WO2022054570A1 - Operating state analysis device of compressor - Google Patents

Operating state analysis device of compressor Download PDF

Info

Publication number
WO2022054570A1
WO2022054570A1 PCT/JP2021/031015 JP2021031015W WO2022054570A1 WO 2022054570 A1 WO2022054570 A1 WO 2022054570A1 JP 2021031015 W JP2021031015 W JP 2021031015W WO 2022054570 A1 WO2022054570 A1 WO 2022054570A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
pressure
value
analyzer
values
Prior art date
Application number
PCT/JP2021/031015
Other languages
French (fr)
Japanese (ja)
Inventor
祐介 竹部
一城 吉添
一真 前田
Original Assignee
中部電力ミライズ株式会社
中部電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中部電力ミライズ株式会社, 中部電力株式会社 filed Critical 中部電力ミライズ株式会社
Publication of WO2022054570A1 publication Critical patent/WO2022054570A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids

Definitions

  • the present invention relates to an operating state analysis device for a compressor, which is a device for analyzing the operating state of a compressor (compressor).
  • Patent Document 1 discloses a system for managing an operating state of a compressor.
  • the unload operation is performed.
  • a set value (unload pressure value) that makes the ratio smaller than the predetermined value is determined and transmitted to the user's computer corresponding to the compressor via the network.
  • the ratio of the unload operation is grasped from the information indicating which of the load operation and the unload operation obtained from the compressor is executed as the operation information.
  • the load factor of the compressor as a percentage of the unload operation can be calculated based on the current value supplied to the compressor in a predetermined period.
  • the compressor executes the load operation execution information and the unload operation. It must output information, and its applicability is narrow. Further, among the above systems, in the system in which the load factor is calculated from the current value, the specific calculation method of the load factor is unknown, and the load factor is grasped only based on the current value of the compressor. There is room for improvement in the accuracy of grasping the operating state of the compressor.
  • one of the main objects of the present invention is to provide a compressor operation state analyzer capable of supporting various compressors. Further, another one of the main objects of the present invention is to provide a compressor operating state analysis device having higher analysis accuracy.
  • the invention according to claim 1 is a data acquisition means for acquiring a plurality of power-related values which are values related to power consumption and pressure-related values which are values related to pressure from one or more compressors. And a threshold setting means for setting a threshold value for the power consumption for each compressor from the plurality of the power-related values and the plurality of pressure-related values, and the threshold value is If the power consumption is equal to or higher than this threshold value, it is considered to be in rated operation, and if the power consumption is less than this threshold value, it is considered to be not in rated operation. be.
  • the invention according to claim 2 further provides, in the above invention, a model discriminating means for discriminating the model of the compressor from the plurality of the power-related values and the plurality of pressure-related values, and the threshold value.
  • the setting means is characterized in that the threshold value is set according to the model determined by the model determining means.
  • the duration of the unrated operation analyzed by the threshold value is longer than a predetermined time, the duration is calculated to be within a specific time. It is characterized in that a new control data output means for outputting the operation control data of the new compressor is provided.
  • the invention according to claim 4 is a data acquisition means for acquiring a plurality of power-related values which are values related to power consumption and pressure-related values which are values related to pressure from one or more compressors, and a plurality of the power-related values. It is characterized by having a model discriminating means for discriminating the model of the compressor from the plurality of pressure-related values.
  • the data acquisition means acquires the power-related value and the pressure-related value in each predetermined cycle, and the predetermined cycle is 30 seconds or less. It is characterized by.
  • the invention according to claim 6 is characterized in that, in the above invention, the electric power-related value is a current value supplied to the compressor.
  • the invention according to claim 7 is characterized in that, in the above invention, the data acquisition means acquires the power-related value and the pressure-related value by communication.
  • the invention according to claim 8 further includes, in the above invention, a lower limit value acquisition means for acquiring the lower limit value of the pressure value, which is the lowest value of the pressure value among the plurality of pressure-related values, for each compressor. It is characterized by being.
  • One of the main effects of the present invention is to provide a compressor operation state analyzer capable of supporting various compressors. Further, another one of the main effects of the present invention is to provide a compressor operating state analysis device having even higher analysis accuracy.
  • FIG. 1 is a block diagram of a compressor operation state analysis system (analysis system DS) including the compressor operation state analysis device (analysis device 1) according to the present invention and its peripheral configuration.
  • the analysis system DS includes an analysis device 1 and a data collection gateway G installed in the factory F.
  • the analyzer 1 analyzes the operating state of the first compressor C1, the second compressor C2, the third compressor C3, and the fourth compressor C4 installed in the factory F.
  • the first compressor C1 to the fourth compressor C4 are positive displacement type screw type compressors. At least one of the first compressor C1 to the fourth compressor C4 may be a speed type (turbo type), or may be a positive displacement type, a reciprocating type, or a scroll type.
  • the first compressor C1 to the third compressor C3 are refueling type constant speed machines. Of these, in the first compressor C1 and the second compressor C2, load / unload control is performed.
  • the load / unload control is a control for switching from load operation to no-load operation when a load (pressure) equal to or higher than a predetermined value is reached, as in Patent Document 1 described above. That is, the model of the first compressor C1 and the second compressor C2 is a load / unload controller.
  • the third compressor C3 throttle valve control is performed. That is, the model of the third compressor C3 is a throttle valve controller. In the throttle valve control, the suction air amount is increased / decreased (adjusted) according to the load by the throttle valve to control the air pressure.
  • At least one of the first compressor C1 and the second compressor C2 may be an oil-free type or may be another compressor.
  • the third compressor C3 may be a combination of load / unload control and throttle valve control, or may be another compressor.
  • the model of the fourth compressor C4 is a refueling type inverter machine. That is, the fourth compressor C4 controls the rotation speed of the compression unit (motor) based on the inverter to adjust the load.
  • the fourth compressor C4 may be an oil-free inverter machine or another compressor.
  • the first compressor C1 is connected to the first current sensor A1.
  • the first current sensor A1 detects the current applied to the first compressor C1.
  • the first current sensor A1 is connected to the data acquisition gateway G.
  • the first current sensor A1 may be incorporated in the first compressor C1 or may be externally attached.
  • the second compressor C2 is connected to the second current sensor A2.
  • the third compressor C3 is connected to the third current sensor A3.
  • the fourth compressor C4 is connected to the fourth current sensor A4.
  • the second current sensor A2 to the fourth current sensor A4 are connected to the data acquisition gateway G.
  • the first compressor C1 to the fourth compressor C4 generate compressed air (dotted arrow in FIG. 1), and send the compressed air to the receiver tank R installed in the factory F.
  • the receiver tank R stores the compressed air and distributes the compressed air to a place in the factory F where the compressed air is required.
  • a pressure sensor PG is connected to the receiver tank R.
  • the pressure sensor PG detects the pressure of the compressed air in the receiver tank R.
  • the pressure sensor PG is connected to the data acquisition gateway G.
  • the number of various devices in the factory F may be increased or decreased in various ways.
  • the number of compressors may be 3 or less or 5 or more, and the inverter may not be installed or a plurality of compressors may be installed.
  • the constant speed machine may not be installed or may be installed by other than three units, and the receiver tank may not be installed or may be installed by a plurality of units.
  • the pressure sensor PG may be connected to at least one compressor.
  • the analyzer 1 includes an analyzer display means 2, an analyzer input means 4, an analyzer storage means 6, an analyzer communication means 8 as a data acquisition means, and an analyzer control means 9 as a control means.
  • the analyzer 1 is formed, for example, by a portable computer.
  • the analyzer 1 may be formed by executing a program on a server computer (cloud) connected to the Internet IN (analyzer 1 as a cloud service).
  • the server computer may be provided with functions other than the analysis function of the analyzer 1.
  • the analyzer 1 is under the control of an organization that maintains the first compressor C1 to the fourth compressor C4.
  • the analyzer 1 may be managed by another organization such as a manufacturer of the first compressor C1 to the fourth compressor C4 or an organization that manages the factory F.
  • the analyzer display means 2 is a means capable of displaying various types of information.
  • the analyzer display means 2 is, for example, at least one of a flat display such as a liquid crystal display and a printer.
  • the analyzer input means 4 is a means capable of inputting various types of information.
  • the analyzer input means 4 is, for example, at least one of a keyboard, a pointing device, a button and a switch.
  • the analyzer display means 2 and the analyzer input means 4 may be formed by a display with a touch sensor, that is, a touch panel.
  • the analyzer storage means 6 is a means capable of storing various types of information.
  • the analyzer storage means 6 is, for example, at least one of a hard disk, a memory, and an optical disk.
  • the analyzer storage means 6 includes an analyzer program DP, a first current value group AA1 to a fourth current value group AA4, a pressure value group PGV, a power pressure graph CPG, a threshold value TH, a lower limit value PL of the pressure value, and a pressure.
  • the fluctuation graph PCG, the individual performance graph IPG, and the discharge amount group DAA are stored.
  • the analyzer communication means 8 is a means capable of communicating various types of information.
  • the analyzer communication means 8 is, for example, at least one of an interface and a modem.
  • the analyzer control means 9 is a means for controlling various means related to the analyzer 1.
  • the analyzer control means 9 is, for example, a CPU.
  • the analyzer control means 9 controls various means by executing the analyzer program DP with reference to the analyzer storage means 6.
  • a data acquisition gateway G is communicably connected to the analyzer communication means 8 via the Internet IN.
  • the data acquisition gateway G may be connected to the analyzer communication means 8 by a dedicated line or the like.
  • the data acquisition gateway G acquires and accumulates various data measured for the first compressor C1 to the fourth compressor C4.
  • the data acquisition gateway G includes a gateway display means 12, a gateway input means 14, a gateway storage means 16, a gateway premises communication means 17, a gateway communication means 18, and a gateway control means 19.
  • the data acquisition gateway G is formed by, for example, a portable computer.
  • the data collection gateway G is under the control of the organization related to the analyzer 1.
  • the data collection gateway G may be managed by another organization as in the analyzer 1.
  • the gateway display means 12 is similar to the analyzer display means 2.
  • the gateway input means 14 is the same as the analyzer input means 4.
  • the gateway storage means 16 is the same as the analyzer storage means 6 except that the contents of the stored information are partially different.
  • the gateway storage means 16 has the current values of the first current value group AA1 which is a set of the current values of the first compressor C1 indicated by the signal of the first current sensor A1 and the current value of the second compressor C2 indicated by the signals of the second current sensor A2.
  • the second current value group AA2 which is a set
  • the third current value group AA3 which is a set of the current values of the third compressor C3 indicated by the signal of the third current sensor A3, and the fourth compressor indicated by the signal of the fourth current sensor A4.
  • the fourth current value group AA4, which is a set of current values of C4, is stored.
  • the power-related value may be the power consumption itself, or may be another value for which the power consumption can be calculated (for example, a combination of a current value and a voltage value).
  • the gateway storage means 16 stores a pressure value group PGV which is a set of pressure values of the receiver tank R indicated by the signal of the pressure sensor PG.
  • the pressure value is a value indicating the pressure itself, and is a value related to pressure (pressure-related value).
  • the pressure-related value may be another value from which the pressure can be calculated.
  • the gateway storage means 16 stores the gateway program GP.
  • the gateway premises communication means 17 communicates with the first current sensor A1 to the fourth current sensor A4 and the pressure sensor PG.
  • the gateway premises communication means 17 may only receive signals from the first current sensor A1 to the fourth current sensor A4 and the pressure sensor PG, and may not transmit the signals.
  • the gateway communication means 18 is the same as the analyzer communication means 8, and communicates with other devices and the like via the Internet IN.
  • the gateway premises communication means 17 and the gateway communication means 18 may be integrated.
  • the gateway control means 19 is a means for controlling various means related to the data acquisition gateway G.
  • the gateway control means 19 is, for example, a CPU.
  • the gateway control means 19 controls various means by executing the gateway program GP with reference to the gateway storage means 16.
  • the gateway control means 19 stores each current value received from the first current sensor A1 in the gateway premises communication means 17 in the gateway storage means 16 as a component of the first current value group AA1 every 1 second (predetermined cycle). Let me. Similarly, each current value related to the second current sensor A2 to the fourth current sensor A4 and each pressure value related to the pressure sensor PG are set to the second current value group AA2 to the fourth current every 1 second (predetermined cycle).
  • the acquisition interval (cycle) of the current value, etc. of the first current value group AA1 is every 2 seconds, every 3 seconds, every 5 seconds, every 10 seconds, every 15 seconds, every 20 seconds, every 30 seconds, etc. There may be. Further, the first current sensor A1 or the like may always transmit a signal indicating a current value, may intermittently transmit the signal every second, or every 0.5 seconds or the like. The signal may be transmitted intermittently.
  • the management terminal M related to the management of the factory is connected to the Internet IN.
  • the management terminal M includes a management terminal display means 22, a management terminal input means 24, a management terminal storage means 26, a management terminal premises communication means 27, a management terminal communication means 28, and a management terminal control means 29. ing.
  • the management terminal M is provided in the factory F and is formed by, for example, a portable computer.
  • the management terminal M is under the control of the organization related to the factory F.
  • the management terminal M may be managed by another organization.
  • the management terminal display means 22 is the same as the gateway display means 12.
  • the management terminal input means 24 is the same as the gateway input means 14.
  • the management terminal storage means 26 is the same as the gateway storage means 16 except that the contents of the stored information are partially different.
  • the management terminal storage means 26 stores a management terminal program MP, a power pressure graph CPG, a threshold value TH, a lower limit value PL of a pressure value, and a pressure fluctuation graph PCG.
  • the management terminal premises communication means 27 is the same as the gateway premises communication means 17, and communicates with the first current sensor A1 to the fourth current sensor A4 and the pressure sensor PG.
  • the communication between the management terminal premises communication means 27 and the first current sensors A1 to the fourth current sensors A4 and the pressure sensor PG is not shown.
  • the management terminal communication means 28 is the same as the gateway communication means 18, and communicates with other devices and the like via the Internet IN.
  • the management terminal control means 29 is a means for controlling various means related to the management terminal M.
  • the management terminal control means 29 is, for example, a CPU.
  • the management terminal control means 29 controls various means by executing the management terminal program MP with reference to the management terminal storage means 26.
  • the management terminal M may be provided outside the factory F. Further, the management terminal M has a modification example similar to that of the data acquisition gateway G as appropriate.
  • FIG. 2 is a flowchart relating to an operation example of the analyzer 1.
  • a worker belonging to an organization that manages the analyzer 1 and the data collection gateway G first brings the data collection gateway G to the factory F, and first connects the first current sensors A1 to the fourth to the corresponding terminals of the gateway premises communication means 17.
  • the first current value group AA1 to the fourth current value group AA4 and the pressure value group PGV as data related to the first compressor C1 to the fourth compressor C4 are connected. Start collecting.
  • the predetermined period is, for example, 12 hours according to the daily operating time of the factory F, or one week according to the operating time of one cycle of the factory F.
  • the worker usually only needs to handle the data collection gateway G at the start and after the collection.
  • the predetermined period may be other than 12 hours. Further, the worker may belong to an organization other than the above-mentioned organization, or may be independent.
  • the operator carries the data acquisition gateway G to the installation location of the analyzer 1 and connects it to the analyzer 1, and collects the collected first current value group AA1 to fourth current value group AA4 and the pressure value group PGV. It is stored in the analyzer storage means 6. That is, the analyzer 1 acquires the first current value group AA1 to the fourth current value group AA4 and the pressure value group PGV collected by the data acquisition gateway G (step S2). The analyzer 1 stores the first current value group AA1 to the fourth current value group AA4 and the pressure value group PGV with an identifier (factory ID) related to the factory F in order to distinguish them from other factories and the like.
  • an identifier factory ID
  • the analyzer 1 may acquire the first current value group AA1 to the fourth current value group AA4 and the pressure value group PGV from the data acquisition gateway G by communication via the Internet IN.
  • various sensors may be directly connected to the Internet IN, and the analyzer 1 may acquire the first current value group AA1 to the fourth current value group AA4 and the pressure value group PGV from the sensor via the Internet IN.
  • the analyzer 1 is formed on the cloud, the first current value group AA1 to the fourth current value group AA4 and the pressure value group PGV are directly uploaded to the cloud.
  • the operator instructs the analyzer 1 to start the analysis process of the operation of the first compressor C1 to the fourth compressor C4 by the analyzer input means 4 (step S3).
  • the analyzer 1 starts the analysis process based on this command.
  • the analyzer 1 may start the analysis process regardless of the command when the first current value group AA1 to the fourth current value group AA4 and the pressure value group PGV are acquired (step S2).
  • the analyzer control means 9 converts each current value of the first current value group AA1 into power consumption (step S4-1).
  • the rated voltage and power factor are stored in the analyzer storage means 6 in a state where the values related to the first compressor C1 are input in advance and associated with the first current value group AA1.
  • initial values general values
  • calculated values, or the like may be used.
  • a power pressure graph CPG is formed by plotting on a plane about the power consumption (vertical axis) and the pressure value (horizontal axis) (step S4-2).
  • the power pressure graph CPG shows the relationship between the power consumption and the pressure value.
  • the power pressure graph CPG is stored in the analyzer storage means 6 in a state associated with an identifier (compressor ID) indicating the first compressor C1.
  • the analyzer control means 9 converts the current value at a certain time into power consumption, refers to the pressure value at the same time, plots the set of the power consumption and the pressure value at that time, and plots the set of the power consumption and the pressure value at that time, and the current at the next time.
  • the value may be converted into power consumption and processed in the same manner below. That is, steps S4-1 and S4-2 may be performed collectively. Further, the vertical axis and the horizontal axis in the power pressure graph CPG may be interchanged from those described above.
  • the analyzer control means 9 may display the power pressure graph CPG on the analyzer display means 2.
  • the power pressure graph CPG may be stored as a database. At least one of the exchange of the vertical axis and the horizontal axis, the display in the analyzer display means 2, and the storage as a database may be appropriately performed in another graph.
  • the analyzer control means 9 estimates the model (control type) of the first compressor C1 from the shape of the power pressure graph CPG (step S4-3, model discrimination means). Since the shape of the power pressure graph CPG of the first compressor C1 includes a quadrilateral having a width on each side, it can be inferred that the first compressor C1 is a load / unload controller. More specifically, a large number of plots near the rated power consumption (corresponding to road operation) that correspond to the wide upper side of the quadrilateral, and a large number of plots that correspond to the wide lower side of the quadrilateral and are less than the rated power consumption (Ann).
  • the analyzer control means 9 loads / unloads the model. I guess.
  • the left and right sides of the quadrilateral correspond to switching of operation, and if the plot interval is longer than about a minute, there is a high possibility that the left and right sides will not be plotted. Since the pressure value is acquired, the left and right sides are fully visible.
  • the model discrimination accuracy in the analyzer control means 9 is sufficient.
  • the model may be input in advance by the analyzer input means 4. In this case or the like, the model determination (step S4-3) may be omitted.
  • the analyzer control means 9 sets the threshold value TH related to the rated operation (load operation) from the power pressure graph CPG based on the model of the first compressor C1 being load / unload control (step). S4-4, threshold setting means).
  • This threshold value TH is related to power consumption, and is considered to be in rated operation when the power consumption is equal to or higher than the threshold value TH, and is not in rated operation when the power consumption is less than the threshold value TH. It is considered to be.
  • the analyzer control means 9 sets this threshold TH as shown by a horizontal dotted line in FIG.
  • the analyzer control means 9 assumes a horizontal line passing through the lower end of the wide upper side of the quadrilateral in the power pressure graph CPG, and sets the power consumption indicated by the horizontal line as the threshold value TH related to the rated operation. ..
  • the threshold value TH is stored in the analyzer storage means 6 in a state associated with the compressor ID.
  • the plot (pressure value) having the power consumption equal to or higher than the threshold value TH is processed as being related to the rated operation. Therefore, the rated power consumption (catalog) of the first compressor C1. Compared to the case where the value (value, specification value) is input and processed, the processing can be performed more realistically. That is, when the specification value of the first compressor C1 is input, all plots having power consumption equal to or higher than the specification value are processed as specification values, so that the power consumption is processed to be less than the actual value.
  • the plot having the power consumption equal to or higher than the threshold value TH is processed by the measured power consumption value as the rated operation, so that the plot is processed at the power consumption very close to the actual power consumption. Can be done. Therefore, when making an improvement proposal such as operation control of the first compressor C1 from the processing at the time of inputting the specification value, the improvement effect is excessive because the power consumption before the improvement is underestimated. Since the power consumption before the improvement is evaluated according to the actual situation, the improvement effect is also practical. In order to avoid underestimation of power consumption with a margin, the analyzer control means 9 maximizes a part or all of plots having a threshold value of TH or more in all plots regardless of the power consumption value of the plot.
  • the power consumption (measured maximum power) of is regarded as the power consumption value of the plot and may be processed.
  • grasping the unloading time time of unloading operation
  • the analyzer control means 9 grasps the time during which plots below the threshold value TH are continuous as one unload time, and integrates each unload time as appropriate. Further, the analyzer control means 9 may convert each plot into a discharge amount and grasp the discharge amount group DAA which is a set thereof.
  • the analyzer control means 9 converts the plot of the threshold value TH or more by the discharge amount in the rated operation, and the plot of less than the threshold value TH is the discharge amount converted from the individual performance graph IPG related to the first compressor C1. ..
  • the individual performance graph IPG is a graph showing the relationship between the power consumption and the discharge amount in the non-rated operation, and is individual for each model such as the first compressor C1 to the fourth compressor C4.
  • the individual performance graph IPG may be stored in the analyzer storage means 6 in advance, or may be input in accordance with the completion of acceptance of the first current value group AA1 or the like.
  • the analyzer control means 9 is most suitable (closest) from a plurality of individual performance graph IPGs stored in advance in the analyzer storage means 6 based on at least one of the compressor ID and the shape of the power pressure graph CPG. ) You may extract the thing and use it for conversion.
  • each plot is converted into a discharge amount to form a discharge amount group DAA
  • a unified and easy-to-understand standard of the discharge amount will be used in the first compressor C1 to the fourth compressor C4, and the first in the factory F.
  • Accurate analysis of the compressors C1 to the fourth compressor C4 can be easily performed. Processing such as grasping the unload time and generating the discharge amount group DAA may be performed together with the setting of the threshold value TH (step S4-4).
  • the analyzer control means 9 grasps the lower limit value PL of the pressure value (steps S4-5, lower limit value acquisition means).
  • the plot PLW corresponds to the lower limit PL of the pressure value.
  • the analyzer control means 9 can form a pressure fluctuation graph PCG having a pressure value on the vertical axis and time on the horizontal axis in the same manner as the power pressure graph CPG.
  • Pressure Fluctuation Graph No current value or power consumption is used in the formation of the PCG. Since the pressure fluctuation graph PCG is formed using the pressure value every second, it is possible to accurately analyze the event of the pressure fluctuation.
  • modification example 1 to modification example 5 are power pressure graph CPGs according to the modified examples 1 to 5 in order.
  • the quadrilateral of the power pressure graph CPG becomes thinner as a whole, and in particular, the number of plots on the left and right sides decreases. Further, the number of plots of the pressure value from the left side of the quadrilateral also decreases as the period becomes longer.
  • the lower limit PL of the pressure value (corresponding to the plot PLW5) is about 0.58 MPa, and the lower limit PL of the pressure value (plot PLW1) is compared with the other modified examples.
  • ⁇ PLW4 is far from the true lower limit. Therefore, from the viewpoint of accuracy, the period is preferably less than about a minute, and preferably as short as possible. However, the shorter the cycle, the larger the number of data, and the higher the cost for management and calculation. Therefore, from the viewpoint of the balance between accuracy and cost reduction, the acquisition cycle of the current value and the pressure value is preferably 1 second or more and 30 seconds or less.
  • the analyzer control means 9 refers to the second current value group AA2 and the pressure value group PGV after performing these processes on the first compressor C1, and the first 2
  • the analyzer control means 9 forms a power pressure graph CPG (step S4-2).
  • the power pressure graph CPG of the third compressor C3 has a mountain-shaped shape having a “ ⁇ ” shape.
  • the region (referred to as region A) on the left side (low pressure side) from the pressure value (about 0.48 MPa, see the vertical dotted line) at the top of the chevron shape corresponds to the region below the throttle valve control pressure.
  • the throttle valve control pressure is the maximum pressure value at which the throttle valve does not operate (the opening of the throttle valve is the maximum in the settable range), and the region A is a region where the suction amount by the throttle valve is not reduced. ..
  • the region on the right side (high pressure side) from the pressure value at the top of the chevron shape corresponds to the region exceeding the throttle valve control pressure.
  • This B region is a region where the suction amount by the throttle valve is reduced. Since the analyzer control means 9 has a chevron shape, the third compressor C3 is analyzed as a throttle valve controller (step S4-3, model discrimination means).
  • the analyzer control means 9 processes the data (plot) belonging to the region A in the same manner as the load / unload controller as follows. That is, the analyzer control means 9 sets the minimum value of the pressure value in the chevron shape in the A region as the threshold value TH related to the rated operation (see step S4-4, threshold value setting means, horizontal dotted line). ). Further, the analyzer control means 9 processes the plot relating to the power consumption equal to or higher than the threshold value TH as the rated operation. Further, the analyzer control means 9 processes the plot relating to the power consumption less than the threshold value as unrated operation, for example, obtaining the discharge amount group DAA from the individual performance graph IPG of the third compressor C3.
  • the analyzer control means 9 obtains the discharge amount group DAA from the individual performance graph IPG of the third compressor C3, for example, for the data (plot) belonging to the B region, as in the case of the unrated operation in the A region. Perform processing. By dividing the A area and the B area, more realistic and accurate data processing becomes possible.
  • the analyzer control means 9 grasps the lower limit value PL of the pressure value (steps S4-5, lower limit value acquisition means).
  • the plot PLWC3 corresponds to the lower limit PL of the pressure value.
  • the analyzer control means 9 forms a power pressure graph CPG (step S4-2).
  • the power pressure graph CPG of the fourth compressor C4 has an almond shape (rugby ball shape, elliptical shape whose long axis is downward downward).
  • a horizontal linear portion extends from the upper left of the almond shape to the left (left horizontal linear portion), and a horizontal linear portion extends from the lower right of the almond shape to the right (right horizontal linear portion). part). Since the analyzer control means 9 has an almond shape, or further has at least one of a left horizontal linear portion and a right horizontal linear portion, the fourth compressor C4 is analyzed as an inverter machine (steps S4-3, model). Discrimination means).
  • the analyzer control means 9 sets the minimum value of the pressure value in the left horizontal linear portion as the threshold value TH related to the rated operation (step S4-4, threshold value setting means, see the horizontal dotted line in FIG. 11). ).
  • the analyzer control means 9 may set the pressure value or the like at the upper end portion of the almond shape as the threshold value TH related to the rated operation.
  • the analyzer control means 9 processes the plot relating to the power consumption equal to or higher than the threshold value TH as the rated operation in the same manner as in the above case. Further, the analyzer control means 9 processes the plot relating to the power consumption below the threshold value as unrated operation as in the above case.
  • the analyzer control means 9 grasps the lower limit value PL of the pressure value (steps S4-5, lower limit value acquisition means).
  • the plot PLWC4 corresponds to the lower limit PL of the pressure value.
  • the analyzer control means 9 can accurately generate the pressure fluctuation graph PCG for the fourth compressor C4 by the pressure value every second, as in the case of the first compressor C1.
  • the processing of the fourth compressor C4 there are appropriately modified examples similar to the processing of the first compressor C1 and the processing of the third compressor C3.
  • the operator analyzes the operation of the first compressor C1 to the fourth compressor C4 by the above processing, and makes use of it for analysis for improvement proposal and the like.
  • improvement proposals for example, changing the setting of the unload pressure value for the purpose of shortening the unloading time in the load / unload controller, reviewing the operation start pressure of the throttle valve in the throttle valve controller, and others in the inverter machine. Confirmation of whether or not the machine is being operated ahead of the constant speed machine, etc.
  • the analyzer control means 9 has a threshold set in the first compressor C1 to the fourth compressor C4 to be analyzed.
  • the unload time (duration of non-rated operation) grasped from the value is a predetermined time (for example, 1 hour) or more, the duration is calculated to be within a specific time (45 minutes).
  • the analyzer control means 9 has a specific cycle (for example, 1 minute) over a specific period (for example, one week) of the first compressor C1 to the fourth compressor C4.
  • Each operation command value for each is calculated and output as new operation control data.
  • the specific time related to the unload time may be a predetermined time or less, and may be the same as the predetermined time.
  • the specific period related to the new operation control data may be the same as or different from the predetermined period related to the collection period of the first current value group AA1 to the fourth current value group AA4 and the pressure value group PGV. Is also good.
  • the specific cycle related to the new operation control data may be the same as or different from the predetermined cycle related to the acquisition interval of the current value or the like of the first current value group AA1.
  • new operation control data may be generated only for the first compressor C1, and new operation may be generated only for other than the first compressor C1.
  • Control data may be generated, or new operation control data may be generated only for a part of the first compressor C1 to the fourth compressor C4.
  • the target for generating new operation control data when the unload time becomes a predetermined time or longer is not limited to all of the first compressor C1 to the fourth compressor C4. Further, when the unload time becomes a predetermined time or more, whether or not new operation control data is generated may be determined according to the model of the first compressor C1 to the fourth compressor C4. Further, at least one of the above processing and analysis of improvement proposals may be performed on the cloud. At least one of setting the threshold value, outputting new operation control data, determining the model, and acquiring the lower limit value may be performed by another device. Further, the setting of the threshold value, the output of new operation control data, the determination of the model, the acquisition of the lower limit value, and the processing other than these may be performed in different devices. The worker can visit the factory F or the installation location of the management terminal M and present the analysis results and the like to the managers and the like of the first compressor C1 to the fourth compressor C4.
  • the worker can transmit the analysis result or the like to the management terminal M belonging to the person in charge of management or the like via the Internet IN (step S5).
  • the analyzer control means 9 controls the analyzer communication means 8 to the management terminal M of the factory F corresponding to the factory ID, each power pressure graph CPG and pressure of the first compressor C1 to the fourth compressor C4.
  • the fluctuation graph PCG, the lower limit PL of the pressure value, and the discharge amount group DAA are transmitted.
  • the data to be transmitted may be a part of these, or may have other elements such as the threshold value TH added. Further, the data related to the improvement proposal may be transmitted. Further, when the analysis device 1 is formed on the cloud, the administrator on the management terminal M side can access the cloud and download the analysis result or the like via the Internet IN.
  • the management terminal control means 29 When the management terminal control means 29 receives these data (processing results) in the management terminal communication means 28, the management terminal control means 29 stores them in the management terminal storage means 26 (step S6). Further, the management terminal control means 29 refers to the memory and arranges a display format such as converting these data as they are or into a graph of another format, or at least the first compressor C1 to the fourth compressor C4. Calculations such as addition are performed on any two of them, and the management terminal display means 22 displays the data (step S7). The above-mentioned calculation such as addition may be performed by the analyzer 1 and may be acquired via the Internet IN. Further, when other data is transmitted as in the above-mentioned modification example, the other data may be similarly stored (step S6) and displayed (step S7). Further, the management terminal storage means 26 may not store the data, and the management terminal control means 29 may display the received data as it is. Here, when the analyzer 1 is formed on the cloud, the management terminal control means 29 will display the data on the cloud.
  • the current values (first current value group AA1 to fourth current value group AA4), which are values related to power consumption, and values related to pressure are used from a total of four first compressors C1 to fourth compressors C4.
  • the analyzer communication means 8 that acquires a plurality of certain pressure values (pressure value group PGV), a plurality of power consumptions calculated from a plurality of current values, and a plurality of pressure values (relationship between power consumption and pressure). It has an analyzer control means 9 (threshold setting means, step S4-4) for setting a threshold value TH for electric power for each of the first compressor C1 to the fourth compressor C4, and has a threshold value TH.
  • the threshold value TH is a screw type refueling type load / unload controller (first compressor C1, second compressor C2), throttle valve controller (third compressor C3), and inverter machine (1st compressor C3). It can be set in the fourth compressor C4) or the like, and the analyzer 1 can correspond to various compressors.
  • the analyzer control means 9 (model discrimination means, step S4-3) for discriminating the model of the first compressor C1 to the fourth compressor C4 from the first current value group AA1 to the fourth current value group AA4 and the pressure value group PGV. ) Is provided, and the analyzer control means 9 (threshold value setting means) sets the threshold value TH according to the model determined by the analyzer control means 9 (model determination means). Therefore, the threshold value is set more appropriately, and the analysis for realizing more appropriate operation control of the first compressor C1 to the fourth compressor C4 is performed more accurately.
  • the analyzer control means 9 (new) that outputs new operation control data such that when the unload time analyzed by the threshold value TH is equal to or longer than a predetermined time, the unload time is calculated to be within a specific time.
  • Control data output means is provided. Therefore, specific new control data for improving the operation control is output. Therefore, the operator can easily propose the improvement of the operation control by referring to the output new control data. Further, the new control data can be immediately set for the first compressor C1 to the fourth compressor C4, and the operation control is immediately and easily improved.
  • the analyzer 1 has a total of four first compressors C1 to fourth compressors C4, and has a current value (first current value group AA1 to fourth current value group AA4) and a value related to pressure, which are values related to power consumption.
  • It has an analyzer control means 9 (model discriminating means, step S4-3) for discriminating the model of the compressor C4.
  • the analyzer 1 can automatically discriminate the model of the first compressor C1 to the fourth compressor C4 from the relationship between the power consumption and the pressure, and can process the data according to the discriminated model.
  • the operator can easily obtain the discriminated model and the improved operation control analyzed according to the model.
  • it is possible to prevent an operator from making a judgment error and an input error of the model, and to prevent the occurrence of erroneous processing and analysis.
  • the analyzer communication means 8 acquires a current value and a pressure value for each predetermined cycle, and the predetermined cycle is set to 30 seconds or less. Therefore, the accuracy of the analysis becomes even better. Further, each power-related value is each current value supplied to the first compressor C1 to the fourth compressor C4. Therefore, power consumption can be easily obtained at low cost. In addition, the analyzer communication means 8 acquires the first current value group AA1 to the fourth current value group AA4 and the pressure value group PGV by communication. Therefore, the first current value group AA1 to the fourth current value group AA4 and the pressure value group PGV for operation analysis can be easily obtained at low cost.
  • the analyzer control means 9 sets the lower limit value PL of the pressure value, which is the lowest value of the pressure value in the pressure value group PGV, to the first compressor C1 to the fourth compressor C4. Get it every time. Therefore, the operator can grasp the pressure drop related to the operation abnormality of the first compressor C1 to the fourth compressor C4 and the like, and utilize it for improving the operation of the first compressor C1 to the fourth compressor C4 and the like.
  • the form of the present invention is not limited to the above-mentioned form and modified examples, and further modified examples as shown below are appropriately included.
  • the compressor as the operation analysis target may be installed in a place other than the factory.
  • the threshold value setting means, the new control data output means, the model discrimination means, the lower limit value acquisition means, etc. are realized by one CPU (analyzer control means 9), and two CPUs are used.
  • the CPU in which some of these means are realized and the CPU in which the other means are realized may be different from each other, or three or more CPUs may be used.
  • An individual CPU may be assigned to each means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

