WO2022054467A1 - Reactor, converter, and power conversion device - Google Patents

Reactor, converter, and power conversion device Download PDF

Info

Publication number
WO2022054467A1
WO2022054467A1 PCT/JP2021/028851 JP2021028851W WO2022054467A1 WO 2022054467 A1 WO2022054467 A1 WO 2022054467A1 JP 2021028851 W JP2021028851 W JP 2021028851W WO 2022054467 A1 WO2022054467 A1 WO 2022054467A1
Authority
WO
WIPO (PCT)
Prior art keywords
union
case
resin
portions
resin member
Prior art date
Application number
PCT/JP2021/028851
Other languages
French (fr)
Japanese (ja)
Inventor
尚稔 古川
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2022054467A1 publication Critical patent/WO2022054467A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00

Definitions

  • the present disclosure relates to reactors, converters, and power converters.
  • This application claims priority based on Japanese Patent Application No. 2020-150881 of the Japanese application dated September 08, 2020, and incorporates all the contents described in the Japanese application.
  • Patent Documents 1 and 2 disclose a reactor including a coil, a magnetic core, a case for accommodating a combination of the coil and the magnetic core, and a sealing resin portion filled in the case and covering the outer periphery of the combination. do. Patent Documents 1 and 2 describe that the union is fixed in a state of being pressed against the bottom plate portion of the case by two strip-shaped stays. Each stay is arranged on the upper surface of the outer core portion arranged outside the coil in the magnetic core. Both ends of each stay are fastened with bolts or screws to four stay mounting portions provided in the case.
  • the reactor of this disclosure is with the coil A magnetic core having portions arranged inside and outside the coil, A resin member that defines the mutual position between the coil and the magnetic core, A case for accommodating the coil, the magnetic core, and the union including the resin member, and It is provided with a sealing resin portion to be filled in the case.
  • the magnetic core is The inner core portion arranged inside the coil and It has an outer core portion arranged outside the coil and has an outer core portion.
  • the case is The bottom plate on which the union is placed and A square cylindrical side wall that surrounds the union and It has an opening facing the bottom plate and has an opening.
  • the side wall portion has a pair of facing short sides and a pair of facing long sides.
  • the union is housed in the case so that the axial direction of the coil is along the Z direction.
  • the outer core portion includes a first outer core portion arranged on the opening side and a second outer core portion arranged on the bottom plate portion side.
  • the resin member includes a first resin member provided on the outer peripheral surface of the first outer core portion and a second resin member provided on the outer peripheral surface of the second outer core portion.
  • the first resin member has an overhanging portion that protrudes toward the short side portion of one of the pair of short side portions.
  • the inner surface of the one short side portion has a mounting seat on which the overhanging portion is fixed.
  • the other of the second resin member and the side wall portion has a concave portion that fits with the convex portion.
  • the union is positioned with a gap between the bottom plate portion by fitting the convex portion and the concave portion.
  • the X direction is a direction along the short side portion.
  • the Z direction is a direction orthogonal to both the X direction and the Y direction.
  • the Y direction is a direction along the long side portion.
  • the converter of the present disclosure comprises the reactor of the present disclosure.
  • the power conversion device of the present disclosure includes the converter of the present disclosure.
  • FIG. 1 is a schematic partial cross-sectional view of the reactor according to the first embodiment as viewed from the X direction.
  • FIG. 2 is a schematic plan view of the reactor according to the first embodiment as viewed from the Z direction.
  • FIG. 3 is a schematic partial cross-sectional view of the reactor according to the first embodiment as viewed from the Y direction.
  • FIG. 4 is a schematic exploded perspective view of the reactor according to the first embodiment.
  • FIG. 5 is a schematic exploded view of the union body provided for the reactor according to the first embodiment.
  • FIG. 6 is a schematic cross-sectional view cut along the VI-VI line of FIG.
  • FIG. 7 is an enlarged view of a main part in which the portion surrounded by the alternate long and short dash line in FIG. 6 is enlarged.
  • FIG. 8 is an enlarged view of a main part in which the portion surrounded by the alternate long and short dash line in FIG. 1 is enlarged.
  • FIG. 9 is a diagram illustrating a fixed point and a diagonal portion in the reactor shown in FIG.
  • FIG. 10 is a diagram illustrating a convex portion and a concave portion in the reactor according to the modified example 1-1.
  • FIG. 11 is a diagram illustrating a convex portion and a concave portion in the reactor according to the modified example 1-2.
  • FIG. 12 is a configuration diagram schematically showing a power supply system of a hybrid vehicle.
  • FIG. 13 is a circuit diagram illustrating an outline of an example of a power conversion device including a converter.
  • one of the purposes of this disclosure is to provide a reactor capable of suppressing the displacement of the union within the case.
  • Another object of the present disclosure is to provide a converter having the above reactor.
  • one of the other purposes of the present disclosure is to provide a power conversion device including the above converter.
  • the reactors of the present disclosure can suppress the displacement of the union within the case. Further, the converter and the power converter of the present disclosure are highly reliable.
  • the reactor according to the embodiment of the present disclosure is With the coil A magnetic core having portions arranged inside and outside the coil, A resin member that defines the mutual position between the coil and the magnetic core, A case for accommodating the coil, the magnetic core, and the union including the resin member, and It is provided with a sealing resin portion to be filled in the case.
  • the magnetic core is The inner core portion arranged inside the coil and It has an outer core portion arranged outside the coil and has an outer core portion.
  • the case is The bottom plate on which the union is placed and A square cylindrical side wall that surrounds the union and It has an opening facing the bottom plate and has an opening.
  • the side wall portion has a pair of facing short sides and a pair of facing long sides.
  • the union is housed in the case so that the axial direction of the coil is along the Z direction.
  • the outer core portion includes a first outer core portion arranged on the opening side and a second outer core portion arranged on the bottom plate portion side.
  • the resin member includes a first resin member provided on the outer peripheral surface of the first outer core portion and a second resin member provided on the outer peripheral surface of the second outer core portion.
  • the first resin member has an overhanging portion that protrudes toward the short side portion of one of the pair of short side portions.
  • the inner surface of the one short side portion has a mounting seat on which the overhanging portion is fixed.
  • One of the second resin member and the side wall portion has a convex portion extending in the Z direction.
  • the other of the second resin member and the side wall portion has a concave portion that fits with the convex portion.
  • the union is positioned with a gap between the bottom plate portion by fitting the convex portion and the concave portion.
  • the X direction is a direction along the short side portion.
  • the Z direction is a direction orthogonal to both the X direction and the Y direction.
  • the Y direction is a direction along the long side portion.
  • the above reactor can suppress the displacement of the union in the case.
  • the reasons for this are as follows.
  • One of the second resin member in the union and the side wall of the case has a convex portion, and the other has a concave portion that fits into the convex portion, so that the displacement range of the union is restricted in the case.
  • the convex portion and the concave portion are located diagonally to the fixing point of the overhanging portion to the mounting seat. That is, the overhanging portion and the mounting seat, and the convex portion and the concave portion are provided at positions separated from each other.
  • the reactor can suppress the displacement of the union in the case, it can suppress the cracking of the sealing resin portion.
  • the reason for this is that since the displacement of the union is small, it is difficult for excessive stress or strain to be applied to the sealing resin portion filled between the union and the case.
  • the reactor is highly reliable because the sealing resin portion is unlikely to crack.
  • the overhanging portion is a line that bisects the union in the Z direction on one side of the line that bisects the union in the Y direction when the union is viewed from the X direction.
  • the diagonal portion is located on the opposite side of the line that bisects the union in the Y direction and on the bottom plate side of the line that bisects the union in the Z direction.
  • the displacement of the union can be effectively suppressed by locating the convex portion and the concave portion in the specific diagonal portion.
  • the convex portion is arranged on one of the inner surfaces of each of the pair of long side portions and each surface of the second resin member facing each of the pair of long side portions.
  • the recess may be arranged on the inner surface of each of the pair of long side portions and on the other side of each surface of the second resin member facing each of the pair of long side portions.
  • the above form can suppress the displacement of the union in each of the X direction, the Y direction, and the Z direction in the case.
  • the distance between the convex portion and the concave portion may be 0.5 mm or less.
  • the above form can effectively suppress the displacement of the union in the X and Y directions.
  • the length of the portion where the convex portion and the concave portion are fitted along the Z direction may be 10% or more of the length of the union body along the Z direction.
  • the above form can effectively suppress the displacement of the union in the Z direction.
  • the distance between the end surface on the bottom plate portion side and the inner bottom surface of the bottom plate portion in the union is 0.5 mm or more and 1.0 mm or less.
  • the above form improves the heat dissipation of the union.
  • the sealing resin portion is easily filled between the union body and the bottom plate portion. Therefore, the heat of the union can be transferred to the case via the sealing resin portion. Further, since the distance between the union body and the bottom plate portion is 1.0 mm or less, the distance between the union body and the bottom plate portion is short. Therefore, it is easy to transfer the heat of the union to the case.
  • the second resin member may have the concave portion, and the side wall portion may have the convex portion.
  • the above form makes it easy to manufacture a case having a convex portion.
  • the length of the concave portion along the Z direction is shorter when the convex portion is provided on the side wall portion than when the concave portion is provided on the side wall portion.
  • the cross-sectional shape of the convex portion orthogonal to the Z direction may be a quadrangular shape.
  • the resin constituting the sealing resin portion may be a silicone resin.
  • the above form improves the heat dissipation of the union. This is because the silicone resin has a higher thermal conductivity than a resin such as an epoxy resin. Therefore, it is easy to transfer the heat of the union to the case through the sealing resin portion.
  • the overhanging portion is a part of a metal bracket, and the rest of the bracket is embedded in the first resin member.
  • the fixing strength to the mounting seat in the union body can be increased. Further, since the first resin member can be easily manufactured by insert molding the bracket, the above-mentioned form is also excellent in manufacturability.
  • the converter according to the embodiment of the present disclosure is The reactor according to any one of (1) to (10) above is provided.
  • the converter of the present disclosure is highly reliable because it is equipped with the above reactor.
  • the power conversion device according to the embodiment of the present disclosure is The converter according to (11) above is provided.
  • the power conversion device of the present disclosure includes the above converter, it is highly reliable.
  • the reactor 1 includes a coil 2, a magnetic core 3, a resin member 4, a case 5, and a sealing resin portion 6.
  • the coil 2 has two winding portions 21 and 22.
  • the magnetic core 3 has portions arranged inside and outside the coil 2. Specifically, the magnetic core 3 has inner core portions 31 and 32 arranged inside the coil 2 and outer core portions 33 and 34 arranged outside the coil 2.
  • the resin member 4 defines the mutual position between the coil 2 and the magnetic core 3.
  • the case 5 houses the union body 10 including the coil 2, the magnetic core 3, and the resin member 4.
  • the sealing resin portion 6 is filled in the case 5.
  • the case 5 has a bottom plate portion 51, a side wall portion 52, and an opening portion 55.
  • the side wall portion 52 has a pair of facing short side portions 531 and 532, and a pair of facing long side portions 541 and 542.
  • the X direction is the direction along the short side portions 531 and 532 of the side wall portion 52.
  • the Y direction is a direction along the long side portions 541 and 542.
  • the Z direction is a direction orthogonal to both the X direction and the Y direction.
  • 1 and 9 are partial cross-sectional views of the case 5 and the sealing resin portion 6 cut along a plane parallel to the Y direction.
  • FIG. 3 is a partial cross-sectional view of the case 5 and the sealing resin portion 6 cut along a plane parallel to the X direction.
  • the union body 10 shows an appearance rather than a cross section.
  • the cross-sectional view of FIG. 1 corresponds to the cross-sectional view cut along the line I-I of FIG.
  • FIG. 3 corresponds to the cross-sectional view cut along the line III-III of FIG.
  • FIG. 2 is a plan view seen from the opening 55 side of the case 5 in the Z direction.
  • the sealing resin portion 6 is omitted.
  • FIG. 4 shows a state before the union body 10 is stored in the case 5.
  • FIG. 5 shows the union body 10 in a state in which it does not have the mold resin portion 8 described later in an exploded manner.
  • the convex portion 91 is virtually shown by a two-dot chain line.
  • the bottom plate portion 51 side of the case 5 is on the bottom, and the side opposite to the bottom plate portion 51 side, that is, the opening 55 side is on the top.
  • the vertical direction corresponds to the Z direction.
  • the Z direction corresponds to the height direction of the union body 10 and the depth direction of the case 5.
  • the X direction corresponds to the width direction of the union body 10 and the case 5.
  • the Y direction corresponds to the length direction of the union body 10 and the case 5.
  • the union body 10 is housed in the case 5 so that the axial direction of the coil 2 is along the Z direction.
  • this arrangement form is referred to as an upright type.
  • the outer core portion 33 arranged on the opening 55 side of the case 5 is called the first outer core portion, and the outer side arranged on the bottom plate portion 51 side.
  • the core portion 34 is referred to as a second outer core portion.
  • the resin member 4 includes a first resin member 4a provided on the outer peripheral surface of the first outer core portion 33 and a second resin member 4b provided on the outer peripheral surface of the second outer core portion 34.
  • the reactor 1 includes a partnership 10 having a specific structure and a case 5 having a specific structure that hold each other's positions.
  • the first resin member 4a has an overhanging portion 7
  • the case 5 has a mounting seat 56 to which the overhanging portion 7 is fixed.
  • the case 5 has a convex portion 91
  • the second resin member 4b has a concave portion 92 that fits into the convex portion 91.
  • the overhanging portion 7 and the mounting seat 56, and the convex portion 91 and the concave portion 92 are provided at positions separated from each other.
  • the configuration of the reactor 1 will be described in detail.
  • the coil 2 has two winding portions 21 and 22.
  • the winding portions 21 and 22 are formed by winding windings in a spiral shape.
  • the winding portions 21 and 22 are arranged in parallel so that their axial directions are parallel to each other.
  • the axial direction of the coil 2 that is, the axial direction of the winding portions 21 and 22 coincides with the Z direction.
  • both winding portions 21 and 22 may be formed by winding one continuous winding, or each winding portion 21 and 22 may be formed by winding separate windings.
  • both winding portions 21 and 22 are composed of one continuous winding, for example, after forming one winding portion 21 from one end side of the winding portion 21, the other end side of the winding portion 21 is formed. The winding is bent and folded back to form the other winding portion 22.
  • the winding portions 21 and 22 are composed of separate windings, after the winding portions 21 and 22 are formed of separate windings, the ends of the windings are connected to each other on the other end side of the winding portions 21 and 22. Can be mentioned. Joining methods such as welding, crimping, soldering, and brazing can be used for this connection.
  • FIG. 1 and the like show only the winding portions 21 and 22, and the end portions of the windings and the like are omitted.
  • Examples of the winding include a conductor wire and a covered wire having an insulating coating.
  • Examples of the constituent material of the conductor wire include copper and the like.
  • Examples of the constituent material of the insulating coating include resins such as polyamide-imide.
  • Examples of the covered wire include a covered flat wire having a rectangular cross-sectional shape, a covered round wire having a circular cross-sectional shape, and the like.
  • both winding portions 21 and 22 are made of windings having the same specifications, and have the same shape, size, winding direction, and number of turns. Further, the winding portions 21 and 22 are square cylinder-shaped edgewise coils in which the covering flat wire is wound edgewise. In the present embodiment, the winding portions 21 and 22 have a rectangular tubular shape.
  • the shapes of the winding portions 21 and 22 are not particularly limited, and may be, for example, a cylindrical shape, an elliptical cylinder shape, a long cylindrical shape, or the like. Further, the specifications of the windings forming the both winding portions 21 and 22 and the shapes of the both winding portions 21 and 22 may be different.
  • the end face shape of the winding portions 21 and 22 viewed from the axial direction, that is, the Z direction is rectangular. That is, the outer shapes of the winding portions 21 and 22 have four planes and four corner portions, respectively. The corners of the winding portions 21 and 22 are rounded.
  • the outer peripheral surfaces of the winding portions 21 and 22 are substantially formed of a flat surface. Therefore, the outer peripheral surfaces of the wound portions 21 and 22 and the inner peripheral surface of the side wall portion 52 in the case 5 face each other in planes (see FIGS. 1 and 3). Therefore, it is easy to secure a large area where the outer peripheral surfaces of the wound portions 21 and 22 and the inner peripheral surface of the side wall portions 52 face each other. Further, the distance between the outer peripheral surfaces of the wound portions 21 and 22 and the inner peripheral surface of the side wall portion 52 tends to be small.
  • each of the two winding portions 21 and 22 is orthogonal to the bottom plate portion 51 of the case 5, and the parallel direction of the two winding portions 21 and 22 is the case 5. It is arranged along the long side portions 541 and 542 of the side wall portion 52. That is, both winding portions 21 and 22 are arranged so as to be arranged in the Y direction. In the present embodiment, one winding portion 21 is arranged on one short side portion 531 side of the side wall portion 52, and the other winding portion 22 is arranged on the other short side portion 532 side.
  • the magnetic core 3 has two inner core portions 31, 32 and two outer core portions 33, 34.
  • the inner core portions 31 and 32 are portions arranged inside the coil 2, that is, inside the winding portions 21 and 22.
  • the outer core portions 33 and 34 are portions arranged outside the both winding portions 21 and 22.
  • the outer core portions 33 and 34 are arranged so as to sandwich the inner core portions 31 and 32 from both ends (see also FIG. 5).
  • the magnetic core 3 is formed in an annular shape by connecting the end faces of the inner core portions 31 and 32 and the inner end faces 33e of the outer core portions 33 and 34 (see also FIG. 5). A closed magnetic path through which a magnetic flux flows when the coil 2 is excited is formed in the magnetic core 3.
  • the inner core portions 31 and 32 are arranged in parallel so that their axial directions are parallel to each other. In the state where the union body 10 is housed in the case 5, the axial directions of the inner core portions 31 and 32 coincide with the Z direction.
  • the shapes of the inner core portions 31 and 32 substantially correspond to the inner peripheral shapes of the wound portions 21 and 22.
  • the inner core portions 31 and 32 have a square columnar shape, more specifically a rectangular parallelepiped shape.
  • the end face shape of the inner core portions 31 and 32 when viewed from the axial direction, that is, the Z direction is rectangular.
  • the corners of the inner cores 31 and 32 are rounded along the corners of the windings 21 and 22.
  • the sizes of both inner core portions 31 and 32 are the same.
  • the axial ends of the inner core portions 31 and 32 slightly protrude from the end faces of the coil 2, that is, the end faces of the winding portions 21 and 22. Both ends of the inner core portions 31 and 32 protruding from the end faces of the winding portions 21 and 22 are inserted into the through holes 43 of the holding members 40a and 40b described later (see also FIG. 5).
  • the inner core portions 31 and 32 are each composed of one columnar core piece.
  • the length of each core piece constituting the inner core portions 31 and 32 along the Z direction is substantially equal to the length of the winding portions 21 and 22 along the Z direction. That is, the inner core portions 31 and 32 are not provided with the magnetic gap material.
  • the inner core portions 31 and 32 may be composed of a plurality of core pieces and a magnetic gap material interposed between adjacent core pieces.
  • the magnetic gap material a plate material made of a non-magnetic material such as resin or ceramics can be used.
  • the outer core portions 33 and 34 are arranged so as to connect the ends of both inner core portions 31 and 32 to each other.
  • the outer core portions 33 and 34 have inner end surfaces 33e facing each end surface of both inner core portions 31 and 32 (see also FIG. 5).
  • the shape of the outer core portions 33 and 34 is not particularly limited as long as it is a shape that connects the ends of both inner core portions 31 and 32.
  • the outer core portions 33 and 34 have a rectangular parallelepiped shape.
  • the sizes of both outer core portions 33 and 34 are substantially the same.
  • the outer core portions 33 and 34 are each composed of one columnar core piece.
  • One outer core portion 33 arranged on the opening 55 side of the case 5 is the first outer core portion.
  • the other outer core portion 34 arranged on the bottom plate portion 51 side of the case 5 is a second outer core portion.
  • the outer end surface of the second outer core portion 34 opposite to the inner core portions 31 and 32 sides faces the inner bottom surface 510 of the bottom plate portion 51.
  • the inner core portions 31, 32 and the outer core portions 33, 34 are made of a molded body containing a soft magnetic material.
  • the soft magnetic material include metals such as iron and iron alloys and non-metals such as ferrite.
  • the iron alloy include Fe—Si alloy and Fe—Ni alloy.
  • Typical examples of the molded body containing the soft magnetic material include a dust compact molded body and a molded body made of a composite material.
  • the compact compact is made by compression molding a powder made of a soft magnetic material.
  • the powder made of a soft magnetic material is referred to as "soft magnetic powder”.
  • the powder compact has a high content of soft magnetic powder as compared with the composite material. Therefore, the powder compact tends to improve the magnetic characteristics.
  • Typical examples of the magnetic characteristics include relative permeability and saturation magnetic flux density.
  • the content of the soft magnetic powder in the powder compact is, for example, 85% by volume or more and 99.99% by volume or less when the powder compact is 100% by volume.
  • the molded body of the composite material is made of soft magnetic powder dispersed in the resin.
  • a molded product of a composite material is obtained by filling a mold with a raw material in which a soft magnetic powder is mixed and dispersed in an unsolidified resin, and the resin is solidified.
  • the composite material can easily adjust its magnetic properties by adjusting the content of the soft magnetic powder.
  • the content of the soft magnetic powder in the composite material is, for example, 20% by volume or more and 80% by volume or less when the composite material is 100% by volume.
  • Soft magnetic powder is an aggregate of soft magnetic particles.
  • the soft magnetic particles may be coated particles having an insulating coating on the surface thereof.
  • the insulating coating include phosphate coating, silica coating, resin coating and the like.
  • the constituent material of the resin coating include epoxy resin, phenol resin, silicone resin, polyamide resin, and polyimide resin.
  • thermosetting resin examples include epoxy resin, phenol resin, silicone resin, urethane resin and the like.
  • thermoplastic resin examples include polyphenylene sulfide (PPS) resin, polyamide (PA) resin, polyimide (PI) resin, liquid crystal polymer (LCP), and fluororesin.
  • PA resin examples include nylon 6, nylon 66, and nylon 9T.
  • the composite material may contain a filler in addition to the resin. By containing the filler, the heat dissipation of the composite material can be improved.
  • the filler for example, a powder made of a non-magnetic material such as ceramics or carbon nanotubes can be used.
  • Ceramics include metal or non-metal oxides, nitrides, carbides and the like.
  • oxides include alumina, silica, magnesium oxide and the like.
  • nitride include silicon nitride, aluminum nitride, and boron nitride.
  • carbide silicon carbide and the like can be mentioned.
  • the constituent materials of the inner core portions 31 and 32 and the constituent materials of the outer core portions 33 and 34 may be the same or different.
  • the inner core portions 31 and 32 are made of a molded body of a composite material, and the outer core portions 33 and 34 are made of a dust compact.
  • the magnetic core 3 of this example does not have a magnetic gap material.
  • the resin member 4 defines the mutual position between the coil 2 and the magnetic core 3. As shown in FIGS. 1 and 3, the resin member 4 includes a first resin member 4a and a second resin member 4b. The first resin member 4a is provided on the outer peripheral surface of the first outer core portion 33. The second resin member 4b is provided on the outer peripheral surface of the second outer core portion 34. In addition to the holding members 40a and 40b described below, the resin member 4 also includes a mold resin portion 8 described later.
  • the holding members 40a and 40b have a frame plate arranged so as to face each end face of the winding portions 21 and 22 constituting the coil 2. Further, the holding members 40a and 40b have an outer wall portion 41 that covers the outer peripheral surfaces of the outer core portions 33 and 34. Of the holding members 40a and 40b, the holding member 40a that covers the outer peripheral surface of the first outer core portion 33 is called the first holding member, and the holding member 40b that covers the outer peripheral surface of the second outer core portion 34 is called the second holding member. Call.
  • the first holding member 40a is the first resin member 4a.
  • the second holding member 40b is a second resin member 4b.
  • Both the holding members 40a and 40b are members that can be assembled to the coil 2 and the magnetic core 3.
  • the holding members 40a and 40b define the mutual positions of the coil 2 and the magnetic core 3 and hold the positioning state. Further, the holding members 40a and 40b secure electrical insulation between the winding portions 21 and 22 of the coil 2 and the outer core portions 33 and 34 of the magnetic core 3.
  • both holding members 40a and 40b are the same. However, the difference is that the first holding member 40a has an overhanging portion 7 and the second holding member 40b has a recess 92.
  • the holding members 40a and 40b include a frame plate having a through hole 43 and an outer wall portion 41.
  • the frame plate is interposed between the end faces of the winding portions 21 and 22 constituting the coil 2 and the inner end faces 33e of the outer core portions 33 and 34.
  • the outer wall portion 41 covers at least a part of the outer peripheral surface of the outer core portions 33 and 34. In the present embodiment, the outer wall portion 41 covers the entire circumference of the outer peripheral surfaces of the outer core portions 33, 34.
  • the shapes of the holding members 40a and 40b are rectangular frames in a plan view from the Z direction (see FIG. 2).
  • the outer peripheral surface of the outer wall portion 41 is substantially formed of a flat surface.
  • the outer peripheral surface of the outer wall portion 41 includes four planes facing the short side portions 531 and 532 and the long side portions 541 and 542 in the side wall portion 52 of the case 5.
  • the frame plate mainly secures electrical insulation between the winding portions 21, 22 and the outer core portions 33, 34.
  • the shape of the frame plate is rectangular in plan view. As shown in FIGS. 1 and 5, the frame plate has two through holes 43 penetrating the front and back of the rectangular plate. The ends of the inner core portions 31 and 32 are inserted into each through hole 43.
  • the shape of the through hole 43 is a shape substantially corresponding to the outer peripheral shape of the end portions of the inner core portions 31 and 32.
  • the four corners of the through hole 43 are formed along the corners of the outer peripheral surfaces of the inner core portions 31 and 32. The inner core portions 31 and 32 are held in the through hole 43 by the four corners of the through hole 43.
  • a gap is partially formed between the outer peripheral surface of the inner core portions 31 and 32 and the inner peripheral surface of the through hole 43 with the ends of the inner core portions 31 and 32 inserted. It is provided to be done. This gap communicates with the gap between the inner peripheral surfaces of the winding portions 21 and 22 and the outer peripheral surfaces of the inner core portions 31 and 32.
  • the outer wall portion 41 is a rectangular cylinder that surrounds the peripheral edge of the frame plate, and is provided so as to surround the entire circumference of the outer core portions 33, 34.
  • the outer wall portion 41 has a recess 44 inside thereof.
  • the inner end surface 33e side of the outer core portions 33 and 34 is fitted into the recess 44.
  • a gap is partially formed between the outer peripheral surface of the outer core portions 33, 34 and the inner peripheral surface of the recess 44 in a state where the outer core portions 33, 34 are fitted. It is provided as follows. This gap is filled with the resin constituting the mold resin portion 8 described later.
  • the outer core portions 33 and 34 and the holding members 40a and 40b are integrated by the mold resin portion 8.
  • the holding members 40a and 40b communicate with the gap between the outer core portions 33 and 34 and the recess 44 and the gap between the inner core portions 31 and 32 and the through hole 43 described above. It is configured in. By communicating these gaps, when forming the mold resin portion 8, the resin constituting the mold resin portion 8 can be introduced between the winding portions 21 and 22 and the inner core portions 31 and 32. Is.
  • the holding members 40a and 40b have an inner intervening portion (not shown).
  • the inner intervening portion projects from the peripheral edge portion of the through hole 43 toward the inside of the winding portions 21 and 22, and is inserted between the winding portions 21 and 22 and the inner core portions 31 and 32.
  • the winding portions 21, 22 and the inner core portions 31, 32 are held at intervals by the inner intervening portion. As a result, electrical insulation is ensured between the winding portions 21 and 22 and the inner core portions 31 and 32.
  • the inner core portions 31 and 32 are positioned with respect to the holding members 40a and 40b by inserting the ends of the inner core portions 31 and 32 into the through holes 43 of the holding members 40a and 40b.
  • the outer core portions 33 and 34 are positioned by fitting the inner end surface 33e side of the outer core portions 33 and 34 into the recesses 44 of the holding members 40a and 40b.
  • the winding portions 21 and 22 are positioned by the inner intervening portion. As a result, the winding portions 21 and 22 of the coil 2 and the inner core portions 31 and 32 and the outer core portions 33 and 34 of the magnetic core 3 are held in a positioned state by the holding members 40a and 40b.
  • the constituent materials of the holding members 40a and 40b are typically resins.
  • the resin include thermosetting resins and thermoplastic resins.
  • the thermosetting resin include epoxy resin, phenol resin, silicone resin, urethane resin, unsaturated polyester resin and the like.
  • the thermoplastic resin include PPS resin, PA resin, PI resin, LCP, fluororesin, polytetrafluoroethylene (PTFE) resin, polybutylene terephthalate (PBT) resin, and acrylonitrile-butadiene-styrene (ABS) resin. Be done.
  • the constituent materials of the holding members 40a and 40b may contain a filler in addition to the above resin.
  • the heat dissipation of the holding members 40a and 40b can be improved.
  • the filler the same filler as that used for the composite material described above can be used.
  • the holding members 40a and 40b are made of PPS resin.
  • the union body 10 includes a mold resin portion 8 as shown in FIG.
  • the mold resin portion 8 covers at least a part of the outer peripheral surfaces of the outer core portions 33 and 34, and is interposed between the inner peripheral surfaces of the wound portions 21 and 22 and the outer peripheral surfaces of the inner core portions 31 and 32. ..
  • the inner core portions 31, 32 and the outer core portions 33, 34 are integrally held by the mold resin portion 8.
  • the winding portions 21 and 22 of the coil 2 and the inner core portions 31 and 32 and the outer core portions 33 and 34 of the magnetic core 3 are integrated. Therefore, the coil 2 and the magnetic core 3 can be handled as an integral body.
  • the outer core portions 33 and 34 and the holding members 40a and 40b are integrated by the mold resin portion 8. That is, in this example, the coil 2, the magnetic core 3, and the holding members 40a and 40b are integrated by the mold resin portion 8. Therefore, the union body 10 can be treated as an integral body.
  • the outer peripheral surfaces of the wound portions 21 and 22 are not covered by the mold resin portion 8 and are exposed from the mold resin portion 8.
  • the mold resin portion 8 only needs to be able to integrally hold the inner core portions 31, 32 and the outer core portions 33, 34.
  • the mold resin portion 8 does not need to cover the surface of the inner core portions 31 and 32 along the circumferential direction, that is, the outer peripheral surface of the inner core portions 31 and 32 over the entire length.
  • the formation range of the mold resin portion 8 extends to the vicinity of the ends of the inner core portions 31 and 32. It's fine.
  • the mold resin portion 8 does not extend to the central portion in the axial direction of the inner core portions 31 and 32, and is formed so as to cover at least the end portion of the outer peripheral surfaces of the inner core portions 31 and 32. good.
  • the mold resin portion 8 may extend to the central portion in the axial direction of the inner core portions 31 and 32.
  • the mold resin portion 8 covers the outer peripheral surfaces of the inner core portions 31 and 32 over the entire length, and is formed from the first outer core portion 33 to the second outer core portion 34.
  • the same resin as the resin constituting the holding members 40a and 40b described above can be used.
  • the constituent material of the mold resin portion 8 may contain the above-mentioned filler in addition to the above-mentioned resin.
  • the mold resin portion 8 is made of PPS resin.
  • the mold resin portion 8 can also function as the resin member 4. Specifically, the portion of the mold resin portion 8 that covers the outer peripheral surface of the first outer core portion 33 is included in the first resin member 4a. Further, the portion of the mold resin portion 8 that covers the outer peripheral surface of the second outer core portion 34 is included in the second resin member 4b.
  • the first resin member 4a has an overhanging portion 7 as shown in FIGS. 1 to 3. As shown in FIGS. 1 and 2, the overhanging portion 7 projects toward one short side portion 531 of the side wall portion 52 of the case 5. In the present embodiment, the overhanging portion 7 is provided on the first holding member 40a. The overhanging portion 7 is provided on the surface of the outer wall portion 41 of the first holding member 40a facing the short side portion 531. One overhanging portion 7 is provided at the center of the outer wall portion 41 in the X direction, that is, in the width direction (see FIG. 2). The position of the overhanging portion 7 is not particularly limited, and may be deviated from the central portion of the outer wall portion 41 in the width direction.
  • the shape of the overhanging portion 7 is a tongue piece shape in a plan view (see FIG. 2).
  • the shape of the overhanging portion 7 is not particularly limited, and may be another shape such as a polygonal shape, a semicircular shape, or a semi-elliptical shape. Examples of the polygonal shape include a triangular shape, a rectangular shape, and a trapezoidal shape.
  • the size of the overhanging portion 7 is not particularly limited.
  • the protruding length of the overhanging portion 7 is, for example, 10 mm or more and 30 mm or less. Specific ranges of the protruding length of the overhanging portion 7 include 10 mm or more and 15 mm or less, and 20 mm or more and 30 mm or less.
  • the protruding length is a length along the Y direction of the protruding portion 7 protruding from the outer wall portion 41 of the first holding member 40a. If the protruding length of the overhanging portion 7 is 20 mm or more, the size of the overhanging portion 7 can be secured, and it is easy to firmly fix the overhanging portion 7 to the mounting seat 56.
  • the mounting seat 56 will be described later.
  • the protruding length of the overhanging portion 7 is 15 mm or less, the case 5 does not become excessively large and heavy. This is because if the protruding length of the overhanging portion 7 is 15 mm or less, the thickness of the short side portion 531 can be reduced accordingly.
  • the thickness of the short side portion 531 is a dimension of the short side portion 531 in the Y direction.
  • the width and thickness of the overhanging portion 7 can be appropriately set as long as the overhanging portion 7 is not easily deformed or broken.
  • the width of the overhanging portion 7 is a dimension of the overhanging portion 7 in the X direction.
  • the thickness of the overhanging portion 7 is a dimension of the overhanging portion 7 in the Z direction.
  • the width and thickness of the overhanging portion 7 may be smaller than the width and thickness of the outer wall portion 41 of the first holding member 40a, or may be the same as the width and thickness of the outer wall portion 41. In the present embodiment, the width and thickness of the overhanging portion 7 are smaller than the width and thickness of the outer wall portion 41.
  • the overhanging portion 7 is fixed to the mounting seat 56 by bolting.
