is inputted through the input unit 110 and provided to the artificial neural network model unit 120 ( S320 ).
  • the artificial neural network model of the artificial neural network model unit 120 acquires osteoporosis information or bone density information of the diagnosed subject from the chest X-ray image of the diagnosed subject provided through step S320 (S330).
  • the output unit 140 may output the osteoporosis information or bone density information of the subject to be diagnosed obtained by the artificial neural network model unit 120 to the outside.
  • the output unit 140 may output the osteoporosis information or the bone density information obtained by the artificial neural network model unit 120 in the form of raw data, but may output it in a predetermined form processed by the information processing unit 130 .
  • the information processing unit 130 generates and outputs a CAM that classifies a chest X-ray image of a subject to be diagnosed into a normal group and an osteoporosis risk group based on the osteoporosis information or the bone density information obtained by the artificial neural network model unit 120 . may be provided to the unit 140 . Then, the output unit 140 may output the CAM generated by the information processing unit 130 to the outside (S340).
  • the learned artificial neural network model can acquire osteoporosis information or bone density information from a chest X-ray image of a subject to be diagnosed. Accordingly, osteoporosis information or bone density information of the subject to be diagnosed may be output, or the chest X-ray image of the subject to be diagnosed may be classified into a normal group and an osteoporosis risk group and output.
  • the present applicant selected a total of 77,812 people who performed both chest X-ray imaging and bone density test as test subjects, and secured osteoporosis information or bone density information, which are the results of chest X-ray image and bone density test, as learning data. Based on this, the medical image processing results of the medical image processing apparatus 100 according to the embodiment of the present invention were derived as shown in Table 1 below.
  • an artificial neural network model learns a chest X-ray image for learning or various images processed therefrom, and the learned model acquires osteoporosis information or bone density information of a diagnosed subject from a chest X-ray image of a diagnosed subject
  • osteoporosis information or bone density information may be extracted from various body X-ray images including bones of the body as well as chest X-ray images.
  • the artificial neural network model can learn various body X-ray images and corresponding osteoporosis information or bone density information as learning data. It is possible to obtain osteoporosis information or bone density information.
  • various body X-ray images may be a pelvic X-ray image, a head-neck X-ray image, an arm X-ray image, a leg X-ray image, and a dental panoramic X-ray image.
  • each step included in the medical image learning method and the medical image processing method according to the embodiment described above when executed by a processor, stores a computer-executable instruction that causes the processor to perform such a step. It may be implemented in a computer-readable recording medium.
  • each step included in the medical image learning method and the medical image processing method according to the above-described embodiment may be implemented in the form of a computer program stored in a computer-readable recording medium programmed to perform these steps. .
  • Combinations of each step in each flowchart attached to the present invention may be performed by computer program instructions.
  • These computer program instructions may be embodied in a processor of a general purpose computer, special purpose computer, or other programmable data processing equipment, such that the instructions performed by the processor of the computer or other programmable data processing equipment provide the functions described in each step of the flowchart. It creates a means to do these things.
  • These computer program instructions may also be stored in a computer-usable or computer-readable medium that may direct a computer or other programmable data processing equipment to implement a function in a particular manner, and thus the computer-usable or computer-readable medium.
  • the instructions stored in the recording medium are also capable of producing an article of manufacture including instruction means for performing the functions described in each step of the flowchart.
  • the computer program instructions may also be mounted on a computer or other programmable data processing equipment, such that a series of operational steps are performed on the computer or other programmable data processing equipment to create a computer-executed process to create a computer or other programmable data processing equipment. It is also possible that instructions for performing the processing equipment provide steps for performing the functions described in each step of the flowchart.
  • each step may represent a module, segment, or portion of code comprising one or more executable instructions for executing the specified logical function(s). It should also be noted that in some alternative embodiments it is also possible for the functions recited in the steps to occur out of order. For example, it is possible that two steps shown one after another may in fact be performed substantially simultaneously, or that the steps may sometimes be performed in the reverse order according to the corresponding function.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Quality & Reliability (AREA)
  • Physiology (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Image Analysis (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

신체에 대한 의료영상을 처리하는 의료영상 처리 장치에 의해 수행되는 의료영상 학습 방법을 제공한다. 상기 의료영상 학습 방법은 학습용 흉부 엑스(X)선 영상과 상기 학습용 흉부 X선 영상으로부터 획득한 뼈 강조 영상 또는 뼈 추출 영상을 제 1 학습용 입력 데이터 세트로서 준비하는 단계와, 상기 제 1 학습용 입력 데이터 세트에 대한 레이블 데이터로서 상기 학습용 흉부 X선 영상에 대응하는 골다공증 정보 또는 골밀도 정보를 준비하는 단계와, 상기 제 1 학습용 입력 데이터 세트 및 상기 레이블 데이터를 이용하여 인공 신경망 모델을 학습시키는 단계를 포함한다.

