WO2022054598A1 - Centrifugal compressor and supercharger - Google Patents

Centrifugal compressor and supercharger Download PDF

Info

Publication number
WO2022054598A1
WO2022054598A1 PCT/JP2021/031364 JP2021031364W WO2022054598A1 WO 2022054598 A1 WO2022054598 A1 WO 2022054598A1 JP 2021031364 W JP2021031364 W JP 2021031364W WO 2022054598 A1 WO2022054598 A1 WO 2022054598A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable member
magnet
housing
magnet portion
flow path
Prior art date
Application number
PCT/JP2021/031364
Other languages
French (fr)
Japanese (ja)
Inventor
淳 米村
亮太 崎坂
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2022054598A1 publication Critical patent/WO2022054598A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/46Fluid-guiding means, e.g. diffusers adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing

Definitions

  • the centrifugal compressor is equipped with a compressor housing in which an intake flow path is formed.
  • a compressor impeller is arranged in the intake flow path. When the flow rate of the air flowing into the compressor impeller decreases, the air compressed by the compressor impeller flows back through the intake flow path, and a phenomenon called surging occurs.
  • Patent Document 1 discloses a centrifugal compressor in which a throttle mechanism is provided in a compressor housing.
  • the throttle mechanism is arranged on the upstream side of the intake air with respect to the compressor impeller.
  • the diaphragm mechanism includes a movable member.
  • the movable member is configured to be movable between a protruding position protruding into the intake flow path and a retracting position retracting from the intake flow path.
  • the throttle mechanism reduces the cross-sectional area of the intake flow path by projecting the movable member into the intake flow path. When the movable member protrudes into the intake flow path, the air flowing back in the intake flow path is blocked by the movable member. Surging is suppressed by blocking the air flowing back in the intake flow path.
  • an electric actuator is generally used as an actuator for driving a movable member of a diaphragm mechanism.
  • the actuator When the movable member is located at a specific position (for example, a protruding position or a retracted position), the actuator may be continuously energized in order to hold the movable member at the specific position.
  • a specific position for example, a protruding position or a retracted position
  • the actuator may be continuously energized in order to hold the movable member at the specific position.
  • excessive heat generation may occur in the actuator, and the temperature of the actuator may become excessively high. If the temperature of the actuator becomes excessively high, the performance of the actuator may deteriorate due to demagnetization or the like.
  • An object of the present disclosure is to provide a centrifugal compressor and a turbocharger capable of suppressing heat generation in an actuator.
  • the centrifugal compressor of the present disclosure includes a housing in which an intake flow path connected to an intake port is formed, a compressor impeller arranged in the intake flow path, and a compressor impeller among the intake flow paths.
  • a movable member arranged closer to the intake port, an electric actuator connected to the movable member, a portion of the housing facing the movable member, and a magnet portion provided on at least one of the movable members. Be prepared.
  • a plurality of movable members are provided, and the magnet portion is provided on at least one of a portion of the housing that faces the movable member in a state where the plurality of movable members are in contact with each other and a portion of the movable member that abuts on another movable member. It may be provided.
  • a plurality of movable members are provided, and the magnet portion is the portion of the housing that faces the movable member when the plurality of movable members are separated from each other, and the magnet portion is the most separated from the housing when the plurality of movable members of the movable members are separated from each other. It may be provided on at least one of the adjacent portions.
  • the direction of the magnetic force generated by the magnet portion may be the direction along the moving direction of the movable member.
  • the magnet portion may hold the movable member at a specific position when the movable member is located at a specific position.
  • the turbocharger of the present disclosure includes the above centrifugal compressor.
  • heat generation in the actuator can be suppressed.
  • FIG. 1 is a schematic cross-sectional view of the turbocharger.
  • FIG. 2 is an extracted view of the broken line portion of FIG.
  • FIG. 3 is an exploded perspective view of the members constituting the link mechanism.
  • FIG. 4 is a sectional view taken along line IV-IV of FIG.
  • FIG. 5 is a first diagram for explaining the operation of the link mechanism.
  • FIG. 6 is a second diagram for explaining the operation of the link mechanism.
  • FIG. 7 is a third diagram for explaining the operation of the link mechanism.
  • FIG. 8 is a cross-sectional view showing a state in which the first movable member and the second movable member are held in the retracted position.
  • FIG. 1 is a schematic cross-sectional view of the turbocharger TC.
  • the arrow L direction shown in FIG. 1 will be described as the left side of the turbocharger TC.
  • the arrow R direction shown in FIG. 1 will be described as the right side of the turbocharger TC.
  • the compressor housing 100 side which will be described later, functions as a centrifugal compressor CC.
  • the centrifugal compressor CC will be described as being driven by the turbine impeller 8 described later.
  • the present invention is not limited to this, and the centrifugal compressor CC may be driven by an engine (not shown) or an electric motor (motor) (not shown).
  • the centrifugal compressor CC may be incorporated in a device other than the turbocharger TC, or may be a single unit.
  • the supercharger TC includes a supercharger main body 1.
  • the turbocharger main body 1 includes a bearing housing 2, a turbine housing 4, a compressor housing (housing) 100, and a link mechanism 200. The details of the link mechanism 200 will be described later.
  • a turbine housing 4 is connected to the left side of the bearing housing 2 by a fastening bolt 3.
  • a compressor housing 100 is connected to the right side of the bearing housing 2 by a fastening bolt 5.
  • a housing hole 2a is formed in the bearing housing 2.
  • the accommodating hole 2a penetrates in the left-right direction of the turbocharger TC.
  • a bearing 6 is arranged in the accommodating hole 2a.
  • the bearing 6 is, for example, a full floating bearing. However, the bearing 6 may be another radial bearing such as a semi-floating bearing or a rolling bearing.
  • a part of the shaft 7 is arranged in the accommodating hole 2a.
  • the shaft 7 is rotatably supported by a bearing 6.
  • a turbine impeller 8 is provided at the left end of the shaft 7.
  • the turbine impeller 8 is rotatably housed in the turbine housing 4.
  • a compressor impeller 9 is provided at the right end of the shaft 7.
  • the compressor impeller 9 is rotatably housed in the compressor housing 100.
  • An intake port 10 is formed in the compressor housing 100.
  • the intake port 10 opens on the right side of the turbocharger TC.
  • the intake port 10 is connected to an air cleaner (not shown).
  • a diffuser flow path 11 is formed between the bearing housing 2 and the compressor housing 100.
  • the diffuser flow path 11 boosts air.
  • the diffuser flow path 11 is formed in an annular shape from the inside to the outside in the radial direction (hereinafter, simply referred to as the radial direction) of the compressor impeller 9.
  • the diffuser flow path 11 communicates with the intake port 10 via the compressor impeller 9 on the inner side in the radial direction.
  • the compressor scroll flow path 12 is formed in the compressor housing 100.
  • the compressor scroll flow path 12 is formed in an annular shape.
  • the compressor scroll flow path 12 is located, for example, radially outside the compressor impeller 9.
  • the compressor scroll flow path 12 communicates with the intake port of an engine (not shown) and the diffuser flow path 11.
  • the intake air is pressurized and accelerated in the process of flowing between the blades of the compressor impeller 9.
  • the pressurized and accelerated air is boosted in the diffuser flow path 11 and the compressor scroll flow path 12.
  • the boosted air flows out from a discharge port (not shown) and is guided to the intake port of the engine.
  • the turbocharger TC includes a centrifugal compressor (compressor) CC.
  • the centrifugal compressor CC includes a compressor housing 100, a compressor impeller 9, and a link mechanism 200 described later.
  • An exhaust port 13 is formed in the turbine housing 4.
  • the exhaust port 13 opens on the left side of the turbocharger TC.
  • the exhaust port 13 is connected to an exhaust gas purification device (not shown).
  • a communication flow path 14 and a turbine scroll flow path 15 are formed in the turbine housing 4.
  • the turbine scroll flow path 15 is located radially outside the turbine impeller 8.
  • the communication flow path 14 is located between the turbine impeller 8 and the turbine scroll flow path 15.
  • the turbine scroll flow path 15 communicates with a gas inlet (not shown). Exhaust gas discharged from an engine exhaust manifold (not shown) is guided to the gas inlet.
  • the communication flow path 14 communicates the turbine scroll flow path 15 with the exhaust port 13. The exhaust gas guided from the gas inlet to the turbine scroll flow path 15 is guided to the exhaust port 13 via the communication flow path 14 and the blades of the turbine impeller 8. The exhaust gas rotates the turbine impeller 8 in its distribution process.
  • the rotational force of the turbine impeller 8 is transmitted to the compressor impeller 9 via the shaft 7. As described above, the air is boosted by the rotational force of the compressor impeller 9 and guided to the intake port of the engine.
  • FIG. 2 is an extracted view of the broken line portion of FIG.
  • the compressor housing 100 includes a first housing member 110 and a second housing member 120.
  • the first housing member 110 is located on the right side (the side separated from the bearing housing 2) in FIG. 2 with respect to the second housing member 120.
  • the second housing member 120 is connected to the bearing housing 2.
  • the first housing member 110 is connected to the second housing member 120.
  • the first housing member 110 has a substantially cylindrical shape.
  • a through hole 111 is formed in the first housing member 110.
  • the first housing member 110 has an end face 112 on the side close to (connecting) to the second housing member 120. Further, the first housing member 110 has an end face 113 on the side separated from the second housing member 120.
  • An intake port 10 is formed on the end surface 113.
  • the through hole 111 extends from the end face 112 to the end face 113 along the rotation axis direction of the compressor impeller 9 (hereinafter, simply referred to as the rotation axis direction). That is, the through hole 111 penetrates the first housing member 110 in the rotation axis direction.
  • the through hole 111 has a parallel portion 111a and a reduced diameter portion 111b.
  • the parallel portion 111a is located on the end face 113 side of the diameter reduction portion 111b.
  • the inner diameter of the parallel portion 111a is substantially constant over the direction of the axis of rotation.
  • the reduced diameter portion 111b is located on the end face 112 side of the parallel portion 111a.
  • the reduced diameter portion 111b is continuous with the parallel portion 111a.
  • the inner diameter of the portion of the reduced diameter portion 111b that is continuous with the parallel portion 111a is approximately equal to the inner diameter of the parallel portion 111a.
  • the inner diameter of the reduced diameter portion 111b becomes smaller as it is separated from the parallel portion 111a (that is, closer to the end surface 112).
  • a notch 112a is formed on the end face 112.
  • the cutout portion 112a is recessed from the end surface 112 toward the end surface 113.
  • the cutout portion 112a is formed on the outer peripheral portion of the end face 112.
  • the cutout portion 112a is, for example, generally annular when viewed from the direction of the rotation axis.
  • a storage chamber AC is formed on the end face 112.
  • the accommodation chamber AC is formed on the intake port 10 side of the first housing member 110 with respect to the leading edge LE of the blades of the compressor impeller 9.
  • the accommodation chamber AC includes an accommodation groove 112b, which will be described later, a bearing hole 112d, and an accommodation hole 115 (see FIG. 3).
  • the accommodating groove 112b is formed on the end face 112.
  • the accommodating groove 112b is located between the notch 112a and the through hole 111.
  • the accommodating groove 112b is recessed from the end surface 112 toward the end surface 113.
  • the accommodating groove 112b is, for example, generally annular when viewed from the direction of the rotation axis.
  • the accommodating groove 112b communicates with the through hole 111 on the inner side in the radial direction.
  • a bearing hole 112d is formed in the wall surface 112c on the end face 113 side of the accommodating groove 112b.
  • the bearing hole 112d extends in the rotation axis direction from the wall surface 112c toward the end face 113 side.
  • Two bearing holes 112d are provided so as to be separated from each other in the rotation direction of the compressor impeller 9 (hereinafter, simply referred to as a rotation direction or a circumferential direction).
  • the two bearing holes 112d are arranged at positions offset by 180 degrees in the rotational direction.
  • a through hole 121 is formed in the second housing member 120.
  • the second housing member 120 has an end face 122 on the side close to (connecting) to the first housing member 110. Further, the second housing member 120 has an end surface 123 on the side separated from the first housing member 110 (the side connected to the bearing housing 2).
  • the through hole 121 extends from the end face 122 to the end face 123 along the rotation axis direction. That is, the through hole 121 penetrates the second housing member 120 in the rotation axis direction.
  • the inner diameter of the end portion of the through hole 121 on the end surface 122 side is approximately equal to the inner diameter of the end portion of the through hole 111 on the end surface 112 side.
  • a shroud portion 121a is formed on the inner wall of the through hole 121.
  • the shroud portion 121a faces the compressor impeller 9 from the outside in the radial direction.
  • the outer diameter of the compressor impeller 9 becomes larger as it is separated from the leading edge LE of the blades of the compressor impeller 9.
  • the inner diameter of the shroud portion 121a increases as it is separated from the end face 122 (that is, closer to the end face 123).
  • a housing groove 122a is formed on the end face 122.
  • the accommodating groove 122a is recessed from the end surface 122 toward the end surface 123.
  • the accommodating groove 122a is, for example, generally annular when viewed from the direction of the rotation axis.
  • the first housing member 110 is inserted into the accommodating groove 122a.
  • the end surface 112 of the first housing member 110 comes into contact with the wall surface 122b on the end surface 123 side of the accommodating groove 122a.
  • a storage chamber AC is formed between the first housing member 110 (specifically, the wall surface 112c) and the second housing member 120 (specifically, the wall surface 122b).
  • the intake flow path 130 is formed by the through hole 111 of the first housing member 110 and the through hole 121 of the second housing member 120. That is, the intake flow path 130 is formed in the compressor housing 100.
  • the intake flow path 130 is connected to the intake port 10 on one side and is connected to the diffuser flow path 11 on the other side.
  • the intake port 10 and the diffuser flow path 11 communicate with each other via the intake flow path 130.
  • the intake port 10 side of the intake flow path 130 is the upstream side of the intake air
  • the diffuser flow path 11 side of the intake flow path 130 is the downstream side of the intake air.
  • the compressor impeller 9 is arranged in the intake flow path 130.
  • the cross-sectional shape of the intake flow path 130 (that is, the through holes 111, 121) perpendicular to the rotation axis direction is, for example, a circle centered on the rotation axis of the compressor impeller 9.
  • the cross-sectional shape of the intake flow path 130 is not limited to this, and may be, for example, an elliptical shape.
  • a sealing material (not shown) is arranged in the cutout portion 112a of the first housing member 110.
  • the sealing material suppresses the flow rate of air flowing through the gap between the first housing member 110 and the second housing member 120.
  • the notch 112a and the sealing material are not essential components.
  • FIG. 3 is an exploded perspective view of the members constituting the link mechanism 200.
  • the link mechanism 200 includes a first housing member 110, a first movable member 210, a second movable member 220, a connecting member 230, and a rod 240.
  • the link mechanism 200 is arranged on the intake port 10 side (upstream side) of the intake flow path 130 with respect to the compressor impeller 9 in the rotation axis direction.
  • the first movable member 210 is arranged in the accommodation groove 112b (accommodation chamber AC). Specifically, the first movable member 210 is arranged between the wall surface 112c of the accommodating groove 112b and the wall surface 122b of the accommodating groove 122a (see FIG. 2) in the rotation axis direction.
  • the first movable member 210 is formed of, for example, a resin material.
  • the first movable member 210 is molded, for example, by injection molding.
  • the first movable member 210 has an facing surface S1 facing the wall surface 112c of the accommodating groove 112b and an opposing surface S2 facing the wall surface 122b of the accommodating groove 122a.
  • the first movable member 210 has a main body portion B1.
  • the main body portion B1 includes a curved portion 211 and an arm portion 212.
  • the curved portion 211 extends in the circumferential direction of the compressor impeller 9.
  • the curved portion 211 has a substantially semicircular arc shape.
  • one end surface 211a and the other end surface 211b in the circumferential direction extend in parallel in the radial direction and the rotation axis direction.
  • the one end surface 211a and the other end surface 211b may be inclined with respect to the radial direction and the rotation axis direction.
  • An arm portion 212 is provided on one end surface 211a side of the curved portion 211.
  • the arm portion 212 extends radially outward from the outer peripheral surface 211c of the curved portion 211. Further, the arm portion 212 extends in a direction inclined with respect to the radial direction (second movable member 220 side).
  • the second movable member 220 is arranged in the accommodation groove 112b (accommodation chamber AC). Specifically, the second movable member 220 is arranged between the wall surface 112c of the accommodating groove 112b and the wall surface 122b of the accommodating groove 122a (see FIG. 2) in the rotation axis direction.
  • the second movable member 220 is formed of, for example, a resin material.
  • the second movable member 220 is molded, for example, by injection molding.
  • the second movable member 220 has an facing surface S1 facing the wall surface 112c of the accommodating groove 112b and an opposing surface S2 facing the wall surface 122b of the accommodating groove 122a.
  • the second movable member 220 has a main body portion B2.
  • the main body portion B2 includes a curved portion 221 and an arm portion 222.
  • the curved portion 221 extends in the circumferential direction of the compressor impeller 9.
  • the curved portion 221 has a substantially semicircular arc shape.
  • the one end surface 221a and the other end surface 221b in the circumferential direction extend in parallel in the radial direction and the rotation axis direction.
  • the one end surface 221a and the other end surface 221b may be inclined with respect to the radial direction and the rotation axis direction.
  • An arm portion 222 is provided on the one end surface 221a side of the curved portion 221.
  • the arm portion 222 extends radially outward from the outer peripheral surface 221c of the curved portion 221. Further, the arm portion 222 extends in a direction inclined with respect to the radial direction (first movable member 210 side).
  • the curved portion 211 faces the curved portion 221 with the rotation center of the compressor impeller 9 interposed therebetween (that is, sandwiching the intake flow path 130).
  • the one end surface 211a of the curved portion 211 faces the other end surface 221b of the curved portion 221 in the circumferential direction.
  • the other end surface 211b of the curved portion 211 faces the one end surface 221a of the curved portion 221 in the circumferential direction.
  • the curved portions 211 and 221 are movable in the radial direction, as will be described in detail later.
  • the connecting member 230 is connected to the first movable member 210 and the second movable member 220.
  • the connecting member 230 is located closer to the intake port 10 than the first movable member 210 and the second movable member 220.
  • the connecting member 230 has a generally arcuate shape.
  • a first bearing hole 231 is formed on one end side of the connecting member 230 in the circumferential direction, and a second bearing hole 232 is formed on the other end side of the connecting member 230.
  • the first bearing hole 231 and the second bearing hole 232 open in the end surface 233 on the side of the first movable member 210 and the second movable member 220 of the connecting member 230.
  • the first bearing hole 231 and the second bearing hole 232 extend in the rotation axis direction.
  • the first bearing hole 231 and the second bearing hole 232 are composed of non-penetrating holes.
  • the first bearing hole 231 and the second bearing hole 232 may penetrate the connecting member 230 in the rotation axis direction
  • a rod connecting portion 234 is formed between the first bearing hole 231 and the second bearing hole 232 of the connecting member 230.
  • the rod connecting portion 234 is formed on the end surface 235 of the connecting member 230 opposite to the first movable member 210 and the second movable member 220.
  • the rod connecting portion 234 protrudes from the end face 235 in the rotation axis direction.
  • the rod connecting portion 234 has, for example, a roughly cylindrical shape.
  • the rod 240 has a roughly cylindrical shape.
  • a flat surface portion 241 is formed at one end of the rod 240, and a connecting portion 243 is formed at the other end of the rod 240.
  • the flat surface portion 241 extends in the plane direction substantially perpendicular to the rotation axis direction.
  • a bearing hole 242 opens in the flat surface portion 241.
  • the bearing hole 242 extends in the direction of the rotation axis.
  • the connecting portion 243 has a connecting hole 243a.
  • An actuator 250 (see FIGS. 5 to 7) described later is connected to the connecting portion 243 (specifically, the connecting hole 243a).
  • the bearing hole 242 may be a long hole whose length in the direction perpendicular to the rotation axis direction and the axial direction of the rod 240 is longer than the axial length of the rod 240, for example.
  • a rod large diameter portion 244 and two rod small diameter portions 245 are formed between the flat surface portion 241 and the connecting portion 243 of the rod 240.
  • the rod large diameter portion 244 is arranged between the two rod small diameter portions 245.
  • the rod small diameter portion 245 on the flat surface portion 241 side connects the rod large diameter portion 244 and the flat surface portion 241.
  • the rod small diameter portion 245 on the connecting portion 243 side connects the rod large diameter portion 244 and the connecting portion 243.
  • the outer diameter of the rod large diameter portion 244 is larger than the outer diameter of the two rod small diameter portions 245.
  • An insertion hole 114 is formed in the first housing member 110.
  • One end 114a of the insertion hole 114 opens to the outside of the first housing member 110.
  • the insertion hole 114 extends, for example, in a plane direction perpendicular to the rotation axis direction.
  • the insertion hole 114 is located radially outside the through hole 111 (that is, radially outside the intake flow path 130).
  • the flat surface portion 241 side of the rod 240 is inserted into the insertion hole 114.
  • the rod large diameter portion 244 is guided by the inner wall surface of the insertion hole 114. The movement of the rod 240 in a direction other than the central axis direction of the insertion hole 114 (that is, the central axis direction of the rod 240) is restricted.
  • a housing hole 115 is formed in the first housing member 110.
  • the accommodating hole 115 opens in the wall surface 112c of the accommodating groove 112b.
  • the accommodating hole 115 is recessed from the wall surface 112c toward the intake port 10.
  • the accommodating hole 115 is located on the side (second housing member 120 side) separated from the intake port 10 from the insertion hole 114.
  • the accommodating hole 115 has a substantially arc shape when viewed from the direction of the rotation axis.
  • the accommodating hole 115 extends longer in the circumferential direction than the connecting member 230.
  • the accommodating hole 115 is separated from the bearing hole 112d in the circumferential direction.
  • a communication hole 116 is formed in the first housing member 110.
  • the communication hole 116 communicates the insertion hole 114 and the accommodating hole 115.
  • the communication hole 116 is formed in an approximately intermediate portion in the circumferential direction of the accommodating hole 115.
  • the communication hole 116 is, for example, an elongated hole extending substantially parallel to the extension direction of the insertion hole 114.
  • the width of the communication hole 116 in the longitudinal direction (extending direction) is larger than the width of the communication hole 116 in the lateral direction (direction perpendicular to the extending direction).
  • the width of the communication hole 116 in the lateral direction is larger than the outer diameter of the rod connecting portion 234 of the connecting member 230.
  • the connecting member 230 is accommodated in the accommodation hole 115 (accommodation chamber AC).
  • the first movable member 210, the second movable member 220, and the connecting member 230 are arranged in the accommodation chamber AC formed in the first housing member 110.
  • the circumferential length of the accommodating hole 115 is longer than the circumferential length of the connecting member 230.
  • the radial width of the accommodating hole 115 is also larger than the radial width of the connecting member 230. Therefore, the movement of the connecting member 230 in the plane direction perpendicular to the rotation axis direction is allowed inside the accommodating hole 115.
  • the rod connection portion 234 is inserted from the communication hole 116 into the insertion hole 114.
  • the flat surface portion 241 of the rod 240 is inserted into the insertion hole 114.
  • the bearing hole 242 of the flat surface portion 241 faces the communication hole 116.
  • the rod connecting portion 234 is inserted into and connected to the bearing hole 242.
  • the rod connection portion 234 is pivotally supported in the bearing hole 242.
  • FIG. 4 is a sectional view taken along line IV-IV of FIG.
  • the first movable member 210 has a connecting shaft portion 213 and a rotating shaft portion 214.
  • the connecting shaft portion 213 and the rotating shaft portion 214 project from the facing surface S1 (see FIG. 2) facing the wall surface 112c of the first movable member 210 in the rotation axis direction.
  • the connecting shaft portion 213 and the rotating shaft portion 214 extend to the back side of the paper surface in FIG.
  • the rotation shaft portion 214 extends in parallel with the connecting shaft portion 213.
  • the connecting shaft portion 213 and the rotating shaft portion 214 have a substantially cylindrical shape.
  • the outer diameter of the connecting shaft portion 213 is smaller than the inner diameter of the first bearing hole 231 of the connecting member 230.
  • the connecting shaft portion 213 is inserted into the first bearing hole 231.
  • the connecting shaft portion 213 is rotatably supported in the first bearing hole 231.
  • the outer diameter of the rotating shaft portion 214 is smaller than the inner diameter of the bearing hole 112d of the first housing member 110.
  • the rotating shaft portion 214 is inserted into the bearing hole 112d on the vertically upper side (that is, the side close to the rod 240) of the two bearing holes 112d.
  • the rotary shaft portion 214 is rotatably supported by the bearing hole 112d.
  • the second movable member 220 has a connecting shaft portion 223 and a rotating shaft portion 224.
  • the connecting shaft portion 223 and the rotating shaft portion 224 project in the rotation axis direction from the facing surface S1 (see FIG. 2) facing the wall surface 112c of the second movable member 220.
  • the connecting shaft portion 223 and the rotating shaft portion 224 extend to the back side of the paper surface in FIG.
  • the rotation shaft portion 224 extends parallel to the connecting shaft portion 223.
  • the connecting shaft portion 223 and the rotating shaft portion 224 have a substantially cylindrical shape.
  • the outer diameter of the connecting shaft portion 223 is smaller than the inner diameter of the second bearing hole 232 of the connecting member 230.
  • the connecting shaft portion 223 is inserted into the second bearing hole 232.
  • the connecting shaft portion 223 is rotatably supported by the second bearing hole 232.
  • the outer diameter of the rotating shaft portion 224 is smaller than the inner diameter of the bearing hole 112d of the first housing member 110.
  • the rotating shaft portion 224 is inserted into the bearing hole 112d on the vertically lower side (that is, the side separated from the rod 240) of the two bearing holes 112d.
  • the rotary shaft portion 224 is rotatably supported by the bearing hole 112d.
  • the link mechanism 200 is a four-section link mechanism.
  • the four links (sections) are a first movable member 210, a second movable member 220, a first housing member 110, and a connecting member 230. Since the link mechanism 200 is a four-section link mechanism, it is a limited chain and has one degree of freedom and is easy to control.
  • FIG. 4 shows the magnet portions 311, 312, 313, 321, 322, 323, 331, and 332, and the description of these magnet portions will be described later.
  • FIG. 5 is a first diagram for explaining the operation of the link mechanism 200.
  • FIGS. 5, 6 and 7 below a view of the link mechanism 200 as viewed from the intake port 10 side is shown.
  • the end portion of the drive shaft 251 of the actuator 250 is connected to the connecting portion 243 of the rod 240.
  • the actuator 250 is an electric actuator and is driven by electricity.
  • the actuator 250 is, for example, an electric cylinder having a motor (not shown).
  • the rotational power of the motor is converted into power in the straight direction and transmitted to the drive shaft 251.
  • the drive shaft 251 moves in the axial direction.
