WO2022054961A1 - Cover member - Google Patents

Cover member Download PDF

Info

Publication number
WO2022054961A1
WO2022054961A1 PCT/JP2021/033815 JP2021033815W WO2022054961A1 WO 2022054961 A1 WO2022054961 A1 WO 2022054961A1 JP 2021033815 W JP2021033815 W JP 2021033815W WO 2022054961 A1 WO2022054961 A1 WO 2022054961A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover member
antibacterial
glass plate
member according
fine particles
Prior art date
Application number
PCT/JP2021/033815
Other languages
French (fr)
Japanese (ja)
Inventor
瑞穂 小用
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Publication of WO2022054961A1 publication Critical patent/WO2022054961A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present invention relates to a cover member provided on a protected member such as a display.
  • Patent Document 1 discloses a glass substrate provided with a functional layer having fingerprint resistance. This glass substrate is used as a cover member for touching a finger such as a touch sensor. Further, it is disclosed that the functional layer of the glass substrate has functions such as anti-glare function and antibacterial function in addition to fingerprint resistance.
  • Patent Document 1 discloses that when a functional layer having a plurality of functions as described above is provided, the plurality of functions are exerted by one functional layer.
  • an antiglare function and an antibacterial function are provided. It is conceivable to provide a functional layer to have.
  • a specific functional layer having an antiglare function and an antibacterial function has not yet been proposed, and a cover member having such a functional layer has been desired.
  • the present invention has been made to solve this problem, and an object of the present invention is to provide a cover member having antiglare performance and antibacterial performance.
  • a plate-shaped base material having a first surface and a second surface, the first surface having a predetermined surface roughness,
  • the antibacterial film formed on the first surface and Equipped with The antibacterial membrane is The holding layer formed on the first surface and
  • a cover member comprising: antibacterial fine particles held by the holding layer and having an average particle size equal to or larger than the film thickness of the holding layer.
  • Item 2. The cover member according to Item 1, wherein the surface roughness of the holding layer is smaller than the surface roughness of the first surface of the base material and smaller than 120 nm.
  • Item 3. The cover member according to Item 1 or 2, wherein the maximum film thickness of the holding layer is smaller than the surface roughness of the base material.
  • Item 4 The cover member according to any one of Items 1 to 3, wherein the holding layer of the antibacterial film contains silicon oxide as a main component.
  • the base material is formed of a glass plate having the first surface and the second surface.
  • Item 4. The cover member according to any one of Items 1 to 4.
  • Item 6 The cover member according to Item 5, wherein the glass plate is formed of float glass, and the bottom surface of the float glass constitutes the first surface.
  • Item 7 The cover member according to any one of Items 1 to 4, wherein the base material comprises a glass plate and a base layer formed on one surface of the glass plate and having the predetermined surface roughness.
  • Item 8. The cover member according to Item 7, wherein the base layer includes a base layer containing silicon oxide as a main component and fine particles held in the base layer.
  • Item 9. The cover member according to Item 7 or 8, wherein the glass plate is formed of float glass, and the base layer is formed on the top surface of the float glass.
  • Item 10 The cover member according to any one of Items 5 to 9, wherein the thickness of the glass plate is 3 mm or less.
  • Item 11 Item 2. The cover member according to Item 10, wherein the average particle size of the fine particles is smaller than the average particle size of the antibacterial fine particles.
  • Item 12. The cover member according to any one of Items 1 to 11, wherein the distance between the antibacterial fine particles on the holding layer is 1 to 200 ⁇ m.
  • Item 13 The cover member according to any one of Items 1 to 12, wherein the average particle size of the antibacterial fine particles is 0.1 to 10 ⁇ m.
  • Item 14 The cover member according to any one of Items 1 to 13, wherein a fingerprint-resistant layer formed on at least a part of the antibacterial film is formed.
  • Item 15. Item 12. The cover member according to Item 14, wherein the fingerprint-resistant layer has a thinner film thickness than the antibacterial film.
  • Item 16 The cover member according to Item 14 or 15, wherein the fingerprint-resistant layer is formed on a part of the antibacterial film.
  • Item 17. The cover member according to any one of Items 1 to 16, wherein the antibacterial fine particles are made of copper.
  • Item 18 The cover member according to any one of Items 1 to 17, further comprising an antireflection film arranged between the base material and the antibacterial film.
  • Item 19 The cover member according to any one of Items 1 to 18, which is arranged so as to cover the surface of a display, a keyboard, or an electronic blackboard.
  • FIG. 1 It is sectional drawing which shows one Embodiment of the cover member which concerns on this invention. It is an enlarged sectional view of FIG. It is a photograph which shows the surface property of the antibacterial film which concerns on Example. It is an enlarged photograph of the antibacterial fine particles of the antibacterial film which concerns on Example.
  • the cover member according to the present embodiment is configured to protect protected members such as a display, a keyboard, and an electronic blackboard, and to make these members visible from the outside.
  • the display includes not only a general desktop display but also a display used for various devices such as mobile PCs, tablet PCs, and in-vehicle devices such as car navigation systems.
  • FIG. 1 is a cross-sectional view of a cover member.
  • the cover member 10 includes a glass plate 1 having a first surface and a second surface, and an antibacterial film 2 laminated on the first surface of the glass plate 1. ing. Then, the cover member 10 is arranged so as to cover the above-mentioned protected member 100. At this time, the second surface of the glass plate 1 is arranged so as to face the protected member 100, and the antibacterial film 2 is arranged so as to face the outside.
  • the cover member 10 includes a glass plate 1 having a first surface and a second surface, and an antibacterial film 2 laminated on the first surface of the glass plate 1.
  • the glass plate 1 can be formed of, for example, other glass such as general-purpose soda lime glass, borosilicate glass, aluminosilicate glass, and non-alkali glass. Further, the glass plate 1 can be molded by the float method. According to this manufacturing method, a glass plate 1 having a smooth surface can be obtained. However, the glass plate 10 may have irregularities on the main surface, and may be, for example, template glass. The template glass can be molded by a manufacturing method called a rollout method. The template glass produced by this method usually has periodic irregularities in one direction along the main surface of the glass plate.
  • molten glass is continuously supplied on a molten metal such as molten tin, and the supplied molten glass is made to flow on the molten metal to form a strip.
  • the glass thus formed is called a glass ribbon.
  • the glass ribbon is cooled toward the downstream side, cooled and solidified, and then pulled up from the molten metal by a roller. Then, it is transported to a slow cooling furnace by a roller, slowly cooled, and then cut. In this way, a float glass plate is obtained.
  • the surface in contact with the molten metal is referred to as a bottom surface
  • the surface opposite to the bottom surface is referred to as a top surface.
  • the bottom surface and the top surface may be unpolished. Since the bottom surface is in contact with the molten metal, when the molten metal is tin, the concentration of tin oxide contained in the bottom surface is higher than the concentration of tin oxide contained in the top surface.
  • the first surface of the glass plate 1 is the bottom surface
  • the second surface is the top surface.
  • the bottom surface that is, the second surface
  • the rollers cause scratches called so-called microcracks. Therefore, in general, the bottom surface of the float glass plate has more scratches than the top surface.
  • the bottom surface of the glass plate 1 is etched to remove a layer having a high concentration of tin oxide. Since tin oxide has a large refractive index, it is possible to improve the transmittance by removing it. Further, by etching, a fine unevenness having a predetermined surface roughness is formed on the bottom surface.
  • the surface roughness Ra of the bottom surface is, for example, preferably 10 to 500 nm, more preferably 40 to 200 nm, and particularly preferably 50 to 150 nm. Ra is the arithmetic mean roughness of the roughness curve defined by JIS B0601: 2001. This point is the same in the holding layer 21 of the antibacterial film 2 described later.
  • the frost treatment is a treatment for forming irregularities on the surface of the glass plate by, for example, immersing the glass plate in a mixed solution of hydrogen fluoride and ammonium fluoride and chemically surface-treating the immersed surface.
  • the sandblasting treatment is a treatment for forming irregularities on the surface of the glass plate by, for example, blowing crystalline silicon dioxide powder, silicon carbide powder, or the like onto the surface of the glass plate with pressurized air. Further, after the unevenness is created in this way, it is generally performed to chemically etch the surface of the glass plate in order to adjust the surface shape. By doing so, cracks generated by sandblasting or the like can be removed.
  • etching a method of immersing a glass plate as an object to be treated in a solution containing hydrogen fluoride as a main component is preferably used.
  • Wet blasting is a high-speed process in which abrasive grains composed of solid particles such as alumina and a liquid such as water are uniformly agitated into a slurry from an injection nozzle to the surface of a glass plate using compressed air. It is a process of forming unevenness on the surface of the glass plate by injecting with.
  • the thickness of the glass plate 1 is not particularly limited, but it is better to be thin for weight reduction.
  • it is preferably 0.3 to 3 mm, and more preferably 0.6 to 2.5 mm. This is because if the glass plate 10 is too thin, the strength is lowered, and if it is too thick, the protected member 100 visually recognized via the cover member 10 may be distorted.
  • the glass plate 1 is usually a flat plate, but may be a curved plate.
  • the surface shape of the protected member to be protected is a non-planar surface such as a curved surface
  • the glass plate 1 may be bent so as to have a constant curvature as a whole, or may be locally bent.
  • the main surface of the glass plate 1 may be configured by, for example, a plurality of planes connected to each other by a curved surface.
  • the radius of curvature of the glass plate 1 can be, for example, 5000 mm or less.
  • the lower limit of the radius of curvature can be, for example, 10 mm or more, but may be even smaller, for example, 1 mm or more, especially in a locally bent portion.
  • a glass plate having the following composition can also be used.
  • the% indications indicating the components of the glass plate 1 mean mol% unless otherwise specified.
  • substantially composed means that the total content of the listed components is 99.5% by mass or more, preferably 99.9% by mass or more, and more preferably 99.95. It means that it occupies more than mass%.
  • substantially free means that the content of the component is 0.1% by mass or less, preferably 0.05% by mass or less.
  • the present invention is based on the composition of float glass (hereinafter, may be referred to as "SL in a narrow sense” or simply “SL”) widely used as a glass composition suitable for producing a glass plate by the float method.
  • Composition range considered by those skilled in the art as soda lime silicate glass suitable for the float method hereinafter, may be referred to as "SL in a broad sense”
  • SL in a broad sense Composition range considered by those skilled in the art as soda lime silicate glass suitable for the float method
  • SiO 2 is a main component constituting the glass plate 1, and if the content thereof is too low, the chemical durability and heat resistance such as water resistance of the glass are lowered. On the other hand, if the content of SiO 2 is too high, the viscosity of the glass plate 1 at a high temperature becomes high, which makes melting and molding difficult. Therefore, the content of SiO 2 is appropriately in the range of 66 to 72 mol%, preferably 67 to 70 mol%.
  • Al 2 O 3 improves the chemical durability of the glass plate 1 such as water resistance, and further facilitates the movement of alkali metal ions in the glass to increase the surface compressive stress after chemical strengthening, and the stress layer. It is an ingredient for deepening the depth.
  • the content of Al 2 O 3 is too high, the viscosity of the glass melt is increased, T 2 and T 4 are increased, and the clarity of the glass melt is deteriorated to produce a high-quality glass plate. Becomes difficult.
  • the content of Al 2 O 3 is in the range of 1 to 12 mol%.
  • the content of Al 2 O 3 is preferably 10 mol% or less, preferably 2 mol% or more.
  • MgO MgO is an essential component that improves the solubility of glass. From the viewpoint of obtaining this effect, it is preferable that MgO is added to the glass plate 1. Further, when the content of MgO is less than 8 mol%, the surface compressive stress after chemical strengthening tends to decrease, and the depth of the stress layer tends to become shallow. On the other hand, if the content is increased beyond an appropriate amount, the strengthening performance obtained by chemical strengthening deteriorates, and in particular, the depth of the surface compressive stress layer sharply becomes shallow. This adverse effect has the least MgO among alkaline earth metal oxides, but the content of MgO in this glass plate 1 is 15 mol% or less. Further, when the content of MgO is high, T 2 and T 4 are increased, and the clarity of the glass melt is deteriorated, which makes it difficult to manufacture a high-quality glass plate.
  • the content of MgO is in the range of 1 to 15 mol%, preferably 8 mol% or more and 12 mol% or less.
  • CaO CaO has the effect of reducing the viscosity at high temperatures, but if the content is too high beyond an appropriate range, the glass plate 1 tends to be devitrified and the movement of sodium ions in the glass plate 1 is inhibited. I will.
  • the surface compressive stress after chemical strengthening tends to decrease.
  • the surface compressive stress after chemical strengthening is remarkably reduced, the depth of the compressive stress layer is remarkably shallow, and the glass plate 1 is easily devitrified.
  • the CaO content is in the range of 1 to 8 mol%.
  • the CaO content is preferably 7 mol% or less, preferably 3 mol% or more.
  • SrO, BaO greatly reduce the viscosity of the glass plate 1, and when contained in a small amount, the effect of lowering the liquidus temperature TL is more remarkable than that of CaO.
  • SrO and BaO remarkably hinder the movement of sodium ions in the glass plate 1 even when added in a very small amount, greatly reduce the surface compressive stress, and the depth of the compressive stress layer becomes considerably shallow.
  • the glass plate 1 does not substantially contain SrO and BaO.
  • (Na 2 O) Na 2 O is a component for increasing the surface compressive stress and deepening the depth of the surface compressive stress layer by substituting sodium ions with potassium ions.
  • the stress relaxation during the chemical strengthening treatment exceeds the generation of surface compressive stress due to ion exchange in the chemical strengthening treatment, and as a result, the surface compressive stress tends to decrease. be.
  • Na 2 O is a component for improving the solubility and lowering T 4 and T 2 , while if the content of Na 2 O is too high, the water resistance of the glass is significantly lowered.
  • the glass plate 1 if the Na 2 O content is 10 mol% or more, the effect of reducing T 4 and T 2 is sufficiently obtained, and if it exceeds 16 mol%, the surface compressive stress is significantly reduced due to stress relaxation. Become.
  • the Na 2 O content in the glass plate 1 of the present embodiment is appropriately in the range of 10 to 16 mol%.
  • the Na 2 O content is preferably 12 mol% or more, more preferably 15 mol% or less.
  • K 2 O is a component that improves the solubility of glass. Further, in the range where the K 2 O content is low, the ion exchange rate in chemical strengthening increases and the depth of the surface compressive stress layer becomes deep, while the liquidus temperature TL of the glass plate 1 decreases. Therefore, it is preferable to contain K 2 O at a low content.
  • K 2 O has a smaller effect of lowering T 4 and T 2 than Na 2 O, but a large amount of K 2 O inhibits the clarification of the glass melt. Further, the higher the K 2 O content, the lower the surface compressive stress after chemical strengthening. Therefore, it is appropriate that the content of K 2 O is in the range of 0 to 1 mol%.
  • the glass plate 1 of the present embodiment may contain 1 mol% or less of Li 2 O, but it is preferable that the glass plate 1 does not contain Li 2 O substantially.
  • B 2 O 3 is a component that lowers the viscosity of the glass plate 1 and improves the solubility.
  • the content of B 2 O 3 is too high, the glass plate 1 tends to be phase-separated, and the water resistance of the glass plate 1 is lowered.
  • the compound formed by B 2 O 3 and the alkali metal oxide may volatilize and damage the refractory in the glass melting chamber.
  • the inclusion of B 2 O 3 shallows the depth of the compressive stress layer during chemical strengthening. Therefore, it is appropriate that the content of B 2 O 3 is 0.5 mol% or less. In the present invention, it is more preferable that the glass plate 1 contains substantially no B 2 O 3 .
  • Fe 2 O 3 Normally, Fe exists in glass in the state of Fe 2+ or Fe 3+ and acts as a colorant. Fe 3+ is a component that enhances the ultraviolet absorption performance of glass, and Fe 2+ is a component that enhances the heat ray absorption performance.
  • the glass plate 1 is used as a cover glass for a display, it is required that the coloring is inconspicuous, so that the Fe content is preferably low.
  • Fe is often unavoidably mixed with industrial raw materials. Therefore, the iron oxide content converted to Fe 2 O 3 is often 0.15% by mass or less, and more preferably 0.1% by mass or less, with the entire glass plate 1 as 100% by mass. It is preferable, more preferably 0.02% by mass or less.
  • TiO 2 is a component that lowers the viscosity of the glass plate 1 and at the same time increases the surface compressive stress due to chemical strengthening, but may give the glass plate 1 a yellow color. Therefore, it is appropriate that the content of TiO 2 is 0 to 0.2% by mass. In addition, it is inevitably mixed with an industrial raw material that is usually used, and may be contained in the glass plate 1 in an amount of about 0.05% by mass. Since the glass is not colored if the content is at this level, it may be contained in the glass plate 1 of the present embodiment.
  • ZrO 2 ZrO 2 may be mixed into the glass plate 1 from the refractory bricks constituting the glass melting kiln, especially when the glass plate is manufactured by the float method, and the content thereof may be about 0.01% by mass.
  • ZrO 2 is a component that improves the water resistance of glass and also enhances the surface compressive stress due to chemical strengthening.
  • a high content of ZrO 2 may cause an increase in the working temperature T 4 and a sharp increase in the liquid phase temperature TL , and in the production of a glass plate by the float method, crystals containing precipitated Zr are present. It tends to remain as a foreign substance in the manufactured glass. Therefore, it is appropriate that the content of ZrO 2 is 0 to 0.1% by mass.
  • SO 3 In the float method, sulfates such as Glauber's salt (Na 2 SO 4 ) are widely used as clarifying agents. The sulfate decomposes in the molten glass to generate a gas component, which promotes defoaming of the glass melt, but a part of the gas component dissolves and remains in the glass plate 1 as SO 3 .
  • SO 3 is preferably 0 to 0.3% by mass.
  • CeO 2 is used as a clarifying agent. CeO 2 contributes to defoaming because O 2 gas is generated in the molten glass by CeO 2 . On the other hand, if there is too much CeO 2 , the glass will be colored yellow. Therefore, the content of CeO 2 is preferably 0 to 0.5% by mass, more preferably 0 to 0.3% by mass, and even more preferably 0 to 0.1% by mass.
  • SnO 2 (SnO 2 ) It is known that in a glass plate formed by the float method, tin diffuses from the tin bath on the surface in contact with the tin bath during molding, and the tin exists as SnO 2 . In addition, SnO 2 mixed with the glass raw material contributes to defoaming. In the glass plate 1 of the present invention, SnO 2 is preferably 0 to 0.3% by mass.
  • the glass plate 1 according to the present embodiment is substantially composed of the components listed above.
  • the glass plate 1 according to the present embodiment may contain components other than the components listed above, preferably in a range in which the content of each component is less than 0.1% by mass.
  • Examples of the components permitted to be contained include As 2 O 5 , Sb 2 O 5 , Cl, and F added for the purpose of defoaming the molten glass in addition to the above-mentioned SO 3 and Sn O 2 .
  • As 2 O 5 , Sb 2 O 5 , Cl, and F it is preferable not to add As 2 O 5 , Sb 2 O 5 , Cl, and F because they have a large adverse effect on the environment.
  • another example in which the content is allowed is ZnO, P 2 O 5 , GeO 2 , Ga 2 O 3 , Y 2 O 3 , and La 2 O 3 .
  • Even components other than the above derived from industrially used raw materials are permitted as long as they do not exceed 0.1% by mass. Since these components are appropriately added or inevitably mixed as needed, the glass plate 1 of the present embodiment may be substantially free of these components. do not have.
  • the density of the glass plate 1 is reduced to 2.53 g ⁇ cm -3 or less, further to 2.51 g ⁇ cm -3 or less, and in some cases 2.50 g ⁇ cm -3 or less. be able to.
  • the density of soda lime glass mass-produced by the float method is about 2.50 g ⁇ cm -3 . Therefore, considering mass production by the float method, the density of the glass plate 1 is close to the above value, specifically, 2.45 to 2.55 g ⁇ cm -3 , especially 2.47 to 2.53 g ⁇ . cm -3 is preferable, and 2.47 to 2.50 g ⁇ cm -3 is more preferable.
  • the elastic modulus of the glass plate 1 can be increased to 70 GPa or more, and further to 72 GPa or more.
  • the glass plate 1 containing sodium is brought into contact with a molten salt containing a monovalent cation having an ionic radius larger than that of the sodium ion, preferably a potassium ion, and the sodium ion in the glass plate 1 is brought into contact with the above monovalent cation.
  • the chemical strengthening of the glass plate 1 according to the present invention can be carried out by performing the ion exchange treatment of replacement by. As a result, a compressive stress layer to which compressive stress is applied to the surface is formed.
  • molten salt examples include potassium nitrate.
  • a mixed molten salt of potassium nitrate and sodium nitrate can also be used, but since it is difficult to control the concentration of the mixed molten salt, a molten salt of potassium nitrate alone is preferable.
  • the surface compressive stress and the compressive stress layer depth in the tempered glass article can be controlled not only by the glass composition of the article but also by the temperature and treatment time of the molten salt in the ion exchange treatment.
  • a tempered glass article having a very high surface compressive stress and a very deep compressive stress layer By contacting the above glass plate 1 with the molten salt of potassium nitrate, it is possible to obtain a tempered glass article having a very high surface compressive stress and a very deep compressive stress layer. Specifically, a tempered glass article having a surface compressive stress of 700 MPa or more and a compressive stress layer depth of 20 ⁇ m or more can be obtained, and further, a compressive stress layer depth of 20 ⁇ m or more and a surface compressive stress of 750 MPa or more. You can also get certain tempered glass articles.
  • FIG. 2 is an enlarged cross-sectional view showing an outline of the antibacterial membrane.
  • the antibacterial film 2 includes a holding layer 21 laminated on the first surface of the glass plate 1 and antibacterial fine particles 22 held by the holding layer 21. These will be described below.
  • the holding layer 21 is laminated on the first surface of the glass plate 1, unevenness is also formed on the surface of the holding layer 21 along the unevenness of the first surface. Since the surface roughness Ra of the holding layer 21 is smaller than the surface roughness of the first surface of the glass plate 1, it is preferably 120 nm or less, more preferably 100 nm or less, for example. On the other hand, the surface roughness Ra of the holding layer 21 is preferably, for example, 20 nm or more, and more preferably 40 nm or more. As described above, when the surface roughness Ra of the holding layer 21 is 20 nm or more and smaller than 120 nm, the antiglare function is exhibited.
  • the Rsm on the surface of the holding layer is preferably more than 0 ⁇ m and 35 ⁇ m or less, more preferably 1 ⁇ m to 30 ⁇ m, and particularly preferably 2 ⁇ m to 20 ⁇ m.
  • Rsm is the average length of the roughness curve elements defined by JIS B0601: 2001. Rsm that is not too large is suitable for suppressing so-called sparkles.