Description

의료영상 처리 장치와 의료영상 학습 방법 및 의료영상 처리 방법
본 발명은 신체에 대한 의료영상을 학습하는 방법 및 장치, 그리고 신체에 대한 의료영상을 처리하는 방법 및 장치에 관한 것이다.
의료영상 장치는 진단 대상자의 신체 내부 구조를 영상으로 획득하기 위한 장비이다. 의료영상 장치는 비침습 검사 장치로서, 신체 내의 구조적 세부사항, 내부 조직 및 유체의 흐름 등을 촬영 및 처리하여 사용자에게 보여준다. 의사 등의 사용자는 의료영상 장치에서 출력되는 의료영상을 이용하여 환자의 건강 상태 및 질병을 진단할 수 있다.
의료영상 장치로는 대상체에 엑스(X)선을 조사하고 대상체를 통과한 X선을 감지하여 영상을 이미징하는 X선(X-ray) 촬영 장치, 자기 공명 영상을 제공하기 위한 자기 공명 영상(MRI: magnetic resonance imaging) 장치, 컴퓨터 단층 촬영(CT: Computed Tomography) 장치, 및 초음파(Ultrasound) 진단 장치 등이 있고, 이 중에서 X선 촬영 장치가 가장 널리 사용되고 있다.
한편, 『Choi, H.J., et al., Burden of osteoporosis in adults in Korea: a national health insurance database study. Journal of bone and mineral metabolism, 2012. 30(1): p. 54-58.』 및 『 Lee, Y.-K., B.-H. Yoon, and K.-H. Koo, Epidemiology of osteoporosis and osteoporotic fractures in South Korea. Endocrinology and Metabolism, 2013. 28(2): p. 90-93.』에 의하면, 우리나라는 2018년 65세이상 노인비율이 14%인 고령사회에 진입하였고, 2025년에 20%가 넘는 초고령사회에 진입할 것으로 예상되고 있다. 이러한 고령사회 및/또는 초고령사회는 다양한 고령화 문제를 야기하고 있고, 그 중 하나로 골다공증(Osteoporosis) 환자의 수가 증가하고 이러한 골다공증과 골다공증으로 인한 골절에 대한 의료비용 및 사용경제적 비용이 급증하는 문제가 있다.
골다공증은 골강도가 약해져서 골절이 일어날 가능성이 높은 상태를 지칭하고, 전신으로 진행되는 뼈의 질환이며, 골강도의 손상으로 골절의 위험이 증가되는 골격계 질환이다.
『Hong, S. and K. Han, The incidence of hip fracture and mortality rate after hip fracture in Korea: A nationwide population-based cohort study. Osteoporosis and Sarcopenia, 2019.』 및 『Jung, H.-S., et al., Incidence of Osteoporotic Refractures Following Proximal Humerus Fractures in Adults Aged 50 Years and Older in Korea. Journal of Bone Metabolism, 2019. 26(2): p. 105-111.』에 의하면, 골다공증은 증상이 없으나, 골절이 발생하면 2차 골절이 발생할 가능성이 높고, 합병증 발생이 높아지기 때문에 골절 발생 이전에 골밀도 감소를 예방하는 것이 중요하며, 이러한 골밀도 감소 예방을 위해서는 골밀도 감소에 대한 선별검사가 중요하다.
골강도는 골교체율, 구조, 미세손상과 무기질화로 결정되는 골의 질과 골밀도로 결정되며, 골강도의 80%가 골밀도에 의존하기 때문에 골밀도 측정이 골다공증 진단에 유용한 방법이다.
『LewieckiEM, LaneNE. Common mistakes in the clinical use of bone mineral density testing. Nat Clin Pract Rheumatol.2008; 4: 667-674』과 『김재균 (Jae Gyoon Kim) , 문영완 (Young Wan Moon). 2011. 골다공증의 진단. Hip & Pelvis(구 대한고관절학회지), 23(2): 108-115』 및 『Ho-Sung, K., Tae-Hyung, K., & Sang-Hyun, K. (2018). Management Methods of Bone Mineral Density Examination Using Dual Energy X-ray Absorptiometry. Journal of Radiological Science and Technology, 41(4), 351-360』에 의하면, 골밀도 측정에 대하여, 국제학술단체인 ISCD(International Society for Clinical Densitometry)에서는 이중 에너지 방사선 골밀도 측정법(DXA: Dual Energy X-ray Absorptiometry)을 가장 적합한 골밀도 측정법으로 인정하고 있다. 이중 에너지 방사선 골밀도 측정법으로 중심골인 요추와 대퇴골의 골밀도를 측정하여 가장 낮은 수치를 기준으로 골다공증과 골감소증 및 정상 중 어느 하나로 진단한다.
『Lee, K.-S., et al., New reference data on bone mineral density and the prevalence of osteoporosis in Korean adults aged 50 years or older: the Korea National Health and Nutrition Examination Survey 2008-2010. Journal of Korean medical science, 2014. 29(11): p. 1514-1522.』 및 『Kim, K.H., et al., Prevalence, awareness, and treatment of osteoporosis among Korean women: the Fourth Korea National Health and Nutrition Examination Survey. Bone, 2012. 50(5): p. 1039-1047.』에 개재된 국민건강영양조사를 이용한 연구에 따르면, 50세 이상의 성인 4명 중 1명은 골다공증이며, 70세 이상에서는 여자는 3명 중 2명, 남자는 5명 중 1명이 골다공증으로 매우 흔한 질환이나, 의사로부터 진단받고 치료받는 사람은 10명 중 1명에 불과하며 특히 남성 대부분이 골다공증을 건강문제로 인식하지 못하고 있다. 국가 일반 건강검진에서 만 54세, 66세 중 여성만을 대상으로 골밀도검사를 하고 있어, 남성에 대한 진단율은 떨어질 수밖에 없는 실정이다.
