WO2022052513A1 - 一种基于磁力与摩擦电效应的海浪能收集器 - Google Patents

一种基于磁力与摩擦电效应的海浪能收集器 Download PDF

Info

Publication number
WO2022052513A1
WO2022052513A1 PCT/CN2021/096233 CN2021096233W WO2022052513A1 WO 2022052513 A1 WO2022052513 A1 WO 2022052513A1 CN 2021096233 W CN2021096233 W CN 2021096233W WO 2022052513 A1 WO2022052513 A1 WO 2022052513A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic force
wave energy
collector based
support
Prior art date
Application number
PCT/CN2021/096233
Other languages
English (en)
French (fr)
Inventor
焦鹏程
阿里马丁纳扎尔
杨旸
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to US17/611,906 priority Critical patent/US11913421B2/en
Publication of WO2022052513A1 publication Critical patent/WO2022052513A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/20Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" wherein both members, i.e. wom and rem are movable relative to the sea bed or shore
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • H02J15/003Systems for storing electric energy in the form of hydraulic energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K53/00Alleged dynamo-electric perpetua mobilia
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/40Use of a multiplicity of similar components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/407Transmission of power through piezoelectric conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/42Storage of energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the invention belongs to the field of energy collection, and in particular relates to an ocean wave energy collector based on magnetic force and triboelectric effect.
  • Nanogenerators power nanosystems by using environmental and biological energy. Nanogenerators are capable of converting mechanical energy into electrical energy. Nanogenerators are mainly divided into four parts: piezoelectric nanogenerators, triboelectric nanogenerators, thermoelectric nanogenerators and flexible electric nanogenerators. Piezoelectric and TENG are used as the most important nanogenerators to provide microsystems. The nanogenerator has two plates with different potential differences, on each plate two electrodes are placed to generate electrostatic induction (TENG). TENGs, also known as dielectric plates, have attracted the most attention since their introduction. Their cost-effectiveness, simplicity, and unique construction have been well-documented in the field of mechanical-to-electrical energy conversion. Four basic functions are currently defined for nanogenerators including: vertical shock mode, sliding mode, single electrode mode and independent plate mode.
  • TENGs also known as dielectric plates
  • the problem solved by the present invention is to improve the oscillation efficiency, the presence of the magnet increases the number of vibrations many times, thereby increasing the energy generated.
  • the capsule-like design of the dielectric part means that the dielectric part is independent of the oscillating plate, so there is no lateral friction and the oscillation reaches a maximum value. For example, if any other design is used to generate energy, the number of vibrations will be reduced due to friction between the plates attached to the oscillating device, so the innovation of this design is the use of the magnet concept and the dielectric capsule concept.
  • the present invention provides a technical solution for an ocean wave energy collector based on magnetic force and triboelectric effect.
  • the above-mentioned ocean wave energy collector based on magnetic force and triboelectric effect is characterized in that it includes a plurality of protective shells connected by flexible metal spring modules, and a magnetic oscillation system is installed in the protective shell. It includes a power output module and a number of magnetic oscillators.
  • the magnetic oscillator includes a first support body, a dielectric capsule, a first magnet unit, a second magnet unit, a support shell and an electrode unit.
  • the electrode unit is installed on the first support.
  • the support shell is fitted in the electrode unit, the dielectric capsule is slidably fitted in the support shell, and the two can generate electricity through sliding friction.
  • the first magnet unit is fixed at both ends of the dielectric capsule, and the second magnet unit is located in the dielectric capsule.
  • the two ends of the electric capsule correspond to the positions of the first magnet unit, the second magnet unit repels the first magnet unit, and the electric energy output module is used for receiving the electric energy generated by the stored magnetic oscillator.
  • Said kind of ocean wave energy collector based on magnetic force and triboelectric effect is characterized in that said magnetic oscillation system further comprises a center support located in the center of the protective shell, and said electric energy output module and magnetic oscillator are installed in the center. between the support and the protective casing.
  • Said ocean wave energy collector based on magnetic force and triboelectric effect is characterized in that said electric energy output module and magnetic oscillator are distributed on the upper and lower sides of the central support.
  • the above-mentioned ocean wave energy collector based on magnetic force and triboelectric effect is characterized in that the first support body is fitted between the central support and the protective shell, and the surface of the dielectric capsule is coated with the first support body.