  • the overhanging portion 7 is provided with a through hole 71 penetrating in the Z direction.
  • a bolt 75 is inserted through the through hole 71, and an overhanging portion 7 is fastened to the mounting seat 56 by the bolt 75.
  • the overhanging portion 7 is integrally formed with the outer wall portion 41 by insert-molding a metal bracket 70 into the first holding member 40a.
  • the bracket 70 is an L-shaped member having a tongue piece portion protruding from the outer wall portion 41 and a base portion embedded in the outer wall portion 41.
  • the tongue piece portion becomes the overhanging portion 7.
  • the end of the tongue piece on the outer wall 41 side penetrates the inside of the outer wall 41.
  • the base extends along the Z direction from the end of the tongue piece on the outer wall 41 side.
  • Examples of the metal constituting the bracket 70 include non-magnetic metals.
  • non-magnetic metal examples include aluminum and its alloy, magnesium and its alloy, copper and its alloy, silver and its alloy, and austenitic stainless steel.
  • austenitic stainless steel examples include SUS304.
  • the bracket 70 is made of SUS304.
  • the overhanging portion 7 may be integrally molded with the outer wall portion 41 by the resin constituting the first holding member 40a.
  • the first holding member 40a has the overhanging portion 7.
  • the mold resin portion 8 may have an overhanging portion 7.
  • a portion corresponding to the outer wall portion 41 of the first holding member 40a may be formed by the mold resin portion 8, and the overhanging portion 7 may be integrally formed with the mold resin portion 8.
  • the second resin member 4b has a recess 92 as shown in FIGS. 1, 4, and 5.
  • the recess 92 extends in the Z direction from the bottom plate portion 51 side of the case 5 toward the opening 55 side.
  • the concave portion 92 fits into the convex portion 91 provided on the side wall portion 52 of the case 5.
  • the convex portion 91 will be described later.
  • the recess 92 is provided in the second holding member 40b.
  • the concave portion 92 is provided on the surface of the outer wall portion 41 of the second holding member 40b facing the convex portion 91.
  • the recess 92 is provided on each surface of the outer wall portion 41 of the second holding member 40b facing each of the long side portions 541 and 542.
  • the cross-sectional shape of the concave portion 92 is a shape corresponding to the cross-sectional shape of the convex portion 91.
  • the cross-sectional shape of the convex portion 91 and the concave portion 92 is a cross-sectional shape orthogonal to the Z direction.
  • the cross-sectional shape of the recess 92 is rectangular, specifically rectangular.
  • the cross-sectional shape of the recess 92 is not limited to a rectangular shape, and may be another shape such as a polygonal shape, a semicircular shape, or a semi-elliptical shape. Examples of the polygonal shape include a triangular shape, a trapezoidal shape, a pentagonal shape, and a hexagonal shape.
  • the outer peripheral surface of the outer wall portion 41 has a first opening of the recess 92. The first opening is arranged so as to face the convex portion 91.
  • the surface of the outer wall portion 41 on the end surface 101 side has a second opening of the recess 92 (FIGS. 1 and 4). The second opening is arranged so as to face the bottom plate portion 51 side of the case 5.
  • the second holding member 40b has a recess 92.
  • the mold resin portion 8 may have a recess 92.
  • a portion corresponding to the outer wall portion 41 of the second holding member 40b may be formed by the mold resin portion 8 and formed in the recess 92 in the mold resin portion 8.
  • the case 5 By accommodating the union body 10 as shown in FIG. 1, the case 5 can be mechanically protected and protected from the external environment. The purpose of protection from the external environment is to improve anticorrosion.
  • the case 5 is made of a non-magnetic metal, specifically aluminum. Metal has a higher thermal conductivity than resin. Therefore, the metal case 5 easily releases the heat of the union body 10 to the outside through the case 5. Therefore, the metal case 5 contributes to the improvement of the heat dissipation of the union body 10.
  • the case 5 has a bottom plate portion 51, a side wall portion 52, and an opening portion 55 (see also FIG. 4).
  • the case 5 is a bottomed cylindrical container having an opening 55 on the side facing the bottom plate portion 51.
  • the bottom plate portion 51 is a flat plate member on which the union body 10 is placed.
  • the side wall portion 52 is a square tubular body that surrounds the union body 10.
  • a storage space for the union body 10 is formed by the bottom plate portion 51 and the side wall portion 52.
  • the bottom plate portion 51 and the side wall portion 52 are integrally formed.
  • the side wall portion 52 has a height equal to or higher than the height of the union body 10. The height is the dimension of the union 10 in the Z direction.
  • the height of the union body 10, that is, the length along the Z direction is the distance between the end surface 101 on the bottom plate portion 51 side and the end surface 105 on the opening 55 side in the union body 10.
  • the end surface 101 on the bottom plate portion 51 side faces the inner bottom surface 510 of the bottom plate portion 51.
  • the end face 101 corresponds to the bottom surface of the union body 10, that is, the bottom surface.
  • the end face 105 corresponds to the upper surface of the union body 10. Even if the end of the winding forming the coil 2 protrudes from the opening 55, the length of the end of the winding protruding from the opening 55 is included in the height of the union 10, that is, the length in the Z direction. I can't.
  • the bottom plate portion 51 has a square plate shape.
  • the inner bottom surface 510 on which the union body 10 is placed is substantially formed of a flat surface.
  • the side wall portion 52 has a square tubular shape.
  • the side wall portion 52 has a pair of facing short side portions 531 and 532 and a pair of facing long side portions 541 and 542.
  • the inner surfaces of the short side portions 531 and 532 facing the wound portions 21 and 22 and the inner surfaces of the long side portions 541 and 542 are substantially formed of a flat surface.
  • the side wall portion 52 has a rectangular tubular shape in a plan view seen from the Z direction (see also FIG. 4).
  • the rectangular tubular shape means that the shape surrounded by the inner peripheral surface of the side wall portion 52 is substantially rectangular when the case 5 is viewed in a plan view.
  • the rectangular shape here does not have to be a rectangle in a geometrically strict sense, and is considered to be substantially a rectangle including a shape in which the corners are chamfered such as R chamfer or C chamfer. Includes range.
  • the corners of the inner peripheral surface of the side wall portion 52 are not chamfered, but the corners of the inner peripheral surface may be chamfered.
  • the inner surface of one of the short side portions 531 has a mounting seat 56 (see also FIG. 4).
  • the overhanging portion 7 described above is fixed to the mounting seat 56.
  • the mounting seat 56 is provided at a position corresponding to the position of the overhanging portion 7.
  • the shape of the mounting seat 56 substantially corresponds to the shape of the overhanging portion 7 when viewed in a plan view.
  • the mounting seat 56 supports the surface of the overhanging portion 7 on the bottom plate portion 51 side.
  • the mounting seat 56 is provided so as to overlap the overhanging portion 7 in the Z direction.
  • the mounting seat 56 is formed by denting the end surface of the short side portion 531 on the opening 55 side, that is, the upper surface of the short side portion 531 downward.
  • the overhanging portion 7 and the mounting seat 56 are fastened by the bolt 75.
  • the seat surface of the mounting seat 56 that supports the overhanging portion 7 has a screw hole 58 into which a bolt 75 is screwed.
  • the screw hole 58 is formed at a position overlapping the through hole 71 of the overhanging portion 7 in the Z direction.
  • the bolt 75 is inserted into the through hole 71 of the overhanging portion 7 from the opening 55 side of the case 5, and is screwed into the screw hole 58 of the mounting seat 56.
  • the side wall portion 52 has a convex portion 91 as shown in FIG.
  • the convex portion 91 is provided on the inner surface of the side wall portion 52.
  • the convex portion 91 extends in the Z direction from the bottom plate portion 51 side toward the opening 55 side. As shown in FIGS. 6 to 8, the convex portion 91 projects from the inner surface of the side wall portion 52 toward the concave portion 92.
  • the convex portion 91 is provided on the inner surface of each of the long side portions 541 and 542 of the side wall portion 52. As shown in FIG. 4, the convex portion 91 extends from the bottom plate portion 51 along the inner surfaces of the long side portions 541 and 542 in the Z direction. The length of the convex portion 91 along the Z direction is longer than the length of the concave portion 92 along the Z direction.
  • the cross-sectional shape of the convex portion 91 orthogonal to the Z direction is a quadrangular shape, specifically a rectangular shape. The cross-sectional shape of the convex portion 91 may be any shape corresponding to the cross-sectional shape of the concave portion 92.
  • the cross-sectional shape of the convex portion 91 is not limited to a rectangular shape, and may be another shape such as a polygonal shape, a semicircular shape, or a semi-elliptical shape.
  • Examples of the polygonal shape include a triangular shape, a trapezoidal shape, a pentagonal shape, and a hexagonal shape.
  • the union body 10 is positioned with a gap between the convex portion 91 and the concave portion 92 by fitting the convex portion 91 and the concave portion 92.
  • the end surface 910 on the opening 55 side of the convex portion 91 and the end surface 920 on the opening 55 side of the concave portion 92 are in contact with each other.
  • the end surface 910 of the convex portion 91 and the end surface 920 of the concave portion 92 are in contact with each other, so that the position of the union body 10 in the Z direction is restricted.
  • the convex portion 91 and the concave portion 92 function as stoppers for positioning the position of the combined body 10 in the Z direction with respect to the case 5.
  • a predetermined distance can be secured between the end surface 101 on the bottom plate portion 51 side and the inner bottom surface 510 of the bottom plate portion 51 in the union body 10.
  • the distance E (see FIG. 8) between the end surface 101 of the union body 10 and the inner bottom surface 510 of the bottom plate portion 51 is, for example, 0.5 mm or more and 1.5 mm or less, and further 0.5 mm or more and 1.0 mm or less. ..
  • this distance E is 0.5 mm or more
  • the resin to be the sealing resin portion 6 easily wraps around between the union body 10 and the bottom plate portion 51. Therefore, the sealing resin portion 6 is likely to be filled between the union body 10 and the bottom plate portion 51.
  • the heat of the union body 10 is transferred to the bottom plate portion 51 via the sealing resin portion 6. Can be done.
  • the distance E is 1.5 mm or less and 1.0 mm or less, the distance between the end surface 101 of the union body 10 and the inner bottom surface 510 of the bottom plate portion 51 is short. Therefore, the heat of the union body 10 can be easily transferred to the bottom plate portion 51. Therefore, the heat dissipation of the union body 10 can be improved.
  • the distance between the convex portion 91 and the concave portion 92 is, for example, 0.5 mm or less, further 0.3 mm or less.
  • the distance is the distance between the convex portion 91 and the concave portion 92 as seen from the Z direction, as shown in FIG. 7, in a state where the convex portion 91 and the concave portion 92 are fitted. That is, the above-mentioned interval is a horizontal interval orthogonal to the Z direction between the convex portion 91 and the concave portion 92.
  • the above intervals include intervals A and B in the Y direction and intervals C in the X direction. In this embodiment, the intervals A, B, and C are 0.5 mm or less.
  • the distance between the convex portion 91 and the concave portion 92 is 0.5 mm or less, the displacement of the union body 10 in the X direction and the Y direction can be effectively suppressed.
  • the distance between the convex portion 91 and the concave portion 92 may be 0.
  • the sealing resin portion 6 may or may not be filled between the convex portion 91 and the concave portion 92.
  • the length D along the Z direction of the portion where the convex portion 91 and the concave portion 92 are fitted is 10% or more of the height of the union body 10 (see FIG. 1).
  • the height of the union body 10 is the length along the Z direction of the union body 10, and corresponds to the distance between the end face 101 and the end face 105 in the union body 10.
  • the union body 10 is displaced with the overhanging portion 7 as a fulcrum. More specifically, the union body 10 is displaced in a direction of swinging around a fixed point P (see FIG. 9) described later.
  • the convex portion 91 and the concave portion 92 extend in the direction intersecting the arc accompanying the above-mentioned swing, so that the Z- The swing of the union body 10 on the Y plane can be suppressed.
  • the length D is at least a certain value, the swing can be effectively suppressed, so that the displacement of the union body 10 in the Z direction can be suppressed.
  • the length D is 10% or more of the length along the Z direction of the union body 10
  • the displacement of the union body 10 in the Z direction with respect to the case 5 can be effectively suppressed.
  • the upper limit of the length D is, for example, 25% or less of the length along the Z direction of the union body 10, and further 20% or less.
  • the positions of the convex portion 91 and the concave portion 92 will be described mainly with reference to FIG.
  • the convex portion 91 and the concave portion 92 are provided at diagonal portions of the fixing point P of the overhanging portion 7 to the mounting seat 56 when the reactor 1 is viewed from the X direction. That is, the overhanging portion 7 and the mounting seat 56, and the convex portion 91 and the concave portion 92 are provided at positions separated from each other.
  • the fixed point P is the center of the seat surface of the mounting seat 56 to which the overhanging portion 7 is fixed.
  • the diagonal portion is a portion located diagonally on the side far from the fixed point P of the union body 10 when the reactor 1 is viewed from the X direction.
  • the diagonal portion is a portion of the reactor 1 diagonally located from the overhanging portion 7 of the union body 10.
  • the overhanging portion 7 is one side of the line Yc that bisects the union body 10 in the Y direction when the union body 10 is viewed from the X direction, and the union body 10 is bisected in the Z direction. It is located on the opening 55 side of the bisector Zc.
  • the region of the reactor 1 is located on the other side of the line Yc that bisects the union body 10 in the Y direction and on the bottom plate portion 51 side of the line Zc that bisects the union body 10 in the Z direction. It is a diagonal part.
  • one side in the Y direction in which the overhanging portion 7 is located is the side facing the short side portion 531 on which the mounting seat 56 is provided.
  • the other side in the Y direction where the diagonal portion is located is the side opposite to the side where the overhanging portion 7 is located and faces the other short side portion 532.
  • the bisector Yc is a line that bisects the length of the union 10 along the Y direction.
  • the protruding length of the overhanging portion 7 is not included in the length of the union body 10 in the Y direction.
  • the bisector Zc is a line that bisects the length of the union 10 along the Z direction. If at least a part of the portion where the convex portion 91 and the concave portion 92 are fitted is within the above-mentioned region, it is assumed that the convex portion 91 and the concave portion 92 are located diagonally.
  • the diagonal portion is preferably a region among the above regions that satisfies the following conditions.
  • a region located within the range between the straight line PGa and the straight line PGb obtained by drawing a straight line PG passing through the center of gravity G of the union body 10 from the fixed point P and rotating the straight line PG by ⁇ 10 ° in the Z direction around the fixed point P. Is.
  • the inner peripheral surface of the side wall portion 52 may be inclined so as to spread from the bottom plate portion 51 side toward the opening 55 side. More specifically, at least one of the inner surfaces of the short side portions 531 and 532 of the side wall portion 52 and the inner surfaces of the long side portions 541 and 542 are spaced from each other from the bottom plate portion 51 side toward the opening 55 side. It may be tilted to be large. That is, at least one of the inner surfaces of the short side portions 531 and 532 and the long side portions 541 and 542 is formed so as to be inclined outward from the case 5 with respect to the vertical direction of the inner bottom surface 510 of the bottom plate portion 51. May be. The vertical direction corresponds to the Z direction.
  • the inner surfaces of the short side portions 531 and 532 and the long side portions 541 and 542 are inclined so as to increase the distance from each other from the bottom plate portion 51 side toward the opening 55 side, in the manufacturing process of the reactor 1. , The work of storing the union body 10 in the case 5 is easy to perform. Further, when the metal case 5 is die-cast, at least one of the inner surfaces of the short side portions 531 and 532 and the long side portions 541 and 542 is inclined, so that the case 5 is extracted from the mold. Is easy to do. In the present embodiment, as shown in FIGS. 1 and 3, the inner peripheral surface of the side wall portion 52 is inclined so as to spread from the bottom plate portion 51 side toward the opening 55 side.
  • the inclination angle formed by the inner surfaces of the short side portions 531 and 532 and the long side portions 541 and 542 and the vertical line of the inner bottom surface 510 of the bottom plate portion 51 can be appropriately selected.
  • the inclination angle may be, for example, 0.5 ° or more and 5 ° or less, and further 1 ° or more and 2 ° or less. If the inclination angle is too large, the distance between the outer peripheral surface of the union body 10 and the inner peripheral surface of the side wall portion 52 becomes large on the opening 55 side. If the interval is too large, it is difficult to efficiently transfer the heat of the union body 10 on the opening 55 side to the case 5. Therefore, it is not preferable that the inclination angle is too large from the viewpoint of heat dissipation. Therefore, the upper limit of the tilt angle is 5 ° or less, and further 2 ° or less.
  • the length, width, height, and volume of the case 5 can be appropriately selected.
  • the length of the case 5 is, for example, 80 mm or more and 120 mm or less, and further 90 mm or more and 115 mm or less.
  • the width of the case 5 is, for example, 30 mm or more and 80 mm or less, and further 35 mm or more and 70 mm or less.
  • the height of the case 5 is, for example, 70 mm or more and 140 mm or less, and further 80 mm or more and 130 mm or less.
  • the length of the case 5 is a dimension of the case 5 in the Y direction.
  • the width of the case 5 is the dimension of the case 5 in the X direction.
  • the height of the case 5 is a dimension of the case 5 in the Z direction.
  • the volume of the case 5 is, for example, 120 cm 3 or more and 1200 cm 3 or less, and further 200 cm 3 or more and 900 cm 3 or less.
  • the case 5 has a length larger than the width and a height larger than the width. Therefore, the area obtained by the length ⁇ width of the case 5 is smaller than the area obtained by the length ⁇ height of the case 5.
  • non-magnetic metal constituting the case 5 examples include aluminum and its alloy, magnesium and its alloy, copper and its alloy, silver and its alloy, and austenitic stainless steel.
  • the thermal conductivity of these metals is relatively high. Therefore, the case 5 can be easily used as a heat dissipation path.
  • the heat of the union 10 is easily released to the outside efficiently through the case 5. Therefore, the heat dissipation of the union body 10 is improved.
  • a resin or the like can be used in addition to the metal.
  • the metal case 5 can be manufactured by die casting, for example.
  • the case 5 is made of a die-cast product made of aluminum.
  • the arrangement form of the union body 10 with respect to the case 5 is an upright type.
  • the combined body 10 is housed in the case 5 so that the axial direction of the winding portions 21 and 22 constituting the coil 2 is orthogonal to the inner bottom surface 510 of the bottom plate portion 51.
  • the union body 10 is housed in the case 5 so that the parallel direction of both winding portions 21 and 22 is along the long side portions 541 and 542.
  • the installation area of the union body 10 with respect to the bottom plate portion 51 can be reduced as compared with the following flat type.
  • the flat placement type is the form described in Patent Documents 1 and 2, and the union is housed in the case so that both the parallel direction and the axial direction of both winding portions are orthogonal to the Z direction. That is, in the flat placement type, the union is housed in the case so that both the parallel direction and the axial direction of both winding portions are parallel to the inner bottom surface of the bottom plate portion.
  • the length of the union 10 along the parallel direction of both winding portions 21 and 22 and the direction orthogonal to both the axial directions of both winding portions 21 and 22 is the length of both winding portions 21 and 22.
  • the upright type has a smaller installation area of the union body 10 than the flat type. Therefore, when the arrangement form of the union body 10 is an upright type, the area of the bottom plate portion 51 can be reduced, so that the installation area of the reactor 1 can be saved.
  • the reactor 1 can efficiently use the case 5 as a heat dissipation path. Therefore, the reactor 1 easily releases the heat of the coil 2 to the case 5, and the combined body 10 is excellent in heat dissipation.
  • the distance between the outer peripheral surface of the union body 10 and the inner peripheral surface of the side wall portion 52 is, for example, 0.5 mm or more and 1.5 mm or less, and further 0.5 mm or more and 1.0 mm or less.
  • the distance is the distance between the outer peripheral surface of the outer wall portion 41 of the second holding member 40b located on the bottom plate portion 51 side and the long side portions 541, 542 and the short side portion 532 of the side wall portion 52.
  • the reason for this is that, in the union body 10, the member closest to the side wall portion 52, except for the overhanging portion 7, is the second holding member 40b.
  • the above interval does not include the portion where the convex portion 91 and the concave portion 92 fit.
  • the minimum value may be adopted for the above interval.
  • this distance is 0.5 mm or more, the resin to be the sealing resin portion 6 easily wraps around between the union body 10 and the side wall portion 52. Therefore, the sealing resin portion 6 is likely to be filled between the union body 10 and the side wall portion 52.
  • the distance is 1.5 mm or less, and further 1.0 mm or less, the distance between the outer peripheral surfaces of the wound portions 21 and 22 and the inner peripheral surface of the side wall portion 52 becomes smaller. Therefore, the heat dissipation of the union body 10 can be improved.
  • the sealing resin portion 6 is filled in the case 5 to seal at least a part of the union body 10.
  • the sealing resin portion 6 can mechanically protect the union body 10 and protect it from the external environment. The purpose of protection from the external environment is to improve anticorrosion.
  • the sealing resin portion 6 is filled up to the open end of the case 5. Therefore, the entire union body 10 is embedded in the sealing resin portion 6. Only a part of the union body 10 may be sealed in the sealing resin portion 6. For example, in the union body 10, up to the height of the upper end surfaces of the winding portions 21 and 22 constituting the coil 2, the sealing resin portion 6 may be sealed.
  • the sealing resin portion 6 is interposed between the union body 10 and the bottom plate portion 51 and the side wall portion 52 of the case 5. As a result, the heat of the union body 10 can be transferred to the case 5 via the sealing resin portion 6. Therefore, the heat dissipation of the union body 10 is improved.
  • the resin of the sealing resin portion 6 examples include a thermosetting resin and a thermoplastic resin.
  • the thermosetting resin examples include epoxy resin, urethane resin, silicone resin, and unsaturated polyester resin.
  • the thermoplastic resin examples include PPS resin and the like.
  • the sealing resin portion 6 is made of a silicone resin. Silicone resin has a higher thermal conductivity than resins such as epoxy resin. The higher the thermal conductivity of the sealing resin portion 6, the more preferable. The reason for this is that the heat of the union body 10 can be easily transferred to the case 5, so that the heat dissipation of the union body 10 is further improved. Therefore, the material constituting the sealing resin portion 6 may contain, for example, a filler as described above in addition to the above resin.
  • the thermal conductivity of the sealing resin portion 6 is preferably, for example, 1 W / m ⁇ K or more, more preferably 1.5 W / m ⁇ K or more.
  • the reactor 1 can be manufactured, for example, by a manufacturing method including the following first to third steps.
  • the union body 10 and the case 5 are prepared.
  • the union body 10 is stored in the case 5.
  • the sealing resin portion 6 is formed in the case 5.
  • the union body 10 and the case 5 are prepared.
  • the union body 10 is manufactured by assembling the coil 2, the magnetic core 3, and the holding members 40a and 40b, as shown in FIG.
  • the first holding member 40a has an overhanging portion 7.
  • the overhanging portion 7 is integrally formed with the outer wall portion 41 of the first holding member 40a by insert-molding the metal bracket 70.
  • the outer wall portion 41 of the second holding member 40b is formed with a recess 92. Further, the mold resin portion 8 (see FIG. 1) is formed.
  • the mold resin portion 8 is formed so as to cover the outer peripheral surfaces of the outer core portions 33 and 34.
  • a part of the resin constituting the mold resin portion 8 includes a gap between the outer core portions 33, 34 and the recess 44, and a gap between the inner core portions 31, 32 and the through hole 43. Through, it is filled between the winding portions 21, 22 and the inner core portions 31, 32. Therefore, the mold resin portion 8 is formed so as to be interposed between the winding portions 21 and 22 and the inner core portions 31 and 32. Further, the coil 2, the magnetic core 3, and the holding members 40a and 40b are integrated by the mold resin portion 8.
  • the case 5 to be prepared is made of, for example, a non-magnetic metal.
  • the case 5 has a mounting seat 56 as shown in FIG. As described above, the mounting seat 56 is formed on the inner surface of one of the short side portions 531. Further, a convex portion 91 is formed on the inner surface of the side wall portion 52.
  • the case 5 is a die-cast product made of aluminum.
  • the union body 10 is housed in the case 5 through the opening 55 of the case 5.
  • the union body 10 is housed in the case 5 so that the union body 10 is arranged in the above-mentioned upright type.
  • the combined body 10 is positioned with respect to the case 5 by fitting the convex portion 91 of the side wall portion 52 and the concave portion 92 of the second holding member 40b. .. Further, by fitting the convex portion 91 and the concave portion 92, the union body 10 is arranged in a state where a predetermined distance is provided between the convex portion 91 and the bottom plate portion 51.
  • the overhanging portion 7 of the first holding member 40a is fixed to the mounting seat 56. Specifically, the overhanging portion 7 is fastened to the mounting seat 56 by inserting the bolt 75 into the through hole 71 of the overhanging portion 7 and screwing the bolt 75 into the screw hole 58 of the mounting seat 56.
  • the case 5 is filled with resin to form the sealing resin portion 6 (see FIG. 1).
  • the case 5 is filled with the resin to be the sealing resin portion 6 in the state where the union body 10 is housed.
  • the resin that becomes the sealing resin portion 6 is a silicone resin.
  • the resin to be the sealing resin portion 6 it is preferable to put the case 5 containing the union body 10 in a vacuum chamber and inject the resin in a vacuum state. By injecting the resin in a vacuum state, it is possible to prevent the sealing resin portion 6 from containing air bubbles.
  • the resin After filling the case 5 with the above-mentioned resin, the resin is solidified to form the sealing resin portion 6 (FIG. 1).
  • the solidification of the resin may be carried out under appropriate conditions depending on the resin to be used.
  • the reactor 1 can be used as a component of a circuit that performs a voltage step-up operation or a voltage step-down operation.
  • the reactor 1 can be used, for example, as a component of various converters and power conversion devices.
  • the converter include an in-vehicle converter mounted on a vehicle, typically a DC-DC converter, an air conditioner converter, and the like.
  • the vehicle include a hybrid vehicle, a plug-in hybrid vehicle, an electric vehicle, a fuel cell vehicle, and the like.
  • the overhanging portion 7 is fixed to the mounting seat 56, and the convex portion 91 and the concave portion 92 are fitted to each other, so that the displacement of the union body 10 in the case 5 can be suppressed.
  • the overhanging portion 7 is fixed to the mounting seat 56, there is only one fixing point between the union body 10 and the case 5.
  • the vibration transmission path between the union body 10 and the case 5 is basically one place. Therefore, it is difficult for vibration to be transmitted between the union body 10 and the case 5.
  • the fitting of the convex portion 91 and the concave portion 92 causes the union body 10 to be arranged at a distance from the bottom plate portion 51, so that vibration also occurs between the union body 10 and the case 5 at that point as well. It's hard to convey. As a result, displacement of the union body 10 is unlikely to occur. Another reason is that the displacement range of the union body 10 is restricted in the case 5 by fitting the convex portion 91 and the concave portion 92.
  • the convex portion 91 and the concave portion 92 are located at diagonal portions of the fixed point P. Since the convex portion 91 and the concave portion 92 are fitted at the diagonal portion away from the fixed point P, the displacement of the combined body 10 can be effectively suppressed.
  • the reactor 1 of the first embodiment can more effectively suppress the displacement of the union body 10 for the following reasons.
  • the distance between the convex portion 91 and the concave portion 92 is 0.5 mm or less.
  • the interval is 0.5 mm or less, the displacement of the union body 10 in the X direction and the Y direction can be effectively suppressed.
  • the length along the Z direction of the portion where the convex portion 91 and the concave portion 92 are fitted is 10% or more of the length along the Z direction of the union body 10.
  • the length is longer than a certain level, the displacement of the union body 10 in the Z direction can be effectively suppressed.
  • the cross-sectional shape of the convex portion 91 orthogonal to the Z direction is rectangular. If the cross-sectional shape of the convex portion 91 is rectangular, particularly rectangular, it is easy to regulate the displacement range of the combined body 10. Therefore, it is easy to effectively suppress the displacement of the union body 10.
  • the union body 10 is displaced in each of the X direction, the Y direction, and the Z direction by fixing the overhanging portion 7 to the mounting seat 56 and fitting the convex portion 91 and the concave portion 92. It can be suppressed. Therefore, since the reactor 1 can suppress the displacement of the union body 10 in the case 5, it is possible to suppress the cracking of the sealing resin portion 6 due to the displacement of the union body 10. Therefore, in the reactor 1, the sealing resin portion 6 can protect the union body 10 for a long period of time. Further, the heat of the union body 10 can be satisfactorily transferred to the case 5 via the sealing resin portion 6. Such a reactor 1 is highly reliable.
  • the reactor 1 of the first embodiment also has the following effects.
  • the sealing resin portion is provided between the union body 10 and the bottom plate portion 51. 6 is thinly filled and easily filled. Therefore, the heat of the union body 10 can be efficiently transferred to the bottom plate portion 51 via the sealing resin portion 6.
  • the resin constituting the sealing resin portion 6 is a silicone resin. Therefore, the heat of the union body 10 can be easily transferred to the case 5 via the sealing resin portion 6.
  • FIG. 10 is a cross-sectional view of the reactor 1 cut along a plane orthogonal to the Z direction, as in FIG.
  • the positions of the convex portion 91 and the concave portion 92 are different from those of the first embodiment.
  • the convex portion 91 is provided on the inner surface of the other short side portion 532 of the side wall portion 52 of the case 5.
  • the recess 92 is provided on the surface of the outer wall portion 41 of the second holding member 40b facing the short side portion 532.
  • the length of each of the convex portion 91 and the concave portion 92 in the Z direction and the fitting relationship between the convex portion 91 and the concave portion 92 are the fitting between the convex portion 91 and the concave portion 92 described in the first embodiment. Similar to a relationship.
  • the convex portion 91 and the concave portion 92 are located at diagonal portions of the fixing point P to the mounting seat 56 of the overhanging portion 7, as described in the first embodiment with reference to FIG.
  • the number of the convex portion 91 and the number of the concave portions 92 are one each. Similar to the reactor 1 of the first embodiment, the reactor 1 of the modification 1-1 can suppress the displacement of the union body 10 by fitting the convex portion 91 and the concave portion 92.
  • FIG. 11 is a cross-sectional view of the reactor 1 cut along a plane orthogonal to the Z direction, as in FIG.
  • Modification 1-2 is different from the first embodiment in that the side wall portion 52 of the case 5 has a concave portion 92 and the second holding member 40b has a convex portion 91.
  • the convex portion 91 and the concave portion 92 are located diagonally to the fixing point P of the overhanging portion 7 to the mounting seat 56, as described in the first embodiment with reference to FIG.
  • the recess 92 is provided on the inner surface of each of the long side portions 541 and 542 of the side wall portion 52.
  • the convex portion 91 is provided on each surface of the outer wall portion 41 of the second holding member 40b facing each of the long side portions 541 and 542.
  • the recess 92 When the recess 92 is provided on the inner surface of the side wall portion 52 as in the modified example 1-2, the recess 92 extends from the opening 55 along the inner surface of the side wall portion 52 in the Z direction. Therefore, when the combined body 10 is housed in the case 5, the convex portion 91 of the second holding member 40b can be fitted into the concave portion 92 of the side wall portion 52. However, the recess 92 does not reach the bottom plate portion 51, but extends from the opening 55 to the vicinity of the bottom plate portion 51.
  • the union body 10 when the union body 10 is housed in the case 5, the lower end surface of the convex portion 91 and the lower end surface of the concave portion 92 are in contact with each other in a state where the convex portion 91 and the concave portion 92 are fitted. Therefore, by fitting the convex portion 91 and the concave portion 92, the combined body 10 can be positioned with a gap between the convex portion 91 and the bottom plate portion 51.
  • the reactor 1 of the modification 1-2 can suppress the displacement of the union body 10 by fitting the convex portion 91 and the concave portion 92.
  • the positions of the convex portion 91 and the concave portion 92 can be changed to the other short side portion 532 side as in the modified example 1-1.
  • the reactor 1 of the first embodiment and the modified examples 1-1 and 1-2 can be used for applications that satisfy the following energization conditions.
  • the energization conditions include a maximum direct current of 100 A or more and 1000 A or less, an average voltage of 100 V or more and 1000 V or less, and an operating frequency of 5 kHz or more and 100 kHz or less.
  • the reactor 1 of the first embodiment and the modifications 1-1 and 1-2 is typically a component of a converter mounted on a vehicle such as an electric vehicle or a hybrid vehicle, or a configuration of a power conversion device including the converter. Can be used for parts.
  • a vehicle 1200 such as a hybrid vehicle or an electric vehicle is driven by a main battery 1210, a power conversion device 1100 connected to the main battery 1210, and power supplied from the main battery 1210, and is used for traveling. It is equipped with a motor 1220.
  • the motor 1220 is typically a three-phase AC motor, which drives the wheels 1250 during traveling and functions as a generator during regeneration.
  • the vehicle 1200 comprises an engine 1300 in addition to the motor 1220.
  • an inlet is shown as a charging point of the vehicle 1200, but it may be provided with a plug.
  • the power conversion device 1100 has a converter 1110 connected to the main battery 1210 and an inverter 1120 connected to the converter 1110 to perform mutual conversion between direct current and alternating current.
  • the converter 1110 shown in this example boosts the input voltage of the main battery 1210 of about 200 V or more and 300 V or less to about 400 V or more and 700 V or less while the vehicle 1200 is running, and supplies power to the inverter 1120.
  • the converter 1110 lowers the input voltage output from the motor 1220 via the inverter 1120 to a DC voltage suitable for the main battery 1210, and charges the main battery 1210.
  • the input voltage is a DC voltage.
  • the inverter 1120 converts the direct current boosted by the converter 1110 into a predetermined alternating current and supplies power to the motor 1220, and during regeneration, converts the alternating current output from the motor 1220 into a direct current and outputs it to the converter 1110. is doing.
  • the converter 1110 includes a plurality of switching elements 1111, a drive circuit 1112 that controls the operation of the switching elements 1111, and a reactor 1115, and converts the input voltage by repeating ON / OFF.
  • the conversion of the input voltage is performed here as a step-up / down pressure.
  • Power devices such as field effect transistors and insulated gate bipolar transistors are used for the switching element 1111.
  • the reactor 1115 utilizes the property of the coil that tries to prevent the change of the current flowing in the circuit, and has a function of smoothing the change when the current tries to increase or decrease due to the switching operation.
  • the reactor 1 the reactor 1 of any one of the first embodiment and the modified examples 1-1 and 1-2 is provided. By providing the reactor 1, the power converter 1100 and the converter 1110 are highly reliable.
  • the vehicle 1200 is connected to the converter 1110, the converter 1150 for a power feeding device connected to the main battery 1210, the sub-battery 1230 and the main battery 1210 which are the power sources of the accessories 1240, and the high voltage of the main battery 1210 is applied.
  • a converter for auxiliary power supply 1160 that converts to a low voltage is provided.
  • the converter 1110 typically performs DC-DC conversion, but the power supply device converter 1150 and the auxiliary power supply converter 1160 perform AC-DC conversion. Some converters 1150 for power feeding devices perform DC-DC conversion.
  • the reactor of the converter 1150 for the power supply device and the converter 1160 for the auxiliary power supply is provided with the same configuration as that of the reactor 1 of the first embodiment and the modifications 1-1 and 1-2, and the size and shape are appropriately adjusted.
  • a modified reactor is available.
  • the reactor 1 of any one of Embodiment 1 and Modifications 1-1 and 1-2 is used. You can also.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulating Of Coils (AREA)