  • the rotation direction of the motor is switched, the moving direction of the drive shaft 251 is switched.
  • the first movable member 210 and the second movable member 220 are in contact with each other.
  • the protruding portion 215 which is an inner portion in the radial direction of the first movable member 210, protrudes (exposed) into the intake flow path 130.
  • the protruding portion 225 which is an inner portion in the radial direction, protrudes (exposed) into the intake flow path 130.
  • the positions of the first movable member 210 and the second movable member 220 in this state are referred to as protrusion positions (or aperture positions).
  • annular hole 260 is formed by the protrusion 215 and the protrusion 225.
  • the inner diameter of the annular hole 260 is smaller than the inner diameter of the intake flow path 130 at the position where the protrusions 215 and 225 protrude.
  • the inner diameter of the annular hole 260 is, for example, smaller than the inner diameter of any position of the intake flow path 130.
  • FIG. 6 is a second diagram for explaining the operation of the link mechanism 200.
  • FIG. 7 is a third diagram for explaining the operation of the link mechanism 200.
  • the actuator 250 linearly moves the rod 240 in a direction intersecting the rotation axis direction (vertical direction in FIGS. 6 and 7). In FIGS. 6 and 7, the rod 240 moves upward from the position shown in FIG.
  • the amount of movement of the rod 240 with respect to the arrangement of FIG. 5 is larger in the arrangement of FIG. 7 than in the arrangement of FIG.
  • the link mechanism 200 is a four-section link mechanism.
  • the connecting member 230, the first movable member 210, and the second movable member 220 exhibit one degree of freedom with respect to the first housing member 110. Specifically, the connecting member 230 slightly swings in the left-right direction while slightly rotating counterclockwise in FIGS. 6 and 7 within the above allowable range.
  • the rotating shaft portion 214 is pivotally supported by the first housing member 110.
  • the rotation shaft portion 214 is restricted from moving in the plane direction perpendicular to the rotation axis direction.
  • the connecting shaft portion 213 is pivotally supported by the connecting member 230. Since the connecting member 230 is allowed to move, the connecting shaft portion 213 is provided so as to be movable in the plane direction perpendicular to the rotation axis direction. As a result, as the connecting member 230 moves, the first movable member 210 rotates clockwise in FIGS. 6 and 7 with the rotation shaft portion 214 as the center of rotation.
  • the rotary shaft portion 224 is pivotally supported by the first housing member 110.
  • the rotation shaft portion 224 is restricted from moving in the plane direction perpendicular to the rotation axis direction.
  • the connecting shaft portion 223 is pivotally supported by the connecting member 230. Since the connecting member 230 is allowed to move, the connecting shaft portion 223 is provided so as to be movable in the plane direction perpendicular to the rotation axis direction. As a result, as the connecting member 230 moves, the second movable member 220 rotates in the clockwise direction in FIGS. 6 and 7 with the rotation shaft portion 224 as the center of rotation.
  • the first movable member 210 and the second movable member 220 move in the direction of separating from each other in the order of FIGS. 6 and 7.
  • the protrusions 215 and 225 move radially outward of the protrusion position.
  • the positions of the first movable member 210 and the second movable member 220 in this state are referred to as evacuation positions.
  • the protrusions 215 and 225 are flush with the inner wall surface of the intake flow path 130 or are located radially outside the inner wall surface of the intake flow path 130.
  • the first movable member 210 and the second movable member 220 approach each other and come into contact with each other in the order of FIGS. 7, 6, and 5. In this way, the positions of the first movable member 210 and the second movable member 220 are switched between the protruding position and the retracted position according to the rotation angle with the rotation shaft portion 214 and 224 as the rotation center.
  • the first movable member 210 and the second movable member 220 can move to a protruding position protruding into the intake flow path 130 and a retracted position not exposed (protruding) into the intake flow path 130.
  • the first movable member 210 and the second movable member 220 move in the radial direction of the compressor impeller 9.
  • the present invention is not limited to this, and the first movable member 210 and the second movable member 220 may rotate around the rotation axis (circumferential direction) of the compressor impeller 9.
  • the first movable member 210 and the second movable member 220 may be shutter blades having two or more blades.
  • the first movable member 210 and the second movable member 220 When the first movable member 210 and the second movable member 220 are located in the retracted position (hereinafter, also referred to as the retracted position state), the first movable member 210 and the second movable member 220 do not protrude into the intake flow path 130, so that the intake air (air) flowing through the intake flow path 130 The pressure loss can be reduced.
  • the protruding portions 215 and 225 are arranged in the intake flow path 130 at the protruding positions.
  • the flow path cross-sectional area of the intake flow path 130 becomes small.
  • the air compressed by the compressor impeller 9 may flow back in the intake flow path 130 (that is, the air flows from the downstream side to the upstream side).
  • the protruding portions 215 and 225 are the leading edge end LE of the compressor impeller 9. It is located on the inner side in the radial direction from the outermost diameter end of. As a result, the air flowing back in the intake flow path 130 is blocked by the protrusions 215 and 225. Therefore, the first movable member 210 and the second movable member 220 can suppress the backflow of air in the intake flow path 130.
  • the centrifugal compressor CC of the present embodiment can expand the operating region of the centrifugal compressor CC to the small flow rate side by forming the protruding position state.
  • the first movable member 210 and the second movable member 220 are configured as a throttle member for narrowing the intake flow path 130. That is, in the present embodiment, the link mechanism 200 functions as a throttle mechanism for narrowing the intake flow path 130.
  • the first movable member 210 and the second movable member 220 can change the flow path cross-sectional area of the intake flow path 130 by driving the link mechanism 200.
  • the actuator 250 may be continuously energized.
  • the actuator 250 is continuously energized so that the rod 240 is pushed downward in FIG. It can be done. For example, the rod 240 continues to be pushed downward in FIG. Alternatively, for example, the operation of pushing the rod 240 downward in FIG. 5 and the operation of slightly moving the rod 240 upward in FIG. 5 are repeated.
  • the actuator 250 is continuously energized so that the rod 240 is pulled upward in FIG. 7. Can be evacuated. For example, the rod 240 continues to be pulled upward in FIG. 7. Alternatively, for example, the operation of pulling the rod 240 upward in FIG. 7 and the operation of slightly moving the rod 240 downward in FIG. 7 are repeated.
  • the actuator 250 is continuously energized so that the first movable member 210 and the second movable member 220 are moved. It is held in a specific position. As a result, the vibration of the first movable member 210 and the second movable member 220 is suppressed. Therefore, the wear of the first movable member 210 and the second movable member 220 due to the collision with the surrounding members is suppressed. Further, it is possible to prevent the first movable member 210 and the second movable member 220 from being displaced from the desired positions.
  • the magnet portions 311, 312, 313, 321 and 322 for holding the first movable member 210 and the second movable member 220 at specific positions are present.
  • 323, 331, 332 are provided.
  • the magnet portions 311, 312, 321 and 322 are magnet portions for the protruding positions that hold the first movable member 210 and the second movable member 220 at the protruding positions.
  • the magnet portions 313, 323, 331, and 332 are magnet portions for the retracted position that hold the first movable member 210 and the second movable member 220 in the retracted position.
  • FIG. 4 shows a state in which the first movable member 210 and the second movable member 220 are held at the protruding positions.
  • FIG. 8 is a cross-sectional view showing a state in which the first movable member 210 and the second movable member 220 are held in the retracted position.
  • Each of the above magnet portions is, for example, a portion of the compressor housing 100 or a movable member (specifically, the first movable member 210 or the second movable member 220) where a permanent magnet is provided.
  • a part or all of each of the above magnet parts may be a magnetized part of the compressor housing 100 or the movable member.
  • the member needs to be formed of a magnetic material.
  • each of the above magnet portions is exposed on the outer surface of the compressor housing 100 or a movable member (specifically, the first movable member 210 or the second movable member 220). Has been done. However, a part or all of each of the above magnet portions may be provided inside the compressor housing 100 or the movable member without being exposed on the outer surface of the compressor housing 100 or the movable member.
  • the magnet portion 311 is provided on one end surface 211a of the curved portion 211 of the first movable member 210.
  • the magnet portion 322 is provided on the other end surface 221b of the curved portion 221 of the second movable member 220.
  • the one end surface 211a of the curved portion 211 is a portion of the first movable member 210 that comes into contact with the second movable member 220.
  • the other end surface 221b of the curved portion 221 is a portion of the second movable member 220 that comes into contact with the first movable member 210.
  • the magnet portion 311 and the magnet portion 322 are in contact with each other in a protruding position state (that is, a state in which the first movable member 210 and the second movable member 220 are in contact with each other).
  • the magnet portion 311 extends parallel to, for example, one end surface 211a. However, the magnet portion 311 may be inclined with respect to one end surface 211a.
  • the magnet portion 322 extends parallel to, for example, the other end surface 221b. However, the magnet portion 322 may be inclined with respect to the other end surface 221b.
  • the magnet portion 311 extends from, for example, the radially inner end of the one end surface 211a to the radially outer end.
  • the magnet portion 322 extends from, for example, the radially inner end of the other end surface 221b to the radially outer end.
  • the magnet portion 311 extends from one end portion to the other end portion of the one end surface 211a in the rotation axis direction, for example.
  • the magnet portion 322 extends from one end portion in the rotation axis direction of the other end surface 221b to the other end portion, for example.
  • the polarity on the magnet portion 322 side of the magnet portion 311 and the polarity on the magnet portion 311 side of the magnet portion 322 are different from each other. Therefore, in the protruding position state, the one end surface 211a and the other end surface 221b are attracted to each other by the magnetic force generated by the magnet portion 311 and the magnet portion 322.
  • the magnetic force generated by the magnet portion 311 and the magnet portion 322 acts in the direction in which the one end surface 211a and the other end surface 221b face each other.
  • the first movable member 210 and the second movable member 220 are movable in a direction in which one end surface 211a and the other end surface 221b face each other.
  • the direction of the magnetic force generated by the magnet portion 311 and the magnet portion 322 is a direction along the moving direction of each movable member.
  • the direction along the moving direction of the movable member does not have to exactly match the moving direction, and may include a direction inclined by a predetermined angle with respect to the moving direction.
  • the magnet portion 312 is provided on the other end surface 211b of the curved portion 211 of the first movable member 210.
  • the magnet portion 321 is provided on one end surface 221a of the curved portion 221 of the second movable member 220.
  • the other end surface 211b of the curved portion 211 is a portion of the first movable member 210 that comes into contact with the second movable member 220.
  • the one end surface 221a of the curved portion 221 is a portion of the second movable member 220 that comes into contact with the first movable member 210.
  • the magnet portion 312 and the magnet portion 321 are in contact with each other in the protruding position state.
  • the magnet portion 312 extends parallel to, for example, the other end surface 211b. However, the magnet portion 312 may be inclined with respect to the other end surface 211b.
  • the magnet portion 321 extends parallel to, for example, one end surface 221a. However, the magnet portion 321 may be inclined with respect to one end surface 221a.
  • the magnet portion 312 extends, for example, from the radially inner end of the other end surface 211b to the radially outer end.
  • the magnet portion 321 extends, for example, from the radially inner end of the one end surface 221a to the radially outer end.
  • the magnet portion 312 extends from one end to the other end of the other end surface 211b in the rotation axis direction, for example.
  • the magnet portion 321 extends from one end portion to the other end portion of the one end surface 221a in the rotation axis direction, for example.
  • the polarity of the magnet portion 321 side of the magnet portion 312 and the polarity of the magnet portion 312 side of the magnet portion 321 are different from each other. Therefore, in the protruding position state, the other end surface 211b and the one end surface 221a are attracted to each other by the magnetic force generated by the magnet portion 312 and the magnet portion 321.
  • the magnetic force generated by the magnet portion 312 and the magnet portion 321 acts in the direction in which the other end surface 211b and the one end surface 221a face each other.
  • Each movable member of the first movable member 210 and the second movable member 220 can move in the direction in which the other end surface 211b and the one end surface 221a face each other. Therefore, the direction of the magnetic force generated by the magnet portion 312 and the magnet portion 321 is a direction along the moving direction of each movable member.
  • the magnet portions 311 and 312, 321 and 322 are provided at the portions of the movable members that come into contact with other movable members. As a result, a magnetic force is generated that attracts the first movable member 210 and the second movable member 220 to each other in the protruding position state. Therefore, when the first movable member 210 and the second movable member 220 are located in the protruding positions, the first movable member 210 and the second movable member 220 can be held in the protruding positions. Therefore, when the first movable member 210 and the second movable member 220 are located at the protruding positions, the energization of the actuator 250 can be stopped. Therefore, heat generation in the actuator 250 is suppressed.
  • the magnet portions 311 and 312, 321 and 322 are provided as the magnet portions for holding the first movable member 210 and the second movable member 220 in the protruding positions.
  • a part of the magnet portions 311, 312, 321 and 322 may be omitted from the configuration of the centrifugal compressor CC.
  • the magnet portions 311 and 312 may be omitted from the configuration of the centrifugal compressor CC. Also in this case, the magnet portions 321 and 322 generate a magnetic force that attracts the first movable member 210 and the second movable member 220 to each other.
  • the magnet portions 321 and 322 may be omitted from the configuration of the centrifugal compressor CC. Also in this case, the magnet portions 311 and 312 generate a magnetic force that attracts the first movable member 210 and the second movable member 220 to each other.
  • the magnet portions 311 and 322 may be omitted from the configuration of the centrifugal compressor CC.
  • the magnet portions 312 and 321 generate a magnetic force that attracts the other end surface 211b and the one end surface 221a to each other.
  • the magnet portions 312 and 321 may be omitted from the configuration of the centrifugal compressor CC.
  • the magnet portions 311 and 322 generate a magnetic force that attracts the one end surface 211a and the other end surface 221b to each other.
  • the first movable member 210 and the second movable member 220 are provided both between the one end surface 211a and the other end surface 221b and between the other end surface 211b and the one end surface 221a. It is preferable that a magnetic force that attracts each other is generated. Thereby, the magnetic force for holding the first movable member 210 and the second movable member 220 at the protruding positions can be increased.
  • each movable member is held in a protruding position by the magnet portions 311 and 312, 321 and 322.
  • each movable member is formed by a magnet portion provided in a portion of the compressor housing 100 that faces the movable member (specifically, the first movable member 210 or the second movable member 220) in the protruding position state in the direction of the rotation axis. It may be held in a protruding position.
  • a magnet portion may be provided on a portion of the wall surface 112c of the accommodating groove 112b that faces the movable member in the direction of the rotation axis in the protruding position state.
  • the magnetic material it is necessary for the magnetic material to form a movable member facing the magnet portion of the wall surface 112c in the protruding position state.
  • the magnet portion of the movable member needs to be provided at a position facing the magnet portion of the wall surface 112c in the protruding position state. As a result, a magnetic force that holds the movable member in the protruding position can be generated.
  • a magnet portion may be provided on a portion of the wall surface 122b (see FIG. 2) of the accommodating groove 122a that faces the movable member in the direction of the rotation axis in the protruding position state.
  • the magnetic material it is necessary for the magnetic material to form a movable member facing the magnet portion of the wall surface 122b in the protruding position state.
  • the direction of the magnetic force generated by the magnet portion is orthogonal to the moving direction of the movable member.
  • the direction of the magnetic force generated by the magnet portion is preferably the direction along the moving direction of the movable member.
  • the portion of the compressor housing 100 facing the movable member (specifically, the first movable member 210 or the second movable member 220) in the protruding position state, and the other movable member of the movable member.
  • the first movable member 210 and the second movable member 220 are brought to the protruding positions by the magnet portion provided on at least one of the abutting portions (specifically, one end surface 211a, the other end surface 211b, one end surface 221a or the other end surface 221b). Can be retained.
  • the magnet portion 313 is provided at the center of the outer peripheral surface 211c of the first movable member 210.
  • the magnet portion 331 is provided at a portion of the compressor housing 100 (specifically, the first housing member 110) that comes into contact with the central portion of the outer peripheral surface 211c.
  • the central portion of the outer peripheral surface 211c is a portion closest to the compressor housing 100 (specifically, a portion that abuts) in the retracted position state (that is, a state in which the first movable member 210 and the second movable member 220 are separated from each other). Is.
  • the portion of the compressor housing 100 where the magnet portion 331 is provided is a portion of the compressor housing 100 that faces the first movable member 210 in the radial direction (specifically, a portion that abuts) in the retracted position state.
  • the magnet portion 313 and the magnet portion 331 are in contact with each other in the retracted position state.
  • the magnet portion 313 extends in the extending direction of the outer peripheral surface 211c, for example. However, the extending direction of the magnet portion 313 does not have to be along the extending direction of the outer peripheral surface 211c.
  • the magnet portion 331 extends, for example, in the circumferential direction. However, the extending direction of the magnet portion 331 does not have to be along the circumferential direction.
  • the magnet portion 313 extends from one end to the other end of the outer peripheral surface 211c in the rotation axis direction, for example.
  • the magnet portion 331 extends from, for example, a position of the first housing member 110 facing one end of the outer peripheral surface 211c in the rotation axis direction to a position facing the other end of the outer peripheral surface 211c in the rotation axis direction. do.
  • the polarity of the magnet portion 331 side of the magnet portion 313 and the polarity of the magnet portion 313 side of the magnet portion 331 are different from each other. Therefore, in the retracted position state, the outer peripheral surface 211c and the compressor housing 100 are attracted to each other by the magnetic force generated by the magnet portion 313 and the magnet portion 331.
  • the magnetic force generated by the magnet portion 313 and the magnet portion 331 acts in the direction in which the outer peripheral surface 211c and the compressor housing 100 face each other.
  • the first movable member 210 is movable in the direction in which the outer peripheral surface 211c and the compressor housing 100 face each other. Therefore, the direction of the magnetic force generated by the magnet portion 313 and the magnet portion 331 is the direction along the moving direction of the first movable member 210.
  • the magnet portion 323 is provided at the center of the outer peripheral surface 221c of the second movable member 220.
  • the magnet portion 332 is provided at a portion of the compressor housing 100 (specifically, the first housing member 110) that comes into contact with the central portion of the outer peripheral surface 221c.
  • the central portion of the outer peripheral surface 221c is a portion (specifically, a portion that abuts) closest to the compressor housing 100 in the retracted position state.
  • the portion of the compressor housing 100 where the magnet portion 332 is provided is a portion of the compressor housing 100 that faces the second movable member 220 in the radial direction (specifically, a portion that abuts) in the retracted position state.
  • the magnet portion 323 and the magnet portion 332 are in contact with each other in the retracted position state.
  • the magnet portion 323 extends in the extending direction of the outer peripheral surface 221c, for example. However, the extending direction of the magnet portion 323 does not have to be along the extending direction of the outer peripheral surface 221c.
  • the magnet portion 332 extends, for example, in the circumferential direction. However, the extending direction of the magnet portion 332 does not have to be along the circumferential direction.
  • the magnet portion 323 extends from one end to the other end of the outer peripheral surface 221c in the rotation axis direction, for example.
  • the magnet portion 332 extends from, for example, a position of the first housing member 110 facing one end of the outer peripheral surface 221c in the rotation axis direction to a position facing the other end of the outer peripheral surface 221c in the rotation axis direction. do.
  • the polarity of the magnet portion 332 side of the magnet portion 323 and the polarity of the magnet portion 323 side of the magnet portion 332 are different from each other. Therefore, in the retracted position state, the outer peripheral surface 221c and the compressor housing 100 are attracted to each other by the magnetic force generated by the magnet portion 323 and the magnet portion 332.
  • the magnetic force generated by the magnet portion 323 and the magnet portion 332 acts in the direction in which the outer peripheral surface 221c and the compressor housing 100 face each other.
  • the second movable member 220 can move in the direction in which the outer peripheral surface 221c and the compressor housing 100 face each other. Therefore, the direction of the magnetic force generated by the magnet portion 323 and the magnet portion 332 is a direction along the moving direction of the second movable member 220.
  • the magnet portions 313 and 323 are provided in the portion of the movable member closest to the compressor housing 100 (specifically, the portion in contact with the compressor housing 100) in the retracted position state.
  • the magnet portions 331 and 332 are provided in a portion (specifically, a portion in contact with the movable member) of the compressor housing 100 that faces the movable member in the radial direction in the retracted position state.
  • the first movable member 210 and the second movable member 220 when the first movable member 210 and the second movable member 220 are located in the retracted position, the first movable member 210 and the second movable member 220 can be held in the retracted position. Therefore, when the first movable member 210 and the second movable member 220 are located at the retracted positions, the energization of the actuator 250 can be stopped. Therefore, heat generation in the actuator 250 is suppressed.
  • magnet portions 313, 323, 331, and 332 are provided as magnet portions for holding the first movable member 210 and the second movable member 220 in the retracted position.
  • a part of the magnet portions 313, 323, 331, and 332 may be omitted from the configuration of the centrifugal compressor CC.
  • the magnet portion 313 may be omitted from the configuration of the centrifugal compressor CC.
  • the magnet portion 331 also generates a magnetic force that attracts the first movable member 210 and the compressor housing 100 to each other.
  • the magnet portion 323 may be omitted from the configuration of the centrifugal compressor CC.
  • the magnet portion 332 also generates a magnetic force that attracts the second movable member 220 and the compressor housing 100 to each other.
  • the magnet portions 331 and 332 may be omitted from the configuration of the centrifugal compressor CC. Also in this case, the magnet portions 313 and 323 generate a magnetic force that attracts each movable member and the compressor housing 100 to each other.
  • each movable member is held in the retracted position by the magnet portion 313, 323, 331, 332.
  • each movable member is provided by a magnet portion provided in a portion of the compressor housing 100 that faces the movable member (specifically, the first movable member 210 or the second movable member 220) in the retracted position state in the direction of the rotation axis. It may be held in the retracted position.
  • a magnet portion may be provided on a portion of the wall surface 112c of the accommodating groove 112b that faces the movable member in the rotation axis direction in the retracted position state.
  • the magnetic material forms a movable member facing the magnet portion of the wall surface 112c in the retracted position state.
  • a magnet portion may be provided on a portion of the wall surface 122b (see FIG. 2) of the accommodating groove 122a that faces the movable member in the rotation axis direction in the retracted position state.
  • the magnetic material forms a movable member facing the magnet portion of the wall surface 122b in the retracted position state.
  • the direction of the magnetic force generated by the magnet portion is orthogonal to the moving direction of the movable member.
  • the direction of the magnetic force generated by the magnet portion is preferably the direction along the moving direction of the movable member.
  • the part of the compressor housing 100 facing the movable member (specifically, the first movable member 210 or the second movable member 220) in the retracted position state, and the compressor in the movable member in the retracted position state.
  • the first movable member 210 and the second movable member 220 can be held in the retracted position by the magnet portion provided on at least one of the portions closest to the housing 100.
  • the magnet portion 311, 312, 313, 321, 322, 323, 332, 332 is a movable member (specifically, the first movable member 210 or the first movable member 210 or the first movable member 210 in the compressor housing 100. 2 It is provided on a portion facing the movable member 220) and at least one of the movable members.
  • the first movable member 210 and the second movable member 220 are positioned at specific positions (for example, a protruding position or a retracted position), the magnet portions 311, 312, 313, 321, 322, 323, 331, and 332 are located.
  • the first movable member 210 and the second movable member 220 can be held at a specific position. Therefore, when the first movable member 210 and the second movable member 220 are located at specific positions, the energization of the actuator 250 can be stopped. Therefore, heat generation in the actuator 250 is suppressed. As a result, deterioration of the performance of the actuator 250 due to demagnetization of the motor or the like is suppressed.
  • the magnet portion for the protruding position (specifically, the magnet portions 311 and 312, 321 and 322) for holding the first movable member 210 and the second movable member 220 at the protruding position and the first.
  • a magnet portion (specifically, magnet portions 313, 323, 331, 332) for a retracted position that holds the movable member 210 and the second movable member 220 in the retracted position is provided in the centrifugal compressor CC.
  • one of the magnet portion for the protruding position and the magnet portion for the retracted position may be omitted from the configuration of the centrifugal compressor CC.
  • both the magnet portion for the protruding position and the magnet portion for the retracted position are provided in the centrifugal compressor CC.
  • the actuator 250 may be an electric actuator other than the electric cylinder.
  • the actuator 250 may be a solenoid type actuator. In that case, when the actuator 250 is energized, the drive shaft 251 moves to one side in the axial direction. When the actuator 250 is de-energized, the restoring force of the spring causes the drive shaft 251 to move to the other side in the axial direction.
  • the number of movable members in the throttle mechanism May be 1 or 3 or more.
  • the state in which these plurality of movable members are in contact with each other corresponds to the protruding position state in the above example.
  • the state in which these plurality of movable members are separated from each other corresponds to the retracted position state in the above example.
  • Compressor impeller 10 Intake port 100: Compressor housing (housing) 130: Intake flow path 210: First movable member (movable member) 220: Second movable member (movable member) 250: Actuator 311: Magnet part 312: Magnet Part 313: Magnet part 321: Magnet part 322: Magnet part 323: Magnet part 331: Magnet part 332: Magnet part CC: Centrifugal compressor TC: Supercharger