[Problem] To provide an operating state analysis device of a compressor, which can be applied to various compressors and has higher analysis accuracy. [Solution] An operating state analysis device 1 of a compressor includes: an analysis device communication means 8 that acquires, from a total of four compressors from a first compressor C1 to a fourth compressor C4, a plurality of current values that are values related to power consumption and a plurality of pressure values that are values related to pressure; and an analysis device control means 9 (threshold value setting means) that sets, from a plurality of power consumptions calculated from the plurality of current values and the plurality of pressure values, a threshold value TH related to the power consumption for each of the first compressor C1 to the fourth compressor C4. In the threshold value TH, when the power consumption is equal to or higher than the threshold value TH, it is considered that a current state is in a rated operation, and when the power consumption is lower than the threshold value TH, it is considered that the current state is not in the rated operation.

Description

コンプレッサの運転状態分析装置Compressor operating condition analyzer
 本発明は、コンプレッサ(圧縮機)の運転状態を分析する装置であるコンプレッサの運転状態分析装置に関する。 The present invention relates to an operating state analysis device for a compressor, which is a device for analyzing the operating state of a compressor (compressor).
 特許第5887217号公報(特許文献1)には、圧縮機の運転状態を管理するシステムが開示されている。
 このシステムでは、請求項1及び[0077]に記載されるように、所定期間における圧縮機の運転傾向として、無負荷(アンロード)運転の占める割合が所定値以上である場合、アンロード運転の占める割合をその所定値よりも小さくする設定値(アンロード圧力の値)を決定し、ネットワークを介して圧縮機に対応するユーザのコンピュータに送信する。
 アンロード運転の占める割合は、[0078]に記載されるように、稼働情報として圧縮機から得られる負荷(ロード)運転及びアンロード運転のうち何れが実行されたかを示す情報から把握される。
 あるいは、[0080]に記載されるように、アンロード運転の占める割合としての圧縮機の負荷率が、所定期間において圧縮機に供給される電流値に基づいて算出され得る。
Japanese Patent No. 5887217 (Patent Document 1) discloses a system for managing an operating state of a compressor.
In this system, as described in claim 1 and [0077], when the ratio of no-load operation is equal to or more than a predetermined value as the operating tendency of the compressor in a predetermined period, the unload operation is performed. A set value (unload pressure value) that makes the ratio smaller than the predetermined value is determined and transmitted to the user's computer corresponding to the compressor via the network.
As described in [0078], the ratio of the unload operation is grasped from the information indicating which of the load operation and the unload operation obtained from the compressor is executed as the operation information.
Alternatively, as described in [0080], the load factor of the compressor as a percentage of the unload operation can be calculated based on the current value supplied to the compressor in a predetermined period.
特許第5887217号公報Japanese Patent No. 5887217
 上記のシステムのうち、アンロード運転の占める割合がロード運転及びアンロード運転のうち何れが実行されたかを示す情報から把握されるものでは、圧縮機がロード運転の実行情報及びアンロード運転の実行情報を出力するものでなければならず、適用可能範囲が狭い。
 又、上記のシステムのうち、負荷率を電流値から算出するものでは、負荷率の具体的な算出方法が不明であるし、圧縮機の電流値のみに基づいて負荷率が把握されることとなり、圧縮機の運転状態の把握の正確性に、向上の余地がある。
Among the above systems, in the system in which the ratio of the unload operation is grasped from the information indicating which of the load operation and the unload operation is executed, the compressor executes the load operation execution information and the unload operation. It must output information, and its applicability is narrow.
Further, among the above systems, in the system in which the load factor is calculated from the current value, the specific calculation method of the load factor is unknown, and the load factor is grasped only based on the current value of the compressor. There is room for improvement in the accuracy of grasping the operating state of the compressor.
 そこで、本発明の主な目的の一つは、様々なコンプレッサに対応可能なコンプレッサの運転状態分析装置を提供することである。
 又、本発明の主な目的の他の一つは、分析の精度がより一層高いコンプレッサの運転状態分析装置を提供することである。
Therefore, one of the main objects of the present invention is to provide a compressor operation state analyzer capable of supporting various compressors.
Further, another one of the main objects of the present invention is to provide a compressor operating state analysis device having higher analysis accuracy.
 上記目的を達成するために、請求項1に記載の発明は、1以上のコンプレッサから、消費電力に関する値である電力関連値及び圧力に関する値である圧力関連値を、それぞれ複数取得するデータ取得手段と、複数の前記電力関連値及び複数の前記圧力関連値から、前記消費電力に関するしきい値を、前記コンプレッサ毎に設定するしきい値設定手段と、を有しており、前記しきい値は、前記消費電力がこのしきい値以上であると定格運転中であるとみなし、前記消費電力がこのしきい値未満であると定格運転中でないものとみなすものであることを特徴とするものである。
 請求項2に記載の発明は、上記発明において、更に、複数の前記電力関連値及び複数の前記圧力関連値から、前記コンプレッサの機種を判別する機種判別手段が設けられており、前記しきい値設定手段は、前記機種判別手段により判別された前記機種に応じ、前記しきい値を設定することを特徴とするものである。
 請求項3に記載の発明は、上記発明において、更に、前記しきい値により分析された非定格運転の継続時間が所定時間以上であると、当該継続時間が計算上特定時間以内となるような新たな前記コンプレッサの運転制御データを出力する新制御データ出力手段が設けられていることを特徴とするものである。
 請求項4に記載の発明は、1以上のコンプレッサから、消費電力に関する値である電力関連値及び圧力に関する値である圧力関連値を、それぞれ複数取得するデータ取得手段と、複数の前記電力関連値及び複数の前記圧力関連値から、前記コンプレッサの機種を判別する機種判別手段と、を有していることを特徴とするものである。
 請求項5に記載の発明は、上記発明において、前記データ取得手段は、所定周期毎の前記電力関連値及び前記圧力関連値を取得するものであり、前記所定周期は、30秒以下であることを特徴とするものである。
 請求項6に記載の発明は、上記発明において、前記電力関連値は、前記コンプレッサに供給される電流値であることを特徴とするものである。
 請求項7に記載の発明は、上記発明において、前記データ取得手段は、通信により前記電力関連値及び前記圧力関連値を取得することを特徴とするものである。
 請求項8に記載の発明は、上記発明において、更に、複数の前記圧力関連値のうち圧力値の最低値である圧力値の下限値を、前記コンプレッサ毎に取得する下限値取得手段を有していることを特徴とするものである。
In order to achieve the above object, the invention according to claim 1 is a data acquisition means for acquiring a plurality of power-related values which are values related to power consumption and pressure-related values which are values related to pressure from one or more compressors. And a threshold setting means for setting a threshold value for the power consumption for each compressor from the plurality of the power-related values and the plurality of pressure-related values, and the threshold value is If the power consumption is equal to or higher than this threshold value, it is considered to be in rated operation, and if the power consumption is less than this threshold value, it is considered to be not in rated operation. be.
The invention according to claim 2 further provides, in the above invention, a model discriminating means for discriminating the model of the compressor from the plurality of the power-related values and the plurality of pressure-related values, and the threshold value. The setting means is characterized in that the threshold value is set according to the model determined by the model determining means.
According to the third aspect of the present invention, in the above invention, if the duration of the unrated operation analyzed by the threshold value is longer than a predetermined time, the duration is calculated to be within a specific time. It is characterized in that a new control data output means for outputting the operation control data of the new compressor is provided.
The invention according to claim 4 is a data acquisition means for acquiring a plurality of power-related values which are values related to power consumption and pressure-related values which are values related to pressure from one or more compressors, and a plurality of the power-related values. It is characterized by having a model discriminating means for discriminating the model of the compressor from the plurality of pressure-related values.
According to the fifth aspect of the present invention, in the above invention, the data acquisition means acquires the power-related value and the pressure-related value in each predetermined cycle, and the predetermined cycle is 30 seconds or less. It is characterized by.
The invention according to claim 6 is characterized in that, in the above invention, the electric power-related value is a current value supplied to the compressor.
The invention according to claim 7 is characterized in that, in the above invention, the data acquisition means acquires the power-related value and the pressure-related value by communication.
The invention according to claim 8 further includes, in the above invention, a lower limit value acquisition means for acquiring the lower limit value of the pressure value, which is the lowest value of the pressure value among the plurality of pressure-related values, for each compressor. It is characterized by being.
 本発明の主な効果の一つは、様々なコンプレッサに対応可能なコンプレッサの運転状態分析装置が提供されることである。
 又、本発明の主な効果の他の一つは、分析の精度がより一層高いコンプレッサの運転状態分析装置が提供されることである。
One of the main effects of the present invention is to provide a compressor operation state analyzer capable of supporting various compressors.
Further, another one of the main effects of the present invention is to provide a compressor operating state analysis device having even higher analysis accuracy.
本発明に係るコンプレッサの運転状態分析装置(分析装置)を含む分析システム及びその周辺構成のブロック図である。It is a block diagram of the analysis system including the operation state analysis device (analysis device) of the compressor which concerns on this invention, and the peripheral structure thereof. 本発明の分析装置の動作例に係るフローチャートである。It is a flowchart which concerns on the operation example of the analyzer of this invention. 動作例における第1コンプレッサ(ロード・アンロード制御機)の電力圧力グラフである。It is a power pressure graph of the 1st compressor (load / unload controller) in the operation example. 動作例における第1コンプレッサの圧力変動グラフである。It is a pressure fluctuation graph of the 1st compressor in the operation example. 変更例1における電力圧力グラフである。It is a power pressure graph in the modification 1. 変更例2における電力圧力グラフである。It is a power pressure graph in the second modification. 変更例3における電力圧力グラフである。It is a power pressure graph in the modification example 3. 変更例4における電力圧力グラフである。It is a power pressure graph in the modification 4. 変更例5における電力圧力グラフである。It is a power pressure graph in the modification 5. 動作例における第3コンプレッサ(絞り弁制御機)の電力圧力グラフである。It is a power pressure graph of the 3rd compressor (throttle valve controller) in the operation example. 動作例における第4コンプレッサ(インバータ機)の電力圧力グラフである。It is a power pressure graph of the 4th compressor (inverter machine) in the operation example.
 以下、本発明の実施の形態及びその変更例が、適宜図面に基づいて説明される。
 本発明は、下記の形態及び変更例に限定されない。
Hereinafter, embodiments of the present invention and examples of modifications thereof will be described as appropriate with reference to the drawings.
The present invention is not limited to the following forms and modifications.
[構成等]
 図1は、本発明に係るコンプレッサの運転状態分析装置(分析装置1)を含むコンプレッサの運転状態分析システム(分析システムDS)及びその周辺構成のブロック図である。
 分析システムDSは、分析装置1と、工場Fに設置されるデータ収集ゲートウェイGと、を備えている。
[Configuration, etc.]
FIG. 1 is a block diagram of a compressor operation state analysis system (analysis system DS) including the compressor operation state analysis device (analysis device 1) according to the present invention and its peripheral configuration.
The analysis system DS includes an analysis device 1 and a data collection gateway G installed in the factory F.
 分析装置1は、工場Fに設置された、第1コンプレッサC1,第2コンプレッサC2,第3コンプレッサC3,第4コンプレッサC4の運転状態を分析する。
 第1コンプレッサC1~第4コンプレッサC4は、容積型でスクリュー式のコンプレッサである。尚、第1コンプレッサC1~第4コンプレッサC4の少なくとも何れかは、速度型(ターボ式)であっても良いし、容積型でレシプロ式あるいはスクロール式であっても良い。
 第1コンプレッサC1~第3コンプレッサC3は、給油式の定速機である。これらのうち、第1コンプレッサC1,第2コンプレッサC2では、ロード・アンロード制御がなされる。ロード・アンロード制御は、上述の特許文献1のもののように、所定以上の負荷(圧力)となると負荷運転から無負荷運転に切り替える制御である。即ち、第1コンプレッサC1,第2コンプレッサC2の機種は、ロード・アンロード制御機である。他方、第3コンプレッサC3では、絞り弁制御がなされる。即ち、第3コンプレッサC3の機種は、絞り弁制御機である。絞り弁制御は、絞り弁により吸込み空気量を負荷に応じて増減(調整)して空気の圧力を制御するものである。尚、第1コンプレッサC1,第2コンプレッサC2の少なくとも何れかは、オイルフリー式であっても良いし、その他のコンプレッサであっても良い。又、第3コンプレッサC3は、ロード・アンロード制御と絞り弁制御とが組み合わせられたものであっても良いし、その他のコンプレッサであっても良い。
 第4コンプレッサC4の機種は、給油式のインバータ機である。即ち、第4コンプレッサC4は、圧縮部(モータ)の回転数をインバータに基づいて制御して負荷の調整を行うものである。尚、第4コンプレッサC4は、オイルフリー式のインバータ機であっても良いし、その他のコンプレッサであっても良い。
 第1コンプレッサC1は、第1電流センサA1と接続されている。第1電流センサA1は、第1コンプレッサC1に与えられる電流を検知する。第1電流センサA1は、データ収集ゲートウェイGと接続されている。第1電流センサA1は、第1コンプレッサC1に組み込まれたものであっても良いし、外付けされたものであっても良い。
 同様に、第2コンプレッサC2は、第2電流センサA2と接続されている。第3コンプレッサC3は、第3電流センサA3と接続されている。第4コンプレッサC4は、第4電流センサA4と接続されている。第2電流センサA2~第4電流センサA4は、データ収集ゲートウェイGと接続されている。
 第1コンプレッサC1~第4コンプレッサC4は、それぞれ圧縮空気(図1における点線矢印)を生成し、工場Fに設置されたレシーバタンクRに送る。
The analyzer 1 analyzes the operating state of the first compressor C1, the second compressor C2, the third compressor C3, and the fourth compressor C4 installed in the factory F.
The first compressor C1 to the fourth compressor C4 are positive displacement type screw type compressors. At least one of the first compressor C1 to the fourth compressor C4 may be a speed type (turbo type), or may be a positive displacement type, a reciprocating type, or a scroll type.
The first compressor C1 to the third compressor C3 are refueling type constant speed machines. Of these, in the first compressor C1 and the second compressor C2, load / unload control is performed. The load / unload control is a control for switching from load operation to no-load operation when a load (pressure) equal to or higher than a predetermined value is reached, as in Patent Document 1 described above. That is, the model of the first compressor C1 and the second compressor C2 is a load / unload controller. On the other hand, in the third compressor C3, throttle valve control is performed. That is, the model of the third compressor C3 is a throttle valve controller. In the throttle valve control, the suction air amount is increased / decreased (adjusted) according to the load by the throttle valve to control the air pressure. At least one of the first compressor C1 and the second compressor C2 may be an oil-free type or may be another compressor. Further, the third compressor C3 may be a combination of load / unload control and throttle valve control, or may be another compressor.
The model of the fourth compressor C4 is a refueling type inverter machine. That is, the fourth compressor C4 controls the rotation speed of the compression unit (motor) based on the inverter to adjust the load. The fourth compressor C4 may be an oil-free inverter machine or another compressor.
The first compressor C1 is connected to the first current sensor A1. The first current sensor A1 detects the current applied to the first compressor C1. The first current sensor A1 is connected to the data acquisition gateway G. The first current sensor A1 may be incorporated in the first compressor C1 or may be externally attached.
Similarly, the second compressor C2 is connected to the second current sensor A2. The third compressor C3 is connected to the third current sensor A3. The fourth compressor C4 is connected to the fourth current sensor A4. The second current sensor A2 to the fourth current sensor A4 are connected to the data acquisition gateway G.
The first compressor C1 to the fourth compressor C4 generate compressed air (dotted arrow in FIG. 1), and send the compressed air to the receiver tank R installed in the factory F.
 レシーバタンクRは、圧縮空気を貯留すると共に、工場Fにおける圧縮空気を必要とする箇所に、圧縮空気を配給する。
 レシーバタンクRには、圧力センサPGが接続されている。圧力センサPGは、レシーバタンクRにおける圧縮空気の圧力を検知する。圧力センサPGは、データ収集ゲートウェイGと接続されている。
 尚、工場Fにおける各種の装置の数は様々に増減されても良く、例えばコンプレッサは3台以下あるいは5台以上であっても良いし、インバータ機は設置されずあるいは複数台設置されても良いし、定速機は設置されずあるいは3台以外で設置されても良いし、レシーバタンクは設置されずあるいは複数台設置されても良い。又、圧力センサPGは、少なくとも1台のコンプレッサと接続されていても良い。
The receiver tank R stores the compressed air and distributes the compressed air to a place in the factory F where the compressed air is required.
A pressure sensor PG is connected to the receiver tank R. The pressure sensor PG detects the pressure of the compressed air in the receiver tank R. The pressure sensor PG is connected to the data acquisition gateway G.