  • the maximum thickness D of the holding layer 21 is, for example, preferably 10 to 500 nm, more preferably 20 to 200 nm, and particularly preferably 30 to 80 nm. If the maximum thickness D is too thick, the antibacterial fine particles 22 described later may be buried in the holding layer 21, and the antibacterial function may be suppressed. In addition, there is a risk that the holding layer 21 may be peeled off from the glass plate 1 or the film may be cracked. On the other hand, if the maximum thickness D is too thin, the antibacterial fine particles 22 cannot be retained, and the antibacterial fine particles may be detached from the holding layer 21, which is not preferable.
  • the maximum thickness D means the thickness from the deepest concave portion of the first surface of the glass plate 1 to the highest convex portion of the holding layer 21 as shown in FIG.
  • the holding layer 21 serves as a binder for holding antibacterial fine particles.
  • the holding layer 2 contains silicon oxide, which is an oxide of Si, and preferably contains silicon oxide as a main component.
  • the holding layer 21 containing silicon oxide as a main component is suitable for lowering the refractive index of the film and suppressing the reflectance of the film.
  • the holding layer 21 may contain a component other than silicon oxide, or may contain a component partially containing silicon oxide.
  • the component partially containing silicon oxide includes, for example, a portion composed of a silicon atom and an oxygen atom, and is a component in which an atom other than both atoms, a functional group or the like is bonded to the silicon atom or the oxygen atom in this portion. ..
  • the atom other than the silicon atom and the oxygen atom include a nitrogen atom, a carbon atom, a hydrogen atom, and a metal element described in the next paragraph.
  • the functional group for example, an organic group described as R in the next paragraph can be exemplified. Strictly speaking, such a component is not silicon oxide in that it is not composed only of silicon atoms and oxygen atoms.
  • the silicon oxide portion composed of silicon atoms and oxygen atoms as "silicon oxide", which is consistent with the practice in the art.
  • the silicon oxide portion is also treated as silicon oxide.
  • the atomic ratio of a silicon atom to an oxygen atom in silicon oxide does not have to be stoichiometric (1: 2).
  • the holding layer 21 may contain a metal oxide other than silicon oxide, specifically, a metal oxide component or a metal oxide portion containing other than silicon.
  • the metal oxide that can be contained in the holding layer 21 is not particularly limited, but is, for example, an oxide of at least one metal element selected from the group consisting of Al, Ti, Zr, Ta, Nb, Nd, La, Ce and Sn. Is.
  • the holding layer 21 may contain an inorganic compound component other than an oxide, for example, a nitride, a carbide, a halide, or the like, or may contain an organic compound component.
  • Metal oxides such as silicon oxide can be formed from hydrolyzable organometallic compounds.
  • the hydrolyzable silicon compound include the compound represented by the formula (1).
  • R n SiY 4-n (1)
  • R is an organic group containing at least one selected from an alkyl group, a vinyl group, an epoxy group, a styryl group, a methacryloyl group and an acryloyl group.
  • Y is a hydrolyzable organic group or a halogen atom which is at least one selected from an alkoxy group, an acetoxy group, an alkenyloxy group and an amino group.
  • the halogen atom is preferably Cl.
  • n is an integer from 0 to 3, preferably 0 or 1.
  • an alkyl group for example, an alkyl group having 1 to 3 carbon atoms, particularly a methyl group is suitable.
  • an alkoxy group for example, an alkoxy group having 1 to 4 carbon atoms, particularly a methoxy group and an ethoxy group are suitable.
  • Two or more compounds represented by the above formula may be used in combination. Examples of such a combination include a combination of a tetraalkoxysilane in which n is 0 and a monoalkyltrialkoxysilane in which n is 1.
  • the compound represented by the formula (1) forms a network structure in which silicon atoms are bonded to each other via oxygen atoms after hydrolysis and polycondensation.
  • the organic group represented by R is contained in a state of being directly bonded to a silicon atom.
  • the antibacterial fine particles 22 may contain fine particles having an antibacterial function, for example, made of copper, silver, zinc oxide, or the like.
  • the antibacterial fine particles 22 can be aggregates of these fine particles, but can also be aggregates containing dispersants and binders in addition to these fine particles. Alternatively, it can be the fine particles that are not aggregates. However, in the following, for convenience of explanation, the term "antibacterial fine particles” means an aggregate of fine particles unless otherwise specified.
  • the average particle size of the fine particles constituting the aggregate is, for example, preferably 10 to 150 nm, more preferably 15 to 100 nm, and particularly preferably 20 to 80 nm.
  • the average particle size of the antibacterial fine particles 22 which are aggregates is larger than the maximum thickness of the holding layer 21, for example, preferably 0.1 to 10 ⁇ m, and more preferably 0.5 to 5 ⁇ m. It is particularly preferably 1 to 4 ⁇ m.
  • the antibacterial fine particles 22 protrude from the holding layer 21 and exert an antibacterial function.
  • the antibacterial fine particles 22 may be covered with the holding layer 21, but even if the holding layer 21 is covered, the antibacterial function is not significantly suppressed because the holding layer 21 is thin.
  • the interval L of the antibacterial fine particles 22 held in the holding layer 21 is preferably 1 to 200 ⁇ m, more preferably 2 to 100 ⁇ m, and particularly preferably 3 to 70 ⁇ m. If the distance L between the antibacterial fine particles 22 is too narrow, the area of the holding layer 21 exposed between them becomes narrow, and the antiglare function may be impaired. On the other hand, if the distance L between the antibacterial fine particles 22 is too wide, the antibacterial function may be reduced.
  • the method for measuring the average particle size of the antibacterial fine particles 22 and the interval between the antibacterial fine particles 22 is described in Section (6) of Examples described later.
  • the content of the antibacterial fine particles contained in the antibacterial membrane 2 is preferably 50% by weight or less, 40% by weight or less, 30% by weight or less, 20% by weight or less, 18% by weight or less, and 15% by weight or less in this order.
  • the lower limit is preferably 0.1% by weight or more, 5% by weight or more, and 10% by weight or more in this order.
  • the method for forming the antibacterial film 2 is not particularly limited, but can be formed as follows, for example. First, a material constituting the above-mentioned matrix, for example, tetraethoxysilane is used as a solution under acidic conditions to generate a precursor solution. Further, the dispersion liquid containing the antibacterial fine particles 22 described above, for example, the copper fine particle dispersion liquid is diluted with propylene glycol or the like to generate a fine particle dispersion liquid. Then, the precursor liquid and the fine particle dispersion liquid are mixed to generate a coating liquid for an antibacterial film.
  • a material constituting the above-mentioned matrix for example, tetraethoxysilane is used as a solution under acidic conditions to generate a precursor solution.
  • the dispersion liquid containing the antibacterial fine particles 22 described above for example, the copper fine particle dispersion liquid is diluted with propylene glycol or the like to generate a fine particle dispersion liquid. Then, the precursor liquid and
  • the concentration of the antibacterial fine particles 22 in this coating liquid is preferably, for example, 100 to 8000 ppm, more preferably 500 to 5000 ppm. If the concentration of the antibacterial fine particles 22 is too high, the visible light transmittance of the cover member 10 may decrease and the haze may increase. On the other hand, if the concentration of the antibacterial fine particles 22 is too low, the antibacterial function may not be exhibited.
  • the coating method is not particularly limited, and for example, a flow coating method, a spray coating method, a spin coating method, or the like can be adopted.
  • the applied coating liquid is dried in an oven or the like at a predetermined temperature (for example, 80 to 120 ° C.) in order to volatilize the alcohol content in the solution, and then, for example, for hydrolysis and decomposition of organic chains.
  • the antibacterial film 2 can be obtained by sintering at a predetermined temperature (for example, 200 to 500 ° C.).
  • the visible light transmittance is preferably 85% or more, and more preferably 90% or more.
  • the haze rate of the cover member 10 is, for example, 20% or less, further 15% or less, particularly 10% or less, and in some cases, 1 to 8%, further 1 to 6%.
  • the gloss can be evaluated by the mirror glossiness.
  • the 60 ° mirror gloss of the cover member 10 is, for example, 60 to 130%, further 70 to 120%, and particularly 80 to 110%. These mirror glossiness are values measured for the surface on which the antibacterial film 2 is formed.
  • a cover member for a display of an in-vehicle device such as a car navigation system
  • a member having a gloss of 120 to 140% is generally used.
  • the relational expression (a) is established between the 60 ° mirror glossiness G and the haze rate H (%), and it is more preferable that the relational expression (b) is established.
  • H ⁇ -0.2G + 25 (a) H ⁇ -0.2G + 24.5 (b)
  • Gloss can be measured according to "Method 3 (60 degree mirror gloss)" of “Mirror gloss measuring method” of JIS Z8741-1997, and haze can be measured according to JIS K7136: 2000.
  • the cover member 10 according to the present embodiment can exert the following effects. That is, unevenness is formed on the first surface of the glass plate 1, and an antibacterial film 2 having a holding layer 21 and antibacterial fine particles 22 is formed on the first surface. Therefore, the surface of the holding layer 21 is also formed with irregularities along the irregularities of the glass plate 1, whereby the antiglare function is exhibited. Further, since the antibacterial film 2 contains antibacterial fine particles 22 having an average particle size larger than the maximum thickness of the holding layer 21, the antibacterial fine particles 22 are arranged so as to protrude from the holding layer 21. As a result, the antibacterial function is exhibited. As described above, the antibacterial film 2 of the cover member 1 according to the present embodiment can have both an antiglare function and an antibacterial function at the same time.
  • the bottom surface of the glass plate 1 is etched to form irregularities, but the top surface can be etched to form irregularities in the same manner.
  • a base layer having irregularities can be formed on any one surface of the glass plate 1.
  • the base layer can be formed, for example, by a base layer formed of the same material as the holding layer 21 described above and fine particles held by the base layer.
  • the shape of the fine particles is not particularly limited, but is preferably spherical.
  • the fine particles may be substantially composed of spherical particles. However, some of the fine particles may have a shape other than a spherical shape, for example, a flat plate shape.
  • the fine particles may be composed of only spherical particles.
  • the spherical particles refer to particles having a ratio of the longest diameter to the shortest diameter passing through the center of gravity of 1 or more and 1.8 or less, particularly 1 or more and 1.5 or less, and the surface of which is formed of a curved surface.
  • the average particle size of the spherical particles may be 5 nm to 200 nm, more 10 nm to 100 nm, and particularly 20 nm to 60 nm.
  • the average particle size of the spherical particles is determined by the average of the individual particle sizes, specifically, the average value of the shortest diameter and the longest diameter described above, and the measurement is preferably 30 particles based on the SEM image. It is desirable to carry out for 50 particles. As described above, by using fine particles having an average particle size smaller than that of the antibacterial fine particles 22, it is possible to form irregularities as a base for forming an appropriate surface roughness Ra on the holding layer 21 of the antibacterial film 2. ..
  • the material constituting the fine particles is not particularly limited, but preferably contains a metal oxide, particularly silicon oxide.
  • the metal oxide may contain, for example, an oxide of at least one metal element selected from the group consisting of Al, Ti, Zr, Ta, Nb, Nd, La, Ce and Sn.
  • the fine particles may be phyllosilicate mineral particles.
  • the phyllosilicate mineral contained in the phyllosilicate mineral particles is also called a layered silicate mineral.
  • Examples of the phyllosilicate mineral include kaolin minerals such as kaolinite, dikite, nacrite, and haloysite, serpentine such as chrysotile, lizardite, and amesite, and octahedral smectites such as montmorillonite and biderite, saponite, hectrite, and soconite.
  • 2 octahedral mica such as 3 octahedral smectite, vermiculite, paragonite, illite, seradonite
  • 3 octahedral mica such as gold mica, anite, lepidrite
  • 2 octahedral brittle mica such as margarite, clintite, 3 octahedral fragile mica such as anandite
  • 2 octahedral chlorite such as donbasite, 2.3 octahedral chlorite such as cucumberite and sudowite
  • 3 octahedral chlorite such as clinochlorite and chamosite, pyrophylli Examples include light, talc, 2 octahedral vermiculite, and 3 octahedral vermiculite.
  • the phyllosilicate mineral particles preferably contain minerals belonging to smectite, kaolin, or talc.
  • minerals belonging to smectite montmorillonite is suitable.
  • montmorillonite belongs to the monoclinic system
  • kaolin belongs to the triclinic system
  • talc belongs to the monoclinic system or the triclinic system.
  • Such an underlayer can be formed in the same manner as the above-mentioned antibacterial film. That is, the precursor liquid and the fine particle dispersion liquid as described above are mixed to generate a coating liquid for a base layer, which is applied to the surface of a glass plate and then sintered to form a base layer having irregularities on the surface. Can be formed.
  • the surface roughness Ra of the base layer can be the same as the surface roughness Ra of the first surface of the glass plate 1 described above.
  • the refractive index of the base layer and the antibacterial film 2 can be brought close to each other. Therefore, the antiglare function can be exhibited more effectively.
  • a glass plate (float glass) formed by the float method can be chemically strengthened to form a base layer with respect to the top surface.
  • the top surface having a high concentration of sodium ions is exchanged with alkaline ions such as potassium ions more than the bottom surface, so that the top surface is easily warped so as to be convex. Therefore, when the above-mentioned base layer is formed on the top surface, the laminated base layer shrinks and the warp is alleviated. Therefore, from the viewpoint of suppressing warpage, it is preferable to form a base layer on the top surface of the chemically strengthened glass plate.
  • a known antireflection film can be arranged between the base layer and the antibacterial film 2.
  • the base layer of the base layer described above is an example, and can be appropriately changed.
  • the base layer can be formed of a material containing silicon oxide as a main component, but is not limited thereto. If silicon oxide is used as the main component, the refractive index (reflectance) of the base layer tends to be low. In addition, the chemical stability of the base layer is also good. In addition, the adhesion with the glass plate 1 is good.
  • silicon oxide is the main component means that SiO 2 is contained in an amount of 50% by mass or more, but it is preferably contained in an amount of 90% by mass or more.
  • the base layer may be composed of only silicon oxide, or may contain a small amount of components other than silicon oxide.
  • the components include Li, B, C, N, F, Na, Mg, Al, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Sr. , Y, Zr, Nb, Ru, Pd, Ag, In, Sn, Hf, Ta, W, Pt, Au, Bi and compounds such as one or more ions and / or oxides selected from lanthanoid elements. ..
  • the base layer containing silicon oxide as a main component includes those formed from a coating composition containing a silicon oxide precursor, those formed from a coating composition containing silicon oxide particles as particles, and other components not containing silicon oxide as a main component. Examples thereof include those formed by a resin film or the like.
  • the composition of the holding layer 21 is not particularly limited, and as described above, any material may be used as long as it has a predetermined surface roughness on the surface and can hold the antibacterial fine particles 22.
  • a fingerprint resistant layer can also be formed on the surface of the antibacterial film 2.
  • the swipe operation on the cover member 10 becomes easy, and the stains such as fingerprints become easy to wipe off.
  • the fingerprint resistant film can be formed, for example, as follows.
  • the fingerprint-resistant film can have hydrophobic properties and sparse oil properties, that is, both sparse medium properties, so as to minimize the wetting of the cover member 10 by water and oil. Therefore, the wetting properties of a surface with a fingerprint resistant film are not only hydrophobic, i.e., the contact angle between the surface and water is preferably greater than 90 °, but also oleophobic, i.e., surface and oil.
  • the fingerprint-resistant film can be, for example, a film containing a silane containing an alkyl group and / or a fluoroalkyl group, for example, 3,3,3-trifluoropropyltrimethoxysilane or pentylriethoxysilane.
  • the fingerprint resistant film is based on a compound having a hydrocarbon group, even if the CH bond is a fluoro-based surface layer in which the CH bond is partially or preferably substantially entirely replaced by the CF bond. good.
  • such compounds are represented, for example, in formula (RF) n SiX 4-n , where RF is C 1 to C 22 -alkyl perfluorohydrocarbons or -alkyl perfluoropolyethers, preferably. C 1 to C 10 -alkyl perfluorohydrocarbons or -alkyl perfluoropolyethers, where n is an integer of 1 to 3 and X is a hydrolyzable group such as a halogen or alkoxy group-OR (where R).
  • the hydrolyzable group X can react, for example, with the terminal OH group of the coating on the glass substrate and thus be attached to this group by the formation of a covalent bond.
  • Perfluorohydrocarbons are preferably used to reduce the surface energy of the surface due to the low polarity of the fluorine surface bonds at the ends.
  • the fingerprint resistant film can be derived, for example, from a single layer of molecular chains with a fluorine end group, a fluoropolymer coating, or silicon oxide-suit particles pre-equipped with or treated with a fluorine end group. ..
  • the fingerprint-resistant film is preferably immersed, vapor-deposited, sprayed, applied with a roll or roller or blade, vacuum-deposited by heat or sputtered, preferably by liquid phase methods such as spraying, immersion coating, printing, roller coating, spin coating. Alternatively, it can be applied to the surface by other suitable methods. Immersion or spraying is particularly preferred. After applying the coating, it is advantageously cured over a suitable period of time and in a suitable time.
  • the thickness of the fingerprint-resistant film can be, for example, 50 to 1000 nm. If the thickness of the fingerprint-resistant film is too large, the antibacterial performance may be suppressed. On the other hand, if the thickness of the fingerprint-resistant film is too small, the fingerprint-resistant performance may be reduced.
  • the fingerprint-resistant film can be formed on the entire surface of the antibacterial film 2, but it can also be formed on a part of the antibacterial film 2.
  • a part of the cover member 10 is arranged on a protected member 100 such as a keyboard that performs a key touch operation, a fingerprint resistant film is not formed on the key, and another swipe operation is performed, for example.
  • the fingerprint-resistant layer can be formed only in the area to be covered.
  • a mask layer can be formed on a part of the glass plate 1 so that the protected member 100 cannot be seen from the outside in the portion where the mask layer is formed.
  • a mask layer can be formed on the peripheral edge of the glass plate 1 so that the protected member 100 cannot be seen from the outside on the peripheral edge of the cover member 10.
  • parts such as wiring and brackets of the protected member 100 can be hidden from the outside.
  • the material of the mask layer may be appropriately selected according to the embodiment as long as it can shield the field of view from the outside, and for example, dark ceramics such as black, brown, gray, and navy blue may be used.
  • a sheet material can be attached.
  • black ceramic is selected as the material of the mask layer
  • black ceramic is laminated on the surface of the cover member 10 opposite to the surface on which the antibacterial film 2 is formed by screen printing or the like, and glass is used. Heat the ceramic laminated together with the plate. Then, when the ceramic is cured, the mask layer is completed.
  • the ceramic used for the mask layer various materials can be used. For example, the ceramic having the composition shown in Table 1 below can be used for the mask layer.
  • Main component Copper oxide, Chromium oxide, Iron oxide and Manganese oxide * 2
  • Main component Bismuth borosilicate, Zinc borosilicate
  • the cover member according to the present invention can be colored transparent or translucent by coloring at least one of a glass plate 1, an antibacterial film 2, and an underlayer.
  • Example A cover member according to Example 1 was formed by laminating a base layer on a float glass plate of 50 mm x 50 mm and further laminating an antibacterial film.
  • Cleansolve P-7 Nitric acid and kaolin TS90 are dissolved in Cleansolve P-7 manufactured by Japan Alcohol Trading Co., Ltd.
  • Cleansolve P-7 is a mixed solvent containing ethanol as a main component, isopropyl alcohol, and normal propyl alcohol.
  • the precursor liquid was applied to the glass plate by flow coating, and then dried in an oven set at 200 ° C. to form an underlayer.
  • Retention layer A precursor solution for a retention layer having the following composition was prepared (unit is g). Then, these mixed solutions were stirred at 60 ° C. for 7 hours, and a precursor solution was obtained by a hydrolysis reaction of TEOS.
  • a coating solution for an antibacterial film having the following composition was prepared for this precursor solution (unit: g). Copper was used as the antibacterial fine particles, and a dispersion diluted with propylene glycol to a concentration of 1% was prepared. Then, the materials in Table 4 were mixed while stirring in the order from top to bottom. Then, this mixed solution was stirred at room temperature to obtain a coating liquid.
  • this coating liquid was applied onto the base layer by roll coating, air-dried for 10 minutes, and then heated in an oven set at 300 ° C. for 30 minutes to form an antibacterial film.
  • the cover member according to this embodiment was completed. The following tests were performed on this cover member.
  • the gloss was 119.2. Therefore, sufficient anti-glare performance can be exhibited.
  • the haze rate was 3.2%, which was sufficiently low.
  • the haze rate was measured by a haze meter NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd. At this time, the antibacterial film was used as the incident surface, the haze rate was measured at three points of the sample, and the average value was taken as the haze rate.
  • the surface roughness Ra of the antibacterial film was 52 nm.
  • the average length Rsm of the roughness curve element of the antibacterial film was 16.2 ⁇ m.
  • the antibacterial activity was 6.1. Since it is evaluated to have antibacterial activity at 2.0 or higher, sufficient antibacterial performance was confirmed in this example.
  • the antiviral activity was 1.6.
  • FIG. 3 is a photograph of the surface texture of the antibacterial film of the example observed by SEM
  • FIG. 4 is an enlarged view of the antibacterial fine particles shown in the photograph of FIG.
  • a plurality of white dots shown in FIG. 3 indicate antibacterial fine particles.
  • the antibacterial fine particles according to this example are aggregates of copper particles.
  • the particle size of the antibacterial fine particles shown in FIG. 3 was 1 to 4 ⁇ m.
  • the maximum distance between the antibacterial fine particles was 50 ⁇ m, the minimum was 5 ⁇ m, and the average was 25 ⁇ m.
  • the average particle size was calculated by the following method. First, three SEM images with a magnification of 1000 times were acquired in different fields of view. Next, the following measurement was performed in the range of 90 ⁇ mx 120 ⁇ m (the range surrounded by the broken line in FIG. 3). First, the length in the major axis direction and the length in the minor axis direction of the antibacterial fine particles are measured, and the average of them is taken as the particle size of one antibacterial fine particle. Then, the same measurement was performed for any antibacterial fine particles at 10 points per image, for a total of 30 points, and the average of them was taken as the average particle size.
  • the distance between the antibacterial fine particles was calculated as follows. First, three SEM images with a magnification of 1000 times were acquired in different fields of view. Next, the spacing between arbitrary adjacent antibacterial fine particles was measured. The same measurement was performed for any 10 sets of antibacterial fine particles at 10 points per image, for a total of 30 points, and the average of them was taken as the distance between the antibacterial fine particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Surface Treatment Of Glass (AREA)
  • Laminated Bodies (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Floor Finish (AREA)