Abstract

A reactor comprising a coil, a magnetic core, a resin member, a case, and a sealing resin portion. The magnetic core includes an inner core portion and an outer core portion. The case includes a bottom plate portion, a side wall portion, and an opening portion. The side wall portion includes a pair of short-side portions and a pair of long-side portions. An assembly is housed in the case with the axial direction of the coil lying along a Z-direction. The outer core portion includes a first outer core portion and a second outer core portion. The resin member includes a first resin member and a second resin member. The first resin member has an extending portion protruding toward one of the short-side portions. A mounting seat is provided on the inner surface of one of the short-side portions. When the assembly housed in the case is viewed from an X-direction, at the diagonal position of the point at which the extending portion is fixed to the mounting seat, one of the second resin member and the side wall portion has a protrusion and the other has a recess. The assembly is positioned at an interval from the bottom plate portion due to the mating of the protrusion and the recess.

Description

リアクトル、コンバータ、及び電力変換装置Reactors, converters, and power converters
 本開示は、リアクトル、コンバータ、及び電力変換装置に関する。
 本出願は、2020年9月08日付の日本国出願の特願2020-150881に基づく優先権を主張し、前記日本国出願に記載された全ての記載内容を援用するものである。
The present disclosure relates to reactors, converters, and power converters.
This application claims priority based on Japanese Patent Application No. 2020-150881 of the Japanese application dated September 08, 2020, and incorporates all the contents described in the Japanese application.
 特許文献1、2は、コイルと、磁性コアと、コイルと磁性コアとの組合体を収納するケースと、ケース内に充填されて組合体の外周を覆う封止樹脂部とを備えるリアクトルを開示する。特許文献1、2には、帯状の2本のステーによって、組合体をケースの底板部側に押圧した状態で固定することが記載されている。各ステーは、磁性コアのうち、コイルの外側に配置される外側コア部の上面に配置される。各ステーの両端は、ケース内に設けられた4つのステー取付部にボルトやネジで留められる。 Patent Documents 1 and 2 disclose a reactor including a coil, a magnetic core, a case for accommodating a combination of the coil and the magnetic core, and a sealing resin portion filled in the case and covering the outer periphery of the combination. do. Patent Documents 1 and 2 describe that the union is fixed in a state of being pressed against the bottom plate portion of the case by two strip-shaped stays. Each stay is arranged on the upper surface of the outer core portion arranged outside the coil in the magnetic core. Both ends of each stay are fastened with bolts or screws to four stay mounting portions provided in the case.
特開2013-131567号公報Japanese Unexamined Patent Publication No. 2013-131567 特開2017-055096号公報Japanese Unexamined Patent Publication No. 2017-05509
 本開示のリアクトルは、
 コイルと、
 前記コイルの内側及び外側に配置される部分を有する磁性コアと、
 前記コイルと前記磁性コアとの相互の位置を規定する樹脂部材と、
 前記コイル、前記磁性コア、及び前記樹脂部材を含む組合体を収納するケースと、
 前記ケース内に充填される封止樹脂部とを備え、
 前記磁性コアは、
  前記コイルの内側に配置される内側コア部と、
  前記コイルの外側に配置される外側コア部とを有し、
 前記ケースは、
  前記組合体が載置される底板部と、
  前記組合体の周囲を囲む角筒状の側壁部と、
  前記底板部に向かい合う開口部とを有し、
 前記側壁部は、一対の向かい合う短辺部と、一対の向かい合う長辺部とを有し、
 前記組合体は、前記コイルの軸方向がZ方向に沿うように前記ケースに収納され、
 前記外側コア部は、前記開口部側に配置される第一外側コア部と、前記底板部側に配置される第二外側コア部とを含み、
 前記樹脂部材は、前記第一外側コア部の外周面に設けられる第一樹脂部材と、前記第二外側コア部の外周面に設けられる第二樹脂部材とを含み、
 前記第一樹脂部材は、前記一対の短辺部のうちの一方の前記短辺部に向かって突出する張出し部を有し、
 前記一方の短辺部の内面には、前記張出し部が固定される取付座を有し、
 前記ケースに収納された前記組合体をX方向から見たとき、
  前記張出し部の前記取付座への固定点の対角部位において、
  前記第二樹脂部材及び前記側壁部のうちの一方は、前記Z方向に延びる凸部を有し、
  前記第二樹脂部材及び前記側壁部のうちの他方は、前記凸部と嵌り合う凹部を有し、
 前記組合体は、前記凸部と前記凹部との嵌合により、前記底板部との間に間隔をあけて位置決めされており、
 前記X方向は、前記短辺部に沿う方向であり、
 前記Z方向は、前記X方向とY方向の双方に直交する方向であり、
 前記Y方向は、前記長辺部に沿う方向である。
The reactor of this disclosure is
With the coil
A magnetic core having portions arranged inside and outside the coil,
A resin member that defines the mutual position between the coil and the magnetic core,
A case for accommodating the coil, the magnetic core, and the union including the resin member, and
It is provided with a sealing resin portion to be filled in the case.
The magnetic core is
The inner core portion arranged inside the coil and
It has an outer core portion arranged outside the coil and has an outer core portion.
The case is
The bottom plate on which the union is placed and
A square cylindrical side wall that surrounds the union and
It has an opening facing the bottom plate and has an opening.
The side wall portion has a pair of facing short sides and a pair of facing long sides.
The union is housed in the case so that the axial direction of the coil is along the Z direction.
The outer core portion includes a first outer core portion arranged on the opening side and a second outer core portion arranged on the bottom plate portion side.
The resin member includes a first resin member provided on the outer peripheral surface of the first outer core portion and a second resin member provided on the outer peripheral surface of the second outer core portion.
The first resin member has an overhanging portion that protrudes toward the short side portion of one of the pair of short side portions.
The inner surface of the one short side portion has a mounting seat on which the overhanging portion is fixed.
When the union housed in the case is viewed from the X direction,
At the diagonal portion of the fixing point of the overhanging portion to the mounting seat,
One of the second resin member and the side wall portion has a convex portion extending in the Z direction.
The other of the second resin member and the side wall portion has a concave portion that fits with the convex portion.
The union is positioned with a gap between the bottom plate portion by fitting the convex portion and the concave portion.
The X direction is a direction along the short side portion.
The Z direction is a direction orthogonal to both the X direction and the Y direction.
The Y direction is a direction along the long side portion.
 本開示のコンバータは、本開示のリアクトルを備える。 The converter of the present disclosure comprises the reactor of the present disclosure.
 本開示の電力変換装置は、本開示のコンバータを備える。 The power conversion device of the present disclosure includes the converter of the present disclosure.
図1は、実施形態1に係るリアクトルをX方向から見た概略部分断面図である。FIG. 1 is a schematic partial cross-sectional view of the reactor according to the first embodiment as viewed from the X direction. 図2は、実施形態1に係るリアクトルをZ方向から見た概略平面図である。FIG. 2 is a schematic plan view of the reactor according to the first embodiment as viewed from the Z direction. 図3は、実施形態1に係るリアクトルをY方向から見た概略部分断面図である。FIG. 3 is a schematic partial cross-sectional view of the reactor according to the first embodiment as viewed from the Y direction. 図4は、実施形態1に係るリアクトルの概略分解斜視図である。FIG. 4 is a schematic exploded perspective view of the reactor according to the first embodiment. 図5は、実施形態1に係るリアクトルに備える組合体の概略分解図である。FIG. 5 is a schematic exploded view of the union body provided for the reactor according to the first embodiment. 図6は、図1のVI-VI線で切断した概略断面図である。FIG. 6 is a schematic cross-sectional view cut along the VI-VI line of FIG. 図7は、図6の二点鎖線で囲む部分を拡大した要部拡大図である。FIG. 7 is an enlarged view of a main part in which the portion surrounded by the alternate long and short dash line in FIG. 6 is enlarged. 図8は、図1の二点鎖線で囲む部分を拡大した要部拡大図である。FIG. 8 is an enlarged view of a main part in which the portion surrounded by the alternate long and short dash line in FIG. 1 is enlarged. 図9は、図1に示すリアクトルにおける固定点及び対角部位を説明する図である。FIG. 9 is a diagram illustrating a fixed point and a diagonal portion in the reactor shown in FIG. 図10は、変形例1-1に係るリアクトルにおける凸部と凹部を説明する図である。FIG. 10 is a diagram illustrating a convex portion and a concave portion in the reactor according to the modified example 1-1. 図11は、変形例1-2に係るリアクトルにおける凸部と凹部を説明する図である。FIG. 11 is a diagram illustrating a convex portion and a concave portion in the reactor according to the modified example 1-2. 図12は、ハイブリッド自動車の電源系統を模式的に示す構成図である。FIG. 12 is a configuration diagram schematically showing a power supply system of a hybrid vehicle. 図13は、コンバータを備える電力変換装置の一例の概略を示す回路図である。FIG. 13 is a circuit diagram illustrating an outline of an example of a power conversion device including a converter.
 [本開示が解決しようとする課題]
 特許文献1、2に記載されるような従来のリアクトルにおいて、ケース内での組合体の位置の変化を抑制することが望まれる。この位置の変化は、コイルの励磁や外的振動に伴って生じ得る。
[Problems to be solved by this disclosure]
In the conventional reactor as described in Patent Documents 1 and 2, it is desired to suppress the change in the position of the union in the case. This change in position can occur with coil excitation or external vibration.
 特許文献1、2に記載される上述のステーによる固定構造では、以下の理由からケース内で組合体が変位し易い。組合体とケースとの固定箇所は、合計4箇所である。固定箇所が多いと、組合体とケースとの間で振動が伝わり易い。そのため、ケース内で組合体が変位し易い。 In the above-mentioned fixed structure with stays described in Patent Documents 1 and 2, the union is easily displaced in the case for the following reasons. There are a total of four fixed points between the union and the case. If there are many fixed points, vibration is likely to be transmitted between the union and the case. Therefore, the union is easily displaced in the case.
 特に、ケース内において、上下方向と水平方向など複数の方向への組合体の変位を抑制することが望まれる。 In particular, it is desirable to suppress the displacement of the union in multiple directions such as the vertical direction and the horizontal direction in the case.
 そこで、本開示は、ケース内での組合体の変位を抑制できるリアクトルを提供することを目的の一つとする。また、本開示は、上記リアクトルを備えるコンバータを提供することを別の目的の一つとする。更に、本開示は、上記コンバータを備える電力変換装置を提供することを他の目的の一つとする。 Therefore, one of the purposes of this disclosure is to provide a reactor capable of suppressing the displacement of the union within the case. Another object of the present disclosure is to provide a converter having the above reactor. Further, one of the other purposes of the present disclosure is to provide a power conversion device including the above converter.
 [本開示の効果]
 本開示のリアクトルは、ケース内での組合体の変位を抑制できる。また、本開示のコンバータ及び電力変換装置は、信頼性が高い。
[Effect of this disclosure]
The reactors of the present disclosure can suppress the displacement of the union within the case. Further, the converter and the power converter of the present disclosure are highly reliable.
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
[Explanation of Embodiments of the present disclosure]
First, embodiments of the present disclosure will be listed and described.
 (1)本開示の実施形態に係るリアクトルは、
 コイルと、
 前記コイルの内側及び外側に配置される部分を有する磁性コアと、
 前記コイルと前記磁性コアとの相互の位置を規定する樹脂部材と、
 前記コイル、前記磁性コア、及び前記樹脂部材を含む組合体を収納するケースと、
 前記ケース内に充填される封止樹脂部とを備え、
 前記磁性コアは、
  前記コイルの内側に配置される内側コア部と、
  前記コイルの外側に配置される外側コア部とを有し、
 前記ケースは、
  前記組合体が載置される底板部と、
  前記組合体の周囲を囲む角筒状の側壁部と、
  前記底板部に向かい合う開口部とを有し、
 前記側壁部は、一対の向かい合う短辺部と、一対の向かい合う長辺部とを有し、
 前記組合体は、前記コイルの軸方向がZ方向に沿うように前記ケースに収納され、
 前記外側コア部は、前記開口部側に配置される第一外側コア部と、前記底板部側に配置される第二外側コア部とを含み、
 前記樹脂部材は、前記第一外側コア部の外周面に設けられる第一樹脂部材と、前記第二外側コア部の外周面に設けられる第二樹脂部材とを含み、
 前記第一樹脂部材は、前記一対の短辺部のうちの一方の前記短辺部に向かって突出する張出し部を有し、
 前記一方の短辺部の内面には、前記張出し部が固定される取付座を有し、
 前記ケースに収納された前記組合体をX方向から見たとき、
  前記張出し部の前記取付座への固定点の対角部位において、
  前記第二樹脂部材及び前記側壁部のうちの一方は、前記Z方向に延びる凸部を有し、
  前記第二樹脂部材及び前記側壁部のうちの他方は、前記凸部と嵌り合う凹部を有し、
 前記組合体は、前記凸部と前記凹部との嵌合により、前記底板部との間に間隔をあけて位置決めされており、
 前記X方向は、前記短辺部に沿う方向であり、
 前記Z方向は、前記X方向とY方向の双方に直交する方向であり、
 前記Y方向は、前記長辺部に沿う方向である。
(1) The reactor according to the embodiment of the present disclosure is
With the coil
A magnetic core having portions arranged inside and outside the coil,
A resin member that defines the mutual position between the coil and the magnetic core,
A case for accommodating the coil, the magnetic core, and the union including the resin member, and
It is provided with a sealing resin portion to be filled in the case.
The magnetic core is
The inner core portion arranged inside the coil and
It has an outer core portion arranged outside the coil and has an outer core portion.
The case is
The bottom plate on which the union is placed and
A square cylindrical side wall that surrounds the union and
It has an opening facing the bottom plate and has an opening.
The side wall portion has a pair of facing short sides and a pair of facing long sides.
The union is housed in the case so that the axial direction of the coil is along the Z direction.
The outer core portion includes a first outer core portion arranged on the opening side and a second outer core portion arranged on the bottom plate portion side.
The resin member includes a first resin member provided on the outer peripheral surface of the first outer core portion and a second resin member provided on the outer peripheral surface of the second outer core portion.
The first resin member has an overhanging portion that protrudes toward the short side portion of one of the pair of short side portions.
The inner surface of the one short side portion has a mounting seat on which the overhanging portion is fixed.
When the union housed in the case is viewed from the X direction,
At the diagonal portion of the fixing point of the overhanging portion to the mounting seat,
One of the second resin member and the side wall portion has a convex portion extending in the Z direction.
The other of the second resin member and the side wall portion has a concave portion that fits with the convex portion.
The union is positioned with a gap between the bottom plate portion by fitting the convex portion and the concave portion.
The X direction is a direction along the short side portion.
The Z direction is a direction orthogonal to both the X direction and the Y direction.
The Y direction is a direction along the long side portion.
 上記リアクトルは、ケース内での組合体の変位を抑制できる。この理由として、以下のことが挙げられる。 The above reactor can suppress the displacement of the union in the case. The reasons for this are as follows.
 組合体とケースとの固定箇所が1箇所である。上記リアクトルでは、組合体における第一樹脂部材の張出し部がケースの取付座に固定されるので、固定箇所が1箇所である。固定箇所が少ないため、組合体とケースとの間で振動が伝わり難い。そのため、組合体の変位が生じ難い。 There is only one fixed point between the union body and the case. In the reactor, the overhanging portion of the first resin member in the union is fixed to the mounting seat of the case, so that there is only one fixing point. Since there are few fixed points, it is difficult for vibration to be transmitted between the union and the case. Therefore, the displacement of the union is unlikely to occur.
 組合体における第二樹脂部材及びケースの側壁部のうちの一方が凸部を有し、他方が凸部に嵌り合う凹部を有することで、ケース内において組合体の変位する範囲が規制される。具体的には、張出し部の取付座への固定と、凸部と凹部との嵌合により、組合体がX方向、Y方向、Z方向の各方向へ変位することを抑制できる。特に、上記リアクトルは、張出し部の取付座への固定点の対角部位に凸部と凹部が位置する。つまり、張出し部及び取付座と、凸部及び凹部とは、互いに離れた位置に設けられる。上記リアクトルでは、張出し部が取付座に固定されることから、張出し部を支点に組合体が変位する。そのため、張出し部から離れた位置ほど、組合体の変位量が大きくなる。張出し部の取付座への固定点の対角部位において、凸部と凹部とが嵌合することで、組合体の変位を効果的に抑制できる。そのため、組合体の変位量を小さくできる。 One of the second resin member in the union and the side wall of the case has a convex portion, and the other has a concave portion that fits into the convex portion, so that the displacement range of the union is restricted in the case. Specifically, by fixing the overhanging portion to the mounting seat and fitting the convex portion and the concave portion, it is possible to suppress the union body from being displaced in each of the X direction, the Y direction, and the Z direction. In particular, in the reactor, the convex portion and the concave portion are located diagonally to the fixing point of the overhanging portion to the mounting seat. That is, the overhanging portion and the mounting seat, and the convex portion and the concave portion are provided at positions separated from each other. In the above reactor, since the overhanging portion is fixed to the mounting seat, the union body is displaced with the overhanging portion as a fulcrum. Therefore, the farther the position is from the overhanging portion, the larger the displacement amount of the union body. Displacement of the union can be effectively suppressed by fitting the convex portion and the concave portion at the diagonal portion of the fixing point of the overhanging portion to the mounting seat. Therefore, the displacement amount of the union can be reduced.
 また、上記リアクトルは、凸部と凹部との嵌合により、組合体が底板部との間に間隔をあけて配置される点でも、組合体とケースとの間で振動が伝わり難い。 Further, in the above reactor, vibration is difficult to be transmitted between the union body and the case in that the union body is arranged at a space between the union body and the bottom plate part due to the fitting between the convex portion and the concave portion.
 上記リアクトルは、ケース内での組合体の変位を抑制できることから、封止樹脂部の割れを抑制できる。この理由は、組合体の変位が小さくなるので、組合体とケースとの間に充填される封止樹脂部に過度な応力や歪が負荷され難いからである。上記リアクトルは、封止樹脂部に割れが生じ難いので、信頼性が高い。 Since the reactor can suppress the displacement of the union in the case, it can suppress the cracking of the sealing resin portion. The reason for this is that since the displacement of the union is small, it is difficult for excessive stress or strain to be applied to the sealing resin portion filled between the union and the case. The reactor is highly reliable because the sealing resin portion is unlikely to crack.
 (2)上記リアクトルの一形態として、
 前記張出し部は、前記組合体を前記X方向から見て、前記組合体を前記Y方向に二等分する線よりも一方側で、かつ、前記組合体を前記Z方向に二等分する線よりも前記開口部側に位置し、
 前記対角部位は、前記組合体を前記Y方向に二等分する線よりも他方側で、かつ、前記組合体を前記Z方向に二等分する線よりも前記底板部側に位置することが挙げられる。
(2) As one form of the above reactor,
The overhanging portion is a line that bisects the union in the Z direction on one side of the line that bisects the union in the Y direction when the union is viewed from the X direction. Located on the side of the opening,
The diagonal portion is located on the opposite side of the line that bisects the union in the Y direction and on the bottom plate side of the line that bisects the union in the Z direction. Can be mentioned.
 上記形態は、上記特定の対角部位に凸部及び凹部が位置することで、組合体の変位を効果的に抑制できる。 In the above form, the displacement of the union can be effectively suppressed by locating the convex portion and the concave portion in the specific diagonal portion.
 (3)上記リアクトルの一形態として、
 前記凸部は、前記一対の長辺部の各々の内面、及び、前記第二樹脂部材における前記一対の長辺部のそれぞれと向かい合う各面のうちの一方に配置され、
 前記凹部は、前記一対の長辺部の各々の内面、及び、前記第二樹脂部材における前記一対の長辺部のそれぞれと向かい合う各面のうちの他方に配置されていることが挙げられる。
(3) As one form of the above reactor,
The convex portion is arranged on one of the inner surfaces of each of the pair of long side portions and each surface of the second resin member facing each of the pair of long side portions.
The recess may be arranged on the inner surface of each of the pair of long side portions and on the other side of each surface of the second resin member facing each of the pair of long side portions.
 上記形態は、ケース内において、X方向、Y方向、Z方向の各方向への組合体の変位を抑制できる。 The above form can suppress the displacement of the union in each of the X direction, the Y direction, and the Z direction in the case.
 (4)上記リアクトルの一形態として、
 前記凸部と前記凹部との間隔は、0.5mm以下であることが挙げられる。
(4) As one form of the above reactor,
The distance between the convex portion and the concave portion may be 0.5 mm or less.
 上記形態は、組合体のX方向及びY方向の変位を効果的に抑制できる。 The above form can effectively suppress the displacement of the union in the X and Y directions.
 (5)上記リアクトルの一形態として、
 前記凸部と前記凹部とが嵌り合っている部分の前記Z方向に沿う長さは、前記組合体の前記Z方向に沿う長さの10%以上であることが挙げられる。
(5) As one form of the above reactor,
The length of the portion where the convex portion and the concave portion are fitted along the Z direction may be 10% or more of the length of the union body along the Z direction.
 上記形態は、組合体のZ方向の変位を効果的に抑制できる。 The above form can effectively suppress the displacement of the union in the Z direction.
 (6)上記リアクトルの一形態として、
 前記組合体における前記底板部側の端面と前記底板部の内底面との間隔は、0.5mm以上1.0mm以下であることが挙げられる。
(6) As one form of the above reactor,
The distance between the end surface on the bottom plate portion side and the inner bottom surface of the bottom plate portion in the union is 0.5 mm or more and 1.0 mm or less.
 上記形態は、組合体の放熱性が向上する。組合体と底板部との間隔が0.5mm以上であれば、組合体と底板部との間に封止樹脂部が充填され易い。そのため、組合体の熱を封止樹脂部を介してケースに伝えることができる。また、組合体と底板部との間隔が1.0mm以下であることで、組合体と底板部との間の距離が短い。そのため、組合体の熱をケースに伝え易い。 The above form improves the heat dissipation of the union. When the distance between the union body and the bottom plate portion is 0.5 mm or more, the sealing resin portion is easily filled between the union body and the bottom plate portion. Therefore, the heat of the union can be transferred to the case via the sealing resin portion. Further, since the distance between the union body and the bottom plate portion is 1.0 mm or less, the distance between the union body and the bottom plate portion is short. Therefore, it is easy to transfer the heat of the union to the case.
 (7)上記リアクトルの一形態として、
 前記第二樹脂部材が前記凹部を有し、前記側壁部が前記凸部を有することが挙げられる。
(7) As one form of the above reactor,
The second resin member may have the concave portion, and the side wall portion may have the convex portion.
 上記形態は、凸部を有するケースを製造し易い。側壁部に凹部を設けるよりも側壁部に凸部を設ける方が、凹部のZ方向に沿う長さが短くて済む。特に、ケースをダイキャストで製造する場合、側壁部に凹部を一体成形するよりも側壁部に凸部を一体成形する方が、成形したケースを型から抜き出し易い。 The above form makes it easy to manufacture a case having a convex portion. The length of the concave portion along the Z direction is shorter when the convex portion is provided on the side wall portion than when the concave portion is provided on the side wall portion. In particular, when the case is manufactured by die-casting, it is easier to remove the molded case from the mold by integrally molding the convex portion on the side wall portion than by integrally molding the concave portion on the side wall portion.
 (8)上記リアクトルの一形態として、
 前記凸部の前記Z方向に直交する断面形状が四角形状であることが挙げられる。
(8) As one form of the above reactor,
The cross-sectional shape of the convex portion orthogonal to the Z direction may be a quadrangular shape.
 上記形態は、組合体の変位を効果的に抑制し易い。 The above form is easy to effectively suppress the displacement of the union.
 (9)上記リアクトルの一形態として、
 前記封止樹脂部を構成する樹脂がシリコーン樹脂であることが挙げられる。
(9) As one form of the above reactor,
The resin constituting the sealing resin portion may be a silicone resin.
 上記形態は、組合体の放熱性が向上する。シリコーン樹脂は、エポキシ樹脂などの樹脂に比べて熱伝導率が高いからである。そのため、組合体の熱を封止樹脂部を介してケースに伝え易い。 The above form improves the heat dissipation of the union. This is because the silicone resin has a higher thermal conductivity than a resin such as an epoxy resin. Therefore, it is easy to transfer the heat of the union to the case through the sealing resin portion.
 (10)上記リアクトルの一形態として、
 前記張出し部は金属製のブラケットの一部であり、前記ブラケットの残部が前記第一樹脂部材に埋め込まれていることが挙げられる。
(10) As one form of the above reactor,
The overhanging portion is a part of a metal bracket, and the rest of the bracket is embedded in the first resin member.
 金属製の張出し部であれば、組合体における取付座への固定強度が高められる。また、ブラケットをインサート成形することで第一樹脂部材が容易に製造可能なことから、上記形態は製造性にも優れる。 If it is a metal overhanging part, the fixing strength to the mounting seat in the union body can be increased. Further, since the first resin member can be easily manufactured by insert molding the bracket, the above-mentioned form is also excellent in manufacturability.
 (11)本開示の実施形態に係るコンバータは、
 上記(1)から(10)のいずれか1つに記載のリアクトルを備える。
(11) The converter according to the embodiment of the present disclosure is
The reactor according to any one of (1) to (10) above is provided.
 本開示のコンバータは、上記リアクトルを備えるため、信頼性が高い。 The converter of the present disclosure is highly reliable because it is equipped with the above reactor.
 (12)本開示の実施形態に係る電力変換装置は、
 上記(11)に記載のコンバータを備える。
(12) The power conversion device according to the embodiment of the present disclosure is
The converter according to (11) above is provided.
 本開示の電力変換装置は、上記コンバータを備えるため、信頼性が高い。 Since the power conversion device of the present disclosure includes the above converter, it is highly reliable.
 [本開示の実施形態の詳細]
 本開示の実施形態に係るリアクトルの具体例を、以下に図面を参照しつつ説明する。図中の同一符号は同一名称物を示す。各図面では、説明の便宜上、構成の一部を誇張又は簡略化して示す場合がある。図面における各部の寸法比も実際と異なる場合がある。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
[Details of Embodiments of the present disclosure]
Specific examples of the reactor according to the embodiment of the present disclosure will be described below with reference to the drawings. The same reference numerals in the figure indicate the same names. In each drawing, for convenience of explanation, a part of the configuration may be exaggerated or simplified. The dimensional ratio of each part in the drawing may also differ from the actual one. It should be noted that the present invention is not limited to these examples, and is indicated by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 [実施形態1]
 <概要>
 図1から図9を参照して、実施形態1に係るリアクトル1を説明する。リアクトル1は、図1に示すように、コイル2と、磁性コア3と、樹脂部材4と、ケース5と、封止樹脂部6とを備える。本実施形態では、コイル2は、2つの巻回部21、22を有する。磁性コア3は、コイル2の内側及び外側に配置される部分を有する。具体的には、磁性コア3は、コイル2の内側に配置される内側コア部31、32と、コイル2の外側に配置される外側コア部33、34とを有する。樹脂部材4は、コイル2と磁性コア3との相互の位置を規定する。ケース5は、コイル2、磁性コア3、及び樹脂部材4を含む組合体10を収納する。封止樹脂部6は、ケース5内に充填される。ケース5は、底板部51と、側壁部52と、開口部55とを有する。側壁部52は、図2に示すように、一対の向かい合う短辺部531、532と、一対の向かい合う長辺部541、542とを有する。
[Embodiment 1]
<Overview>
The reactor 1 according to the first embodiment will be described with reference to FIGS. 1 to 9. As shown in FIG. 1, the reactor 1 includes a coil 2, a magnetic core 3, a resin member 4, a case 5, and a sealing resin portion 6. In this embodiment, the coil 2 has two winding portions 21 and 22. The magnetic core 3 has portions arranged inside and outside the coil 2. Specifically, the magnetic core 3 has inner core portions 31 and 32 arranged inside the coil 2 and outer core portions 33 and 34 arranged outside the coil 2. The resin member 4 defines the mutual position between the coil 2 and the magnetic core 3. The case 5 houses the union body 10 including the coil 2, the magnetic core 3, and the resin member 4. The sealing resin portion 6 is filled in the case 5. The case 5 has a bottom plate portion 51, a side wall portion 52, and an opening portion 55. As shown in FIG. 2, the side wall portion 52 has a pair of facing short side portions 531 and 532, and a pair of facing long side portions 541 and 542.
 リアクトル1において、図4に示すように、X方向は、側壁部52における短辺部531、532に沿う方向である。Y方向は、長辺部541、542に沿う方向である。Z方向は、X方向とY方向の双方に直交する方向である。
 図1、図9は、ケース5及び封止樹脂部6をY方向に平行な平面で切断した部分断面図である。
 図3は、ケース5及び封止樹脂部6をX方向に平行な平面で切断した部分断面図である。
 図1、図3、図9では、組合体10は、断面ではなく外観を示す。
 図1の断面図は、図2のI-I線で切断した断面図に相当する。
 図3の断面図は、図2のIII-III線で切断した断面図に相当する。
 図2は、ケース5の開口部55側からZ方向に見た平面図である。
 図2、図6、図7では、封止樹脂部6を省略している。
 図4は、組合体10をケース5に収納する前の状態を示す。
 図5は、組合体10について、後述するモールド樹脂部8を有していない状態を分解して示す。
 図8では、凸部91を二点鎖線で仮想的に示す。
In the reactor 1, as shown in FIG. 4, the X direction is the direction along the short side portions 531 and 532 of the side wall portion 52. The Y direction is a direction along the long side portions 541 and 542. The Z direction is a direction orthogonal to both the X direction and the Y direction.
1 and 9 are partial cross-sectional views of the case 5 and the sealing resin portion 6 cut along a plane parallel to the Y direction.
FIG. 3 is a partial cross-sectional view of the case 5 and the sealing resin portion 6 cut along a plane parallel to the X direction.
In FIGS. 1, 3, and 9, the union body 10 shows an appearance rather than a cross section.
The cross-sectional view of FIG. 1 corresponds to the cross-sectional view cut along the line I-I of FIG.
The cross-sectional view of FIG. 3 corresponds to the cross-sectional view cut along the line III-III of FIG.
FIG. 2 is a plan view seen from the opening 55 side of the case 5 in the Z direction.
In FIGS. 2, 6 and 7, the sealing resin portion 6 is omitted.