  • the triboelectricity generating material layer, the inner wall of the support shell is coated with a second triboelectricity generating material layer corresponding to the first triboelectricity generating material layer, and the first triboelectricity generating material layer and the second triboelectricity generating material layer can be generated by friction. Electricity.
  • the above-mentioned ocean wave energy collector based on magnetic force and triboelectric effect is characterized in that the first support body is provided with a first slot corresponding to the dielectric capsule, and the electrode unit is coated by the first slot
  • the conductive metal coating is formed
  • the support shell has a groove-shaped shell wall matched with the first slot hole, and the dielectric capsule is slidably fitted in the groove-shaped shell wall.
  • the above-mentioned ocean wave energy collector based on magnetic force and triboelectric effect is characterized in that the first support body and the support shell are divided into left and right split structures, and correspondingly, the electrode units are also divided into opposite poles .
  • the above-mentioned ocean wave energy collector based on magnetic force and triboelectric effect is characterized in that the second magnet unit is fixed by a second support body fitted between the central support and the protective casing.
  • the above-mentioned ocean wave energy collector based on magnetic force and triboelectric effect is characterized in that the electric energy output module includes a high-energy capacitor and a control circuit, and the first support body and/or the support shell is matched and installed to collect A capacitor storage unit for electrical energy and a voltage transmission line for delivering electrical energy collected by the capacitor storage unit to a control circuit through which the electrical energy is stored in the high-energy capacitor.
  • the above-mentioned ocean wave energy collector based on magnetic force and triboelectric effect is characterized in that the protective shells are arranged in a dot array, and adjacent protective shells are connected by flexible metal spring modules.
  • Said kind of ocean wave energy collector based on magnetic force and triboelectric effect is characterized in that said protective shell is spherical structure.
  • the present invention can improve the oscillation efficiency, and the presence of the magnet increases the number of vibrations many times, thereby increasing the generated energy.
  • the capsule-like design of the dielectric part means that the dielectric part is independent of the oscillating plate, so there is no lateral friction and the oscillation reaches a maximum value. For example, if any other design is used to generate energy, the number of vibrations will be reduced due to friction between the plates attached to the oscillating device, so the innovation of the present invention lies in the use of the magnet concept and the dielectric capsule concept.
  • Fig. 1 is the structural representation of the present invention
  • FIG. 2 is a schematic structural diagram of a magnetic oscillation system in the present invention.
  • FIG. 3 is a schematic structural diagram of the magnetic oscillator 3 in the present invention, the dielectric capsule and the support shell are not shown in the figure, and the first support body only shows the structure of one of the parts;
  • FIG. 4 is a schematic diagram of the connection structure of the support shell and the dielectric capsule in the present invention, and the figure only shows the structure of a part of the support shell;
  • FIG. 5 is a schematic diagram of the split structure of the support housing in the present invention.
  • FIG. 6 is a schematic structural diagram of a dielectric capsule in the present invention.
  • FIG. 7 is a schematic diagram of the exploded structure of the protective shell in the present invention.
  • an ocean wave energy collector based on magnetic force and triboelectric effect includes a plurality of protective casings 1 connected by flexible metal spring modules 2, and a magnetic oscillation system is installed in the protective casing 1.
  • the magnetic oscillator system includes a power output module 4 and a plurality of magnetic oscillators 3.
  • the magnetic oscillator 3 includes a first support body 300, a dielectric capsule 304, a first magnet unit 305, a second magnet unit 302, a support housing 303 and Electrode unit 308, the electrode unit 308 is fitted on the first support body 300, the support case 303 is fitted in the electrode unit 308, the dielectric capsule 304 is slidably fitted in the support case 303, and the two can generate electricity by sliding friction , the first magnet unit 305 is fixed on both ends of the dielectric capsule 304 , the second magnet unit 302 is located at the two ends of the dielectric capsule 304 and the first magnet unit 305 corresponds to the position, and the second magnet unit 302 and the first magnet unit 305 repel each other , the power output module 4 is used for receiving the power generated by the storage magnetic oscillator 3 .
  • the magnetic oscillation system further includes a central support 5 located in the center of the protective casing 1, and the electrical energy output module 4 and the magnetic oscillator 3 are cooperatively installed between the central support 5 and the protective casing 1.