Abstract

A centrifugal compressor CC comprising: a housing (compressor housing 100) in which an air intake flow passage connected with an air intake port is formed; a compressor impeller positioned in the air intake flow passage; movable members (first movable member 210, second movable member 220) positioned more on the air intake port side than the compressor impeller in the air intake flow path; an electric actuator connected with the movable members; and magnet parts 311, 312, 313, 321, 322, 323, 331, 332 provided to at least one among the portion of the housing facing the movable members, and the movable members.

Description

遠心圧縮機および過給機Centrifugal compressor and turbocharger
 本開示は、遠心圧縮機および過給機に関する。本出願は2020年9月9日に提出された日本特許出願第2020-151016号に基づく優先権の利益を主張するものであり、その内容は本出願に援用される。 This disclosure relates to centrifugal compressors and turbochargers. This application claims the benefit of priority under Japanese Patent Application No. 2020-151016 filed on September 9, 2020, the contents of which are incorporated herein by reference.
 遠心圧縮機は、吸気流路が形成されたコンプレッサハウジングを備える。吸気流路には、コンプレッサインペラが配される。コンプレッサインペラに流入する空気の流量が減少すると、コンプレッサインペラで圧縮された空気が吸気流路を逆流し、サージングと呼ばれる現象が発生する。 The centrifugal compressor is equipped with a compressor housing in which an intake flow path is formed. A compressor impeller is arranged in the intake flow path. When the flow rate of the air flowing into the compressor impeller decreases, the air compressed by the compressor impeller flows back through the intake flow path, and a phenomenon called surging occurs.
 特許文献1には、コンプレッサハウジングに絞り機構を設ける遠心圧縮機について開示がある。絞り機構は、コンプレッサインペラに対し、吸気の上流側に配される。絞り機構は、可動部材を備える。可動部材は、吸気流路内に突出する突出位置と、吸気流路から退避する退避位置とに移動可能に構成される。絞り機構は、可動部材を吸気流路内に突出させることで、吸気流路の流路断面積を小さくする。可動部材が吸気流路内に突出すると、吸気流路内を逆流する空気は、可動部材により堰き止められる。吸気流路内を逆流する空気が堰き止められることで、サージングが抑制される。 Patent Document 1 discloses a centrifugal compressor in which a throttle mechanism is provided in a compressor housing. The throttle mechanism is arranged on the upstream side of the intake air with respect to the compressor impeller. The diaphragm mechanism includes a movable member. The movable member is configured to be movable between a protruding position protruding into the intake flow path and a retracting position retracting from the intake flow path. The throttle mechanism reduces the cross-sectional area of the intake flow path by projecting the movable member into the intake flow path. When the movable member protrudes into the intake flow path, the air flowing back in the intake flow path is blocked by the movable member. Surging is suppressed by blocking the air flowing back in the intake flow path.
欧州特許出願公開第3530954号明細書European Patent Application Publication No. 3530954
 ところで、絞り機構の可動部材を駆動するアクチュエータとしては、一般に、電動式のアクチュエータが利用される。可動部材が特定位置(例えば、突出位置または退避位置)に位置する時に、可動部材を特定位置に保持するために、アクチュエータへの通電が継続的に行われることがある。それにより、アクチュエータにおいて過度な発熱が生じ、アクチュエータの温度が過度に高くなる場合がある。アクチュエータの温度が過度に高くなると、減磁等によってアクチュエータの性能が低下するおそれがある。 By the way, as an actuator for driving a movable member of a diaphragm mechanism, an electric actuator is generally used. When the movable member is located at a specific position (for example, a protruding position or a retracted position), the actuator may be continuously energized in order to hold the movable member at the specific position. As a result, excessive heat generation may occur in the actuator, and the temperature of the actuator may become excessively high. If the temperature of the actuator becomes excessively high, the performance of the actuator may deteriorate due to demagnetization or the like.
 本開示の目的は、アクチュエータにおける発熱を抑制することが可能な遠心圧縮機および過給機を提供することである。 An object of the present disclosure is to provide a centrifugal compressor and a turbocharger capable of suppressing heat generation in an actuator.
 上記課題を解決するために、本開示の遠心圧縮機は、吸気口と接続される吸気流路が形成されるハウジングと、吸気流路に配されるコンプレッサインペラと、吸気流路のうちコンプレッサインペラよりも吸気口側に配される可動部材と、可動部材と接続される電動式のアクチュエータと、ハウジングのうち可動部材と対向する部分、および、可動部材の少なくとも一方に設けられる磁石部と、を備える。 In order to solve the above problems, the centrifugal compressor of the present disclosure includes a housing in which an intake flow path connected to an intake port is formed, a compressor impeller arranged in the intake flow path, and a compressor impeller among the intake flow paths. A movable member arranged closer to the intake port, an electric actuator connected to the movable member, a portion of the housing facing the movable member, and a magnet portion provided on at least one of the movable members. Be prepared.
 複数の可動部材を備え、磁石部は、ハウジングのうち複数の可動部材が互いに当接した状態において可動部材と対向する部分、および、可動部材のうち他の可動部材と当接する部分の少なくとも一方に設けられてもよい。 A plurality of movable members are provided, and the magnet portion is provided on at least one of a portion of the housing that faces the movable member in a state where the plurality of movable members are in contact with each other and a portion of the movable member that abuts on another movable member. It may be provided.
 複数の可動部材を備え、磁石部は、ハウジングのうち複数の可動部材が互いに離隔した状態において可動部材と対向する部分、および、可動部材のうち複数の可動部材が互いに離隔した状態においてハウジングと最も近接する部分の少なくとも一方に設けられてもよい。 A plurality of movable members are provided, and the magnet portion is the portion of the housing that faces the movable member when the plurality of movable members are separated from each other, and the magnet portion is the most separated from the housing when the plurality of movable members of the movable members are separated from each other. It may be provided on at least one of the adjacent portions.
 磁石部により生じる磁力の方向は、可動部材の移動方向に沿った方向であってもよい。 The direction of the magnetic force generated by the magnet portion may be the direction along the moving direction of the movable member.
 磁石部は、可動部材が特定の位置に位置する時に、可動部材を特定位置に保持してもよい。 The magnet portion may hold the movable member at a specific position when the movable member is located at a specific position.
 上記課題を解決するために、本開示の過給機は、上記の遠心圧縮機を備える。 In order to solve the above problems, the turbocharger of the present disclosure includes the above centrifugal compressor.
 本開示によれば、アクチュエータにおける発熱を抑制することができる。 According to the present disclosure, heat generation in the actuator can be suppressed.
図1は、過給機の概略断面図である。FIG. 1 is a schematic cross-sectional view of the turbocharger. 図2は、図1の破線部分の抽出図である。FIG. 2 is an extracted view of the broken line portion of FIG. 図3は、リンク機構を構成する部材の分解斜視図である。FIG. 3 is an exploded perspective view of the members constituting the link mechanism. 図4は、図2のIV-IV線断面図である。FIG. 4 is a sectional view taken along line IV-IV of FIG. 図5は、リンク機構の動作を説明するための第1の図である。FIG. 5 is a first diagram for explaining the operation of the link mechanism. 図6は、リンク機構の動作を説明するための第2の図である。FIG. 6 is a second diagram for explaining the operation of the link mechanism. 図7は、リンク機構の動作を説明するための第3の図である。FIG. 7 is a third diagram for explaining the operation of the link mechanism. 図8は、第1可動部材および第2可動部材が退避位置に保持されている状態を示す断面図である。FIG. 8 is a cross-sectional view showing a state in which the first movable member and the second movable member are held in the retracted position.
 以下に添付図面を参照しながら、本開示の一実施形態について説明する。実施形態に示す寸法、材料、その他具体的な数値等は、理解を容易とするための例示にすぎず、特に断る場合を除き、本開示を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本開示に直接関係のない要素は図示を省略する。 An embodiment of the present disclosure will be described below with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating understanding, and the present disclosure is not limited unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are designated by the same reference numerals to omit duplicate explanations, and elements not directly related to the present disclosure are omitted from the illustration. do.
 図1は、過給機TCの概略断面図である。図1に示す矢印L方向を過給機TCの左側として説明する。図1に示す矢印R方向を過給機TCの右側として説明する。過給機TCのうち、後述するコンプレッサハウジング100側は、遠心圧縮機CCとして機能する。以下では、遠心圧縮機CCは、後述するタービン翼車8により駆動されるものとして説明する。ただし、これに限定されず、遠心圧縮機CCは、不図示のエンジンにより駆動されてもよいし、不図示の電動機(モータ)により駆動されてもよい。このように、遠心圧縮機CCは、過給機TC以外の装置に組み込まれてもよいし、単体であってもよい。 FIG. 1 is a schematic cross-sectional view of the turbocharger TC. The arrow L direction shown in FIG. 1 will be described as the left side of the turbocharger TC. The arrow R direction shown in FIG. 1 will be described as the right side of the turbocharger TC. Of the turbocharger TC, the compressor housing 100 side, which will be described later, functions as a centrifugal compressor CC. Hereinafter, the centrifugal compressor CC will be described as being driven by the turbine impeller 8 described later. However, the present invention is not limited to this, and the centrifugal compressor CC may be driven by an engine (not shown) or an electric motor (motor) (not shown). As described above, the centrifugal compressor CC may be incorporated in a device other than the turbocharger TC, or may be a single unit.
 図1に示すように、過給機TCは、過給機本体1を備える。過給機本体1は、ベアリングハウジング2と、タービンハウジング4と、コンプレッサハウジング(ハウジング)100と、リンク機構200とを含む。リンク機構200の詳細については、後述する。ベアリングハウジング2の左側には、締結ボルト3によってタービンハウジング4が連結される。ベアリングハウジング2の右側には、締結ボルト5によってコンプレッサハウジング100が連結される。 As shown in FIG. 1, the supercharger TC includes a supercharger main body 1. The turbocharger main body 1 includes a bearing housing 2, a turbine housing 4, a compressor housing (housing) 100, and a link mechanism 200. The details of the link mechanism 200 will be described later. A turbine housing 4 is connected to the left side of the bearing housing 2 by a fastening bolt 3. A compressor housing 100 is connected to the right side of the bearing housing 2 by a fastening bolt 5.
 ベアリングハウジング2には、収容孔2aが形成される。収容孔2aは、過給機TCの左右方向に貫通する。収容孔2aには、軸受6が配される。軸受6は、例えば、フルフローティング軸受である。ただし、軸受6は、セミフローティング軸受や転がり軸受など、他のラジアル軸受であってもよい。収容孔2aには、シャフト7の一部が配される。シャフト7は、軸受6によって回転自在に軸支される。シャフト7の左端部には、タービン翼車8が設けられる。タービン翼車8は、タービンハウジング4内に回転自在に収容される。シャフト7の右端部には、コンプレッサインペラ9が設けられる。コンプレッサインペラ9は、コンプレッサハウジング100内に回転自在に収容される。 A housing hole 2a is formed in the bearing housing 2. The accommodating hole 2a penetrates in the left-right direction of the turbocharger TC. A bearing 6 is arranged in the accommodating hole 2a. The bearing 6 is, for example, a full floating bearing. However, the bearing 6 may be another radial bearing such as a semi-floating bearing or a rolling bearing. A part of the shaft 7 is arranged in the accommodating hole 2a. The shaft 7 is rotatably supported by a bearing 6. A turbine impeller 8 is provided at the left end of the shaft 7. The turbine impeller 8 is rotatably housed in the turbine housing 4. A compressor impeller 9 is provided at the right end of the shaft 7. The compressor impeller 9 is rotatably housed in the compressor housing 100.
 コンプレッサハウジング100には、吸気口10が形成される。吸気口10は、過給機TCの右側に開口する。吸気口10は、不図示のエアクリーナに接続される。ベアリングハウジング2とコンプレッサハウジング100の間には、ディフューザ流路11が形成される。ディフューザ流路11は、空気を昇圧する。ディフューザ流路11は、コンプレッサインペラ9の径方向(以下、単に径方向という)の内側から外側に向けて環状に形成される。ディフューザ流路11は、径方向の内側において、コンプレッサインペラ9を介して吸気口10に連通している。 An intake port 10 is formed in the compressor housing 100. The intake port 10 opens on the right side of the turbocharger TC. The intake port 10 is connected to an air cleaner (not shown). A diffuser flow path 11 is formed between the bearing housing 2 and the compressor housing 100. The diffuser flow path 11 boosts air. The diffuser flow path 11 is formed in an annular shape from the inside to the outside in the radial direction (hereinafter, simply referred to as the radial direction) of the compressor impeller 9. The diffuser flow path 11 communicates with the intake port 10 via the compressor impeller 9 on the inner side in the radial direction.
 また、コンプレッサハウジング100には、コンプレッサスクロール流路12が形成される。コンプレッサスクロール流路12は、環状に形成される。コンプレッサスクロール流路12は、例えば、コンプレッサインペラ9よりも径方向の外側に位置する。コンプレッサスクロール流路12は、不図示のエンジンの吸気口、および、ディフューザ流路11と連通している。コンプレッサインペラ9が回転すると、吸気口10からコンプレッサハウジング100内に空気が吸気される。吸気された空気は、コンプレッサインペラ9の翼間を流通する過程において、加圧加速される。加圧加速された空気は、ディフューザ流路11およびコンプレッサスクロール流路12で昇圧される。昇圧された空気は、不図示の吐出口から流出し、エンジンの吸気口に導かれる。 Further, the compressor scroll flow path 12 is formed in the compressor housing 100. The compressor scroll flow path 12 is formed in an annular shape. The compressor scroll flow path 12 is located, for example, radially outside the compressor impeller 9. The compressor scroll flow path 12 communicates with the intake port of an engine (not shown) and the diffuser flow path 11. When the compressor impeller 9 rotates, air is taken into the compressor housing 100 from the intake port 10. The intake air is pressurized and accelerated in the process of flowing between the blades of the compressor impeller 9. The pressurized and accelerated air is boosted in the diffuser flow path 11 and the compressor scroll flow path 12. The boosted air flows out from a discharge port (not shown) and is guided to the intake port of the engine.
 このように、過給機TCは、遠心圧縮機(コンプレッサ)CCを備える。遠心圧縮機CCは、コンプレッサハウジング100と、コンプレッサインペラ9と、後述するリンク機構200とを含む。 As described above, the turbocharger TC includes a centrifugal compressor (compressor) CC. The centrifugal compressor CC includes a compressor housing 100, a compressor impeller 9, and a link mechanism 200 described later.
 タービンハウジング4には、排気口13が形成される。排気口13は、過給機TCの左側に開口する。排気口13は、不図示の排気ガス浄化装置に接続される。タービンハウジング4には、連通流路14と、タービンスクロール流路15とが形成される。タービンスクロール流路15は、タービン翼車8よりも径方向の外側に位置する。連通流路14は、タービン翼車8とタービンスクロール流路15との間に位置する。 An exhaust port 13 is formed in the turbine housing 4. The exhaust port 13 opens on the left side of the turbocharger TC. The exhaust port 13 is connected to an exhaust gas purification device (not shown). A communication flow path 14 and a turbine scroll flow path 15 are formed in the turbine housing 4. The turbine scroll flow path 15 is located radially outside the turbine impeller 8. The communication flow path 14 is located between the turbine impeller 8 and the turbine scroll flow path 15.
 タービンスクロール流路15は、不図示のガス流入口と連通する。ガス流入口には、不図示のエンジンの排気マニホールドから排出される排気ガスが導かれる。連通流路14は、タービンスクロール流路15と排気口13とを連通させる。ガス流入口からタービンスクロール流路15に導かれた排気ガスは、連通流路14およびタービン翼車8の翼間を介して排気口13に導かれる。排気ガスは、その流通過程においてタービン翼車8を回転させる。 The turbine scroll flow path 15 communicates with a gas inlet (not shown). Exhaust gas discharged from an engine exhaust manifold (not shown) is guided to the gas inlet. The communication flow path 14 communicates the turbine scroll flow path 15 with the exhaust port 13. The exhaust gas guided from the gas inlet to the turbine scroll flow path 15 is guided to the exhaust port 13 via the communication flow path 14 and the blades of the turbine impeller 8. The exhaust gas rotates the turbine impeller 8 in its distribution process.
 タービン翼車8の回転力は、シャフト7を介してコンプレッサインペラ9に伝達される。上記のとおりに、空気は、コンプレッサインペラ9の回転力によって昇圧されて、エンジンの吸気口に導かれる。 The rotational force of the turbine impeller 8 is transmitted to the compressor impeller 9 via the shaft 7. As described above, the air is boosted by the rotational force of the compressor impeller 9 and guided to the intake port of the engine.
 図2は、図1の破線部分の抽出図である。図1および図2に示すように、コンプレッサハウジング100は、第1ハウジング部材110と、第2ハウジング部材120とを含む。第1ハウジング部材110は、第2ハウジング部材120よりも、図2中、右側(ベアリングハウジング2から離隔する側)に位置する。第2ハウジング部材120は、ベアリングハウジング2に接続される。第1ハウジング部材110は、第2ハウジング部材120に接続される。 FIG. 2 is an extracted view of the broken line portion of FIG. As shown in FIGS. 1 and 2, the compressor housing 100 includes a first housing member 110 and a second housing member 120. The first housing member 110 is located on the right side (the side separated from the bearing housing 2) in FIG. 2 with respect to the second housing member 120. The second housing member 120 is connected to the bearing housing 2. The first housing member 110 is connected to the second housing member 120.
 図2に示すように、第1ハウジング部材110は、大凡円筒形状である。第1ハウジング部材110には、貫通孔111が形成される。第1ハウジング部材110は、第2ハウジング部材120と近接(接続)する側に端面112を有する。また、第1ハウジング部材110は、第2ハウジング部材120から離隔する側に端面113を有する。端面113には、吸気口10が形成される。貫通孔111は、コンプレッサインペラ9の回転軸方向(以下、単に回転軸方向という)に沿って、端面112から端面113まで延在する。つまり、貫通孔111は、第1ハウジング部材110を回転軸方向に貫通している。 As shown in FIG. 2, the first housing member 110 has a substantially cylindrical shape. A through hole 111 is formed in the first housing member 110. The first housing member 110 has an end face 112 on the side close to (connecting) to the second housing member 120. Further, the first housing member 110 has an end face 113 on the side separated from the second housing member 120. An intake port 10 is formed on the end surface 113. The through hole 111 extends from the end face 112 to the end face 113 along the rotation axis direction of the compressor impeller 9 (hereinafter, simply referred to as the rotation axis direction). That is, the through hole 111 penetrates the first housing member 110 in the rotation axis direction.
 貫通孔111は、平行部111aと、縮径部111bとを有する。平行部111aは、縮径部111bよりも端面113側に位置する。平行部111aの内径は、回転軸方向に亘って大凡一定である。縮径部111bは、平行部111aよりも端面112側に位置する。縮径部111bは、平行部111aと連続する。縮径部111bのうち平行部111aと連続する部位の内径は、平行部111aの内径と大凡等しい。縮径部111bの内径は、平行部111aから離隔するほど(つまり、端面112に近づくほど)、小さくなる。 The through hole 111 has a parallel portion 111a and a reduced diameter portion 111b. The parallel portion 111a is located on the end face 113 side of the diameter reduction portion 111b. The inner diameter of the parallel portion 111a is substantially constant over the direction of the axis of rotation. The reduced diameter portion 111b is located on the end face 112 side of the parallel portion 111a. The reduced diameter portion 111b is continuous with the parallel portion 111a. The inner diameter of the portion of the reduced diameter portion 111b that is continuous with the parallel portion 111a is approximately equal to the inner diameter of the parallel portion 111a. The inner diameter of the reduced diameter portion 111b becomes smaller as it is separated from the parallel portion 111a (that is, closer to the end surface 112).
 端面112には、切り欠き部112aが形成される。切り欠き部112aは、端面112から端面113側に窪む。切り欠き部112aは、端面112の外周部に形成される。切り欠き部112aは、回転軸方向から見たとき、例えば大凡環状である。 A notch 112a is formed on the end face 112. The cutout portion 112a is recessed from the end surface 112 toward the end surface 113. The cutout portion 112a is formed on the outer peripheral portion of the end face 112. The cutout portion 112a is, for example, generally annular when viewed from the direction of the rotation axis.
 また、端面112には、収容室ACが形成される。収容室ACは、第1ハウジング部材110のうちコンプレッサインペラ9の羽根の前縁端(リーディングエッジ)LEよりも吸気口10側に形成される。収容室ACは、後述する収容溝112bと、軸受穴112dと、収容穴115(図3を参照)とを含む。 Further, a storage chamber AC is formed on the end face 112. The accommodation chamber AC is formed on the intake port 10 side of the first housing member 110 with respect to the leading edge LE of the blades of the compressor impeller 9. The accommodation chamber AC includes an accommodation groove 112b, which will be described later, a bearing hole 112d, and an accommodation hole 115 (see FIG. 3).
 収容溝112bは、端面112に形成される。収容溝112bは、切り欠き部112aと貫通孔111との間に位置する。収容溝112bは、端面112から端面113側に窪む。収容溝112bは、回転軸方向から見たとき、例えば大凡環状である。収容溝112bは、径方向内側において貫通孔111と連通する。 The accommodating groove 112b is formed on the end face 112. The accommodating groove 112b is located between the notch 112a and the through hole 111. The accommodating groove 112b is recessed from the end surface 112 toward the end surface 113. The accommodating groove 112b is, for example, generally annular when viewed from the direction of the rotation axis. The accommodating groove 112b communicates with the through hole 111 on the inner side in the radial direction.
 収容溝112bのうち端面113側の壁面112cには、軸受穴112dが形成される。軸受穴112dは、壁面112cから端面113側に向かって回転軸方向に延在する。軸受穴112dは、コンプレッサインペラ9の回転方向(以下、単に回転方向または周方向という)に離隔して2つ設けられる。2つの軸受穴112dは、回転方向に180度ずれた位置に配されている。 A bearing hole 112d is formed in the wall surface 112c on the end face 113 side of the accommodating groove 112b. The bearing hole 112d extends in the rotation axis direction from the wall surface 112c toward the end face 113 side. Two bearing holes 112d are provided so as to be separated from each other in the rotation direction of the compressor impeller 9 (hereinafter, simply referred to as a rotation direction or a circumferential direction). The two bearing holes 112d are arranged at positions offset by 180 degrees in the rotational direction.