FIG. 4 shows a state before the union body 10 is stored in the case 5.
FIG. 5 shows the union body 10 in a state in which it does not have the mold resin portion 8 described later in an exploded manner.
In FIG. 8, the convex portion 91 is virtually shown by a two-dot chain line.
 以下の説明では、ケース5の底板部51側を下とし、底板部51側とは反対側、即ち開口部55側を上とする。上下方向は上記Z方向に対応する。上記Z方向は、組合体10の高さ方向、ケース5の深さ方向に相当する。上記X方向は、組合体10やケース5の幅方向に相当する。上記Y方向は、組合体10やケース5の長さ方向に相当する。 In the following description, the bottom plate portion 51 side of the case 5 is on the bottom, and the side opposite to the bottom plate portion 51 side, that is, the opening 55 side is on the top. The vertical direction corresponds to the Z direction. The Z direction corresponds to the height direction of the union body 10 and the depth direction of the case 5. The X direction corresponds to the width direction of the union body 10 and the case 5. The Y direction corresponds to the length direction of the union body 10 and the case 5.
 実施形態1のリアクトル1では、図1に示すように、組合体10は、コイル2の軸方向がZ方向に沿うようにケース5に収納される。以下、この配置形態を直立型と呼ぶ。また、磁性コア3を構成する外側コア部33、34のうち、ケース5の開口部55側に配置される外側コア部33を第一外側コア部と呼び、底板部51側に配置される外側コア部34を第二外側コア部と呼ぶ。樹脂部材4は、第一外側コア部33の外周面に設けられる第一樹脂部材4aと、第二外側コア部34の外周面に設けられる第二樹脂部材4bとを含む。
 リアクトル1の特徴の1つは、互いの位置を保持する特定構造の組合体10と特定構造のケース5とを備えることにある。具体的には、図1、図2に示すように、第一樹脂部材4aは張出し部7を有し、ケース5は張出し部7が固定される取付座56を有する。更に、図4に示すように、ケース5は凸部91を有し、第二樹脂部材4bは凸部91に嵌り合う凹部92を有する。リアクトル1において、張出し部7及び取付座56と、凸部91及び凹部92とは、互いに離れた位置に設けられる。
 以下、リアクトル1の構成について詳しく説明する。
In the reactor 1 of the first embodiment, as shown in FIG. 1, the union body 10 is housed in the case 5 so that the axial direction of the coil 2 is along the Z direction. Hereinafter, this arrangement form is referred to as an upright type. Further, among the outer core portions 33 and 34 constituting the magnetic core 3, the outer core portion 33 arranged on the opening 55 side of the case 5 is called the first outer core portion, and the outer side arranged on the bottom plate portion 51 side. The core portion 34 is referred to as a second outer core portion. The resin member 4 includes a first resin member 4a provided on the outer peripheral surface of the first outer core portion 33 and a second resin member 4b provided on the outer peripheral surface of the second outer core portion 34.
One of the features of the reactor 1 is that it includes a partnership 10 having a specific structure and a case 5 having a specific structure that hold each other's positions. Specifically, as shown in FIGS. 1 and 2, the first resin member 4a has an overhanging portion 7, and the case 5 has a mounting seat 56 to which the overhanging portion 7 is fixed. Further, as shown in FIG. 4, the case 5 has a convex portion 91, and the second resin member 4b has a concave portion 92 that fits into the convex portion 91. In the reactor 1, the overhanging portion 7 and the mounting seat 56, and the convex portion 91 and the concave portion 92 are provided at positions separated from each other.
Hereinafter, the configuration of the reactor 1 will be described in detail.
 (コイル)
 コイル2は、図1に示すように、2つの巻回部21、22を有する。巻回部21、22は、巻線を螺旋状に巻回してなる。巻回部21、22は、互いの軸方向が平行するように並列に配置されている。組合体10がケース5に収納された状態において、コイル2の軸方向、即ち巻回部21、22の軸方向は、Z方向に一致する。
(coil)
As shown in FIG. 1, the coil 2 has two winding portions 21 and 22. The winding portions 21 and 22 are formed by winding windings in a spiral shape. The winding portions 21 and 22 are arranged in parallel so that their axial directions are parallel to each other. In the state where the combined body 10 is housed in the case 5, the axial direction of the coil 2, that is, the axial direction of the winding portions 21 and 22 coincides with the Z direction.
 コイル2は、両巻回部21、22が1本の連続する巻線で形成されていてもよいし、各巻回部21、22が別々の巻線を巻回して形成されていてもよい。両巻回部21、22が1本の連続する巻線で構成される場合、例えば、一方の巻回部21を巻回部21の一端側から形成した後、巻回部21の他端側で巻線を屈曲させて折り返し、他方の巻回部22を形成することが挙げられる。各巻回部21、22が別々の巻線で構成される場合、各巻回部21、22を別々の巻線で形成した後、各巻回部21、22の他端側で巻線の端部同士を接続することが挙げられる。この接続には、溶接や圧着、半田付け、ロウ付けなどの接合方法が利用できる。 In the coil 2, both winding portions 21 and 22 may be formed by winding one continuous winding, or each winding portion 21 and 22 may be formed by winding separate windings. When both winding portions 21 and 22 are composed of one continuous winding, for example, after forming one winding portion 21 from one end side of the winding portion 21, the other end side of the winding portion 21 is formed. The winding is bent and folded back to form the other winding portion 22. When the winding portions 21 and 22 are composed of separate windings, after the winding portions 21 and 22 are formed of separate windings, the ends of the windings are connected to each other on the other end side of the winding portions 21 and 22. Can be mentioned. Joining methods such as welding, crimping, soldering, and brazing can be used for this connection.
 巻回部21、22の一端側の巻線の端部は、ケース5の開口部55側から外部に引き出される。引き出された巻線の端部には、図示しない端子金具が取り付けられる。端子金具には、図示しない電源などの外部装置が接続される。なお、図1などは、巻回部21、22のみを示し、巻線の端部などは省略している。 The end of the winding on one end side of the winding portions 21 and 22 is pulled out from the opening 55 side of the case 5. Terminal fittings (not shown) are attached to the ends of the drawn windings. An external device such as a power supply (not shown) is connected to the terminal fitting. Note that FIG. 1 and the like show only the winding portions 21 and 22, and the end portions of the windings and the like are omitted.
 巻線は、導体線と、絶縁被覆とを有する被覆線が挙げられる。導体線の構成材料は、銅などが挙げられる。絶縁被覆の構成材料は、ポリアミドイミドなどの樹脂が挙げられる。被覆線としては、断面形状が長方形状の被覆平角線や、断面形状が円形状の被覆丸線などが挙げられる。 Examples of the winding include a conductor wire and a covered wire having an insulating coating. Examples of the constituent material of the conductor wire include copper and the like. Examples of the constituent material of the insulating coating include resins such as polyamide-imide. Examples of the covered wire include a covered flat wire having a rectangular cross-sectional shape, a covered round wire having a circular cross-sectional shape, and the like.
 本実施形態では、両巻回部21、22は、同じ仕様の巻線からなり、形状、大きさ、巻回方向、ターン数が同じである。また、巻回部21、22は、被覆平角線がエッジワイズ巻きされた四角筒状のエッジワイズコイルである。本実施形態において、巻回部21、22の形状は、矩形筒状である。巻回部21、22の形状は、特に限定されるものではなく、例えば、円筒状や楕円筒状、長円筒状などであってもよい。また、両巻回部21、22を形成する巻線の仕様や、両巻回部21、22の形状などは異ならせてもよい。 In this embodiment, both winding portions 21 and 22 are made of windings having the same specifications, and have the same shape, size, winding direction, and number of turns. Further, the winding portions 21 and 22 are square cylinder-shaped edgewise coils in which the covering flat wire is wound edgewise. In the present embodiment, the winding portions 21 and 22 have a rectangular tubular shape. The shapes of the winding portions 21 and 22 are not particularly limited, and may be, for example, a cylindrical shape, an elliptical cylinder shape, a long cylindrical shape, or the like. Further, the specifications of the windings forming the both winding portions 21 and 22 and the shapes of the both winding portions 21 and 22 may be different.
 本実施形態では、巻回部21、22を軸方向、即ちZ方向から見た端面形状が矩形状である。つまり、巻回部21、22の外形はそれぞれ、4つの平面と4つの角部とを有する。巻回部21、22の角部は丸められている。巻回部21、22の外周面は実質的に平面で構成されている。そのため、巻回部21、22の外周面とケース5における側壁部52の内周面とは、平面同士で向かい合う(図1、図3参照)。従って、巻回部21、22の外周面と側壁部52の内周面とが向かい合う面積が大きく確保され易い。また、巻回部21、22の外周面と側壁部52の内周面との間隔が小さくなり易い。 In the present embodiment, the end face shape of the winding portions 21 and 22 viewed from the axial direction, that is, the Z direction is rectangular. That is, the outer shapes of the winding portions 21 and 22 have four planes and four corner portions, respectively. The corners of the winding portions 21 and 22 are rounded. The outer peripheral surfaces of the winding portions 21 and 22 are substantially formed of a flat surface. Therefore, the outer peripheral surfaces of the wound portions 21 and 22 and the inner peripheral surface of the side wall portion 52 in the case 5 face each other in planes (see FIGS. 1 and 3). Therefore, it is easy to secure a large area where the outer peripheral surfaces of the wound portions 21 and 22 and the inner peripheral surface of the side wall portions 52 face each other. Further, the distance between the outer peripheral surfaces of the wound portions 21 and 22 and the inner peripheral surface of the side wall portion 52 tends to be small.
 コイル2は、図1に示すように、両巻回部21、22の各々の軸方向がケース5の底板部51と直交し、かつ、両巻回部21、22の並列方向がケース5の側壁部52における長辺部541、542に沿うように配置されている。つまり、両巻回部21、22は、Y方向に並ぶように配置されている。本実施形態では、一方の巻回部21が側壁部52における一方の短辺部531側に配置され、他方の巻回部22が他方の短辺部532側に配置されている。 As shown in FIG. 1, in the coil 2, the axial direction of each of the two winding portions 21 and 22 is orthogonal to the bottom plate portion 51 of the case 5, and the parallel direction of the two winding portions 21 and 22 is the case 5. It is arranged along the long side portions 541 and 542 of the side wall portion 52. That is, both winding portions 21 and 22 are arranged so as to be arranged in the Y direction. In the present embodiment, one winding portion 21 is arranged on one short side portion 531 side of the side wall portion 52, and the other winding portion 22 is arranged on the other short side portion 532 side.
 (磁性コア)
 磁性コア3は、図1に示すように、2つの内側コア部31、32と、2つの外側コア部33、34とを有する。内側コア部31、32は、コイル2の内側、即ち巻回部21、22の内側に配置される部分である。外側コア部33、34は、両巻回部21、22の外側に配置される部分である。本実施形態では、両内側コア部31、32を両端から挟むように外側コア部33、34がそれぞれ配置される(図5も参照)。磁性コア3は、両内側コア部31、32の各端面と外側コア部33、34の各内端面33e(図5も参照)とが接続されることによって、環状に構成される。磁性コア3には、コイル2を励磁した際に磁束が流れる閉磁路が形成される。
(Magnetic core)
As shown in FIG. 1, the magnetic core 3 has two inner core portions 31, 32 and two outer core portions 33, 34. The inner core portions 31 and 32 are portions arranged inside the coil 2, that is, inside the winding portions 21 and 22. The outer core portions 33 and 34 are portions arranged outside the both winding portions 21 and 22. In the present embodiment, the outer core portions 33 and 34 are arranged so as to sandwich the inner core portions 31 and 32 from both ends (see also FIG. 5). The magnetic core 3 is formed in an annular shape by connecting the end faces of the inner core portions 31 and 32 and the inner end faces 33e of the outer core portions 33 and 34 (see also FIG. 5). A closed magnetic path through which a magnetic flux flows when the coil 2 is excited is formed in the magnetic core 3.
  (内側コア部)
 内側コア部31、32は、互いの軸方向が平行するように並列に配置される。組合体10がケース5に収納された状態において、内側コア部31、32の軸方向は、Z方向に一致する。内側コア部31、32の形状は、巻回部21、22の内周形状に概ね対応した形状である。巻回部21、22の内周面と内側コア部31、32の外周面との間には隙間が存在する。この隙間には、後述するモールド樹脂部8を構成する樹脂が充填される。本実施形態では、内側コア部31、32の形状が四角柱状、より具体的には直方体状である。内側コア部31、32を軸方向、即ちZ方向から見た端面形状が矩形状である。内側コア部31、32の角部は、巻回部21、22の角部に沿うように丸められている。両内側コア部31、32の大きさは同じである。内側コア部31、32の軸方向の端部は、コイル2の端面、即ち巻回部21、22の端面から若干突出している。巻回部21、22の端面から突出する内側コア部31、32の両端部は、後述する保持部材40a、40bの各貫通孔43に挿入される(図5も参照)。
(Inner core part)
The inner core portions 31 and 32 are arranged in parallel so that their axial directions are parallel to each other. In the state where the union body 10 is housed in the case 5, the axial directions of the inner core portions 31 and 32 coincide with the Z direction. The shapes of the inner core portions 31 and 32 substantially correspond to the inner peripheral shapes of the wound portions 21 and 22. There is a gap between the inner peripheral surfaces of the winding portions 21 and 22 and the outer peripheral surfaces of the inner core portions 31 and 32. This gap is filled with the resin constituting the mold resin portion 8 described later. In the present embodiment, the inner core portions 31 and 32 have a square columnar shape, more specifically a rectangular parallelepiped shape. The end face shape of the inner core portions 31 and 32 when viewed from the axial direction, that is, the Z direction is rectangular. The corners of the inner cores 31 and 32 are rounded along the corners of the windings 21 and 22. The sizes of both inner core portions 31 and 32 are the same. The axial ends of the inner core portions 31 and 32 slightly protrude from the end faces of the coil 2, that is, the end faces of the winding portions 21 and 22. Both ends of the inner core portions 31 and 32 protruding from the end faces of the winding portions 21 and 22 are inserted into the through holes 43 of the holding members 40a and 40b described later (see also FIG. 5).
 本実施形態では、内側コア部31、32はそれぞれ、1つの柱状のコア片で構成されている。内側コア部31、32を構成する各コア片のZ方向に沿う長さは、巻回部21、22のZ方向に沿う長さと略等しい。つまり、内側コア部31、32には、磁気ギャップ材が設けられていない。本実施形態とは異なり、内側コア部31、32は、複数のコア片と、隣り合うコア片間に介在される磁気ギャップ材とで構成されていてもよい。磁気ギャップ材は、樹脂やセラミックスなどの非磁性材料からなる板材を利用できる。 In the present embodiment, the inner core portions 31 and 32 are each composed of one columnar core piece. The length of each core piece constituting the inner core portions 31 and 32 along the Z direction is substantially equal to the length of the winding portions 21 and 22 along the Z direction. That is, the inner core portions 31 and 32 are not provided with the magnetic gap material. Unlike the present embodiment, the inner core portions 31 and 32 may be composed of a plurality of core pieces and a magnetic gap material interposed between adjacent core pieces. As the magnetic gap material, a plate material made of a non-magnetic material such as resin or ceramics can be used.
  (外側コア部)
 外側コア部33、34は、両内側コア部31、32の各端部同士を接続するように配置される。外側コア部33、34は、両内側コア部31、32の各端面に向かい合う内端面33eを有する(図5も参照)。外側コア部33、34の形状は、両内側コア部31、32の各端部同士をつなぐ形状であれば、特に限定されない。本実施形態では、外側コア部33、34の形状が直方体状である。両外側コア部33、34の大きさは概ね同じである。外側コア部33、34はそれぞれ、1つの柱状のコア片で構成されている。
(Outer core part)
The outer core portions 33 and 34 are arranged so as to connect the ends of both inner core portions 31 and 32 to each other. The outer core portions 33 and 34 have inner end surfaces 33e facing each end surface of both inner core portions 31 and 32 (see also FIG. 5). The shape of the outer core portions 33 and 34 is not particularly limited as long as it is a shape that connects the ends of both inner core portions 31 and 32. In the present embodiment, the outer core portions 33 and 34 have a rectangular parallelepiped shape. The sizes of both outer core portions 33 and 34 are substantially the same. The outer core portions 33 and 34 are each composed of one columnar core piece.
 ケース5の開口部55側に配置される一方の外側コア部33は、第一外側コア部である。ケース5の底板部51側に配置される他方の外側コア部34は、第二外側コア部である。第二外側コア部34における内側コア部31、32側とは反対側の外端面は、底板部51の内底面510に向かい合う。 One outer core portion 33 arranged on the opening 55 side of the case 5 is the first outer core portion. The other outer core portion 34 arranged on the bottom plate portion 51 side of the case 5 is a second outer core portion. The outer end surface of the second outer core portion 34 opposite to the inner core portions 31 and 32 sides faces the inner bottom surface 510 of the bottom plate portion 51.
 内側コア部31、32及び外側コア部33、34は、軟磁性材料を含む成形体で構成されている。軟磁性材料としては、鉄や鉄合金などの金属、フェライトなどの非金属が挙げられる。鉄合金は、例えば、Fe-Si合金、Fe-Ni合金などが挙げられる。軟磁性材料を含む成形体としては、代表的には、圧粉成形体や複合材料の成形体が挙げられる。 The inner core portions 31, 32 and the outer core portions 33, 34 are made of a molded body containing a soft magnetic material. Examples of the soft magnetic material include metals such as iron and iron alloys and non-metals such as ferrite. Examples of the iron alloy include Fe—Si alloy and Fe—Ni alloy. Typical examples of the molded body containing the soft magnetic material include a dust compact molded body and a molded body made of a composite material.
 圧粉成形体は、軟磁性材料からなる粉末を圧縮成形してなる。以下、軟磁性材料からなる粉末を「軟磁性粉末」と呼ぶ。圧粉成形体は、複合材料に比較して、軟磁性粉末の含有量が高い。そのため、圧粉成形体は、磁気特性を高め易い。磁気特性としては、代表的には、比透磁率や飽和磁束密度が挙げられる。圧粉成形体における軟磁性粉末の含有量は、圧粉成形体を100体積%とするとき、例えば85体積%以上99.99体積%以下であることが挙げられる。 The compact compact is made by compression molding a powder made of a soft magnetic material. Hereinafter, the powder made of a soft magnetic material is referred to as "soft magnetic powder". The powder compact has a high content of soft magnetic powder as compared with the composite material. Therefore, the powder compact tends to improve the magnetic characteristics. Typical examples of the magnetic characteristics include relative permeability and saturation magnetic flux density. The content of the soft magnetic powder in the powder compact is, for example, 85% by volume or more and 99.99% by volume or less when the powder compact is 100% by volume.
 複合材料の成形体は、軟磁性粉末が樹脂中に分散してなる。複合材料の成形体は、未固化の樹脂中に軟磁性粉末を混合して分散させた原料を金型に充填し、樹脂を固化させることで得られる。複合材料は、軟磁性粉末の含有量を調整することによって、磁気特性を調整し易い。複合材料における軟磁性粉末の含有量は、複合材料を100体積%とするとき、例えば20体積%以上80体積%以下が挙げられる。 The molded body of the composite material is made of soft magnetic powder dispersed in the resin. A molded product of a composite material is obtained by filling a mold with a raw material in which a soft magnetic powder is mixed and dispersed in an unsolidified resin, and the resin is solidified. The composite material can easily adjust its magnetic properties by adjusting the content of the soft magnetic powder. The content of the soft magnetic powder in the composite material is, for example, 20% by volume or more and 80% by volume or less when the composite material is 100% by volume.
 軟磁性粉末は、軟磁性粒子の集合体である。軟磁性粒子は、その表面に絶縁被覆を有する被覆粒子であってもよい。絶縁被覆としては、例えば、リン酸塩被覆、シリカ被覆、樹脂被覆などが挙げられる。樹脂被覆の構成材料は、例えば、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、ポリアミド樹脂、ポリイミド樹脂などが挙げられる。 Soft magnetic powder is an aggregate of soft magnetic particles. The soft magnetic particles may be coated particles having an insulating coating on the surface thereof. Examples of the insulating coating include phosphate coating, silica coating, resin coating and the like. Examples of the constituent material of the resin coating include epoxy resin, phenol resin, silicone resin, polyamide resin, and polyimide resin.
 複合材料の樹脂は、例えば、熱硬化性樹脂、熱可塑性樹脂が挙げられる。熱硬化性樹脂は、例えば、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、ウレタン樹脂などが挙げられる。熱可塑性樹脂は、例えば、ポリフェニレンスルフィド(PPS)樹脂、ポリアミド(PA)樹脂、ポリイミド(PI)樹脂、液晶ポリマー(LCP)、フッ素樹脂などが挙げられる。PA樹脂としては、具体的には、ナイロン6、ナイロン66、ナイロン9Tなどが挙げられる。複合材料は、樹脂に加えて、フィラーを含有してもよい。フィラーを含有することで、複合材料の放熱性を向上させることができる。フィラーは、例えば、セラミックスやカーボンナノチューブなどの非磁性材料からなる粉末を利用できる。セラミックスは、例えば、金属又は非金属の酸化物、窒化物、炭化物などが挙げられる。酸化物の一例として、アルミナ、シリカ、酸化マグネシウムなどが挙げられる。窒化物の一例として、窒化珪素、窒化アルミニウム、窒化ホウ素などが挙げられる。炭化物の一例として、炭化珪素などが挙げられる。 Examples of the resin of the composite material include thermosetting resin and thermoplastic resin. Examples of the thermosetting resin include epoxy resin, phenol resin, silicone resin, urethane resin and the like. Examples of the thermoplastic resin include polyphenylene sulfide (PPS) resin, polyamide (PA) resin, polyimide (PI) resin, liquid crystal polymer (LCP), and fluororesin. Specific examples of the PA resin include nylon 6, nylon 66, and nylon 9T. The composite material may contain a filler in addition to the resin. By containing the filler, the heat dissipation of the composite material can be improved. As the filler, for example, a powder made of a non-magnetic material such as ceramics or carbon nanotubes can be used. Examples of ceramics include metal or non-metal oxides, nitrides, carbides and the like. Examples of oxides include alumina, silica, magnesium oxide and the like. Examples of the nitride include silicon nitride, aluminum nitride, and boron nitride. As an example of the carbide, silicon carbide and the like can be mentioned.
 内側コア部31、32の構成材料と外側コア部33、34の構成材料とは、同じであってもよいし、異なってもよい。本実施形態では、内側コア部31、32が複合材料の成形体で構成され、外側コア部33、34が圧粉成形体で構成されている。また、本例の磁性コア3は、磁気ギャップ材を有していない。 The constituent materials of the inner core portions 31 and 32 and the constituent materials of the outer core portions 33 and 34 may be the same or different. In the present embodiment, the inner core portions 31 and 32 are made of a molded body of a composite material, and the outer core portions 33 and 34 are made of a dust compact. Further, the magnetic core 3 of this example does not have a magnetic gap material.
 (樹脂部材)
 樹脂部材4は、コイル2と磁性コア3との相互の位置を規定する。樹脂部材4は、図1、図3に示すように、第一樹脂部材4aと、第二樹脂部材4bとを含む。第一樹脂部材4aは、第一外側コア部33の外周面に設けられる。第二樹脂部材4bは、第二外側コア部34の外周面に設けられる。樹脂部材4には、次述する保持部材40a、40bに加えて、後述するモールド樹脂部8も含まれる。
(Resin member)
The resin member 4 defines the mutual position between the coil 2 and the magnetic core 3. As shown in FIGS. 1 and 3, the resin member 4 includes a first resin member 4a and a second resin member 4b. The first resin member 4a is provided on the outer peripheral surface of the first outer core portion 33. The second resin member 4b is provided on the outer peripheral surface of the second outer core portion 34. In addition to the holding members 40a and 40b described below, the resin member 4 also includes a mold resin portion 8 described later.
  (保持部材)
 本実施形態では、樹脂部材4として、図1、図3に示すように、2つの保持部材40a、40bを有する(図5も参照)。保持部材40a、40bは、図1、図5に示すように、コイル2を構成する巻回部21、22の各端面に向かい合うように配置される枠板を有する。また、保持部材40a、40bは、外側コア部33、34の外周面を覆う外壁部41を有する。保持部材40a、40bのうち、第一外側コア部33の外周面を覆う保持部材40aを第一保持部材と呼び、第二外側コア部34の外周面を覆う保持部材40bを第二保持部材と呼ぶ。第一保持部材40aは第一樹脂部材4aである。第二保持部材40bは第二樹脂部材4bである。
(Holding member)
In the present embodiment, as the resin member 4, as shown in FIGS. 1 and 3, two holding members 40a and 40b are provided (see also FIG. 5). As shown in FIGS. 1 and 5, the holding members 40a and 40b have a frame plate arranged so as to face each end face of the winding portions 21 and 22 constituting the coil 2. Further, the holding members 40a and 40b have an outer wall portion 41 that covers the outer peripheral surfaces of the outer core portions 33 and 34. Of the holding members 40a and 40b, the holding member 40a that covers the outer peripheral surface of the first outer core portion 33 is called the first holding member, and the holding member 40b that covers the outer peripheral surface of the second outer core portion 34 is called the second holding member. Call. The first holding member 40a is the first resin member 4a. The second holding member 40b is a second resin member 4b.
 保持部材40a、40bはいずれも、コイル2及び磁性コア3に組み付け可能な部材である。保持部材40a、40bは、コイル2と磁性コア3との相互の位置を規定して、位置決め状態を保持する。また、保持部材40a、40bは、コイル2の巻回部21、22と、磁性コア3の外側コア部33、34との間の電気的絶縁を確保する。 Both the holding members 40a and 40b are members that can be assembled to the coil 2 and the magnetic core 3. The holding members 40a and 40b define the mutual positions of the coil 2 and the magnetic core 3 and hold the positioning state. Further, the holding members 40a and 40b secure electrical insulation between the winding portions 21 and 22 of the coil 2 and the outer core portions 33 and 34 of the magnetic core 3.
 本実施形態において、両保持部材40a、40bの基本的な構成は同じである。但し、第一保持部材40aが張出し部7を有し、第二保持部材40bが凹部92を有する点で相違する。 In this embodiment, the basic configurations of both holding members 40a and 40b are the same. However, the difference is that the first holding member 40a has an overhanging portion 7 and the second holding member 40b has a recess 92.
 主に図1、図5を参照して、保持部材40a、40bにおける共通の構成要素について説明する。
 保持部材40a、40bは、貫通孔43を有する枠板と、外壁部41とを備える。枠板は、コイル2を構成する巻回部21、22の端面と外側コア部33、34の内端面33eとの間に介在される。外壁部41は、外側コア部33、34の外周面の少なくとも一部を覆う。本実施形態では、外壁部41は外側コア部33、34の外周面の全周を覆う。
The common components in the holding members 40a and 40b will be described mainly with reference to FIGS. 1 and 5.
The holding members 40a and 40b include a frame plate having a through hole 43 and an outer wall portion 41. The frame plate is interposed between the end faces of the winding portions 21 and 22 constituting the coil 2 and the inner end faces 33e of the outer core portions 33 and 34. The outer wall portion 41 covers at least a part of the outer peripheral surface of the outer core portions 33 and 34. In the present embodiment, the outer wall portion 41 covers the entire circumference of the outer peripheral surfaces of the outer core portions 33, 34.
 本実施形態では、保持部材40a、40bの形状が、Z方向から見た平面視で矩形枠状である(図2参照)。外壁部41の外周面は実質的に平面で構成されている。外壁部41の外周面は、ケース5の側壁部52における短辺部531、532及び長辺部541、542に向かい合う4つの平面を含む。 In the present embodiment, the shapes of the holding members 40a and 40b are rectangular frames in a plan view from the Z direction (see FIG. 2). The outer peripheral surface of the outer wall portion 41 is substantially formed of a flat surface. The outer peripheral surface of the outer wall portion 41 includes four planes facing the short side portions 531 and 532 and the long side portions 541 and 542 in the side wall portion 52 of the case 5.
 上記枠板は、主として、巻回部21、22と外側コア部33、34との間の電気的絶縁を確保する。本実施形態では、枠板の形状が平面視で矩形板状である。枠板は、図1、図5に示すように、矩形板の表裏を貫通する2つの貫通孔43を有する。各貫通孔43には、内側コア部31、32の端部が挿入される。貫通孔43の形状は、内側コア部31、32の端部の外周形状に概ね対応した形状である。本実施形態では、貫通孔43の四隅が内側コア部31、32の外周面の角部に沿って形成されている。この貫通孔43の四隅によって、貫通孔43内に内側コア部31、32が保持される。また、貫通孔43は、内側コア部31、32の端部が挿入された状態で、内側コア部31、32の外周面と貫通孔43の内周面との間に部分的に隙間が形成されるように設けられている。この隙間は、巻回部21、22の内周面と内側コア部31、32の外周面との間の隙間に連通する。 The frame plate mainly secures electrical insulation between the winding portions 21, 22 and the outer core portions 33, 34. In the present embodiment, the shape of the frame plate is rectangular in plan view. As shown in FIGS. 1 and 5, the frame plate has two through holes 43 penetrating the front and back of the rectangular plate. The ends of the inner core portions 31 and 32 are inserted into each through hole 43. The shape of the through hole 43 is a shape substantially corresponding to the outer peripheral shape of the end portions of the inner core portions 31 and 32. In the present embodiment, the four corners of the through hole 43 are formed along the corners of the outer peripheral surfaces of the inner core portions 31 and 32. The inner core portions 31 and 32 are held in the through hole 43 by the four corners of the through hole 43. Further, in the through hole 43, a gap is partially formed between the outer peripheral surface of the inner core portions 31 and 32 and the inner peripheral surface of the through hole 43 with the ends of the inner core portions 31 and 32 inserted. It is provided to be done. This gap communicates with the gap between the inner peripheral surfaces of the winding portions 21 and 22 and the outer peripheral surfaces of the inner core portions 31 and 32.
 外壁部41は、上記枠板の周縁を囲む矩形状の筒であり、外側コア部33、34の全周を囲むように設けられている。外壁部41は、その内側に凹部44を有する。凹部44には、外側コア部33、34の内端面33e側が嵌め込まれる。本実施形態では、凹部44は、外側コア部33、34が嵌め込まれた状態で、外側コア部33、34の外周面と凹部44の内周面との間に部分的に隙間が形成されるように設けられている。この隙間には、後述するモールド樹脂部8を構成する樹脂が充填される。このモールド樹脂部8によって各外側コア部33、34と各保持部材40a、40bとが一体化されている。本実施形態では、保持部材40a、40bは、外側コア部33、34と凹部44との間の隙間と、上述した内側コア部31、32と貫通孔43との間の隙間とが連通するように構成されている。これらの隙間が連通することにより、モールド樹脂部8を形成する際に、モールド樹脂部8を構成する樹脂を巻回部21、22と内側コア部31、32との間に導入することが可能である。 The outer wall portion 41 is a rectangular cylinder that surrounds the peripheral edge of the frame plate, and is provided so as to surround the entire circumference of the outer core portions 33, 34. The outer wall portion 41 has a recess 44 inside thereof. The inner end surface 33e side of the outer core portions 33 and 34 is fitted into the recess 44. In the present embodiment, in the recess 44, a gap is partially formed between the outer peripheral surface of the outer core portions 33, 34 and the inner peripheral surface of the recess 44 in a state where the outer core portions 33, 34 are fitted. It is provided as follows. This gap is filled with the resin constituting the mold resin portion 8 described later. The outer core portions 33 and 34 and the holding members 40a and 40b are integrated by the mold resin portion 8. In the present embodiment, the holding members 40a and 40b communicate with the gap between the outer core portions 33 and 34 and the recess 44 and the gap between the inner core portions 31 and 32 and the through hole 43 described above. It is configured in. By communicating these gaps, when forming the mold resin portion 8, the resin constituting the mold resin portion 8 can be introduced between the winding portions 21 and 22 and the inner core portions 31 and 32. Is.