  • the power output module 4 and the magnetic oscillator 3 are distributed on the upper and lower sides of the center support 5 . More specifically, the power output module 4 is located at the upper end of the center support 5 , and there are five magnetic oscillators 3 , which are respectively located at the front, rear, left, right and lower ends of the center support 5 .
  • the first support body 300 is fitted between the central support 5 and the protective casing 1 .
  • the main body of the dielectric capsule 304 is made of silicone rubber
  • the surface of the dielectric capsule 304 is coated with a first triboelectricity material layer
  • the inner wall of the support shell 303 is coated with the first triboelectricity generation material.
  • the first triboelectric material layer is preferably a polymer material.
  • the second triboelectricity generating material layer is preferably a copper coating.
  • the first triboelectricity generating material layer and the second triboelectricity generating material layer may also select other combinations of materials capable of triboelectricity generating.
  • the first support body 300 is provided with a first slot corresponding to the dielectric capsule 304
  • the electrode unit 308 is formed by coating the first slot with a conductive metal coating, and supports the housing.
  • 303 has a slot-shaped shell wall 3030 matched with the first slot hole, and the dielectric capsule 304 is slidably fitted in the slot-shaped shell wall 3030 .
  • the first support body 300 and the support shell 303 are divided into left and right split structures, and correspondingly, the electrode unit 308 is also divided into two opposite poles.
  • the electrode unit 308 is formed by the above-mentioned first slot hole, and the surface of the first slot hole is coated with a conductive metal coating.
  • the coating is also composed of two separate coatings with a gap between the two coatings so that the electrode unit 308 is divided into opposite poles.
  • the second magnet unit 302 is fixed by a second support body 301 fitted between the central support 5 and the protective casing 1 .
  • the power output module 4 includes a high-energy capacitor 400 and a control circuit 401 , and a capacitor storage unit 306 for collecting power is installed on the support casing 303 and used to transmit the power collected by the capacitor storage unit 306 to the control
  • the voltage transmission line 307 of the circuit 401 the electrical energy is stored in the high energy capacitor 400 through the control circuit 401 .
  • the protective casings 1 are arranged in a dot-like array, and adjacent protective casings 1 are connected by flexible metal spring modules 2 in the lateral direction and the longitudinal direction.
  • the protective casing 1 and the central support 5 are both spherical structures.
  • the protective casing 1 of the present invention is formed by connecting two split structures, wherein a slot is arranged around the connecting end of one split structure, and a corresponding insertion rod is arranged at the connecting end of the other split structure. Mating with socket.
  • each magnetic oscillator is provided with a first magnet unit 305 and a second magnet unit 302, the magnets are arranged in mutually exclusive order to generate oscillation, and the dielectric capsule 304 coated with polyimide coating is supported on the
  • the shell 303 oscillates inside, the support shell 303 is coated with a copper coating, the voltage generated by the oscillation of the dielectric capsule 304 is collected by the capacitor storage unit 306 embedded in each magnetic oscillator, and transmitted to the control circuit 401 through the voltage transmission line 307,
  • the power is stored in the high-energy capacitor 400 through the control circuit 401, and the power output module 4 can output the power through the communication line.
  • the present invention generates electrical energy from ocean waves in the form of a network of matrices.
  • the general structure of each protective casing 1 is circular, and the matrix grids are connected to each other using flexible metal spring modules 2 .
  • the operation of the invention is based on the principle of electromagnetism (TENG).
  • FIGS. 2 and 3 show the structure of a single oscillator 3 , each oscillator 3 having two second magnet units 302 , which are fixed with narrow second supports 301 .
  • the two second magnet units 302 face each other in the form of positive electrodes (positive and positive electrodes), which means that if one of them moves in the X direction (in the direction of the second magnet) , the offset will cause fluctuations because the two magnets are constantly repelling each other to maintain equilibrium, and the second support 301 naturally vibrates as both magnets try to repel each other to reach 100% equilibrium.
  • an electrode unit and a dielectric capsule 304 Between the two second magnet units 302 are an electrode unit and a dielectric capsule 304 .
  • the electrode unit used is a conductive metal plating.
  • the conductive plated metal plate consists of two separate parts: the first conductive plated metal plate is relatively close (eg, 1 mm) to the second conductive plated metal plate.
  • the dielectric capsule 304 of the device is designed as a cylindrical capsule made of silicone rubber.
  • the electrical energy is collected by the capacitor storage unit 306 and transmitted to the control circuit 401 through the voltage transmission line 307 . Finally, the generated electrical energy is stored in the high energy capacitor 400 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