The number of various devices in the factory F may be increased or decreased in various ways. For example, the number of compressors may be 3 or less or 5 or more, and the inverter may not be installed or a plurality of compressors may be installed. However, the constant speed machine may not be installed or may be installed by other than three units, and the receiver tank may not be installed or may be installed by a plurality of units. Further, the pressure sensor PG may be connected to at least one compressor.
 分析装置1は、分析装置表示手段2と、分析装置入力手段4と、分析装置記憶手段6と、データ取得手段としての分析装置通信手段8と、制御手段としての分析装置制御手段9と、を備えている。
 分析装置1は、例えば持ち運び可能なコンピュータにより形成される。尚、分析装置1は、インターネットINに接続されるサーバコンピュータ(クラウド)においてプログラムが実行されることで形成されても良い(クラウドサービスとしての分析装置1)。この場合、サーバコンピュータにおいて、分析装置1における分析機能以外の他の機能が合わせて提供されていても良い。
 分析装置1は、第1コンプレッサC1~第4コンプレッサC4の保守を行う団体の管理下に置かれている。尚、分析装置1は、例えば第1コンプレッサC1~第4コンプレッサC4のメーカー、あるいは工場Fを管理する団体等、他の団体により管理されていても良い。
The analyzer 1 includes an analyzer display means 2, an analyzer input means 4, an analyzer storage means 6, an analyzer communication means 8 as a data acquisition means, and an analyzer control means 9 as a control means. I have.
The analyzer 1 is formed, for example, by a portable computer. The analyzer 1 may be formed by executing a program on a server computer (cloud) connected to the Internet IN (analyzer 1 as a cloud service). In this case, the server computer may be provided with functions other than the analysis function of the analyzer 1.
The analyzer 1 is under the control of an organization that maintains the first compressor C1 to the fourth compressor C4. The analyzer 1 may be managed by another organization such as a manufacturer of the first compressor C1 to the fourth compressor C4 or an organization that manages the factory F.
 分析装置表示手段2は、各種の情報を表示可能な手段である。
 分析装置表示手段2は、例えば、液晶ディスプレイを始めとするフラットディスプレイ、及びプリンタの少なくとも一方である。
The analyzer display means 2 is a means capable of displaying various types of information.
The analyzer display means 2 is, for example, at least one of a flat display such as a liquid crystal display and a printer.
 分析装置入力手段4は、各種の情報を入力可能な手段である。
 分析装置入力手段4は、例えば、キーボード、ポインティングデバイス、ボタン及びスイッチの少なくとも何れかである。
 分析装置表示手段2及び分析装置入力手段4は、タッチセンサ付きディスプレイ、即ちタッチパネルにより形成されても良い。
The analyzer input means 4 is a means capable of inputting various types of information.
The analyzer input means 4 is, for example, at least one of a keyboard, a pointing device, a button and a switch.
The analyzer display means 2 and the analyzer input means 4 may be formed by a display with a touch sensor, that is, a touch panel.
 分析装置記憶手段6は、各種の情報を記憶可能な手段である。
 分析装置記憶手段6は、例えば、ハードディスク、メモリ、及び光学ディスクの少なくとも何れかである。
 分析装置記憶手段6には、分析装置プログラムDP、第1電流値群AA1~第4電流値群AA4及び圧力値群PGV、電力圧力グラフCPG並びにしきい値TH及び圧力値の下限値PL、圧力変動グラフPCG、並びに個別性能グラフIPG及び吐出量群DAAが記憶されている。
The analyzer storage means 6 is a means capable of storing various types of information.
The analyzer storage means 6 is, for example, at least one of a hard disk, a memory, and an optical disk.
The analyzer storage means 6 includes an analyzer program DP, a first current value group AA1 to a fourth current value group AA4, a pressure value group PGV, a power pressure graph CPG, a threshold value TH, a lower limit value PL of the pressure value, and a pressure. The fluctuation graph PCG, the individual performance graph IPG, and the discharge amount group DAA are stored.
 分析装置通信手段8は、各種の情報を通信可能な手段である。
 分析装置通信手段8は、例えばインターフェイス、及びモデムの少なくとも一方である。
The analyzer communication means 8 is a means capable of communicating various types of information.
The analyzer communication means 8 is, for example, at least one of an interface and a modem.
 分析装置制御手段9は、分析装置1に係る各種の手段を制御する手段である。
 分析装置制御手段9は、例えばCPUである。
 分析装置制御手段9は、分析装置記憶手段6を参照して分析装置プログラムDPを実行することにより、各種の手段を制御する。
The analyzer control means 9 is a means for controlling various means related to the analyzer 1.
The analyzer control means 9 is, for example, a CPU.
The analyzer control means 9 controls various means by executing the analyzer program DP with reference to the analyzer storage means 6.
 分析装置通信手段8には、インターネットINを介して、データ収集ゲートウェイGが通信可能に接続されている。尚、データ収集ゲートウェイGは、専用線等により分析装置通信手段8と接続されても良い。
 データ収集ゲートウェイGは、第1コンプレッサC1~第4コンプレッサC4について計測された各種のデータを取得し、蓄積する。
 データ収集ゲートウェイGは、ゲートウェイ表示手段12と、ゲートウェイ入力手段14と、ゲートウェイ記憶手段16と、ゲートウェイ構内通信手段17と、ゲートウェイ通信手段18と、ゲートウェイ制御手段19と、を備えている。
 データ収集ゲートウェイGは、例えば持ち運び可能なコンピュータにより形成される。
 データ収集ゲートウェイGは、分析装置1に係る団体の管理下に置かれている。尚、データ収集ゲートウェイGは、分析装置1と同様に、他の団体により管理されていても良い。
A data acquisition gateway G is communicably connected to the analyzer communication means 8 via the Internet IN. The data acquisition gateway G may be connected to the analyzer communication means 8 by a dedicated line or the like.
The data acquisition gateway G acquires and accumulates various data measured for the first compressor C1 to the fourth compressor C4.
The data acquisition gateway G includes a gateway display means 12, a gateway input means 14, a gateway storage means 16, a gateway premises communication means 17, a gateway communication means 18, and a gateway control means 19.
The data acquisition gateway G is formed by, for example, a portable computer.
The data collection gateway G is under the control of the organization related to the analyzer 1. The data collection gateway G may be managed by another organization as in the analyzer 1.
 ゲートウェイ表示手段12は、分析装置表示手段2と同様に成る。
 ゲートウェイ入力手段14は、分析装置入力手段4と同様に成る。
The gateway display means 12 is similar to the analyzer display means 2.
The gateway input means 14 is the same as the analyzer input means 4.
 ゲートウェイ記憶手段16は、記憶される情報の内容が一部異なることを除き、分析装置記憶手段6と同様に成る。
 ゲートウェイ記憶手段16は、第1電流センサA1の信号が示す第1コンプレッサC1の電流値の集合である第1電流値群AA1、第2電流センサA2の信号が示す第2コンプレッサC2の電流値の集合である第2電流値群AA2、第3電流センサA3の信号が示す第3コンプレッサC3の電流値の集合である第3電流値群AA3、及び第4電流センサA4の信号が示す第4コンプレッサC4の電流値の集合である第4電流値群AA4を記憶する。これらの電流値は、後述の通り消費電力を算出可能であるから、消費電力に関する値(電力関連値)である。尚、電力関連値は、消費電力そのものであっても良いし、消費電力を算出可能な他の値(例えば電流値と電圧値との組合せ)であっても良い。
 又、ゲートウェイ記憶手段16は、圧力センサPGの信号が示すレシーバタンクRの圧力値の集合である圧力値群PGVを記憶する。圧力値は、圧力そのものを示す値であり、圧力に関する値(圧力関連値)である。尚、圧力関連値は、圧力を算出可能な他の値であっても良い。
 更に、ゲートウェイ記憶手段16は、ゲートウェイプログラムGPを記憶する。
The gateway storage means 16 is the same as the analyzer storage means 6 except that the contents of the stored information are partially different.
The gateway storage means 16 has the current values of the first current value group AA1 which is a set of the current values of the first compressor C1 indicated by the signal of the first current sensor A1 and the current value of the second compressor C2 indicated by the signals of the second current sensor A2. The second current value group AA2 which is a set, the third current value group AA3 which is a set of the current values of the third compressor C3 indicated by the signal of the third current sensor A3, and the fourth compressor indicated by the signal of the fourth current sensor A4. The fourth current value group AA4, which is a set of current values of C4, is stored. Since these current values can calculate power consumption as described later, they are values related to power consumption (power-related values). The power-related value may be the power consumption itself, or may be another value for which the power consumption can be calculated (for example, a combination of a current value and a voltage value).
Further, the gateway storage means 16 stores a pressure value group PGV which is a set of pressure values of the receiver tank R indicated by the signal of the pressure sensor PG. The pressure value is a value indicating the pressure itself, and is a value related to pressure (pressure-related value). The pressure-related value may be another value from which the pressure can be calculated.
Further, the gateway storage means 16 stores the gateway program GP.
 ゲートウェイ構内通信手段17は、第1電流センサA1~第4電流センサA4、及び圧力センサPGと通信する。
 尚、ゲートウェイ構内通信手段17は、第1電流センサA1~第4電流センサA4、及び圧力センサPGからの信号の受信のみを行い、送信を行わないものであっても良い。
The gateway premises communication means 17 communicates with the first current sensor A1 to the fourth current sensor A4 and the pressure sensor PG.
The gateway premises communication means 17 may only receive signals from the first current sensor A1 to the fourth current sensor A4 and the pressure sensor PG, and may not transmit the signals.
 ゲートウェイ通信手段18は、分析装置通信手段8と同様に成り、インターネットINを介して他の装置等と通信する。
 尚、ゲートウェイ構内通信手段17及びゲートウェイ通信手段18は、一体であっても良い。
The gateway communication means 18 is the same as the analyzer communication means 8, and communicates with other devices and the like via the Internet IN.
The gateway premises communication means 17 and the gateway communication means 18 may be integrated.
 ゲートウェイ制御手段19は、データ収集ゲートウェイGに係る各種の手段を制御する手段である。
 ゲートウェイ制御手段19は、例えばCPUである。
 ゲートウェイ制御手段19は、ゲートウェイ記憶手段16を参照してゲートウェイプログラムGPを実行することにより、各種の手段を制御する。
 ゲートウェイ制御手段19は、ゲートウェイ構内通信手段17において第1電流センサA1から受信する各電流値を、1秒(所定周期)毎に、第1電流値群AA1の構成要素としてゲートウェイ記憶手段16に記憶させる。同様に、第2電流センサA2~第4電流センサA4に係る各電流値、及び圧力センサPGに係る各圧力値を、1秒(所定周期)毎に、第2電流値群AA2~第4電流値群AA4の構成要素、あるいは圧力値群PGVの構成要素として、ゲートウェイ記憶手段16に記憶させる。
 尚、第1電流値群AA1の電流値等の取得間隔(周期)は、2秒毎、3秒毎、5秒毎、10秒毎、15秒毎、20秒毎、あるいは30秒毎等であっても良い。又、第1電流センサA1等は、常に電流値を示す信号を発信していても良いし、1秒毎に断続的に当該信号を発信していても良いし、0.5秒毎等で断続的に当該信号を発信していても良い。
The gateway control means 19 is a means for controlling various means related to the data acquisition gateway G.
The gateway control means 19 is, for example, a CPU.
The gateway control means 19 controls various means by executing the gateway program GP with reference to the gateway storage means 16.
The gateway control means 19 stores each current value received from the first current sensor A1 in the gateway premises communication means 17 in the gateway storage means 16 as a component of the first current value group AA1 every 1 second (predetermined cycle). Let me. Similarly, each current value related to the second current sensor A2 to the fourth current sensor A4 and each pressure value related to the pressure sensor PG are set to the second current value group AA2 to the fourth current every 1 second (predetermined cycle). It is stored in the gateway storage means 16 as a component of the value group AA4 or a component of the pressure value group PGV.
The acquisition interval (cycle) of the current value, etc. of the first current value group AA1 is every 2 seconds, every 3 seconds, every 5 seconds, every 10 seconds, every 15 seconds, every 20 seconds, every 30 seconds, etc. There may be. Further, the first current sensor A1 or the like may always transmit a signal indicating a current value, may intermittently transmit the signal every second, or every 0.5 seconds or the like. The signal may be transmitted intermittently.
 又、工場の管理に係る管理端末Mが、インターネットINに接続されている。
 管理端末Mは、管理端末表示手段22と、管理端末入力手段24と、管理端末記憶手段26と、管理端末構内通信手段27と、管理端末通信手段28と、管理端末制御手段29と、を備えている。
 管理端末Mは、工場F内に設けられ、例えば持ち運び可能なコンピュータにより形成される。
 管理端末Mは、工場Fに係る団体の管理下に置かれている。尚、管理端末Mは、他の団体により管理されていても良い。
Further, the management terminal M related to the management of the factory is connected to the Internet IN.
The management terminal M includes a management terminal display means 22, a management terminal input means 24, a management terminal storage means 26, a management terminal premises communication means 27, a management terminal communication means 28, and a management terminal control means 29. ing.
The management terminal M is provided in the factory F and is formed by, for example, a portable computer.
The management terminal M is under the control of the organization related to the factory F. The management terminal M may be managed by another organization.
 管理端末表示手段22は、ゲートウェイ表示手段12と同様に成る。
 管理端末入力手段24は、ゲートウェイ入力手段14と同様に成る。
The management terminal display means 22 is the same as the gateway display means 12.
The management terminal input means 24 is the same as the gateway input means 14.
 管理端末記憶手段26は、記憶される情報の内容が一部異なることを除き、ゲートウェイ記憶手段16と同様に成る。
 管理端末記憶手段26には、管理端末プログラムMP、電力圧力グラフCPG並びにしきい値TH及び圧力値の下限値PL、並びに圧力変動グラフPCGが記憶されている。
The management terminal storage means 26 is the same as the gateway storage means 16 except that the contents of the stored information are partially different.
The management terminal storage means 26 stores a management terminal program MP, a power pressure graph CPG, a threshold value TH, a lower limit value PL of a pressure value, and a pressure fluctuation graph PCG.
 管理端末構内通信手段27は、ゲートウェイ構内通信手段17と同様に成り、第1電流センサA1~第4電流センサA4、及び圧力センサPGと通信する。尚、管理端末構内通信手段27と、第1電流センサA1~第4電流センサA4及び圧力センサPGとの通信について、図示が省略される。
 管理端末通信手段28は、ゲートウェイ通信手段18と同様に成り、インターネットINを介して他の装置等と通信する。
The management terminal premises communication means 27 is the same as the gateway premises communication means 17, and communicates with the first current sensor A1 to the fourth current sensor A4 and the pressure sensor PG. The communication between the management terminal premises communication means 27 and the first current sensors A1 to the fourth current sensors A4 and the pressure sensor PG is not shown.
The management terminal communication means 28 is the same as the gateway communication means 18, and communicates with other devices and the like via the Internet IN.
 管理端末制御手段29は、管理端末Mに係る各種の手段を制御する手段である。
 管理端末制御手段29は、例えばCPUである。
 管理端末制御手段29は、管理端末記憶手段26を参照して管理端末プログラムMPを実行することにより、各種の手段を制御する。
 尚、管理端末Mは、工場F外に設けられても良い。又、管理端末Mは、データ収集ゲートウェイGと同様な変更例を適宜有する。
The management terminal control means 29 is a means for controlling various means related to the management terminal M.
The management terminal control means 29 is, for example, a CPU.
The management terminal control means 29 controls various means by executing the management terminal program MP with reference to the management terminal storage means 26.
The management terminal M may be provided outside the factory F. Further, the management terminal M has a modification example similar to that of the data acquisition gateway G as appropriate.
[動作例等]
 以下、分析装置1の動作例が説明される。
 図2は、分析装置1の動作例に係るフローチャートである。
 分析装置1及びデータ収集ゲートウェイGを管理する団体に属する作業者は、まず、データ収集ゲートウェイGを工場Fに搬入し、ゲートウェイ構内通信手段17の対応する端子に、第1電流センサA1~第4電流センサA4、及び圧力センサPGからの各リード線を接続して、第1コンプレッサC1~第4コンプレッサC4に係るデータとしての第1電流値群AA1~第4電流値群AA4及び圧力値群PGVの収集を開始する。第1電流値群AA1~第4電流値群AA4及び圧力値群PGVの収集は、所定期間にわたり行われる(ステップS1)。所定期間は、例えば工場Fの1日の稼働時間に応じた12時間、あるいは工場Fの1サイクルの稼働時間に応じた1週間である。
 作業者は、通常、収集の開始時と終了後においてデータ収集ゲートウェイGを取り扱えば足りる。
 尚、所定期間は、12時間以外であっても良い。又、作業者は、上述の団体とは別の団体に属していても良いし、無所属であっても良い。
[Operation example, etc.]
Hereinafter, an operation example of the analyzer 1 will be described.
FIG. 2 is a flowchart relating to an operation example of the analyzer 1.
A worker belonging to an organization that manages the analyzer 1 and the data collection gateway G first brings the data collection gateway G to the factory F, and first connects the first current sensors A1 to the fourth to the corresponding terminals of the gateway premises communication means 17. By connecting the lead wires from the current sensor A4 and the pressure sensor PG, the first current value group AA1 to the fourth current value group AA4 and the pressure value group PGV as data related to the first compressor C1 to the fourth compressor C4 are connected. Start collecting. Collection of the first current value group AA1 to the fourth current value group AA4 and the pressure value group PGV is performed over a predetermined period (step S1). The predetermined period is, for example, 12 hours according to the daily operating time of the factory F, or one week according to the operating time of one cycle of the factory F.
The worker usually only needs to handle the data collection gateway G at the start and after the collection.
The predetermined period may be other than 12 hours. Further, the worker may belong to an organization other than the above-mentioned organization, or may be independent.
 次に、作業者は、データ収集ゲートウェイGを分析装置1の設置箇所に持ち運んで分析装置1と接続し、収集した第1電流値群AA1~第4電流値群AA4及び圧力値群PGVを、分析装置記憶手段6に記憶させる。即ち、分析装置1は、データ収集ゲートウェイGにより収集された第1電流値群AA1~第4電流値群AA4及び圧力値群PGVを取得する(ステップS2)。分析装置1は、第1電流値群AA1~第4電流値群AA4及び圧力値群PGVを、他の工場等と区別するため、工場Fに係る識別子(工場ID)を付して記憶する。