또한,『https://www.hira.or.kr/dummy.do?pgmid=HIRAA030060000000&cmsurl=/cms/medi_info/02/01/1343529_27565.html&subject=%EA%B3%A8%EB%B0%80%EB%8F%84+%EA%B2%80%EC%82%AC』에 의하면, 한국 의료보험에서 골밀도검사는 고위험요소가 있는 경우를 제외하고는 65세 이상의 여성과 70세 이상의 남성에서 진단시 1회, 추적검사 실시는 1년 이상으로 하여 보험급여를 인정하고 있다. 따라서, 50세 전후 폐경기를 지나며 골다공증의 위험이 증가하는 여성과, 질환 인지도가 낮은 남성에 대해서는 골다공증 관리율이 미흡할 수밖에 없다.
『Yu, T. Y., Cho, H., Kim, T.-Y., Ha, Y.-C., Jang, S., & Kim, H. Y. (2018). Utilization of Osteoporosis-Related Health Services: Use of Data from the Korean National Health Insurance Database 2008-2012. J Korean Med Sci, 33(3).』에 의하면, 건강보험심사청구자료 분석 결과 골다공증 골절의 발생이 2008년 14만 건에서 지속적으로 증가하여 2012년에는 21만 건이 발생한 것으로 나타나 골다공증 관리의 중요성을 알려주고 있다.
그런데, 골밀도 감소에 대한 선별검사를 위한 가장 적합한 골밀도 측정법으로 알려진 이중 에너지 방사선 골밀도 측정법은 의료영상 장치 중 가장 널리 이용되고 있는 X선 촬영 검사와 비교할 때에 고비용이 소요될 뿐만 아니라 상대적으로 방사선 피폭량이 높아서 X선 촬영 검사만큼 자주 수행하지 못하는 실정이다.
(특허문헌 1) 일본공개특허 제2019-154943호 (2019.09.19. 공개)
실시예에 따르면, 흉부 X선 영상을 이용하여 정상군과 골다공증 고위험군을 분류할 수 있도록, 흉부 X선 영상과 골다공증 정보 또는 골밀도 정보를 인공 신경망 모델에 학습시키는 의료영상 학습 방법 및 그 의료영상 처리 장치를 제공한다.
또한, 학습된 인공 신경망 모델이 진단 대상자의 흉부 X선 영상으로부터 골다공증 정보 또는 골밀도 정보를 획득하는 의료영상 처리 방법 및 그 의료영상 처리 장치를 제공한다.
본 발명의 해결하고자 하는 과제는 이상에서 언급한 것으로 제한되지 않으며, 언급되지 않은 또 다른 해결하고자 하는 과제는 아래의 기재로부터 본 발명이 속하는 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
제 1 관점에 따른 의료영상 처리 장치에 의해 수행되는 의료영상 학습 방법은, 학습용 흉부 엑스(X)선 영상과 상기 학습용 흉부 X선 영상으로부터 획득한 뼈 강조 영상 또는 뼈 추출 영상을 제 1 학습용 입력 데이터 세트로서 준비하는 단계와, 상기 제 1 학습용 입력 데이터 세트에 대한 레이블 데이터로서 상기 학습용 흉부 X선 영상에 대응하는 골다공증 정보 또는 골밀도 정보를 준비하는 단계와, 상기 제 1 학습용 입력 데이터 세트 및 상기 레이블 데이터를 이용하여 인공 신경망 모델을 학습시키는 단계를 포함한다.
제 2 관점에 따른 컴퓨터 실행 가능한 명령어를 저장하고 있는 비일시적 컴퓨터 판독 가능 기록매체는, 상기 컴퓨터 실행 가능한 명령어가, 프로세서에 의해 실행되면, 상기 의료영상 처리 장치의 의료영상 학습 방법을 상기 프로세서가 수행하도록 한다.
제 3 관점에 따른 의료영상 처리 장치에 의해 수행되는 의료영상 처리 방법은, 학습용 흉부 X선 영상과, 상기 학습용 흉부 X선 영상으로부터 획득한 뼈 강조 영상 또는 뼈 추출 영상, 상기 학습용 흉부 X선 영상으로부터 획득한 연조직 영상, 및 상기 학습용 흉부 X선 영상에 포함된 다수의 뼈 중 일부만 포함된 조각 영상 중 적어도 2종의 영상을 포함하는 학습용 입력 데이터 세트와 레이블 데이터가 학습된 인공 신경망 모델에 진단 대상자의 흉부 X선 영상을 입력 받는 단계와, 상기 진단 대상자의 흉부 X선 영상으로부터 상기 인공 신경망 모델이 획득한 골다공증 정보 또는 골밀도 정보를 출력하는 단계를 포함한다.
제 4 관점에 따른 컴퓨터 실행 가능한 명령어를 저장하고 있는 비일시적 컴퓨터 판독 가능 기록매체는, 상기 컴퓨터 실행 가능한 명령어가, 프로세서에 의해 실행되면, 상기 의료영상 처리 장치를 이용한 의료영상 처리 방법을 상기 프로세서가 수행하도록 한다.
제 5 관점에 따른 의료영상 처리 장치는, 학습용 흉부 X선 영상과 상기 학습용 흉부 X선 영상으로부터 획득한 뼈 강조 영상 또는 뼈 추출 영상을 제 1 학습용 입력 데이터 세트로서 입력 받고, 상기 제 1 학습용 입력 데이터 세트에 대한 레이블 데이터로서 상기 학습용 흉부 X선 영상에 대응하는 골다공증 정보 또는 골밀도 정보를 입력 받는 입력부와, 상기 입력부를 통하여 입력 받은 상기 제 1 학습용 입력 데이터 세트 및 상기 레이블 데이터를 인공 신경망 모델이 학습하는 인공 신경망 모델부를 포함한다.
제 6 관점에 따른 의료영상 처리 장치는, 진단 대상자의 흉부 X선 영상을 입력 받는 입력부와, 학습용 흉부 X선 영상과, 상기 학습용 흉부 X선 영상으로부터 획득한 뼈 강조 영상 또는 뼈 추출 영상, 상기 학습용 흉부 X선 영상으로부터 획득한 연조직 영상, 및 상기 학습용 흉부 X선 영상에 포함된 다수의 뼈 중 일부만 포함된 조각 영상 중 적어도 2종의 영상을 포함하는 학습용 입력 데이터 세트와 레이블 데이터가 학습된 인공 신경망 모델이 상기 입력부가 입력 받은 상기 진단 대상자의 흉부 X선 영상으로부터 상기 진단 대상자의 골다공증 정보 또는 골밀도 정보를 획득하는 인공 신경망 모델부와, 상기 인공 신경망 모델부에 의하여 획득된 상기 진단 대상자의 골다공증 정보 또는 골밀도 정보를 출력하는 출력부를 포함한다.
일 실시예에 따르면 인공 신경망 모델을 학습시켜서, 학습된 인공 신경망 모델이 진단 대상자의 흉부 X선 영상으로부터 골다공증 정보 또는 골밀도 정보를 획득할 수 있도록 한다. 이에 따라, 진단 대상자의 골다공증 정보 또는 골밀도 정보를 출력하거나 진단 대상자의 흉부 X선 영상을 정상군과 골다공증 위험군으로 분류하여 출력할 수 있다.