本发明属于能量采集领域,具体涉及一种基于磁力与摩擦电效应的海浪能收集器,包括若干通过挠性金属弹簧模块相连的保护壳体,所述保护壳体内配合安装磁震荡系统,所述磁震荡系统包括电能输出模块和若干磁振荡器,所述磁振荡器包括第一支撑体、介电胶囊、第一磁体单元、第二磁体单元、支撑壳体及电极单元。本发明能够提高振荡效率,磁体的存在使振动次数增加了许多倍,从而增加产生的能量。

Description

一种基于磁力与摩擦电效应的海浪能收集器 技术领域
本发明属于能量采集领域,具体涉及一种基于磁力与摩擦电效应的海浪能收集器。
背景技术
随着全球气候变暖危机和能源危机的日益加剧,寻找可再生能源已成为人类文明可持续发展的严峻挑战之一。近几十年来,研究工作集中在获取清洁可再生能源以及可再生能源技术的发展上。如今,纳米技术是新时代响应上述研究需求最重要的技术之一,该技术依赖于纳米尺度的特殊性质提供了较普通系统不同的开发理念,在这种微观尺度下,纳米材料和纳米颗粒展现出以前未曾观察到的新特性和行为。2006年,研究人员在纳米技术科学中首次使用了“纳米发电机”这一术语来为特定系统提供动力。
纳米发电机通过使用环境和生物能为纳米系统提供能量。纳米发电机能够将机械能转化为电能。纳米发电机主要分为四个部分:压电纳米发电机,摩擦电纳米发电机,热电纳米发电机和柔性电纳米发电机。压电和TENG被用作提供微型系统的最重要的纳米发电机。纳米发电机具有两个电位差不同的板,在每个板上放置两个电极以产生静电感应(TENG)。TENG也称为介电板,自推出以来,基于TENG的纳米发电机引起了最多的关注。它们的成本效益、简单性和独特的结构已在机械到电能转换领域得到了充分证明。当前为纳米发电机定义了四个基本功能包括:垂直冲击模式,滑动模式,单电极模式和独立板模式。
在本发明中,考虑到海浪的能量以及为了开发可再生能源,我们提出了一种设计,该设计利用了磁性使磁板之间产生振动,并且利用了纳米发电概念收 集电能。
本发明解决的问题是提高振荡效率,磁体的存在使振动次数增加了许多倍,从而增加产生的能量。另外,介电部分的胶囊状设计意味着介质部分与振荡板无关,因此不存在侧向摩擦,振荡达到最大值。例如,如果使用任何其他设计来产生能量,振动的次数将由于附在振荡装置上的板之间的摩擦而减少,所以本设计的创新之处在于磁体概念和介电胶囊概念的运用。
发明内容
为了弥补现有技术的不足,本发明提供一种基于磁力与摩擦电效应的海浪能收集器技术方案。
所述的一种基于磁力与摩擦电效应的海浪能收集器,其特征在于包括若干通过挠性金属弹簧模块相连的保护壳体,所述保护壳体内配合安装磁震荡系统,所述磁震荡系统包括电能输出模块和若干磁振荡器,所述磁振荡器包括第一支撑体、介电胶囊、第一磁体单元、第二磁体单元、支撑壳体及电极单元,电极单元配合安装于第一支撑体上,支撑壳体配合安装于电极单元内,介电胶囊滑动配合于支撑壳体内,两者能够通过滑动摩擦生电,第一磁体单元固定于介电胶囊两端,第二磁体单元位于介电胶囊两端与第一磁体单元相对应位置,第二磁体单元与第一磁体单元相斥,所述电能输出模块用以接收储存磁振荡器产生的电能。
所述的一种基于磁力与摩擦电效应的海浪能收集器,其特征在于所述磁震荡系统还包括位于保护壳体中心的中心支座,所述电能输出模块和磁振荡器配合安装于中心支座与保护壳体之间。
所述的一种基于磁力与摩擦电效应的海浪能收集器,其特征在于所述电能输出模块和磁振荡器分布于中心支座上下四周。
所述的一种基于磁力与摩擦电效应的海浪能收集器,其特征在于所述第一 支撑体配合安装于中心支座与保护壳体之间,所述介电胶囊的表面涂覆第一摩擦生电材料层,支撑壳体内壁涂覆与第一摩擦生电材料层对应的第二摩擦生电材料层,,第一摩擦生电材料层与第二摩擦生电材料层能够通过摩擦生电。