 第2ハウジング部材120には、貫通孔121が形成される。第2ハウジング部材120は、第1ハウジング部材110と近接(接続)する側に端面122を有する。また、第2ハウジング部材120は、第1ハウジング部材110から離隔する側(ベアリングハウジング2と接続する側)に端面123を有する。貫通孔121は、回転軸方向に沿って、端面122から端面123まで延在する。つまり、貫通孔121は、第2ハウジング部材120を回転軸方向に貫通する。 A through hole 121 is formed in the second housing member 120. The second housing member 120 has an end face 122 on the side close to (connecting) to the first housing member 110. Further, the second housing member 120 has an end surface 123 on the side separated from the first housing member 110 (the side connected to the bearing housing 2). The through hole 121 extends from the end face 122 to the end face 123 along the rotation axis direction. That is, the through hole 121 penetrates the second housing member 120 in the rotation axis direction.
 貫通孔121のうち端面122側の端部の内径は、貫通孔111のうち端面112側の端部の内径と大凡等しい。貫通孔121の内壁には、シュラウド部121aが形成される。シュラウド部121aは、コンプレッサインペラ9に対して径方向の外側から対向する。コンプレッサインペラ9の外径は、コンプレッサインペラ9の羽根の前縁端(リーディングエッジ)LEから離隔するほど大きくなる。シュラウド部121aの内径は、端面122から離隔するほど(つまり、端面123に近接するほど)大きくなる。 The inner diameter of the end portion of the through hole 121 on the end surface 122 side is approximately equal to the inner diameter of the end portion of the through hole 111 on the end surface 112 side. A shroud portion 121a is formed on the inner wall of the through hole 121. The shroud portion 121a faces the compressor impeller 9 from the outside in the radial direction. The outer diameter of the compressor impeller 9 becomes larger as it is separated from the leading edge LE of the blades of the compressor impeller 9. The inner diameter of the shroud portion 121a increases as it is separated from the end face 122 (that is, closer to the end face 123).
 端面122には、収容溝122aが形成される。収容溝122aは、端面122から端面123側に窪む。収容溝122aは、回転軸方向から見たとき、例えば大凡環状である。収容溝122aには、第1ハウジング部材110が挿入される。収容溝122aのうち端面123側の壁面122bに、第1ハウジング部材110の端面112が当接する。このとき、第1ハウジング部材110(具体的には、壁面112c)と第2ハウジング部材120(具体的には、壁面122b)との間には、収容室ACが形成される。 A housing groove 122a is formed on the end face 122. The accommodating groove 122a is recessed from the end surface 122 toward the end surface 123. The accommodating groove 122a is, for example, generally annular when viewed from the direction of the rotation axis. The first housing member 110 is inserted into the accommodating groove 122a. The end surface 112 of the first housing member 110 comes into contact with the wall surface 122b on the end surface 123 side of the accommodating groove 122a. At this time, a storage chamber AC is formed between the first housing member 110 (specifically, the wall surface 112c) and the second housing member 120 (specifically, the wall surface 122b).
 第1ハウジング部材110の貫通孔111と、第2ハウジング部材120の貫通孔121によって、吸気流路130が形成される。つまり、吸気流路130は、コンプレッサハウジング100に形成される。吸気流路130は、一側において吸気口10と接続され、他側においてディフューザ流路11と接続される。吸気口10とディフューザ流路11とは、吸気流路130を介して連通する。吸気流路130のうち吸気口10側を吸気の上流側とし、吸気流路130のうちディフューザ流路11側を吸気の下流側とする。 The intake flow path 130 is formed by the through hole 111 of the first housing member 110 and the through hole 121 of the second housing member 120. That is, the intake flow path 130 is formed in the compressor housing 100. The intake flow path 130 is connected to the intake port 10 on one side and is connected to the diffuser flow path 11 on the other side. The intake port 10 and the diffuser flow path 11 communicate with each other via the intake flow path 130. The intake port 10 side of the intake flow path 130 is the upstream side of the intake air, and the diffuser flow path 11 side of the intake flow path 130 is the downstream side of the intake air.
 コンプレッサインペラ9は、吸気流路130に配される。吸気流路130(つまり、貫通孔111、121)の回転軸方向に垂直な断面形状は、例えば、コンプレッサインペラ9の回転軸を中心とする円形である。ただし、吸気流路130の断面形状は、これに限定されず、例えば、楕円形状であってもよい。 The compressor impeller 9 is arranged in the intake flow path 130. The cross-sectional shape of the intake flow path 130 (that is, the through holes 111, 121) perpendicular to the rotation axis direction is, for example, a circle centered on the rotation axis of the compressor impeller 9. However, the cross-sectional shape of the intake flow path 130 is not limited to this, and may be, for example, an elliptical shape.
 第1ハウジング部材110の切り欠き部112aには、不図示のシール材が配される。シール材により、第1ハウジング部材110と第2ハウジング部材120との隙間を流通する空気の流量が抑制される。ただし、切り欠き部112aおよびシール材は、必須の構成要素ではない。 A sealing material (not shown) is arranged in the cutout portion 112a of the first housing member 110. The sealing material suppresses the flow rate of air flowing through the gap between the first housing member 110 and the second housing member 120. However, the notch 112a and the sealing material are not essential components.
 図3は、リンク機構200を構成する部材の分解斜視図である。図3では、コンプレッサハウジング100のうち、第1ハウジング部材110のみが示される。図3に示すように、リンク機構200は、第1ハウジング部材110と、第1可動部材210と、第2可動部材220と、連結部材230と、ロッド240とを含む。リンク機構200は、回転軸方向において、吸気流路130のうちコンプレッサインペラ9よりも吸気口10側(上流側)に配される。 FIG. 3 is an exploded perspective view of the members constituting the link mechanism 200. In FIG. 3, only the first housing member 110 of the compressor housing 100 is shown. As shown in FIG. 3, the link mechanism 200 includes a first housing member 110, a first movable member 210, a second movable member 220, a connecting member 230, and a rod 240. The link mechanism 200 is arranged on the intake port 10 side (upstream side) of the intake flow path 130 with respect to the compressor impeller 9 in the rotation axis direction.
 第1可動部材210は、収容溝112b(収容室AC)に配される。具体的には、第1可動部材210は、回転軸方向において、収容溝112bの壁面112cと、収容溝122aの壁面122b(図2参照)との間に配される。第1可動部材210は、例えば、樹脂材料によって形成される。第1可動部材210は、例えば、射出成形により成形される。 The first movable member 210 is arranged in the accommodation groove 112b (accommodation chamber AC). Specifically, the first movable member 210 is arranged between the wall surface 112c of the accommodating groove 112b and the wall surface 122b of the accommodating groove 122a (see FIG. 2) in the rotation axis direction. The first movable member 210 is formed of, for example, a resin material. The first movable member 210 is molded, for example, by injection molding.
 第1可動部材210は、収容溝112bの壁面112cと対向する対向面S1と、収容溝122aの壁面122bと対向する対向面S2とを有する。第1可動部材210は、本体部B1を有する。本体部B1は、湾曲部211と、アーム部212とを含む。 The first movable member 210 has an facing surface S1 facing the wall surface 112c of the accommodating groove 112b and an opposing surface S2 facing the wall surface 122b of the accommodating groove 122a. The first movable member 210 has a main body portion B1. The main body portion B1 includes a curved portion 211 and an arm portion 212.
 湾曲部211は、コンプレッサインペラ9の周方向に延在する。湾曲部211は、大凡半円弧形状である。湾曲部211のうち、周方向の一端面211aおよび他端面211bは、径方向および回転軸方向に平行に延在する。ただし、一端面211aおよび他端面211bは、径方向および回転軸方向に対し、傾斜していてもよい。 The curved portion 211 extends in the circumferential direction of the compressor impeller 9. The curved portion 211 has a substantially semicircular arc shape. Of the curved portions 211, one end surface 211a and the other end surface 211b in the circumferential direction extend in parallel in the radial direction and the rotation axis direction. However, the one end surface 211a and the other end surface 211b may be inclined with respect to the radial direction and the rotation axis direction.
 湾曲部211の一端面211a側には、アーム部212が設けられる。アーム部212は、湾曲部211の外周面211cから径方向の外側に延在する。また、アーム部212は、径方向に対して傾斜する方向(第2可動部材220側)に延在する。 An arm portion 212 is provided on one end surface 211a side of the curved portion 211. The arm portion 212 extends radially outward from the outer peripheral surface 211c of the curved portion 211. Further, the arm portion 212 extends in a direction inclined with respect to the radial direction (second movable member 220 side).
 第2可動部材220は、収容溝112b(収容室AC)に配される。具体的には、第2可動部材220は、回転軸方向において、収容溝112bの壁面112cと、収容溝122aの壁面122b(図2参照)との間に配される。第2可動部材220は、例えば、樹脂材料によって形成される。第2可動部材220は、例えば、射出成形により成形される。 The second movable member 220 is arranged in the accommodation groove 112b (accommodation chamber AC). Specifically, the second movable member 220 is arranged between the wall surface 112c of the accommodating groove 112b and the wall surface 122b of the accommodating groove 122a (see FIG. 2) in the rotation axis direction. The second movable member 220 is formed of, for example, a resin material. The second movable member 220 is molded, for example, by injection molding.
 第2可動部材220は、収容溝112bの壁面112cと対向する対向面S1と、収容溝122aの壁面122bと対向する対向面S2とを有する。第2可動部材220は、本体部B2を有する。本体部B2は、湾曲部221と、アーム部222とを含んで構成される。 The second movable member 220 has an facing surface S1 facing the wall surface 112c of the accommodating groove 112b and an opposing surface S2 facing the wall surface 122b of the accommodating groove 122a. The second movable member 220 has a main body portion B2. The main body portion B2 includes a curved portion 221 and an arm portion 222.
 湾曲部221は、コンプレッサインペラ9の周方向に延在する。湾曲部221は、大凡半円弧形状である。湾曲部221のうち、周方向の一端面221aおよび他端面221bは、径方向および回転軸方向に平行に延在する。ただし、一端面221aおよび他端面221bは、径方向および回転軸方向に対し、傾斜していてもよい。 The curved portion 221 extends in the circumferential direction of the compressor impeller 9. The curved portion 221 has a substantially semicircular arc shape. Of the curved portions 221 the one end surface 221a and the other end surface 221b in the circumferential direction extend in parallel in the radial direction and the rotation axis direction. However, the one end surface 221a and the other end surface 221b may be inclined with respect to the radial direction and the rotation axis direction.
 湾曲部221の一端面221a側には、アーム部222が設けられる。アーム部222は、湾曲部221の外周面221cから径方向の外側に延在する。また、アーム部222は、径方向に対して傾斜する方向(第1可動部材210側)に延在する。 An arm portion 222 is provided on the one end surface 221a side of the curved portion 221. The arm portion 222 extends radially outward from the outer peripheral surface 221c of the curved portion 221. Further, the arm portion 222 extends in a direction inclined with respect to the radial direction (first movable member 210 side).
 湾曲部211は、湾曲部221とコンプレッサインペラ9の回転中心を挟んで(つまり、吸気流路130を挟んで)対向する。湾曲部211の一端面211aは、湾曲部221の他端面221bと周方向に対向する。湾曲部211の他端面211bは、湾曲部221の一端面221aと周方向に対向する。第1可動部材210および第2可動部材220では、詳しくは後述するように、湾曲部211、221が径方向に移動可能である。 The curved portion 211 faces the curved portion 221 with the rotation center of the compressor impeller 9 interposed therebetween (that is, sandwiching the intake flow path 130). The one end surface 211a of the curved portion 211 faces the other end surface 221b of the curved portion 221 in the circumferential direction. The other end surface 211b of the curved portion 211 faces the one end surface 221a of the curved portion 221 in the circumferential direction. In the first movable member 210 and the second movable member 220, the curved portions 211 and 221 are movable in the radial direction, as will be described in detail later.
 連結部材230は、第1可動部材210および第2可動部材220と連結する。連結部材230は、第1可動部材210、第2可動部材220よりも吸気口10側に位置する。連結部材230は、大凡円弧形状である。連結部材230の周方向における一端側に第1軸受穴231が形成され、連結部材230の他端側に第2軸受穴232が形成される。第1軸受穴231および第2軸受穴232は、連結部材230のうち、第1可動部材210、第2可動部材220側の端面233に開口する。第1軸受穴231および第2軸受穴232は、回転軸方向に延在する。ここでは、第1軸受穴231および第2軸受穴232は、非貫通の穴で構成される。ただし、第1軸受穴231および第2軸受穴232は、連結部材230を回転軸方向に貫通してもよい。 The connecting member 230 is connected to the first movable member 210 and the second movable member 220. The connecting member 230 is located closer to the intake port 10 than the first movable member 210 and the second movable member 220. The connecting member 230 has a generally arcuate shape. A first bearing hole 231 is formed on one end side of the connecting member 230 in the circumferential direction, and a second bearing hole 232 is formed on the other end side of the connecting member 230. The first bearing hole 231 and the second bearing hole 232 open in the end surface 233 on the side of the first movable member 210 and the second movable member 220 of the connecting member 230. The first bearing hole 231 and the second bearing hole 232 extend in the rotation axis direction. Here, the first bearing hole 231 and the second bearing hole 232 are composed of non-penetrating holes. However, the first bearing hole 231 and the second bearing hole 232 may penetrate the connecting member 230 in the rotation axis direction.
 連結部材230のうち第1軸受穴231と第2軸受穴232の間には、ロッド接続部234が形成される。ロッド接続部234は、連結部材230のうち、第1可動部材210、第2可動部材220と反対側の端面235に形成される。ロッド接続部234は、端面235から回転軸方向に突出する。ロッド接続部234は、例えば、大凡円柱形状である。 A rod connecting portion 234 is formed between the first bearing hole 231 and the second bearing hole 232 of the connecting member 230. The rod connecting portion 234 is formed on the end surface 235 of the connecting member 230 opposite to the first movable member 210 and the second movable member 220. The rod connecting portion 234 protrudes from the end face 235 in the rotation axis direction. The rod connecting portion 234 has, for example, a roughly cylindrical shape.
 ロッド240は、大凡円柱形状である。ロッド240の一端部に平面部241が形成され、ロッド240の他端部に連結部243が形成される。平面部241は、回転軸方向に大凡垂直な面方向に延在する。平面部241には、軸受穴242が開口する。軸受穴242は、回転軸方向に延在する。連結部243は、連結孔243aを有する。連結部243(具体的には、連結孔243a)には、後述するアクチュエータ250(図5から図7を参照)が連結される。軸受穴242は、例えば、回転軸方向およびロッド240の軸方向に垂直な方向の長さが、ロッド240の軸方向の長さよりも長い長穴であってもよい。 The rod 240 has a roughly cylindrical shape. A flat surface portion 241 is formed at one end of the rod 240, and a connecting portion 243 is formed at the other end of the rod 240. The flat surface portion 241 extends in the plane direction substantially perpendicular to the rotation axis direction. A bearing hole 242 opens in the flat surface portion 241. The bearing hole 242 extends in the direction of the rotation axis. The connecting portion 243 has a connecting hole 243a. An actuator 250 (see FIGS. 5 to 7) described later is connected to the connecting portion 243 (specifically, the connecting hole 243a). The bearing hole 242 may be a long hole whose length in the direction perpendicular to the rotation axis direction and the axial direction of the rod 240 is longer than the axial length of the rod 240, for example.
 ロッド240のうち平面部241と連結部243の間には、ロッド大径部244と、2つのロッド小径部245とが形成される。ロッド大径部244は、2つのロッド小径部245の間に配される。2つのロッド小径部245のうち平面部241側のロッド小径部245は、ロッド大径部244と平面部241とを接続する。2つのロッド小径部245のうち連結部243側のロッド小径部245は、ロッド大径部244と連結部243とを接続する。ロッド大径部244の外径は、2つのロッド小径部245の外径よりも大きい。 A rod large diameter portion 244 and two rod small diameter portions 245 are formed between the flat surface portion 241 and the connecting portion 243 of the rod 240. The rod large diameter portion 244 is arranged between the two rod small diameter portions 245. Of the two rod small diameter portions 245, the rod small diameter portion 245 on the flat surface portion 241 side connects the rod large diameter portion 244 and the flat surface portion 241. Of the two rod small diameter portions 245, the rod small diameter portion 245 on the connecting portion 243 side connects the rod large diameter portion 244 and the connecting portion 243. The outer diameter of the rod large diameter portion 244 is larger than the outer diameter of the two rod small diameter portions 245.
 第1ハウジング部材110には、挿通穴114が形成される。挿通穴114の一端114aは、第1ハウジング部材110の外部に開口する。挿通穴114は、例えば、回転軸方向に垂直な面方向に延在する。挿通穴114は、貫通孔111よりも径方向の外側(つまり、吸気流路130よりも径方向の外側)に位置する。挿通穴114には、ロッド240の平面部241側が挿通される。ロッド大径部244は、挿通穴114の内壁面によってガイドされる。挿通穴114の中心軸方向(つまり、ロッド240の中心軸方向)以外の方向へのロッド240の移動は、規制される。 An insertion hole 114 is formed in the first housing member 110. One end 114a of the insertion hole 114 opens to the outside of the first housing member 110. The insertion hole 114 extends, for example, in a plane direction perpendicular to the rotation axis direction. The insertion hole 114 is located radially outside the through hole 111 (that is, radially outside the intake flow path 130). The flat surface portion 241 side of the rod 240 is inserted into the insertion hole 114. The rod large diameter portion 244 is guided by the inner wall surface of the insertion hole 114. The movement of the rod 240 in a direction other than the central axis direction of the insertion hole 114 (that is, the central axis direction of the rod 240) is restricted.
 第1ハウジング部材110には、収容穴115が形成される。収容穴115は、収容溝112bの壁面112cに開口する。収容穴115は、壁面112cから吸気口10側に窪む。収容穴115は、挿通穴114よりも吸気口10から離隔する側(第2ハウジング部材120側)に位置する。収容穴115は、回転軸方向から見たとき、大凡円弧形状である。収容穴115は、連結部材230よりも周方向に長く延在する。収容穴115は、軸受穴112dから周方向に離隔する。 A housing hole 115 is formed in the first housing member 110. The accommodating hole 115 opens in the wall surface 112c of the accommodating groove 112b. The accommodating hole 115 is recessed from the wall surface 112c toward the intake port 10. The accommodating hole 115 is located on the side (second housing member 120 side) separated from the intake port 10 from the insertion hole 114. The accommodating hole 115 has a substantially arc shape when viewed from the direction of the rotation axis. The accommodating hole 115 extends longer in the circumferential direction than the connecting member 230. The accommodating hole 115 is separated from the bearing hole 112d in the circumferential direction.
 第1ハウジング部材110には、連通孔116が形成される。連通孔116は、挿通穴114と収容穴115とを連通させる。連通孔116は、収容穴115のうち、周方向の大凡中間部分に形成される。連通孔116は、例えば、挿通穴114の延在方向に大凡平行に延在する長孔である。連通孔116の長手方向(延在方向)の幅は、連通孔116の短手方向(延在方向と垂直な方向)の幅よりも大きい。連通孔116の短手方向の幅は、連結部材230のロッド接続部234の外径よりも大きい。 A communication hole 116 is formed in the first housing member 110. The communication hole 116 communicates the insertion hole 114 and the accommodating hole 115. The communication hole 116 is formed in an approximately intermediate portion in the circumferential direction of the accommodating hole 115. The communication hole 116 is, for example, an elongated hole extending substantially parallel to the extension direction of the insertion hole 114. The width of the communication hole 116 in the longitudinal direction (extending direction) is larger than the width of the communication hole 116 in the lateral direction (direction perpendicular to the extending direction). The width of the communication hole 116 in the lateral direction is larger than the outer diameter of the rod connecting portion 234 of the connecting member 230.
 連結部材230は、収容穴115(収容室AC)に収容される。このように、第1可動部材210、第2可動部材220および連結部材230は、第1ハウジング部材110に形成された収容室AC内に配される。収容穴115の周方向の長さは、連結部材230の周方向の長さよりも長い。収容穴115の径方向の幅も、連結部材230の径方向の幅より大きい。そのため、収容穴115の内部で、回転軸方向に垂直な面方向への連結部材230の移動は、許容される。 The connecting member 230 is accommodated in the accommodation hole 115 (accommodation chamber AC). In this way, the first movable member 210, the second movable member 220, and the connecting member 230 are arranged in the accommodation chamber AC formed in the first housing member 110. The circumferential length of the accommodating hole 115 is longer than the circumferential length of the connecting member 230. The radial width of the accommodating hole 115 is also larger than the radial width of the connecting member 230. Therefore, the movement of the connecting member 230 in the plane direction perpendicular to the rotation axis direction is allowed inside the accommodating hole 115.
 ロッド接続部234は、連通孔116から挿通穴114に挿通される。挿通穴114には、ロッド240の平面部241が挿通されている。平面部241の軸受穴242は、連通孔116に対向している。ロッド接続部234は、軸受穴242に挿通され、接続される。ロッド接続部234は、軸受穴242に軸支される。 The rod connection portion 234 is inserted from the communication hole 116 into the insertion hole 114. The flat surface portion 241 of the rod 240 is inserted into the insertion hole 114. The bearing hole 242 of the flat surface portion 241 faces the communication hole 116. The rod connecting portion 234 is inserted into and connected to the bearing hole 242. The rod connection portion 234 is pivotally supported in the bearing hole 242.