 尚、分析装置1は、インターネットINを介した通信により、データ収集ゲートウェイGから第1電流値群AA1~第4電流値群AA4及び圧力値群PGVを取得しても良い。あるいは、各種のセンサがインターネットINに直接接続され、分析装置1がセンサからインターネットINを介して第1電流値群AA1~第4電流値群AA4及び圧力値群PGVを取得しても良い。ここで、分析装置1がクラウド上に形成された場合、第1電流値群AA1~第4電流値群AA4及び圧力値群PGVはクラウドに直接アップロードされる。
Next, the operator carries the data acquisition gateway G to the installation location of the analyzer 1 and connects it to the analyzer 1, and collects the collected first current value group AA1 to fourth current value group AA4 and the pressure value group PGV. It is stored in the analyzer storage means 6. That is, the analyzer 1 acquires the first current value group AA1 to the fourth current value group AA4 and the pressure value group PGV collected by the data acquisition gateway G (step S2). The analyzer 1 stores the first current value group AA1 to the fourth current value group AA4 and the pressure value group PGV with an identifier (factory ID) related to the factory F in order to distinguish them from other factories and the like.
The analyzer 1 may acquire the first current value group AA1 to the fourth current value group AA4 and the pressure value group PGV from the data acquisition gateway G by communication via the Internet IN. Alternatively, various sensors may be directly connected to the Internet IN, and the analyzer 1 may acquire the first current value group AA1 to the fourth current value group AA4 and the pressure value group PGV from the sensor via the Internet IN. Here, when the analyzer 1 is formed on the cloud, the first current value group AA1 to the fourth current value group AA4 and the pressure value group PGV are directly uploaded to the cloud.
 続いて、作業者は、分析装置入力手段4により、第1コンプレッサC1~第4コンプレッサC4の運転の分析処理の開始を、分析装置1に指令する(ステップS3)。
 分析装置1は、この指令に基づき、分析処理を開始する。
 尚、分析装置1は、第1電流値群AA1~第4電流値群AA4及び圧力値群PGVの取得(ステップS2)がなされた時点で、指令によらず分析処理を開始しても良い。
Subsequently, the operator instructs the analyzer 1 to start the analysis process of the operation of the first compressor C1 to the fourth compressor C4 by the analyzer input means 4 (step S3).
The analyzer 1 starts the analysis process based on this command.
The analyzer 1 may start the analysis process regardless of the command when the first current value group AA1 to the fourth current value group AA4 and the pressure value group PGV are acquired (step S2).
 そして、分析装置制御手段9は、第1電流値群AA1及び圧力値群PGVを参照し、第1コンプレッサC1の運転状態の分析処理を行う(ステップS4,n=1)。
 この分析処理において、分析装置制御手段9は、第1電流値群AA1の各電流値を、消費電力に換算する(ステップS4-1)。ここでは、「消費電力=電流値×定格電圧×√3×力率」の換算式により換算する。定格電圧及び力率は、第1コンプレッサC1に係る値が、予め入力され、第1電流値群AA1に対応付けた状態で、分析装置記憶手段6に記憶されている。尚、定格電圧及び力率として、初期値(一般値)、あるいは算出値等が用いられても良い。又、消費電力の算出において、他の換算式が用いられても良い。更に、第1コンプレッサC1に係る消費電力センサが設けられ、データ収集ゲートウェイGにおいて、消費電力センサから直接得られた消費電力が記憶されても良い。
 次いで、分析装置制御手段9は、図3に示されるように、1秒毎に存在する、同時刻(互いに最も接近した時刻)における電流値から換算された消費電力と圧力値との組を、消費電力(縦軸)及び圧力値(横軸)を軸とする平面にプロットして、電力圧力グラフCPGを形成する(ステップS4-2)。電力圧力グラフCPGは、消費電力と圧力値との関係を示すものである。電力圧力グラフCPGは、分析装置記憶手段6において、第1コンプレッサC1を示す識別子(コンプレッサID)と関連付けた状態で記憶される。尚、分析装置制御手段9は、ある時刻の電流値を消費電力に換算し、同時刻の圧力値を参照して、その時刻の消費電力及び圧力値の組をプロットし、次の時刻の電流値を消費電力に換算して、以下同様に処理しても良い。即ち、ステップS4-1,S4-2がひとまとめに行われても良い。又、電力圧力グラフCPGにおける縦軸と横軸は、上述のものから入れ替えられても良い。更に、分析装置制御手段9は、電力圧力グラフCPGを分析装置表示手段2において表示しても良い。加えて、電力圧力グラフCPGは、データベースとして記憶されても良い。縦軸と横軸の入れ替え、分析装置表示手段2における表示、及びデータベースとしての記憶の少なくとも何れかは、他のグラフにおいて適宜なされても良い。
Then, the analyzer control means 9 refers to the first current value group AA1 and the pressure value group PGV, and performs an analysis process of the operating state of the first compressor C1 (steps S4, n = 1).
In this analysis process, the analyzer control means 9 converts each current value of the first current value group AA1 into power consumption (step S4-1). Here, the conversion is performed using the conversion formula of "power consumption = current value x rated voltage x √3 x power factor". The rated voltage and power factor are stored in the analyzer storage means 6 in a state where the values related to the first compressor C1 are input in advance and associated with the first current value group AA1. As the rated voltage and power factor, initial values (general values), calculated values, or the like may be used. Further, other conversion formulas may be used in the calculation of power consumption. Further, a power consumption sensor related to the first compressor C1 may be provided, and the power consumption directly obtained from the power consumption sensor may be stored in the data acquisition gateway G.
Next, as shown in FIG. 3, the analyzer control means 9 sets the set of the power consumption and the pressure value converted from the current values at the same time (the time closest to each other) existing every second. A power pressure graph CPG is formed by plotting on a plane about the power consumption (vertical axis) and the pressure value (horizontal axis) (step S4-2). The power pressure graph CPG shows the relationship between the power consumption and the pressure value. The power pressure graph CPG is stored in the analyzer storage means 6 in a state associated with an identifier (compressor ID) indicating the first compressor C1. The analyzer control means 9 converts the current value at a certain time into power consumption, refers to the pressure value at the same time, plots the set of the power consumption and the pressure value at that time, and plots the set of the power consumption and the pressure value at that time, and the current at the next time. The value may be converted into power consumption and processed in the same manner below. That is, steps S4-1 and S4-2 may be performed collectively. Further, the vertical axis and the horizontal axis in the power pressure graph CPG may be interchanged from those described above. Further, the analyzer control means 9 may display the power pressure graph CPG on the analyzer display means 2. In addition, the power pressure graph CPG may be stored as a database. At least one of the exchange of the vertical axis and the horizontal axis, the display in the analyzer display means 2, and the storage as a database may be appropriately performed in another graph.
 続いて、分析装置制御手段9は、電力圧力グラフCPGの形状から、第1コンプレッサC1の機種(制御種別)を推測する(ステップS4-3,機種判別手段)。
 第1コンプレッサC1の電力圧力グラフCPGの形状は、矩形に近い四辺形であって各辺に幅を有するものを含むから、第1コンプレッサC1はロード・アンロード制御機であると推測できる。
 より詳しくは、四辺形のうち幅のある上辺に当たる、定格消費電力付近の多数のプロット(ロード運転に相当する)、四辺形のうち幅のある下辺に当たる、定格消費電力未満の多数のプロット(アンロード運転に相当する)、四辺形のうち幅のある右辺に当たる、圧力値がほぼ一定の多数のプロット(ロード運転からアンロード運転への切り替えに相当する)、及び四辺形のうち幅のある左辺に当たる、圧力値がほぼ一定の多数のプロット(アンロード運転からロード運転への切り替えに相当する)、の少なくとも何れかの特徴が存在すると、分析装置制御手段9は、機種をロード・アンロード制御と推測する。特に、四辺形の左右の辺は運転の切り替えに相当し、プロット間隔が分単位程度以上に長いと左右の辺としてプロットされない可能性が高いところ、データ収集ゲートウェイGでは1秒間隔で電流値及び圧力値が取得されるため、左右の辺は十分に表れる。よって、分析装置制御手段9における機種の判別精度は、十分なものとなる。
 尚、第1コンプレッサC1の機種が把握されている場合等において、機種が予め分析装置入力手段4により入力されても良い。この場合等において、機種の判別(ステップS4-3)は、省略されても良い。
Subsequently, the analyzer control means 9 estimates the model (control type) of the first compressor C1 from the shape of the power pressure graph CPG (step S4-3, model discrimination means).
Since the shape of the power pressure graph CPG of the first compressor C1 includes a quadrilateral having a width on each side, it can be inferred that the first compressor C1 is a load / unload controller.
More specifically, a large number of plots near the rated power consumption (corresponding to road operation) that correspond to the wide upper side of the quadrilateral, and a large number of plots that correspond to the wide lower side of the quadrilateral and are less than the rated power consumption (Ann). (Equivalent to road operation), a large number of plots with almost constant pressure values (corresponding to switching from load operation to unload operation), which corresponds to the wide right side of the quadrilateral, and the wide left side of the quadrilateral. When at least one of the features of a large number of plots (corresponding to switching from unloading operation to loading operation), in which the pressure value is almost constant, is present, the analyzer control means 9 loads / unloads the model. I guess. In particular, the left and right sides of the quadrilateral correspond to switching of operation, and if the plot interval is longer than about a minute, there is a high possibility that the left and right sides will not be plotted. Since the pressure value is acquired, the left and right sides are fully visible. Therefore, the model discrimination accuracy in the analyzer control means 9 is sufficient.
When the model of the first compressor C1 is known, the model may be input in advance by the analyzer input means 4. In this case or the like, the model determination (step S4-3) may be omitted.
 又、分析装置制御手段9は、第1コンプレッサC1の機種がロード・アンロード制御であることに基づき、電力圧力グラフCPGから、定格運転(ロード運転)に係るしきい値THを設定する(ステップS4-4,しきい値設定手段)。このしきい値THは、消費電力に関するものであり、消費電力がしきい値TH以上の場合に定格運転中であることとみなし、消費電力がしきい値TH未満の場合に定格運転中でないこととみなすものである。
 分析装置制御手段9は、このしきい値THを、図3において水平な点線で示されるように設定する。即ち、分析装置制御手段9は、電力圧力グラフCPGにおける四辺形のうち幅のある上辺の下端部を通る水平線を想定し、その水平線が示す消費電力を、定格運転に係るしきい値THとする。
 しきい値THは、コンプレッサIDに対応付けられた状態で、分析装置記憶手段6に記憶される。
Further, the analyzer control means 9 sets the threshold value TH related to the rated operation (load operation) from the power pressure graph CPG based on the model of the first compressor C1 being load / unload control (step). S4-4, threshold setting means). This threshold value TH is related to power consumption, and is considered to be in rated operation when the power consumption is equal to or higher than the threshold value TH, and is not in rated operation when the power consumption is less than the threshold value TH. It is considered to be.
The analyzer control means 9 sets this threshold TH as shown by a horizontal dotted line in FIG. That is, the analyzer control means 9 assumes a horizontal line passing through the lower end of the wide upper side of the quadrilateral in the power pressure graph CPG, and sets the power consumption indicated by the horizontal line as the threshold value TH related to the rated operation. ..
The threshold value TH is stored in the analyzer storage means 6 in a state associated with the compressor ID.
 このようにしきい値THが設定されることで、しきい値TH以上の消費電力を有するプロット(圧力値)が定格運転に係るものとして処理されるため、第1コンプレッサC1の定格消費電力(カタログ値,仕様値)が入力されて処理される場合に比べて、より実態に即した処理が行える。即ち、第1コンプレッサC1の仕様値が入力される場合、仕様値以上の消費電力を有するプロットが全て仕様値として処理されるため、消費電力について実際の値より過小に処理されるところ、しきい値THを設定する分析装置1では、しきい値TH以上の消費電力を有するプロットが、定格運転として、実測された消費電力値で処理されるため、実際の消費電力にきわめて近い消費電力において処理が行える。よって、仕様値入力時の処理から第1コンプレッサC1の運転制御等の改善提案を行う場合、改善前の消費電力が過小評価されるために改善効果が過大に出てしまうところ、分析装置1では改善前の消費電力が実態に即し評価されたものであるために改善効果も実際的なものとなる。尚、消費電力の過小評価について余裕を持って回避するため、分析装置制御手段9は、しきい値TH以上のプロットの一部又は全部について、プロットの消費電力値にかかわらず全てのプロットで最大の消費電力(計測最大電力)がそのプロットの消費電力値であるものとみなして処理しても良い。
 そして、ここでの処理としては、例えば、アンロード時間(アンロード運転された時間)の把握が挙げられる。例えば、分析装置制御手段9は、しきい値TH未満のプロットが連続する時間を1つのアンロード時間として把握し、又適宜各アンロード時間を積算する。
 又、分析装置制御手段9は、各プロットを吐出量に換算し、その集合である吐出量群DAAを把握しても良い。分析装置制御手段9は、しきい値TH以上のプロットを定格運転における吐出量で換算し、しきい値TH未満のプロットを、第1コンプレッサC1に係る個別性能グラフIPGから換算した吐出量とする。個別性能グラフIPGは、非定格運転における消費電力と吐出量の関係を示すグラフであり、第1コンプレッサC1~第4コンプレッサC4等の機種毎に個別のものである。個別性能グラフIPGは、予め分析装置記憶手段6に記憶されていても良いし、第1電流値群AA1等の受け付け完了時等に合わせて入力されても良い。分析装置制御手段9は、コンプレッサID、及び電力圧力グラフCPGの形状、の少なくとも一方等に基づいて、予め分析装置記憶手段6に記憶された複数の個別性能グラフIPGから、最も適した(最も近い)ものを抽出して換算に使用しても良い。
 各プロットが吐出量に換算されて吐出量群DAAが形成されれば、吐出量という統一された分かり易い基準が、第1コンプレッサC1~第4コンプレッサC4において用いられることとなり、工場Fにおける第1コンプレッサC1~第4コンプレッサC4の正確な分析が、容易に行える。
 アンロード時間の把握及び吐出量群DAAの生成等の処理は、しきい値THの設定(ステップS4-4)と共に行われても良いし、
By setting the threshold value TH in this way, the plot (pressure value) having the power consumption equal to or higher than the threshold value TH is processed as being related to the rated operation. Therefore, the rated power consumption (catalog) of the first compressor C1. Compared to the case where the value (value, specification value) is input and processed, the processing can be performed more realistically. That is, when the specification value of the first compressor C1 is input, all plots having power consumption equal to or higher than the specification value are processed as specification values, so that the power consumption is processed to be less than the actual value. In the analyzer 1 for setting the value TH, the plot having the power consumption equal to or higher than the threshold value TH is processed by the measured power consumption value as the rated operation, so that the plot is processed at the power consumption very close to the actual power consumption. Can be done. Therefore, when making an improvement proposal such as operation control of the first compressor C1 from the processing at the time of inputting the specification value, the improvement effect is excessive because the power consumption before the improvement is underestimated. Since the power consumption before the improvement is evaluated according to the actual situation, the improvement effect is also practical. In order to avoid underestimation of power consumption with a margin, the analyzer control means 9 maximizes a part or all of plots having a threshold value of TH or more in all plots regardless of the power consumption value of the plot. The power consumption (measured maximum power) of is regarded as the power consumption value of the plot and may be processed.
Then, as the processing here, for example, grasping the unloading time (time of unloading operation) can be mentioned. For example, the analyzer control means 9 grasps the time during which plots below the threshold value TH are continuous as one unload time, and integrates each unload time as appropriate.
Further, the analyzer control means 9 may convert each plot into a discharge amount and grasp the discharge amount group DAA which is a set thereof. The analyzer control means 9 converts the plot of the threshold value TH or more by the discharge amount in the rated operation, and the plot of less than the threshold value TH is the discharge amount converted from the individual performance graph IPG related to the first compressor C1. .. The individual performance graph IPG is a graph showing the relationship between the power consumption and the discharge amount in the non-rated operation, and is individual for each model such as the first compressor C1 to the fourth compressor C4. The individual performance graph IPG may be stored in the analyzer storage means 6 in advance, or may be input in accordance with the completion of acceptance of the first current value group AA1 or the like. The analyzer control means 9 is most suitable (closest) from a plurality of individual performance graph IPGs stored in advance in the analyzer storage means 6 based on at least one of the compressor ID and the shape of the power pressure graph CPG. ) You may extract the thing and use it for conversion.
If each plot is converted into a discharge amount to form a discharge amount group DAA, a unified and easy-to-understand standard of the discharge amount will be used in the first compressor C1 to the fourth compressor C4, and the first in the factory F. Accurate analysis of the compressors C1 to the fourth compressor C4 can be easily performed.
Processing such as grasping the unload time and generating the discharge amount group DAA may be performed together with the setting of the threshold value TH (step S4-4).
 更に、分析装置制御手段9は、圧力値の下限値PLを把握する(ステップS4-5,下限値取得手段)。
 電力圧力グラフCPG(図3)では、プロットPLWが圧力値の下限値PLに対応する。データ収集ゲートウェイGが1秒毎に圧力値を得ることにより、分単位程度以上で圧力値を得る場合に比べて、真の下限値に極めて近い下限値PLが把握される。
 正確な圧力値の下限値PLの把握により、圧力低下の事象の分析等が正確に行える。
 又、図4に示されるように、分析装置制御手段9は、縦軸を圧力値とし、横軸を時刻とした圧力変動グラフPCGを、電力圧力グラフCPGと同様に形成可能である。圧力変動グラフPCGの形成において、電流値及び消費電力は用いられない。圧力変動グラフPCGは、1秒間毎の圧力値を用いて形成されるため、圧力変動の事象の分析等が正確に行える。