所述的一种基于磁力与摩擦电效应的海浪能收集器,其特征在于所述第一支撑体上开设与介电胶囊对应的第一槽孔,所述电极单元由第一槽孔涂覆导电金属涂层所形成,支撑壳体具有与第一槽孔匹配的槽形壳壁,介电胶囊滑动配合于槽形壳壁内。
所述的一种基于磁力与摩擦电效应的海浪能收集器,其特征在于所述第一支撑体和支撑壳体均分为左右分体结构,相应的,电极单元也被分为相对的两极。
所述的一种基于磁力与摩擦电效应的海浪能收集器,其特征在于所述第二磁体单元通过配合安装于中心支座与保护壳体之间的第二支撑体固定。
所述的一种基于磁力与摩擦电效应的海浪能收集器,其特征在于所述电能输出模块包括高能电容器和控制电路,所述第一支撑体和/或支撑壳体上配合安装用以收集电能的电容器存储单元和用以将电容器存储单元收集的电能输送至控制电路的电压传输线,电能通过控制电路被存储在高能电容器中。
所述的一种基于磁力与摩擦电效应的海浪能收集器,其特征在于所述保护壳体呈点状阵列排布,相邻保护壳体间通过挠性金属弹簧模块相连。
所述的一种基于磁力与摩擦电效应的海浪能收集器,其特征在于所述保护壳体为球状结构。
与现有技术相比,本发明能够提高振荡效率,磁体的存在使振动次数增加了许多倍,从而增加产生的能量。另外,介电部分的胶囊状设计意味着介质部分与振荡板无关,因此不存在侧向摩擦,振荡达到最大值。例如,如果使用任何其他设计来产生能量,振动的次数将由于附在振荡装置上的板之间的摩擦而 减少,所以本发明的创新之处在于磁体概念和介电胶囊概念的运用。
附图说明
图1为本发明结构示意图;
图2为本发明中磁震荡系统结构示意图;
图3为本发明中磁振荡器3结构示意图,图中未示出介电胶囊和支撑壳体,且第一支撑体仅示出其中一分体的结构;
图4为本发明中支撑壳体与介电胶囊连接结构示意图,图中仅示出支撑壳体其中一分体的结构;
图5为本发明中支撑壳体的分体结构示意图;
图6为本发明中介电胶囊结构示意图;
图7为本发明中保护壳体分解结构示意图。
具体实施方式
下面结合附图对本发明作进一步说明。
如图所示,一种基于磁力与摩擦电效应的海浪能收集器,包括若干通过挠性金属弹簧模块2相连的保护壳体1,所述保护壳体1内配合安装磁震荡系统,所述磁震荡系统包括电能输出模块4和若干磁振荡器3,所述磁振荡器3包括第一支撑体300、介电胶囊304、第一磁体单元305、第二磁体单元302、支撑壳体303及电极单元308,电极单元308配合安装于第一支撑体300上,支撑壳体303配合安装于电极单元308内,介电胶囊304滑动配合于支撑壳体303内,两者能够通过滑动摩擦生电,第一磁体单元305固定于介电胶囊304两端,第二磁体单元302位于介电胶囊304两端与第一磁体单元305相对应位置,第二磁体单元302与第一磁体单元305相斥,所述电能输出模块4用以接收储存磁振荡器3产生的电能。
作为优化:所述磁震荡系统还包括位于保护壳体1中心的中心支座5,所述 电能输出模块4和磁振荡器3配合安装于中心支座5与保护壳体1之间。
在上述结构中,所述电能输出模块4和磁振荡器3分布于中心支座5上下四周。更为具体的,电能输出模块4位于中心支座5上端,磁振荡器3有五个,分别位于中心支座5前后左右及下端。
在上述结构中,所述第一支撑体300配合安装于中心支座5与保护壳体1之间。
对上述结构的进一步说明:所述介电胶囊304的主体由硅橡胶制成,介电胶囊304的表面涂覆第一摩擦生电材料层,支撑壳体303内壁涂覆与第一摩擦生电材料层对应的第二摩擦生电材料层,当介电胶囊304在支撑壳体303内滑动时,两种的摩擦生电材料层通过摩擦能够产生电能,第一摩擦生电材料层优选为聚酰亚胺涂层,第二摩擦生电材料层优选为铜涂层,此外,第一摩擦生电材料层和第二摩擦生电材料层也可以选择其它能够摩擦生电的材料组合。