 更に、保持部材40a、40bは、図示しない内側介在部を有する。内側介在部は、貫通孔43の周縁部から巻回部21、22の内側に向かって突出し、巻回部21、22と内側コア部31、32との間に挿入される。この内側介在部によって、巻回部21、22と内側コア部31、32とが間隔をあけて保持される。その結果、巻回部21、22と内側コア部31、32との間も電気的絶縁が確保される。 Further, the holding members 40a and 40b have an inner intervening portion (not shown). The inner intervening portion projects from the peripheral edge portion of the through hole 43 toward the inside of the winding portions 21 and 22, and is inserted between the winding portions 21 and 22 and the inner core portions 31 and 32. The winding portions 21, 22 and the inner core portions 31, 32 are held at intervals by the inner intervening portion. As a result, electrical insulation is ensured between the winding portions 21 and 22 and the inner core portions 31 and 32.
 上述したように、内側コア部31、32の各端部が保持部材40a、40bの各貫通孔43に挿入されることによって、保持部材40a、40bに対して内側コア部31、32が位置決めされる。また、外側コア部33、34の内端面33e側が保持部材40a、40bの凹部44に嵌め込まれることによって、外側コア部33、34が位置決めされる。更に、上記内側介在部によって、巻回部21、22が位置決めされる。その結果、保持部材40a、40bによって、コイル2の巻回部21、22と、磁性コア3の内側コア部31、32及び外側コア部33、34とが、位置決め状態で保持される。 As described above, the inner core portions 31 and 32 are positioned with respect to the holding members 40a and 40b by inserting the ends of the inner core portions 31 and 32 into the through holes 43 of the holding members 40a and 40b. To. Further, the outer core portions 33 and 34 are positioned by fitting the inner end surface 33e side of the outer core portions 33 and 34 into the recesses 44 of the holding members 40a and 40b. Further, the winding portions 21 and 22 are positioned by the inner intervening portion. As a result, the winding portions 21 and 22 of the coil 2 and the inner core portions 31 and 32 and the outer core portions 33 and 34 of the magnetic core 3 are held in a positioned state by the holding members 40a and 40b.
 保持部材40a、40bの構成材料は、代表的には樹脂である。具体的な樹脂は、熱硬化性樹脂、熱可塑性樹脂が挙げられる。熱硬化性樹脂は、例えば、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、ウレタン樹脂、不飽和ポリエステル樹脂などが挙げられる。熱可塑性樹脂は、例えば、PPS樹脂、PA樹脂、PI樹脂、LCP、フッ素樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ポリブチレンテレフタレート(PBT)樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂などが挙げられる。保持部材40a、40bの構成材料は、上記樹脂に加えて、フィラーを含有してもよい。フィラーを含有することで、保持部材40a、40bの放熱性を向上させることができる。フィラーは、上述した複合材料に用いるフィラーと同様のものを利用できる。本実施形態では、保持部材40a、40bがPPS樹脂で構成されている。 The constituent materials of the holding members 40a and 40b are typically resins. Specific examples of the resin include thermosetting resins and thermoplastic resins. Examples of the thermosetting resin include epoxy resin, phenol resin, silicone resin, urethane resin, unsaturated polyester resin and the like. Examples of the thermoplastic resin include PPS resin, PA resin, PI resin, LCP, fluororesin, polytetrafluoroethylene (PTFE) resin, polybutylene terephthalate (PBT) resin, and acrylonitrile-butadiene-styrene (ABS) resin. Be done. The constituent materials of the holding members 40a and 40b may contain a filler in addition to the above resin. By containing the filler, the heat dissipation of the holding members 40a and 40b can be improved. As the filler, the same filler as that used for the composite material described above can be used. In this embodiment, the holding members 40a and 40b are made of PPS resin.
  (モールド樹脂部)
 本実施形態では、組合体10は、図1に示すように、モールド樹脂部8を備える。モールド樹脂部8は、外側コア部33、34の外周面の少なくとも一部を覆うと共に、巻回部21、22の内周面と内側コア部31、32の外周面との間に介在される。このモールド樹脂部8により、内側コア部31、32と外側コア部33、34とが一体に保持される。結果として、コイル2の巻回部21、22と、磁性コア3の内側コア部31、32及び外側コア部33、34とが一体化されている。そのため、コイル2と磁性コア3とを一体物として取り扱うことができる。また、モールド樹脂部8によって各外側コア部33、34と各保持部材40a、40bとが一体化されている。つまり、この例では、モールド樹脂部8によって、コイル2、磁性コア3、及び保持部材40a、40bが一体化されている。そのため、組合体10は一体物として取り扱うことができる。なお、巻回部21、22の外周面は、モールド樹脂部8によって覆われておらず、モールド樹脂部8から露出している。
(Mold resin part)
In the present embodiment, the union body 10 includes a mold resin portion 8 as shown in FIG. The mold resin portion 8 covers at least a part of the outer peripheral surfaces of the outer core portions 33 and 34, and is interposed between the inner peripheral surfaces of the wound portions 21 and 22 and the outer peripheral surfaces of the inner core portions 31 and 32. .. The inner core portions 31, 32 and the outer core portions 33, 34 are integrally held by the mold resin portion 8. As a result, the winding portions 21 and 22 of the coil 2 and the inner core portions 31 and 32 and the outer core portions 33 and 34 of the magnetic core 3 are integrated. Therefore, the coil 2 and the magnetic core 3 can be handled as an integral body. Further, the outer core portions 33 and 34 and the holding members 40a and 40b are integrated by the mold resin portion 8. That is, in this example, the coil 2, the magnetic core 3, and the holding members 40a and 40b are integrated by the mold resin portion 8. Therefore, the union body 10 can be treated as an integral body. The outer peripheral surfaces of the wound portions 21 and 22 are not covered by the mold resin portion 8 and are exposed from the mold resin portion 8.
 モールド樹脂部8は、内側コア部31、32と外側コア部33、34とを一体に保持できればよい。モールド樹脂部8は、内側コア部31、32の周方向に沿った面、即ち内側コア部31、32の外周面を全長にわたって覆う必要がない。内側コア部31、32と外側コア部33、34とを一体に保持するというモールド樹脂部8の機能を鑑みれば、モールド樹脂部8の形成範囲は、内側コア部31、32の端部近傍まででよい。つまり、モールド樹脂部8は、内側コア部31、32の軸方向の中央部まで及んでおらず、内側コア部31、32の外周面のうち、少なくとも端部を覆うように形成されていればよい。勿論、モールド樹脂部8は、内側コア部31、32の軸方向の中央部まで及んでいてもよい。この場合、モールド樹脂部8は、内側コア部31、32の外周面を全長にわたって覆うと共に、第一外側コア部33から第二外側コア部34にわたって形成される。 The mold resin portion 8 only needs to be able to integrally hold the inner core portions 31, 32 and the outer core portions 33, 34. The mold resin portion 8 does not need to cover the surface of the inner core portions 31 and 32 along the circumferential direction, that is, the outer peripheral surface of the inner core portions 31 and 32 over the entire length. Considering the function of the mold resin portion 8 that integrally holds the inner core portions 31 and 32 and the outer core portions 33 and 34, the formation range of the mold resin portion 8 extends to the vicinity of the ends of the inner core portions 31 and 32. It's fine. That is, if the mold resin portion 8 does not extend to the central portion in the axial direction of the inner core portions 31 and 32, and is formed so as to cover at least the end portion of the outer peripheral surfaces of the inner core portions 31 and 32. good. Of course, the mold resin portion 8 may extend to the central portion in the axial direction of the inner core portions 31 and 32. In this case, the mold resin portion 8 covers the outer peripheral surfaces of the inner core portions 31 and 32 over the entire length, and is formed from the first outer core portion 33 to the second outer core portion 34.
 モールド樹脂部8を構成する樹脂は、上述した保持部材40a、40bを構成する樹脂と同様の樹脂を利用できる。モールド樹脂部8の構成材料は、上記樹脂に加えて、上述したフィラーを含有してもよい。本実施形態では、モールド樹脂部8がPPS樹脂で構成されている。 As the resin constituting the mold resin portion 8, the same resin as the resin constituting the holding members 40a and 40b described above can be used. The constituent material of the mold resin portion 8 may contain the above-mentioned filler in addition to the above-mentioned resin. In this embodiment, the mold resin portion 8 is made of PPS resin.
 モールド樹脂部8も、樹脂部材4として機能し得る。具体的には、モールド樹脂部8における第一外側コア部33の外周面を覆う部分は第一樹脂部材4aに含まれる。また、モールド樹脂部8における第二外側コア部34の外周面を覆う部分は第二樹脂部材4bに含まれる。 The mold resin portion 8 can also function as the resin member 4. Specifically, the portion of the mold resin portion 8 that covers the outer peripheral surface of the first outer core portion 33 is included in the first resin member 4a. Further, the portion of the mold resin portion 8 that covers the outer peripheral surface of the second outer core portion 34 is included in the second resin member 4b.
 (張出し部)
 第一樹脂部材4aは、図1から図3に示すように、張出し部7を有する。張出し部7は、図1、図2に示すように、ケース5の側壁部52における一方の短辺部531に向かって突出する。本実施形態では、第一保持部材40aに張出し部7が設けられている。張出し部7は、第一保持部材40aの外壁部41のうち、短辺部531に向かい合う面に設けられる。張出し部7は、外壁部41のX方向、即ち幅方向の中央部に1つ設けられている(図2参照)。張出し部7の位置は、特に限定されるものではなく、外壁部41の中央部から幅方向にずれていてもよい。
(Overhanging part)
The first resin member 4a has an overhanging portion 7 as shown in FIGS. 1 to 3. As shown in FIGS. 1 and 2, the overhanging portion 7 projects toward one short side portion 531 of the side wall portion 52 of the case 5. In the present embodiment, the overhanging portion 7 is provided on the first holding member 40a. The overhanging portion 7 is provided on the surface of the outer wall portion 41 of the first holding member 40a facing the short side portion 531. One overhanging portion 7 is provided at the center of the outer wall portion 41 in the X direction, that is, in the width direction (see FIG. 2). The position of the overhanging portion 7 is not particularly limited, and may be deviated from the central portion of the outer wall portion 41 in the width direction.
 本実施形態では、張出し部7の形状が平面視で舌片状である(図2参照)。張出し部7の形状は、特に限定されるものではなく、多角形状、半円形状、半楕円形状など、その他の形状であってもよい。多角形状としては、例えば三角形状、矩形状、台形状などが挙げられる。 In the present embodiment, the shape of the overhanging portion 7 is a tongue piece shape in a plan view (see FIG. 2). The shape of the overhanging portion 7 is not particularly limited, and may be another shape such as a polygonal shape, a semicircular shape, or a semi-elliptical shape. Examples of the polygonal shape include a triangular shape, a rectangular shape, and a trapezoidal shape.
 張出し部7の大きさは、特に限定されない。張出し部7の突出長さは、例えば10mm以上30mm以下が挙げられる。張出し部7の突出長さの具体的な範囲としては、10mm以上15mm以下、20mm以上30mm以下が挙げられる。上記突出長さとは、第一保持部材40aの外壁部41から突出する張出し部7のY方向に沿う長さのことである。張出し部7の突出長さが20mm以上であれば、張出し部7の大きさを確保でき、取付座56に対して強固に固定し易い。取付座56については後述する。また、張出し部7の突出長さが15mm以下であることで、ケース5が過度に大型化、重量化しない。張出し部7の突出長さが15mm以下であれば、その分、短辺部531の厚みを薄くできるからである。短辺部531の厚みとは、短辺部531のY方向の寸法である。 The size of the overhanging portion 7 is not particularly limited. The protruding length of the overhanging portion 7 is, for example, 10 mm or more and 30 mm or less. Specific ranges of the protruding length of the overhanging portion 7 include 10 mm or more and 15 mm or less, and 20 mm or more and 30 mm or less. The protruding length is a length along the Y direction of the protruding portion 7 protruding from the outer wall portion 41 of the first holding member 40a. If the protruding length of the overhanging portion 7 is 20 mm or more, the size of the overhanging portion 7 can be secured, and it is easy to firmly fix the overhanging portion 7 to the mounting seat 56. The mounting seat 56 will be described later. Further, since the protruding length of the overhanging portion 7 is 15 mm or less, the case 5 does not become excessively large and heavy. This is because if the protruding length of the overhanging portion 7 is 15 mm or less, the thickness of the short side portion 531 can be reduced accordingly. The thickness of the short side portion 531 is a dimension of the short side portion 531 in the Y direction.
 張出し部7の幅や厚みは、張出し部7が容易に変形や折損することがない限り、適宜設定できる。張出し部7の幅とは、張出し部7のX方向の寸法である。張出し部7の厚みとは、張出し部7のZ方向の寸法である。張出し部7の幅や厚みは、第一保持部材40aの外壁部41の幅や厚みよりも小さくてもよいし、外壁部41の幅や厚みと同等でもよい。本実施形態では、張出し部7の幅や厚みが、外壁部41の幅や厚みよりも小さい。 The width and thickness of the overhanging portion 7 can be appropriately set as long as the overhanging portion 7 is not easily deformed or broken. The width of the overhanging portion 7 is a dimension of the overhanging portion 7 in the X direction. The thickness of the overhanging portion 7 is a dimension of the overhanging portion 7 in the Z direction. The width and thickness of the overhanging portion 7 may be smaller than the width and thickness of the outer wall portion 41 of the first holding member 40a, or may be the same as the width and thickness of the outer wall portion 41. In the present embodiment, the width and thickness of the overhanging portion 7 are smaller than the width and thickness of the outer wall portion 41.
 張出し部7は、取付座56に固定されることで、ケース5から組合体10が抜け出ることを抑制できる。張出し部7の取付座56への固定方法としては、例えば、ボルト留め、溶接、接着などが挙げられる。本実施形態では、張出し部7の取付座56への固定は、ボルト留めによって行う。張出し部7には、Z方向に貫通する貫通孔71が設けられている。この貫通孔71にボルト75が挿通され、張出し部7が取付座56にボルト75によって締結されている。 By fixing the overhanging portion 7 to the mounting seat 56, it is possible to prevent the union body 10 from coming out of the case 5. Examples of the method of fixing the overhanging portion 7 to the mounting seat 56 include bolting, welding, and adhesion. In the present embodiment, the overhanging portion 7 is fixed to the mounting seat 56 by bolting. The overhanging portion 7 is provided with a through hole 71 penetrating in the Z direction. A bolt 75 is inserted through the through hole 71, and an overhanging portion 7 is fastened to the mounting seat 56 by the bolt 75.
 本実施形態では、図1、図5に示すように、張出し部7は、第一保持部材40aに金属製のブラケット70がインサート成形されることにより、外壁部41に一体に形成されている。このブラケット70は、外壁部41から突出される舌片部と、外壁部41に埋め込まれる基部とを有するL字状の部材である。舌片部は張出し部7となる。舌片部の外壁部41側の端部は、外壁部41の内側に入り込んでいる。基部は、舌片部の外壁部41側の端部からZ方向に沿って延びている。ブラケット70を構成する金属は、非磁性の金属が挙げられる。非磁性金属としては、例えば、アルミニウムやその合金、マグネシウムやその合金、銅やその合金、銀やその合金、オーステナイト系ステンレス鋼などが挙げられる。オーステナイト系ステンレス鋼としては、SUS304などが挙げられる。本実施形態では、ブラケット70がSUS304で構成されている。本実施形態とは異なり、張出し部7は、第一保持部材40aを構成する樹脂により外壁部41に一体成形されていてもよい。 In the present embodiment, as shown in FIGS. 1 and 5, the overhanging portion 7 is integrally formed with the outer wall portion 41 by insert-molding a metal bracket 70 into the first holding member 40a. The bracket 70 is an L-shaped member having a tongue piece portion protruding from the outer wall portion 41 and a base portion embedded in the outer wall portion 41. The tongue piece portion becomes the overhanging portion 7. The end of the tongue piece on the outer wall 41 side penetrates the inside of the outer wall 41. The base extends along the Z direction from the end of the tongue piece on the outer wall 41 side. Examples of the metal constituting the bracket 70 include non-magnetic metals. Examples of the non-magnetic metal include aluminum and its alloy, magnesium and its alloy, copper and its alloy, silver and its alloy, and austenitic stainless steel. Examples of the austenitic stainless steel include SUS304. In this embodiment, the bracket 70 is made of SUS304. Unlike the present embodiment, the overhanging portion 7 may be integrally molded with the outer wall portion 41 by the resin constituting the first holding member 40a.
 本実施形態では、上述したように、第一保持部材40aが張出し部7を有する構成である。本実施形態とは異なり、モールド樹脂部8が張出し部7を有する構成とすることも可能である。例えば、第一保持部材40aの外壁部41に相当する部分をモールド樹脂部8により形成し、モールド樹脂部8に張出し部7を一体に形成することが挙げられる。 In the present embodiment, as described above, the first holding member 40a has the overhanging portion 7. Unlike the present embodiment, the mold resin portion 8 may have an overhanging portion 7. For example, a portion corresponding to the outer wall portion 41 of the first holding member 40a may be formed by the mold resin portion 8, and the overhanging portion 7 may be integrally formed with the mold resin portion 8.
 (凹部)
 第二樹脂部材4bは、図1、図4、図5に示すように、凹部92を有する。凹部92は、ケース5の底板部51側から開口部55側に向かってZ方向に延びる。凹部92は、図6から図8に示すように、ケース5の側壁部52に設けられる凸部91と嵌り合う。凸部91については後述する。本実施形態では、第二保持部材40bに凹部92が設けられている。凹部92は、第二保持部材40bの外壁部41のうち、凸部91に向かい合う面に設けられている。
(Recess)
The second resin member 4b has a recess 92 as shown in FIGS. 1, 4, and 5. The recess 92 extends in the Z direction from the bottom plate portion 51 side of the case 5 toward the opening 55 side. As shown in FIGS. 6 to 8, the concave portion 92 fits into the convex portion 91 provided on the side wall portion 52 of the case 5. The convex portion 91 will be described later. In the present embodiment, the recess 92 is provided in the second holding member 40b. The concave portion 92 is provided on the surface of the outer wall portion 41 of the second holding member 40b facing the convex portion 91.
 本実施形態では、凹部92は、図6に示すように、第二保持部材40bの外壁部41における長辺部541、542のそれぞれと向かい合う各面に設けられている。凹部92の断面形状は、凸部91の断面形状に対応した形状である。凸部91及び凹部92の上記断面形状とは、Z方向に直交する断面の形状である。本実施形態では、図7に示すように、凹部92の断面形状が四角形状、具体的には矩形状である。凹部92の断面形状は、矩形状に限らず、多角形状、半円形状、半楕円形状など、その他の形状であってもよい。多角形状としては、例えば、三角形状、台形状、五角形状、六角形状などが挙げられる。外壁部41の外周面は凹部92の第一開口部を有する。第一開口部は凸部91に向かい合うように配置される。外壁部41の端面101側の面は凹部92の第二開口部を有する(図1,図4)。第二開口部はケース5の底板部51側に向かい合うように配置される。 In the present embodiment, as shown in FIG. 6, the recess 92 is provided on each surface of the outer wall portion 41 of the second holding member 40b facing each of the long side portions 541 and 542. The cross-sectional shape of the concave portion 92 is a shape corresponding to the cross-sectional shape of the convex portion 91. The cross-sectional shape of the convex portion 91 and the concave portion 92 is a cross-sectional shape orthogonal to the Z direction. In the present embodiment, as shown in FIG. 7, the cross-sectional shape of the recess 92 is rectangular, specifically rectangular. The cross-sectional shape of the recess 92 is not limited to a rectangular shape, and may be another shape such as a polygonal shape, a semicircular shape, or a semi-elliptical shape. Examples of the polygonal shape include a triangular shape, a trapezoidal shape, a pentagonal shape, and a hexagonal shape. The outer peripheral surface of the outer wall portion 41 has a first opening of the recess 92. The first opening is arranged so as to face the convex portion 91. The surface of the outer wall portion 41 on the end surface 101 side has a second opening of the recess 92 (FIGS. 1 and 4). The second opening is arranged so as to face the bottom plate portion 51 side of the case 5.
 凸部91と凹部92との嵌合関係、凸部91と凹部92の位置などの詳細については後述する。 Details such as the fitting relationship between the convex portion 91 and the concave portion 92 and the positions of the convex portion 91 and the concave portion 92 will be described later.
 本実施形態では、上述したように、第二保持部材40bが凹部92を有する構成である。本実施形態とは異なり、モールド樹脂部8が凹部92を有する構成とすることも可能である。例えば、第二保持部材40bの外壁部41に相当する部分をモールド樹脂部8により形成し、モールド樹脂部8に凹部92に形成することが挙げられる。 In the present embodiment, as described above, the second holding member 40b has a recess 92. Unlike the present embodiment, the mold resin portion 8 may have a recess 92. For example, a portion corresponding to the outer wall portion 41 of the second holding member 40b may be formed by the mold resin portion 8 and formed in the recess 92 in the mold resin portion 8.
 (ケース)
 ケース5は、図1に示すように組合体10を収納することで、組合体10の機械的保護及び外部環境からの保護を図ることができる。外部環境からの保護は、防食性の向上などを目的とする。本実施形態では、ケース5は、非磁性の金属、具体的にはアルミニウムで構成されている。金属は樹脂よりも熱伝導率が高い。そのため、金属製のケース5は、組合体10の熱をケース5を介して外部に放出し易い。よって、金属製のケース5は、組合体10の放熱性の向上に寄与する。
(Case)
By accommodating the union body 10 as shown in FIG. 1, the case 5 can be mechanically protected and protected from the external environment. The purpose of protection from the external environment is to improve anticorrosion. In this embodiment, the case 5 is made of a non-magnetic metal, specifically aluminum. Metal has a higher thermal conductivity than resin. Therefore, the metal case 5 easily releases the heat of the union body 10 to the outside through the case 5. Therefore, the metal case 5 contributes to the improvement of the heat dissipation of the union body 10.
 ケース5は、図1に示すように、底板部51と、側壁部52と、開口部55とを有する(図4も参照)。ケース5は、底板部51と向かい合う側に開口部55を有する有底筒状の容器である。底板部51は、組合体10が載置される平板部材である。側壁部52は、組合体10の周囲を囲む角筒状体である。底板部51と側壁部52とで組合体10の収納空間が形成される。本実施形態では、底板部51と側壁部52とが一体に形成されている。側壁部52は、組合体10の高さと同等以上の高さを有する。上記高さとは、組合体10のZ方向の寸法である。組合体10の高さ、即ちZ方向に沿う長さは、組合体10における底板部51側の端面101と、開口部55側の端面105との距離である。底板部51側の端面101は、底板部51の内底面510に向かい合う。端面101は組合体10の底面、即ち下面に相当する。端面105は組合体10の上面に相当する。コイル2を構成する巻線の端部が開口部55から突出していても、開口部55から突出する巻線の端部の長さは組合体10の高さ、即ちZ方向の長さに含まれない。 As shown in FIG. 1, the case 5 has a bottom plate portion 51, a side wall portion 52, and an opening portion 55 (see also FIG. 4). The case 5 is a bottomed cylindrical container having an opening 55 on the side facing the bottom plate portion 51. The bottom plate portion 51 is a flat plate member on which the union body 10 is placed. The side wall portion 52 is a square tubular body that surrounds the union body 10. A storage space for the union body 10 is formed by the bottom plate portion 51 and the side wall portion 52. In the present embodiment, the bottom plate portion 51 and the side wall portion 52 are integrally formed. The side wall portion 52 has a height equal to or higher than the height of the union body 10. The height is the dimension of the union 10 in the Z direction. The height of the union body 10, that is, the length along the Z direction is the distance between the end surface 101 on the bottom plate portion 51 side and the end surface 105 on the opening 55 side in the union body 10. The end surface 101 on the bottom plate portion 51 side faces the inner bottom surface 510 of the bottom plate portion 51. The end face 101 corresponds to the bottom surface of the union body 10, that is, the bottom surface. The end face 105 corresponds to the upper surface of the union body 10. Even if the end of the winding forming the coil 2 protrudes from the opening 55, the length of the end of the winding protruding from the opening 55 is included in the height of the union 10, that is, the length in the Z direction. I can't.
 本実施形態では、底板部51は四角板状である。底板部51において、組合体10が載置される内底面510は実質的に平面で構成されている。側壁部52は、四角筒状である。側壁部52は、一対の向かい合う短辺部531、532と、一対の向かい合う長辺部541、542とを有する。側壁部52の内周面のうち、巻回部21、22に向かい合う短辺部531、532の各内面及び長辺部541、542の各内面は実質的に平面で構成されている。 In this embodiment, the bottom plate portion 51 has a square plate shape. In the bottom plate portion 51, the inner bottom surface 510 on which the union body 10 is placed is substantially formed of a flat surface. The side wall portion 52 has a square tubular shape. The side wall portion 52 has a pair of facing short side portions 531 and 532 and a pair of facing long side portions 541 and 542. Of the inner peripheral surfaces of the side wall portion 52, the inner surfaces of the short side portions 531 and 532 facing the wound portions 21 and 22 and the inner surfaces of the long side portions 541 and 542 are substantially formed of a flat surface.
 詳しくは、側壁部52は、図2に示すように、Z方向から見た平面視で矩形筒状である(図4も参照)。矩形筒状とは、ケース5を平面視したとき、側壁部52の内周面で囲まれる形状が実質的に矩形状であることを意味する。ここでの矩形状は、幾何学的に厳密な意味での矩形でなくてもよく、角部がR面取り又はC面取りなどの面取りが施された形状も含めて、実質的に矩形とみなされる範囲を含む。本実施形態では、側壁部52の内周面の角部が面取りされていないが、内周面の角部が面取りされていてもよい。 Specifically, as shown in FIG. 2, the side wall portion 52 has a rectangular tubular shape in a plan view seen from the Z direction (see also FIG. 4). The rectangular tubular shape means that the shape surrounded by the inner peripheral surface of the side wall portion 52 is substantially rectangular when the case 5 is viewed in a plan view. The rectangular shape here does not have to be a rectangle in a geometrically strict sense, and is considered to be substantially a rectangle including a shape in which the corners are chamfered such as R chamfer or C chamfer. Includes range. In the present embodiment, the corners of the inner peripheral surface of the side wall portion 52 are not chamfered, but the corners of the inner peripheral surface may be chamfered.
 (取付座)
 図1、図2に示すように、側壁部52における短辺部531、532のうち、一方の短辺部531の内面には、取付座56を有する(図4も参照)。取付座56には、上述した張出し部7が固定される。取付座56は、張出し部7の位置に対応する位置に設けられる。取付座56の形状は、平面視したとき、張出し部7の形状に概ね対応した形状である。取付座56は、張出し部7における底板部51側の面を支持する。取付座56は、張出し部7とZ方向に重なるように設けられている。本実施形態において、取付座56は、短辺部531における開口部55側の端面、即ち短辺部531の上面を下方に凹ませることによって形成されている。
(Mounting seat)
As shown in FIGS. 1 and 2, of the short side portions 531 and 532 of the side wall portion 52, the inner surface of one of the short side portions 531 has a mounting seat 56 (see also FIG. 4). The overhanging portion 7 described above is fixed to the mounting seat 56. The mounting seat 56 is provided at a position corresponding to the position of the overhanging portion 7. The shape of the mounting seat 56 substantially corresponds to the shape of the overhanging portion 7 when viewed in a plan view. The mounting seat 56 supports the surface of the overhanging portion 7 on the bottom plate portion 51 side. The mounting seat 56 is provided so as to overlap the overhanging portion 7 in the Z direction. In the present embodiment, the mounting seat 56 is formed by denting the end surface of the short side portion 531 on the opening 55 side, that is, the upper surface of the short side portion 531 downward.
 本実施形態では、張出し部7と取付座56とがボルト75によって締結される。張出し部7を支持する取付座56の座面には、ボルト75がねじ込まれるネジ穴58を有する。ネジ穴58は、張出し部7の貫通孔71とZ方向に重なる位置に形成されている。ボルト75は、ケース5の開口部55側から張出し部7の貫通孔71に挿通され、取付座56のネジ穴58にねじ込まれる。 In this embodiment, the overhanging portion 7 and the mounting seat 56 are fastened by the bolt 75. The seat surface of the mounting seat 56 that supports the overhanging portion 7 has a screw hole 58 into which a bolt 75 is screwed. The screw hole 58 is formed at a position overlapping the through hole 71 of the overhanging portion 7 in the Z direction. The bolt 75 is inserted into the through hole 71 of the overhanging portion 7 from the opening 55 side of the case 5, and is screwed into the screw hole 58 of the mounting seat 56.
 (凸部)
 側壁部52は、図4に示すように、凸部91を有する。凸部91は、側壁部52の内面に設けられている。凸部91は、底板部51側から開口部55側に向かってZ方向に延びる。凸部91は、図6から図8に示すように、側壁部52の内面から凹部92に向かって突出する。
(Convex part)
The side wall portion 52 has a convex portion 91 as shown in FIG. The convex portion 91 is provided on the inner surface of the side wall portion 52. The convex portion 91 extends in the Z direction from the bottom plate portion 51 side toward the opening 55 side. As shown in FIGS. 6 to 8, the convex portion 91 projects from the inner surface of the side wall portion 52 toward the concave portion 92.
 本実施形態では、凸部91は、図6に示すように、側壁部52における長辺部541、542の各々の内面に設けられている。凸部91は、図4に示すように底板部51から長辺部541、542の内面に沿ってZ方向に延びている。凸部91のZ方向に沿う長さは、凹部92のZ方向に沿う長さよりも長い。凸部91のZ方向に直交する断面形状は四角形状、具体的には矩形状である。凸部91の断面形状は、凹部92の断面形状に対応した形状であればよい。凸部91の断面形状は、矩形状に限らず、多角形状、半円形状、半楕円形状など、その他の形状であってもよい。多角形状としては、例えば、三角形状、台形状、五角形状、六角形状などが挙げられる。 In the present embodiment, as shown in FIG. 6, the convex portion 91 is provided on the inner surface of each of the long side portions 541 and 542 of the side wall portion 52. As shown in FIG. 4, the convex portion 91 extends from the bottom plate portion 51 along the inner surfaces of the long side portions 541 and 542 in the Z direction. The length of the convex portion 91 along the Z direction is longer than the length of the concave portion 92 along the Z direction. The cross-sectional shape of the convex portion 91 orthogonal to the Z direction is a quadrangular shape, specifically a rectangular shape. The cross-sectional shape of the convex portion 91 may be any shape corresponding to the cross-sectional shape of the concave portion 92. The cross-sectional shape of the convex portion 91 is not limited to a rectangular shape, and may be another shape such as a polygonal shape, a semicircular shape, or a semi-elliptical shape. Examples of the polygonal shape include a triangular shape, a trapezoidal shape, a pentagonal shape, and a hexagonal shape.