이러한 본 발명의 일 실시예에 의하면, 이중에너지 X선 흡수계측법, 정량 전산화단층촬영술 등의 골밀도 검사 방법을 이용하지 않은 상태에서 진단 대상자의 X선 영상을 정상군과 골다공증 고위험군으로 분류할 수 있다.
도 1은 일 실시예에 따른 의료영상 처리 장치의 구성도이다.
도 2는 일 실시예에 따른 의료영상 처리 장치에 의해 수행되는 의료영상 학습 방법을 설명하기 위한 흐름도이다.
도 3은 일 실시예에 따른 의료영상 처리 장치에 의해 수행되는 의료영상 처리 방법을 설명하기 위한 흐름도이다.
도 4a 내지 도 4c 및 도 5a 내지 도 5d는 일 실시예에 따른 의료영상 처리 장치가 의료영상 학습에 이용할 수 있는 다양한 X선 영상의 예이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
본 명세서에서 사용되는 용어에 대해 간략히 설명하고, 본 발명에 대해 구체적으로 설명하기로 한다.
본 발명에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.
명세서 전체에서 어떤 부분이 어떤 구성요소를 '포함'한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.
또한, 명세서에서 사용되는 '부'라는 용어는 소프트웨어 또는 FPGA나 ASIC과 같은 하드웨어 구성요소를 의미하며, '부'는 어떤 역할들을 수행한다. 그렇지만 '부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로 코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들 및 변수들을 포함한다. 구성요소들과 '부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '부'들로 결합되거나 추가적인 구성요소들과 '부'들로 더 분리될 수 있다.
아래에서는 첨부한 도면을 참고하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략한다.
본 명세서에서 진단 대상자나 환자 등은 사람 또는 동물, 또는 사람 또는 동물의 일부를 포함할 수 있다.
또한, 본 명세서에서 '영상'은 이산적인 이미지 요소들(예를 들어, 2차원 이미지에 있어서의 픽셀들 및 3차원 이미지에 있어서의 복셀들)로 구성된 다차원(multi-dimensional) 데이터를 의미할 수 있다.
도 1은 일 실시예에 따른 의료영상 처리 장치(100)의 구성을 도시하고 있다. 다만 도 1은 예시에 불과하다. 이러한 의료영상 처리 장치(100)는 PC나 서버 등에서 구현되거나 PC나 서버를 포함할 수 있다.
도 1을 참조하면, 의료영상 처리 장치(100)는 입력부(110), 인공 신경망 모델(artificial neutral network model)부(120)를 포함하며, 실시예에 따라 출력부(130), 정보 가공부(140), 저장부(150) 중 하나 이상을 더 포함할 수 있다.
입력부(110)는 인공 신경망 모델부(120)의 인공 신경망 모델을 학습시키기 위한 학습용 입력 데이터 세트 및 레이블 데이터를 입력 받는다. 또, 입력부(110)는 학습된 인공 신경망 모델에 입력하기 위한 진단 대상자의 신체 X선 영상을 입력 받는다. 예를 들어, 입력부(110)는 제 1 학습용 입력 데이터 세트 및 제 2 학습용 입력 데이터 세트를 입력 받을 수 있다. 제 1 학습용 입력 데이터 세트는 학습용 흉부 X선 영상, 학습용 흉부 X선 영상으로부터 획득한 뼈 강조 영상 또는 뼈 추출 영상, 및 학습용 흉부 X선 영상으로부터 획득한 연조직 영상일 수 있고, 제 1 학습용 입력 데이터 세트에 대응하는 레이블 데이터는 학습용 흉부 X선 영상에 대응하는 골다공증 정보 또는 골밀도 정보일 수 있다. 제 2 학습용 입력 데이터 세트는 학습용 흉부 X선 영상에 포함된 다수의 뼈 중 일부만 포함되도록 한 조각 영상일 수 있고, 제 2 학습용 입력 데이터 세트에 대응하는 레이블 데이터는 학습용 흉부 X선 영상 및/또는 조각 영상에 대응하는 골다공증 정보 또는 골밀도 정보일 수 있다.
인공 신경망 모델부(120)는 입력부(110)를 통하여 입력 받는 학습용 입력 데이터 세트 및 레이블 데이터를 학습하는 인공 신경망 모델을 포함한다. 예를 들어, 인공 신경망 모델부(120)는 인공 신경망 모델로서 기능을 수행하도록 프로그램된 명령어를 저장하는 메모리 및 이러한 명령어를 실행하는 마이크로프로세서를 포함할 수 있다.
이러한 인공 신경망 모델부(120)의 인공 신경망 모델이 학습하는 학습용 입력 데이터 세트는 입력부(110)가 입력 받은 학습용 입력 데이터 세트로서, 예컨대 제 1 학습용 입력 데이터 세트 및/또는 제 2 학습용 입력 데이터 세트일 수 있다. 제 1 학습용 입력 데이터 세트 및/또는 제 2 학습용 입력 데이터 세트는 앞서 예시한 바와 같이 학습용 흉부 X선 영상들일 수 있다. 예를 들어, 인공 신경망 모델은 제 2 학습용 입력 데이터 세트 및 레이블 데이터를 선학습한 후에 제 1 학습용 입력 데이터 세트 및 레이블 데이터를 후학습할 수 있다. 제 1 학습용 입력 데이터 세트 중 흉부 X선 영상은 이로부터 추출할 수 있는 제 2 학습용 입력 데이터 세트의 조각 영상보다 정보의 양이 많다. 따라서, 인공 신경망 모델은 제 1 학습용 입력 데이터 세트보다 제 2 학습용 입력 데이터 세트가 학습하기 더 쉽다. 이에, 인공 신경망 모델은 상대적으로 학습이 쉬운 제 2 학습용 입력 데이터 세트를 선학습한 후에 상대적으로 학습이 어려운 제 1 학습용 입력 데이터 세트를 후학습하는 커리큘럼 러닝(Curriculum learning)을 이용하여 학습을 수행한다. 예를 들어, 인공 신경망 모델은 컨볼루션 블록들(Convolution Blocks) 및 전역 평균 풀링(Global Average Pooling)을 포함하여 구성될 수 있다.
이처럼, 인공 신경망 모델부(120)는 인공 신경망 모델이 학습용 흉부 X선 영상과, 학습용 흉부 X선 영상으로부터 획득한 뼈 강조 영상 또는 뼈 추출 영상, 학습용 흉부 X선 영상으로부터 획득한 연조직 영상, 및 학습용 흉부 X선 영상에 포함된 다수의 뼈 중 일부만 포함된 조각 영상 중 적어도 2종의 영상 및 레이블 데이터를 학습할 수 있다. 여기서, 뼈 강조 영상은 학습용 흉부 X선 영상에서 뼈를 강조한 영상을 나타내고, 뼈 추출 영상은 학습용 흉부 X선 영상에서 뼈를 추출한 영상을 나타내고, 연조직 영상은 학습용 흉부 X선 영상에서 연조직을 추출한 영상을 나타낸다.