Abstract

Provided is a cover member that can achieve both anti-glare performance and anti-bacterial performance. This cover member comprises: a plate-shaped substrate that has a first surface and a second surface, the first surface having a prescribed surface roughness; and an anti-bacterial film which is formed on the first surface. The anti-bacterial film comprises: a retaining layer which is formed on the first surface; and anti-bacterial fine particles which are retained by the retaining layer, and which have an average particle diameter that is at least equal to the film thickness of the retaining layer.

Description

カバー部材Cover member
 本発明は、ディスプレイ等の被保護部材に設けられるカバー部材に関する。 The present invention relates to a cover member provided on a protected member such as a display.
 特許文献1には、耐指紋性能を有する機能層を備えたガラス基板が開示されている。このガラス基板は、タッチセンサ等の指をタッチするカバー部材として用いられる。また、このガラス基板の機能層には、耐指紋性能のほか、防眩機能、抗菌機能などの機能を持たせることが開示されている。 Patent Document 1 discloses a glass substrate provided with a functional layer having fingerprint resistance. This glass substrate is used as a cover member for touching a finger such as a touch sensor. Further, it is disclosed that the functional layer of the glass substrate has functions such as anti-glare function and antibacterial function in addition to fingerprint resistance.
特表2017-528411号公報Japanese Patent Publication No. 2017-528411
 ところで、特許文献1には、上記のような複数の機能を有する機能層を設ける場合、複数の機能を1つの機能層で発揮させることが開示されており、例えば、防眩機能と抗菌機能を有する機能層を設けることが考えられる。しかしながら、防眩機能と抗菌機能を有する具体的な機能層は未だ提案されておらず、そのような機能層を有するカバー部材が要望されていた。本発明は、この問題を解決するためになされたものであり、防眩性能と抗菌性能を有する、カバー部材を提供することを目的とする。 By the way, Patent Document 1 discloses that when a functional layer having a plurality of functions as described above is provided, the plurality of functions are exerted by one functional layer. For example, an antiglare function and an antibacterial function are provided. It is conceivable to provide a functional layer to have. However, a specific functional layer having an antiglare function and an antibacterial function has not yet been proposed, and a cover member having such a functional layer has been desired. The present invention has been made to solve this problem, and an object of the present invention is to provide a cover member having antiglare performance and antibacterial performance.
項1.第1面及び第2面を有し、前記第1面が所定の表面粗さを有する板状の基材と、
 前記第1面に形成された抗菌膜と、
を備え、
 前記抗菌膜は、
 前記第1面に形成される保持層と、
 前記保持層に保持され、前記保持層の膜厚以上の平均粒径を有する抗菌性微粒子と、を備えている、カバー部材。
Item 1. A plate-shaped base material having a first surface and a second surface, the first surface having a predetermined surface roughness,
The antibacterial film formed on the first surface and
Equipped with
The antibacterial membrane is
The holding layer formed on the first surface and
A cover member comprising: antibacterial fine particles held by the holding layer and having an average particle size equal to or larger than the film thickness of the holding layer.
項2.前記保持層の表面粗さは、前記基材の第1面の表面粗さより小さく、且つ120nmより小さい、項1に記載のカバー部材。 Item 2. Item 2. The cover member according to Item 1, wherein the surface roughness of the holding layer is smaller than the surface roughness of the first surface of the base material and smaller than 120 nm.
項3.前記保持層の最大膜厚は、前記基材の表面粗さより小さい、項1または2に記載のカバー部材。 Item 3. Item 2. The cover member according to Item 1 or 2, wherein the maximum film thickness of the holding layer is smaller than the surface roughness of the base material.
項4.前記抗菌膜の保持層は、酸化シリコンを主成分として含有する、項1から3のいずれかに記載のカバー部材。 Item 4. Item 2. The cover member according to any one of Items 1 to 3, wherein the holding layer of the antibacterial film contains silicon oxide as a main component.
項5.前記基材は、前記第1面及び前記第2面を有するガラス板により形成されている、
項1から4のいずれかに記載のカバー部材。
Item 5. The base material is formed of a glass plate having the first surface and the second surface.
Item 4. The cover member according to any one of Items 1 to 4.
項6.前記ガラス板はフロートガラスによって形成され、当該フロートガラスのボトム面が前記第1面を構成している、項5に記載のカバー部材。 Item 6. Item 5. The cover member according to Item 5, wherein the glass plate is formed of float glass, and the bottom surface of the float glass constitutes the first surface.
項7.前記基材は、ガラス板と、前記ガラス板の一方の面に形成され、前記所定の表面粗さを有する下地層と、を備えている、項1から4のいずれかに記載のカバー部材。 Item 7. Item 2. The cover member according to any one of Items 1 to 4, wherein the base material comprises a glass plate and a base layer formed on one surface of the glass plate and having the predetermined surface roughness.
項8.前記下地層は、酸化シリコンを主成分として含有する基層と、前記基層に保持される微粒子と、を備えている、項7に記載のカバー部材。 Item 8. Item 7. The cover member according to Item 7, wherein the base layer includes a base layer containing silicon oxide as a main component and fine particles held in the base layer.
項9.前記ガラス板はフロートガラスにより形成され、当該フロートガラスのトップ面に前記下地層が形成されている、項7または8に記載のカバー部材。 Item 9. Item 7. The cover member according to Item 7 or 8, wherein the glass plate is formed of float glass, and the base layer is formed on the top surface of the float glass.
項10.前記ガラス板の厚みは、3mm以下である、項5から9のいずれかに記載のカバー部材。 Item 10. Item 2. The cover member according to any one of Items 5 to 9, wherein the thickness of the glass plate is 3 mm or less.
項11.前記微粒子の平均粒径は、前記抗菌性微粒子の平均粒径よりも小さい、項10に記載のカバー部材。 Item 11. Item 2. The cover member according to Item 10, wherein the average particle size of the fine particles is smaller than the average particle size of the antibacterial fine particles.
項12.前記保持層上における前記抗菌性微粒子間の間隔は、1~200μmである、項1から11のいずれかに記載のカバー部材。 Item 12. Item 2. The cover member according to any one of Items 1 to 11, wherein the distance between the antibacterial fine particles on the holding layer is 1 to 200 μm.
項13.前記抗菌性微粒子の平均粒径は、0.1~10μmである、項1から12のいずれかに記載のカバー部材。 Item 13. Item 2. The cover member according to any one of Items 1 to 12, wherein the average particle size of the antibacterial fine particles is 0.1 to 10 μm.
項14.前記抗菌膜上の少なくとも一部に形成された耐指紋層が形成されている、項1から13のいずれかに記載のカバー部材。 Item 14. Item 2. The cover member according to any one of Items 1 to 13, wherein a fingerprint-resistant layer formed on at least a part of the antibacterial film is formed.
項15.前記耐指紋層の膜厚は、前記抗菌膜より薄い、項14に記載のカバー部材。 Item 15. Item 12. The cover member according to Item 14, wherein the fingerprint-resistant layer has a thinner film thickness than the antibacterial film.
項16.前記耐指紋層は、前記抗菌膜上の一部に形成されている、項14または15に記載のカバー部材。 Item 16. Item 2. The cover member according to Item 14 or 15, wherein the fingerprint-resistant layer is formed on a part of the antibacterial film.
項17.前記抗菌性微粒子は銅により形成されている、項1から16のいずれかに記載のカバー部材。 Item 17. Item 2. The cover member according to any one of Items 1 to 16, wherein the antibacterial fine particles are made of copper.
項18.前記基材と前記抗菌膜との間に配置された、反射防止膜をさらに備えている、項1から17のいずれかに記載のカバー部材。 Item 18. Item 2. The cover member according to any one of Items 1 to 17, further comprising an antireflection film arranged between the base material and the antibacterial film.
項19.ディスプレイ、キーボード、または電子黒板の表面を覆うように配置される、項1から18のいずれかに記載のカバー部材。 Item 19. Item 6. The cover member according to any one of Items 1 to 18, which is arranged so as to cover the surface of a display, a keyboard, or an electronic blackboard.
 本発明によれば、防眩性能と抗菌性能を両立したカバー部材を提供するこことができる。 According to the present invention, it is possible to provide a cover member having both antiglare performance and antibacterial performance.
本発明に係るカバー部材の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the cover member which concerns on this invention. 図1の拡大断面図である。It is an enlarged sectional view of FIG. 実施例に係る抗菌膜の表面性状を示す写真である。It is a photograph which shows the surface property of the antibacterial film which concerns on Example. 実施例に係る抗菌膜の抗菌性微粒子の拡大写真である。It is an enlarged photograph of the antibacterial fine particles of the antibacterial film which concerns on Example.
 以下、本発明に係るカバー部材の一実施形態について、図面を参照しつつ説明する。本実施形態に係るカバー部材は、ディスプレイ、キーボード、電子黒板等の被保護部材を保護し、且つこれらの部材を外部から視認可能に構成されている。なお、ディスプレイとは、一般的なデスクトップ用のディスプレイのほか、モバイルPC、タブレットPC、カーナビゲーションなどの車載機器等の種々の機器に用いられるディスプレイが対象となる。図1はカバー部材の断面図である。 Hereinafter, an embodiment of the cover member according to the present invention will be described with reference to the drawings. The cover member according to the present embodiment is configured to protect protected members such as a display, a keyboard, and an electronic blackboard, and to make these members visible from the outside. The display includes not only a general desktop display but also a display used for various devices such as mobile PCs, tablet PCs, and in-vehicle devices such as car navigation systems. FIG. 1 is a cross-sectional view of a cover member.
 図1に示すように、本実施形態に係るカバー部材10は、第1面及び第2面を有するガラス板1と、このガラス板1の第1面に積層される抗菌膜2と、を備えている。そして、このカバー部材10は、上述した被保護部材100を覆うように配置される。このとき、ガラス板1の第2面が被保護部材100と向き合うように配置され、抗菌膜2が外部を向くように配置される。以下、詳細に説明する。 As shown in FIG. 1, the cover member 10 according to the present embodiment includes a glass plate 1 having a first surface and a second surface, and an antibacterial film 2 laminated on the first surface of the glass plate 1. ing. Then, the cover member 10 is arranged so as to cover the above-mentioned protected member 100. At this time, the second surface of the glass plate 1 is arranged so as to face the protected member 100, and the antibacterial film 2 is arranged so as to face the outside. Hereinafter, it will be described in detail.
 <1.ガラス板>
 ガラス板1は、例えば、汎用のソーダライムガラス、ホウケイ酸ガラス、アルミノシリケートガラス、無アルカリガラス等その他のガラスにより形成することができる。また、ガラス板1は、フロート法により成形することができる。この製法によると平滑な表面を有するガラス板1を得ることができる。但し、ガラス板10は、主面に凹凸を有していてもよく、例えば型板ガラスであってもよい。型板ガラスは、ロールアウト法と呼ばれる製法により成形することができる。この製法による型板ガラスは、通常、ガラス板の主面に沿った一方向について周期的な凹凸を有する。
<1. Glass plate>
The glass plate 1 can be formed of, for example, other glass such as general-purpose soda lime glass, borosilicate glass, aluminosilicate glass, and non-alkali glass. Further, the glass plate 1 can be molded by the float method. According to this manufacturing method, a glass plate 1 having a smooth surface can be obtained. However, the glass plate 10 may have irregularities on the main surface, and may be, for example, template glass. The template glass can be molded by a manufacturing method called a rollout method. The template glass produced by this method usually has periodic irregularities in one direction along the main surface of the glass plate.
 フロート法は、溶融スズなどの溶融金属の上に溶融ガラスを連続的に供給し、供給した溶融ガラスを溶融金属の上で流動させることにより帯板状に成形する。このように成形されたガラスをガラスリボンと称する。 In the float method, molten glass is continuously supplied on a molten metal such as molten tin, and the supplied molten glass is made to flow on the molten metal to form a strip. The glass thus formed is called a glass ribbon.
 ガラスリボンは、下流側に向かうにつれて冷却され、冷却固化された上で溶融金属からローラにより引き上げられる。そして、ローラによって徐冷炉へと搬送され、徐冷された後、切断される。こうして、フロートガラス板が得られる。ここで、フロートガラス板において、溶融金属と接触していた面をボトム面と称し、それとは反対の面をトップ面と称することとする。ボトム面及びトップ面は、未研磨であってよい。なお、ボトム面は、溶融金属と接していたため、溶融金属がスズである場合には、ボトム面に含有される酸化スズの濃度が、トップ面に含有される酸化スズの濃度よりも大きくなる。そして、本実施形態においては、ガラス板1の第1面がボトム面であり、第2面がトップ面となる。 The glass ribbon is cooled toward the downstream side, cooled and solidified, and then pulled up from the molten metal by a roller. Then, it is transported to a slow cooling furnace by a roller, slowly cooled, and then cut. In this way, a float glass plate is obtained. Here, in the float glass plate, the surface in contact with the molten metal is referred to as a bottom surface, and the surface opposite to the bottom surface is referred to as a top surface. The bottom surface and the top surface may be unpolished. Since the bottom surface is in contact with the molten metal, when the molten metal is tin, the concentration of tin oxide contained in the bottom surface is higher than the concentration of tin oxide contained in the top surface. In the present embodiment, the first surface of the glass plate 1 is the bottom surface, and the second surface is the top surface.
 また、ボトム面、つまり第2面は、溶融金属から引き上げられた後、ローラによって搬送されるため、ローラによって、いわゆるマイクロクラックと呼ばれる傷が生じることが知られている。したがって、一般的に、フロートガラス板のボトム面にはトップ面よりも傷が多く生じる。 Further, since the bottom surface, that is, the second surface, is pulled up from the molten metal and then conveyed by the rollers, it is known that the rollers cause scratches called so-called microcracks. Therefore, in general, the bottom surface of the float glass plate has more scratches than the top surface.
 そして、このガラス板1のボトム面には、エッチングが施されており、これによって、酸化スズの濃度が高い層を除去している。酸化スズは屈折率が大きいため、これを除去することで、透過率を向上することができる。さらに、エッチングによって、ボトム面には、所定の表面粗さを有する微少な凹凸が形成されている。ボトム面の表面粗さRaは、例えば、10~500nmであることが好ましく、40~200nmであることがさらに好ましい、50~150nmであることが特に好ましい。なお、Raは、JIS B0601:2001により定められた粗さ曲線の算術平均粗さである。この点は、後述する抗菌膜2の保持層21においても同じである。 The bottom surface of the glass plate 1 is etched to remove a layer having a high concentration of tin oxide. Since tin oxide has a large refractive index, it is possible to improve the transmittance by removing it. Further, by etching, a fine unevenness having a predetermined surface roughness is formed on the bottom surface. The surface roughness Ra of the bottom surface is, for example, preferably 10 to 500 nm, more preferably 40 to 200 nm, and particularly preferably 50 to 150 nm. Ra is the arithmetic mean roughness of the roughness curve defined by JIS B0601: 2001. This point is the same in the holding layer 21 of the antibacterial film 2 described later.
 その他、ガラス板に所定の表面粗さを形成する方法としては、例えば、フロスト処理、サンドブラスト処理、ウェットブラスト処理等の表面処理を挙げることができる。フロスト処理は、例えば、フッ化水素とフッ化アンモニウムの混合溶液に、ガラス板を浸漬し、浸漬面を化学的に表面処理することにより、ガラス板の表面に凹凸を形成する処理である。サンドブラスト処理は、例えば、結晶質二酸化ケイ素粉、炭化ケイ素粉等を加圧空気でガラス板の表面に吹きつけることにより、ガラス板の表面に凹凸を形成する処理である。また、このようにして凹凸を作成した後に、表面形状を整えるために、ガラス板の表面を化学的にエッチングすることが一般的に行われている。こうすることで、サンドブラスト処理等で生じたクラックを除去できる。エッチングとしては、フッ化水素を主成分とする溶液に、被処理体であるガラス板を浸漬する方法が好ましく用いられる。 Other methods for forming a predetermined surface roughness on a glass plate include surface treatments such as frost treatment, sandblast treatment, and wet blast treatment. The frost treatment is a treatment for forming irregularities on the surface of the glass plate by, for example, immersing the glass plate in a mixed solution of hydrogen fluoride and ammonium fluoride and chemically surface-treating the immersed surface. The sandblasting treatment is a treatment for forming irregularities on the surface of the glass plate by, for example, blowing crystalline silicon dioxide powder, silicon carbide powder, or the like onto the surface of the glass plate with pressurized air. Further, after the unevenness is created in this way, it is generally performed to chemically etch the surface of the glass plate in order to adjust the surface shape. By doing so, cracks generated by sandblasting or the like can be removed. As the etching, a method of immersing a glass plate as an object to be treated in a solution containing hydrogen fluoride as a main component is preferably used.
 ウェットブラスト処理は、アルミナなどの個体粒子にて構成される砥粒と、水などの液体とを均一に攪拌してスラリーとしたものを、圧縮エアーを用いて噴射ノズルからガラス板の表面に高速で噴射することにより、ガラス板の表面に凹凸を形成する処理である。 Wet blasting is a high-speed process in which abrasive grains composed of solid particles such as alumina and a liquid such as water are uniformly agitated into a slurry from an injection nozzle to the surface of a glass plate using compressed air. It is a process of forming unevenness on the surface of the glass plate by injecting with.
 ガラス板1の厚さは、特に制限されないが、軽量化のためには薄いほうがよい。例えば、0.3~3mmであることが好ましく、0.6~2.5mmである事がさらに好ましい。これは、ガラス板10が薄すぎると、強度が低下するからであり、厚すぎると、カバー部材10を介して視認される被保護部材100に歪みが生じるおそれがある。 The thickness of the glass plate 1 is not particularly limited, but it is better to be thin for weight reduction. For example, it is preferably 0.3 to 3 mm, and more preferably 0.6 to 2.5 mm. This is because if the glass plate 10 is too thin, the strength is lowered, and if it is too thick, the protected member 100 visually recognized via the cover member 10 may be distorted.
 ガラス板1は、通常、平板であってよいが、曲板であってもよい。特に、保護すべき被保護部材の表面形状が曲面等の非平面である場合、ガラス板1はそれに適合する非平面形状の主面を有することが好ましい。この場合、ガラス板1は、その全体が一定の曲率を有するように曲げられていてもよく、局部的に曲げられていてもよい。ガラス板1の主面は、例えば複数の平面が曲面で互いに接続されて構成されていてもよい。ガラス板1の曲率半径は、例えば5000mm以下とすることができる。この曲率半径の下限値は、例えば、10mm以上とすることができるが、特に局部的に曲げられている部位ではさらに小さくてもよく、例えば1mm以上とすることができる。 The glass plate 1 is usually a flat plate, but may be a curved plate. In particular, when the surface shape of the protected member to be protected is a non-planar surface such as a curved surface, it is preferable that the glass plate 1 has a non-planar main surface suitable for the surface shape. In this case, the glass plate 1 may be bent so as to have a constant curvature as a whole, or may be locally bent. The main surface of the glass plate 1 may be configured by, for example, a plurality of planes connected to each other by a curved surface. The radius of curvature of the glass plate 1 can be, for example, 5000 mm or less. The lower limit of the radius of curvature can be, for example, 10 mm or more, but may be even smaller, for example, 1 mm or more, especially in a locally bent portion.
 次のような組成のガラス板を用いることもできる。以下では、ガラス板1の成分を示す%表示は特に断らない限り、すべてmol%を意味する。また、本明細書において、「実質的に構成される」とは、列挙された成分の含有率の合計が99.5質量%以上、好ましくは99.9質量%以上、より好ましくは99.95質量%以上を占めることを意味する。「実質的に含有しない」とは、当該成分の含有質が0.1質量%以下、好ましくは0.05質量%以下であることを意味する。 A glass plate having the following composition can also be used. In the following, the% indications indicating the components of the glass plate 1 mean mol% unless otherwise specified. Further, in the present specification, "substantially composed" means that the total content of the listed components is 99.5% by mass or more, preferably 99.9% by mass or more, and more preferably 99.95. It means that it occupies more than mass%. "Substantially free" means that the content of the component is 0.1% by mass or less, preferably 0.05% by mass or less.
 本発明者は、フロート法によるガラス板の製造に適したガラス組成として広く用いられているフロート板ガラスの組成(以下、「狭義のSL」、または単に「SL」と呼ぶことがある)を元に、当業者がフロート法に適したソーダライムシリケートガラス(以下、「広義のSL」と呼ぶことがある)と見做している組成範囲、具体的には、以下のような質量%の範囲内で、T2、T4等の特性をできるだけ狭義のSLに近似させながら、狭義のSLの化学強化特性を向上させることのできる組成物を検討した。
 SiO2   65~80%
 Al23   0~16%
 MgO   0~20%
 CaO   0~20%
 Na2O   10~20%
 K2O   0~5%
The present invention is based on the composition of float glass (hereinafter, may be referred to as "SL in a narrow sense" or simply "SL") widely used as a glass composition suitable for producing a glass plate by the float method. , Composition range considered by those skilled in the art as soda lime silicate glass suitable for the float method (hereinafter, may be referred to as "SL in a broad sense"), specifically, within the following mass% range. Therefore, a composition capable of improving the chemically strengthened properties of SL in a narrow sense while making the properties of T 2 , T 4 , etc. as close as possible to SL in a narrow sense was investigated.
SiO 2 65-80%
Al 2 O 30-16 %
MgO 0-20%
CaO 0-20%
Na 2 O 10-20%
K 2 O 0-5%
 以下、ガラス板1のガラス組成を構成する各成分について説明する。
 (SiO2
 SiO2は、ガラス板1を構成する主要成分であり、その含有率が低すぎるとガラスの耐水性などの化学的耐久性および耐熱性が低下する。他方、SiO2の含有率が高すぎると、高温でのガラス板1の粘性が高くなり、溶解および成形が困難になる。したがって、SiO2の含有率は、66~72mol%の範囲が適切であり、67~70mol%が好ましい。
Hereinafter, each component constituting the glass composition of the glass plate 1 will be described.
(SiO 2 )
SiO 2 is a main component constituting the glass plate 1, and if the content thereof is too low, the chemical durability and heat resistance such as water resistance of the glass are lowered. On the other hand, if the content of SiO 2 is too high, the viscosity of the glass plate 1 at a high temperature becomes high, which makes melting and molding difficult. Therefore, the content of SiO 2 is appropriately in the range of 66 to 72 mol%, preferably 67 to 70 mol%.
 (Al23
 Al23はガラス板1の耐水性などの化学的耐久性を向上させ、さらにガラス中のアルカリ金属イオンの移動を容易にすることにより化学強化後の表面圧縮応力を高め、かつ、応力層深さを深くするための成分である。他方、Al23の含有率が高すぎると、ガラス融液の粘度を増加させ、T2、T4を増加させると共にガラス融液の清澄性が悪化し高品質なガラス板を製造することが難しくなる。
(Al 2 O 3 )
Al 2 O 3 improves the chemical durability of the glass plate 1 such as water resistance, and further facilitates the movement of alkali metal ions in the glass to increase the surface compressive stress after chemical strengthening, and the stress layer. It is an ingredient for deepening the depth. On the other hand, if the content of Al 2 O 3 is too high, the viscosity of the glass melt is increased, T 2 and T 4 are increased, and the clarity of the glass melt is deteriorated to produce a high-quality glass plate. Becomes difficult.
 したがって、Al23の含有率は、1~12mol%の範囲が適切である。Al23の含有率は10mol%以下が好ましく、2mol%以上が好ましい。 Therefore, it is appropriate that the content of Al 2 O 3 is in the range of 1 to 12 mol%. The content of Al 2 O 3 is preferably 10 mol% or less, preferably 2 mol% or more.
 (MgO)
 MgOはガラスの溶解性を向上させる必須の成分である。この効果を得る観点から、このガラス板1ではMgOが添加されていることが好ましい。また、MgOの含有率が8mol%を下回ると、化学強化後の表面圧縮応力が低下し、応力層深さが浅くなる傾向にある。一方、適量を越えて含有率を増やすと、化学強化により得られる強化性能が低下し、特に表面圧縮応力層の深さが急激に浅くなる。この悪影響は、アルカリ土類金属酸化物の中でMgOが最も少ないが、このガラス板1においては、MgOの含有率は15mol%以下である。また、MgOの含有率が高いと、T2、T4を増加させると共にガラス融液の清澄性が悪化し高品質なガラス板を製造することが難しくなる。