 〈凸部と凹部との嵌合関係〉
 凸部91と凹部92との嵌合関係について説明する。
<Mating relationship between convex and concave parts>
The fitting relationship between the convex portion 91 and the concave portion 92 will be described.
 本実施形態では、凸部91と凹部92との嵌合により、組合体10が底板部51との間に間隔をあけて位置決めされている。凸部91と凹部92とが嵌合した状態において、図8に示すように、凸部91における開口部55側の端面910と、凹部92における開口部55側の端面920とが接している。凸部91の端面910と凹部92の端面920とが互いに接することで、組合体10のZ方向の位置が規制される。そのため、凸部91と凹部92とは、ケース5に対する組合体10のZ方向の位置を位置決めするストッパとして機能する。その結果、組合体10における底板部51側の端面101と底板部51の内底面510との間に所定の間隔を確保できる。 In the present embodiment, the union body 10 is positioned with a gap between the convex portion 91 and the concave portion 92 by fitting the convex portion 91 and the concave portion 92. In a state where the convex portion 91 and the concave portion 92 are fitted, as shown in FIG. 8, the end surface 910 on the opening 55 side of the convex portion 91 and the end surface 920 on the opening 55 side of the concave portion 92 are in contact with each other. The end surface 910 of the convex portion 91 and the end surface 920 of the concave portion 92 are in contact with each other, so that the position of the union body 10 in the Z direction is restricted. Therefore, the convex portion 91 and the concave portion 92 function as stoppers for positioning the position of the combined body 10 in the Z direction with respect to the case 5. As a result, a predetermined distance can be secured between the end surface 101 on the bottom plate portion 51 side and the inner bottom surface 510 of the bottom plate portion 51 in the union body 10.
 組合体10の端面101と底板部51の内底面510との間隔E(図8参照)は、例えば0.5mm以上1.5mm以下、更に0.5mm以上1.0mm以下であることが挙げられる。この間隔Eが0.5mm以上であることで、組合体10と底板部51との間に封止樹脂部6となる樹脂が回り込み易い。そのため、組合体10と底板部51との間に封止樹脂部6が充填され易い。組合体10の端面101と底板部51の内底面510との間に封止樹脂部6が充填されることにより、組合体10の熱を封止樹脂部6を介して底板部51に伝えることができる。上記間隔Eが1.5mm以下、更に1.0mm以下であることで、組合体10の端面101と底板部51の内底面510との距離が短い。そのため、組合体10の熱を底板部51に伝え易い。よって、組合体10の放熱性を向上させることができる。 The distance E (see FIG. 8) between the end surface 101 of the union body 10 and the inner bottom surface 510 of the bottom plate portion 51 is, for example, 0.5 mm or more and 1.5 mm or less, and further 0.5 mm or more and 1.0 mm or less. .. When this distance E is 0.5 mm or more, the resin to be the sealing resin portion 6 easily wraps around between the union body 10 and the bottom plate portion 51. Therefore, the sealing resin portion 6 is likely to be filled between the union body 10 and the bottom plate portion 51. By filling the sealing resin portion 6 between the end surface 101 of the union body 10 and the inner bottom surface 510 of the bottom plate portion 51, the heat of the union body 10 is transferred to the bottom plate portion 51 via the sealing resin portion 6. Can be done. When the distance E is 1.5 mm or less and 1.0 mm or less, the distance between the end surface 101 of the union body 10 and the inner bottom surface 510 of the bottom plate portion 51 is short. Therefore, the heat of the union body 10 can be easily transferred to the bottom plate portion 51. Therefore, the heat dissipation of the union body 10 can be improved.
 凸部91と凹部92との間隔は、例えば0.5mm以下、更に0.3mm以下であることが挙げられる。上記間隔は、凸部91と凹部92とが嵌合した状態において、図7に示すように、Z方向から見た凸部91と凹部92との間隔である。つまり、上記間隔は、凸部91と凹部92との間のZ方向に直交する水平方向の間隔である。上記間隔には、図7に示すように、Y方向の間隔A、B及びX方向の間隔Cが含まれる。本実施形態では、上記間隔A、B、Cが0.5mm以下である。上記間隔A、Bが小さいほど、ケース5に対する組合体10のY方向の変位を抑制できる。上記間隔Cが小さいほど、ケース5に対する組合体10のX方向の変位を抑制できる。凸部91と凹部92との間隔が0.5mm以下であることで、組合体10のX方向及びY方向の変位を効果的に抑制できる。凸部91と凹部92との間隔は0でもよい。凸部91と凹部92との間には、封止樹脂部6が充填されていてもよいし、封止樹脂部6が充填されていなくてもよい。 The distance between the convex portion 91 and the concave portion 92 is, for example, 0.5 mm or less, further 0.3 mm or less. The distance is the distance between the convex portion 91 and the concave portion 92 as seen from the Z direction, as shown in FIG. 7, in a state where the convex portion 91 and the concave portion 92 are fitted. That is, the above-mentioned interval is a horizontal interval orthogonal to the Z direction between the convex portion 91 and the concave portion 92. As shown in FIG. 7, the above intervals include intervals A and B in the Y direction and intervals C in the X direction. In this embodiment, the intervals A, B, and C are 0.5 mm or less. The smaller the intervals A and B are, the more the displacement of the union body 10 with respect to the case 5 in the Y direction can be suppressed. The smaller the interval C, the more the displacement of the union body 10 in the X direction with respect to the case 5 can be suppressed. When the distance between the convex portion 91 and the concave portion 92 is 0.5 mm or less, the displacement of the union body 10 in the X direction and the Y direction can be effectively suppressed. The distance between the convex portion 91 and the concave portion 92 may be 0. The sealing resin portion 6 may or may not be filled between the convex portion 91 and the concave portion 92.
 また、図8に示すように、凸部91と凹部92とが嵌り合っている部分のZ方向に沿う長さDは、組合体10(図1参照)の高さの10%以上であることが挙げられる。組合体10の高さとは、上述したように、組合体10のZ方向に沿う長さであり、組合体10における端面101と端面105との距離に相当する。本実施形態では、張出し部7が取付座56に固定されることから、組合体10が張出し部7を支点に変位する。より具体的には、後述する固定点P(図9参照)を中心として揺動する方向に組合体10が変位する。ケース5に対して組合体10が固定点Pを中心としてZ方向に変位する際、上記揺動に伴う円弧に対して交差する方向に凸部91と凹部92が延びていることで、Z-Y平面での組合体10の揺動を抑制できる。特に、上記長さDが一定以上あれば、上記揺動を効果的に抑制できるので、組合体10のZ方向の変位を抑制できる。上記長さDが組合体10のZ方向に沿う長さの10%以上であることで、ケース5に対する組合体10のZ方向の変位を効果的に抑制できる。上記長さDの上限は、例えば、組合体10のZ方向に沿う長さの25%以下、更に20%以下が挙げられる。 Further, as shown in FIG. 8, the length D along the Z direction of the portion where the convex portion 91 and the concave portion 92 are fitted is 10% or more of the height of the union body 10 (see FIG. 1). Can be mentioned. As described above, the height of the union body 10 is the length along the Z direction of the union body 10, and corresponds to the distance between the end face 101 and the end face 105 in the union body 10. In the present embodiment, since the overhanging portion 7 is fixed to the mounting seat 56, the union body 10 is displaced with the overhanging portion 7 as a fulcrum. More specifically, the union body 10 is displaced in a direction of swinging around a fixed point P (see FIG. 9) described later. When the union body 10 is displaced in the Z direction about the fixed point P with respect to the case 5, the convex portion 91 and the concave portion 92 extend in the direction intersecting the arc accompanying the above-mentioned swing, so that the Z- The swing of the union body 10 on the Y plane can be suppressed. In particular, if the length D is at least a certain value, the swing can be effectively suppressed, so that the displacement of the union body 10 in the Z direction can be suppressed. When the length D is 10% or more of the length along the Z direction of the union body 10, the displacement of the union body 10 in the Z direction with respect to the case 5 can be effectively suppressed. The upper limit of the length D is, for example, 25% or less of the length along the Z direction of the union body 10, and further 20% or less.
 〈凸部と凹部の位置〉
 凸部91と凹部92の位置について、主に図9を用いて説明する。凸部91と凹部92は、リアクトル1をX方向から見たとき、張出し部7の取付座56への固定点Pの対角部位に設けられている。つまり、張出し部7及び取付座56と、凸部91及び凹部92とは、互いに離れた位置に設けられる。固定点Pとは、張出し部7が固定される取付座56の座面の中心である。本実施形態のように、張出し部7が取付座56にボルト75によって締結される場合、ボルト75の軸線と取付座56の座面との交点を固定点Pとする。
<Position of convex and concave parts>
The positions of the convex portion 91 and the concave portion 92 will be described mainly with reference to FIG. The convex portion 91 and the concave portion 92 are provided at diagonal portions of the fixing point P of the overhanging portion 7 to the mounting seat 56 when the reactor 1 is viewed from the X direction. That is, the overhanging portion 7 and the mounting seat 56, and the convex portion 91 and the concave portion 92 are provided at positions separated from each other. The fixed point P is the center of the seat surface of the mounting seat 56 to which the overhanging portion 7 is fixed. When the overhanging portion 7 is fastened to the mounting seat 56 by the bolt 75 as in the present embodiment, the intersection of the axis of the bolt 75 and the seat surface of the mounting seat 56 is set as the fixed point P.
 対角部位とは、リアクトル1をX方向から見たとき、組合体10の固定点Pから遠い側の対角に位置する部分である。換言すれば、対角部位とは、リアクトル1において組合体10の張出し部7から対角に位置する部分である。具体的には、張出し部7は、組合体10をX方向から見て、組合体10をY方向に二等分する線Ycよりも一方側で、かつ、組合体10をZ方向に二等分する線Zcよりも開口部55側に位置する。そして、組合体10をY方向に二等分する線Ycよりも他方側で、かつ、組合体10をZ方向に二等分する線Zcよりも底板部51側に位置する領域をリアクトル1の対角部位とする。換言すれば、張出し部7が位置するY方向の一方側は、取付座56が設けられる一方の短辺部531に向かい合う側である。対角部位が位置するY方向の他方側は、張出し部7が位置する側とは反対側であって、他方の短辺部532に向かい合う側である。二等分線Ycは、組合体10のY方向に沿う長さを二等分する線である。張出し部7の突出長さは組合体10のY方向の長さに含まれない。二等分線Zcは、組合体10のZ方向に沿う長さを二等分する線である。凸部91と凹部92とが嵌合する部分の少なくとも一部が上記領域内に入っていれば、凸部91と凹部92は、対角部位に位置しているものとする。 The diagonal portion is a portion located diagonally on the side far from the fixed point P of the union body 10 when the reactor 1 is viewed from the X direction. In other words, the diagonal portion is a portion of the reactor 1 diagonally located from the overhanging portion 7 of the union body 10. Specifically, the overhanging portion 7 is one side of the line Yc that bisects the union body 10 in the Y direction when the union body 10 is viewed from the X direction, and the union body 10 is bisected in the Z direction. It is located on the opening 55 side of the bisector Zc. The region of the reactor 1 is located on the other side of the line Yc that bisects the union body 10 in the Y direction and on the bottom plate portion 51 side of the line Zc that bisects the union body 10 in the Z direction. It is a diagonal part. In other words, one side in the Y direction in which the overhanging portion 7 is located is the side facing the short side portion 531 on which the mounting seat 56 is provided. The other side in the Y direction where the diagonal portion is located is the side opposite to the side where the overhanging portion 7 is located and faces the other short side portion 532. The bisector Yc is a line that bisects the length of the union 10 along the Y direction. The protruding length of the overhanging portion 7 is not included in the length of the union body 10 in the Y direction. The bisector Zc is a line that bisects the length of the union 10 along the Z direction. If at least a part of the portion where the convex portion 91 and the concave portion 92 are fitted is within the above-mentioned region, it is assumed that the convex portion 91 and the concave portion 92 are located diagonally.
 より厳密には、対角部位は、上記領域のうち、以下の条件を満たす領域であることが好ましい。固定点Pから組合体10の重心Gを通る直線PGを引き、固定点Pを中心として直線PGをZ方向に±10°回転させた直線PGaと直線PGbとの間の範囲内に位置する領域である。 Strictly speaking, the diagonal portion is preferably a region among the above regions that satisfies the following conditions. A region located within the range between the straight line PGa and the straight line PGb obtained by drawing a straight line PG passing through the center of gravity G of the union body 10 from the fixed point P and rotating the straight line PG by ± 10 ° in the Z direction around the fixed point P. Is.
 その他、側壁部52の内周面は、底板部51側から開口部55側に向かって広がるように傾斜していてもよい。より具体的には、側壁部52の短辺部531、532の内面同士及び長辺部541、542の内面同士の少なくとも一方は、底板部51側から開口部55側に向かって互いの間隔が大きくなるように傾斜していてもよい。つまり、短辺部531、532及び長辺部541、542の各々の内面の少なくとも一つが、底板部51の内底面510の垂直方向に対してケース5の外方側に傾斜するように形成されていてもよい。なお、上記垂直方向は、Z方向に相当する。 In addition, the inner peripheral surface of the side wall portion 52 may be inclined so as to spread from the bottom plate portion 51 side toward the opening 55 side. More specifically, at least one of the inner surfaces of the short side portions 531 and 532 of the side wall portion 52 and the inner surfaces of the long side portions 541 and 542 are spaced from each other from the bottom plate portion 51 side toward the opening 55 side. It may be tilted to be large. That is, at least one of the inner surfaces of the short side portions 531 and 532 and the long side portions 541 and 542 is formed so as to be inclined outward from the case 5 with respect to the vertical direction of the inner bottom surface 510 of the bottom plate portion 51. May be. The vertical direction corresponds to the Z direction.
 短辺部531、532及び長辺部541、542の各々の内面が底板部51側から開口部55側に向かって互いの間隔が大きくなるように傾斜している場合、リアクトル1の製造過程において、ケース5に組合体10を収納する作業が行い易い。また、金属製のケース5をダイキャストで製造する場合、短辺部531、532及び長辺部541、542の各々の内面の少なくとも一つが傾斜していることで、ケース5を型から抜き出す作業が行い易い。本実施形態では、図1、図3に示すように、側壁部52の内周面が底板部51側から開口部55側に向かって広がるように傾斜している。 When the inner surfaces of the short side portions 531 and 532 and the long side portions 541 and 542 are inclined so as to increase the distance from each other from the bottom plate portion 51 side toward the opening 55 side, in the manufacturing process of the reactor 1. , The work of storing the union body 10 in the case 5 is easy to perform. Further, when the metal case 5 is die-cast, at least one of the inner surfaces of the short side portions 531 and 532 and the long side portions 541 and 542 is inclined, so that the case 5 is extracted from the mold. Is easy to do. In the present embodiment, as shown in FIGS. 1 and 3, the inner peripheral surface of the side wall portion 52 is inclined so as to spread from the bottom plate portion 51 side toward the opening 55 side.
 短辺部531、532及び長辺部541、542の各々の内面と、底板部51の内底面510の垂線とがなす傾斜角度は、適宜選択できる。上記傾斜角度は、例えば0.5°以上5°以下、更に1°以上2°以下が挙げられる。傾斜角度が大き過ぎると、開口部55側において、組合体10の外周面と側壁部52の内周面との間隔が大きくなる。上記間隔が大き過ぎると、開口部55側の組合体10の熱が効率的にケース5に伝達され難い。そのため、傾斜角度が大き過ぎることは、放熱性の観点からも好ましくない。よって、傾斜角度の上限は5°以下、更に2°以下とする。 The inclination angle formed by the inner surfaces of the short side portions 531 and 532 and the long side portions 541 and 542 and the vertical line of the inner bottom surface 510 of the bottom plate portion 51 can be appropriately selected. The inclination angle may be, for example, 0.5 ° or more and 5 ° or less, and further 1 ° or more and 2 ° or less. If the inclination angle is too large, the distance between the outer peripheral surface of the union body 10 and the inner peripheral surface of the side wall portion 52 becomes large on the opening 55 side. If the interval is too large, it is difficult to efficiently transfer the heat of the union body 10 on the opening 55 side to the case 5. Therefore, it is not preferable that the inclination angle is too large from the viewpoint of heat dissipation. Therefore, the upper limit of the tilt angle is 5 ° or less, and further 2 ° or less.
 ケース5の長さ、幅、高さ、容積は、適宜選択できる。ケース5の長さは、例えば80mm以上120mm以下、更に90mm以上115mm以下が挙げられる。ケース5の幅は、例えば30mm以上80mm以下、更に35mm以上70mm以下が挙げられる。ケース5の高さは、例えば70mm以上140mm以下、更に80mm以上130mm以下が挙げられる。ケース5の長さは、ケース5のY方向の寸法である。ケース5の幅は、ケース5のX方向の寸法である。ケース5の高さは、ケース5のZ方向の寸法である。ケース5の容積は、例えば120cm以上1200cm以下、更に200cm以上900cm以下が挙げられる。本実施形態では、ケース5は、長さが幅より大きく、かつ、幅よりも高さが大きい。よって、ケース5の長さ×幅によって求められる面積が、ケース5の長さ×高さによって求められる面積よりも小さい。 The length, width, height, and volume of the case 5 can be appropriately selected. The length of the case 5 is, for example, 80 mm or more and 120 mm or less, and further 90 mm or more and 115 mm or less. The width of the case 5 is, for example, 30 mm or more and 80 mm or less, and further 35 mm or more and 70 mm or less. The height of the case 5 is, for example, 70 mm or more and 140 mm or less, and further 80 mm or more and 130 mm or less. The length of the case 5 is a dimension of the case 5 in the Y direction. The width of the case 5 is the dimension of the case 5 in the X direction. The height of the case 5 is a dimension of the case 5 in the Z direction. The volume of the case 5 is, for example, 120 cm 3 or more and 1200 cm 3 or less, and further 200 cm 3 or more and 900 cm 3 or less. In the present embodiment, the case 5 has a length larger than the width and a height larger than the width. Therefore, the area obtained by the length × width of the case 5 is smaller than the area obtained by the length × height of the case 5.
 ケース5を構成する非磁性金属としては、例えば、アルミニウムやその合金、マグネシウムやその合金、銅やその合金、銀やその合金、オーステナイト系ステンレス鋼などが挙げられる。これらの金属の熱伝導率は比較的高い。そのため、ケース5を放熱経路に利用し易い。ケース5を介して、組合体10の熱が外部に効率よく放出され易い。よって、組合体10の放熱性が向上する。ケース5を構成する材料としては、金属以外にも樹脂などを用いることができる。 Examples of the non-magnetic metal constituting the case 5 include aluminum and its alloy, magnesium and its alloy, copper and its alloy, silver and its alloy, and austenitic stainless steel. The thermal conductivity of these metals is relatively high. Therefore, the case 5 can be easily used as a heat dissipation path. The heat of the union 10 is easily released to the outside efficiently through the case 5. Therefore, the heat dissipation of the union body 10 is improved. As the material constituting the case 5, a resin or the like can be used in addition to the metal.
 金属製のケース5は、例えばダイキャストによって製造できる。本実施形態では、ケース5は、アルミニウム製のダイキャスト品により構成されている。 The metal case 5 can be manufactured by die casting, for example. In the present embodiment, the case 5 is made of a die-cast product made of aluminum.
 (組合体の配置形態)
 ケース5に対する組合体10の配置形態は直立型である。この場合、組合体10は、図1に示すように、コイル2を構成する巻回部21、22の軸方向が底板部51の内底面510と直交するようにケース5に収納される。また、組合体10は、両巻回部21、22の並列方向が長辺部541、542に沿うようにケース5に収納されている。
(Arrangement form of union)
The arrangement form of the union body 10 with respect to the case 5 is an upright type. In this case, as shown in FIG. 1, the combined body 10 is housed in the case 5 so that the axial direction of the winding portions 21 and 22 constituting the coil 2 is orthogonal to the inner bottom surface 510 of the bottom plate portion 51. Further, the union body 10 is housed in the case 5 so that the parallel direction of both winding portions 21 and 22 is along the long side portions 541 and 542.
 組合体10の配置形態が直立型の場合、以下の平置き型に比較して、底板部51に対する組合体10の設置面積を小さくすることができる。平置き型は、特許文献1、2に記載される形態であり、両巻回部の並列方向及び軸方向の双方がZ方向に直交するように組合体がケースに収納される。即ち、平置き型では、両巻回部の並列方向及び軸方向の双方が底板部の内底面と平行するように組合体がケースに収納される。一般的に、両巻回部21、22の並列方向、及び両巻回部21、22の軸方向の双方に直交する方向に沿った組合体10の長さは、両巻回部21、22の軸方向に沿った組合体10の長さよりも短い。つまり、組合体10の幅は、組合体10の高さよりも短い。そのため、直立型は、平置き型に比べて、組合体10の設置面積が小さくなる。よって、組合体10の配置形態が直立型の場合、底板部51の面積を小さくできるので、リアクトル1の設置面積の省スペース化が可能である。 When the arrangement form of the union body 10 is an upright type, the installation area of the union body 10 with respect to the bottom plate portion 51 can be reduced as compared with the following flat type. The flat placement type is the form described in Patent Documents 1 and 2, and the union is housed in the case so that both the parallel direction and the axial direction of both winding portions are orthogonal to the Z direction. That is, in the flat placement type, the union is housed in the case so that both the parallel direction and the axial direction of both winding portions are parallel to the inner bottom surface of the bottom plate portion. Generally, the length of the union 10 along the parallel direction of both winding portions 21 and 22 and the direction orthogonal to both the axial directions of both winding portions 21 and 22 is the length of both winding portions 21 and 22. It is shorter than the length of the union 10 along the axial direction of. That is, the width of the union 10 is shorter than the height of the union 10. Therefore, the upright type has a smaller installation area of the union body 10 than the flat type. Therefore, when the arrangement form of the union body 10 is an upright type, the area of the bottom plate portion 51 can be reduced, so that the installation area of the reactor 1 can be saved.
 また、組合体10の配置形態が直立型であれば、本実施形態のように、巻回部21、22の外周面が実質的に平面で構成される場合、巻回部21、22と側壁部52とが向かい合う面積が大きく確保される。更に、巻回部21、22の外周面と側壁部52の内周面との間隔が均一的になり易い。本実施形態の場合、巻回部21、22の外周面と長辺部541、542の内面との間隔、巻回部21の外周面と短辺部531の内面との間隔、及び巻回部22の外周面と短辺部532の内面との間隔が小さくなり易い。よって、リアクトル1は、ケース5を放熱経路として効率よく利用できる。そのため、リアクトル1は、コイル2の熱をケース5に放出し易く、組合体10の放熱性に優れる。 Further, when the arrangement form of the union body 10 is an upright type and the outer peripheral surfaces of the winding portions 21 and 22 are substantially formed of a flat surface as in the present embodiment, the winding portions 21 and 22 and the side wall are formed. A large area facing the portion 52 is secured. Further, the distance between the outer peripheral surface of the wound portions 21 and 22 and the inner peripheral surface of the side wall portion 52 tends to be uniform. In the case of the present embodiment, the distance between the outer peripheral surface of the winding portions 21 and 22 and the inner surface of the long side portions 541 and 542, the distance between the outer peripheral surface of the winding portion 21 and the inner surface of the short side portion 531 and the winding portion. The distance between the outer peripheral surface of 22 and the inner surface of the short side portion 532 tends to be small. Therefore, the reactor 1 can efficiently use the case 5 as a heat dissipation path. Therefore, the reactor 1 easily releases the heat of the coil 2 to the case 5, and the combined body 10 is excellent in heat dissipation.
 組合体10の外周面と側壁部52の内周面との間隔は、例えば0.5mm以上1.5mm以下、更に0.5mm以上1.0mm以下が挙げられる。上記間隔は、底板部51側に位置する第二保持部材40bにおける外壁部41の外周面と、側壁部52の長辺部541、542及び短辺部532との間隔である。この理由は、組合体10のうち、張出し部7を除いて、側壁部52と最も近接する部材が、第二保持部材40bであるからである。但し、上記間隔には、凸部91と凹部92とが嵌合する部分は含まれない。上述のように側壁部52の長辺部541、542及び短辺部532の各々の内面が傾斜している場合、上記間隔は最小値を採用するとよい。この間隔が0.5mm以上であることで、組合体10と側壁部52との間に封止樹脂部6となる樹脂が回り込み易い。そのため、組合体10と側壁部52との間に封止樹脂部6が充填され易い。上記間隔が1.5mm以下、更に1.0mm以下であることで、巻回部21、22の外周面と側壁部52の内周面との間隔が小さくなる。そのため、組合体10の放熱性を向上させることができる。 The distance between the outer peripheral surface of the union body 10 and the inner peripheral surface of the side wall portion 52 is, for example, 0.5 mm or more and 1.5 mm or less, and further 0.5 mm or more and 1.0 mm or less. The distance is the distance between the outer peripheral surface of the outer wall portion 41 of the second holding member 40b located on the bottom plate portion 51 side and the long side portions 541, 542 and the short side portion 532 of the side wall portion 52. The reason for this is that, in the union body 10, the member closest to the side wall portion 52, except for the overhanging portion 7, is the second holding member 40b. However, the above interval does not include the portion where the convex portion 91 and the concave portion 92 fit. When the inner surfaces of the long side portions 541, 542 and the short side portion 532 of the side wall portion 52 are inclined as described above, the minimum value may be adopted for the above interval. When this distance is 0.5 mm or more, the resin to be the sealing resin portion 6 easily wraps around between the union body 10 and the side wall portion 52. Therefore, the sealing resin portion 6 is likely to be filled between the union body 10 and the side wall portion 52. When the distance is 1.5 mm or less, and further 1.0 mm or less, the distance between the outer peripheral surfaces of the wound portions 21 and 22 and the inner peripheral surface of the side wall portion 52 becomes smaller. Therefore, the heat dissipation of the union body 10 can be improved.
 (封止樹脂部)
 封止樹脂部6は、ケース5内に充填されることで、組合体10の少なくとも一部を封止する。封止樹脂部6によって、組合体10の機械的保護及び外部環境からの保護を図ることができる。外部環境からの保護は、防食性の向上などを目的とする。
(Encapsulating resin part)
The sealing resin portion 6 is filled in the case 5 to seal at least a part of the union body 10. The sealing resin portion 6 can mechanically protect the union body 10 and protect it from the external environment. The purpose of protection from the external environment is to improve anticorrosion.
 本実施形態では、封止樹脂部6がケース5の開口端まで充填されている。そのため、組合体10の全体が封止樹脂部6に埋設されている。組合体10の一部のみが封止樹脂部6に封止されていてもよい。例えば、組合体10のうち、コイル2を構成する巻回部21、22の上端面の高さまでが封止樹脂部6に封止されていることが挙げられる。封止樹脂部6は、組合体10と、ケース5の底板部51及び側壁部52との間に介在される。これにより、組合体10の熱を封止樹脂部6を介してケース5に伝えることができる。そのため、組合体10の放熱性が向上する。 In this embodiment, the sealing resin portion 6 is filled up to the open end of the case 5. Therefore, the entire union body 10 is embedded in the sealing resin portion 6. Only a part of the union body 10 may be sealed in the sealing resin portion 6. For example, in the union body 10, up to the height of the upper end surfaces of the winding portions 21 and 22 constituting the coil 2, the sealing resin portion 6 may be sealed. The sealing resin portion 6 is interposed between the union body 10 and the bottom plate portion 51 and the side wall portion 52 of the case 5. As a result, the heat of the union body 10 can be transferred to the case 5 via the sealing resin portion 6. Therefore, the heat dissipation of the union body 10 is improved.
 封止樹脂部6の樹脂は、例えば、熱硬化性樹脂、熱可塑性樹脂が挙げられる。熱硬化性樹脂は、例えば、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂、不飽和ポリエステル樹脂などが挙げられる。熱可塑性樹脂は、例えば、PPS樹脂などが挙げられる。本実施形態では、封止樹脂部6は、シリコーン樹脂によって構成されている。シリコーン樹脂は、エポキシ樹脂などの樹脂に比べて熱伝導率が高い。封止樹脂部6の熱伝導率は高いほど好ましい。この理由は、組合体10の熱をケース5に伝え易くなるので、組合体10の放熱性がより向上するからである。そのため、封止樹脂部6を構成する材料は、上記樹脂に加えて、例えば上述したようなフィラーを含有してもよい。封止樹脂部6の熱伝導率を高めるために、上記材料の成分が調整されていてもよい。封止樹脂部6の熱伝導率は、例えば1W/m・K以上、更に1.5W/m・K以上が好ましい。 Examples of the resin of the sealing resin portion 6 include a thermosetting resin and a thermoplastic resin. Examples of the thermosetting resin include epoxy resin, urethane resin, silicone resin, and unsaturated polyester resin. Examples of the thermoplastic resin include PPS resin and the like. In the present embodiment, the sealing resin portion 6 is made of a silicone resin. Silicone resin has a higher thermal conductivity than resins such as epoxy resin. The higher the thermal conductivity of the sealing resin portion 6, the more preferable. The reason for this is that the heat of the union body 10 can be easily transferred to the case 5, so that the heat dissipation of the union body 10 is further improved. Therefore, the material constituting the sealing resin portion 6 may contain, for example, a filler as described above in addition to the above resin. In order to increase the thermal conductivity of the sealing resin portion 6, the components of the above material may be adjusted. The thermal conductivity of the sealing resin portion 6 is preferably, for example, 1 W / m · K or more, more preferably 1.5 W / m · K or more.
 <製造方法>
 上述したリアクトル1の製造方法の一例を説明する。
 リアクトル1は、例えば、以下の第1から第3の工程を備える製造方法により製造できる。
 第1の工程は、組合体10とケース5とを用意する。
 第2の工程は、組合体10をケース5に収納する。
 第3の工程は、ケース5内に封止樹脂部6を形成する。
<Manufacturing method>
An example of the above-mentioned manufacturing method of the reactor 1 will be described.
The reactor 1 can be manufactured, for example, by a manufacturing method including the following first to third steps.
In the first step, the union body 10 and the case 5 are prepared.
In the second step, the union body 10 is stored in the case 5.
In the third step, the sealing resin portion 6 is formed in the case 5.