Further, the analyzer control means 9 grasps the lower limit value PL of the pressure value (steps S4-5, lower limit value acquisition means).
In the power pressure graph CPG (FIG. 3), the plot PLW corresponds to the lower limit PL of the pressure value. By obtaining the pressure value every second by the data acquisition gateway G, the lower limit value PL that is extremely close to the true lower limit value is grasped as compared with the case where the pressure value is obtained in units of minutes or more.
By grasping the lower limit PL of the pressure value accurately, it is possible to accurately analyze the event of the pressure drop.
Further, as shown in FIG. 4, the analyzer control means 9 can form a pressure fluctuation graph PCG having a pressure value on the vertical axis and time on the horizontal axis in the same manner as the power pressure graph CPG. Pressure Fluctuation Graph No current value or power consumption is used in the formation of the PCG. Since the pressure fluctuation graph PCG is formed using the pressure value every second, it is possible to accurately analyze the event of the pressure fluctuation.
 ここで、データ収集ゲートウェイGの変更例が、数例説明される。これらの変更例では、電流値及び圧力値の取得間隔(周期)が変更されている。その周期が2,5,10,30,60秒とされた各変更例は、以下順に変更例1~変更例5とされる。
 図5~図9は、順に変更例1~変更例5に係る電力圧力グラフCPGである。周期が長くなるほど、電力圧力グラフCPGの四辺形が全体的に薄くなり、特に左右の辺のプロット数が減少する。又、四辺形の左辺より圧力値のプロット数も、周期が長くなるほど減少する。特に、変更例5(周期60秒)では、圧力値の下限値PL(プロットPLW5に対応)が0.58MPa程度となっており、他の変更例に比べて圧力値の下限値PL(プロットPLW1~PLW4)が真の下限値からかけ離れている。従って、正確性の観点からは、周期が分単位程度未満であることが好ましく、できる限り短いことが好ましい。但し、周期が短くなるほど、データ数が増え、管理及び演算にコストを要することとなる。よって、正確性とコスト低減とのバランスからは、電流値及び圧力値の取得の周期は、1秒以上30秒以下が好ましい。
Here, some examples of modification of the data collection gateway G will be described. In these modification examples, the acquisition interval (cycle) of the current value and the pressure value is changed. Each modification example whose cycle is 2, 5, 10, 30, 60 seconds is referred to as modification example 1 to modification example 5 in the following order.
5 to 9 are power pressure graph CPGs according to the modified examples 1 to 5 in order. As the period becomes longer, the quadrilateral of the power pressure graph CPG becomes thinner as a whole, and in particular, the number of plots on the left and right sides decreases. Further, the number of plots of the pressure value from the left side of the quadrilateral also decreases as the period becomes longer. In particular, in the modified example 5 (cycle 60 seconds), the lower limit PL of the pressure value (corresponding to the plot PLW5) is about 0.58 MPa, and the lower limit PL of the pressure value (plot PLW1) is compared with the other modified examples. ~ PLW4) is far from the true lower limit. Therefore, from the viewpoint of accuracy, the period is preferably less than about a minute, and preferably as short as possible. However, the shorter the cycle, the larger the number of data, and the higher the cost for management and calculation. Therefore, from the viewpoint of the balance between accuracy and cost reduction, the acquisition cycle of the current value and the pressure value is preferably 1 second or more and 30 seconds or less.
 変更例の説明から分析装置1の説明に戻ると、分析装置制御手段9は、第1コンプレッサC1についてこれらの処理を行った後、第2電流値群AA2及び圧力値群PGVを参照し、第2コンプレッサC2の運転状態の分析処理を、同様に行う(ステップS4,n=2)。
 第2コンプレッサC2は、第1コンプレッサC1と同様にロード・アンロード制御機であるから、第2コンプレッサC2の運転状態の分析処理は、第1コンプレッサC1の運転状態の分析処理と同様に行われる。
Returning to the description of the analyzer 1 from the description of the modified example, the analyzer control means 9 refers to the second current value group AA2 and the pressure value group PGV after performing these processes on the first compressor C1, and the first 2 The analysis process of the operating state of the compressor C2 is performed in the same manner (step S4, n = 2).
Since the second compressor C2 is a load / unload controller like the first compressor C1, the analysis process of the operating state of the second compressor C2 is performed in the same manner as the analysis process of the operating state of the first compressor C1. ..
 次いで、分析装置制御手段9は、第3コンプレッサC3の運転状態の分析処理を行う(ステップS4,n=3)。
 この分析処理においても、第3電流値群AA3の各電流値は、消費電力に換算される(ステップS4-1)。
Next, the analyzer control means 9 performs an analysis process of the operating state of the third compressor C3 (steps S4, n = 3).
Also in this analysis process, each current value of the third current value group AA3 is converted into power consumption (step S4-1).
 又、分析装置制御手段9は、電力圧力グラフCPGを形成する(ステップS4-2)。
 第3コンプレッサC3の電力圧力グラフCPGは、図10に示されるように、“^”字状である山型形状を有する。山型形状の頂部の圧力値(約0.48MPa,垂直点線参照)から左側(低圧力側)の領域(A領域とする)は、絞り弁制御圧力以下の領域に相当する。絞り弁制御圧力は、絞り弁が作動しない(絞り弁の開度が設定可能範囲中最大である)最大の圧力値であり、A領域は、絞り弁による吸込み量の低減がなされない領域である。他方、山型形状の頂部の圧力値から右側(高圧力側)の領域(B領域とする)は、絞り弁制御圧力を超える領域に相当する。このB領域は、絞り弁による吸込み量の低減がなされる領域である。
 分析装置制御手段9は、山型形状を有することから、第3コンプレッサC3を絞り弁制御機と分析する(ステップS4-3,機種判別手段)。
Further, the analyzer control means 9 forms a power pressure graph CPG (step S4-2).
As shown in FIG. 10, the power pressure graph CPG of the third compressor C3 has a mountain-shaped shape having a “^” shape. The region (referred to as region A) on the left side (low pressure side) from the pressure value (about 0.48 MPa, see the vertical dotted line) at the top of the chevron shape corresponds to the region below the throttle valve control pressure. The throttle valve control pressure is the maximum pressure value at which the throttle valve does not operate (the opening of the throttle valve is the maximum in the settable range), and the region A is a region where the suction amount by the throttle valve is not reduced. .. On the other hand, the region on the right side (high pressure side) from the pressure value at the top of the chevron shape (referred to as the B region) corresponds to the region exceeding the throttle valve control pressure. This B region is a region where the suction amount by the throttle valve is reduced.
Since the analyzer control means 9 has a chevron shape, the third compressor C3 is analyzed as a throttle valve controller (step S4-3, model discrimination means).
 そして、分析装置制御手段9は、A領域に属するデータ(プロット)について、次のように概ねロード・アンロード制御機と同様に処理する。即ち、分析装置制御手段9は、A領域内の山型形状における圧力値の最小値を、定格運転に係るしきい値THとして設定する(ステップS4-4,しきい値設定手段,水平点線参照)。又、分析装置制御手段9は、しきい値TH以上の消費電力に係るプロットについて、定格運転として処理する。更に、分析装置制御手段9は、しきい値未満の消費電力に係るプロットについて、例えば第3コンプレッサC3の個別性能グラフIPGから吐出量群DAAを得る等、非定格運転として処理する。かようなしきい値THの設定により、より現実に即した正確なデータの処理が可能となる。
 又、分析装置制御手段9は、B領域に属するデータ(プロット)について、A領域の非定格運転の場合と同様に、例えば第3コンプレッサC3の個別性能グラフIPGから吐出量群DAAを得る等の処理を行う。A領域及びB領域の区分けによっても、より現実に即した正確なデータの処理が可能となる。
Then, the analyzer control means 9 processes the data (plot) belonging to the region A in the same manner as the load / unload controller as follows. That is, the analyzer control means 9 sets the minimum value of the pressure value in the chevron shape in the A region as the threshold value TH related to the rated operation (see step S4-4, threshold value setting means, horizontal dotted line). ). Further, the analyzer control means 9 processes the plot relating to the power consumption equal to or higher than the threshold value TH as the rated operation. Further, the analyzer control means 9 processes the plot relating to the power consumption less than the threshold value as unrated operation, for example, obtaining the discharge amount group DAA from the individual performance graph IPG of the third compressor C3. By setting such a threshold value TH, more realistic and accurate data processing becomes possible.
Further, the analyzer control means 9 obtains the discharge amount group DAA from the individual performance graph IPG of the third compressor C3, for example, for the data (plot) belonging to the B region, as in the case of the unrated operation in the A region. Perform processing. By dividing the A area and the B area, more realistic and accurate data processing becomes possible.
 更に、分析装置制御手段9は、圧力値の下限値PLを把握する(ステップS4-5,下限値取得手段)。
 電力圧力グラフCPG(図10)では、プロットPLWC3が圧力値の下限値PLに対応する。データ収集ゲートウェイGが1秒毎に圧力値を得ることにより、分単位程度以上で圧力値を得る場合に比べて、真の下限値に極めて近い下限値PLが把握される。
 正確な圧力値の下限値PLの把握により、圧力低下の事象の分析等が正確に行える。
 又、分析装置制御手段9は、第3コンプレッサC3についても、圧力変動グラフPCGを、第1コンプレッサC1の場合と同様に、1秒間毎の圧力値により、正確に生成することができる。
 尚、第3コンプレッサC3の処理において、第1コンプレッサC1の処理と同様の変更例が適宜存在する。
Further, the analyzer control means 9 grasps the lower limit value PL of the pressure value (steps S4-5, lower limit value acquisition means).
In the power pressure graph CPG (FIG. 10), the plot PLWC3 corresponds to the lower limit PL of the pressure value. By obtaining the pressure value every second by the data acquisition gateway G, the lower limit value PL that is extremely close to the true lower limit value is grasped as compared with the case where the pressure value is obtained in units of minutes or more.
By grasping the lower limit PL of the pressure value accurately, it is possible to accurately analyze the event of the pressure drop.
Further, the analyzer control means 9 can accurately generate the pressure fluctuation graph PCG for the third compressor C3 by the pressure value every second, as in the case of the first compressor C1.
In the processing of the third compressor C3, there are appropriately modified examples similar to the processing of the first compressor C1.
 続いて、分析装置制御手段9は、第4コンプレッサC4の運転状態の分析処理を行う(ステップS4,n=4)。
 この分析処理においても、第4電流値群AA4の各電流値は、消費電力に換算される(ステップS4-1)。
Subsequently, the analyzer control means 9 analyzes the operating state of the fourth compressor C4 (steps S4, n = 4).
Also in this analysis process, each current value of the fourth current value group AA4 is converted into power consumption (step S4-1).
 又、分析装置制御手段9は、電力圧力グラフCPGを形成する(ステップS4-2)。
 第4コンプレッサC4の電力圧力グラフCPGは、図11に示されるように、右下がりのアーモンド形状(ラグビーボール形状,長軸が右下がりの楕円形状)を有している。更に、この電力圧力グラフCPGでは、アーモンド形状の左上から左に水平線状部分が延びており(左水平線状部分)、又アーモンド形状の右下から右に水平線状部分が延びている(右水平線状部分)。
 分析装置制御手段9は、アーモンド形状を有することから、あるいは更に左水平線状部分及び右水平線状部分の少なくとも一方を有することから、第4コンプレッサC4をインバータ機と分析する(ステップS4-3,機種判別手段)。
Further, the analyzer control means 9 forms a power pressure graph CPG (step S4-2).
As shown in FIG. 11, the power pressure graph CPG of the fourth compressor C4 has an almond shape (rugby ball shape, elliptical shape whose long axis is downward downward). Further, in this power pressure graph CPG, a horizontal linear portion extends from the upper left of the almond shape to the left (left horizontal linear portion), and a horizontal linear portion extends from the lower right of the almond shape to the right (right horizontal linear portion). part).
Since the analyzer control means 9 has an almond shape, or further has at least one of a left horizontal linear portion and a right horizontal linear portion, the fourth compressor C4 is analyzed as an inverter machine (steps S4-3, model). Discrimination means).
 そして、分析装置制御手段9は、左水平線状部分における圧力値の最小値を、定格運転に係るしきい値THとして設定する(ステップS4-4,しきい値設定手段,図11の水平点線参照)。尚、分析装置制御手段9は、アーモンド形状の上端部における圧力値等を、定格運転に係るしきい値THとして設定しても良い。
 又、分析装置制御手段9は、しきい値TH以上の消費電力に係るプロットについて、上述の場合と同様に、定格運転として処理する。更に、分析装置制御手段9は、しきい値未満の消費電力に係るプロットについて、上述の場合と同様に、非定格運転として処理する。かようなしきい値THの設定により、より現実に即した正確なデータの処理が可能となる。
Then, the analyzer control means 9 sets the minimum value of the pressure value in the left horizontal linear portion as the threshold value TH related to the rated operation (step S4-4, threshold value setting means, see the horizontal dotted line in FIG. 11). ). The analyzer control means 9 may set the pressure value or the like at the upper end portion of the almond shape as the threshold value TH related to the rated operation.
Further, the analyzer control means 9 processes the plot relating to the power consumption equal to or higher than the threshold value TH as the rated operation in the same manner as in the above case. Further, the analyzer control means 9 processes the plot relating to the power consumption below the threshold value as unrated operation as in the above case. By setting such a threshold value TH, more realistic and accurate data processing becomes possible.
 更に、分析装置制御手段9は、圧力値の下限値PLを把握する(ステップS4-5,下限値取得手段)。
 電力圧力グラフCPG(図11)では、プロットPLWC4が圧力値の下限値PLに対応する。データ収集ゲートウェイGが1秒毎に圧力値を得ることにより、分単位程度以上で圧力値を得る場合に比べて、真の下限値に極めて近い下限値PLが把握される。
 正確な圧力値の下限値PLの把握により、圧力低下の事象の分析等が正確に行える。
 又、分析装置制御手段9は、第4コンプレッサC4についても、圧力変動グラフPCGを、第1コンプレッサC1の場合と同様に、1秒間毎の圧力値により、正確に生成することができる。
 尚、第4コンプレッサC4の処理において、第1コンプレッサC1の処理及び第3コンプレッサC3の処理と同様の変更例が適宜存在する。
Further, the analyzer control means 9 grasps the lower limit value PL of the pressure value (steps S4-5, lower limit value acquisition means).
In the power pressure graph CPG (FIG. 11), the plot PLWC4 corresponds to the lower limit PL of the pressure value. By obtaining the pressure value every second by the data acquisition gateway G, the lower limit value PL that is extremely close to the true lower limit value is grasped as compared with the case where the pressure value is obtained in units of minutes or more.
By grasping the lower limit PL of the pressure value accurately, it is possible to accurately analyze the event of the pressure drop.
Further, the analyzer control means 9 can accurately generate the pressure fluctuation graph PCG for the fourth compressor C4 by the pressure value every second, as in the case of the first compressor C1.
In the processing of the fourth compressor C4, there are appropriately modified examples similar to the processing of the first compressor C1 and the processing of the third compressor C3.
 作業者は、以上の処理により、第1コンプレッサC1~第4コンプレッサC4の運転を分析し、改善提案のための分析等のために役立てる。
 改善提案として、例えば、ロード・アンロード制御機におけるアンロード時間の短縮化を目的としたアンロード圧力値の設定変更、あるいは絞り弁制御機における絞り弁の作動開始圧力の見直し、インバータ機における他の定速機より先行して運転されているかどうかの確認、等が挙げられる。
 これらのうちアンロード圧力値の設定変更の動作例について詳述すると、分析装置制御手段9は、第1コンプレッサC1~第4コンプレッサC4のうち分析対象となっているものにおいて、設定されたしきい値から把握されたアンロード時間(非定格運転の継続時間)が所定時間(例えば1時間)以上であると、当該継続時間が計算上特定時間(45分間)以内となるような第1コンプレッサC1~第4コンプレッサC4の少なくとも何れかの新たな運転制御データを計算して出力する(新制御データ出力手段)。例えば、分析装置制御手段9は、第1コンプレッサC1のアンロード時間が所定時間以上であると、第1コンプレッサC1~第4コンプレッサC4の特定期間(例えば1週間)にわたる特定周期(例えば1分)毎のそれぞれの運転指令値を、新たな運転制御データとして算出して出力する。尚、アンロード時間に係る特定時間は、所定時間以下であれば良く、所定時間と同じであっても良い。又、新たな運転制御データに係る特定期間は、第1電流値群AA1~第4電流値群AA4及び圧力値群PGVの収集期間に係る所定期間と同じであっても良いし、異なっていても良い。更に、新たな運転制御データに係る特定周期は、第1電流値群AA1の電流値等の取得間隔に係る所定周期と同じであっても良いし、異なっていても良い。加えて、例えば第1コンプレッサC1のアンロード時間が所定時間以上である場合に、第1コンプレッサC1についてのみ新たな運転制御データが生成されても良いし、第1コンプレッサC1以外についてのみ新たな運転制御データが生成されても良いし、第1コンプレッサC1~第4コンプレッサC4のうちの一部についてのみ新たな運転制御データが生成されても良い。即ち、アンロード時間が所定時間以上となった場合における新たな運転制御データの生成対象は、第1コンプレッサC1~第4コンプレッサC4の全てに限られない。又更に、アンロード時間が所定時間以上となった場合において、新たな運転制御データの生成の有無は、第1コンプレッサC1~第4コンプレッサC4の機種に応じ、分けられても良い。
 又、以上の処理及び改善提案の分析の少なくとも何れかは、クラウド上で行われても良い。尚、しきい値の設定、新たな運転制御データの出力、機種の判別、及び下限値の取得の少なくとも何れかは、他の装置で行われても良い。又、しきい値の設定、新たな運転制御データの出力、機種の判別、及び下限値の取得と、これら以外の処理とは、互いに異なる装置において行われても良い。
 作業者は、工場Fあるいは管理端末Mの設置箇所を訪問し、第1コンプレッサC1~第4コンプレッサC4の管理担当者等に、分析結果等を提示することができる。
The operator analyzes the operation of the first compressor C1 to the fourth compressor C4 by the above processing, and makes use of it for analysis for improvement proposal and the like.
As improvement proposals, for example, changing the setting of the unload pressure value for the purpose of shortening the unloading time in the load / unload controller, reviewing the operation start pressure of the throttle valve in the throttle valve controller, and others in the inverter machine. Confirmation of whether or not the machine is being operated ahead of the constant speed machine, etc.