对上述结构的进一步说明:所述第一支撑体300上开设与介电胶囊304对应的第一槽孔,所述电极单元308由第一槽孔涂覆导电金属涂层所形成,支撑壳体303具有与第一槽孔匹配的槽形壳壁3030,介电胶囊304滑动配合于槽形壳壁3030内。
对上述结构的进一步说明:所述第一支撑体300和支撑壳体303均分为左右分体结构,相应的,电极单元308也被分为相对的两极。具体的,电极单元308由上述的第一槽孔所形成,该第一槽孔表面涂覆导电金属涂层,由于第一支撑体300分为左右两个分体结构,同样的,该导电金属涂层也由两个分开的涂层组成,两层涂层之间具有空隙,因此,电极单元308被分为相对的两极。
对上述结构的进一步说明:所述第二磁体单元302通过配合安装于中心支座5与保护壳体1之间的第二支撑体301固定。
作为优化:所述电能输出模块4包括高能电容器400和控制电路401,所述 支撑壳体303上配合安装用以收集电能的电容器存储单元306和用以将电容器存储单元306收集的电能输送至控制电路401的电压传输线307,电能通过控制电路401被存储在高能电容器400中。
作为优化:所述保护壳体1呈点状阵列排布,在横向方向上和纵向方向上,相邻的保护壳体1间通过挠性金属弹簧模块2相连。所述保护壳体1和中心支座5均为球状结构。
作为优化:本发明的保护壳体1由两个分体结构连接构成,其中一个分体结构的连接端四周布置有插槽,另一个分体结构的连接端布置有对应的插杆,插杆与插槽插接配合。
在本发明中,每个磁振荡器设置有第一磁体单元305和第二磁体单元302,磁体以互斥顺序排列以产生振荡,涂覆有聚酰亚胺涂层的介电胶囊304在支撑壳体303内振荡,支撑壳体303上涂有铜涂层,介电胶囊304振荡产生的电压由嵌入每个磁振荡器中的电容器存储单元306收集,通过电压传输线307传输到控制电路401,电能通过控制电路401被存储在高能电容器400中,电能输出模块4能够通过通过通信线输出电能。
本发明从海浪中产生电能,其形式为矩阵的网络。每个保护壳体1的总体结构为圆形,使用挠性金属弹簧模块2将矩阵网格相互连接。该发明的操作基于电磁学原理(TENG)。图2、3显示了单个震荡器3的结构,每个震荡器3具有两个第二磁体单元302,这些磁体用狭窄的第二支撑体301固定。解释磁震荡是如何工作的:两个第二磁体单元302以正电极(正电极和正电极)的形式彼此面对,这意味着,如果其中一个沿X方向(沿第二个磁体的方向)移动,则偏移将引起波动,因为这两个磁体不断相互排斥,以保持平衡,第二支撑体301自然震动,因为两个磁体都试图互相排斥以达到100%平衡。在两个第二磁体单元302之间是电极单元和电介胶囊304。
实际上,该现象(TENG)是基于电极板和介电板之间的电势差。在该发明中,使用的电极单元是导电金属镀层。镀导电金属板由两个独立的部分组成:第一镀导电金属板与第二镀导电金属板相距相对较近(如1mm)。该设备的介电胶囊304设计为圆柱形胶囊,圆柱形胶囊由硅橡胶制成。介电胶囊304的两侧有两个第一磁体单元305,它们具有相反的磁极,第二磁体单元302的磁极则位于其正面,因此,当第二磁体单元302振动时,第一磁体单元305在电极单元中振动,并由于电位差产生电压。电能由电容器存储单元306收集,通过电压传输线307传输到控制电路401。最后,所产生的电能被存储在高能电容器400中。