 (第1の工程)
 第1の工程では、組合体10と、ケース5とを用意する。この例では、組合体10は、図5に示すように、コイル2と、磁性コア3と、保持部材40a、40bとを組み付けて作製する。第一保持部材40aは、張出し部7を有する。張出し部7は、上述したように、金属製のブラケット70をインサート成形することにより、第一保持部材40aの外壁部41に一体に形成されている。第二保持部材40bの外壁部41は、凹部92が形成されている。また、モールド樹脂部8(図1参照)を形成する。具体的には、保持部材40a、40bによってコイル2及び磁性コア3が所定の位置に保持された状態において、外側コア部33、34の外周面を覆うようにモールド樹脂部8を形成する。モールド樹脂部8を構成する樹脂の一部は、上述したように、外側コア部33、34と凹部44との間の隙間と、内側コア部31、32と貫通孔43との間の隙間とを通って、巻回部21、22と内側コア部31、32との間に充填される。そのため、モールド樹脂部8が巻回部21、22と内側コア部31、32との間に介在するように形成される。また、モールド樹脂部8によってコイル2、磁性コア3及び保持部材40a、40bが一体化される。
(First step)
In the first step, the union body 10 and the case 5 are prepared. In this example, the union body 10 is manufactured by assembling the coil 2, the magnetic core 3, and the holding members 40a and 40b, as shown in FIG. The first holding member 40a has an overhanging portion 7. As described above, the overhanging portion 7 is integrally formed with the outer wall portion 41 of the first holding member 40a by insert-molding the metal bracket 70. The outer wall portion 41 of the second holding member 40b is formed with a recess 92. Further, the mold resin portion 8 (see FIG. 1) is formed. Specifically, in a state where the coil 2 and the magnetic core 3 are held at predetermined positions by the holding members 40a and 40b, the mold resin portion 8 is formed so as to cover the outer peripheral surfaces of the outer core portions 33 and 34. As described above, a part of the resin constituting the mold resin portion 8 includes a gap between the outer core portions 33, 34 and the recess 44, and a gap between the inner core portions 31, 32 and the through hole 43. Through, it is filled between the winding portions 21, 22 and the inner core portions 31, 32. Therefore, the mold resin portion 8 is formed so as to be interposed between the winding portions 21 and 22 and the inner core portions 31 and 32. Further, the coil 2, the magnetic core 3, and the holding members 40a and 40b are integrated by the mold resin portion 8.
 用意するケース5は、例えば非磁性の金属で構成されている。ケース5は、図4に示すように、取付座56を有する。取付座56は、上述したように、一方の短辺部531の内面に形成されている。また、側壁部52の内面には、凸部91が形成されている。本例では、ケース5がアルミニウム製のダイキャスト品である。 The case 5 to be prepared is made of, for example, a non-magnetic metal. The case 5 has a mounting seat 56 as shown in FIG. As described above, the mounting seat 56 is formed on the inner surface of one of the short side portions 531. Further, a convex portion 91 is formed on the inner surface of the side wall portion 52. In this example, the case 5 is a die-cast product made of aluminum.
 (第2の工程)
 第2の工程では、図4に示すように、ケース5の開口部55から組合体10をケース5に収納する。組合体10の配置形態が上述の直立型となるように、組合体10をケース5に収納する。本例では、図6から図8に示すように、側壁部52の凸部91と第二保持部材40bの凹部92とが嵌合することで、ケース5に対して組合体10が位置決めされる。また、凸部91と凹部92との嵌合により、組合体10が底板部51との間に所定の間隔をあけた状態で配置される。組合体10をケース5に収納した後、第一保持部材40aの張出し部7を取付座56に固定する。具体的には、張出し部7の貫通孔71にボルト75を挿通し、ボルト75を取付座56のネジ穴58にねじ込むことにより、張出し部7を取付座56に締結する。
(Second step)
In the second step, as shown in FIG. 4, the union body 10 is housed in the case 5 through the opening 55 of the case 5. The union body 10 is housed in the case 5 so that the union body 10 is arranged in the above-mentioned upright type. In this example, as shown in FIGS. 6 to 8, the combined body 10 is positioned with respect to the case 5 by fitting the convex portion 91 of the side wall portion 52 and the concave portion 92 of the second holding member 40b. .. Further, by fitting the convex portion 91 and the concave portion 92, the union body 10 is arranged in a state where a predetermined distance is provided between the convex portion 91 and the bottom plate portion 51. After the union body 10 is housed in the case 5, the overhanging portion 7 of the first holding member 40a is fixed to the mounting seat 56. Specifically, the overhanging portion 7 is fastened to the mounting seat 56 by inserting the bolt 75 into the through hole 71 of the overhanging portion 7 and screwing the bolt 75 into the screw hole 58 of the mounting seat 56.
 (第3の工程)
 第3の工程では、ケース5内に樹脂を充填して、封止樹脂部6(図1参照)を形成する。具体的には、ケース5内に組合体10を収納した状態で封止樹脂部6となる樹脂を充填する。本例では、封止樹脂部6となる樹脂がシリコーン樹脂である。
(Third step)
In the third step, the case 5 is filled with resin to form the sealing resin portion 6 (see FIG. 1). Specifically, the case 5 is filled with the resin to be the sealing resin portion 6 in the state where the union body 10 is housed. In this example, the resin that becomes the sealing resin portion 6 is a silicone resin.
 封止樹脂部6となる樹脂の充填は、組合体10を収納したケース5を真空槽に入れ、真空状態で上記樹脂を注入することが好ましい。真空状態で上記樹脂を注入することで、封止樹脂部6が気泡を含有することを抑制することができる。 For filling the resin to be the sealing resin portion 6, it is preferable to put the case 5 containing the union body 10 in a vacuum chamber and inject the resin in a vacuum state. By injecting the resin in a vacuum state, it is possible to prevent the sealing resin portion 6 from containing air bubbles.
 ケース5内に上述の樹脂を充填した後、樹脂を固化することで、封止樹脂部6(図1)が形成される。樹脂の固化は、使用する樹脂に応じて適宜な条件で行えばよい。 After filling the case 5 with the above-mentioned resin, the resin is solidified to form the sealing resin portion 6 (FIG. 1). The solidification of the resin may be carried out under appropriate conditions depending on the resin to be used.
 {用途}
 リアクトル1は、電圧の昇圧動作や降圧動作を行う回路の部品に利用できる。リアクトル1は、例えば、種々のコンバータや電力変換装置の構成部品などに利用できる。コンバータの一例としては、車両に搭載される車載用コンバータ、代表的にはDC-DCコンバータや、空調機のコンバータなどが挙げられる。上記車両は、ハイブリッド自動車、プラグインハイブリッド自動車、電気自動車、燃料電池自動車などが挙げられる。
{Use}
The reactor 1 can be used as a component of a circuit that performs a voltage step-up operation or a voltage step-down operation. The reactor 1 can be used, for example, as a component of various converters and power conversion devices. Examples of the converter include an in-vehicle converter mounted on a vehicle, typically a DC-DC converter, an air conditioner converter, and the like. Examples of the vehicle include a hybrid vehicle, a plug-in hybrid vehicle, an electric vehicle, a fuel cell vehicle, and the like.
 {主要な効果}
 実施形態1のリアクトル1は、張出し部7が取付座56に固定されると共に、凸部91と凹部92とが嵌合されることで、ケース5内での組合体10の変位を抑制できる。この理由の一つは、張出し部7が取付座56に固定されるので、組合体10とケース5との固定箇所が1箇所であることが挙げられる。この場合、組合体10とケース5との間の振動伝達経路は基本的に1箇所である。よって、組合体10とケース5との間で振動が伝わり難い。更に、凸部91と凹部92との嵌合により、組合体10が底板部51との間に間隔をあけて配置されるので、その点でも、組合体10とケース5との間で振動が伝わり難い。その結果、組合体10の変位が生じ難い。別の理由は、凸部91と凹部92とが嵌合されることによって、ケース5内において組合体10の変位する範囲が規制されることが挙げられる。特に、固定点Pの対角部位に凸部91と凹部92が位置する。固定点Pから離れた対角部位において、凸部91と凹部92とが嵌合することから、組合体10の変位を効果的に抑制できる。より詳しくは、固定点Pと組合体10の重心Gとを通る線分PGが固定点Pを中心として揺動する方向に組合体10が変位することを抑制できる。上記揺動に伴う円弧に対して交差する方向であるZ方向に凸部91と凹部92が延びていることから、Z-Y平面での組合体10の揺動を効果的に抑制できる。その結果、組合体10の変位量が小さくなり易い。
{Main effect}
In the reactor 1 of the first embodiment, the overhanging portion 7 is fixed to the mounting seat 56, and the convex portion 91 and the concave portion 92 are fitted to each other, so that the displacement of the union body 10 in the case 5 can be suppressed. One of the reasons for this is that since the overhanging portion 7 is fixed to the mounting seat 56, there is only one fixing point between the union body 10 and the case 5. In this case, the vibration transmission path between the union body 10 and the case 5 is basically one place. Therefore, it is difficult for vibration to be transmitted between the union body 10 and the case 5. Further, the fitting of the convex portion 91 and the concave portion 92 causes the union body 10 to be arranged at a distance from the bottom plate portion 51, so that vibration also occurs between the union body 10 and the case 5 at that point as well. It's hard to convey. As a result, displacement of the union body 10 is unlikely to occur. Another reason is that the displacement range of the union body 10 is restricted in the case 5 by fitting the convex portion 91 and the concave portion 92. In particular, the convex portion 91 and the concave portion 92 are located at diagonal portions of the fixed point P. Since the convex portion 91 and the concave portion 92 are fitted at the diagonal portion away from the fixed point P, the displacement of the combined body 10 can be effectively suppressed. More specifically, it is possible to prevent the union body 10 from being displaced in the direction in which the line segment PG passing through the fixed point P and the center of gravity G of the union body 10 swings around the fixed point P. Since the convex portion 91 and the concave portion 92 extend in the Z direction, which is the direction intersecting the arc accompanying the swing, the swing of the combined body 10 in the ZZ plane can be effectively suppressed. As a result, the displacement amount of the union body 10 tends to be small.
 更に、実施形態1のリアクトル1は、以下の理由により、組合体10の変位をより効果的に抑制できる。 Further, the reactor 1 of the first embodiment can more effectively suppress the displacement of the union body 10 for the following reasons.
 (1)凸部91と凹部92との間隔が0.5mm以下である。この間隔が小さいほど、ケース5内において組合体10の変位する範囲が規制される。そのため、ケース5内での組合体10の変位を抑制できる。上記間隔が0.5mm以下であれば、特に、組合体10のX方向及びY方向の変位を効果的に抑制できる。 (1) The distance between the convex portion 91 and the concave portion 92 is 0.5 mm or less. The smaller this interval is, the more the displacement range of the union body 10 is restricted in the case 5. Therefore, the displacement of the union body 10 in the case 5 can be suppressed. When the interval is 0.5 mm or less, the displacement of the union body 10 in the X direction and the Y direction can be effectively suppressed.
 (2)凸部91と凹部92とが嵌り合っている部分のZ方向に沿う長さが組合体10のZ方向に沿う長さの10%以上である。上記長さが一定以上あることで、組合体10のZ方向の変位を効果的に抑制できる。 (2) The length along the Z direction of the portion where the convex portion 91 and the concave portion 92 are fitted is 10% or more of the length along the Z direction of the union body 10. When the length is longer than a certain level, the displacement of the union body 10 in the Z direction can be effectively suppressed.
 (3)凸部91のZ方向に直交する断面形状が四角形状ある。凸部91の断面形状が四角形状、特に矩形状であれば、組合体10の変位する範囲を規制し易い。そのため、組合体10の変位を効果的に抑制し易い。 (3) The cross-sectional shape of the convex portion 91 orthogonal to the Z direction is rectangular. If the cross-sectional shape of the convex portion 91 is rectangular, particularly rectangular, it is easy to regulate the displacement range of the combined body 10. Therefore, it is easy to effectively suppress the displacement of the union body 10.
 実施形態1のリアクトル1は、張出し部7の取付座56への固定と、凸部91と凹部92との嵌合により、組合体10がX方向、Y方向、Z方向の各方向へ変位することを抑制できる。従って、リアクトル1は、ケース5内での組合体10の変位を抑制できることから、組合体10の変位に起因する封止樹脂部6の割れを抑制できる。そのため、リアクトル1では、封止樹脂部6によって組合体10を長期にわたり保護できる。また、組合体10の熱を封止樹脂部6を介してケース5に良好に伝えることができる。このようなリアクトル1は、信頼性が高い。 In the reactor 1 of the first embodiment, the union body 10 is displaced in each of the X direction, the Y direction, and the Z direction by fixing the overhanging portion 7 to the mounting seat 56 and fitting the convex portion 91 and the concave portion 92. It can be suppressed. Therefore, since the reactor 1 can suppress the displacement of the union body 10 in the case 5, it is possible to suppress the cracking of the sealing resin portion 6 due to the displacement of the union body 10. Therefore, in the reactor 1, the sealing resin portion 6 can protect the union body 10 for a long period of time. Further, the heat of the union body 10 can be satisfactorily transferred to the case 5 via the sealing resin portion 6. Such a reactor 1 is highly reliable.
 更に、実施形態1のリアクトル1は、以下の効果も奏する。 Further, the reactor 1 of the first embodiment also has the following effects.
(i)小型化が可能である。
 組合体10の配置形態が直立型であるため、上述した平置き型に比較して、ケース5の底板部51に対する組合体10の設置面積を小さくできる。
(I) Miniaturization is possible.
Since the arrangement form of the union body 10 is an upright type, the installation area of the union body 10 with respect to the bottom plate portion 51 of the case 5 can be reduced as compared with the above-mentioned flat placement type.
(ii)放熱性に優れる。
 (1)組合体10の配置形態が直立型であるため、コイル2の外周面と側壁部52の内周面とが向かい合う面積を上記平置き型に比較して、大きく確保することができる。また、コイル2の外周面と側壁部52の内周面との間隔が小さくなり易い。そのため、コイル2の熱を側壁部52に伝え易い。よって、ケース5を放熱経路として効率よく利用できる。
 (2)組合体10における底板部51側の端面101と底板部51の内底面510との間隔が所定の範囲内にあることで、組合体10と底板部51との間に封止樹脂部6が薄く充填され易い。そのため、組合体10の熱を封止樹脂部6を介して底板部51に効率よく伝えることができる。
 (3)封止樹脂部6を構成する樹脂がシリコーン樹脂である。そのため、組合体10の熱を封止樹脂部6を介してケース5に伝え易い。
(Ii) Excellent heat dissipation.
(1) Since the arrangement of the combined body 10 is an upright type, it is possible to secure a large area where the outer peripheral surface of the coil 2 and the inner peripheral surface of the side wall portion 52 face each other as compared with the flat placement type. Further, the distance between the outer peripheral surface of the coil 2 and the inner peripheral surface of the side wall portion 52 tends to be small. Therefore, the heat of the coil 2 can be easily transferred to the side wall portion 52. Therefore, the case 5 can be efficiently used as a heat dissipation path.
(2) When the distance between the end surface 101 on the bottom plate portion 51 side and the inner bottom surface 510 of the bottom plate portion 51 in the union body 10 is within a predetermined range, the sealing resin portion is provided between the union body 10 and the bottom plate portion 51. 6 is thinly filled and easily filled. Therefore, the heat of the union body 10 can be efficiently transferred to the bottom plate portion 51 via the sealing resin portion 6.
(3) The resin constituting the sealing resin portion 6 is a silicone resin. Therefore, the heat of the union body 10 can be easily transferred to the case 5 via the sealing resin portion 6.
(iii)製造性に優れる。
 (1)組合体10をケース5に収納する際に、凸部91と凹部92とが嵌合することで、組合体10をケース5の所定の位置に位置決めできる。
 (2)ケース5の側壁部52に凸部91を有する構成とすることで、ケース5を製造し易い。
(Iii) Excellent manufacturability.
(1) When the union body 10 is stored in the case 5, the convex portion 91 and the concave portion 92 are fitted so that the union body 10 can be positioned at a predetermined position of the case 5.
(2) The case 5 can be easily manufactured by having the convex portion 91 on the side wall portion 52 of the case 5.
 [変形例1-1]
 図10を参照して、実施形態1のリアクトル1の変形例を説明する。図10は、図6と同様に、リアクトル1をZ方向と直交する平面で切断した断面図である。
[Modification 1-1]
A modified example of the reactor 1 of the first embodiment will be described with reference to FIG. FIG. 10 is a cross-sectional view of the reactor 1 cut along a plane orthogonal to the Z direction, as in FIG.
 変形例1-1は、凸部91と凹部92の位置が実施形態1と異なる。具体的には、凸部91は、ケース5の側壁部52における他方の短辺部532の内面に設けられている。凹部92は、第二保持部材40bの外壁部41における短辺部532と向かい合う面に設けられている。変形例1-1において、凸部91及び凹部92の各々のZ方向の長さや凸部91と凹部92との嵌合関係は、実施形態1で説明した凸部91と凹部92との嵌合関係と同様である。また、凸部91と凹部92は、図9を参照して実施形態1で説明したように、張出し部7の取付座56への固定点Pの対角部位に位置している。変形例1-1では、凸部91と凹部92の数が1つずつである。変形例1-1のリアクトル1は、実施形態1のリアクトル1と同様に、凸部91と凹部92とが嵌合されることで、組合体10の変位を抑制できる。 In the modified example 1-1, the positions of the convex portion 91 and the concave portion 92 are different from those of the first embodiment. Specifically, the convex portion 91 is provided on the inner surface of the other short side portion 532 of the side wall portion 52 of the case 5. The recess 92 is provided on the surface of the outer wall portion 41 of the second holding member 40b facing the short side portion 532. In the modified example 1-1, the length of each of the convex portion 91 and the concave portion 92 in the Z direction and the fitting relationship between the convex portion 91 and the concave portion 92 are the fitting between the convex portion 91 and the concave portion 92 described in the first embodiment. Similar to a relationship. Further, the convex portion 91 and the concave portion 92 are located at diagonal portions of the fixing point P to the mounting seat 56 of the overhanging portion 7, as described in the first embodiment with reference to FIG. In the modified example 1-1, the number of the convex portion 91 and the number of the concave portions 92 are one each. Similar to the reactor 1 of the first embodiment, the reactor 1 of the modification 1-1 can suppress the displacement of the union body 10 by fitting the convex portion 91 and the concave portion 92.
 [変形例1-2]
 図11を参照して、実施形態1のリアクトル1の変形例を説明する。図11は、図6と同様に、リアクトル1をZ方向と直交する平面で切断した断面図である。
[Modification 1-2]
A modified example of the reactor 1 of the first embodiment will be described with reference to FIG. FIG. 11 is a cross-sectional view of the reactor 1 cut along a plane orthogonal to the Z direction, as in FIG.
 変形例1-2は、ケース5の側壁部52が凹部92を有し、第二保持部材40bが凸部91を有する点で実施形態1と異なる。凸部91と凹部92は、図9を参照して実施形態1で説明したように、張出し部7の取付座56への固定点Pの対角部位に位置している。変形例1-2では、凹部92は、側壁部52における長辺部541、542の各々の内面に設けられている。凸部91は、第二保持部材40bの外壁部41における長辺部541、542のそれぞれと向かい合う各面に設けられている。変形例1-2のように、側壁部52の内面に凹部92を設ける場合は、凹部92は、開口部55から側壁部52の内面に沿ってZ方向に延びている。そのため、組合体10をケース5に収納する際、第二保持部材40bの凸部91を側壁部52の凹部92に嵌め込むことができる。但し、凹部92は、底板部51まで達しておらず、開口部55から底板部51の近傍まで延びている。これにより、組合体10をケース5に収納したとき、凸部91と凹部92とが嵌合した状態では、凸部91の下端面と凹部92の下端面とが接する。そのため、凸部91と凹部92との嵌合により、組合体10を底板部51との間に間隔をあけて位置決めすることができる。 Modification 1-2 is different from the first embodiment in that the side wall portion 52 of the case 5 has a concave portion 92 and the second holding member 40b has a convex portion 91. The convex portion 91 and the concave portion 92 are located diagonally to the fixing point P of the overhanging portion 7 to the mounting seat 56, as described in the first embodiment with reference to FIG. In the modification 1-2, the recess 92 is provided on the inner surface of each of the long side portions 541 and 542 of the side wall portion 52. The convex portion 91 is provided on each surface of the outer wall portion 41 of the second holding member 40b facing each of the long side portions 541 and 542. When the recess 92 is provided on the inner surface of the side wall portion 52 as in the modified example 1-2, the recess 92 extends from the opening 55 along the inner surface of the side wall portion 52 in the Z direction. Therefore, when the combined body 10 is housed in the case 5, the convex portion 91 of the second holding member 40b can be fitted into the concave portion 92 of the side wall portion 52. However, the recess 92 does not reach the bottom plate portion 51, but extends from the opening 55 to the vicinity of the bottom plate portion 51. As a result, when the union body 10 is housed in the case 5, the lower end surface of the convex portion 91 and the lower end surface of the concave portion 92 are in contact with each other in a state where the convex portion 91 and the concave portion 92 are fitted. Therefore, by fitting the convex portion 91 and the concave portion 92, the combined body 10 can be positioned with a gap between the convex portion 91 and the bottom plate portion 51.
 変形例1-2のリアクトル1は、実施形態1のリアクトル1と同様に、凸部91と凹部92とが嵌合されることで、組合体10の変位を抑制できる。変形例1-2のリアクトル1において、変形例1-1と同様に、凸部91と凹部92の位置を他方の短辺部532側に変更することも可能である。 Similar to the reactor 1 of the first embodiment, the reactor 1 of the modification 1-2 can suppress the displacement of the union body 10 by fitting the convex portion 91 and the concave portion 92. In the reactor 1 of the modified example 1-2, the positions of the convex portion 91 and the concave portion 92 can be changed to the other short side portion 532 side as in the modified example 1-1.
 [実施形態2]
 〔コンバータ・電力変換装置〕
 実施形態1や変形例1-1、1-2のリアクトル1は、以下の通電条件を満たす用途に利用できる。通電条件としては、例えば、最大直流電流が100A以上1000A以下程度であり、平均電圧が100V以上1000V以下程度であり、使用周波数が5kHz以上100kHz以下程度であることが挙げられる。実施形態1や変形例1-1、1-2のリアクトル1は、代表的には電気自動車やハイブリッド自動車などの車両などに搭載されるコンバータの構成部品や、このコンバータを備える電力変換装置の構成部品に利用できる。
[Embodiment 2]
[Converter / Power converter]
The reactor 1 of the first embodiment and the modified examples 1-1 and 1-2 can be used for applications that satisfy the following energization conditions. Examples of the energization conditions include a maximum direct current of 100 A or more and 1000 A or less, an average voltage of 100 V or more and 1000 V or less, and an operating frequency of 5 kHz or more and 100 kHz or less. The reactor 1 of the first embodiment and the modifications 1-1 and 1-2 is typically a component of a converter mounted on a vehicle such as an electric vehicle or a hybrid vehicle, or a configuration of a power conversion device including the converter. Can be used for parts.
 ハイブリッド自動車や電気自動車などの車両1200は、図12に示すようにメインバッテリ1210と、メインバッテリ1210に接続される電力変換装置1100と、メインバッテリ1210からの供給電力により駆動して走行に利用されるモータ1220とを備える。モータ1220は、代表的には、3相交流モータであり、走行時、車輪1250を駆動し、回生時、発電機として機能する。ハイブリッド自動車の場合、車両1200は、モータ1220に加えてエンジン1300を備える。図12では、車両1200の充電箇所としてインレットを示すが、プラグを備える形態とすることができる。 As shown in FIG. 12, a vehicle 1200 such as a hybrid vehicle or an electric vehicle is driven by a main battery 1210, a power conversion device 1100 connected to the main battery 1210, and power supplied from the main battery 1210, and is used for traveling. It is equipped with a motor 1220. The motor 1220 is typically a three-phase AC motor, which drives the wheels 1250 during traveling and functions as a generator during regeneration. In the case of a hybrid vehicle, the vehicle 1200 comprises an engine 1300 in addition to the motor 1220. In FIG. 12, an inlet is shown as a charging point of the vehicle 1200, but it may be provided with a plug.
 電力変換装置1100は、メインバッテリ1210に接続されるコンバータ1110と、コンバータ1110に接続されて、直流と交流との相互変換を行うインバータ1120とを有する。この例に示すコンバータ1110は、車両1200の走行時、200V以上300V以下程度のメインバッテリ1210の入力電圧を400V以上700V以下程度にまで昇圧して、インバータ1120に給電する。コンバータ1110は、回生時、モータ1220からインバータ1120を介して出力される入力電圧をメインバッテリ1210に適合した直流電圧に降圧して、メインバッテリ1210に充電させている。入力電圧は、直流電圧である。インバータ1120は、車両1200の走行時、コンバータ1110で昇圧された直流を所定の交流に変換してモータ1220に給電し、回生時、モータ1220からの交流出力を直流に変換してコンバータ1110に出力している。 The power conversion device 1100 has a converter 1110 connected to the main battery 1210 and an inverter 1120 connected to the converter 1110 to perform mutual conversion between direct current and alternating current. The converter 1110 shown in this example boosts the input voltage of the main battery 1210 of about 200 V or more and 300 V or less to about 400 V or more and 700 V or less while the vehicle 1200 is running, and supplies power to the inverter 1120. At the time of regeneration, the converter 1110 lowers the input voltage output from the motor 1220 via the inverter 1120 to a DC voltage suitable for the main battery 1210, and charges the main battery 1210. The input voltage is a DC voltage. When the vehicle 1200 is running, the inverter 1120 converts the direct current boosted by the converter 1110 into a predetermined alternating current and supplies power to the motor 1220, and during regeneration, converts the alternating current output from the motor 1220 into a direct current and outputs it to the converter 1110. is doing.
 コンバータ1110は、図13に示すように複数のスイッチング素子1111と、スイッチング素子1111の動作を制御する駆動回路1112と、リアクトル1115とを備え、ON/OFFの繰り返しにより入力電圧の変換を行う。入力電圧の変換とは、ここでは昇降圧を行う。スイッチング素子1111には、電界効果トランジスタ、絶縁ゲートバイポーラトランジスタなどのパワーデバイスが利用される。リアクトル1115は、回路に流れようとする電流の変化を妨げようとするコイルの性質を利用し、スイッチング動作によって電流が増減しようとしたとき、その変化を滑らかにする機能を有する。リアクトル1115として、実施形態1や変形例1-1、1-2のいずれかのリアクトル1を備える。リアクトル1を備えることで、電力変換装置1100やコンバータ1110は信頼性が高い。 As shown in FIG. 13, the converter 1110 includes a plurality of switching elements 1111, a drive circuit 1112 that controls the operation of the switching elements 1111, and a reactor 1115, and converts the input voltage by repeating ON / OFF. The conversion of the input voltage is performed here as a step-up / down pressure. Power devices such as field effect transistors and insulated gate bipolar transistors are used for the switching element 1111. The reactor 1115 utilizes the property of the coil that tries to prevent the change of the current flowing in the circuit, and has a function of smoothing the change when the current tries to increase or decrease due to the switching operation. As the reactor 1115, the reactor 1 of any one of the first embodiment and the modified examples 1-1 and 1-2 is provided. By providing the reactor 1, the power converter 1100 and the converter 1110 are highly reliable.
 車両1200は、コンバータ1110の他、メインバッテリ1210に接続された給電装置用コンバータ1150や、補機類1240の電力源となるサブバッテリ1230とメインバッテリ1210とに接続され、メインバッテリ1210の高圧を低圧に変換する補機電源用コンバータ1160を備える。コンバータ1110は、代表的には、DC-DC変換を行うが、給電装置用コンバータ1150や補機電源用コンバータ1160は、AC-DC変換を行う。給電装置用コンバータ1150のなかには、DC-DC変換を行うものもある。給電装置用コンバータ1150や補機電源用コンバータ1160のリアクトルに、実施形態1や変形例1-1、1-2のいずれかのリアクトル1などと同様の構成を備え、適宜、大きさや形状などを変更したリアクトルを利用できる。また、入力電力の変換を行うコンバータであって、昇圧のみを行うコンバータや降圧のみを行うコンバータに、実施形態1や変形例1-1、1-2のいずれかのリアクトル1などを利用することもできる。 The vehicle 1200 is connected to the converter 1110, the converter 1150 for a power feeding device connected to the main battery 1210, the sub-battery 1230 and the main battery 1210 which are the power sources of the accessories 1240, and the high voltage of the main battery 1210 is applied. A converter for auxiliary power supply 1160 that converts to a low voltage is provided. The converter 1110 typically performs DC-DC conversion, but the power supply device converter 1150 and the auxiliary power supply converter 1160 perform AC-DC conversion. Some converters 1150 for power feeding devices perform DC-DC conversion. The reactor of the converter 1150 for the power supply device and the converter 1160 for the auxiliary power supply is provided with the same configuration as that of the reactor 1 of the first embodiment and the modifications 1-1 and 1-2, and the size and shape are appropriately adjusted. A modified reactor is available. Further, as a converter that converts input power and performs only step-up or only step-down, the reactor 1 of any one of Embodiment 1 and Modifications 1-1 and 1-2 is used. You can also.
 1 リアクトル
 10 組合体
 101、105 端面
 2 コイル
  21、22 巻回部
 3 磁性コア
  31、32 内側コア部
  33 第一外側コア部、34 第二外側コア部
  33e 内端面
 4 樹脂部材
 4a 第一樹脂部材、4b 第二樹脂部材
 40a 第一保持部材、40b 第二保持部材
  41 外壁部
  43 貫通孔、44 凹部
 5 ケース
  51 底板部、510 内底面
  52 側壁部
  531、532 短辺部
  541、542 長辺部
  55 開口部
  56 取付座
  58 ネジ穴
 6 封止樹脂部
 7 張出し部
 70 ブラケット
 71 貫通孔
 75 ボルト
 8 モールド樹脂部
 91 凸部、910 端面
 92 凹部、920 端面
 A、B、C、E 間隔、D 長さ
 P 固定点、G 重心
 Yc,Zc 二等分線
 PG 線分
 PGa,PGb 直線
 1100 電力変換装置、1110 コンバータ
 1111 スイッチング素子、1112 駆動回路
 1115 リアクトル、1120 インバータ
 1150 給電装置用コンバータ、1160 補機電源用コンバータ
 1200 車両
 1210 メインバッテリ、1220 モータ
 1230 サブバッテリ、1240 補機類、1250 車輪、1300 エンジン
1 Reactor 10 Combined 101, 105 End face 2 Coil 21, 22 Winding part 3 Magnetic core 31, 32 Inner core part 33 First outer core part, 34 Second outer core part 33e Inner end face 4 Resin member 4a First resin member 4b 2nd resin member 40a 1st holding member, 40b 2nd holding member 41 outer wall part 43 through hole, 44 recess 5 case 51 bottom plate part, 510 inner bottom surface 52 side wall part 531, 532 short side part 541, 542 long side part 55 Opening 56 Mounting seat 58 Screw hole 6 Encapsulating resin part 7 Overhanging part 70 Bracket 71 Through hole 75 Bolt 8 Mold resin part 91 Convex part, 910 End face 92 Concave, 920 End face A, B, C, E spacing, D length P fixed point, G center of gravity Yc, Zc bisector PG line PGa, PGb straight line 1100 power converter, 1110 converter 1111 switching element, 1112 drive circuit 1115 reactor, 1120 inverter 1150 converter for power supply device, 1160 auxiliary power supply Converter for 1200 Vehicle 1210 Main Battery, 1220 Motor 1230 Sub Battery, 1240 Auxiliary Equipment, 1250 Wheels, 1300 Engine