To elaborate on an operation example of changing the setting of the unload pressure value among these, the analyzer control means 9 has a threshold set in the first compressor C1 to the fourth compressor C4 to be analyzed. When the unload time (duration of non-rated operation) grasped from the value is a predetermined time (for example, 1 hour) or more, the duration is calculated to be within a specific time (45 minutes). -Calculate and output new operation control data of at least any one of the fourth compressor C4 (new control data output means). For example, when the unloading time of the first compressor C1 is longer than a predetermined time, the analyzer control means 9 has a specific cycle (for example, 1 minute) over a specific period (for example, one week) of the first compressor C1 to the fourth compressor C4. Each operation command value for each is calculated and output as new operation control data. The specific time related to the unload time may be a predetermined time or less, and may be the same as the predetermined time. Further, the specific period related to the new operation control data may be the same as or different from the predetermined period related to the collection period of the first current value group AA1 to the fourth current value group AA4 and the pressure value group PGV. Is also good. Further, the specific cycle related to the new operation control data may be the same as or different from the predetermined cycle related to the acquisition interval of the current value or the like of the first current value group AA1. In addition, for example, when the unload time of the first compressor C1 is longer than a predetermined time, new operation control data may be generated only for the first compressor C1, and new operation may be generated only for other than the first compressor C1. Control data may be generated, or new operation control data may be generated only for a part of the first compressor C1 to the fourth compressor C4. That is, the target for generating new operation control data when the unload time becomes a predetermined time or longer is not limited to all of the first compressor C1 to the fourth compressor C4. Further, when the unload time becomes a predetermined time or more, whether or not new operation control data is generated may be determined according to the model of the first compressor C1 to the fourth compressor C4.
Further, at least one of the above processing and analysis of improvement proposals may be performed on the cloud. At least one of setting the threshold value, outputting new operation control data, determining the model, and acquiring the lower limit value may be performed by another device. Further, the setting of the threshold value, the output of new operation control data, the determination of the model, the acquisition of the lower limit value, and the processing other than these may be performed in different devices.
The worker can visit the factory F or the installation location of the management terminal M and present the analysis results and the like to the managers and the like of the first compressor C1 to the fourth compressor C4.
 又、作業者は、分析結果等を、インターネットIN経由で、管理担当者等に属する管理端末Mに送信することができる(ステップS5)。
 この場合、分析装置制御手段9は、分析装置通信手段8を制御して、工場IDに対応する工場Fの管理端末Mへ、第1コンプレッサC1~第4コンプレッサC4の各電力圧力グラフCPG、圧力変動グラフPCG、圧力値の下限値PL、及び吐出量群DAAを送信する。尚、送信されるデータは、これらのうちの一部であっても良いし、しきい値TH等の他の要素が追加されたものであっても良い。又、改善提案に係るデータが送信されても良い。更に、分析装置1がクラウド上に形成されている場合、管理端末M側の管理者は、クラウドにアクセスして、分析結果等をインターネットIN経由でダウンロードすることができる。
Further, the worker can transmit the analysis result or the like to the management terminal M belonging to the person in charge of management or the like via the Internet IN (step S5).
In this case, the analyzer control means 9 controls the analyzer communication means 8 to the management terminal M of the factory F corresponding to the factory ID, each power pressure graph CPG and pressure of the first compressor C1 to the fourth compressor C4. The fluctuation graph PCG, the lower limit PL of the pressure value, and the discharge amount group DAA are transmitted. The data to be transmitted may be a part of these, or may have other elements such as the threshold value TH added. Further, the data related to the improvement proposal may be transmitted. Further, when the analysis device 1 is formed on the cloud, the administrator on the management terminal M side can access the cloud and download the analysis result or the like via the Internet IN.
 管理端末制御手段29は、これらのデータ(処理結果)を管理端末通信手段28において受信すると、管理端末記憶手段26に記憶する(ステップS6)。
 又、管理端末制御手段29は、その記憶を参照し、これらのデータを、そのまま、あるいは別の形式のグラフに変換する等表示形式を整えて、又は第1コンプレッサC1~第4コンプレッサC4の少なくとも何れか2つについて加算等の演算を施して、管理端末表示手段22に表示させる(ステップS7)。
 尚、上述の加算等の演算は、分析装置1においてなされ、インターネットIN経由で取得されても良い。又、上述の変更例のように他のデータが送信された場合には、当該他のデータは、同様に記憶され(ステップS6)、表示され(ステップS7)ても良い。更に、管理端末記憶手段26はデータを記憶せず、管理端末制御手段29は受信したデータをそのまま表示しても良い。ここで、分析装置1がクラウド上に形成された場合、管理端末制御手段29はクラウド上のデータを表示することとなる。
When the management terminal control means 29 receives these data (processing results) in the management terminal communication means 28, the management terminal control means 29 stores them in the management terminal storage means 26 (step S6).
Further, the management terminal control means 29 refers to the memory and arranges a display format such as converting these data as they are or into a graph of another format, or at least the first compressor C1 to the fourth compressor C4. Calculations such as addition are performed on any two of them, and the management terminal display means 22 displays the data (step S7).
The above-mentioned calculation such as addition may be performed by the analyzer 1 and may be acquired via the Internet IN. Further, when other data is transmitted as in the above-mentioned modification example, the other data may be similarly stored (step S6) and displayed (step S7). Further, the management terminal storage means 26 may not store the data, and the management terminal control means 29 may display the received data as it is. Here, when the analyzer 1 is formed on the cloud, the management terminal control means 29 will display the data on the cloud.
[作用効果等]
 以上の分析装置1は、合計4台の第1コンプレッサC1~第4コンプレッサC4から、消費電力に関する値である電流値(第1電流値群AA1~第4電流値群AA4)及び圧力に関する値である圧力値(圧力値群PGV)を、それぞれ複数取得する分析装置通信手段8と、複数の電流値から算出した複数の消費電力及び複数の圧力値(消費電力と圧力との関係)から、消費電力に関するしきい値THを、第1コンプレッサC1~第4コンプレッサC4毎に設定する分析装置制御手段9(しきい値設定手段,ステップS4-4)と、を有しており、しきい値THは、消費電力がこのしきい値TH以上であると定格運転中であるとみなし、消費電力がこのしきい値TH未満であると定格運転中でないものとみなすものである。
 よって、分析装置1では、圧力値等について、実態に即した処理を行うことができ、分析の精度がより一層高いものとなる。又、しきい値THは、上述の通り、スクリュー式で給油式のロード・アンロード制御機(第1コンプレッサC1,第2コンプレッサC2)、絞り弁制御機(第3コンプレッサC3)、インバータ機(第4コンプレッサC4)等に設定可能であり、分析装置1は、様々なコンプレッサに対応可能である。
[Action effect, etc.]
In the above analyzer 1, the current values (first current value group AA1 to fourth current value group AA4), which are values related to power consumption, and values related to pressure are used from a total of four first compressors C1 to fourth compressors C4. Consume from the analyzer communication means 8 that acquires a plurality of certain pressure values (pressure value group PGV), a plurality of power consumptions calculated from a plurality of current values, and a plurality of pressure values (relationship between power consumption and pressure). It has an analyzer control means 9 (threshold setting means, step S4-4) for setting a threshold value TH for electric power for each of the first compressor C1 to the fourth compressor C4, and has a threshold value TH. Is considered to be in rated operation when the power consumption is equal to or higher than this threshold value TH, and is considered not to be in rated operation when the power consumption is less than this threshold value TH.
Therefore, in the analyzer 1, the pressure value and the like can be processed according to the actual situation, and the accuracy of the analysis is further improved. As described above, the threshold value TH is a screw type refueling type load / unload controller (first compressor C1, second compressor C2), throttle valve controller (third compressor C3), and inverter machine (1st compressor C3). It can be set in the fourth compressor C4) or the like, and the analyzer 1 can correspond to various compressors.
 更に、第1電流値群AA1~第4電流値群AA4及び圧力値群PGVから、第1コンプレッサC1~第4コンプレッサC4の機種を判別する分析装置制御手段9(機種判別手段,ステップS4-3)が設けられており、分析装置制御手段9(しきい値設定手段)は、分析装置制御手段9(機種判別手段)により判別された機種に応じ、しきい値THを設定する。よって、しきい値がより適切に設定され、第1コンプレッサC1~第4コンプレッサC4のより適切な運転制御を実現するための分析が、より正確に実行される。
 又更に、しきい値THにより分析されたアンロード時間が所定時間以上であると、アンロード時間が計算上特定時間以内となるような新たな運転制御データを出力する分析装置制御手段9(新制御データ出力手段)が設けられている。よって、運転制御改善のための具体的な新たな制御データが出力される。従って、作業者は、出力された新制御データを参照することにより、容易に運転制御の改善を提案することができる。又、新制御データは、第1コンプレッサC1~第4コンプレッサC4に対してすぐに設定可能であり、運転制御が直ちに容易に改善される。
Further, the analyzer control means 9 (model discrimination means, step S4-3) for discriminating the model of the first compressor C1 to the fourth compressor C4 from the first current value group AA1 to the fourth current value group AA4 and the pressure value group PGV. ) Is provided, and the analyzer control means 9 (threshold value setting means) sets the threshold value TH according to the model determined by the analyzer control means 9 (model determination means). Therefore, the threshold value is set more appropriately, and the analysis for realizing more appropriate operation control of the first compressor C1 to the fourth compressor C4 is performed more accurately.
Furthermore, the analyzer control means 9 (new) that outputs new operation control data such that when the unload time analyzed by the threshold value TH is equal to or longer than a predetermined time, the unload time is calculated to be within a specific time. Control data output means) is provided. Therefore, specific new control data for improving the operation control is output. Therefore, the operator can easily propose the improvement of the operation control by referring to the output new control data. Further, the new control data can be immediately set for the first compressor C1 to the fourth compressor C4, and the operation control is immediately and easily improved.
 加えて、分析装置1は、合計4台の第1コンプレッサC1~第4コンプレッサC4から、消費電力に関する値である電流値(第1電流値群AA1~第4電流値群AA4)及び圧力に関する値である圧力値(圧力値群PGV)を、それぞれ複数取得する分析装置通信手段8と、第1電流値群AA1~第4電流値群AA4及び圧力値群PGVから、第1コンプレッサC1~第4コンプレッサC4の機種を判別する分析装置制御手段9(機種判別手段,ステップS4-3)と、を有している。
 よって、分析装置1は、消費電力と圧力との関係から自動的に第1コンプレッサC1~第4コンプレッサC4の機種を判別可能であり、又判別された機種に応じてデータを処理可能である。作業者は、判別された機種、及びその機種に応じて分析された改善運転制御を、容易に得ることができる。又、作業者による機種の判定ミス及び入力ミスが防止され、誤った処理及び分析の発生が防止される。
In addition, the analyzer 1 has a total of four first compressors C1 to fourth compressors C4, and has a current value (first current value group AA1 to fourth current value group AA4) and a value related to pressure, which are values related to power consumption. First compressors C1 to 4 from the analyzer communication means 8 for acquiring a plurality of pressure values (pressure value group PGV), the first current value group AA1 to the fourth current value group AA4, and the pressure value group PGV. It has an analyzer control means 9 (model discriminating means, step S4-3) for discriminating the model of the compressor C4.
Therefore, the analyzer 1 can automatically discriminate the model of the first compressor C1 to the fourth compressor C4 from the relationship between the power consumption and the pressure, and can process the data according to the discriminated model. The operator can easily obtain the discriminated model and the improved operation control analyzed according to the model. In addition, it is possible to prevent an operator from making a judgment error and an input error of the model, and to prevent the occurrence of erroneous processing and analysis.
 又、分析装置通信手段8は、所定周期毎の電流値及び圧力値を取得するものであり、所定周期は、30秒以下とされる。よって、分析の精度が一層優れたものとなる。
 更に、各電力関連値は、第1コンプレッサC1~第4コンプレッサC4に供給される各電流値である。よって、消費電力が低コストで容易に得られる。
 加えて、分析装置通信手段8は、通信により第1電流値群AA1~第4電流値群AA4及び圧力値群PGVを取得する。よって、運転分析用の第1電流値群AA1~第4電流値群AA4及び圧力値群PGVを、低コストで容易に取得することができる。
 又、分析装置制御手段9(下限値取得手段,ステップS4-5)は、圧力値群PGVのうち圧力値の最低値である圧力値の下限値PLを、第1コンプレッサC1~第4コンプレッサC4毎に取得する。よって、作業者は、第1コンプレッサC1~第4コンプレッサC4等の動作異常に関連する圧力低下について把握して、第1コンプレッサC1~第4コンプレッサC4等の動作の改善等に活かすことができる。
Further, the analyzer communication means 8 acquires a current value and a pressure value for each predetermined cycle, and the predetermined cycle is set to 30 seconds or less. Therefore, the accuracy of the analysis becomes even better.
Further, each power-related value is each current value supplied to the first compressor C1 to the fourth compressor C4. Therefore, power consumption can be easily obtained at low cost.
In addition, the analyzer communication means 8 acquires the first current value group AA1 to the fourth current value group AA4 and the pressure value group PGV by communication. Therefore, the first current value group AA1 to the fourth current value group AA4 and the pressure value group PGV for operation analysis can be easily obtained at low cost.
Further, the analyzer control means 9 (lower limit value acquisition means, step S4-5) sets the lower limit value PL of the pressure value, which is the lowest value of the pressure value in the pressure value group PGV, to the first compressor C1 to the fourth compressor C4. Get it every time. Therefore, the operator can grasp the pressure drop related to the operation abnormality of the first compressor C1 to the fourth compressor C4 and the like, and utilize it for improving the operation of the first compressor C1 to the fourth compressor C4 and the like.
[変更例等]
 尚、本発明の形態は、上記の形態及び変更例に限定されず、次に示すような更なる変更例を適宜有する。
 上記の形態は、第1コンプレッサC1~第4コンプレッサC4が工場Fに設置されているところ、運転分析対象としてのコンプレッサは、工場以外に設置されていても良い。
 又、しきい値設定手段,新制御データ出力手段,機種判別手段及び下限値取得手段等は、1つのCPU(分析装置制御手段9)により実現されることが必須ではなく、CPUが2つ使用され、これらの一部の手段が実現されるCPUと、他の手段が実現されるCPUとが、互いに異なるものとされていても良いし、3つ以上のCPUが使用されても良いし、各手段に個別のCPUが割り当てられていても良い。
[Change examples, etc.]
The form of the present invention is not limited to the above-mentioned form and modified examples, and further modified examples as shown below are appropriately included.
In the above embodiment, where the first compressor C1 to the fourth compressor C4 are installed in the factory F, the compressor as the operation analysis target may be installed in a place other than the factory.
Further, it is not essential that the threshold value setting means, the new control data output means, the model discrimination means, the lower limit value acquisition means, etc. are realized by one CPU (analyzer control means 9), and two CPUs are used. The CPU in which some of these means are realized and the CPU in which the other means are realized may be different from each other, or three or more CPUs may be used. An individual CPU may be assigned to each means.
 1・・コンプレッサの運転状態分析装置(分析装置)、8・・分析装置通信手段(データ取得手段)、9・・分析装置制御手段(しきい値設定手段,新制御データ出力手段,機種判別手段,下限値取得手段)、AA1・・第1電流値群(電力関連値)、AA2・・第2電流値群(電力関連値)、AA3・・第3電流値群(電力関連値)、AA4・・第4電流値群(電力関連値)、C1・・第1コンプレッサ(コンプレッサ)、C2・・第2コンプレッサ(コンプレッサ)、C3・・第3コンプレッサ(コンプレッサ)、C4・・第4コンプレッサ(コンプレッサ)、G・・データ収集ゲートウェイ、PGV・・圧力値群(圧力関連値)、PL・・圧力値の下限値、TH・・しきい値。 1 ... Compressor operating state analyzer (analyzer), 8 ... Analytical device communication means (data acquisition means), 9 ... Analytical device control means (threshold setting means, new control data output means, model discrimination means) , Lower limit value acquisition means), AA1 ... 1st current value group (power related value), AA2 ... 2nd current value group (power related value), AA3 ... 3rd current value group (power related value), AA4 4th current value group (power related value), C1 ... 1st compressor (compressor), C2 ... 2nd compressor (compressor), C3 ... 3rd compressor (compressor), C4 ... 4th compressor ( Compressor), G ... Data acquisition gateway, PGV ... Pressure value group (pressure related value), PL ... Lower limit of pressure value, TH ... Threshold.