(MgO)
MgO is an essential component that improves the solubility of glass. From the viewpoint of obtaining this effect, it is preferable that MgO is added to the glass plate 1. Further, when the content of MgO is less than 8 mol%, the surface compressive stress after chemical strengthening tends to decrease, and the depth of the stress layer tends to become shallow. On the other hand, if the content is increased beyond an appropriate amount, the strengthening performance obtained by chemical strengthening deteriorates, and in particular, the depth of the surface compressive stress layer sharply becomes shallow. This adverse effect has the least MgO among alkaline earth metal oxides, but the content of MgO in this glass plate 1 is 15 mol% or less. Further, when the content of MgO is high, T 2 and T 4 are increased, and the clarity of the glass melt is deteriorated, which makes it difficult to manufacture a high-quality glass plate.
 したがって、このガラス板1においては、MgOの含有率は1~15mol%の範囲であり、8mol%以上、12mol%以下が好ましい。 Therefore, in this glass plate 1, the content of MgO is in the range of 1 to 15 mol%, preferably 8 mol% or more and 12 mol% or less.
 (CaO)
 CaOは、高温での粘性を低下させる効果を有するが、適度な範囲を超えて含有率が高すぎると、ガラス板1が失透しやすくなるとともに、ガラス板1におけるナトリウムイオンの移動が阻害されてしまう。CaOを含有しない場合に化学強化後の表面圧縮応力が低下する傾向にある。一方、8mol%を超えてCaOを含有すると、化学強化後の表面圧縮応力が顕著に低下し、圧縮応力層深さが顕著に浅くなるとともに、ガラス板1が失透しやすくなる。
(CaO)
CaO has the effect of reducing the viscosity at high temperatures, but if the content is too high beyond an appropriate range, the glass plate 1 tends to be devitrified and the movement of sodium ions in the glass plate 1 is inhibited. I will. When CaO is not contained, the surface compressive stress after chemical strengthening tends to decrease. On the other hand, when CaO is contained in an amount of more than 8 mol%, the surface compressive stress after chemical strengthening is remarkably reduced, the depth of the compressive stress layer is remarkably shallow, and the glass plate 1 is easily devitrified.
 したがって、CaOの含有率は1~8mol%の範囲が適切である。CaOの含有率は、7mol%以下が好ましく、3mol%以上が好ましい。 Therefore, it is appropriate that the CaO content is in the range of 1 to 8 mol%. The CaO content is preferably 7 mol% or less, preferably 3 mol% or more.
 (SrO、BaO)
 SrO、BaOは、ガラス板1の粘性を大きく低下させ、少量の含有では液相温度TLを低下させる効果がCaOより顕著である。しかし、SrO、BaOは、ごく少量の添加であっても、ガラス板1におけるナトリウムイオンの移動を顕著に妨げ、表面圧縮応力を大きく低下させ、かつ、圧縮応力層の深さがかなり浅くなる。
(SrO, BaO)
SrO and BaO greatly reduce the viscosity of the glass plate 1, and when contained in a small amount, the effect of lowering the liquidus temperature TL is more remarkable than that of CaO. However, SrO and BaO remarkably hinder the movement of sodium ions in the glass plate 1 even when added in a very small amount, greatly reduce the surface compressive stress, and the depth of the compressive stress layer becomes considerably shallow.
 したがって、このガラス板1においては、SrO、BaOを実質的に含有しないことが好ましい。 Therefore, it is preferable that the glass plate 1 does not substantially contain SrO and BaO.
 (Na2O)
 Na2Oは、ナトリウムイオンがカリウムイオンと置換されることにより、表面圧縮応力を大きくし、表面圧縮応力層の深さを深くするための成分である。しかし、適量を超えて含有率を増やすと、化学強化処理でのイオン交換による表面圧縮応力の発生を、化学強化処理中の応力緩和が上回るようになり、結果として表面圧縮応力が低下する傾向にある。
(Na 2 O)
Na 2 O is a component for increasing the surface compressive stress and deepening the depth of the surface compressive stress layer by substituting sodium ions with potassium ions. However, when the content is increased beyond an appropriate amount, the stress relaxation during the chemical strengthening treatment exceeds the generation of surface compressive stress due to ion exchange in the chemical strengthening treatment, and as a result, the surface compressive stress tends to decrease. be.
 また、Na2Oは溶解性を向上させ、T4、T2を低下させるための成分である一方、Na2Oの含有率が高すぎると、ガラスの耐水性が著しく低下する。ガラス板1においては、Na2Oの含有率が10mol%以上であればT4、T2を低下させる効果が充分に得られ、16mol%を超えると応力緩和による表面圧縮応力の低下が顕著になる。 Further, Na 2 O is a component for improving the solubility and lowering T 4 and T 2 , while if the content of Na 2 O is too high, the water resistance of the glass is significantly lowered. In the glass plate 1, if the Na 2 O content is 10 mol% or more, the effect of reducing T 4 and T 2 is sufficiently obtained, and if it exceeds 16 mol%, the surface compressive stress is significantly reduced due to stress relaxation. Become.
 したがって、本実施形態のガラス板1におけるNa2Oの含有率は、10~16mol%の範囲が適切である。Na2Oの含有率は、12mol%以上が好ましく、15mol%以下がより好ましい。 Therefore, the Na 2 O content in the glass plate 1 of the present embodiment is appropriately in the range of 10 to 16 mol%. The Na 2 O content is preferably 12 mol% or more, more preferably 15 mol% or less.
 (K2O)
 K2Oは、Na2Oと同様、ガラスの溶解性を向上させる成分である。また、K2Oの含有率が低い範囲では、化学強化におけるイオン交換速度が増加し、表面圧縮応力層の深さが深くなる一方で、ガラス板1の液相温度TLを低下させる。したがってK2Oは低い含有率で含有させることが好ましい。
(K 2 O)
Like Na 2 O, K 2 O is a component that improves the solubility of glass. Further, in the range where the K 2 O content is low, the ion exchange rate in chemical strengthening increases and the depth of the surface compressive stress layer becomes deep, while the liquidus temperature TL of the glass plate 1 decreases. Therefore, it is preferable to contain K 2 O at a low content.
 一方、K2Oは、Na2Oと比較して、T4、T2を低下させる効果が小さいが、K2Oの多量の含有はガラス融液の清澄を阻害する。また、K2Oの含有率が高くなるほど化学強化後の表面圧縮応力が低下する。したがって、K2Oの含有率は0~1mol%の範囲が適切である。 On the other hand, K 2 O has a smaller effect of lowering T 4 and T 2 than Na 2 O, but a large amount of K 2 O inhibits the clarification of the glass melt. Further, the higher the K 2 O content, the lower the surface compressive stress after chemical strengthening. Therefore, it is appropriate that the content of K 2 O is in the range of 0 to 1 mol%.
 (Li2O)
 Li2Oは、少量含有されるだけであっても圧縮応力層の深さを著しく低下させる。また、Li2Oを含むガラス物品を硝酸カリウム単独の溶融塩で化学強化処理する場合、Li2Oを含まないガラス物品の場合と比較して、その溶融塩が劣化する速度が著しく速い。具体的には、同じ溶融塩で繰り返し化学強化処理を行なう場合に、より少ない回数でガラス表面に形成される表面圧縮応力が低下する。したがって、本実施形態のガラス板1においては、1mol%以下のLi2Oを含有してもよいが、実質的にLi2Oを含有しない方が好ましい。
(Li 2 O)
Li 2 O significantly reduces the depth of the compressive stress layer even if it is contained in a small amount. Further, when the glass article containing Li 2 O is chemically strengthened with the molten salt of potassium nitrate alone, the rate of deterioration of the molten salt is significantly faster than that of the glass article containing no Li 2 O. Specifically, when the same molten salt is repeatedly subjected to the chemical strengthening treatment, the surface compressive stress formed on the glass surface is reduced with a smaller number of times. Therefore, the glass plate 1 of the present embodiment may contain 1 mol% or less of Li 2 O, but it is preferable that the glass plate 1 does not contain Li 2 O substantially.
 (B23
 B23は、ガラス板1の粘性を下げ、溶解性を改善する成分である。しかし、B23の含有率が高すぎると、ガラス板1が分相しやすくなり、ガラス板1の耐水性が低下する。また、B23とアルカリ金属酸化物とが形成する化合物が揮発してガラス溶解室の耐火物を損傷するおそれが生じる。さらに、B23の含有は化学強化における圧縮応力層の深さを浅くしてしまう。したがって、B23の含有率は0.5mol%以下が適切である。本発明では、B23を実質的に含有しないガラス板1であることがより好ましい。
(B 2 O 3 )
B 2 O 3 is a component that lowers the viscosity of the glass plate 1 and improves the solubility. However, if the content of B 2 O 3 is too high, the glass plate 1 tends to be phase-separated, and the water resistance of the glass plate 1 is lowered. In addition, the compound formed by B 2 O 3 and the alkali metal oxide may volatilize and damage the refractory in the glass melting chamber. Furthermore, the inclusion of B 2 O 3 shallows the depth of the compressive stress layer during chemical strengthening. Therefore, it is appropriate that the content of B 2 O 3 is 0.5 mol% or less. In the present invention, it is more preferable that the glass plate 1 contains substantially no B 2 O 3 .
 (Fe23
 通常Feは、Fe2+又はFe3+の状態でガラス中に存在し、着色剤として作用する。Fe3+はガラスの紫外線吸収性能を高める成分であり、Fe2+は熱線吸収性能を高める成分である。ガラス板1をディスプレイのカバーガラスとして用いる場合、着色が目立たないことが求められるため、Feの含有率は少ない方が好ましい。しかし、Feは工業原料により不可避的に混入することが多い。したがって、Fe23に換算した酸化鉄の含有率は、ガラス板1全体を100質量%として示して0.15質量%以下とすることがよく、0.1質量%以下であることがより好ましく、更に好ましくは0.02質量%以下である。
(Fe 2 O 3 )
Normally, Fe exists in glass in the state of Fe 2+ or Fe 3+ and acts as a colorant. Fe 3+ is a component that enhances the ultraviolet absorption performance of glass, and Fe 2+ is a component that enhances the heat ray absorption performance. When the glass plate 1 is used as a cover glass for a display, it is required that the coloring is inconspicuous, so that the Fe content is preferably low. However, Fe is often unavoidably mixed with industrial raw materials. Therefore, the iron oxide content converted to Fe 2 O 3 is often 0.15% by mass or less, and more preferably 0.1% by mass or less, with the entire glass plate 1 as 100% by mass. It is preferable, more preferably 0.02% by mass or less.
 (TiO2
 TiO2は、ガラス板1の粘性を下げると同時に、化学強化による表面圧縮応力を高める成分であるが、ガラス板1に黄色の着色を与えることがある。したがって、TiO2の含有率は0~0.2質量%が適切である。また、通常用いられる工業原料により不可避的に混入し、ガラス板1において0.05質量%程度含有されることがある。この程度の含有率であれば、ガラスに着色を与えることはないので、本実施形態のガラス板1に含まれてもよい。
(TiO 2 )
TiO 2 is a component that lowers the viscosity of the glass plate 1 and at the same time increases the surface compressive stress due to chemical strengthening, but may give the glass plate 1 a yellow color. Therefore, it is appropriate that the content of TiO 2 is 0 to 0.2% by mass. In addition, it is inevitably mixed with an industrial raw material that is usually used, and may be contained in the glass plate 1 in an amount of about 0.05% by mass. Since the glass is not colored if the content is at this level, it may be contained in the glass plate 1 of the present embodiment.
 (ZrO2
 ZrO2は、とくにフロート法でガラス板を製造する際に、ガラスの溶融窯を構成する耐火レンガからガラス板1に混入することがあり、その含有率は0.01質量%程度であることが知られている。一方、ZrO2はガラスの耐水性を向上させ、また、化学強化による表面圧縮応力を高める成分である。しかし、ZrO2の高い含有率は、作業温度T4の上昇や液相温度TLの急激な上昇を引き起こすことがあり、またフロート法によるガラス板の製造においては、析出したZrを含む結晶が製造されたガラス中に異物として残留しやすい。したがって、ZrO2の含有率は0~0.1質量%が適切である。
(ZrO 2 )
ZrO 2 may be mixed into the glass plate 1 from the refractory bricks constituting the glass melting kiln, especially when the glass plate is manufactured by the float method, and the content thereof may be about 0.01% by mass. Are known. On the other hand, ZrO 2 is a component that improves the water resistance of glass and also enhances the surface compressive stress due to chemical strengthening. However, a high content of ZrO 2 may cause an increase in the working temperature T 4 and a sharp increase in the liquid phase temperature TL , and in the production of a glass plate by the float method, crystals containing precipitated Zr are present. It tends to remain as a foreign substance in the manufactured glass. Therefore, it is appropriate that the content of ZrO 2 is 0 to 0.1% by mass.
 (SO3
 フロート法においては、ボウ硝(Na2SO4)など硫酸塩が清澄剤として汎用される。硫酸塩は溶融ガラス中で分解してガス成分を生じ、これによりガラス融液の脱泡が促進されるが、ガス成分の一部はSO3としてガラス板1中に溶解し残留する。本発明のガラス板1においては、SO3は0~0.3質量%であることが好ましい。
(SO 3 )
In the float method, sulfates such as Glauber's salt (Na 2 SO 4 ) are widely used as clarifying agents. The sulfate decomposes in the molten glass to generate a gas component, which promotes defoaming of the glass melt, but a part of the gas component dissolves and remains in the glass plate 1 as SO 3 . In the glass plate 1 of the present invention, SO 3 is preferably 0 to 0.3% by mass.
 (CeO2
 CeO2は清澄剤として使用される。CeO2により溶融ガラス中でO2ガスが生じるので、CeO2は脱泡に寄与する。一方、CeO2が多すぎると、ガラスが黄色に着色してしまう。そのため、CeO2の含有量は、0~0.5質量%が好ましく、0~0.3質量%がより好ましく、0~0.1質量%がさらに好ましい。
(CeO 2 )
CeO 2 is used as a clarifying agent. CeO 2 contributes to defoaming because O 2 gas is generated in the molten glass by CeO 2 . On the other hand, if there is too much CeO 2 , the glass will be colored yellow. Therefore, the content of CeO 2 is preferably 0 to 0.5% by mass, more preferably 0 to 0.3% by mass, and even more preferably 0 to 0.1% by mass.
 (SnO2
 フロート法により成形されたガラス板において、成型時にスズ浴に触れた面はスズ浴からスズが拡散し、そのスズがSnO2として存在することが知られている。また、ガラス原料に混合させたSnO2は、脱泡に寄与する。本発明のガラス板1においては、SnO2は0~0.3質量%であることが好ましい。
(SnO 2 )
It is known that in a glass plate formed by the float method, tin diffuses from the tin bath on the surface in contact with the tin bath during molding, and the tin exists as SnO 2 . In addition, SnO 2 mixed with the glass raw material contributes to defoaming. In the glass plate 1 of the present invention, SnO 2 is preferably 0 to 0.3% by mass.
 (その他の成分)
 本実施形態によるガラス板1は、上記に列挙した各成分から実質的に構成されていることが好ましい。ただし、本実施形態によるガラス板1は、上記に列記した成分以外の成分を、好ましくは各成分の含有率が0.1質量%未満となる範囲で含有していてもよい。
(Other ingredients)
It is preferable that the glass plate 1 according to the present embodiment is substantially composed of the components listed above. However, the glass plate 1 according to the present embodiment may contain components other than the components listed above, preferably in a range in which the content of each component is less than 0.1% by mass.
 含有が許容される成分としては、上述のSO3とSnO2以外に溶融ガラスの脱泡を目的として添加される、As25、Sb25、Cl、Fを例示できる。ただし、As25、Sb25、Cl、Fは、環境に対する悪影響が大きいなどの理由から添加しないことが好ましい。また、含有が許容されるまた別の例は、ZnO、P25、GeO2、Ga23、Y23、La23である。工業的に使用される原料に由来する上記以外の成分であっても0.1質量%を超えない範囲であれば許容される。これらの成分は、必要に応じて適宜添加したり、不可避的に混入したりするものであるから、本実施形態のガラス板1は、これらの成分を実質的に含有しないものであっても構わない。 Examples of the components permitted to be contained include As 2 O 5 , Sb 2 O 5 , Cl, and F added for the purpose of defoaming the molten glass in addition to the above-mentioned SO 3 and Sn O 2 . However, it is preferable not to add As 2 O 5 , Sb 2 O 5 , Cl, and F because they have a large adverse effect on the environment. In addition, another example in which the content is allowed is ZnO, P 2 O 5 , GeO 2 , Ga 2 O 3 , Y 2 O 3 , and La 2 O 3 . Even components other than the above derived from industrially used raw materials are permitted as long as they do not exceed 0.1% by mass. Since these components are appropriately added or inevitably mixed as needed, the glass plate 1 of the present embodiment may be substantially free of these components. do not have.
 (密度(比重):d)
 上記組成より、本実施形態では、ガラス板1の密度を2.53g・cm-3以下、さらには2.51g・cm-3以下、場合によっては2.50g・cm-3以下にまで減少させることができる。
(Density (specific gravity): d)
From the above composition, in the present embodiment, the density of the glass plate 1 is reduced to 2.53 g · cm -3 or less, further to 2.51 g · cm -3 or less, and in some cases 2.50 g · cm -3 or less. be able to.
 フロート法などでは、ガラス品種間の密度の相違が大きいと、製造するガラス品種を切り換える際に溶融窯の底部に密度が高い方の溶融ガラスが滞留し、品種の切り換えに支障が生じる場合がある。現在、フロート法で量産されているソーダライムガラスの密度は約2.50g・cm-3である。したがって、フロート法による量産を考慮すると、ガラス板1の密度は、上記の値に近いこと、具体的には、2.45~2.55g・cm-3、特に2.47~2.53g・cm-3が好ましく、2.47~2.50g・cm-3がさらに好ましい。 In the float method, if there is a large difference in density between glass types, the higher density molten glass may stay at the bottom of the melting kiln when switching between glass types to be manufactured, which may hinder the switching of glass types. .. Currently, the density of soda lime glass mass-produced by the float method is about 2.50 g · cm -3 . Therefore, considering mass production by the float method, the density of the glass plate 1 is close to the above value, specifically, 2.45 to 2.55 g · cm -3 , especially 2.47 to 2.53 g ·. cm -3 is preferable, and 2.47 to 2.50 g · cm -3 is more preferable.
 (弾性率:E)
 イオン交換を伴う化学強化を行うと、ガラス基板に反りが生じることがある。この反りを抑制するためには、ガラス板1の弾性率は高いことが好ましい。本発明によれば、ガラス板1の弾性率(ヤング率:E)を70GPa以上、さらには72GPa以上にまで増加させることができる。
(Elastic modulus: E)
Chemical strengthening with ion exchange may cause the glass substrate to warp. In order to suppress this warpage, it is preferable that the elastic modulus of the glass plate 1 is high. According to the present invention, the elastic modulus (Young's modulus: E) of the glass plate 1 can be increased to 70 GPa or more, and further to 72 GPa or more.
 以下、ガラス板1の化学強化について説明する。
 (化学強化の条件と圧縮応力層)
 ナトリウムを含むガラス板1を、ナトリウムイオンよりもイオン半径の大きい一価の陽イオン、好ましくはカリウムイオン、を含む溶融塩に接触させ、ガラス板1中のナトリウムイオンを上記の一価の陽イオンによって置換するイオン交換処理を行うことにより、本発明によるガラス板1の化学強化を実施することができる。これによって、表面に圧縮応力が付与された圧縮応力層が形成される。
Hereinafter, the chemical strengthening of the glass plate 1 will be described.
(Chemical strengthening conditions and compressive stress layer)
The glass plate 1 containing sodium is brought into contact with a molten salt containing a monovalent cation having an ionic radius larger than that of the sodium ion, preferably a potassium ion, and the sodium ion in the glass plate 1 is brought into contact with the above monovalent cation. The chemical strengthening of the glass plate 1 according to the present invention can be carried out by performing the ion exchange treatment of replacement by. As a result, a compressive stress layer to which compressive stress is applied to the surface is formed.
 溶融塩としては、典型的には硝酸カリウムを挙げることができる。硝酸カリウムと硝酸ナトリウムとの混合溶融塩を用いることもできるが、混合溶融塩は濃度管理が難しいため、硝酸カリウム単独の溶融塩が好ましい。 Typical examples of the molten salt include potassium nitrate. A mixed molten salt of potassium nitrate and sodium nitrate can also be used, but since it is difficult to control the concentration of the mixed molten salt, a molten salt of potassium nitrate alone is preferable.
 強化ガラス物品における表面圧縮応力と圧縮応力層深さとは、該物品のガラス組成だけではなく、イオン交換処理における溶融塩の温度と処理時間によって制御することができる。 The surface compressive stress and the compressive stress layer depth in the tempered glass article can be controlled not only by the glass composition of the article but also by the temperature and treatment time of the molten salt in the ion exchange treatment.
 以上のガラス板1は、硝酸カリウム溶融塩と接触させることによって、表面圧縮応力が非常に高く、かつ、圧縮応力層の深さが非常に深い強化ガラス物品を得ることができる。具体的には、表面圧縮応力が700MPa以上かつ圧縮応力層の深さが20μm以上である強化ガラス物品を得ることができ、さらに圧縮応力層の深さが20μm以上かつ表面圧縮応力が750MPa以上である強化ガラス物品を得ることもできる。 By contacting the above glass plate 1 with the molten salt of potassium nitrate, it is possible to obtain a tempered glass article having a very high surface compressive stress and a very deep compressive stress layer. Specifically, a tempered glass article having a surface compressive stress of 700 MPa or more and a compressive stress layer depth of 20 μm or more can be obtained, and further, a compressive stress layer depth of 20 μm or more and a surface compressive stress of 750 MPa or more. You can also get certain tempered glass articles.
 <2.抗菌膜>
 次に、抗菌膜2について、図2を参照しつつ説明する。図2は抗菌膜の概略を示す拡大断面図である。図2に示すように、抗菌膜2は、ガラス板1の第1面に積層される保持層21と、この保持層21によって保持される抗菌性微粒子22と、を備えている。以下、これらについて説明する。
<2. Antibacterial membrane>
Next, the antibacterial membrane 2 will be described with reference to FIG. FIG. 2 is an enlarged cross-sectional view showing an outline of the antibacterial membrane. As shown in FIG. 2, the antibacterial film 2 includes a holding layer 21 laminated on the first surface of the glass plate 1 and antibacterial fine particles 22 held by the holding layer 21. These will be described below.
 <2-1.保持層>
 保持層21は、ガラス板1の第1面に積層されているため、保持層21の表面にも、第1面の凹凸に沿うように凹凸が形成される。保持層21の表面粗さRaは、ガラス板1の第1面の表面粗さよりは小さくなるため、例えば、120nm以下であることが好ましく、100nm以下であることがさらに好ましい。一方、保持層21の表面粗さRaは、例えば、20nm以上であることが好ましく、40nm以上であることがさらに好ましい。このように、保持層21の表面粗さRaが、20nm以上で、且つ120nmより小さければ、防眩機能が発揮される。また、保持層の表面のRsmは、0μmを超え35μm以下が好ましく、1μm~30μmがさらに好ましく、2μm~20μmが特に好ましい。Rsmは、JIS B0601:2001により定められた粗さ曲線要素の平均長さである。大きすぎないRsmは、いわゆるスパークルの抑制に好適である。
<2-1. Retention layer>
Since the holding layer 21 is laminated on the first surface of the glass plate 1, unevenness is also formed on the surface of the holding layer 21 along the unevenness of the first surface. Since the surface roughness Ra of the holding layer 21 is smaller than the surface roughness of the first surface of the glass plate 1, it is preferably 120 nm or less, more preferably 100 nm or less, for example. On the other hand, the surface roughness Ra of the holding layer 21 is preferably, for example, 20 nm or more, and more preferably 40 nm or more. As described above, when the surface roughness Ra of the holding layer 21 is 20 nm or more and smaller than 120 nm, the antiglare function is exhibited. The Rsm on the surface of the holding layer is preferably more than 0 μm and 35 μm or less, more preferably 1 μm to 30 μm, and particularly preferably 2 μm to 20 μm. Rsm is the average length of the roughness curve elements defined by JIS B0601: 2001. Rsm that is not too large is suitable for suppressing so-called sparkles.
 保持層21の最大厚みDは、例えば、10~500nmであることが好ましく、20~200nmであることがさらに好ましく、30~80nmであることが特に好ましい。最大厚みDが厚すぎると、後述する抗菌性微粒子22が保持層21に埋没してしまうおそれがあり、抗菌機能が抑制される可能性がある。また、ガラス板1からの保持層21の剥離や膜割れのおそれがある。一方、最大厚みDが薄すぎると、抗菌性微粒子22を保持できず、保持層21から抗菌性微粒子が離脱するおそれがあるため、好ましくない。ここで、最大厚みDとは、図2に示すように、ガラス板1の第1面の最も深い凹部から、保持層21の最も高い凸部までの厚みを意味する。 The maximum thickness D of the holding layer 21 is, for example, preferably 10 to 500 nm, more preferably 20 to 200 nm, and particularly preferably 30 to 80 nm. If the maximum thickness D is too thick, the antibacterial fine particles 22 described later may be buried in the holding layer 21, and the antibacterial function may be suppressed. In addition, there is a risk that the holding layer 21 may be peeled off from the glass plate 1 or the film may be cracked. On the other hand, if the maximum thickness D is too thin, the antibacterial fine particles 22 cannot be retained, and the antibacterial fine particles may be detached from the holding layer 21, which is not preferable. Here, the maximum thickness D means the thickness from the deepest concave portion of the first surface of the glass plate 1 to the highest convex portion of the holding layer 21 as shown in FIG.