또한, 인공 신경망 모델부(120)는 학습된 인공 신경망 모델이 입력부(110)를 통하여 입력 받은 진단 대상자의 흉부 X선 영상으로부터 골다공증 정보 또는 골밀도 정보를 획득할 수 있다.
정보 가공부(130)는 학습된 인공 신경망 모델이 획득한 진단 대상자의 흉부 X선 영상에 대한 골다공증 정보 또는 골밀도 정보에 기초하여 진단 대상자의 흉부 X선 영상을 정상군과 골다공증 위험군으로 분류한 CAM(Class Activation Map)을 생성할 수 있다. 예를 들어, 정보 가공부(140)는 각종 정보를 소정의 형태로 가공하는 기능을 수행하도록 프로그램된 명령어를 저장하는 메모리 및 이러한 명령어를 실행하는 마이크로프로세서를 포함할 수 있다.
출력부(140)는 인공 신경망 모델부(120)에 의하여 획득된 진단 대상자의 골다공증 정보 또는 골밀도 정보를 외부로 출력할 수 있다. 또는, 출력부(130)는 정보 가공부(130)가 인공 신경망 모델이 획득한 골다공증 정보 또는 골밀도 정보에 기초하여 생성한 정상군과 골다공증 위험군에 대한 CAM을 외부로 출력할 수 있다. 이러한 출력부(140)는 진단 대상자의 골다공증 정보, 골밀도 정보, 정상군과 골다공증 위험군으로 분류한 CAM 등의 각종 정보를 출력하는 포트, 유선 통신 모듈 또는 무선 통신 모듈 등을 포함할 수 있다. 또는, 출력부(140)는 진단 대상자의 골다공증 정보, 골밀도 정보, 정상군과 골다공증 위험군으로 분류한 CAM 등의 각종 정보를 영상 형태로 출력할 수 있는 영상 표시 장치를 포함할 수도 있다.
저장부(150)는 의료영상 처리 장치(100)가 각종의 기능을 수행하도록 프로그램된 명령어를 저장하거나 입력부(110)를 통하여 입력 받은 영상 등과 같은 각종 정보를 저장하거나 또는 인공 신경망 모델부(120)에 의한 연산 및 처리 결과를 저장할 수 있다. 예를 들어, 저장부(150)는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 플래시 메모리(flash memory)와 같은 프로그램 명령어들을 저장하고 수행하도록 특별히 구성된 하드웨어 장치 등과 같이 컴퓨터 판독 가능한 기록매체일 수 있다.
도 2는 일 실시예에 따른 의료영상 처리 장치(100)에 의해 수행되는 의료영상 학습 방법을 설명하기 위한 흐름도이고, 도 3은 일 실시예에 따른 의료영상 처리 장치(100)에 의해 수행되는 의료영상 처리 방법을 설명하기 위한 흐름도이며, 도 4a 내지 도 4c 및 도 5a 내지 도 5d는 일 실시예에 따른 의료영상 처리 장치(100)가 의료영상 학습에 이용할 수 있는 다양한 X선 영상의 예이다.
이하, 도 1 내지 도 5d를 참조하여 일 실시예에 따른 의료영상 처리 장치(100)에 의해 수행되는 의료영상 학습 방법과 의료영상 처리 방법에 대하여 자세히 살펴보기로 한다.
도 2의 흐름 순서에 따라 의료영상 처리 장치(100)의 의료영상 학습 방법에 대하여 설명하겠다. 앞서 언급한 바와 같이, 제 1 학습용 입력 데이터 세트 중 흉부 X선 영상은 이로부터 추출할 수 있는 제 2 학습용 입력 데이터 세트 중 조각 영상보다 정보의 양이 많다. 따라서, 인공 신경망 모델은 제 1 학습용 입력 데이터 세트보다 제 2 학습용 입력 데이터 세트를 학습하기 더 쉽다. 이에, 인공 신경망 모델은 상대적으로 더 쉬운 제 2 학습용 입력 데이터 세트를 선학습한 후에 상대적으로 더 어려운 제 1 학습용 입력 데이터 세트를 후학습하는 커리큘럼 러닝을 이용하여 학습을 수행한다. 이하의 설명에서는 이처럼 커리큘럼 러닝을 이용하는 실시예에 대하여 설명하기로 한다. 물론, 의료영상 처리 장치(100)는 제 1 학습용 입력 데이터 세트와 제 2 학습용 입력 데이터 세트 중 어느 하나의 입력 데이터 세트만 학습하거나 제 1 학습용 입력 데이터 세트를 선학습한 후에 제 2 학습용 입력 데이터 세트를 후학습할 수도 있다.
먼저, 의료영상 처리 장치(100)의 인공 신경망 모델부(120)의 인공 신경망 모델을 학습시키기 위한 학습용 입력 데이터 세트를 준비한다. 예를 들어, 학습용 흉부 X선 영상에 포함된 다수의 뼈 중 일부만 포함되도록 한 조각 영상으로서 도 4a 내지 도 4c의 조각 영상들과 학습용 흉부 X선 영상을 학습용 입력 데이터 세트로서 복수의 학습용 입력 데이터 세트를 준비할 수 있고(S210), 복수의 학습용 입력 데이터 세트에 대응하는 레이블 데이터로는 학습용 흉부 X선 영상들에 각각 대응하는 골다공증 정보 또는 골밀도 정보를 준비할 수 있다(S220). 예를 들어, 조각 영상은 학습용 흉부 X선 영상에 대하여 쇄골, 경추, 흉추, 견갑골 중 2개 이하가 포함되도록 한 영상일 수 있다.
그리고, 단계 S210 및 단계 S220을 통하여 준비된 학습용 입력 데이터 세트 및 레이블 데이터는 입력부(110)를 통하여 입력 되어 인공 신경망 모델부(120)에 제공되고, 인공 신경망 모델부(120)의 인공 신경망 모델은 단계 S210 및 단계 S220의 학습용 입력 데이터 세트 및 레이블 데이터를 선학습한다(S230).
다음으로, 의료영상 처리 장치(100)의 인공 신경망 모델부(120)의 인공 신경망 모델을 학습시키기 위한 학습용 입력 데이터 세트 및 레이블 데이터를 입력부(110)를 통하여 새롭게 입력 받아 준비한다. 예를 들어, 학습용 흉부 X선 영상(도 5a)과 학습용 흉부 X선 영상으로부터 획득한 뼈 강조 영상(도 5b) 및/또는 뼈 추출 영상(도 5c), 및 학습용 흉부 X선 영상으로부터 획득한 연조직 영상(도 5d)을 학습용 입력 데이터 세트로서 복수의 학습용 입력 데이터 세트를 준비할 수 있고(S240), 복수의 학습용 입력 데이터 세트에 대응하는 레이블 데이터로는 학습용 흉부 X선 영상들(예를 들어, 도 5a)에 각각 대응하는 골다공증 정보 또는 골밀도 정보를 준비할 수 있다(S250). 예를 들어, 단계 S240에서 학습용 입력 데이터 세트로서 뼈 추출 영상(도 5c)을 준비한 경우에는 연조직 영상(도 5d)을 함께 준비하여 이후 뼈 추출 영상(도 5c)과 연조직 영상(도 5d)을 인공 신경망 모델이 함께 학습할 수 있도록 할 수 있다.