Claims (8)

  1.  1以上のコンプレッサから、消費電力に関する値である電力関連値及び圧力に関する値である圧力関連値を、それぞれ複数取得するデータ取得手段と、
     複数の前記電力関連値及び複数の前記圧力関連値から、前記消費電力に関するしきい値を、前記コンプレッサ毎に設定するしきい値設定手段と、
    を有しており、
     前記しきい値は、前記消費電力がこのしきい値以上であると定格運転中であるとみなし、前記消費電力がこのしきい値未満であると定格運転中でないものとみなすものである
    ことを特徴とするコンプレッサの運転状態分析装置。
    A data acquisition means for acquiring a plurality of power-related values, which are values related to power consumption, and pressure-related values, which are values related to pressure, from one or more compressors.
    A threshold setting means for setting a threshold value for the power consumption for each compressor from a plurality of the power-related values and the pressure-related values.
    Have and
    The threshold value is considered to be in rated operation when the power consumption is equal to or higher than this threshold value, and is not considered to be in rated operation when the power consumption is less than this threshold value. A characteristic compressor operating condition analyzer.
  2.  更に、複数の前記電力関連値及び複数の前記圧力関連値から、前記コンプレッサの機種を判別する機種判別手段が設けられており、
     前記しきい値設定手段は、前記機種判別手段により判別された前記機種に応じ、前記しきい値を設定する
    ことを特徴とする請求項1に記載のコンプレッサの運転状態分析装置。
    Further, a model discriminating means for discriminating the model of the compressor from the plurality of the power-related values and the plurality of pressure-related values is provided.
    The operating state analysis device for a compressor according to claim 1, wherein the threshold value setting means sets the threshold value according to the model determined by the model determination means.
  3.  更に、前記しきい値により分析された非定格運転の継続時間が所定時間以上であると、当該継続時間が計算上特定時間以内となるような新たな前記コンプレッサの運転制御データを出力する新制御データ出力手段が設けられている
    ことを特徴とする請求項1又は請求項2に記載のコンプレッサの運転状態分析装置。
    Further, a new control for outputting new operation control data of the compressor so that when the duration of the unrated operation analyzed by the threshold value is longer than a predetermined time, the duration is calculated to be within a specific time. The operating state analyzer for a compressor according to claim 1 or 2, wherein the data output means is provided.
  4.  1以上のコンプレッサから、消費電力に関する値である電力関連値及び圧力に関する値である圧力関連値を、それぞれ複数取得するデータ取得手段と、
     複数の前記電力関連値及び複数の前記圧力関連値から、前記コンプレッサの機種を判別する機種判別手段と、
    を有している
    ことを特徴とするコンプレッサの運転状態分析装置。
    A data acquisition means for acquiring a plurality of power-related values, which are values related to power consumption, and pressure-related values, which are values related to pressure, from one or more compressors.
    A model discriminating means for discriminating the model of the compressor from the plurality of the power-related values and the plurality of pressure-related values, and
    A compressor operating condition analyzer characterized by having.
  5.  前記データ取得手段は、所定周期毎の前記電力関連値及び前記圧力関連値を取得するものであり、
     前記所定周期は、30秒以下である
    ことを特徴とする請求項1ないし請求項4の何れかに記載のコンプレッサの運転状態分析装置。
    The data acquisition means acquires the power-related value and the pressure-related value at predetermined cycles.
    The operating state analyzer for a compressor according to any one of claims 1 to 4, wherein the predetermined cycle is 30 seconds or less.
  6.  前記電力関連値は、前記コンプレッサに供給される電流値である
    ことを特徴とする請求項1ないし請求項5の何れかに記載のコンプレッサの運転状態分析装置。
    The operating state analysis device for a compressor according to any one of claims 1 to 5, wherein the electric power-related value is a current value supplied to the compressor.
  7.  前記データ取得手段は、通信により前記電力関連値及び前記圧力関連値を取得する
    ことを特徴とする請求項1ないし請求項6の何れかに記載のコンプレッサの運転状態分析装置。
    The compressor operating state analyzer according to any one of claims 1 to 6, wherein the data acquisition means acquires the electric power-related value and the pressure-related value by communication.
  8.  更に、複数の前記圧力関連値のうち圧力値の最低値である圧力値の下限値を、前記コンプレッサ毎に取得する下限値取得手段を有している
    ことを特徴とする請求項1ないし請求項7の何れかに記載のコンプレッサの運転状態分析装置。
    Further, claim 1 to claim 1, wherein the compressor has a lower limit value acquisition means for acquiring the lower limit value of the pressure value, which is the lowest value of the pressure value among the plurality of pressure-related values. 7. The operating state analyzer for the compressor according to any one of 7.
PCT/JP2021/031015 2020-09-14 2021-08-24 Operating state analysis device of compressor WO2022054570A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-154067 2020-09-14
JP2020154067A JP7488629B2 (en) 2020-09-14 2020-09-14 Compressor operating condition analyzer