 保持層21は、抗菌性微粒子を保持するバインダとしての役割を果たす。保持層2は、Siの酸化物である酸化シリコンを含み、酸化シリコンを主成分とすることが好ましい。酸化シリコンを主成分とする保持層21は、膜の屈折率を低下させ、膜の反射率を抑制することに適している。保持層21は、酸化シリコン以外の成分を含んでいてもよく、酸化シリコンを部分的に含む成分を含んでいてもよい。 The holding layer 21 serves as a binder for holding antibacterial fine particles. The holding layer 2 contains silicon oxide, which is an oxide of Si, and preferably contains silicon oxide as a main component. The holding layer 21 containing silicon oxide as a main component is suitable for lowering the refractive index of the film and suppressing the reflectance of the film. The holding layer 21 may contain a component other than silicon oxide, or may contain a component partially containing silicon oxide.
 酸化シリコンを部分的に含む成分は、例えば、ケイ素原子及び酸素原子により構成された部分を含み、この部分のケイ素原子又は酸素原子に、両原子以外の原子、官能基その他が結合した成分である。ケイ素原子及び酸素原子以外の原子としては、例えば、窒素原子、炭素原子、水素原子、次段落に記述する金属元素を例示できる。官能基としては、例えば次段落にRとして記述する有機基を例示できる。このような成分は、ケイ素原子及び酸素原子のみから構成されていない点で、厳密には酸化シリコンではない。しかし、保持層21の特性を記述する上では、ケイ素原子及び酸素原子により構成されている酸化シリコン部分も「酸化シリコン」として取り扱うことが適当であり、当該分野の慣用にも一致する。本明細書では、酸化シリコン部分も酸化シリコンとして取り扱うこととする。以上の説明からも明らかなとおり、酸化シリコンにおけるシリコン原子と酸素原子との原子比は化学量論的(1:2)でなくてもよい。 The component partially containing silicon oxide includes, for example, a portion composed of a silicon atom and an oxygen atom, and is a component in which an atom other than both atoms, a functional group or the like is bonded to the silicon atom or the oxygen atom in this portion. .. Examples of the atom other than the silicon atom and the oxygen atom include a nitrogen atom, a carbon atom, a hydrogen atom, and a metal element described in the next paragraph. As the functional group, for example, an organic group described as R in the next paragraph can be exemplified. Strictly speaking, such a component is not silicon oxide in that it is not composed only of silicon atoms and oxygen atoms. However, in describing the characteristics of the holding layer 21, it is appropriate to treat the silicon oxide portion composed of silicon atoms and oxygen atoms as "silicon oxide", which is consistent with the practice in the art. In the present specification, the silicon oxide portion is also treated as silicon oxide. As is clear from the above explanation, the atomic ratio of a silicon atom to an oxygen atom in silicon oxide does not have to be stoichiometric (1: 2).
 保持層21は、酸化シリコン以外の金属酸化物、具体的にはケイ素以外を含む金属酸化物成分又は金属酸化物部分を含み得る。保持層21が含み得る金属酸化物は、特に制限されないが、例えば、Al、Ti、Zr、Ta、Nb、Nd、La、Ce及びSnからなる群より選ばれる少なくとも1種の金属元素の酸化物である。保持層21は、酸化物以外の無機化合物成分、例えば、窒化物、炭化物、ハロゲン化物等を含んでいてもよく、有機化合物成分を含んでいてもよい。 The holding layer 21 may contain a metal oxide other than silicon oxide, specifically, a metal oxide component or a metal oxide portion containing other than silicon. The metal oxide that can be contained in the holding layer 21 is not particularly limited, but is, for example, an oxide of at least one metal element selected from the group consisting of Al, Ti, Zr, Ta, Nb, Nd, La, Ce and Sn. Is. The holding layer 21 may contain an inorganic compound component other than an oxide, for example, a nitride, a carbide, a halide, or the like, or may contain an organic compound component.
 酸化シリコン等の金属酸化物は、加水分解可能な有機金属化合物から形成することができる。加水分解可能なシリコン化合物としては、式(1)で示される化合物を挙げることができる。
 RnSiY4-n (1)
 Rは、アルキル基、ビニル基、エポキシ基、スチリル基、メタクリロイル基及びアクリロイル基から選ばれる少なくとも1種を含む有機基である。Yは、アルコキシ基、アセトキシ基、アルケニルオキシ基及びアミノ基から選ばれる少なくとも1種である加水分解可能な有機基、又はハロゲン原子である。ハロゲン原子は、好ましくはClである。nは、0から3までの整数であり、好ましくは0又は1である。
Metal oxides such as silicon oxide can be formed from hydrolyzable organometallic compounds. Examples of the hydrolyzable silicon compound include the compound represented by the formula (1).
R n SiY 4-n (1)
R is an organic group containing at least one selected from an alkyl group, a vinyl group, an epoxy group, a styryl group, a methacryloyl group and an acryloyl group. Y is a hydrolyzable organic group or a halogen atom which is at least one selected from an alkoxy group, an acetoxy group, an alkenyloxy group and an amino group. The halogen atom is preferably Cl. n is an integer from 0 to 3, preferably 0 or 1.
 Rとしては、アルキル基、例えば炭素数1~3のアルキル基、特にメチル基が好適である。Yとしては、アルコキシ基、例えば炭素数1~4のアルコキシ基、特にメトキシ基及びエトキシ基が好適である。上記の式で示される化合物を2種以上組み合わせて用いてもよい。このような組み合わせとしては、例えばnが0であるテトラアルコキシシランと、nが1であるモノアルキルトリアルコキシシランとの併用が挙げられる。 As R, an alkyl group, for example, an alkyl group having 1 to 3 carbon atoms, particularly a methyl group is suitable. As Y, an alkoxy group, for example, an alkoxy group having 1 to 4 carbon atoms, particularly a methoxy group and an ethoxy group are suitable. Two or more compounds represented by the above formula may be used in combination. Examples of such a combination include a combination of a tetraalkoxysilane in which n is 0 and a monoalkyltrialkoxysilane in which n is 1.
 式(1)で示される化合物は、加水分解及び重縮合の後、シリコン原子が酸素原子を介して互いに結合したネットワーク構造を形成する。この構造において、Rで示される有機基は、シリコン原子に直接結合された状態で含まれる。 The compound represented by the formula (1) forms a network structure in which silicon atoms are bonded to each other via oxygen atoms after hydrolysis and polycondensation. In this structure, the organic group represented by R is contained in a state of being directly bonded to a silicon atom.
 <2-2.抗菌性微粒子>
 抗菌性微粒子22は、抗菌機能を有する、例えば、銅、銀、酸化亜鉛等で形成された微粒子を含有するものとすることができる。抗菌性微粒子22は、これら微粒子の凝集体とすることができるが、これら微粒子のほか、分散剤や結着剤を含む凝集体とすることができる。あるいは、凝集体ではない、上記微粒子とすることができる。但し、以下では説明の便宜のため、特に断りのない限り、「抗菌性微粒子」との文言は微粒子の凝集体を意味することとする。凝集体を構成する微粒子の平均粒径は、例えば、10~150nmであることが好ましく、15~100nmであることがさらに好ましく、20~80nmであることが特に好ましい。また、凝集体である抗菌性微粒子22の平均粒径は、保持層21の最大厚みよりも大きく、例えば、0.1~10μmであることが好ましく、0.5~5μmであることがさらに好ましく、1~4μmであることが特に好ましい。これにより、抗菌性微粒子22が、保持層21から突出し、抗菌機能を発揮する。なお、抗菌性微粒子22が保持層21に覆われることもあるが、覆われていたとしても保持層21の薄いため、抗菌機能が大きく抑制されることはない。
<2-2. Antibacterial fine particles>
The antibacterial fine particles 22 may contain fine particles having an antibacterial function, for example, made of copper, silver, zinc oxide, or the like. The antibacterial fine particles 22 can be aggregates of these fine particles, but can also be aggregates containing dispersants and binders in addition to these fine particles. Alternatively, it can be the fine particles that are not aggregates. However, in the following, for convenience of explanation, the term "antibacterial fine particles" means an aggregate of fine particles unless otherwise specified. The average particle size of the fine particles constituting the aggregate is, for example, preferably 10 to 150 nm, more preferably 15 to 100 nm, and particularly preferably 20 to 80 nm. The average particle size of the antibacterial fine particles 22 which are aggregates is larger than the maximum thickness of the holding layer 21, for example, preferably 0.1 to 10 μm, and more preferably 0.5 to 5 μm. It is particularly preferably 1 to 4 μm. As a result, the antibacterial fine particles 22 protrude from the holding layer 21 and exert an antibacterial function. The antibacterial fine particles 22 may be covered with the holding layer 21, but even if the holding layer 21 is covered, the antibacterial function is not significantly suppressed because the holding layer 21 is thin.
 また、保持層21に保持された抗菌性微粒子22の間隔Lは、1~200μmであることが好ましく、2~100μmであることがさらに好ましく、3~70μmであることが特に好ましい。抗菌性微粒子22の間隔Lが狭すぎると、その間で露出する保持層21の面積が狭くなり、防眩機能が損なわれるおそれがある。一方、抗菌性微粒子22の間隔Lが広すぎると、抗菌機能が低減するおそれがある。なお、抗菌性微粒子22の平均粒径及び抗菌性微粒子22間の間隔の測定方法は、後述する実施例の(6)項に記載している。 Further, the interval L of the antibacterial fine particles 22 held in the holding layer 21 is preferably 1 to 200 μm, more preferably 2 to 100 μm, and particularly preferably 3 to 70 μm. If the distance L between the antibacterial fine particles 22 is too narrow, the area of the holding layer 21 exposed between them becomes narrow, and the antiglare function may be impaired. On the other hand, if the distance L between the antibacterial fine particles 22 is too wide, the antibacterial function may be reduced. The method for measuring the average particle size of the antibacterial fine particles 22 and the interval between the antibacterial fine particles 22 is described in Section (6) of Examples described later.
 抗菌膜2に含有される抗菌性微粒子の含有量は、50重量%以下、40重量%以下、30重量%以下、20重量%以下、18重量%以下、及び15重量%以下の順で好ましい。一方、下限値としては、0.1重量%以上、5重量%以上、10重量%以上の順で好ましい。 The content of the antibacterial fine particles contained in the antibacterial membrane 2 is preferably 50% by weight or less, 40% by weight or less, 30% by weight or less, 20% by weight or less, 18% by weight or less, and 15% by weight or less in this order. On the other hand, the lower limit is preferably 0.1% by weight or more, 5% by weight or more, and 10% by weight or more in this order.
 <2-3.抗菌膜の形成方法>
 抗菌膜2の形成方法は、特には限定されないが、例えば、以下のように形成することができる。まず、上述したマトリクスを構成する材料、例えば、テトラエトキシシランを酸性条件下で溶液とし、前駆体液を生成する。また、上述した抗菌性微粒子22を含む分散液、例えば、銅微粒子分散液をプロピレングリコール等によって希釈し、微粒子分散液を生成する。そして、前駆体液と微粒子分散液とを混合し、抗菌膜用コーティング液を生成する。このコーティング液中の抗菌性微粒子22の濃度は、例えば、100~8000ppmであることが好ましく、500~5000ppmであることがさらに好ましい。抗菌性微粒子22の濃度が高すぎると、カバー部材10の可視光透過率が低減し、またヘイズが高くなるおそれがある。一方、抗菌性微粒子22の濃度が低すぎると、抗菌機能が発揮できないおそれがある。
<2-3. Method of forming antibacterial film>
The method for forming the antibacterial film 2 is not particularly limited, but can be formed as follows, for example. First, a material constituting the above-mentioned matrix, for example, tetraethoxysilane is used as a solution under acidic conditions to generate a precursor solution. Further, the dispersion liquid containing the antibacterial fine particles 22 described above, for example, the copper fine particle dispersion liquid is diluted with propylene glycol or the like to generate a fine particle dispersion liquid. Then, the precursor liquid and the fine particle dispersion liquid are mixed to generate a coating liquid for an antibacterial film. The concentration of the antibacterial fine particles 22 in this coating liquid is preferably, for example, 100 to 8000 ppm, more preferably 500 to 5000 ppm. If the concentration of the antibacterial fine particles 22 is too high, the visible light transmittance of the cover member 10 may decrease and the haze may increase. On the other hand, if the concentration of the antibacterial fine particles 22 is too low, the antibacterial function may not be exhibited.
 次に、洗浄したガラス板1の第1面に、コーティング液を塗布する。塗布方法は特には限定されないが、例えば、フローコート法、スプレーコート法、スピンコート法などを採用することができる。その後、塗布したコーティング液をオーブンなどで、例えば、溶液中のアルコール分を揮発させるため、所定温度(例えば、80~120℃)で乾燥した後、例えば、加水分解及び有機鎖の分解のため、所定温度(例えば、200~500℃)で焼結させると、抗菌膜2を得ることができる。 Next, apply the coating liquid to the first surface of the washed glass plate 1. The coating method is not particularly limited, and for example, a flow coating method, a spray coating method, a spin coating method, or the like can be adopted. Then, the applied coating liquid is dried in an oven or the like at a predetermined temperature (for example, 80 to 120 ° C.) in order to volatilize the alcohol content in the solution, and then, for example, for hydrolysis and decomposition of organic chains. The antibacterial film 2 can be obtained by sintering at a predetermined temperature (for example, 200 to 500 ° C.).
 <3.カバー部材の光学特性>
 上記のように抗菌膜2が形成されたカバー部材10の光学特性としては、例えば、可視光透過率が85%以上であることが好ましく、90%以上であることがさらに好ましい。また、カバー部材10のヘイズ率は、例えば20%以下、さらに15%以下、特に10%以下であり、場合によっては1~8%、さらに1~6%であってもよい。
<3. Optical characteristics of cover member>
As the optical characteristics of the cover member 10 on which the antibacterial film 2 is formed as described above, for example, the visible light transmittance is preferably 85% or more, and more preferably 90% or more. The haze rate of the cover member 10 is, for example, 20% or less, further 15% or less, particularly 10% or less, and in some cases, 1 to 8%, further 1 to 6%.
 また、グロスは、鏡面光沢度により評価することができる。カバー部材10の60°鏡面光沢度は、例えば60~130%、さらに70~120%、特に80~110%である。これらの鏡面光沢度は、抗菌膜2を形成した面について測定された値である。なお、カーナビゲーション等の車載機器のディスプレイのカバー部材としては、一般的に、120~140%のグロスを示すものが用いられている。 In addition, the gloss can be evaluated by the mirror glossiness. The 60 ° mirror gloss of the cover member 10 is, for example, 60 to 130%, further 70 to 120%, and particularly 80 to 110%. These mirror glossiness are values measured for the surface on which the antibacterial film 2 is formed. As a cover member for a display of an in-vehicle device such as a car navigation system, a member having a gloss of 120 to 140% is generally used.
 60°鏡面光沢度Gとヘイズ率H(%)との間には、関係式(a)が成立することが好ましく、関係式(b)が成立することがさらに好ましい。
 H≦-0.2G+25   (a)
 H≦-0.2G+24.5 (b)
It is preferable that the relational expression (a) is established between the 60 ° mirror glossiness G and the haze rate H (%), and it is more preferable that the relational expression (b) is established.
H ≦ -0.2G + 25 (a)
H ≦ -0.2G + 24.5 (b)
 なお、グロスはJIS Z8741-1997の「鏡面光沢度測定方法」の「方法3(60度鏡面光沢)」に従って、ヘイズはJIS K7136:2000に従ってそれぞれ測定することができる。 Gloss can be measured according to "Method 3 (60 degree mirror gloss)" of "Mirror gloss measuring method" of JIS Z8741-1997, and haze can be measured according to JIS K7136: 2000.
 <4.特徴>
 本実施形態に係るカバー部材10は、以下の効果を奏することができる。すなわち、ガラス板1の第1面に凹凸が形成され、この第1面に保持層21と抗菌性微粒子22とを有する抗菌膜2が形成されている。そのため、保持層21の表面にもガラス板1の凹凸に沿うように凹凸が形成され、これによって、防眩機能が発揮される。また、抗菌膜2には、保持層21の最大厚みよりも大きい平均粒径を有する抗菌性微粒子22が含有されているため、抗菌性微粒子22は保持層21から突出するように配置される。これによって、抗菌機能が発揮される。このように、本実施形態に係るカバー部材1の抗菌膜2は、防眩機能と抗菌機能とを両立することができる。
<4. Features>
The cover member 10 according to the present embodiment can exert the following effects. That is, unevenness is formed on the first surface of the glass plate 1, and an antibacterial film 2 having a holding layer 21 and antibacterial fine particles 22 is formed on the first surface. Therefore, the surface of the holding layer 21 is also formed with irregularities along the irregularities of the glass plate 1, whereby the antiglare function is exhibited. Further, since the antibacterial film 2 contains antibacterial fine particles 22 having an average particle size larger than the maximum thickness of the holding layer 21, the antibacterial fine particles 22 are arranged so as to protrude from the holding layer 21. As a result, the antibacterial function is exhibited. As described above, the antibacterial film 2 of the cover member 1 according to the present embodiment can have both an antiglare function and an antibacterial function at the same time.
 <5.変形例>
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、種々の変更が可能である。なお、以下の変形例は適宜組み合わせることができる。
<5. Modification example>
Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention. The following modifications can be combined as appropriate.
 <5-1>
 上記実施形態では、ガラス板1のボトム面にエッチングを施し、これによって凹凸を形成しているが、トップ面にエッチングを施して同様に凹凸を形成することもできる。
<5-1>
In the above embodiment, the bottom surface of the glass plate 1 is etched to form irregularities, but the top surface can be etched to form irregularities in the same manner.
 <5-2>
 ガラス板1に凹凸を形成するには種々の方法があり、上述したエッチングには限定されない。その他、例えば、ガラス板1のいずれか一方の面に、凹凸を有する下地層を形成することもできる。下地層は、例えば、上述した保持層21と同様の材料で形成された基層と、この基層に保持される微粒子とで形成することができる。
<5-2>
There are various methods for forming irregularities on the glass plate 1, and the etching is not limited to the above-mentioned etching. In addition, for example, a base layer having irregularities can be formed on any one surface of the glass plate 1. The base layer can be formed, for example, by a base layer formed of the same material as the holding layer 21 described above and fine particles held by the base layer.
 微粒子の形状は、特に制限されないが、球状であることが好ましい。微粒子は球状粒子により実質的に構成されていてもよい。但し、微粒子の一部は、球状以外の形状、例えば平板状の形状を有していてもよい。微粒子は球状粒子のみにより構成されていても構わない。ここで、球状粒子とは、重心を通過する最短径に対する最長径の比が1以上1.8以下、特に1以上1.5以下であって、表面が曲面により構成されている粒子をいう。球状粒子の平均粒径は、5nm~200nm、さらに10nm~100nm、特に20nm~60nmであってもよい。球状粒子の平均粒径は、個々の粒径、具体的には上述の最短径と最長径との平均値、の平均により定まるが、その測定は、SEM像に基づいて、30個、好ましくは50個の粒子を対象として実施することが望ましい。このように、抗菌性微粒子22よりも平均粒径の小さい微粒子を用いることで、抗菌膜2の保持層21に適切な表面粗さRaを形成するための下地となる凹凸を形成することができる。 The shape of the fine particles is not particularly limited, but is preferably spherical. The fine particles may be substantially composed of spherical particles. However, some of the fine particles may have a shape other than a spherical shape, for example, a flat plate shape. The fine particles may be composed of only spherical particles. Here, the spherical particles refer to particles having a ratio of the longest diameter to the shortest diameter passing through the center of gravity of 1 or more and 1.8 or less, particularly 1 or more and 1.5 or less, and the surface of which is formed of a curved surface. The average particle size of the spherical particles may be 5 nm to 200 nm, more 10 nm to 100 nm, and particularly 20 nm to 60 nm. The average particle size of the spherical particles is determined by the average of the individual particle sizes, specifically, the average value of the shortest diameter and the longest diameter described above, and the measurement is preferably 30 particles based on the SEM image. It is desirable to carry out for 50 particles. As described above, by using fine particles having an average particle size smaller than that of the antibacterial fine particles 22, it is possible to form irregularities as a base for forming an appropriate surface roughness Ra on the holding layer 21 of the antibacterial film 2. ..
 微粒子を構成する材料は、特に制限されないが、金属酸化物、特に酸化シリコンを含むことが好ましい。ただし、金属酸化物は、例えば、Al、Ti、Zr、Ta、Nb、Nd、La、Ce及びSnからなる群より選ばれる少なくとも1種の金属元素の酸化物を含んでいてもよい。 The material constituting the fine particles is not particularly limited, but preferably contains a metal oxide, particularly silicon oxide. However, the metal oxide may contain, for example, an oxide of at least one metal element selected from the group consisting of Al, Ti, Zr, Ta, Nb, Nd, La, Ce and Sn.
 また、微粒子は、フィロケイ酸塩(phyllosilicate)鉱物粒子であってもよい。フィロケイ酸塩鉱物粒子に含まれるフィロケイ酸塩鉱物は、層状ケイ酸塩鉱物とも呼ばれる。フィロケイ酸塩鉱物としては、例えばカオリナイト、ディッカイト、ナクライト、ハロイサイト等のカオリン鉱物、クリソタイル、リザーダイト、アメサイト等のサーペンティン、モンモリロナイト、バイデライト等の2八面体型スメクタイト、サポナイト、ヘクトライト、ソーコナイト等の3八面体型スメクタイト、白雲母、パラゴナイト、イライト、セラドナイト等の2八面体型雲母、金雲母、アナイト、レピドライト等の3八面体型雲母、マーガライト等の2八面体型脆雲母、クリントナイト、アナンダイト等の3八面体型脆雲母、ドンバサイト等の2八面体型クロライト、クッケアイト、スドーアイト等の2・3八面体型クロライト、クリノクロア、シャモサイト等の3八面体型クロライト、パイロフィライト、タルク、2八面体型バーミキュライト、3八面体型バーミキュライトを挙げることができる。フィロケイ酸塩鉱物粒子は、スメクタイト、カオリン、又はタルクに属する鉱物を含むことが好ましい。スメクタイトに属する鉱物としては、モンモリロナイトが好適である。なお、モンモリロナイトは単斜晶系に属し、カオリンは三斜晶系に属し、タルクは単斜晶系又は三斜晶系に属する。 Further, the fine particles may be phyllosilicate mineral particles. The phyllosilicate mineral contained in the phyllosilicate mineral particles is also called a layered silicate mineral. Examples of the phyllosilicate mineral include kaolin minerals such as kaolinite, dikite, nacrite, and haloysite, serpentine such as chrysotile, lizardite, and amesite, and octahedral smectites such as montmorillonite and biderite, saponite, hectrite, and soconite. 2 octahedral mica such as 3 octahedral smectite, vermiculite, paragonite, illite, seradonite, 3 octahedral mica such as gold mica, anite, lepidrite, 2 octahedral brittle mica such as margarite, clintite, 3 octahedral fragile mica such as anandite, 2 octahedral chlorite such as donbasite, 2.3 octahedral chlorite such as cucumberite and sudowite, 3 octahedral chlorite such as clinochlorite and chamosite, pyrophylli Examples include light, talc, 2 octahedral vermiculite, and 3 octahedral vermiculite. The phyllosilicate mineral particles preferably contain minerals belonging to smectite, kaolin, or talc. As the mineral belonging to smectite, montmorillonite is suitable. In addition, montmorillonite belongs to the monoclinic system, kaolin belongs to the triclinic system, and talc belongs to the monoclinic system or the triclinic system.
 このような下地層は、上述した抗菌膜と同様に形成することができる。すなわち、上述したような前駆体液と微粒子分散液とを混合し、下地層用コーティング液を生成し、これをガラス板の表面に塗布した後、焼結させることで、表面に凹凸を有する下地層を形成することができる。下地層の表面粗さRaは、上述したガラス板1の第1面の表面粗さRaと同様にすることができる。また、このような下地層は、抗菌膜2の保持層21と同じ材料で形成することができるため、下地層と抗菌膜2の屈折率を近づけることができる。したがって、防眩機能をより効果的に発揮することができる。 Such an underlayer can be formed in the same manner as the above-mentioned antibacterial film. That is, the precursor liquid and the fine particle dispersion liquid as described above are mixed to generate a coating liquid for a base layer, which is applied to the surface of a glass plate and then sintered to form a base layer having irregularities on the surface. Can be formed. The surface roughness Ra of the base layer can be the same as the surface roughness Ra of the first surface of the glass plate 1 described above. Further, since such a base layer can be formed of the same material as the holding layer 21 of the antibacterial film 2, the refractive index of the base layer and the antibacterial film 2 can be brought close to each other. Therefore, the antiglare function can be exhibited more effectively.