그리고, 단계 S240 및 단계 S250을 통하여 준비된 학습용 입력 데이터 세트 및 레이블 데이터는 입력부(110)를 통하여 입력 되어 인공 신경망 모델부(120)에 제공되고, 인공 신경망 모델부(120)의 인공 신경망 모델은 단계 S240 및 단계 S250의 학습용 입력 데이터 세트 및 레이블 데이터를 후학습한다(S260).
다음으로, 도 3의 흐름 순서에 따라 의료영상 처리 장치(100)의 의료영상 처리 방법에 대하여 설명하겠다.
우선, 도 2를 참조하여 설명하였던 바와 같이, 의료영상 처리 장치(100)는 인공 신경망 모델부(120)의 인공 신경망 모델이 학습용 입력 데이터로서 학습용 흉부 X선 영상들과 레이블 데이터로서 학습용 흉부 X선 영상들에 각각 대응하는 골다공증 정보 또는 골밀도 정보를 학습한다(S310).
이렇게 인공 신경망 모델부(120)의 인공 신경망 모델이 학습된 상태에서, 입력부(110)를 통하여 진단 대상자의 흉부 X선 영상이 입력되어 인공 신경망 모델부(120)에 제공된다(S320).
그리고, 인공 신경망 모델부(120)의 인공 신경망 모델은 단계 S320을 통하여 제공된 진단 대상자의 흉부 X선 영상으로부터 진단 대상자의 골다공증 정보 또는 골밀도 정보를 획득한다(S330).
그러면, 출력부(140)는 인공 신경망 모델부(120)에 의하여 획득된 진단 대상자의 골다공증 정보 또는 골밀도 정보를 외부로 출력할 수 있다.
여기서, 출력부(140)는 인공 신경망 모델부(120)에 의하여 획득된 골다공증 정보 또는 골밀도 정보를 원시 데이터 형태로 출력할 수도 있지만, 정보 가공부(130)에 의하여 가공된 소정의 형태로 출력할 수도 있다. 이를 위하여, 정보 가공부(130)는 인공 신경망 모델부(120)에 의하여 획득된 골다공증 정보 또는 골밀도 정보에 기초하여 진단 대상자의 흉부 X선 영상을 정상군과 골다공증 위험군으로 분류한 CAM을 생성하여 출력부(140)에 제공할 수 있다. 그러면, 출력부(140)는 정보 가공부(130)에 의해 생성된 CAM을 외부로 출력할 수 있다(S340).
본 발명의 실시예에 의하면, 인공 신경망 모델을 학습시켜서, 학습된 인공 신경망 모델이 진단 대상자의 흉부 X선 영상으로부터 골다공증 정보 또는 골밀도 정보를 획득할 수 있도록 한다. 이에 따라, 진단 대상자의 골다공증 정보 또는 골밀도 정보를 출력하거나 진단 대상자의 흉부 X선 영상을 정상군과 골다공증 위험군으로 분류하여 출력할 수 있다.
본 출원인은 흉부 X선 촬영과 골밀도 검사를 모두 수행한 총 77,812명을 실험 대상자로 선정하여, 흉부 X선 영상과 골밀도 검사의 결과인 골다공증 정보 또는 골밀도 정보를 학습용 데이터로 확보하였다. 이를 기초로 본 발명의 실시예에 따른 의료영상 처리 장치(100)의 의료영상 처리 결과는 아래의 표 1과 같이 도출되었다.
학습용 입력 데이터 세트 AUC 정확도 민감도 특이도
남성+여성(정상/골다공증) 98% 93.1% 94.5% 91.8%
여성(정상/골다공증) 99% 94.2% 96.2% 90.5%
남성(정상/골다공증) 97% 91.1% 85.8% 92.8%
남성+여성(정상+골감소증/골다공증) 93% 83.0% 89.1% 82.6%
표 1을 통해서 알 수 있듯이 본 발명의 일 실시예에 의하면, 이중에너지 X선 흡수계측법, 정량 전산화단층촬영술 등의 골밀도 검사 방법을 이용하지 않더라도, 상대적으로 저비용이 소요되고 방사선 피폭량이 낮은 X선 촬영 검사만으로 정상군과 골다공증 고위험군으로 분류할 수 있다.
지금까지 설명한 실시예에서는 학습용 흉부 X선 영상이나 이로부터 가공한 다양한 영상을 인공 신경망 모델이 학습하고, 학습된 모델이 진단 대상자의 흉부 X선 영상으로부터 진단 대상자의 골다공증 정보 또는 골밀도 정보를 획득하는 예에 대해서 설명하였다. 그런데, 골다공증 정보 또는 골밀도 정보는 흉부 X선 영상뿐만 아니라 신체의 뼈를 포함하는 다양한 신체 X선 영상으로부터 추출할 수도 있다. 예를 들어, 인공 신경망 모델은 다양한 신체 X선 영상과 이에 대응하는 골다공증 정보 또는 골밀도 정보를 학습용 데이터로서 학습할 수 있고, 이렇게 학습된 인공 신경망 모델은 진단 대상자의 다양한 신체 X선 영상으로부터 진단 대상자의 골다공증 정보 또는 골밀도 정보를 획득할 수 있다. 예를 들어, 다양한 신체 X선 영상은 골반 X선 영상, 머리-목 X선 영상, 팔 X선 영상, 다리 X선 영상, 치과 파노라마 X선 영상 등일 수 있다.
한편, 전술한 일 실시예에 따른 의료영상 학습 방법 및 의료영상 처리 방법에 포함된 각각의 단계는, 프로세서에 의해 실행될 때, 이러한 단계를 프로세서가 수행하도록 하는 컴퓨터 실행 가능한 명령어를 저장하고 있는 비일시적 컴퓨터 판독가능한 기록매체에서 구현될 수 있다.
또한, 전술한 일 실시예에 따른 의료영상 학습 방법 및 의료영상 처리 방법에 포함된 각각의 단계는, 이러한 단계를 수행하도록 프로그램된, 컴퓨터 판독가능한 기록매체에 저장된 컴퓨터 프로그램의 형태로 구현될 수 있다.
본 발명에 첨부된 각 흐름도의 각 단계의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수도 있다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도의 각 단계에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 기록매체에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 기록매체에 저장된 인스트럭션들은 흐름도의 각 단계에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도의 각 단계에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.
또한, 각 단계는 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실시예들에서는 단계들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 단계들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 단계들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 품질에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 균등한 범위 내에 있는 모든 기술사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (7)