Claims (12)

  1.  コイルと、
     前記コイルの内側及び外側に配置される部分を有する磁性コアと、
     前記コイルと前記磁性コアとの相互の位置を規定する樹脂部材と、
     前記コイル、前記磁性コア、及び前記樹脂部材を含む組合体を収納するケースと、
     前記ケース内に充填される封止樹脂部とを備え、
     前記磁性コアは、
      前記コイルの内側に配置される内側コア部と、
      前記コイルの外側に配置される外側コア部とを有し、
     前記ケースは、
      前記組合体が載置される底板部と、
      前記組合体の周囲を囲む角筒状の側壁部と、
      前記底板部に向かい合う開口部とを有し、
     前記側壁部は、一対の向かい合う短辺部と、一対の向かい合う長辺部とを有し、
     前記組合体は、前記コイルの軸方向がZ方向に沿うように前記ケースに収納され、
     前記外側コア部は、前記開口部側に配置される第一外側コア部と、前記底板部側に配置される第二外側コア部とを含み、
     前記樹脂部材は、前記第一外側コア部の外周面に設けられる第一樹脂部材と、前記第二外側コア部の外周面に設けられる第二樹脂部材とを含み、
     前記第一樹脂部材は、前記一対の短辺部のうちの一方の前記短辺部に向かって突出する張出し部を有し、
     前記一方の短辺部の内面には、前記張出し部が固定される取付座を有し、
     前記ケースに収納された前記組合体をX方向から見たとき、
      前記張出し部の前記取付座への固定点の対角部位において、
      前記第二樹脂部材及び前記側壁部のうちの一方は、前記Z方向に延びる凸部を有し、
      前記第二樹脂部材及び前記側壁部のうちの他方は、前記凸部と嵌り合う凹部を有し、
     前記組合体は、前記凸部と前記凹部との嵌合により、前記底板部との間に間隔をあけて位置決めされており、
     前記X方向は、前記短辺部に沿う方向であり、
     前記Z方向は、前記X方向とY方向の双方に直交する方向であり、
     前記Y方向は、前記長辺部に沿う方向である、
    リアクトル。
    With the coil
    A magnetic core having portions arranged inside and outside the coil,
    A resin member that defines the mutual position between the coil and the magnetic core,
    A case for accommodating the coil, the magnetic core, and the union including the resin member, and
    It is provided with a sealing resin portion to be filled in the case.
    The magnetic core is
    The inner core portion arranged inside the coil and
    It has an outer core portion arranged outside the coil and has an outer core portion.
    The case is
    The bottom plate on which the union is placed and
    A square cylindrical side wall that surrounds the union and
    It has an opening facing the bottom plate and has an opening.
    The side wall portion has a pair of facing short sides and a pair of facing long sides.
    The union is housed in the case so that the axial direction of the coil is along the Z direction.
    The outer core portion includes a first outer core portion arranged on the opening side and a second outer core portion arranged on the bottom plate portion side.
    The resin member includes a first resin member provided on the outer peripheral surface of the first outer core portion and a second resin member provided on the outer peripheral surface of the second outer core portion.
    The first resin member has an overhanging portion that protrudes toward the short side portion of one of the pair of short side portions.
    The inner surface of the one short side portion has a mounting seat on which the overhanging portion is fixed.
    When the union housed in the case is viewed from the X direction,
    At the diagonal portion of the fixing point of the overhanging portion to the mounting seat,
    One of the second resin member and the side wall portion has a convex portion extending in the Z direction.
    The other of the second resin member and the side wall portion has a concave portion that fits with the convex portion.
    The union is positioned with a gap between the bottom plate portion by fitting the convex portion and the concave portion.
    The X direction is a direction along the short side portion.
    The Z direction is a direction orthogonal to both the X direction and the Y direction.
    The Y direction is a direction along the long side portion.
    Reactor.
  2.  前記張出し部は、前記組合体を前記X方向から見て、前記組合体を前記Y方向に二等分する線よりも一方側で、かつ、前記組合体を前記Z方向に二等分する線よりも前記開口部側に位置し、
     前記対角部位は、前記組合体を前記Y方向に二等分する線よりも他方側で、かつ、前記組合体を前記Z方向に二等分する線よりも前記底板部側に位置する請求項1に記載のリアクトル。
    The overhanging portion is a line that bisects the union in the Z direction on one side of the line that bisects the union in the Y direction when the union is viewed from the X direction. Located on the side of the opening,
    The diagonal portion is located on the opposite side of the line that bisects the union in the Y direction and on the bottom plate side of the line that bisects the union in the Z direction. The reactor according to item 1.
  3.  前記凸部は、前記一対の長辺部の各々の内面、及び、前記第二樹脂部材における前記一対の長辺部のそれぞれと向かい合う各面のうちの一方に配置され、
     前記凹部は、前記一対の長辺部の各々の内面、及び、前記第二樹脂部材における前記一対の長辺部のそれぞれと向かい合う各面のうちの他方に配置されている請求項1又は請求項2に記載のリアクトル。
    The convex portion is arranged on one of the inner surfaces of each of the pair of long side portions and each surface of the second resin member facing each of the pair of long side portions.
    Claim 1 or claim 1 or claim, wherein the recess is arranged on the inner surface of each of the pair of long side portions and on the other side of each surface of the second resin member facing each of the pair of long side portions. The reactor described in 2.
  4.  前記凸部と前記凹部との間隔は、0.5mm以下である請求項1から請求項3のいずれか一項に記載のリアクトル。 The reactor according to any one of claims 1 to 3, wherein the distance between the convex portion and the concave portion is 0.5 mm or less.
  5.  前記凸部と前記凹部とが嵌り合っている部分の前記Z方向に沿う長さは、前記組合体の前記Z方向に沿う長さの10%以上である請求項1から請求項4のいずれか一項に記載のリアクトル。 Any one of claims 1 to 4, wherein the length of the portion where the convex portion and the concave portion are fitted along the Z direction is 10% or more of the length of the union along the Z direction. The reactor described in paragraph 1.
  6.  前記組合体における前記底板部側の端面と前記底板部の内底面との間隔は、0.5mm以上1.0mm以下である請求項1から請求項5のいずれか一項に記載のリアクトル。 The reactor according to any one of claims 1 to 5, wherein the distance between the end surface on the bottom plate portion side and the inner bottom surface of the bottom plate portion in the union is 0.5 mm or more and 1.0 mm or less.
  7.  前記第二樹脂部材が前記凹部を有し、前記側壁部が前記凸部を有する請求項1から請求項6のいずれか一項に記載のリアクトル。 The reactor according to any one of claims 1 to 6, wherein the second resin member has the concave portion and the side wall portion has the convex portion.
  8.  前記凸部の前記Z方向に直交する断面形状が四角形状である請求項1から請求項7のいずれか一項に記載のリアクトル。 The reactor according to any one of claims 1 to 7, wherein the convex portion has a rectangular cross-sectional shape orthogonal to the Z direction.
  9.  前記封止樹脂部を構成する樹脂がシリコーン樹脂である請求項1から請求項8のいずれか一項に記載のリアクトル。 The reactor according to any one of claims 1 to 8, wherein the resin constituting the sealing resin portion is a silicone resin.
  10.  前記張出し部は金属製のブラケットの一部であり、前記ブラケットの残部が前記第一樹脂部材に埋め込まれている請求項1から請求項9のいずれか1項に記載のリアクトル。 The reactor according to any one of claims 1 to 9, wherein the overhanging portion is a part of a metal bracket, and the rest of the bracket is embedded in the first resin member.
  11.  請求項1から請求項10のいずれか一項に記載のリアクトルを備える、
    コンバータ。
    The reactor according to any one of claims 1 to 10 is provided.
    converter.
  12.  請求項11に記載のコンバータを備える、
    電力変換装置。
    11. The converter according to claim 11.
    Power converter.
PCT/JP2021/028851 2020-09-08 2021-08-03 Reactor, converter, and power conversion device WO2022054467A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-150881 2020-09-08
JP2020150881A JP2022045275A (en) 2020-09-08 2020-09-08 Reactor, converter, and power conversion device

Publications (1)

Publication Number Publication Date
WO2022054467A1 true WO2022054467A1 (en) 2022-03-17

Family

ID=80632545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028851 WO2022054467A1 (en) 2020-09-08 2021-08-03 Reactor, converter, and power conversion device

Country Status (2)

Country Link
JP (1) JP2022045275A (en)
WO (1) WO2022054467A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099793A (en) * 2007-10-17 2009-05-07 Toyota Motor Corp Manufacturing method of reactor
JP2010147067A (en) * 2008-12-16 2010-07-01 Toyota Motor Corp Electromagnetic device
JP2014116563A (en) * 2012-12-12 2014-06-26 Tamura Seisakusho Co Ltd Reactor
JP2014130949A (en) * 2012-12-28 2014-07-10 Auto Network Gijutsu Kenkyusho:Kk Reactor, converter and power conversion device
JP2020068366A (en) * 2018-10-26 2020-04-30 株式会社オートネットワーク技術研究所 Reactor
JP2020113632A (en) * 2019-01-10 2020-07-27 株式会社オートネットワーク技術研究所 Reactor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099793A (en) * 2007-10-17 2009-05-07 Toyota Motor Corp Manufacturing method of reactor
JP2010147067A (en) * 2008-12-16 2010-07-01 Toyota Motor Corp Electromagnetic device
JP2014116563A (en) * 2012-12-12 2014-06-26 Tamura Seisakusho Co Ltd Reactor
JP2014130949A (en) * 2012-12-28 2014-07-10 Auto Network Gijutsu Kenkyusho:Kk Reactor, converter and power conversion device
JP2020068366A (en) * 2018-10-26 2020-04-30 株式会社オートネットワーク技術研究所 Reactor
JP2020113632A (en) * 2019-01-10 2020-07-27 株式会社オートネットワーク技術研究所 Reactor

Also Published As

Publication number Publication date
JP2022045275A (en) 2022-03-18

Similar Documents

Publication Publication Date Title
JP5983942B2 (en) Reactor, converter, and power converter
EP2315220A1 (en) Reactor component and reactor
JP2015012147A (en) Reactor
WO2014017149A1 (en) Reactor, converter, and electric-power conversion device
WO2020241325A1 (en) Reactor
CN113287179B (en) Electric reactor
WO2022054467A1 (en) Reactor, converter, and power conversion device
CN112017853B (en) Reactor with a reactor body
WO2021125065A1 (en) Reactor, converter, and power conversion device
JP7042400B2 (en) Reactor
WO2022196366A1 (en) Reactor, converter, and power conversion device
JP7022344B2 (en) Reactor
JP6406610B2 (en) Reactor
JP7104897B2 (en) Reactor
WO2023063178A1 (en) Reactor, converter, and power conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866427

Country of ref document: EP

Kind code of ref document: A1