 この場合、例えば、フロート法により形成されたガラス板(フロートガラス)に化学強化を施し、トップ面に対して下地層を形成することができる。フロートガラスに化学強化を施すと、ナトリウムイオンの濃度が高いトップ面において、ボトム面よりも、カリウムイオン等のアルカリイオンとの交換が進むため、トップ面が凸となるように反りやすくなる。そこで、上記のような下地層をトップ面に形成すると、積層した下地層が収縮し、反りが緩和される。したがって、反りを抑制するという観点からは、化学強化を施したガラス板に対し、トップ面に下地層を形成することが好ましい。 In this case, for example, a glass plate (float glass) formed by the float method can be chemically strengthened to form a base layer with respect to the top surface. When the float glass is chemically strengthened, the top surface having a high concentration of sodium ions is exchanged with alkaline ions such as potassium ions more than the bottom surface, so that the top surface is easily warped so as to be convex. Therefore, when the above-mentioned base layer is formed on the top surface, the laminated base layer shrinks and the warp is alleviated. Therefore, from the viewpoint of suppressing warpage, it is preferable to form a base layer on the top surface of the chemically strengthened glass plate.
 また、下地層と抗菌膜2との間に、公知の反射防止膜を配置することもできる。 Further, a known antireflection film can be arranged between the base layer and the antibacterial film 2.
 なお、上述した下地層の基層を構成する材料は一例であり、適宜変更することができる。例えば、基層は、酸化シリコンを主成分とする材料で形成することができるが、これに限定されない。酸化シリコンを主成分とすれば、基層の屈折率(反射率)が低くなりやすい。また、基層の化学的安定性等も良好である。また、ガラス板1との密着性が良好である。ここで、酸化シリコンを主成分とするとは、SiO2を50質量%以上含むことを意味するが、90質量%以上含むことが好ましい。 The material constituting the base layer of the base layer described above is an example, and can be appropriately changed. For example, the base layer can be formed of a material containing silicon oxide as a main component, but is not limited thereto. If silicon oxide is used as the main component, the refractive index (reflectance) of the base layer tends to be low. In addition, the chemical stability of the base layer is also good. In addition, the adhesion with the glass plate 1 is good. Here, the fact that silicon oxide is the main component means that SiO 2 is contained in an amount of 50% by mass or more, but it is preferably contained in an amount of 90% by mass or more.
 酸化シリコンを主成分とする場合、基層は、酸化シリコンのみから構成されてもよく、酸化シリコン以外の成分を少量含んでもよい。その成分としては、Li、B、C、N、F、Na、Mg、Al、P、S、K、Ca、Ti、V、Cr、Mn、Fe、Co,Ni、Cu、Zn、Ga、Sr、Y、Zr、Nb、Ru、Pd、Ag、In、Sn、Hf、Ta、W、Pt、Au、Biおよびランタノイド元素より選ばれる1つもしくは複数のイオンおよびまたは酸化物等の化合物が挙げられる。 When silicon oxide is the main component, the base layer may be composed of only silicon oxide, or may contain a small amount of components other than silicon oxide. The components include Li, B, C, N, F, Na, Mg, Al, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Sr. , Y, Zr, Nb, Ru, Pd, Ag, In, Sn, Hf, Ta, W, Pt, Au, Bi and compounds such as one or more ions and / or oxides selected from lanthanoid elements. ..
 酸化シリコンを主成分とする基層としては、酸化シリコン前駆体を含む塗布組成物から形成されるものや粒子として酸化シリコン粒子を含む塗布組成物から形成されるもの、その他酸化シリコンを主成分としない樹脂膜等により形成されたものが挙げられる。 The base layer containing silicon oxide as a main component includes those formed from a coating composition containing a silicon oxide precursor, those formed from a coating composition containing silicon oxide particles as particles, and other components not containing silicon oxide as a main component. Examples thereof include those formed by a resin film or the like.
 <5-3>
 保持層21の組成は特には限定されず、上述したように、表面に所定の表面粗さを有し、抗菌性微粒子22を保持できるような材料であればよい。
<5-3>
The composition of the holding layer 21 is not particularly limited, and as described above, any material may be used as long as it has a predetermined surface roughness on the surface and can hold the antibacterial fine particles 22.
 <5-4>
 抗菌膜2の表面に耐指紋層を形成することもできる。耐指紋膜を形成することで、カバー部材10上でのスワイプ操作がしやすくなり、また指紋等の汚れを拭き取りやすくなる。
<5-4>
A fingerprint resistant layer can also be formed on the surface of the antibacterial film 2. By forming the fingerprint-resistant film, the swipe operation on the cover member 10 becomes easy, and the stains such as fingerprints become easy to wipe off.
 耐指紋膜は、例えば、次のように形成することができる。耐指紋膜は、水及び油によるカバー部材10の濡れを最小限に抑えるように、疎水特性及び疎油特性、すなわち、両疎媒特性を有することができる。それゆえ、耐指紋膜を有する表面の濡れ特性は、表面が疎水性、すなわち、表面と水との間の接触角が、好ましくは90°より大きいだけでなく、疎油性、すなわち、表面と油との間の接触角が、好ましくは50°より大きいものでなくてはならない。 The fingerprint resistant film can be formed, for example, as follows. The fingerprint-resistant film can have hydrophobic properties and sparse oil properties, that is, both sparse medium properties, so as to minimize the wetting of the cover member 10 by water and oil. Therefore, the wetting properties of a surface with a fingerprint resistant film are not only hydrophobic, i.e., the contact angle between the surface and water is preferably greater than 90 °, but also oleophobic, i.e., surface and oil. The contact angle between and should be preferably greater than 50 °.
 耐指紋膜は、例えば、アルキル基及び/又はフルオロアルキル基を含有するシラン、例えば3,3,3-トリフルオロプロピルトリメトキシシラン又はペンチルトリエトキシシランを含む膜とすることができる。 The fingerprint-resistant film can be, for example, a film containing a silane containing an alkyl group and / or a fluoroalkyl group, for example, 3,3,3-trifluoropropyltrimethoxysilane or pentylriethoxysilane.
 耐指紋膜は、炭化水素基を有する化合物をベースとし、ここで、C-H結合が、部分的に又は好ましくは実質的にすべてC-F結合と置き換えられたフルオロ系表面層であってもよい。好ましくは、このような化合物は、例えば式(RFnSiX4-nで示され、式中、RFは、C1~C22-アルキルペルフルオロ炭化水素又は-アルキルペルフルオロポリエーテル、好ましくはC1~C10-アルキルペルフルオロ炭化水素又は-アルキルペルフルオロポリエーテルであり、nは、1~3の整数であり、Xは、加水分解性基、例えばハロゲン又はアルコキシ基-OR(ここで、Rは、例えば、線状又は分枝状の、炭素原子1~6個を有する炭化水素を表す)のペルフルオロ炭化水素とすることができる。この場合、加水分解性基Xは、例えば、ガラス基板のコーティングの末端OH基と反応し、そうして、この基に共有結合の形成によって結合することができる。ペルフルオロ炭化水素は、好ましくは、末端のフッ素表面結合の極性が低いことから、表面の表面エネルギーを低下させるために使用される。 The fingerprint resistant film is based on a compound having a hydrocarbon group, even if the CH bond is a fluoro-based surface layer in which the CH bond is partially or preferably substantially entirely replaced by the CF bond. good. Preferably, such compounds are represented, for example, in formula (RF) n SiX 4-n , where RF is C 1 to C 22 -alkyl perfluorohydrocarbons or -alkyl perfluoropolyethers, preferably. C 1 to C 10 -alkyl perfluorohydrocarbons or -alkyl perfluoropolyethers, where n is an integer of 1 to 3 and X is a hydrolyzable group such as a halogen or alkoxy group-OR (where R). Can be, for example, a linear or branched, perfluorohydrocarbon (representing a hydrocarbon having 1 to 6 carbon atoms). In this case, the hydrolyzable group X can react, for example, with the terminal OH group of the coating on the glass substrate and thus be attached to this group by the formation of a covalent bond. Perfluorohydrocarbons are preferably used to reduce the surface energy of the surface due to the low polarity of the fluorine surface bonds at the ends.
 耐指紋膜は、例えば、フッ素末端基を有する分子鎖の単層、フルオロポリマーコーティング、又は予めフッ素末端基を備えた若しくは該末端基で処理された酸化ケイ素-スート粒子から誘導されることができる。 The fingerprint resistant film can be derived, for example, from a single layer of molecular chains with a fluorine end group, a fluoropolymer coating, or silicon oxide-suit particles pre-equipped with or treated with a fluorine end group. ..
 耐指紋膜は、浸漬、蒸着、吹付け、ロール若しくはローラー若しくはブレードを用いた施与、熱による真空蒸着又はスパッタによって、好ましくは液相法、例えば噴霧、浸漬コーティング、印刷、ローラー塗り、スピンコーティング又は他の適した方法によって表面に施すことができる。浸漬又は吹付けがとりわけ好ましい。コーティングを施した後、これを有利には、適した期間にわたり、適した時間で硬化する。 The fingerprint-resistant film is preferably immersed, vapor-deposited, sprayed, applied with a roll or roller or blade, vacuum-deposited by heat or sputtered, preferably by liquid phase methods such as spraying, immersion coating, printing, roller coating, spin coating. Alternatively, it can be applied to the surface by other suitable methods. Immersion or spraying is particularly preferred. After applying the coating, it is advantageously cured over a suitable period of time and in a suitable time.
 耐指紋膜の厚みは、例えば、50~1000nmとすることができる。耐指紋膜の厚みが大きすぎると、抗菌性能が抑制されるおそれがある。一方、耐指紋膜の厚みが小さすぎると、耐指紋性能が低減するおそれがある。 The thickness of the fingerprint-resistant film can be, for example, 50 to 1000 nm. If the thickness of the fingerprint-resistant film is too large, the antibacterial performance may be suppressed. On the other hand, if the thickness of the fingerprint-resistant film is too small, the fingerprint-resistant performance may be reduced.
 耐指紋膜は、抗菌膜2の全面に形成することもできるが、一部に形成することもできる。例えば、カバー部材10の一部をキーボードのようなキータッチ操作を行うような被保護部材100に配置した場合、キーの上には耐指紋膜を形成せず、その他の例えば、スワイプ操作が行われる領域にのみ耐指紋層を形成することができる。 The fingerprint-resistant film can be formed on the entire surface of the antibacterial film 2, but it can also be formed on a part of the antibacterial film 2. For example, when a part of the cover member 10 is arranged on a protected member 100 such as a keyboard that performs a key touch operation, a fingerprint resistant film is not formed on the key, and another swipe operation is performed, for example. The fingerprint-resistant layer can be formed only in the area to be covered.
 <5-5>
 ガラス板1の一部にマスク層を形成し、マスク層が形成されている部分において、被保護部材100が外部から見えないようにすることができる。例えば、ガラス板1の周縁にマスク層を形成し、カバー部材10の周縁においては、被保護部材100が外部から見えないようにすることができる。これにより、例えば、被保護部材100の配線やブラケットなどの部品が外部から見えないようにすることができる。マスク層の材料は、外部からの視野を遮蔽可能であれば、実施形態に応じて適宜選択されればよく、例えば、黒色、茶色、灰色、濃紺等の濃色のセラミックを用いてもよい。その他、シート材を貼り付けることもできる。
<5-5>
A mask layer can be formed on a part of the glass plate 1 so that the protected member 100 cannot be seen from the outside in the portion where the mask layer is formed. For example, a mask layer can be formed on the peripheral edge of the glass plate 1 so that the protected member 100 cannot be seen from the outside on the peripheral edge of the cover member 10. As a result, for example, parts such as wiring and brackets of the protected member 100 can be hidden from the outside. The material of the mask layer may be appropriately selected according to the embodiment as long as it can shield the field of view from the outside, and for example, dark ceramics such as black, brown, gray, and navy blue may be used. In addition, a sheet material can be attached.
 マスク層の材料に黒色のセラミックが選択された場合には、例えば、カバー部材10において抗菌膜2が形成される面とは反対側の面に、スクリーン印刷等で黒色のセラミックを積層し、ガラス板ともに積層したセラミックを加熱する。そして、セラミックが硬化すると、マスク層が完成する。なお、マスク層に利用するセラミックは、種々の材料を利用することができるが、例えば、以下の表1に示す組成のセラミックをマスク層に利用することができる。 When black ceramic is selected as the material of the mask layer, for example, black ceramic is laminated on the surface of the cover member 10 opposite to the surface on which the antibacterial film 2 is formed by screen printing or the like, and glass is used. Heat the ceramic laminated together with the plate. Then, when the ceramic is cured, the mask layer is completed. As the ceramic used for the mask layer, various materials can be used. For example, the ceramic having the composition shown in Table 1 below can be used for the mask layer.
Figure JPOXMLDOC01-appb-T000001
*1,主成分:酸化銅、酸化クロム、酸化鉄及び酸化マンガン
*2,主成分:ホウケイ酸ビスマス、ホウケイ酸亜鉛
Figure JPOXMLDOC01-appb-T000001
* 1, Main component: Copper oxide, Chromium oxide, Iron oxide and Manganese oxide * 2, Main component: Bismuth borosilicate, Zinc borosilicate
 <5-6>
 本発明に係るカバー部材は、無色透明のほか、ガラス板1、抗菌膜2、下地層の少なくとも1つに着色することで、有色透明、又は半透明にすることができる。
<5-6>
In addition to being colorless and transparent, the cover member according to the present invention can be colored transparent or translucent by coloring at least one of a glass plate 1, an antibacterial film 2, and an underlayer.
 以下、本発明の実施例について説明する。但し、本発明は、以下の実施例には限定されない。 Hereinafter, examples of the present invention will be described. However, the present invention is not limited to the following examples.
(1)実施例の準備
 50mmx50mmのフロートガラス板上に、下地層を積層し、さらに抗菌膜を積層することで、実施例1に係るカバー部材を形成した。
(1) Preparation of Example A cover member according to Example 1 was formed by laminating a base layer on a float glass plate of 50 mm x 50 mm and further laminating an antibacterial film.
 (1-1)下地層
 以下の組成を有する下地層の前駆体液を調製した(単位はgである)。下地層に含有される微粒子としてカオリン(フィロケイ酸塩鉱物粒子)を採用した。そして、これらの混合溶液を60℃で7時間攪拌し、前駆体液を得た。
Figure JPOXMLDOC01-appb-T000002
(1-1) Underlayer A precursor solution of the underlayer having the following composition was prepared (unit is g). Kaolin (phyllosilicate mineral particles) was used as the fine particles contained in the base layer. Then, these mixed solutions were stirred at 60 ° C. for 7 hours to obtain a precursor solution.
Figure JPOXMLDOC01-appb-T000002
 硝酸及びカオリンTS90は、日本アルコール販売株式会社製クリンソルブP-7に溶解されている。クリンソルブP-7は、エタノールを主成分とし、イソプロピルアルコール、ノルマルプロピルアルコールを含有する混合溶剤である。 Nitric acid and kaolin TS90 are dissolved in Cleansolve P-7 manufactured by Japan Alcohol Trading Co., Ltd. Cleansolve P-7 is a mixed solvent containing ethanol as a main component, isopropyl alcohol, and normal propyl alcohol.
 上記ガラス板に対し、上記前駆体液をフローコーティングにより塗布し、その後、200℃に設定したオーブン内で乾燥させ、下地層を形成した。 The precursor liquid was applied to the glass plate by flow coating, and then dried in an oven set at 200 ° C. to form an underlayer.
(1-2)保持層
 以下の組成を有する保持層用の前駆体液を調製した(単位はgである)。そして、これらの混合溶液を60℃で7時間攪拌し、TEOSの加水分解反応により前駆体液を得た。
Figure JPOXMLDOC01-appb-T000003
(1-2) Retention layer A precursor solution for a retention layer having the following composition was prepared (unit is g). Then, these mixed solutions were stirred at 60 ° C. for 7 hours, and a precursor solution was obtained by a hydrolysis reaction of TEOS.
Figure JPOXMLDOC01-appb-T000003
 この前駆体液に対し、以下の組成の抗菌膜用コーティング液を調製した(単位はgである)。抗菌性微粒子としては銅を用い、プロピレングリコールで1%の濃度に希釈した分散液を準備した。そして、表4の材料を上から下の順に攪拌しながら混合した。そして、この混合溶液を室温で攪拌し、コーティング液を得た。
Figure JPOXMLDOC01-appb-T000004
A coating solution for an antibacterial film having the following composition was prepared for this precursor solution (unit: g). Copper was used as the antibacterial fine particles, and a dispersion diluted with propylene glycol to a concentration of 1% was prepared. Then, the materials in Table 4 were mixed while stirring in the order from top to bottom. Then, this mixed solution was stirred at room temperature to obtain a coating liquid.
Figure JPOXMLDOC01-appb-T000004
 そして、このコーティング液をロールコーティングにより下地層上に塗布し、10分間の自然乾燥の後、300℃に設定したオーブン内で30分加熱し、抗菌膜を形成した。こうして、本実施例に係るカバー部材が完成した。このカバー部材に対し、以下の試験を行った。 Then, this coating liquid was applied onto the base layer by roll coating, air-dried for 10 minutes, and then heated in an oven set at 300 ° C. for 30 minutes to form an antibacterial film. In this way, the cover member according to this embodiment was completed. The following tests were performed on this cover member.
(2) 光学特性
 グロスが119.2であった。したがって、十分な防眩性能を発揮できている。また、ヘイズ率は、3.2%であり、十分に低かった。ヘイズ率の測定は、日本電色工業株式会社製ヘイズメータNDH2000により行った。この際、抗菌膜を入射面とし、試料の3点でヘイズ率を測定し、その平均値をヘイズ率とした。
(2) Optical characteristics The gloss was 119.2. Therefore, sufficient anti-glare performance can be exhibited. The haze rate was 3.2%, which was sufficiently low. The haze rate was measured by a haze meter NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd. At this time, the antibacterial film was used as the incident surface, the haze rate was measured at three points of the sample, and the average value was taken as the haze rate.
(3) 表面粗さ
 抗菌膜の表面粗さRaは52nmであった。また、抗菌膜の粗さ曲線要素の平均長さRsmは16.2μmであった。
(3) Surface roughness The surface roughness Ra of the antibacterial film was 52 nm. The average length Rsm of the roughness curve element of the antibacterial film was 16.2 μm.
(4) 抗菌試験
 抗菌性の評価を、以下の通り、JIS Z2801:2012(フィルム密着法)に基づいて行った(ISO22916に相当)。
・試験細菌:E.Coli(大腸菌 NBRC3972)
・試料形態:上記カバー部材
・作用時間:24時間
・抗菌活性値(R)の算出:R=(Ut-U0)-(At-U0)=Ut-At
U0:ガラス板の接種直後の生菌数の対数値の平均値
Ut:ガラス板の24時間後の生菌数の対数値の平均値
At:カバー部材の24時間後の生菌数の対数値の平均値
・作用条件:温度35℃、湿度90%以上(JIS準拠)
・密着フィルム:40mm×40mmのPPフィルム(JIS基準)
・試験菌液の摂取量:0.2ml
・試験菌液の生菌数:1.1×106
・生菌数測定:ガラス板の菌液接種直後および24時間培養後のカバー部材の生菌数を測定
(4) Antibacterial test The antibacterial property was evaluated based on JIS Z2801: 2012 (film adhesion method) as follows (corresponding to ISO22216).
-Test bacteria: E. Coli (E. coli NBRC3972)
-Sample form: The cover member-Action time: 24 hours-Calculation of antibacterial activity value (R): R = (Ut-U0)-(At-U0) = Ut-At
U0: Mean of log of viable cell count immediately after inoculation of glass plate Ut: Mean of log of viable cell count after 24 hours of glass plate At: Log of viable cell count after 24 hours of cover member Mean value / working conditions: Temperature 35 ° C, humidity 90% or more (JIS compliant)
-Adhesion film: 40 mm x 40 mm PP film (JIS standard)
・ Intake of test bacterial solution: 0.2 ml
・ Viable cell count of test bacterial solution: 1.1 × 10 6
・ Measurement of viable cell count: Measure the viable cell count of the cover member immediately after inoculation of the bacterial solution on the glass plate and after culturing for 24 hours.
 上記試験の結果、抗菌活性は、6.1であった。2.0以上で抗菌活性があると評価されるため、本実施例においては十分な抗菌性能が確認できた。 As a result of the above test, the antibacterial activity was 6.1. Since it is evaluated to have antibacterial activity at 2.0 or higher, sufficient antibacterial performance was confirmed in this example.
(5) 抗ウイルス試験
 抗ウイルス性の評価を、以下の通り、ISO21702に準じて行った。
・宿主細胞:MDCK細胞(ATCC CCL-34)
・試料形態:上記カバー部材
・作用時間:24時間
・抗ウイルス活性値(R)の算出:R=(Ut-U0)-(At-U0)=Ut-At
U0:ガラス板の接種直後のプラーク数の対数値の平均値、PFU/cm2
Ut:ガラス板の24時間後のプラーク数の対数値の平均値、PFU/cm2
At:カバー部材の24時間後のプラーク数の対数値の平均値、PFU/cm2
・作用条件:温度25℃
・密着フィルム:40mm×40mmのPPフィルム(ISO基準)
・試験ウイルス液の摂取量:0.4ml
・試験ウイルス液の感染価:1.5×107PFU/ml
・ウイルス感染価の測定方法:プラーク法
(5) Antiviral test The antiviral property was evaluated according to ISO21702 as follows.
-Host cell: MDCK cell (ATCC CCL-34)
-Sample form: The cover member-Action time: 24 hours-Calculation of antiviral activity value (R): R = (Ut-U0)-(At-U0) = Ut-At
U0: Average logarithmic number of plaques immediately after inoculation of the glass plate, PFU / cm 2
Ut: Average logarithmic number of plaques after 24 hours on the glass plate, PFU / cm 2
At: Average logarithmic number of plaques after 24 hours of cover member, PFU / cm 2
-Operating conditions: Temperature 25 ° C
-Adhesion film: 40 mm x 40 mm PP film (ISO standard)
・ Intake of test virus solution: 0.4 ml
・ Infectious titer of test virus solution: 1.5 × 10 7 PFU / ml
・ Measurement method of viral load: plaque method
 上記試験の結果、抗ウイルス活性は、1.6であった。これにより、抗菌膜が形成されていないガラス板と比較して、約97%のウイルスが減少していると判断される。 As a result of the above test, the antiviral activity was 1.6. As a result, it is judged that the virus is reduced by about 97% as compared with the glass plate on which the antibacterial film is not formed.
(6) 表面性状
 図3は、実施例の抗菌膜の表面性状をSEMで観察した写真、図4は、図3の写真に写る抗菌性微粒子の拡大図である。図3に写る白色の複数の点が抗菌性微粒子を示している。また、図4に示すように、本実施例に係る抗菌性微粒子は、銅粒子の凝集体であることが分かる。図3に写る抗菌性微粒子の粒子径は1~4μmであった。また、抗菌性微粒子間の距離は最大50μm、最小5μm、平均25μmであった。
(6) Surface properties FIG. 3 is a photograph of the surface texture of the antibacterial film of the example observed by SEM, and FIG. 4 is an enlarged view of the antibacterial fine particles shown in the photograph of FIG. A plurality of white dots shown in FIG. 3 indicate antibacterial fine particles. Further, as shown in FIG. 4, it can be seen that the antibacterial fine particles according to this example are aggregates of copper particles. The particle size of the antibacterial fine particles shown in FIG. 3 was 1 to 4 μm. The maximum distance between the antibacterial fine particles was 50 μm, the minimum was 5 μm, and the average was 25 μm.
 平均粒径は、以下の方法で算出した。まず、倍率が1000倍のSEM画像を異なる視野で3枚取得した。次に、90μmx120μmの範囲(図3の破線で囲まれた範囲)において、次の計測を行った。まず、抗菌性微粒子の長軸方向の長さと短軸方向の長さを計測し、それらの平均をひとつの抗菌性微粒子の粒径とする。そして、同様の計測を任意の抗菌性微粒子について1画像につき10点、合計30点行い、それらの平均を平均粒径とした。 The average particle size was calculated by the following method. First, three SEM images with a magnification of 1000 times were acquired in different fields of view. Next, the following measurement was performed in the range of 90 μmx 120 μm (the range surrounded by the broken line in FIG. 3). First, the length in the major axis direction and the length in the minor axis direction of the antibacterial fine particles are measured, and the average of them is taken as the particle size of one antibacterial fine particle. Then, the same measurement was performed for any antibacterial fine particles at 10 points per image, for a total of 30 points, and the average of them was taken as the average particle size.
 抗菌性微粒子間の距離は、以下のように算出した。まず、倍率が1000倍のSEM画像を異なる視野で3枚取得した。次に、任意の隣り合う抗菌性微粒子の間隔を計測した。同様の計測を任意の10組の抗菌性微粒子について1画像につき10点、合計30点行い、それらの平均を抗菌性微粒子間の距離とした。 The distance between the antibacterial fine particles was calculated as follows. First, three SEM images with a magnification of 1000 times were acquired in different fields of view. Next, the spacing between arbitrary adjacent antibacterial fine particles was measured. The same measurement was performed for any 10 sets of antibacterial fine particles at 10 points per image, for a total of 30 points, and the average of them was taken as the distance between the antibacterial fine particles.
1 ガラス板
2 抗菌膜
21 保持層
22 抗菌性微粒子
10 カバー部材
100 被保護部材
1 Glass plate 2 Antibacterial film 21 Retaining layer 22 Antibacterial fine particles 10 Cover member 100 Protected member