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种基于磁力与摩擦电效应的海浪能收集器,其特征在于包括若干通过挠性金属弹簧模块(2)相连的保护壳体(1),所述保护壳体(1)内配合安装磁震荡系统,所述磁震荡系统包括电能输出模块(4)和若干磁振荡器(3),所述磁振荡器(3)包括第一支撑体(300)、介电胶囊(304)、第一磁体单元(305)、第二磁体单元(302)、支撑壳体(303)及电极单元(308),电极单元(308)配合安装于第一支撑体(300)上,支撑壳体(303)配合安装于电极单元(308)内,介电胶囊(304)滑动配合于支撑壳体(303)内,两者能够通过滑动摩擦生电,第一磁体单元(305)固定于介电胶囊(304)两端,第二磁体单元(302)位于介电胶囊(304)两端与第一磁体单元(305)相对应位置,第二磁体单元(302)与第一磁体单元(305)相斥,所述电能输出模块(4)用以接收储存磁振荡器(3)产生的电能。
  2. 根据权利要求1所述的一种基于磁力与摩擦电效应的海浪能收集器,其特征在于所述磁震荡系统还包括位于保护壳体(1)中心的中心支座(5),所述电能输出模块(4)和磁振荡器(3)配合安装于中心支座(5)与保护壳体(1)之间。
  3. 根据权利要求2所述的一种基于磁力与摩擦电效应的海浪能收集器,其特征在于所述电能输出模块(4)和磁振荡器(3)分布于中心支座(5)上下四周。
  4. 根据权利要求2所述的一种基于磁力与摩擦电效应的海浪能收集器,其特征在于所述第一支撑体(300)配合安装于中心支座(5)与保护壳体(1)之间,所述介电胶囊(304)的表面涂覆第一摩擦生电材料层,支撑壳体(303)内壁涂覆与第一摩擦生电材料层对应的第二摩擦生电材料层,第一摩擦生电材料层与第二摩擦生电材料层能够通过摩擦生电。
  5. 根据权利要求4所述的一种基于磁力与摩擦电效应的海浪能收集器,其特征在于所述第一支撑体(300)上开设与介电胶囊(304)对应的第一槽孔,所述电极单元(308)由第一槽孔涂覆导电金属涂层所形成,支撑壳体(303)具有与第一槽孔匹配的槽形壳壁(3030),介电胶囊(304)滑动配合于槽形壳壁(3030)内。
  6. 根据权利要求5所述的一种基于磁力与摩擦电效应的海浪能收集器,其特征在于所述第一支撑体(300)和支撑壳体(303)均分为左右分体结构,相应的,电极单元(308)也被分为相对的两极。
  7. 根据权利要求2所述的一种基于磁力与摩擦电效应的海浪能收集器,其特征在于所述第二磁体单元(302)通过配合安装于中心支座(5)与保护壳体(1)之间的第二支撑体(301)固定。
  8. 根据权利要求1-7中任一所述的一种基于磁力与摩擦电效应的海浪能收集器,其特征在于所述电能输出模块(4)包括高能电容器(400)和控制电路(401),所述第一支撑体(300)和/或支撑壳体(303)上配合安装用以收集电能的电容器存储单元(306)和用以将电容器存储单元(306)收集的电能输送至控制电路(401)的电压传输线(307),电能通过控制电路(401)被存储在高能电容器(400)中。
  9. 根据权利要求1-7中任一所述的一种基于磁力与摩擦电效应的海浪能收集器,其特征在于所述保护壳体(1)呈点状阵列排布,相邻保护壳体(1)间通过挠性金属弹簧模块(2)相连。
  10. 根据权利要求1-7中任一所述的一种基于磁力与摩擦电效应的海浪能收集器,其特征在于所述保护壳体(1)为球状结构。
PCT/CN2021/096233 2020-09-11 2021-05-27 一种基于磁力与摩擦电效应的海浪能收集器 WO2022052513A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/611,906 US11913421B2 (en) 2020-09-11 2021-05-27 Ocean wave energy collector based on magnetic force and triboelectric effect