 図4は、図2のIV-IV線断面図である。図4に破線で示すように、第1可動部材210は、連結軸部213および回転軸部214を有する。連結軸部213および回転軸部214は、第1可動部材210のうち、壁面112cと対向する対向面S1(図2参照)から、回転軸方向に突出する。連結軸部213および回転軸部214は、図4中、紙面奥側に延在する。回転軸部214は、連結軸部213と平行に延在する。連結軸部213および回転軸部214は、大凡円柱形状である。 FIG. 4 is a sectional view taken along line IV-IV of FIG. As shown by the broken line in FIG. 4, the first movable member 210 has a connecting shaft portion 213 and a rotating shaft portion 214. The connecting shaft portion 213 and the rotating shaft portion 214 project from the facing surface S1 (see FIG. 2) facing the wall surface 112c of the first movable member 210 in the rotation axis direction. The connecting shaft portion 213 and the rotating shaft portion 214 extend to the back side of the paper surface in FIG. The rotation shaft portion 214 extends in parallel with the connecting shaft portion 213. The connecting shaft portion 213 and the rotating shaft portion 214 have a substantially cylindrical shape.
 連結軸部213の外径は、連結部材230の第1軸受穴231の内径よりも小さい。連結軸部213は、第1軸受穴231に挿通される。連結軸部213は、第1軸受穴231に回転自在に軸支される。回転軸部214の外径は、第1ハウジング部材110の軸受穴112dの内径よりも小さい。回転軸部214は、2つの軸受穴112dのうち鉛直上側(つまり、ロッド240に近接する側)の軸受穴112dに挿通される。回転軸部214は、軸受穴112dに回転自在に軸支される。 The outer diameter of the connecting shaft portion 213 is smaller than the inner diameter of the first bearing hole 231 of the connecting member 230. The connecting shaft portion 213 is inserted into the first bearing hole 231. The connecting shaft portion 213 is rotatably supported in the first bearing hole 231. The outer diameter of the rotating shaft portion 214 is smaller than the inner diameter of the bearing hole 112d of the first housing member 110. The rotating shaft portion 214 is inserted into the bearing hole 112d on the vertically upper side (that is, the side close to the rod 240) of the two bearing holes 112d. The rotary shaft portion 214 is rotatably supported by the bearing hole 112d.
 第2可動部材220は、連結軸部223および回転軸部224を有する。連結軸部223および回転軸部224は、第2可動部材220のうち、壁面112cと対向する対向面S1(図2参照)から、回転軸方向に突出する。連結軸部223および回転軸部224は、図4中、紙面奥側に延在する。回転軸部224は、連結軸部223と平行に延在する。連結軸部223および回転軸部224は、大凡円柱形状である。 The second movable member 220 has a connecting shaft portion 223 and a rotating shaft portion 224. The connecting shaft portion 223 and the rotating shaft portion 224 project in the rotation axis direction from the facing surface S1 (see FIG. 2) facing the wall surface 112c of the second movable member 220. The connecting shaft portion 223 and the rotating shaft portion 224 extend to the back side of the paper surface in FIG. The rotation shaft portion 224 extends parallel to the connecting shaft portion 223. The connecting shaft portion 223 and the rotating shaft portion 224 have a substantially cylindrical shape.
 連結軸部223の外径は、連結部材230の第2軸受穴232の内径よりも小さい。連結軸部223は、第2軸受穴232に挿通される。連結軸部223は、第2軸受穴232に回転自在に軸支される。回転軸部224の外径は、第1ハウジング部材110の軸受穴112dの内径よりも小さい。回転軸部224は、2つの軸受穴112dのうち鉛直下側(つまり、ロッド240から離隔する側)の軸受穴112dに挿通される。回転軸部224は、軸受穴112dに回転自在に軸支される。 The outer diameter of the connecting shaft portion 223 is smaller than the inner diameter of the second bearing hole 232 of the connecting member 230. The connecting shaft portion 223 is inserted into the second bearing hole 232. The connecting shaft portion 223 is rotatably supported by the second bearing hole 232. The outer diameter of the rotating shaft portion 224 is smaller than the inner diameter of the bearing hole 112d of the first housing member 110. The rotating shaft portion 224 is inserted into the bearing hole 112d on the vertically lower side (that is, the side separated from the rod 240) of the two bearing holes 112d. The rotary shaft portion 224 is rotatably supported by the bearing hole 112d.
 このように、リンク機構200は、4節リンク機構である。4つのリンク(節)は、第1可動部材210、第2可動部材220、第1ハウジング部材110および連結部材230である。リンク機構200が、4節リンク機構であることから、限定連鎖となり1自由度であって制御が容易である。 As described above, the link mechanism 200 is a four-section link mechanism. The four links (sections) are a first movable member 210, a second movable member 220, a first housing member 110, and a connecting member 230. Since the link mechanism 200 is a four-section link mechanism, it is a limited chain and has one degree of freedom and is easy to control.
 なお、図4には、磁石部311、312、313、321、322、323、331、332が示されているが、これらの磁石部の説明については、後述する。 Note that FIG. 4 shows the magnet portions 311, 312, 313, 321, 322, 323, 331, and 332, and the description of these magnet portions will be described later.
 図5は、リンク機構200の動作を説明するための第1の図である。以下の図5、図6および図7では、リンク機構200を吸気口10側から見た図が示される。図5に示すように、ロッド240の連結部243には、アクチュエータ250の駆動シャフト251の端部が連結される。 FIG. 5 is a first diagram for explaining the operation of the link mechanism 200. In FIGS. 5, 6 and 7 below, a view of the link mechanism 200 as viewed from the intake port 10 side is shown. As shown in FIG. 5, the end portion of the drive shaft 251 of the actuator 250 is connected to the connecting portion 243 of the rod 240.
 アクチュエータ250は、電動式のアクチュエータであり、電気によって駆動される。アクチュエータ250は、例えば、図示しないモータを有する電動シリンダである。この場合、モータの回転動力が、直進方向の動力に変換されて駆動シャフト251に伝達される。これにより、駆動シャフト251が軸方向に移動する。モータの回転方向が切り替わると、駆動シャフト251の移動方向が切り替わる。 The actuator 250 is an electric actuator and is driven by electricity. The actuator 250 is, for example, an electric cylinder having a motor (not shown). In this case, the rotational power of the motor is converted into power in the straight direction and transmitted to the drive shaft 251. As a result, the drive shaft 251 moves in the axial direction. When the rotation direction of the motor is switched, the moving direction of the drive shaft 251 is switched.
 図5に示す配置では、第1可動部材210と第2可動部材220は、互いに当接する。このとき、図2および図4に示すように、第1可動部材210のうち、径方向の内側の部位である突出部215は、吸気流路130内に突出(露出)する。第2可動部材220のうち、径方向の内側の部位である突出部225は、吸気流路130内に突出(露出)する。この状態(具体的には、図5に示す状態)における第1可動部材210および第2可動部材220の位置を、突出位置(あるいは絞り位置)という。 In the arrangement shown in FIG. 5, the first movable member 210 and the second movable member 220 are in contact with each other. At this time, as shown in FIGS. 2 and 4, the protruding portion 215, which is an inner portion in the radial direction of the first movable member 210, protrudes (exposed) into the intake flow path 130. Of the second movable member 220, the protruding portion 225, which is an inner portion in the radial direction, protrudes (exposed) into the intake flow path 130. The positions of the first movable member 210 and the second movable member 220 in this state (specifically, the state shown in FIG. 5) are referred to as protrusion positions (or aperture positions).
 図5に示すように、突出位置では、突出部215のうち、周方向の端部215a、215bと、突出部225のうち、周方向の端部225a、225bとが当接する。突出部215と突出部225によって環状孔260が形成される。環状孔260の内径は、吸気流路130のうち、突出部215、225が突出する位置の内径よりも小さい。環状孔260の内径は、例えば、吸気流路130のいずれの位置の内径よりも小さい。 As shown in FIG. 5, at the protruding position, the peripheral end portions 215a and 215b of the protruding portion 215 and the circumferential end portions 225a and 225b of the protruding portion 225 are in contact with each other. An annular hole 260 is formed by the protrusion 215 and the protrusion 225. The inner diameter of the annular hole 260 is smaller than the inner diameter of the intake flow path 130 at the position where the protrusions 215 and 225 protrude. The inner diameter of the annular hole 260 is, for example, smaller than the inner diameter of any position of the intake flow path 130.
 図6は、リンク機構200の動作を説明するための第2の図である。図7は、リンク機構200の動作を説明するための第3の図である。アクチュエータ250は、回転軸方向と交差する方向(図6、図7中、上下方向)にロッド240を直動させる。図6および図7では、ロッド240は、図5に示す位置から上側に移動する。図6の配置よりも図7の配置の方が、図5の配置に対するロッド240の移動量が大きい。 FIG. 6 is a second diagram for explaining the operation of the link mechanism 200. FIG. 7 is a third diagram for explaining the operation of the link mechanism 200. The actuator 250 linearly moves the rod 240 in a direction intersecting the rotation axis direction (vertical direction in FIGS. 6 and 7). In FIGS. 6 and 7, the rod 240 moves upward from the position shown in FIG. The amount of movement of the rod 240 with respect to the arrangement of FIG. 5 is larger in the arrangement of FIG. 7 than in the arrangement of FIG.
 ロッド240が移動すると、連結部材230は、ロッド接続部234を介して、図6、図7中、上側に移動する。このとき、連結部材230は、ロッド接続部234を回転中心とする回転が許容される。また、ロッド接続部234の外径に対し、ロッド240の軸受穴242の内径に僅かに遊びがある。そのため、回転軸方向に垂直な面方向への連結部材230の移動は、僅かに許容される。 When the rod 240 moves, the connecting member 230 moves upward in FIGS. 6 and 7 via the rod connecting portion 234. At this time, the connecting member 230 is allowed to rotate about the rod connecting portion 234 as the rotation center. Further, there is a slight play in the inner diameter of the bearing hole 242 of the rod 240 with respect to the outer diameter of the rod connecting portion 234. Therefore, the movement of the connecting member 230 in the plane direction perpendicular to the rotation axis direction is slightly allowed.
 上述したように、リンク機構200は、4節リンク機構である。連結部材230、第1可動部材210および第2可動部材220は、第1ハウジング部材110に対して、1自由度の挙動を示す。具体的には、連結部材230は、上記の許容範囲内で、図6、図7中、反時計回りに僅かに回転しつつ、左右方向に僅かに揺れ動く。 As described above, the link mechanism 200 is a four-section link mechanism. The connecting member 230, the first movable member 210, and the second movable member 220 exhibit one degree of freedom with respect to the first housing member 110. Specifically, the connecting member 230 slightly swings in the left-right direction while slightly rotating counterclockwise in FIGS. 6 and 7 within the above allowable range.
 第1可動部材210のうち、回転軸部214は、第1ハウジング部材110に軸支される。回転軸部214は、回転軸方向に垂直な面方向の移動が規制される。連結軸部213は、連結部材230に軸支される。連結部材230の移動が許容されることから、連結軸部213は、回転軸方向に垂直な面方向に移動可能に設けられる。その結果、連結部材230の移動に伴って、第1可動部材210は、回転軸部214を回転中心として、図6、図7中、時計回り方向に回転する。 Of the first movable member 210, the rotating shaft portion 214 is pivotally supported by the first housing member 110. The rotation shaft portion 214 is restricted from moving in the plane direction perpendicular to the rotation axis direction. The connecting shaft portion 213 is pivotally supported by the connecting member 230. Since the connecting member 230 is allowed to move, the connecting shaft portion 213 is provided so as to be movable in the plane direction perpendicular to the rotation axis direction. As a result, as the connecting member 230 moves, the first movable member 210 rotates clockwise in FIGS. 6 and 7 with the rotation shaft portion 214 as the center of rotation.
 同様に、第2可動部材220のうち、回転軸部224は、第1ハウジング部材110に軸支される。回転軸部224は、回転軸方向に垂直な面方向の移動が規制される。連結軸部223は、連結部材230に軸支される。連結部材230の移動が許容されることから、連結軸部223は、回転軸方向に垂直な面方向へ移動可能に設けられる。その結果、連結部材230の移動に伴って、第2可動部材220は、回転軸部224を回転中心として、図6、図7中、時計回り方向に回転する。 Similarly, of the second movable member 220, the rotary shaft portion 224 is pivotally supported by the first housing member 110. The rotation shaft portion 224 is restricted from moving in the plane direction perpendicular to the rotation axis direction. The connecting shaft portion 223 is pivotally supported by the connecting member 230. Since the connecting member 230 is allowed to move, the connecting shaft portion 223 is provided so as to be movable in the plane direction perpendicular to the rotation axis direction. As a result, as the connecting member 230 moves, the second movable member 220 rotates in the clockwise direction in FIGS. 6 and 7 with the rotation shaft portion 224 as the center of rotation.
 こうして、第1可動部材210と第2可動部材220は、図6、図7の順に、互いに離隔する方向に移動する。突出部215、225は、突出位置よりも径方向の外側に移動する。この状態(具体的には、図7に示す状態)における第1可動部材210および第2可動部材220の位置を、退避位置という。退避位置では、例えば、突出部215、225は、吸気流路130の内壁面と面一となるか、吸気流路130の内壁面よりも径方向の外側に位置する。退避位置から突出位置に移動するときは、図7、図6、図5の順に、第1可動部材210と第2可動部材220が互いに近づいて当接する。このように、第1可動部材210および第2可動部材220の位置は、回転軸部214、224を回転中心とする回転角度に応じて、突出位置と退避位置とに切り替わる。 Thus, the first movable member 210 and the second movable member 220 move in the direction of separating from each other in the order of FIGS. 6 and 7. The protrusions 215 and 225 move radially outward of the protrusion position. The positions of the first movable member 210 and the second movable member 220 in this state (specifically, the state shown in FIG. 7) are referred to as evacuation positions. In the retracted position, for example, the protrusions 215 and 225 are flush with the inner wall surface of the intake flow path 130 or are located radially outside the inner wall surface of the intake flow path 130. When moving from the retracted position to the protruding position, the first movable member 210 and the second movable member 220 approach each other and come into contact with each other in the order of FIGS. 7, 6, and 5. In this way, the positions of the first movable member 210 and the second movable member 220 are switched between the protruding position and the retracted position according to the rotation angle with the rotation shaft portion 214 and 224 as the rotation center.
 このように、第1可動部材210および第2可動部材220は、吸気流路130内に突出する突出位置と、吸気流路130内に露出(突出)しない退避位置とに移動可能である。本実施形態では、第1可動部材210および第2可動部材220は、コンプレッサインペラ9の径方向に移動する。ただし、これに限定されず、第1可動部材210および第2可動部材220は、コンプレッサインペラ9の回転軸周り(周方向)に回転してもよい。例えば、第1可動部材210および第2可動部材220は、2以上の羽根を有するシャッター羽根であってもよい。 In this way, the first movable member 210 and the second movable member 220 can move to a protruding position protruding into the intake flow path 130 and a retracted position not exposed (protruding) into the intake flow path 130. In the present embodiment, the first movable member 210 and the second movable member 220 move in the radial direction of the compressor impeller 9. However, the present invention is not limited to this, and the first movable member 210 and the second movable member 220 may rotate around the rotation axis (circumferential direction) of the compressor impeller 9. For example, the first movable member 210 and the second movable member 220 may be shutter blades having two or more blades.
 第1可動部材210および第2可動部材220は、退避位置に位置するとき(以下、退避位置状態ともいう)、吸気流路130内に突出しないため、吸気流路130を流れる吸気(空気)の圧損を小さくすることができる。 When the first movable member 210 and the second movable member 220 are located in the retracted position (hereinafter, also referred to as the retracted position state), the first movable member 210 and the second movable member 220 do not protrude into the intake flow path 130, so that the intake air (air) flowing through the intake flow path 130 The pressure loss can be reduced.
 また、図2に示すように、第1可動部材210および第2可動部材220は、突出位置において、突出部215、225が吸気流路130内に配される。第1可動部材210および第2可動部材220が突出位置に位置すると、吸気流路130の流路断面積が小さくなる。 Further, as shown in FIG. 2, in the first movable member 210 and the second movable member 220, the protruding portions 215 and 225 are arranged in the intake flow path 130 at the protruding positions. When the first movable member 210 and the second movable member 220 are located at the protruding positions, the flow path cross-sectional area of the intake flow path 130 becomes small.
 ここで、コンプレッサインペラ9に流入する空気の流量が減少するに従い、コンプレッサインペラ9で圧縮された空気が吸気流路130を逆流する(すなわち、下流側から上流側に向かって空気が流れる)場合がある。 Here, as the flow rate of the air flowing into the compressor impeller 9 decreases, the air compressed by the compressor impeller 9 may flow back in the intake flow path 130 (that is, the air flows from the downstream side to the upstream side). be.
 図2に示すように、第1可動部材210および第2可動部材220が突出位置に位置するとき(以下、突出位置状態ともいう)、突出部215、225は、コンプレッサインペラ9の前縁端LEの最外径端よりも径方向内側に位置する。これにより、吸気流路130内を逆流する空気は、突出部215、225に堰き止められる。したがって、第1可動部材210および第2可動部材220は、吸気流路130内の空気の逆流を抑制することができる。 As shown in FIG. 2, when the first movable member 210 and the second movable member 220 are located at the protruding positions (hereinafter, also referred to as protruding position states), the protruding portions 215 and 225 are the leading edge end LE of the compressor impeller 9. It is located on the inner side in the radial direction from the outermost diameter end of. As a result, the air flowing back in the intake flow path 130 is blocked by the protrusions 215 and 225. Therefore, the first movable member 210 and the second movable member 220 can suppress the backflow of air in the intake flow path 130.
 また、吸気流路130の流路断面積が小さくなることから、コンプレッサインペラ9に流入する空気の流速が増大する。その結果、遠心圧縮機CCのサージングの発生を抑制することができる。つまり、本実施形態の遠心圧縮機CCは、突出位置状態を形成することにより、遠心圧縮機CCの作動領域を小流量側に拡大することができる。 Further, since the flow path cross-sectional area of the intake flow path 130 becomes smaller, the flow velocity of the air flowing into the compressor impeller 9 increases. As a result, the occurrence of surging of the centrifugal compressor CC can be suppressed. That is, the centrifugal compressor CC of the present embodiment can expand the operating region of the centrifugal compressor CC to the small flow rate side by forming the protruding position state.
 このように、第1可動部材210および第2可動部材220は、吸気流路130を絞る絞り部材として構成される。つまり、本実施形態において、リンク機構200は、吸気流路130を絞る絞り機構として機能する。第1可動部材210および第2可動部材220は、リンク機構200が駆動されることで、吸気流路130の流路断面積を変化させることができる。 As described above, the first movable member 210 and the second movable member 220 are configured as a throttle member for narrowing the intake flow path 130. That is, in the present embodiment, the link mechanism 200 functions as a throttle mechanism for narrowing the intake flow path 130. The first movable member 210 and the second movable member 220 can change the flow path cross-sectional area of the intake flow path 130 by driving the link mechanism 200.
 ところで、第1可動部材210および第2可動部材220が特定位置(例えば、突出位置または退避位置)に位置する時に、第1可動部材210および第2可動部材220を特定位置に保持するために、アクチュエータ250への通電が継続的に行われることがある。 By the way, in order to hold the first movable member 210 and the second movable member 220 at a specific position when the first movable member 210 and the second movable member 220 are located at a specific position (for example, a protruding position or a retracted position), The actuator 250 may be continuously energized.
 第1可動部材210および第2可動部材220が図5に示す突出位置に位置する突出位置状態では、図5中で下向きにロッド240が押されるように、アクチュエータ250への通電が継続的に行われ得る。例えば、図5中で下向きにロッド240が押され続ける。あるいは、例えば、図5中で下向きにロッド240を押す動作と、図5中で上向きにロッド240を僅かに移動させる動作とが繰り返される。 In the protruding position state where the first movable member 210 and the second movable member 220 are located at the protruding positions shown in FIG. 5, the actuator 250 is continuously energized so that the rod 240 is pushed downward in FIG. It can be done. For example, the rod 240 continues to be pushed downward in FIG. Alternatively, for example, the operation of pushing the rod 240 downward in FIG. 5 and the operation of slightly moving the rod 240 upward in FIG. 5 are repeated.
 第1可動部材210および第2可動部材220が図7に示す退避位置に位置する退避位置状態では、図7中で上向きにロッド240が引っ張られるように、アクチュエータ250への通電が継続的に行われ得る。例えば、図7中で上向きにロッド240が引っ張られ続ける。あるいは、例えば、図7中で上向きにロッド240を引っ張る動作と、図7中で下向きにロッド240を僅かに移動させる動作とが繰り返される。 In the retracted position state where the first movable member 210 and the second movable member 220 are located at the retracted positions shown in FIG. 7, the actuator 250 is continuously energized so that the rod 240 is pulled upward in FIG. 7. Can be evacuated. For example, the rod 240 continues to be pulled upward in FIG. 7. Alternatively, for example, the operation of pulling the rod 240 upward in FIG. 7 and the operation of slightly moving the rod 240 downward in FIG. 7 are repeated.
 上記のように、第1可動部材210および第2可動部材220が特定位置に位置する時に、アクチュエータ250への通電が継続的に行われることによって、第1可動部材210および第2可動部材220が特定位置に保持される。それにより、第1可動部材210および第2可動部材220が振動することが抑制される。ゆえに、周囲の部材との衝突による第1可動部材210および第2可動部材220の摩耗が抑制される。また、第1可動部材210および第2可動部材220が所望の位置からずれることも抑制される。 As described above, when the first movable member 210 and the second movable member 220 are located at specific positions, the actuator 250 is continuously energized so that the first movable member 210 and the second movable member 220 are moved. It is held in a specific position. As a result, the vibration of the first movable member 210 and the second movable member 220 is suppressed. Therefore, the wear of the first movable member 210 and the second movable member 220 due to the collision with the surrounding members is suppressed. Further, it is possible to prevent the first movable member 210 and the second movable member 220 from being displaced from the desired positions.