Claims (19)

  1.  第1面及び第2面を有し、前記第1面が所定の表面粗さを有する板状の基材と、
     前記第1面に形成された抗菌膜と、
    を備え、
     前記抗菌膜は、
     前記第1面に形成される保持層と、
     前記保持層に保持され、前記保持層の膜厚以上の平均粒径を有する抗菌性微粒子と、を備えている、カバー部材。
    A plate-shaped base material having a first surface and a second surface, the first surface having a predetermined surface roughness,
    The antibacterial film formed on the first surface and
    Equipped with
    The antibacterial membrane is
    The holding layer formed on the first surface and
    A cover member comprising: antibacterial fine particles held by the holding layer and having an average particle size equal to or larger than the film thickness of the holding layer.
  2.  前記保持層の表面粗さは、前記基材の第1面の表面粗さより小さく、且つ120nmより小さい、請求項1に記載のカバー部材。 The cover member according to claim 1, wherein the surface roughness of the holding layer is smaller than the surface roughness of the first surface of the base material and smaller than 120 nm.
  3.  前記保持層の最大膜厚は、前記基材の表面粗さより小さい、請求項1または2に記載のカバー部材。 The cover member according to claim 1 or 2, wherein the maximum film thickness of the holding layer is smaller than the surface roughness of the base material.
  4.  前記抗菌膜の保持層は、酸化シリコンを主成分として含有する、請求項1から3のいずれかに記載のカバー部材。 The cover member according to any one of claims 1 to 3, wherein the holding layer of the antibacterial film contains silicon oxide as a main component.
  5.  前記基材は、前記第1面及び前記第2面を有するガラス板により形成されている、請求項1から4のいずれかに記載のカバー部材。 The cover member according to any one of claims 1 to 4, wherein the base material is formed of a glass plate having the first surface and the second surface.
  6.  前記ガラス板はフロートガラスによって形成され、当該フロートガラスのボトム面が前記第1面を構成している、請求項5に記載のカバー部材。 The cover member according to claim 5, wherein the glass plate is formed of float glass, and the bottom surface of the float glass constitutes the first surface.
  7.  前記基材は、ガラス板と、前記ガラス板の一方の面に形成され、前記所定の表面粗さを有する下地層と、を備えている、請求項1から4のいずれかに記載のカバー部材。 The cover member according to any one of claims 1 to 4, wherein the base material comprises a glass plate and a base layer formed on one surface of the glass plate and having the predetermined surface roughness. ..
  8.  前記下地層は、酸化シリコンを主成分として含有する基層と、前記基層に保持される微粒子と、を備えている、請求項7に記載のカバー部材。 The cover member according to claim 7, wherein the base layer includes a base layer containing silicon oxide as a main component and fine particles held in the base layer.
  9.  前記ガラス板はフロートガラスにより形成され、当該フロートガラスのトップ面に前記下地層が形成されている、請求項7または8に記載のカバー部材。 The cover member according to claim 7 or 8, wherein the glass plate is formed of float glass, and the base layer is formed on the top surface of the float glass.
  10.  前記ガラス板の厚みは、3mm以下である、請求項5から9のいずれかに記載のカバー部材。 The cover member according to any one of claims 5 to 9, wherein the thickness of the glass plate is 3 mm or less.
  11.  前記微粒子の平均粒径は、前記抗菌性微粒子の平均粒径よりも小さい、請求項10に記載のカバー部材。 The cover member according to claim 10, wherein the average particle size of the fine particles is smaller than the average particle size of the antibacterial fine particles.
  12.  前記保持層上における前記抗菌性微粒子間の間隔は、1~200μmである、請求項1から11のいずれかに記載のカバー部材。 The cover member according to any one of claims 1 to 11, wherein the distance between the antibacterial fine particles on the holding layer is 1 to 200 μm.
  13.  前記抗菌性微粒子の平均粒径は、0.1~10μmである、請求項1から12のいずれかに記載のカバー部材。 The cover member according to any one of claims 1 to 12, wherein the average particle size of the antibacterial fine particles is 0.1 to 10 μm.
  14.  前記抗菌膜上の少なくとも一部に形成された耐指紋層が形成されている、請求項1から13のいずれかに記載のカバー部材。 The cover member according to any one of claims 1 to 13, wherein a fingerprint-resistant layer formed on at least a part of the antibacterial film is formed.
  15.  前記耐指紋層の膜厚は、前記抗菌膜より薄い、請求項14に記載のカバー部材。 The cover member according to claim 14, wherein the fingerprint-resistant layer has a thinner film thickness than the antibacterial film.
  16.  前記耐指紋層は、前記抗菌膜上の一部に形成されている、請求項14または15に記載のカバー部材。 The cover member according to claim 14 or 15, wherein the fingerprint-resistant layer is formed on a part of the antibacterial film.
  17.  前記抗菌性微粒子は銅により形成されている、請求項1から16のいずれかに記載のカバー部材。 The cover member according to any one of claims 1 to 16, wherein the antibacterial fine particles are made of copper.
  18.  前記基材と前記抗菌膜との間に配置された、反射防止膜をさらに備えている、請求項1から17のいずれかに記載のカバー部材。 The cover member according to any one of claims 1 to 17, further comprising an antireflection film arranged between the base material and the antibacterial film.
  19.  ディスプレイ、キーボード、または電子黒板の表面を覆うように配置される、請求項1から18のいずれかに記載のカバー部材。 The cover member according to any one of claims 1 to 18, which is arranged so as to cover the surface of a display, a keyboard, or an electronic blackboard.
PCT/JP2021/033815 2020-09-14 2021-09-14 Cover member WO2022054961A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020154187A JP2022048047A (en) 2020-09-14 2020-09-14 Cover member
JP2020-154187 2020-09-14