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010953620.2A CN112350443A (zh) 2020-09-11 2020-09-11 一种基于磁力与摩擦电效应的海浪能收集器
CN202010953620.2 2020-09-11

Publications (1)

Publication Number Publication Date
WO2022052513A1 true WO2022052513A1 (zh) 2022-03-17

Family

ID=74357269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096233 WO2022052513A1 (zh) 2020-09-11 2021-05-27 一种基于磁力与摩擦电效应的海浪能收集器

Country Status (3)

Country Link
US (1) US11913421B2 (zh)
CN (1) CN112350443A (zh)
WO (1) WO2022052513A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112350443A (zh) 2020-09-11 2021-02-09 浙江大学 一种基于磁力与摩擦电效应的海浪能收集器
CN114659739B (zh) * 2022-03-21 2023-01-13 浙江大学 一种基于磁力与摩擦电效应的自供能结构振动监测装置
CN117639544B (zh) * 2023-10-20 2024-05-24 广东海洋大学 基于波浪能的电磁和液固摩擦复合纳米发电机及发电系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200067426A1 (en) * 2015-01-26 2020-02-27 Georgia Tech Research Corporation Triboelectric Nanogenerator for Harvesting Energy from Water
CN110905712A (zh) * 2019-11-28 2020-03-24 北京纳米能源与系统研究所 海浪能收集装置及海上发电设备
CN111140426A (zh) * 2019-12-31 2020-05-12 浙江大学 一种基于摩擦发电原理的波浪发电装置
CN111327172A (zh) * 2019-01-21 2020-06-23 北京纳米能源与系统研究所 基于摩擦和磁感应的发电机
CN112350443A (zh) * 2020-09-11 2021-02-09 浙江大学 一种基于磁力与摩擦电效应的海浪能收集器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10425018B2 (en) * 2015-05-19 2019-09-24 Georgia Tech Research Corporation Triboelectric nanogenerator for harvesting broadband kinetic impact energy
KR20160148755A (ko) * 2015-06-16 2016-12-27 한국과학기술원 부유 진동자를 이용하는 마찰 대전/전자기 유도 혼성 발전기 및 그 동작 방법
US10848079B2 (en) * 2016-11-29 2020-11-24 University Of Hawaii Ambient energy harvesting device with charge-carrying movable electrode
CN107086649B (zh) * 2017-05-19 2023-04-28 西南交通大学 一种电磁压电复合式波浪能收集装置
CN108322083B (zh) * 2018-03-30 2023-10-24 大连海事大学 基于摩擦纳米发电机的波浪能高效发电装置
CN109217611A (zh) * 2018-10-22 2019-01-15 苏州大学 一种复合式波浪能收集装置
CN110460262B (zh) * 2019-08-20 2021-01-05 西北工业大学深圳研究院 一种球形驻极体波浪能发电装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200067426A1 (en) * 2015-01-26 2020-02-27 Georgia Tech Research Corporation Triboelectric Nanogenerator for Harvesting Energy from Water
CN111327172A (zh) * 2019-01-21 2020-06-23 北京纳米能源与系统研究所 基于摩擦和磁感应的发电机
CN110905712A (zh) * 2019-11-28 2020-03-24 北京纳米能源与系统研究所 海浪能收集装置及海上发电设备
CN111140426A (zh) * 2019-12-31 2020-05-12 浙江大学 一种基于摩擦发电原理的波浪发电装置
CN112350443A (zh) * 2020-09-11 2021-02-09 浙江大学 一种基于磁力与摩擦电效应的海浪能收集器

Also Published As

Publication number Publication date
US20220307458A1 (en) 2022-09-29
US11913421B2 (en) 2024-02-27
CN112350443A (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
WO2022052513A1 (zh) 一种基于磁力与摩擦电效应的海浪能收集器
He et al. Triboelectric-piezoelectric-electromagnetic hybrid nanogenerator for high-efficient vibration energy harvesting and self-powered wireless monitoring system
CN112564541B (zh) 一种用于低频运动的电磁摩擦电混合式能量收集器
Iqbal et al. Vibration‐based piezoelectric, electromagnetic, and hybrid energy harvesters for microsystems applications: a contributed review
CN110445417B (zh) 一种低频宽频带震动俘能装置
Hu et al. Vibration-driven triboelectric nanogenerator for vibration attenuation and condition monitoring for transmission lines
CN111564989B (zh) 一种压电-电磁复合式振动能量收集器
CN105680720A (zh) 多自由度压电-电磁复合式多方向宽频带动能采集器
CN109560721A (zh) 一种复合式振动能量采集器
CN104836472A (zh) 利用声音能量的发电机和声音传感器
CN111156128A (zh) 一种全向压电电磁复合式波浪能采集装置
CN112366980A (zh) 一种不倒翁结构多方向低频振动能量收集器
CN111980846A (zh) 一种自供能系统的波浪能发电装置及其发电方法
CN112737407A (zh) 用于捕获波浪能的压电发电系统
Xue et al. Coil-levitated hybrid generator for mechanical energy harvesting and wireless temperature and vibration monitoring
KR20190010050A (ko) 구 모양의 접촉대전 나노 발전기
CN112821707A (zh) 一种摩擦纳米与电磁发电复合波能转换装置
CN108400723B (zh) 一种冲击式多方向压电发电装置
CN111525837A (zh) 一种单梁阵列式压电-电磁复合式振动能量收集装置
CN108270370B (zh) 一种多向宽频的压电式能量收集装置
Cui et al. Building self‐powered emergency electronics based on hybrid nanogenerators for field survival/rescue
CN112737411A (zh) 一种压电发电装置
CN219833992U (zh) 一种基于摩擦纳米发电机的波浪能发电装置
AU2021101345A4 (en) Multi-mode hybrid up-conversion vibration-type ambient energy harvester
CN111987934B (zh) 一种悬臂梁振动发电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21865574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21865574

Country of ref document: EP

Kind code of ref document: A1