Publications (1)

Publication Number Publication Date
WO2022054570A1 true WO2022054570A1 (en) 2022-03-17

Family

ID=80632294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031015 WO2022054570A1 (en) 2020-09-14 2021-08-24 Operating state analysis device of compressor

Country Status (2)

Country Link
JP (1) JP7488629B2 (en)
WO (1) WO2022054570A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291870A (en) * 2006-04-21 2007-11-08 Chugoku Electric Power Co Inc:The Compressor operation diagnosis assist system
JP2013209902A (en) * 2012-03-30 2013-10-10 Anest Iwata Corp Compressed gas supply unit, compressed gas supply apparatus and control method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291870A (en) * 2006-04-21 2007-11-08 Chugoku Electric Power Co Inc:The Compressor operation diagnosis assist system
JP2013209902A (en) * 2012-03-30 2013-10-10 Anest Iwata Corp Compressed gas supply unit, compressed gas supply apparatus and control method therefor

Also Published As

Publication number Publication date
JP7488629B2 (en) 2024-05-22
JP2022047984A (en) 2022-03-25

Similar Documents

Publication Publication Date Title
CN104866632B (en) Fault data acquisition methods, device and the terminal of home appliance
CN102901180B (en) A kind of method and system controlling air-conditioning
CN102918470B (en) For monitoring and plan system to the maintenance of plant equipment and process
US6996508B1 (en) System and method for remote retrofit identification of energy consumption systems and components
US8072197B2 (en) Power-managed socket
CN109061288B (en) Household charging method, device and system for multi-split system and charging terminal
US7933724B2 (en) Method of tracking the performance of an industrial appliance
CN111126632B (en) Household appliance fault prediction method, prediction device, refrigerator and storage medium
CN107687332B (en) Method and device for realizing on-line analysis, diagnosis, control and adjustment of working conditions of screw pump and pumping unit by using electric parameters
WO1999017178A1 (en) Systems and methods for remotely controlling a machine
US20200217542A1 (en) Diagnostic method, diagnostic apparatus, diagnostic system, and non-transitory computer readable recording medium storing diagnostic program
CN111306706B (en) Air conditioner linkage control method and system
CN101257268A (en) Electric motor controller and control method
KR101893013B1 (en) Power management apparatus and method for controlling the same
WO2010096811A2 (en) Controller and method for improving the efficiency of heating and cooling systems
CN105157165B (en) A kind of method, system and intelligent terminal for being used to form air-conditioning and often using continuous action
CN108005893A (en) A kind of energy-saving air compressor machine analysis and diagnosis system and its control method
EP3540534A1 (en) Information processing apparatus and method
KR101864828B1 (en) Method and apparatus for managing electornic appliance
US20080098753A1 (en) Method and system for logging cycle history of an ice-making machine that is accessible to the user for service diagnosis
US20190028782A1 (en) Sensing system, sensing method, and concentrator
US6742209B2 (en) System for providing washing machine operation information and method for the same
WO2022054570A1 (en) Operating state analysis device of compressor
CN106705368A (en) Method and device for prejudging domestic appliance faults and domestic appliance
CN116088325A (en) Digital twinning-based household equipment control method and device and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866530

Country of ref document: EP

Kind code of ref document: A1