 しかしながら、アクチュエータ250への通電が継続的に行われることによって、アクチュエータ250において過度な発熱が生じ得る。それにより、アクチュエータ250の温度が過度に高くなり、アクチュエータ250内のモータの減磁等によってアクチュエータ250の性能が低下するおそれがある。特に、遠心圧縮機CC内を流通する空気は高温なので、アクチュエータ250の温度は上昇しやすい。 However, continuous energization of the actuator 250 may cause excessive heat generation in the actuator 250. As a result, the temperature of the actuator 250 becomes excessively high, and the performance of the actuator 250 may deteriorate due to demagnetization of the motor in the actuator 250 or the like. In particular, since the air circulating in the centrifugal compressor CC has a high temperature, the temperature of the actuator 250 tends to rise.
 そこで、本実施形態の遠心圧縮機CCは、図4および図8に示すように、第1可動部材210および第2可動部材220を特定位置に保持する磁石部311、312、313、321、322、323、331、332を備える。上記の磁石部のうち磁石部311、312、321、322は、第1可動部材210および第2可動部材220を突出位置に保持する突出位置用の磁石部である。一方、上記の磁石部のうち磁石部313、323、331、332は、第1可動部材210および第2可動部材220を退避位置に保持する退避位置用の磁石部である。図4では、第1可動部材210および第2可動部材220が突出位置に保持されている状態が示されている。図8は、第1可動部材210および第2可動部材220が退避位置に保持されている状態を示す断面図である。 Therefore, in the centrifugal compressor CC of the present embodiment, as shown in FIGS. 4 and 8, the magnet portions 311, 312, 313, 321 and 322 for holding the first movable member 210 and the second movable member 220 at specific positions are present. 323, 331, 332 are provided. Among the above-mentioned magnet portions, the magnet portions 311, 312, 321 and 322 are magnet portions for the protruding positions that hold the first movable member 210 and the second movable member 220 at the protruding positions. On the other hand, among the above-mentioned magnet portions, the magnet portions 313, 323, 331, and 332 are magnet portions for the retracted position that hold the first movable member 210 and the second movable member 220 in the retracted position. FIG. 4 shows a state in which the first movable member 210 and the second movable member 220 are held at the protruding positions. FIG. 8 is a cross-sectional view showing a state in which the first movable member 210 and the second movable member 220 are held in the retracted position.
 上記の各磁石部は、例えば、コンプレッサハウジング100または可動部材(具体的には、第1可動部材210または第2可動部材220)のうち永久磁石が設けられる部分である。ただし、上記の各磁石部の一部または全部が、コンプレッサハウジング100または可動部材のうち磁化された部分であってもよい。なお、部材の一部を磁化して磁石部を形成する場合には、当該部材は磁性体によって形成されている必要がある。 Each of the above magnet portions is, for example, a portion of the compressor housing 100 or a movable member (specifically, the first movable member 210 or the second movable member 220) where a permanent magnet is provided. However, a part or all of each of the above magnet parts may be a magnetized part of the compressor housing 100 or the movable member. When a part of the member is magnetized to form a magnet portion, the member needs to be formed of a magnetic material.
 図4および図8では、上記の各磁石部の一部がコンプレッサハウジング100または可動部材(具体的には、第1可動部材210または第2可動部材220)の外面に露出している例が示されている。ただし、上記の各磁石部の一部または全部は、コンプレッサハウジング100または可動部材の外面に露出せずに、コンプレッサハウジング100または可動部材の内部に設けられてもよい。 4 and 8 show an example in which a part of each of the above magnet portions is exposed on the outer surface of the compressor housing 100 or a movable member (specifically, the first movable member 210 or the second movable member 220). Has been done. However, a part or all of each of the above magnet portions may be provided inside the compressor housing 100 or the movable member without being exposed on the outer surface of the compressor housing 100 or the movable member.
 図4に示すように、磁石部311は、第1可動部材210の湾曲部211の一端面211aに設けられる。磁石部322は、第2可動部材220の湾曲部221の他端面221bに設けられる。湾曲部211の一端面211aは、第1可動部材210のうち第2可動部材220と当接する部分である。湾曲部221の他端面221bは、第2可動部材220のうち第1可動部材210と当接する部分である。磁石部311と磁石部322は、突出位置状態(つまり、第1可動部材210および第2可動部材220が互いに当接した状態)において、互いに当接する。 As shown in FIG. 4, the magnet portion 311 is provided on one end surface 211a of the curved portion 211 of the first movable member 210. The magnet portion 322 is provided on the other end surface 221b of the curved portion 221 of the second movable member 220. The one end surface 211a of the curved portion 211 is a portion of the first movable member 210 that comes into contact with the second movable member 220. The other end surface 221b of the curved portion 221 is a portion of the second movable member 220 that comes into contact with the first movable member 210. The magnet portion 311 and the magnet portion 322 are in contact with each other in a protruding position state (that is, a state in which the first movable member 210 and the second movable member 220 are in contact with each other).
 磁石部311は、例えば、一端面211aに平行に延在する。ただし、磁石部311は、一端面211aに対して傾斜していてもよい。磁石部322は、例えば、他端面221bに平行に延在する。ただし、磁石部322は、他端面221bに対して傾斜していてもよい。磁石部311は、例えば、一端面211aの径方向内側の端部から径方向外側の端部までに亘って延在する。磁石部322は、例えば、他端面221bの径方向内側の端部から径方向外側の端部までに亘って延在する。磁石部311は、例えば、一端面211aの回転軸方向の一端部から他端部までに亘って延在する。磁石部322は、例えば、他端面221bの回転軸方向の一端部から他端部までに亘って延在する。 The magnet portion 311 extends parallel to, for example, one end surface 211a. However, the magnet portion 311 may be inclined with respect to one end surface 211a. The magnet portion 322 extends parallel to, for example, the other end surface 221b. However, the magnet portion 322 may be inclined with respect to the other end surface 221b. The magnet portion 311 extends from, for example, the radially inner end of the one end surface 211a to the radially outer end. The magnet portion 322 extends from, for example, the radially inner end of the other end surface 221b to the radially outer end. The magnet portion 311 extends from one end portion to the other end portion of the one end surface 211a in the rotation axis direction, for example. The magnet portion 322 extends from one end portion in the rotation axis direction of the other end surface 221b to the other end portion, for example.
 ここで、磁石部311における磁石部322側の極性と、磁石部322における磁石部311側の極性は、互いに異なる。ゆえに、突出位置状態において、磁石部311および磁石部322により生じる磁力によって、一端面211aと他端面221bとが互いに引かれ合う。磁石部311および磁石部322により生じる磁力は、一端面211aと他端面221bが対向する方向に作用する。第1可動部材210および第2可動部材220は、一端面211aと他端面221bが対向する方向に移動可能である。ゆえに、磁石部311および磁石部322により生じる磁力の方向は、各可動部材の移動方向に沿った方向である。なお、可動部材の移動方向に沿った方向は、当該移動方向に厳密に一致していなくてもよく、当該移動方向に対して所定角度傾いた方向も含み得る。 Here, the polarity on the magnet portion 322 side of the magnet portion 311 and the polarity on the magnet portion 311 side of the magnet portion 322 are different from each other. Therefore, in the protruding position state, the one end surface 211a and the other end surface 221b are attracted to each other by the magnetic force generated by the magnet portion 311 and the magnet portion 322. The magnetic force generated by the magnet portion 311 and the magnet portion 322 acts in the direction in which the one end surface 211a and the other end surface 221b face each other. The first movable member 210 and the second movable member 220 are movable in a direction in which one end surface 211a and the other end surface 221b face each other. Therefore, the direction of the magnetic force generated by the magnet portion 311 and the magnet portion 322 is a direction along the moving direction of each movable member. The direction along the moving direction of the movable member does not have to exactly match the moving direction, and may include a direction inclined by a predetermined angle with respect to the moving direction.
 図4に示すように、磁石部312は、第1可動部材210の湾曲部211の他端面211bに設けられる。磁石部321は、第2可動部材220の湾曲部221の一端面221aに設けられる。湾曲部211の他端面211bは、第1可動部材210のうち第2可動部材220と当接する部分である。湾曲部221の一端面221aは、第2可動部材220のうち第1可動部材210と当接する部分である。磁石部312と磁石部321は、突出位置状態において、互いに当接する。 As shown in FIG. 4, the magnet portion 312 is provided on the other end surface 211b of the curved portion 211 of the first movable member 210. The magnet portion 321 is provided on one end surface 221a of the curved portion 221 of the second movable member 220. The other end surface 211b of the curved portion 211 is a portion of the first movable member 210 that comes into contact with the second movable member 220. The one end surface 221a of the curved portion 221 is a portion of the second movable member 220 that comes into contact with the first movable member 210. The magnet portion 312 and the magnet portion 321 are in contact with each other in the protruding position state.
 磁石部312は、例えば、他端面211bに平行に延在する。ただし、磁石部312は、他端面211bに対して傾斜していてもよい。磁石部321は、例えば、一端面221aに平行に延在する。ただし、磁石部321は、一端面221aに対して傾斜していてもよい。磁石部312は、例えば、他端面211bの径方向内側の端部から径方向外側の端部までに亘って延在する。磁石部321は、例えば、一端面221aの径方向内側の端部から径方向外側の端部までに亘って延在する。磁石部312は、例えば、他端面211bの回転軸方向の一端部から他端部までに亘って延在する。磁石部321は、例えば、一端面221aの回転軸方向の一端部から他端部までに亘って延在する。 The magnet portion 312 extends parallel to, for example, the other end surface 211b. However, the magnet portion 312 may be inclined with respect to the other end surface 211b. The magnet portion 321 extends parallel to, for example, one end surface 221a. However, the magnet portion 321 may be inclined with respect to one end surface 221a. The magnet portion 312 extends, for example, from the radially inner end of the other end surface 211b to the radially outer end. The magnet portion 321 extends, for example, from the radially inner end of the one end surface 221a to the radially outer end. The magnet portion 312 extends from one end to the other end of the other end surface 211b in the rotation axis direction, for example. The magnet portion 321 extends from one end portion to the other end portion of the one end surface 221a in the rotation axis direction, for example.
 ここで、磁石部312における磁石部321側の極性と、磁石部321における磁石部312側の極性は、互いに異なる。ゆえに、突出位置状態において、磁石部312および磁石部321により生じる磁力によって、他端面211bと一端面221aとが互いに引かれ合う。磁石部312および磁石部321により生じる磁力は、他端面211bと一端面221aが対向する方向に作用する。第1可動部材210および第2可動部材220の各可動部材は、他端面211bと一端面221aが対向する方向に移動可能である。ゆえに、磁石部312および磁石部321により生じる磁力の方向は、各可動部材の移動方向に沿った方向である。 Here, the polarity of the magnet portion 321 side of the magnet portion 312 and the polarity of the magnet portion 312 side of the magnet portion 321 are different from each other. Therefore, in the protruding position state, the other end surface 211b and the one end surface 221a are attracted to each other by the magnetic force generated by the magnet portion 312 and the magnet portion 321. The magnetic force generated by the magnet portion 312 and the magnet portion 321 acts in the direction in which the other end surface 211b and the one end surface 221a face each other. Each movable member of the first movable member 210 and the second movable member 220 can move in the direction in which the other end surface 211b and the one end surface 221a face each other. Therefore, the direction of the magnetic force generated by the magnet portion 312 and the magnet portion 321 is a direction along the moving direction of each movable member.
 上記のように、磁石部311、312、321、322は、可動部材のうち他の可動部材と当接する部分に設けられる。それにより、突出位置状態において、第1可動部材210と第2可動部材220とを互いに引き合わせる磁力が生じる。ゆえに、第1可動部材210および第2可動部材220が突出位置に位置する時に、第1可動部材210および第2可動部材220を突出位置に保持することができる。ゆえに、第1可動部材210および第2可動部材220が突出位置に位置する時に、アクチュエータ250への通電を停止させることができる。よって、アクチュエータ250における発熱が抑制される。 As described above, the magnet portions 311 and 312, 321 and 322 are provided at the portions of the movable members that come into contact with other movable members. As a result, a magnetic force is generated that attracts the first movable member 210 and the second movable member 220 to each other in the protruding position state. Therefore, when the first movable member 210 and the second movable member 220 are located in the protruding positions, the first movable member 210 and the second movable member 220 can be held in the protruding positions. Therefore, when the first movable member 210 and the second movable member 220 are located at the protruding positions, the energization of the actuator 250 can be stopped. Therefore, heat generation in the actuator 250 is suppressed.
 上記では、第1可動部材210および第2可動部材220を突出位置に保持するための磁石部として、磁石部311、312、321、322が設けられる例を説明した。ただし、磁石部311、312、321、322の一部は、遠心圧縮機CCの構成から省略されてもよい。 In the above, an example in which the magnet portions 311 and 312, 321 and 322 are provided as the magnet portions for holding the first movable member 210 and the second movable member 220 in the protruding positions has been described. However, a part of the magnet portions 311, 312, 321 and 322 may be omitted from the configuration of the centrifugal compressor CC.
 例えば、第1可動部材210が磁性体によって形成される場合、磁石部311、312は、遠心圧縮機CCの構成から省略され得る。この場合においても、磁石部321、322によって、第1可動部材210と第2可動部材220とを互いに引き合わせる磁力が生じる。例えば、第2可動部材220が磁性体によって形成される場合、磁石部321、322は、遠心圧縮機CCの構成から省略され得る。この場合においても、磁石部311、312によって、第1可動部材210と第2可動部材220とを互いに引き合わせる磁力が生じる。 For example, when the first movable member 210 is formed of a magnetic material, the magnet portions 311 and 312 may be omitted from the configuration of the centrifugal compressor CC. Also in this case, the magnet portions 321 and 322 generate a magnetic force that attracts the first movable member 210 and the second movable member 220 to each other. For example, when the second movable member 220 is formed of a magnetic material, the magnet portions 321 and 322 may be omitted from the configuration of the centrifugal compressor CC. Also in this case, the magnet portions 311 and 312 generate a magnetic force that attracts the first movable member 210 and the second movable member 220 to each other.
 例えば、磁石部311、312、321、322のうち、磁石部311、322が遠心圧縮機CCの構成から省略されてもよい。この場合、磁石部312、321によって、他端面211bと一端面221aとを互いに引き合わせる磁力が生じる。例えば、磁石部311、312、321、322のうち、磁石部312、321が遠心圧縮機CCの構成から省略されてもよい。この場合、磁石部311、322によって、一端面211aと他端面221bとを互いに引き合わせる磁力が生じる。ただし、図4の例のように、一端面211aと他端面221bとの間、および、他端面211bと一端面221aとの間の双方で、第1可動部材210と第2可動部材220とを互いに引き合わせる磁力が生じることが好ましい。それにより、第1可動部材210および第2可動部材220を突出位置に保持する磁力を増大させることができる。 For example, among the magnet portions 311, 312, 321 and 322, the magnet portions 311 and 322 may be omitted from the configuration of the centrifugal compressor CC. In this case, the magnet portions 312 and 321 generate a magnetic force that attracts the other end surface 211b and the one end surface 221a to each other. For example, among the magnet portions 311, 312, 321 and 322, the magnet portions 312 and 321 may be omitted from the configuration of the centrifugal compressor CC. In this case, the magnet portions 311 and 322 generate a magnetic force that attracts the one end surface 211a and the other end surface 221b to each other. However, as in the example of FIG. 4, the first movable member 210 and the second movable member 220 are provided both between the one end surface 211a and the other end surface 221b and between the other end surface 211b and the one end surface 221a. It is preferable that a magnetic force that attracts each other is generated. Thereby, the magnetic force for holding the first movable member 210 and the second movable member 220 at the protruding positions can be increased.
 上記では、磁石部311、312、321、322によって、各可動部材が突出位置に保持される。ただし、コンプレッサハウジング100のうち突出位置状態において可動部材(具体的には、第1可動部材210または第2可動部材220)と回転軸方向に対向する部分に設けられる磁石部によって、各可動部材が突出位置に保持されてもよい。 In the above, each movable member is held in a protruding position by the magnet portions 311 and 312, 321 and 322. However, each movable member is formed by a magnet portion provided in a portion of the compressor housing 100 that faces the movable member (specifically, the first movable member 210 or the second movable member 220) in the protruding position state in the direction of the rotation axis. It may be held in a protruding position.
 例えば、収容溝112bの壁面112cのうち突出位置状態において可動部材と回転軸方向に対向する部分に磁石部が設けられてもよい。この場合、壁面112cの磁石部と突出位置状態において対向する可動部材が磁性体によって形成される必要がある。あるいは、可動部材のうち突出位置状態において壁面112cの磁石部と対向する位置に磁石部が設けられる必要がある。それにより、可動部材を突出位置に保持する磁力が生じ得る。 For example, a magnet portion may be provided on a portion of the wall surface 112c of the accommodating groove 112b that faces the movable member in the direction of the rotation axis in the protruding position state. In this case, it is necessary for the magnetic material to form a movable member facing the magnet portion of the wall surface 112c in the protruding position state. Alternatively, the magnet portion of the movable member needs to be provided at a position facing the magnet portion of the wall surface 112c in the protruding position state. As a result, a magnetic force that holds the movable member in the protruding position can be generated.
 例えば、収容溝122aの壁面122b(図2参照)のうち突出位置状態において可動部材と回転軸方向に対向する部分に磁石部が設けられてもよい。この場合、壁面122bの磁石部と突出位置状態において対向する可動部材が磁性体によって形成される必要がある。あるいは、可動部材のうち突出位置状態において壁面122bの磁石部と対向する位置に磁石部が設けられる必要がある。それにより、可動部材を突出位置に保持する磁力が生じ得る。 For example, a magnet portion may be provided on a portion of the wall surface 122b (see FIG. 2) of the accommodating groove 122a that faces the movable member in the direction of the rotation axis in the protruding position state. In this case, it is necessary for the magnetic material to form a movable member facing the magnet portion of the wall surface 122b in the protruding position state. Alternatively, it is necessary to provide the magnet portion of the movable member at a position facing the magnet portion of the wall surface 122b in the protruding position state. As a result, a magnetic force that holds the movable member in the protruding position can be generated.
 コンプレッサハウジング100のうち突出位置状態において可動部材と回転軸方向に対向する部分に磁石部が設けられ場合、磁石部により生じる磁力の方向は、可動部材の移動方向に直交する方向となる。ただし、図4の例のように、磁石部により生じる磁力の方向は、可動部材の移動方向に沿った方向であることが好ましい。それにより、第1可動部材210および第2可動部材220を磁力によって突出位置に保持しやすくすることができる。 When the magnet portion is provided in the portion of the compressor housing 100 that faces the movable member in the direction of the rotation axis in the protruding position state, the direction of the magnetic force generated by the magnet portion is orthogonal to the moving direction of the movable member. However, as in the example of FIG. 4, the direction of the magnetic force generated by the magnet portion is preferably the direction along the moving direction of the movable member. Thereby, the first movable member 210 and the second movable member 220 can be easily held in the protruding position by the magnetic force.
 上記のように、コンプレッサハウジング100のうち突出位置状態において可動部材(具体的には、第1可動部材210または第2可動部材220)と対向する部分、および、可動部材のうち他の可動部材と当接する部分(具体的には、一端面211a、他端面211b、一端面221aまたは他端面221b)の少なくとも一方に設けられる磁石部によって、第1可動部材210および第2可動部材220を突出位置に保持することができる。 As described above, the portion of the compressor housing 100 facing the movable member (specifically, the first movable member 210 or the second movable member 220) in the protruding position state, and the other movable member of the movable member. The first movable member 210 and the second movable member 220 are brought to the protruding positions by the magnet portion provided on at least one of the abutting portions (specifically, one end surface 211a, the other end surface 211b, one end surface 221a or the other end surface 221b). Can be retained.