Publications (1)

Publication Number Publication Date
WO2022054961A1 true WO2022054961A1 (en) 2022-03-17

Family

ID=80631753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033815 WO2022054961A1 (en) 2020-09-14 2021-09-14 Cover member

Country Status (3)

Country Link
JP (1) JP2022048047A (en)
AR (1) AR123456A1 (en)
WO (1) WO2022054961A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11171592A (en) * 1997-12-15 1999-06-29 Nippon Sheet Glass Co Ltd Water-repellent article and its manufacture
JP2000154106A (en) * 1998-11-17 2000-06-06 Casio Comput Co Ltd Antimicrobal article and its production
JP2008221201A (en) * 2007-02-16 2008-09-25 Fujifilm Corp Hydrophilic member and its manufacturing method
JP2013136496A (en) * 2011-11-28 2013-07-11 Nippon Sheet Glass Co Ltd Anti-glare glass substrate and method for manufacturing the same
WO2016185960A1 (en) * 2015-05-15 2016-11-24 三菱電機株式会社 Antibacterial coating film, article provided with same, method for forming antibacterial coating film, and coating liquid for forming antibacterial coating film
JP2017530079A (en) * 2014-09-12 2017-10-12 ショット アクチエンゲゼルシャフトSchott AG Coated glass substrate or glass-ceramic substrate having multi-functional surface properties with resistance, method for producing the substrate and use of the substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11171592A (en) * 1997-12-15 1999-06-29 Nippon Sheet Glass Co Ltd Water-repellent article and its manufacture
JP2000154106A (en) * 1998-11-17 2000-06-06 Casio Comput Co Ltd Antimicrobal article and its production
JP2008221201A (en) * 2007-02-16 2008-09-25 Fujifilm Corp Hydrophilic member and its manufacturing method
JP2013136496A (en) * 2011-11-28 2013-07-11 Nippon Sheet Glass Co Ltd Anti-glare glass substrate and method for manufacturing the same
JP2017530079A (en) * 2014-09-12 2017-10-12 ショット アクチエンゲゼルシャフトSchott AG Coated glass substrate or glass-ceramic substrate having multi-functional surface properties with resistance, method for producing the substrate and use of the substrate
WO2016185960A1 (en) * 2015-05-15 2016-11-24 三菱電機株式会社 Antibacterial coating film, article provided with same, method for forming antibacterial coating film, and coating liquid for forming antibacterial coating film

Also Published As

Publication number Publication date
AR123456A1 (en) 2022-11-30
JP2022048047A (en) 2022-03-25

Similar Documents

Publication Publication Date Title
US11884577B2 (en) Display cover member and production method therefor
CN106536440B (en) Cover glass
JP6809482B2 (en) Glass manufacturing method
WO2015041257A1 (en) Tempered glass plate with low reflective coating and production method therfor
WO2022054961A1 (en) Cover member
WO2022054960A1 (en) Display device
WO2022054962A1 (en) Cover member
WO2022092319A1 (en) Glass body
EP4309890A1 (en) Cover member
WO2023095538A1 (en) Cover member
EP4382496A1 (en) Glass member and production method therefor
WO2022209835A1 (en) Laminate
WO2023234067A1 (en) Low-reflection member, and coating liquid for low-reflection film
JP2022159239A (en) glass body
CN113454040B (en) Glass substrate with antifouling layer and method for producing glass substrate with antifouling layer
US20240190759A1 (en) Laminate
CN117642370A (en) Glass member and method for manufacturing same
US20180215659A1 (en) Cover glass and glass laminate
JP2003192388A (en) Method for manufacturing low reflective glass substrate and low reflective glass obtained by the method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866917

Country of ref document: EP

Kind code of ref document: A1