  1. 의료영상 처리 장치에 의해 수행되는 의료영상 학습 방법으로서,
    학습용 흉부 엑스(X)선 영상과 상기 학습용 흉부 X선 영상으로부터 획득한 뼈 강조 영상 또는 뼈 추출 영상을 제 1 학습용 입력 데이터 세트로서 준비하는 단계와,
    상기 제 1 학습용 입력 데이터 세트에 대한 레이블 데이터로서 상기 학습용 흉부 X선 영상에 대응하는 골다공증 정보 또는 골밀도 정보를 준비하는 단계와,
    상기 제 1 학습용 입력 데이터 세트 및 상기 레이블 데이터를 이용하여 인공 신경망 모델을 학습시키는 단계를 포함하는
    의료영상 학습 방법.
  2. 제 1 항에 있어서,
    상기 제 1 학습용 입력 데이터 세트로서 준비하는 단계는, 상기 학습용 흉부 X선 영상으로부터 획득한 연조직 영상을 준비하는 단계를 포함하고,
    상기 제 1 학습용 입력 데이터 세트는 상기 연조직 영상을 더 포함하는
    의료영상 학습 방법.
  3. 제 1 항에 있어서,
    상기 학습용 흉부 X선 영상에 포함된 다수의 뼈 중 일부만 포함되도록 한 조각 영상을 제 2 학습용 입력 데이터 세트로서 준비하는 단계와,
    상기 제 2 학습용 입력 데이터 세트에 대응하는 골다공증 정보 또는 골밀도 정보를 상기 레이블 데이터로서 준비하는 단계와,
    상기 제 2 학습용 입력 데이터 세트 및 상기 레이블 데이터를 이용하여 상기 인공 신경망 모델을 학습시키는 단계를 더 포함하는
    의료영상 학습 방법.
  4. 제 3 항에 있어서,
    상기 제 2 학습용 입력 데이터 세트를 이용하여 상기 인공 신경망 모델을 선학습시킨 후에 상기 제 1 학습용 입력 데이터 세트를 이용하여 상기 인공 신경망 모델을 후학습시키는
    의료영상 학습 방법.
  5. 의료영상 처리 장치에 의해 수행되는 의료영상 처리 방법으로서,
    학습용 흉부 엑스(X)선 영상과, 상기 학습용 흉부 X선 영상으로부터 획득한 뼈 강조 영상 또는 뼈 추출 영상, 상기 학습용 흉부 X선 영상으로부터 획득한 연조직 영상, 및 상기 학습용 흉부 X선 영상에 포함된 다수의 뼈 중 일부만 포함된 조각 영상 중 적어도 2종의 영상을 포함하는 학습용 입력 데이터 세트와 레이블 데이터가 학습된 인공 신경망 모델에 진단 대상자의 흉부 X선 영상을 입력 받는 단계와,
    상기 진단 대상자의 흉부 X선 영상으로부터 상기 인공 신경망 모델이 획득한 골다공증 정보 또는 골밀도 정보를 출력하는 단계를 포함하는
    의료영상 처리 방법.
  6. 제 5 항에 있어서,
    상기 출력하는 단계는, 상기 골다공증 정보 또는 상기 골밀도 정보에 기초하여 상기 진단 대상자의 흉부 X선 영상을 정상군과 골다공증 위험군으로 분류한 CAM(Class Activation Map)을 출력하는
    의료영상 처리 방법.
  7. 컴퓨터 실행 가능한 명령어를 저장하고 있는 비일시적 컴퓨터 판독 가능 기록매체로서,
    상기 컴퓨터 실행 가능한 명령어는, 프로세서에 의해 실행되면,
    의료영상 처리 장치에 의해 수행되는 의료영상 처리 방법을 상기 프로세서가 수행하도록 하고,
    상기 방법은,
    학습용 흉부 엑스(X)선 영상과, 상기 학습용 흉부 X선 영상으로부터 획득한 뼈 강조 영상 또는 뼈 추출 영상, 상기 학습용 흉부 X선 영상으로부터 획득한 연조직 영상, 및 상기 학습용 흉부 X선 영상에 포함된 다수의 뼈 중 일부만 포함된 조각 영상 중 적어도 2종의 영상을 포함하는 학습용 입력 데이터 세트와 레이블 데이터가 학습된 인공 신경망 모델에 진단 대상자의 흉부 X선 영상을 입력 받는 단계와,
    상기 진단 대상자의 흉부 X선 영상으로부터 상기 인공 신경망 모델이 획득한 골다공증 정보 또는 골밀도 정보를 출력하는 단계를 포함하는
    비일시적 컴퓨터 판독 가능한 기록매체.
PCT/KR2021/012271 2020-09-09 2021-09-09 의료영상 처리 장치와 의료영상 학습 방법 및 의료영상 처리 방법 WO2022055271A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/264,976 US20240225581A9 (en) 2020-09-09 2021-09-09 Medical image processing apparatus, medical image learning method, and medical image processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200115689A KR102573893B1 (ko) 2020-09-09 2020-09-09 의료영상 처리 장치 및 의료영상 처리 방법
KR10-2020-0115689 2020-09-09