 図8に示すように、磁石部313は、第1可動部材210の外周面211cの中央部に設けられる。磁石部331は、コンプレッサハウジング100(具体的には、第1ハウジング部材110)のうち外周面211cの中央部と当接する部分に設けられる。外周面211cの中央部は、退避位置状態(つまり、第1可動部材210および第2可動部材220が互いに離隔した状態)においてコンプレッサハウジング100と最も近接する部分(具体的には、当接する部分)である。コンプレッサハウジング100のうち磁石部331が設けられる部分は、コンプレッサハウジング100のうち退避位置状態において第1可動部材210と径方向に対向する部分(具体的には、当接する部分)である。磁石部313と磁石部331は、退避位置状態において、互いに当接する。 As shown in FIG. 8, the magnet portion 313 is provided at the center of the outer peripheral surface 211c of the first movable member 210. The magnet portion 331 is provided at a portion of the compressor housing 100 (specifically, the first housing member 110) that comes into contact with the central portion of the outer peripheral surface 211c. The central portion of the outer peripheral surface 211c is a portion closest to the compressor housing 100 (specifically, a portion that abuts) in the retracted position state (that is, a state in which the first movable member 210 and the second movable member 220 are separated from each other). Is. The portion of the compressor housing 100 where the magnet portion 331 is provided is a portion of the compressor housing 100 that faces the first movable member 210 in the radial direction (specifically, a portion that abuts) in the retracted position state. The magnet portion 313 and the magnet portion 331 are in contact with each other in the retracted position state.
 磁石部313は、例えば、外周面211cの延在方向に延在する。ただし、磁石部313の延在方向は、外周面211cの延在方向に沿っていなくてもよい。磁石部331は、例えば、周方向に延在する。ただし、磁石部331の延在方向は、周方向に沿っていなくてもよい。磁石部313は、例えば、外周面211cの回転軸方向の一端部から他端部までに亘って延在する。磁石部331は、例えば、第1ハウジング部材110のうち外周面211cの回転軸方向の一端部と対向する位置から外周面211cの回転軸方向の他端部と対向する位置までに亘って延在する。 The magnet portion 313 extends in the extending direction of the outer peripheral surface 211c, for example. However, the extending direction of the magnet portion 313 does not have to be along the extending direction of the outer peripheral surface 211c. The magnet portion 331 extends, for example, in the circumferential direction. However, the extending direction of the magnet portion 331 does not have to be along the circumferential direction. The magnet portion 313 extends from one end to the other end of the outer peripheral surface 211c in the rotation axis direction, for example. The magnet portion 331 extends from, for example, a position of the first housing member 110 facing one end of the outer peripheral surface 211c in the rotation axis direction to a position facing the other end of the outer peripheral surface 211c in the rotation axis direction. do.
 ここで、磁石部313における磁石部331側の極性と、磁石部331における磁石部313側の極性は、互いに異なる。ゆえに、退避位置状態において、磁石部313および磁石部331により生じる磁力によって、外周面211cとコンプレッサハウジング100とが互いに引かれ合う。磁石部313および磁石部331により生じる磁力は、外周面211cとコンプレッサハウジング100が対向する方向に作用する。第1可動部材210は、外周面211cとコンプレッサハウジング100が対向する方向に移動可能である。ゆえに、磁石部313および磁石部331により生じる磁力の方向は、第1可動部材210の移動方向に沿った方向である。 Here, the polarity of the magnet portion 331 side of the magnet portion 313 and the polarity of the magnet portion 313 side of the magnet portion 331 are different from each other. Therefore, in the retracted position state, the outer peripheral surface 211c and the compressor housing 100 are attracted to each other by the magnetic force generated by the magnet portion 313 and the magnet portion 331. The magnetic force generated by the magnet portion 313 and the magnet portion 331 acts in the direction in which the outer peripheral surface 211c and the compressor housing 100 face each other. The first movable member 210 is movable in the direction in which the outer peripheral surface 211c and the compressor housing 100 face each other. Therefore, the direction of the magnetic force generated by the magnet portion 313 and the magnet portion 331 is the direction along the moving direction of the first movable member 210.
 図8に示すように、磁石部323は、第2可動部材220の外周面221cの中央部に設けられる。磁石部332は、コンプレッサハウジング100(具体的には、第1ハウジング部材110)のうち外周面221cの中央部と当接する部分に設けられる。外周面221cの中央部は、退避位置状態においてコンプレッサハウジング100と最も近接する部分(具体的には、当接する部分)である。コンプレッサハウジング100のうち磁石部332が設けられる部分は、コンプレッサハウジング100のうち退避位置状態において第2可動部材220と径方向に対向する部分(具体的には、当接する部分)である。磁石部323と磁石部332は、退避位置状態において、互いに当接する。 As shown in FIG. 8, the magnet portion 323 is provided at the center of the outer peripheral surface 221c of the second movable member 220. The magnet portion 332 is provided at a portion of the compressor housing 100 (specifically, the first housing member 110) that comes into contact with the central portion of the outer peripheral surface 221c. The central portion of the outer peripheral surface 221c is a portion (specifically, a portion that abuts) closest to the compressor housing 100 in the retracted position state. The portion of the compressor housing 100 where the magnet portion 332 is provided is a portion of the compressor housing 100 that faces the second movable member 220 in the radial direction (specifically, a portion that abuts) in the retracted position state. The magnet portion 323 and the magnet portion 332 are in contact with each other in the retracted position state.
 磁石部323は、例えば、外周面221cの延在方向に延在する。ただし、磁石部323の延在方向は、外周面221cの延在方向に沿っていなくてもよい。磁石部332は、例えば、周方向に延在する。ただし、磁石部332の延在方向は、周方向に沿っていなくてもよい。磁石部323は、例えば、外周面221cの回転軸方向の一端部から他端部までに亘って延在する。磁石部332は、例えば、第1ハウジング部材110のうち外周面221cの回転軸方向の一端部と対向する位置から外周面221cの回転軸方向の他端部と対向する位置までに亘って延在する。 The magnet portion 323 extends in the extending direction of the outer peripheral surface 221c, for example. However, the extending direction of the magnet portion 323 does not have to be along the extending direction of the outer peripheral surface 221c. The magnet portion 332 extends, for example, in the circumferential direction. However, the extending direction of the magnet portion 332 does not have to be along the circumferential direction. The magnet portion 323 extends from one end to the other end of the outer peripheral surface 221c in the rotation axis direction, for example. The magnet portion 332 extends from, for example, a position of the first housing member 110 facing one end of the outer peripheral surface 221c in the rotation axis direction to a position facing the other end of the outer peripheral surface 221c in the rotation axis direction. do.
 ここで、磁石部323における磁石部332側の極性と、磁石部332における磁石部323側の極性は、互いに異なる。ゆえに、退避位置状態において、磁石部323および磁石部332により生じる磁力によって、外周面221cとコンプレッサハウジング100とが互いに引かれ合う。磁石部323および磁石部332により生じる磁力は、外周面221cとコンプレッサハウジング100が対向する方向に作用する。第2可動部材220は、外周面221cとコンプレッサハウジング100が対向する方向に移動可能である。ゆえに、磁石部323および磁石部332により生じる磁力の方向は、第2可動部材220の移動方向に沿った方向である。 Here, the polarity of the magnet portion 332 side of the magnet portion 323 and the polarity of the magnet portion 323 side of the magnet portion 332 are different from each other. Therefore, in the retracted position state, the outer peripheral surface 221c and the compressor housing 100 are attracted to each other by the magnetic force generated by the magnet portion 323 and the magnet portion 332. The magnetic force generated by the magnet portion 323 and the magnet portion 332 acts in the direction in which the outer peripheral surface 221c and the compressor housing 100 face each other. The second movable member 220 can move in the direction in which the outer peripheral surface 221c and the compressor housing 100 face each other. Therefore, the direction of the magnetic force generated by the magnet portion 323 and the magnet portion 332 is a direction along the moving direction of the second movable member 220.
 上記のように、磁石部313、323は、可動部材のうち退避位置状態においてコンプレッサハウジング100と最も近接する部分(具体的には、当接する部分)に設けられる。磁石部331、332は、コンプレッサハウジング100のうち退避位置状態において可動部材と径方向に対向する部分(具体的には、当接する部分)に設けられる。それにより、退避位置状態において、各可動部材とコンプレッサハウジング100を互いに引き合わせる磁力が生じる。ゆえに、第1可動部材210および第2可動部材220が退避位置に位置する時に、第1可動部材210および第2可動部材220を退避位置に保持することができる。ゆえに、第1可動部材210および第2可動部材220が退避位置に位置する時に、アクチュエータ250への通電を停止させることができる。よって、アクチュエータ250における発熱が抑制される。 As described above, the magnet portions 313 and 323 are provided in the portion of the movable member closest to the compressor housing 100 (specifically, the portion in contact with the compressor housing 100) in the retracted position state. The magnet portions 331 and 332 are provided in a portion (specifically, a portion in contact with the movable member) of the compressor housing 100 that faces the movable member in the radial direction in the retracted position state. As a result, a magnetic force is generated that attracts each movable member and the compressor housing 100 to each other in the retracted position state. Therefore, when the first movable member 210 and the second movable member 220 are located in the retracted position, the first movable member 210 and the second movable member 220 can be held in the retracted position. Therefore, when the first movable member 210 and the second movable member 220 are located at the retracted positions, the energization of the actuator 250 can be stopped. Therefore, heat generation in the actuator 250 is suppressed.
 上記では、第1可動部材210および第2可動部材220を退避位置に保持するための磁石部として、磁石部313、323、331、332がそれぞれ設けられる例を説明した。ただし、磁石部313、323、331、332の一部は、遠心圧縮機CCの構成から省略されてもよい。 In the above, an example in which magnet portions 313, 323, 331, and 332 are provided as magnet portions for holding the first movable member 210 and the second movable member 220 in the retracted position has been described. However, a part of the magnet portions 313, 323, 331, and 332 may be omitted from the configuration of the centrifugal compressor CC.
 例えば、第1可動部材210が磁性体によって形成される場合、磁石部313は、遠心圧縮機CCの構成から省略され得る。この場合においても、磁石部331によって、第1可動部材210とコンプレッサハウジング100とを互いに引き合わせる磁力が生じる。例えば、第2可動部材220が磁性体によって形成される場合、磁石部323は、遠心圧縮機CCの構成から省略され得る。この場合においても、磁石部332によって、第2可動部材220とコンプレッサハウジング100とを互いに引き合わせる磁力が生じる。例えば、第1ハウジング部材110が磁性体によって形成される場合、磁石部331、332は、遠心圧縮機CCの構成から省略され得る。この場合においても、磁石部313、323によって、各可動部材とコンプレッサハウジング100とを互いに引き合わせる磁力が生じる。 For example, when the first movable member 210 is formed of a magnetic material, the magnet portion 313 may be omitted from the configuration of the centrifugal compressor CC. Even in this case, the magnet portion 331 also generates a magnetic force that attracts the first movable member 210 and the compressor housing 100 to each other. For example, when the second movable member 220 is formed of a magnetic material, the magnet portion 323 may be omitted from the configuration of the centrifugal compressor CC. Even in this case, the magnet portion 332 also generates a magnetic force that attracts the second movable member 220 and the compressor housing 100 to each other. For example, when the first housing member 110 is formed of a magnetic material, the magnet portions 331 and 332 may be omitted from the configuration of the centrifugal compressor CC. Also in this case, the magnet portions 313 and 323 generate a magnetic force that attracts each movable member and the compressor housing 100 to each other.
 上記では、磁石部313、323、331、332によって、各可動部材が退避位置に保持される。ただし、コンプレッサハウジング100のうち退避位置状態において可動部材(具体的には、第1可動部材210または第2可動部材220)と回転軸方向に対向する部分に設けられる磁石部によって、各可動部材が退避位置に保持されてもよい。 In the above, each movable member is held in the retracted position by the magnet portion 313, 323, 331, 332. However, each movable member is provided by a magnet portion provided in a portion of the compressor housing 100 that faces the movable member (specifically, the first movable member 210 or the second movable member 220) in the retracted position state in the direction of the rotation axis. It may be held in the retracted position.
 例えば、収容溝112bの壁面112cのうち退避位置状態において可動部材と回転軸方向に対向する部分に磁石部が設けられてもよい。この場合、壁面112cの磁石部と退避位置状態において対向する可動部材が磁性体によって形成される必要がある。あるいは、可動部材のうち退避位置状態において壁面112cの磁石部と対向する位置に磁石部が設けられる必要がある。それにより、可動部材を退避位置に保持する磁力が生じ得る。 For example, a magnet portion may be provided on a portion of the wall surface 112c of the accommodating groove 112b that faces the movable member in the rotation axis direction in the retracted position state. In this case, it is necessary that the magnetic material forms a movable member facing the magnet portion of the wall surface 112c in the retracted position state. Alternatively, it is necessary to provide the magnet portion of the movable member at a position facing the magnet portion of the wall surface 112c in the retracted position state. As a result, a magnetic force that holds the movable member in the retracted position can be generated.
 例えば、収容溝122aの壁面122b(図2参照)のうち退避位置状態において可動部材と回転軸方向に対向する部分に磁石部が設けられてもよい。この場合、壁面122bの磁石部と退避位置状態において対向する可動部材が磁性体によって形成される必要がある。あるいは、可動部材のうち退避位置状態において壁面122bの磁石部と対向する位置に磁石部が設けられる必要がある。それにより、可動部材を退避位置に保持する磁力が生じ得る。 For example, a magnet portion may be provided on a portion of the wall surface 122b (see FIG. 2) of the accommodating groove 122a that faces the movable member in the rotation axis direction in the retracted position state. In this case, it is necessary that the magnetic material forms a movable member facing the magnet portion of the wall surface 122b in the retracted position state. Alternatively, it is necessary to provide the magnet portion of the movable member at a position facing the magnet portion of the wall surface 122b in the retracted position state. As a result, a magnetic force that holds the movable member in the retracted position can be generated.
 コンプレッサハウジング100のうち退避位置状態において可動部材と回転軸方向に対向する部分に磁石部が設けられ場合、磁石部により生じる磁力の方向は、可動部材の移動方向に直交する方向となる。ただし、図8の例のように、磁石部により生じる磁力の方向は、可動部材の移動方向に沿った方向であることが好ましい。それにより、第1可動部材210および第2可動部材220を磁力によって退避位置に保持しやすくすることができる。 When the magnet portion is provided in the portion of the compressor housing 100 that faces the movable member in the retracted position in the direction of the rotation axis, the direction of the magnetic force generated by the magnet portion is orthogonal to the moving direction of the movable member. However, as in the example of FIG. 8, the direction of the magnetic force generated by the magnet portion is preferably the direction along the moving direction of the movable member. Thereby, the first movable member 210 and the second movable member 220 can be easily held in the retracted position by the magnetic force.
 上記のように、コンプレッサハウジング100のうち退避位置状態において可動部材(具体的には、第1可動部材210または第2可動部材220)と対向する部分、および、可動部材のうち退避位置状態においてコンプレッサハウジング100と最も近接する部分の少なくとも一方に設けられる磁石部によって、第1可動部材210および第2可動部材220を退避位置に保持することができる。 As described above, the part of the compressor housing 100 facing the movable member (specifically, the first movable member 210 or the second movable member 220) in the retracted position state, and the compressor in the movable member in the retracted position state. The first movable member 210 and the second movable member 220 can be held in the retracted position by the magnet portion provided on at least one of the portions closest to the housing 100.
 以上説明したように、本実施形態では、磁石部311、312、313、321、322、323、331、332は、コンプレッサハウジング100のうち可動部材(具体的には、第1可動部材210または第2可動部材220)と対向する部分、および、可動部材の少なくとも一方に設けられる。それにより、磁石部311、312、313、321、322、323、331、332は、第1可動部材210および第2可動部材220が特定位置(例えば、突出位置または退避位置)に位置する時に、第1可動部材210および第2可動部材220を特定位置に保持することができる。ゆえに、第1可動部材210および第2可動部材220が特定位置に位置する時に、アクチュエータ250への通電を停止させることができる。よって、アクチュエータ250における発熱が抑制される。それにより、モータの減磁等によってアクチュエータ250の性能が低下することが抑制される。 As described above, in the present embodiment, the magnet portion 311, 312, 313, 321, 322, 323, 332, 332 is a movable member (specifically, the first movable member 210 or the first movable member 210 or the first movable member 210 in the compressor housing 100. 2 It is provided on a portion facing the movable member 220) and at least one of the movable members. As a result, when the first movable member 210 and the second movable member 220 are positioned at specific positions (for example, a protruding position or a retracted position), the magnet portions 311, 312, 313, 321, 322, 323, 331, and 332 are located. The first movable member 210 and the second movable member 220 can be held at a specific position. Therefore, when the first movable member 210 and the second movable member 220 are located at specific positions, the energization of the actuator 250 can be stopped. Therefore, heat generation in the actuator 250 is suppressed. As a result, deterioration of the performance of the actuator 250 due to demagnetization of the motor or the like is suppressed.
 なお、本実施形態では、第1可動部材210および第2可動部材220を突出位置に保持する突出位置用の磁石部(具体的には、磁石部311、312、321、322)と、第1可動部材210および第2可動部材220を退避位置に保持する退避位置用の磁石部(具体的には、磁石部313、323、331、332)とが遠心圧縮機CCに設けられる。ただし、突出位置用の磁石部および退避位置用の磁石部の一方が遠心圧縮機CCの構成から省略されてもよい。ただし、突出位置および退避位置の双方で各可動部材の位置を保持する観点では、突出位置用の磁石部および退避位置用の磁石部の双方が遠心圧縮機CCに設けられることが好ましい。 In the present embodiment, the magnet portion for the protruding position (specifically, the magnet portions 311 and 312, 321 and 322) for holding the first movable member 210 and the second movable member 220 at the protruding position and the first. A magnet portion (specifically, magnet portions 313, 323, 331, 332) for a retracted position that holds the movable member 210 and the second movable member 220 in the retracted position is provided in the centrifugal compressor CC. However, one of the magnet portion for the protruding position and the magnet portion for the retracted position may be omitted from the configuration of the centrifugal compressor CC. However, from the viewpoint of holding the position of each movable member at both the protruding position and the retracted position, it is preferable that both the magnet portion for the protruding position and the magnet portion for the retracted position are provided in the centrifugal compressor CC.
 以上、添付図面を参照しながら本開示の実施形態について説明したが、本開示はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。 Although the embodiments of the present disclosure have been described above with reference to the attached drawings, it goes without saying that the present disclosure is not limited to such embodiments. It is clear that a person skilled in the art can come up with various modifications or modifications within the scope of the claims, and it is understood that these also naturally belong to the technical scope of the present disclosure. Will be done.
 上記では、アクチュエータ250が電動シリンダである例を説明した。ただし、アクチュエータ250は、電動シリンダ以外の電動式のアクチュエータであってもよい。例えば、アクチュエータ250は、ソレノイド式のアクチュエータであってもよい。その場合、アクチュエータ250が通電されている時には、駆動シャフト251が軸方向の一側に移動する。アクチュエータ250の通電が停止している時には、バネの復元力によって駆動シャフト251は軸方向の他側に移動する。 In the above, an example in which the actuator 250 is an electric cylinder has been described. However, the actuator 250 may be an electric actuator other than the electric cylinder. For example, the actuator 250 may be a solenoid type actuator. In that case, when the actuator 250 is energized, the drive shaft 251 moves to one side in the axial direction. When the actuator 250 is de-energized, the restoring force of the spring causes the drive shaft 251 to move to the other side in the axial direction.
 上記では、コンプレッサハウジング100の絞り機構(つまり、リンク機構200)に第1可動部材210および第2可動部材220の2つの可動部材が設けられる例を説明した、ただし、絞り機構における可動部材の数は、1または3以上であってもよい。可動部材の数が3以上の場合、これらの複数の可動部材が互いに当接した状態が、上記の例における突出位置状態と対応する。可動部材の数が3以上の場合、これらの複数の可動部材が互いに離隔した状態が上記の例における退避位置状態と対応する。 In the above, an example in which two movable members, a first movable member 210 and a second movable member 220, are provided in the throttle mechanism (that is, the link mechanism 200) of the compressor housing 100 has been described, except that the number of movable members in the throttle mechanism. May be 1 or 3 or more. When the number of movable members is 3 or more, the state in which these plurality of movable members are in contact with each other corresponds to the protruding position state in the above example. When the number of movable members is 3 or more, the state in which these plurality of movable members are separated from each other corresponds to the retracted position state in the above example.
9:コンプレッサインペラ 10:吸気口 100:コンプレッサハウジング(ハウジング) 130:吸気流路 210:第1可動部材(可動部材) 220:第2可動部材(可動部材) 250:アクチュエータ 311:磁石部 312:磁石部 313:磁石部 321:磁石部 322:磁石部 323:磁石部 331:磁石部 332:磁石部 CC:遠心圧縮機 TC:過給機 9: Compressor impeller 10: Intake port 100: Compressor housing (housing) 130: Intake flow path 210: First movable member (movable member) 220: Second movable member (movable member) 250: Actuator 311: Magnet part 312: Magnet Part 313: Magnet part 321: Magnet part 322: Magnet part 323: Magnet part 331: Magnet part 332: Magnet part CC: Centrifugal compressor TC: Supercharger