Publications (1)

Publication Number Publication Date
WO2022055271A1 true WO2022055271A1 (ko) 2022-03-17

Family

ID=80630302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/012271 WO2022055271A1 (ko) 2020-09-09 2021-09-09 의료영상 처리 장치와 의료영상 학습 방법 및 의료영상 처리 방법

Country Status (3)

Country Link
US (1) US20240225581A9 (ko)
KR (1) KR102573893B1 (ko)
WO (1) WO2022055271A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071796A1 (ko) * 2022-09-30 2024-04-04 연세대학교 산학협력단 척추 방사선 영상 기반의 골절 위험도 예측을 위한 머신 러닝 방법 및 시스템 그리고 이를 이용한 골절 위험도 예측 방법 및 시스템
CN115661052B (zh) * 2022-10-13 2023-09-12 高峰医疗器械(无锡)有限公司 牙槽骨的骨质检测方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030198316A1 (en) * 2002-04-17 2003-10-23 Piet Dewaele Osteoporosis screening method
JP2017164412A (ja) * 2016-03-18 2017-09-21 メディア株式会社 骨粗鬆症診断支援装置
KR20180029476A (ko) * 2016-09-12 2018-03-21 주식회사 뷰노 골밀도 추정 방법 및 장치
KR101874348B1 (ko) * 2017-11-21 2018-07-09 주식회사 뷰노 피검체의 흉부 pa 영상의 판독을 지원하는 방법 및 이를 이용한 장치
KR20200015379A (ko) * 2018-08-03 2020-02-12 고려대학교 산학협력단 인공지능 기반의 치과방사선사진을 이용한 골밀도 예측시스템 및 이에 의한 골밀도 예측 방법
KR20200023916A (ko) * 2018-08-27 2020-03-06 주식회사 셀바스헬스케어 골밀도에 대한 예측 정보를 제공하는 컴퓨팅 장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7094511B2 (ja) 2018-03-15 2022-07-04 ライフサイエンスコンピューティング株式会社 人工知能を用いた病変の検知方法、及び、そのシステム
CN112654291A (zh) * 2018-09-10 2021-04-13 京瓷株式会社 推定装置、推定系统以及推定程序
KR102112858B1 (ko) * 2020-03-03 2020-05-19 셀렉트스타 주식회사 가이드 포인트를 제공하는 ui를 이용한 학습 데이터 생성 방법 및 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030198316A1 (en) * 2002-04-17 2003-10-23 Piet Dewaele Osteoporosis screening method
JP2017164412A (ja) * 2016-03-18 2017-09-21 メディア株式会社 骨粗鬆症診断支援装置
KR20180029476A (ko) * 2016-09-12 2018-03-21 주식회사 뷰노 골밀도 추정 방법 및 장치
KR101874348B1 (ko) * 2017-11-21 2018-07-09 주식회사 뷰노 피검체의 흉부 pa 영상의 판독을 지원하는 방법 및 이를 이용한 장치
KR20200015379A (ko) * 2018-08-03 2020-02-12 고려대학교 산학협력단 인공지능 기반의 치과방사선사진을 이용한 골밀도 예측시스템 및 이에 의한 골밀도 예측 방법
KR20200023916A (ko) * 2018-08-27 2020-03-06 주식회사 셀바스헬스케어 골밀도에 대한 예측 정보를 제공하는 컴퓨팅 장치

Also Published As

Publication number Publication date
KR102573893B1 (ko) 2023-09-01
KR20220033373A (ko) 2022-03-16
US20240130703A1 (en) 2024-04-25
US20240225581A9 (en) 2024-07-11

Similar Documents

Publication Publication Date Title
WO2022055271A1 (ko) 의료영상 처리 장치와 의료영상 학습 방법 및 의료영상 처리 방법
Leidner et al. Standardized whole-body computed tomography as a screening tool in blunt multitrauma patients
RU2510239C2 (ru) Способ идентификации личности человека методом компьютерной томографии (кт)
Peart Positioning challenges in mammography
Ziapour et al. “Anterior convergent” chest probing in rapid ultrasound transducer positioning versus formal chest ultrasonography to detect pneumothorax during the primary survey of hospital trauma patients: a diagnostic accuracy study
De Smet Anterior oblique projection in radiography of the traumatized shoulder
RU2699727C2 (ru) Способ ультразвуковой диагностики забрюшинного висцерального ожирения
CN108596877B (zh) 肋骨ct数据分析系统
Estrugo-Devesa et al. Correlation between mandibular bone density and skeletal bone density in a Catalonian postmenopausal population
JP2012230226A (ja) 人体模型作成システム
WO2018021652A1 (ko) 룩업테이블을 이용한 mri 기반 합성영상의 방사선량 추정방법
JP2022081681A (ja) 動態画像解析システム及び動態画像解析プログラム
Musalar et al. Conventional vs invert-grayscale X-ray for diagnosis of pneumothorax in the emergency setting
Kobayashi et al. Roles of radiological technologists at Tsukuba Medical Examiner's Office equipped with a computed tomography system dedicated for the examination of corpses
Vermeulen et al. Development of a radiographic dental implant guide for identification of dental implant types
Ranaweera et al. Sex determination by mandibular ramus-a digital panoramic study
Safety Radiation Dose in X-ray and CT Exams
Simonds et al. A Comprehensive Review of Medical Imaging Equipment Used in Cadaveric Studies
CN110200631A (zh) 一种新式移动医疗设备
WO2022197074A1 (ko) 의료영상 처리 장치와 그 의료영상 학습 방법 및 의료영상 처리 방법
Albuquerque et al. Inter-rater Accuracy and Reliability of a Palpation Protocol of the C7 Spinous Process Comprising a Combination of 3 Traditional Palpation Techniques
WO2021251777A1 (ko) 전신 ct 스캔 3d 모델링 방법 및 시스템
RU121138U1 (ru) Система обследования организма учащихся
Clarke et al. Contrast Enhancement in Cervical Spinal Nerve Roots on Magnetic Resonance Imaging Independent of a Causative Lesion
Hazell Introduction to CT Image Interpretation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21867136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 18264976

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 21867136

Country of ref document: EP

Kind code of ref document: A1