Claims (6)

  1.  吸気口と接続される吸気流路が形成されるハウジングと、
     前記吸気流路に配されるコンプレッサインペラと、
     前記吸気流路のうち前記コンプレッサインペラよりも前記吸気口側に配される可動部材と、
     前記可動部材と接続される電動式のアクチュエータと、
     前記ハウジングのうち前記可動部材と対向する部分、および、前記可動部材の少なくとも一方に設けられる磁石部と、
     を備える、
     遠心圧縮機。
    A housing in which an intake flow path connected to the intake port is formed,
    The compressor impeller arranged in the intake flow path and
    A movable member arranged on the intake port side of the intake flow path with respect to the compressor impeller,
    An electric actuator connected to the movable member and
    A portion of the housing facing the movable member, and a magnet portion provided on at least one of the movable members.
    To prepare
    Centrifugal compressor.
  2.  複数の前記可動部材を備え、
     前記磁石部は、前記ハウジングのうち前記複数の可動部材が互いに当接した状態において前記可動部材と対向する部分、および、前記可動部材のうち他の前記可動部材と当接する部分の少なくとも一方に設けられる、
     請求項1に記載の遠心圧縮機。
    Equipped with the plurality of the movable members
    The magnet portion is provided on at least one of the portion of the housing that faces the movable member when the plurality of movable members are in contact with each other and the portion of the movable member that abuts on the other movable member. Be,
    The centrifugal compressor according to claim 1.
  3.  複数の前記可動部材を備え、
     前記磁石部は、前記ハウジングのうち前記複数の可動部材が互いに離隔した状態において前記可動部材と対向する部分、および、前記可動部材のうち前記複数の可動部材が互いに離隔した状態において前記ハウジングと最も近接する部分の少なくとも一方に設けられる、
     請求項1または2に記載の遠心圧縮機。
    Equipped with the plurality of the movable members
    The magnet portion is the portion of the housing that faces the movable member when the plurality of movable members are separated from each other, and the magnet portion is the most separated from the housing when the plurality of movable members of the movable member are separated from each other. Provided on at least one of the adjacent parts,
    The centrifugal compressor according to claim 1 or 2.
  4.  前記磁石部により生じる磁力の方向は、前記可動部材の移動方向に沿った方向である、
     請求項1から3のいずれか一項に記載の遠心圧縮機。
    The direction of the magnetic force generated by the magnet portion is a direction along the moving direction of the movable member.
    The centrifugal compressor according to any one of claims 1 to 3.
  5.  前記磁石部は、前記可動部材が特定位置に位置する時に、前記可動部材を前記特定位置に保持する、
     請求項1から4のいずれか一項に記載の遠心圧縮機。
    The magnet portion holds the movable member in the specific position when the movable member is located in the specific position.
    The centrifugal compressor according to any one of claims 1 to 4.
  6.  請求項1から5のいずれか一項に記載の遠心圧縮機を備える過給機。 A turbocharger provided with the centrifugal compressor according to any one of claims 1 to 5.
PCT/JP2021/031364 2020-09-09 2021-08-26 Centrifugal compressor and supercharger WO2022054598A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020151016 2020-09-09
JP2020-151016 2020-09-09

Publications (1)

Publication Number Publication Date
WO2022054598A1 true WO2022054598A1 (en) 2022-03-17

Family

ID=80632373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031364 WO2022054598A1 (en) 2020-09-09 2021-08-26 Centrifugal compressor and supercharger

Country Status (1)

Country Link
WO (1) WO2022054598A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019536939A (en) * 2016-12-09 2019-12-19 ボーグワーナー インコーポレーテッド Compressor with variable compressor inlet
WO2019242954A1 (en) * 2018-06-21 2019-12-26 Cpt Group Gmbh Compressor with directly driven variable iris diaphragm, and charging device
WO2020031507A1 (en) * 2018-08-07 2020-02-13 株式会社Ihi Centrifugal compressor and supercharger
DE102019133035A1 (en) * 2018-12-07 2020-06-10 Borgwarner Inc. ACTUATING DEVICE FOR ADJUSTING MECHANISM

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019536939A (en) * 2016-12-09 2019-12-19 ボーグワーナー インコーポレーテッド Compressor with variable compressor inlet
WO2019242954A1 (en) * 2018-06-21 2019-12-26 Cpt Group Gmbh Compressor with directly driven variable iris diaphragm, and charging device
WO2020031507A1 (en) * 2018-08-07 2020-02-13 株式会社Ihi Centrifugal compressor and supercharger
DE102019133035A1 (en) * 2018-12-07 2020-06-10 Borgwarner Inc. ACTUATING DEVICE FOR ADJUSTING MECHANISM

Similar Documents

Publication Publication Date Title
JP6977889B2 (en) Centrifugal compressor and turbocharger
KR100566704B1 (en) Variable-capacity turbocharger
JP5807037B2 (en) Variable nozzle turbocharger
WO2022054598A1 (en) Centrifugal compressor and supercharger
JP6677307B2 (en) Variable displacement turbocharger
JP6939989B2 (en) Centrifugal compressor
EP1809908A1 (en) Variable geometry compressor
JP7298703B2 (en) centrifugal compressor
WO2021171772A1 (en) Centrifugal compressor
WO2021070826A1 (en) Centrifugal compressor
WO2022054348A1 (en) Centrifugal compressor and supercharger
WO2021235027A1 (en) Centrifugal compressor
JP7251093B2 (en) centrifugal compressor
WO2024053144A1 (en) Centrifugal compressor
JP2013155640A (en) Variable stator vane mechanism of turbo machine
WO2021235026A1 (en) Centrifugal compressor
WO2022259625A1 (en) Centrifugal compressor and supercharger
WO2021070498A1 (en) Drainage structure, and supercharger
CN113728167B (en) Centrifugal compressor and supercharger
WO2023286350A1 (en) Centrifugal compressor and supercharger
WO2023017718A1 (en) Centrifugal compressor and supercharger
WO2020217847A1 (en) Centrifugal compressor and supercharger
WO2021075157A1 (en) Centrifugal compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP