WO2022052492A1 - NB-IoT通讯模组内嵌程序的燃气表及数据处理方法 - Google Patents
NB-IoT通讯模组内嵌程序的燃气表及数据处理方法 Download PDFInfo
- Publication number
- WO2022052492A1 WO2022052492A1 PCT/CN2021/092450 CN2021092450W WO2022052492A1 WO 2022052492 A1 WO2022052492 A1 WO 2022052492A1 CN 2021092450 W CN2021092450 W CN 2021092450W WO 2022052492 A1 WO2022052492 A1 WO 2022052492A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- communication module
- iot communication
- gas
- gas meter
- module
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/38—Services specially adapted for particular environments, situations or purposes for collecting sensor information
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07F—COIN-FREED OR LIKE APPARATUS
- G07F15/00—Coin-freed apparatus with meter-controlled dispensing of liquid, gas or electricity
- G07F15/06—Coin-freed apparatus with meter-controlled dispensing of liquid, gas or electricity with means for prepaying basic charges, e.g. rent for meters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/80—Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0225—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the application relates to the technical field of gas meters, and in particular to a gas meter with an embedded program in an NB-IoT communication module and a data processing method.
- IC card smart gas meters solve the problem of difficult meter reading and entry into households, they cannot obtain user gas consumption data and gas meter status in a timely manner, and cannot meet the real-time requirements of gas companies. Application requirements for management and control, big data analysis, etc.
- NB-IoT is showing more and more powerful development potential.
- IoT gas meters based on NB-IoT technology are sought after due to their three advantages of saving manpower, intelligent adjustment of gas prices, and stable signal transmission, and are widely used in the design of smart gas meters.
- the existing smart gas meter settings often only use the NB-IoT module as a communication module. It is necessary to implement various business functions through an external MCU responsible for the business functions of the smart gas meter and the underlying control, which will inevitably lead to increased costs. Increased consumption is not conducive to market promotion.
- the present application provides a gas meter with a program embedded in an NB-IoT communication module.
- the gas meter with a program embedded in the NB-IoT communication module includes an NB-IoT communication module, and only the NB-IoT An MCU chip is configured in the communication module, so that when the NB-IoT communication module is awakened, it is switched to a normal working state, and various gas business functions are realized through the MCU chip.
- the gas meter with the embedded program in the NB-IoT communication module wherein the gas meter with the embedded program in the NB-IoT communication module further includes an infrared sensor connected to the NB-IoT communication module, the The infrared sensor is used to generate a gas use signal when sensing the living body using gas, and generate a gas shut-off signal when sensing the living body turning off the gas.
- the gas meter with the embedded program in the NB-IoT communication module wherein the gas meter with the embedded program in the NB-IoT communication module further includes a metering and billing module connected with the NB-IoT communication module,
- the metering and billing module is connected to the infrared sensor, and the metering and billing module is used to calculate the gas usage from the time when the gas usage signal is received to the gas shut-off signal, and the amount of gas used to calculate the time corresponding to the gas shut-off signal. Cumulative gas usage.
- the NB-IoT communication module embedded program gas meter wherein the metering and billing module is configured with a billing metering program, and the metering and billing module includes a stepped gas price billing unit and a mechanical pulse counting gas meter ; the tiered gas price charging unit is used for tiered metering and charging, for determining several sets of tiered price schemes, and for determining tiered states of gas usage by users, wherein the tiered states include one of positive tiers and negative tiers or variety.
- the gas meter with the embedded program in the NB-IoT communication module wherein the gas meter with the embedded program in the NB-IoT communication module further includes a liquid crystal display screen and an input connected to the NB-IoT communication module.
- the liquid crystal display screen includes one or more of an LED liquid crystal display screen and an OLED liquid crystal display screen
- the input module is used to receive user input information to display on the liquid crystal display screen
- the input module includes a keyboard , mouse, virtual buttons, and one or more of pickups.
- the gas meter with the embedded program in the NB-IoT communication module wherein the gas meter with the embedded program in the NB-IoT communication module further includes a valve drive module connected with the NB-IoT communication module, so The NB-IoT communication module realizes the control function of related events through the valve drive module, and the valve drive module includes a valve driver.
- the gas meter with the embedded program of the NB-IoT communication module wherein the gas meter of the embedded program of the NB-IoT communication module is further configured with a timer, and the timer is configured with a timeout time, and the The timer is used to wake up the NB-IoT communication module and switch to a normal working state when the time duration reaches the timeout time.
- the working modes of the NB-IoT communication module include a normal working state and a low power consumption state.
- the present application further provides a method for implementing data processing using the gas meter with the embedded program of the NB-IoT communication module, the data processing method comprising the following steps;
- the timer starts the timer to start timing, and when the timing time reaches the timeout time, the timer wakes up the NB-IoT communication module in the gas meter that is in a low power consumption state;
- the NB-IoT communication module is switched to a normal working state, obtains the gas consumption information stored in the storage module by means of IIC communication, and sends the gas consumption information to the IoT platform;
- the NB-IoT communication module receives the result fed back by the IoT platform, stores the result and switches to a low power consumption state to wait for the next wake-up.
- the data processing method for the embedded program of the NB-IoT communication module wherein the data processing method further includes:
- the NB-IoT communication module When it is detected that the user uses gas to generate an interrupt signal, the NB-IoT communication module is awakened to switch to a normal working state;
- the NB-IoT communication module acquires and executes the tasks to be executed, so as to realize the function of metering and pricing, and stores the relevant data after metering and pricing in the storage module;
- the NB-IoT communication module When the NB-IoT communication module completes the to-be-executed task, it switches to a low power consumption state to wait for the next wake-up.
- the NB-IoT communication module is a gas meter mechanical pulse counting gas meter, direct reading program, pulse counting module and program, expandable interface and program, valve drive module, stepped gas price billing unit, timer, LCD
- the display screen, input module, etc. and the NB-IoT communication function are integrated into an MCU chip for a dedicated NB-IoT communication module for gas meters, which saves an external MCU, significantly saves costs, and makes the product more competitive in the market competition.
- the built-in gas meter program of the NB-IoT communication module mainly realizes the corresponding functions of each business in the form of OpenCPU, which can be regarded as a simple operating system for project development, which can significantly reduce the development difficulty and workload; this application has the ability to use
- the advantages of convenience, low power consumption, small size, and high reliability have strong practical significance for the field of smart gas meters, and the accuracy of measurement is increased through infrared sensors and meters.
- FIG. 1 is a structural block diagram of a gas meter with a program embedded in an NB-IoT communication module provided by the present application.
- FIG. 2 is a flowchart of a data processing method for an embedded program in an NB-IoT communication module provided by the present application.
- FIG. 3 is a flowchart corresponding to the NB-IoT communication module in the data processing method for the embedded program of the NB-IoT communication module provided by the present application.
- the present application provides a gas meter and a data processing method with an embedded program in an NB-IoT communication module.
- the present application will be further described in detail below with reference to the accompanying drawings and examples. It should be understood that the specific embodiments described herein are only used to explain the present application, but not to limit the present application.
- the purpose of this application is to provide a smart gas meter using a new NB-IoT communication module.
- the NB-IoT communication module gas meter special module used by the smart gas meter is a kind of MCU that defines one of the multiple MCUs in the NB-IoT modem as the smart gas meter MCU, and integrates the metering and billing module, the ladder gas
- the price billing unit, timer, LCD screen, input module, infrared sensor, etc. are all embedded in the NB-IoT communication module chip, and all functions of the smart gas meter are realized by the resources in the MCU chip of NB-IoT; in the Internet of Things
- the smart gas meter looks like an independent smart gas meter MCU.
- the smart gas meter can process business in the form of OpenCPU, realize all the functions of the smart gas meter, and can complete the NB-IoT communication function.
- the smart gas meter is dedicated to NB-IoT communication.
- the module does not need to attach other MCUs outside the NB-IoT communication module.
- the invention solves the problem of the Internet of Things smart gas meter composed of the MCU intelligent control board and the NB-IoT communication module.
- the cost is low, the structure is simple, and the power consumption is low. At the same time, the accuracy of measurement is increased through the meter.
- Fig. 1 is a block diagram of the structure of the gas meter with the embedded program of the NB-IoT communication module provided by this application.
- the gas meter 100 with the embedded program of the NB-IoT communication module includes an NB-IoT communication module 9, an infrared sensor 1, a power supply module 2, a valve driving module 3, a metering and billing module 4, an input Module 5 , timer 6 , storage module 7 and liquid crystal display 8 .
- the infrared sensor 1 , the power module 2 , the valve driving module 3 , the metering and billing module 4 , the input module 5 , the timer 6 , the storage module 7 and the liquid crystal display 8 are all connected to the NB-IoT communication module 9 .
- the NB-IoT communication module 9 is configured with an MCU chip, so that when the NB-IoT communication module is woken up, it is switched to a normal working state, and various gas business functions are realized through the MCU chip.
- the working mode of the NB-IoT communication module 9 is divided into a normal working state and a low power consumption state.
- the normal working state refers to an application mode in which the module is used as the main processor, and the business processing is performed in the form of OpenCPU, so as to realize all the functions of the smart gas meter.
- This method can simplify the user's development process for the communication terminal and simplify the hardware structure design, so as to meet the customer's requirements in terms of cost, power consumption, and security.
- This normal working state does not require external processors such as MCU, memory and discrete and related design costs, which can reduce the actual size of the end product, improve the product's market price performance, enhance product competitiveness, and reduce product power consumption. Over-the-air wireless upgrades.
- API interface functions include commonly used driver interfaces (GPIO, UART, I2C, SPI, ADC, DAC), KV interface (chip internal flash interface), DNS resolution interface, data downlink interface callback interface, event status query interface, commonly used Sensor library interface, etc.
- the low power consumption state that is, PSM (Power Saving Mode, power saving mode) is a low power consumption mode of the NB-IoT communication module 9.
- PSM Power Saving Mode, power saving mode
- the PSM mode refers to the deep sleep of the terminal during non-service periods, and does not receive downlink data. Only when the terminal actively sends uplink data (MO Data), it can receive the downlink data buffered by the IoT platform, which is suitable for services that do not require downlink data delay; terminal equipment Low power consumption, adopt battery-powered mode, such as meter reading business.
- the infrared sensor 1 is used to sense living bodies. For example, when a person uses gas, a gas usage signal is generated. When the MCU chip in the NB-IoT communication module 9 detects the gas usage signal, it controls the metering and billing module 4 to start metering. If The infrared sensor 1 generates a gas shut-off signal when a person turns off the gas, and the MCU chip in the NB-IoT communication module 9 controls the metering and billing module 4 to close when detecting the gas shut-off signal, and passes the metering and billing module. Calculate the corresponding gas usage, cost and accumulated amount from the time when the gas usage signal is generated to the time when the gas shut-off signal is generated. In this embodiment, the infrared sensor is a general-purpose infrared sensor, which saves costs and facilitates popularization.
- the power module 2 is used to supply power to the smart gas meter 100 to reduce power consumption of the smart gas meter 100 .
- the power module 2 is a lithium battery.
- the valve driving module 3 is used to assist the NB-IoT communication module 9 to realize the control function of related events, and the valve driving module 3 includes a valve driver.
- the metering and billing module 4 is also connected to the infrared sensor 1, and the metering and billing module 4 is used to calculate the gas usage from the time when the gas usage signal is received to the gas shut-off signal and to calculate the gas shut-off signal. The cumulative gas usage at the corresponding time.
- the metering and billing module 4 is configured with a billing and metering program, and the metering and billing module 4 includes a stepped gas price billing unit and a mechanical pulse counting gas meter; the stepped gas price billing unit is used for Tiered metering and charging, determining several sets of tiered price plans, and determining tiered states of user gas usage, wherein the tiered states include one or more of positive tiers and negative tiers.
- the stepped gas price charging unit is a combination of a charging meter and a meter, which not only integrates multiple functions, but also reduces costs.
- the input module 5 is used for receiving the input information of the user to be displayed on the liquid crystal display screen, and the input module 5 includes one or more of a keyboard, a mouse, a virtual key and a pickup. That is to say, the input module 5 can implement manual input by the user, and can also implement voice input.
- the input through the input module 5 is displayed on the liquid crystal display screen 8 .
- the liquid crystal display screen 8 includes one or more of an LED liquid crystal display screen and an OLED liquid crystal display screen, and is used to display various business data.
- the timer 6 is configured with a timeout period, and the timer 6 is used to wake up the NB-IoT communication module 9 and switch to a normal working state when the timing period reaches the timeout period.
- the storage module 7 is a flash memory, which is used to cache various data, and is also convenient for searching and calling.
- the data processing method is realized based on the gas meter with the embedded program of the NB-IoT communication module.
- a specific embodiment is used for description.
- FIG. 2 shows the data processing method of the gas meter embedded in the program of the NB-IoT communication module.
- the data processing method for the gas meter with the embedded program in the NB-IoT communication module is not limited to the steps and sequences in the flowchart shown in FIG. The steps can be added, removed or changed in order.
- the data processing method of the gas meter with the embedded program of the NB-IoT communication module includes:
- the NB-IoT communication module is in a low power consumption state to save power.
- There are two ways to trigger the NB-IoT communication module 9 to work that is, to switch from a low power consumption state to a normal working state, one is an external interrupt to wake up the NB-IoT communication module 9 to switch to a normal working state, The other is the timer 6 timeout interrupt (when the timing of the timer 6 reaches a predetermined time, such as the timeout time) to wake up the NB-IoT communication module 9 and switch to a normal working state, as shown in FIG. 3 .
- the NB-IoT communication module 9 When the NB-IoT communication module 9 is awakened, it starts to process various tasks to realize various functions.
- the timer timeout interrupt wakes up the NB-IoT communication module 9, specifically:
- the module After the smart gas meter is powered on, the module first enables and initializes the NB modem, smart gas meter RAM, storage module 7 and other related modules and interfaces in the NB-IoT communication module 9 embedded with the smart gas meter function. The module enters the sleep state.
- the timer 6 interrupt time After the timer 6 is interrupted, the meter direct reading interface program fetches the data in the mechanical direct reading device, and the timer 6 interrupt time can be adjusted. It can be set by wireless setting or by program initialization.
- the program When the program is interrupted by timer 6, it will execute related functions according to a certain time interval, and compare whether the time at the interrupt time is the same as the preset function time. If it is the same, set the event flag bit of the related function. The flag bit completes the corresponding event function.
- the NB-IoT communication module is switched to a normal working state, obtains the gas consumption information stored in the storage module by means of IIC communication, and sends the gas consumption information to the IoT platform.
- the NB-IoT communication module when the time reaches the preset upload time, the NB-IoT communication module is switched to a normal working state, the NB-IoT communication module 9 is powered on after being woken up, and an initialization procedure is executed, and the MCU chip Then the communication protocol will upload a piece of data to the IoT platform through the corresponding modem.
- the gas consumption information stored in the storage module is acquired by means of IIC communication, and the gas consumption information is sent to the IoT platform.
- the program detects abnormal phenomena such as undervoltage and reverse current, the program will alarm and upload a data through the NB-IoT communication module 9 to remind the user.
- the received information contains calendar time information, and the internal clock of the smart gas meter is automatically checked to ensure the accuracy of the calendar clock of the smart gas meter.
- the system will diagnose the internal state of the system at regular intervals to determine whether each functional unit starts normally and whether each expansion port is used. If some functional units are abnormal, the MCU chip will upload a piece of data to the cloud backend to notify the relevant personnel to carry out maintenance operations following the communication protocol.
- the NB-IoT communication module receives the result fed back by the IoT platform, stores the result and switches to a low power consumption state to wait for the next wake-up.
- the NB-IoT communication module receives the results fed back by the IoT platform, and stores the data in the flash memory, which is used as a reference and is also convenient for calling and calculation.
- the NB-IoT communication module automatically switches to a low-power state to wait for the next wake-up, which not only saves power intelligently, but also reduces consumption and improves data processing efficiency.
- the external interruption wakes up the NB-IoT communication module, specifically: when it is detected that the user uses gas to generate an interruption signal, the NB-IoT communication module is awakened to switch to a normal working state; the NB-IoT communication The module obtains and executes the task to be executed to realize the function of metering and pricing, and stores the relevant data after metering and pricing in the storage module; when the NB-IoT communication module completes the task to be performed, it switches to low power Consumption state to wait for the next wake-up.
- the program when the pulse counting gas meter is used, the program will start the external interrupt detection method. When the pulse signal is received, the program will be interrupted, and the flow will be calculated through the interrupted state. After getting the traffic, upload the traffic information to the IoT platform regularly. At the same time, the data storage program can store the usage information in the data storage module, and the information can be saved for one month. The regulator initialization program starts to execute, and the collected usage information is uploaded to the IoT platform, such as a cloud platform, using the NB-IoT network.
- the IoT platform such as a cloud platform
- an interrupt signal is generated when the user is using gas, and the NB-IoT communication module is woken up according to the interrupt signal, so that the NB-IoT communication module performs the function of metering and pricing, and stores data such as the accumulated amount and the current actual flow in the in the storage module.
- the program can also set events according to requirements, and the events can be configured as data upload, undervoltage alarm, theft alarm, ultra-small flow alarm, reverse flow alarm, etc., when there is a timing interruption or an external interruption such as gas interruption.
- the program will detect the above events. For example, after the timing interrupt occurs, the program will start to detect whether there is undervoltage, whether it is time to upload data, etc. Whether it is a timed interrupt or an external interrupt, the event flag bit will be changed. After the change, the jump out of the interrupt will perform related event operations according to the flag bit.
- the NB-IoT communication module 9 is interrupted and woken up, first determine the interrupt type.
- the functions triggered by external interrupts mainly include the battery power detection function of the power module 2, the gas meter function of the mechanical pulse counting gas meter, and the pulse counting function. If each functional unit starts normally, the module enters the sleep state and low power consumption state and starts the timer 6. When the NB-IoT communication module 9 detects the sent message or the wake-up time set by the program arrives, the NB-IoT communication module Group 9 will be awakened.
- the NB-IoT communication module 9 When the NB-IoT communication module 9 is awakened, it is in a normal working state, and each work unit starts to work.
- the data is transmitted to the smart gas meter through the host computer or the Internet of Things platform for valve control.
- the gas meter extracts the data that needs to be calculated and transmits it to the data interface, and sends the data to the upper computer for analysis through the data line through modulation, filtering, etc.
- the present application discloses a gas meter and a data processing method with a program embedded in an NB-IoT communication module, and the present application utilizes an NB-IoT communication module with all the functions of a smart gas meter embedded therein.
- the NB-IoT communication module is a gas meter mechanical pulse counting gas meter, direct reading program, pulse counting module and program, expandable interface and program, valve drive module, stepped gas price billing unit, timer, LCD
- the display screen, input module, etc. and the NB-IoT communication function are integrated into an MCU chip for a dedicated NB-IoT communication module for gas meters, which saves an external MCU, significantly saves costs, and makes the product more competitive in the market competition.
- the built-in gas meter program of the NB-IoT communication module mainly realizes the corresponding functions of each business in the form of OpenCPU, which can be regarded as a simple operating system for project development, which can significantly reduce the development difficulty and workload; this application has the ability to use
- the advantages of convenience, low power consumption, small size, and high reliability have strong practical significance for the field of smart gas meters, and the accuracy of flow measurement is increased through infrared sensors and meters.
- the storage medium may be a memory, a magnetic disk, an optical disk, or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Volume Flow (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
本申请公开了NB-IoT通讯模组内嵌程序的燃气表及数据处理方法,本申请利用了内嵌了智能燃气表全部功能的NB-IoT通讯模组。该NB-IoT通讯模组是一种将燃气表机械脉冲计数燃气表、直读程序、脉冲计数模块及程序、可拓展接口及程序、阀门驱动模块、阶梯气价计费单元、定时器、液晶显示屏、输入模块等与NB-IoT通讯功能集成到一个MCU芯片一体的燃气表专用NB-IoT通讯模组,本申请具有使用方便,功耗低,体积小,可靠性较高等优点,对于智能燃气表领域都具有较强的实用意义,通过红外传感器和计量表增加了计量的准确性。
Description
本申请涉及燃气表技术领域,具体涉及一种NB-IoT通讯模组内嵌程序的燃气表及数据处理方法。
目前,智能燃气表绝大多数是IC卡智能燃气表,IC卡燃气表虽然解决了抄表入户难的问题,但不能及时地获取用户用气数据和燃气表状态,无法满足燃气公司在实时管控、大数据分析等方面的应用需求。而NB-IoT作为LPWAN物联网领域的主流技术,正展现出越来越强大的发展潜力。目前,基于NB-IoT技术的物联网燃气表因具备节省人力、气价智能调整和信号传输稳定三大优势而受追捧,被广泛应用于智能燃气表设计中。
但现有智能燃气表设置,往往是仅仅将NB-IoT模块作为一个通讯模块来使用,需要通过外接负责智能燃气表业务功能及底层控制的MCU来实现各项业务功能,必然导致成本增加,功耗增大,不利于市场推广。
因此,现有技术有待于改进和发展。
发明内容
基于此,有必要针对现有智能燃气表需要外接MCU导致成本增加、功耗增大的技术问题,提供一种NB-IoT通讯模组内嵌程序的燃气表及数据处理方法。
为了达到上述目的,本申请采取了以下技术方案:
第一方面,本申请提供一种NB-IoT通讯模组内嵌程序的燃气表,所述NB-IoT通讯模组内嵌程序的燃气表包括NB-IoT通讯模组,仅所述NB-IoT通讯模组内配置有MCU芯片,以使得所述NB-IoT通讯模组被唤醒时切换至正常工作状态,并通过所述MCU芯片实现各项燃气业务功能。
所述的NB-IoT通讯模组内嵌程序的燃气表,其中,所述NB-IoT通讯模组内嵌程序的燃气表还包括与所述NB-IoT通讯模组连接的红外传感器,所述红外 传感器用于感应生命体使用燃气时产生燃气使用信号并在感应生命体关闭燃气时产生燃气关闭信号。
所述的NB-IoT通讯模组内嵌程序的燃气表,其中,所述NB-IoT通讯模组内嵌程序的燃气表还包括与所述NB-IoT通讯模组连接的计量计费模块,所述计量计费模块与所述红外传感器连接,所述计量计费模块用于计算从接收到燃气使用信号到燃气关闭信号时的燃气使用量以及用于计算所述燃气关闭信号对应的时刻的燃气累积使用量。
所述的NB-IoT通讯模组内嵌程序的燃气表,其中,所述计量计费模块配置有计费计量程序,所述计量计费模块包括阶梯气价计费单元和机械脉冲计数燃气表;所述阶梯气价计费单元用于阶梯计量收费、用于确定若干组阶梯价格方案以及用于确定用户燃气使用的阶梯状态,其中,所述阶梯状态包括正阶梯和负阶梯中一种或多种。
所述的NB-IoT通讯模组内嵌程序的燃气表,其中,所述NB-IoT通讯模组内嵌程序的燃气表还包括与所述NB-IoT通讯模组连接的液晶显示屏和输入模块,所述液晶显示屏包括LED液晶显示屏和OLED液晶显示屏中一种或多种,所述输入模块用于接收用户的输入信息以显示在所述液晶显示屏,所述输入模块包括键盘、鼠标、虚拟按键以及拾音器中一种或多种。
所述的NB-IoT通讯模组内嵌程序的燃气表,其中,所述NB-IoT通讯模组内嵌程序的燃气表还包括与所述NB-IoT通讯模组连接的阀门驱动模块,所述NB-IoT通讯模组通过所述阀门驱动模块来实现相关事件的控制功能,所述阀门驱动模块包括阀门驱动器。
所述的NB-IoT通讯模组内嵌程序的燃气表,其中,所述NB-IoT通讯模组内嵌程序的燃气表内还配置有定时器,所述定时器被配置超时时间,所述定时器用于计时时长到达超时时间时唤醒所述NB-IoT通讯模组切换至正常工作状态。
所述的NB-IoT通讯模组内嵌程序的燃气表,其中,所述NB-IoT通讯模组的工作模式包括正常工作状态和低功耗状态。
第二方面,本申请还提供一种利用所述的NB-IoT通讯模组内嵌程序的燃气表实现数据处理方法,该数据处理方法包括以下步骤;
启动定时器开始计时,当计时时间达到超时时间时,所述定时器唤醒处于低功耗状态下的所述燃气表中的NB-IoT通讯模组;
所述NB-IoT通讯模组切换为正常工作状态,以IIC通信方式获取存储在存储模块中的燃气消费信息,并将所述燃气消费信息发送至物联网平台;
所述NB-IoT通讯模组接收所述物联网平台反馈的结果,并将该结果存储后切换为低功耗状态,以等待下一次被唤醒。
所述的NB-IoT通讯模组内嵌程序的数据处理方法,其中,该数据处理方法还包括:
当检测到用户用气以产生中断信号时,所述NB-IoT通讯模组被唤醒以切换为正常工作状态;
所述NB-IoT通讯模组获取并执行待执行任务,以实现计量计价的功能,并将计量计价后的相关数据存储在存储模块中;
当所述NB-IoT通讯模组完成所述待执行任务时切换为低功耗状态,以等待下一次被唤醒。
本申请利用了内嵌了智能燃气表全部功能的NB-IoT通讯模组。该NB-IoT通讯模组是一种将燃气表机械脉冲计数燃气表、直读程序、脉冲计数模块及程序、可拓展接口及程序、阀门驱动模块、阶梯气价计费单元、定时器、液晶显示屏、输入模块等与NB-IoT通讯功能集成到一个MCU芯片一体的燃气表专用NB-IoT通讯模组,节省了一个外部MCU,显著的节约了成本,使得产品在市场竞争中更具竞争力,并且NB-IoT通讯模组内嵌燃气表程序主要以OpenCPU形式实现各业务对应的功能,可视为一个简单的操作系统进行项目开发,可以显著降低开发难度和工作量;本申请具有使用方便,功耗低,体积小,可靠性较高等优点,对于智能燃气表领域都具有较强的实用意义,通过红外传感器和计量表增加了计量的准确性。
图1为本申请提供的NB-IoT通讯模组内嵌程序的燃气表结构框图。
图2为本申请提供的NB-IoT通讯模组内嵌程序的数据处理方法的流程图。
图3为本申请提供的NB-IoT通讯模组内嵌程序的数据处理方法中NB-IoT通讯模组对应的流程图。
本申请提供NB-IoT通讯模组内嵌程序的燃气表及数据处理方法,为使本申请的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本申请进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本申请的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本申请所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
本申请的目的在于提供一种采用新型的NB-IoT通讯模组的智能燃气表。智能燃气表所采用的NB-IoT通讯模组燃气表专用模组,是一种将NB-IoT调制解调器内部的多个MCU中的一个MCU定义为智能燃气表MCU,将计量计费模块、阶梯气价计费单元、定时器、液晶显示屏、输入模块、红外传感器等全部嵌入NB-IoT通讯模组芯片内、智能燃气表的全部功能由NB-IoT的MCU芯片内的资源实现;在物联网智能燃气表看来就像一个独立的智能燃气表MCU一样,能够以OpenCPU的形式来进行业务处理,实现智能燃气表全部功能,并且能够完成NB-IoT通讯功能,智能燃气表专用NB-IoT通讯模组无需在NB-IoT通讯模组外附其他MCU,本发明解决了现在MCU智能控制板与NB-IoT通讯模组构成的物联网智能燃气表,其成本低、结构简单、功耗小,同时通过计量表增加了计量的准确性。
请参阅图1,图1为本申请提供的NB-IoT通讯模组内嵌程序的燃气表结构 框图。如图1所示,所述NB-IoT通讯模组内嵌程序的燃气表100包括NB-IoT通讯模组9、红外传感器1、电源模块2、阀门驱动模块3、计量计费模块4、输入模块5、定时器6、存储模块7以及液晶显示屏8。所述红外传感器1、电源模块2、阀门驱动模块3、计量计费模块4、输入模块5、定时器6、存储模块7以及液晶显示屏8均连接NB-IoT通讯模组9。该NB-IoT通讯模组9内配置有MCU芯片,以使得所述NB-IoT通讯模组被唤醒时切换至正常工作状态,并通过所述MCU芯片实现各项燃气业务功能。
具体地,所述NB-IoT通讯模组9的工作模式分为正常工作状态和低功耗状态。所述正常工作状态指的是一种以模块作为主处理器的应用方式,以OpenCPU的形式来进行业务处理,实现智能燃气表全部功能。这种方式可以简化用户对通信终端的开发流程,精简硬件结构设计,从而满足客户对成本、功耗、安全性等方面的需求。该正常工作状态无需外部处理器如MCU,存储器及离散和相关的设计费用,能够减小终端产品的实际尺寸,改善产品的市场性价比,提升产品竞争力,并且降低产品功耗,也能实现远程空中无线升级。其与传统外接MCU不同的是在使用过程中直接调用相关API接口函数即可,不需要通过串口如I/O输入输出端口转换对应指令以调用API接口。本申请中的API接口函数包括常用驱动接口(GPIO、UART、I2C、SPI、ADC、DAC)、KV接口(芯片内部flash接口)、DNS解析接口、数据下行接口回调接口、事件状态查询接口、常用传感器库接口等。
所述低功耗状态即PSM(Power Saving Mode,省电模式)是NB-IoT通讯模组9的一种低功耗模式,在低功耗状态下,待机功耗只有微安级别,能大大提升电池的使用年限。PSM模式指的是终端非业务期间深度休眠,不接收下行数据,只有终端主动发送上行数据(MO Data)时可接收IoT平台缓存的下行数据,适合对下行数据无时延要求的业务;终端设备功耗低,采取电池供电方式,如抄表业务。
红外传感器1用于感应生命体,如人使用燃气时产生燃气使用信号,所述NB-IoT通讯模组9内的MCU芯片检测到该燃气使用信号时控制计量计费模块4启动开始计量,若所述红外传感器1在感应人关闭燃气时产生燃气关闭信号,所述NB-IoT通讯模组9内的MCU芯片检测到该燃气关闭信号时控制计量计费模块4关闭,并通过计量计费模块计算从燃气使用信号产生到燃气关闭信号产生时 对应的燃气使用量、费用以及累计量。在本实施例中,所述红外传感器为通用型红外传感器,节省成本,也便于推广。
所述电源模块2用于为智能燃气表100供电,以减少智能燃气表100功耗。在本实施例中,所述电源模块2为锂电池。
所述阀门驱动模块3是用于辅助所述NB-IoT通讯模组9实现相关事件的控制功能,所述阀门驱动模块3包括阀门驱动器。
所述计量计费模块4还与所述红外传感器1连接,所述计量计费模块4用于计算从接收到燃气使用信号到燃气关闭信号时的燃气使用量以及用于计算所述燃气关闭信号对应的时刻的燃气累积使用量。在实际应用中,所述计量计费模块4配置有计费计量程序,所述计量计费模块4包括阶梯气价计费单元和机械脉冲计数燃气表;所述阶梯气价计费单元用于阶梯计量收费、用于确定若干组阶梯价格方案以及用于确定用户燃气使用的阶梯状态,其中,所述阶梯状态包括正阶梯和负阶梯中一种或多种。在本实施例中,所述阶梯气价计费单元为计费表和计量表组合,不仅集成多种功能,还降低成本。
所述输入模块5用于接收用户的输入信息以显示在所述液晶显示屏,所述输入模块5包括键盘、鼠标、虚拟按键以及拾音器中一种或多种。也就是说,所述输入模块5可实现用户手动输入,也可以实现语音输入。通过所述输入模块5的输入,以显示在所述液晶显示屏8。
所述液晶显示屏8包括LED液晶显示屏和OLED液晶显示屏中一种或多种,用于显示各项业务数据。
所述定时器6被配置超时时间,所述定时器6用于计时时长到达超时时间时唤醒所述NB-IoT通讯模组9切换至正常工作状态。
在本实施例中,所述存储模块7为flash存储器,用于缓存各种数据,也便于查找和调用。
基于上述NB-IoT通讯模组内嵌程序的燃气表从而实现数据处理方法。为了更进一步理解本申请的技术方案,用一具体实施例加以说明。
请参阅图2,图2为NB-IoT通讯模组内嵌程序的燃气表的数据处理方法。应该说明的是,本发明实施方式的NB-IoT通讯模组内嵌程序的燃气表的数据处理方法并不限于图2所示的流程图中的步骤及顺序,根据不同的需求,流程图中的步骤可以增加、移除或者改变顺序。如图2所示,所述NB-IoT通讯模组内嵌 程序的燃气表的数据处理方法包括:
S10、启动定时器开始计时,当计时时间达到超时时间时,所述定时器唤醒处于低功耗状态下的所述燃气表中的NB-IoT通讯模组。
在本实施例中,NB-IoT通讯模组处于低功耗状态,节省电量。触发所述NB-IoT通讯模组9工作,即由低功耗状态切换为正常工作状态具有两种方式,一种是外部中断以唤醒所述NB-IoT通讯模组9切换至正常工作状态,另一种是定时器6超时中断(定时器6的计时时长达到预定时刻如超时时间时)以唤醒所述NB-IoT通讯模组9切换至正常工作状态,如图3所示。当所述NB-IoT通讯模组9被唤醒时开始对各项任务进行处理,以实现各种功能。
定时器超时中断唤醒NB-IoT通讯模组9,具体为:
智能燃气表上电后,模块首先将内嵌智能燃气表功能的NB-IoT通讯模组9中的NB调制解调器、智能燃气表RAM、存储模块7等相关模块及接口进行赋能初始化,初始化后各模块进入休眠状态,当使用光电直读燃气表时,设置定时器6中断时间,定时器6中断后,表头直读接口程序对机械直读器中的数据进行取,定时器6中断时间可通过无线设置,也可通过程序初始化进行设置。当程序发生定时器6中断时,会根据一定时间间隔来执行相关功能,比较中断时刻的时间是否与预设功能时间相同,如果相同则设置相关功能的事件标志位,跳出中断后主函数会根据标志位完成对应事件功能。
S20、所述NB-IoT通讯模组切换为正常工作状态,以IIC通信方式获取存储在存储模块中的燃气消费信息,并将所述燃气消费信息发送至物联网平台。
在本实施例中,当时间达到预设的上传时间时,所述NB-IoT通讯模组切换为正常工作状态,NB-IoT通讯模组9被唤醒即上电,并执行初始化程序,MCU芯片会接着通讯协议通过对应的调制解调器上传一条数据给物联网平台。例如:以IIC通信方式获取存储在存储模块中的燃气消费信息,并将所述燃气消费信息发送至物联网平台。
如果程序检测出欠压、逆流等异常现象时,程序会进行报警并通过NB-IoT通讯模组9上传一条数据提醒使用者。在每次接收后台信息时,接受的信息中含有日历时间信息,会对智能燃气表的内部时钟自动进行校验,从而保证智能燃气表日历时钟的准确性。同时在定时器6中断中每隔一段时间系统会进行一次系统内部状态诊断,判断各个功能单元是否正常启动,各个拓展口是否被应用。如果 有某些功能单元出现异常,MCU芯片会接着通讯协议上传一条数据给云端后台通知相关人员进行维修操作。
S30、所述NB-IoT通讯模组接收所述物联网平台反馈的结果,并将该结果存储后切换为低功耗状态,以等待下一次被唤醒。
在本实施例中,所述NB-IoT通讯模组接收所述物联网平台反馈的结果,并将数据存储在flash存储器,用作参考依据,也便于调用和计算。当检测到任务完成时,则所述NB-IoT通讯模组自动切换为低功耗状态,以等待下一次被唤醒,这样不仅智能节省电量,还降低耗损,提高数据处理效率。
外部中断唤醒所述NB-IoT通讯模组,具体为:当检测到用户用气以产生中断信号时,所述NB-IoT通讯模组被唤醒以切换为正常工作状态;所述NB-IoT通讯模组获取并执行待执行任务,以实现计量计价的功能,并将计量计价后的相关数据存储在存储模块中;当所述NB-IoT通讯模组完成所述待执行任务时切换为低功耗状态,以等待下一次被唤醒。
也就是说,当使用脉冲计数燃气表时,程序会启动外部中断检测方式,当接收到脉冲信号时,程序会发生中断,通过中断的状态计算流量。得到流量后,把流量信息定时上传至物联网平台,同时数据存储程序可以将用量信息存储在数据存储模块中,该信息可以保存一个月,当智能模组完成数据采集及储存后,NB调试解调器初始化程序开始执行,同时利用NB-IoT网络将采集到的用量信息上传至物联网平台,如云平台。
例如:检测到用户用气时产生中断信号,根据中断信号唤醒所述NB-IoT通讯模组,使得NB-IoT通讯模组进行计量计价的功能,并将累计量和当前实际流量等数据存储在存储模块中。
进一步地,程序还可以根据需求设置事件,所述事件可配置为对数据上传、欠压报警、窃用报警、超小流报警、逆流报警等,当出现定时中断或外部中断如用气中断时运行程序会对上述事件进行检测。例如,定时中断发生后,程序会开始去检测有没有欠压,有没有到达数据上传的时间等。不管是定时中断,还是外部中断均会对事件标志位进行更改,更改之后跳出中断根据标志位进行相关的事件操作。NB-IoT通讯模组9被中断唤醒时首先判断中断类型,如果是外部中断再通过判断具体哪个端口引发中断,来设置相关功能的事件标志位,跳出中断后主函数会根据标志位完成对应事件功能。通过外部中断触发的功能主要有电源模 块2的电池电量检测功能、机械脉冲计数燃气表的燃气表功能,脉冲计数功能。如果各功能单元正常启动则模块进入休眠状态低功耗状态并开启定时器6,当NB-IoT通讯模组9侦听到发送来的消息或者程序设定的唤醒时间到达时NB-IoT通讯模组9会被唤醒,当NB-IoT通讯模组9被唤醒后,即处于正常工作状态,各个工作单元开始工作,其中通过上位机或物联网平台将数据传送给智能燃气表进行阀门控制,智能燃气表提取需要计算的数据传输给数据接口,将数据通过数据线经过调制、滤波等发送给上位机进行解析。
综上,本申请公开了NB-IoT通讯模组内嵌程序的燃气表及数据处理方法,本申请利用了内嵌了智能燃气表全部功能的NB-IoT通讯模组。该NB-IoT通讯模组是一种将燃气表机械脉冲计数燃气表、直读程序、脉冲计数模块及程序、可拓展接口及程序、阀门驱动模块、阶梯气价计费单元、定时器、液晶显示屏、输入模块等与NB-IoT通讯功能集成到一个MCU芯片一体的燃气表专用NB-IoT通讯模组,节省了一个外部MCU,显著的节约了成本,使得产品在市场竞争中更具竞争力,并且NB-IoT通讯模组内嵌燃气表程序主要以OpenCPU形式实现各业务对应的功能,可视为一个简单的操作系统进行项目开发,可以显著降低开发难度和工作量;本申请具有使用方便,功耗低,体积小,可靠性较高等优点,对于智能燃气表领域都具有较强的实用意义,通过红外传感器和计量表增加了流量计量的准确性。
当然,本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关硬件(如处理器,控制器等)来完成,所述的程序可存储于一计算机可读取的存储介质中,该程序在执行时可包括如上述各方法实施例的流程。其中所述的存储介质可为存储器、磁碟、光盘等。
应当理解的是,本申请的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本申请所附权利要求的保护范围。
Claims (10)
- 一种NB-IoT通讯模组内嵌程序的燃气表,其特征在于,所述NB-IoT通讯模组内嵌程序的燃气表包括NB-IoT通讯模组,仅所述NB-IoT通讯模组内配置有MCU芯片,以使得所述NB-IoT通讯模组被唤醒时切换至正常工作状态,并通过所述MCU芯片实现各项燃气业务功能。
- 根据权利要求1所述的NB-IoT通讯模组内嵌程序的燃气表,其特征在于,所述NB-IoT通讯模组内嵌程序的燃气表还包括与所述NB-IoT通讯模组连接的红外传感器,所述红外传感器用于感应生命体使用燃气时产生的燃气使用信号并在感应到生命体关闭燃气时产生燃气关闭信号。
- 根据权利要求1所述的NB-IoT通讯模组内嵌程序的燃气表,其特征在于,所述NB-IoT通讯模组内嵌程序的燃气表还包括与所述NB-IoT通讯模组连接的计量计费模块,所述计量计费模块与所述红外传感器连接,所述计量计费模块用于计算从接收到燃气使用信号到燃气关闭信号时的燃气使用量以及用于计算所述燃气关闭信号对应的时刻的燃气累积使用量。
- 根据权利要求3所述的NB-IoT通讯模组内嵌程序的燃气表,其特征在于,所述计量计费模块配置有计费计量程序,所述计量计费模块包括阶梯气价计费单元和机械脉冲计数燃气表;所述阶梯气价计费单元用于阶梯计量收费、用于确定若干组阶梯价格方案以及用于确定用户燃气使用的阶梯状态,其中,所述阶梯状态包括正阶梯和负阶梯中一种或多种。
- 根据权利要求1所述的NB-IoT通讯模组内嵌程序的燃气表,其特征在于,所述NB-IoT通讯模组内嵌程序的燃气表还包括与所述NB-IoT通讯模组连接的液晶显示屏和输入模块,所述液晶显示屏包括LED液晶显示屏和OLED液晶显示屏中一种或多种,所述输入模块用于接收用户的输入信息以显示在所述液晶显示屏,所述输入模块包括键盘、鼠标、虚拟按键以及拾音器中一种或多种。
- 根据权利要求1所述的NB-IoT通讯模组内嵌程序的燃气表,其特征在于,所述NB-IoT通讯模组内嵌程序的燃气表还包括与所述NB-IoT通讯模组连接的阀门驱动模块,所述NB-IoT通讯模组通过所述阀门驱动模块来实现相关事件的控制功能,所述阀门驱动模块包括阀门驱动器。
- 根据权利要求1所述的NB-IoT通讯模组内嵌程序的燃气表,其特征在于,所述NB-IoT通讯模组内嵌程序的燃气表内还配置有定时器,所述定时器被配置超时时间,所述定时器用于计时时长到达超时时间时唤醒所述NB-IoT通讯模组切换至正常工作状 态。
- 根据权利要求1所述的NB-IoT通讯模组内嵌程序的燃气表,其特征在于,所述NB-IoT通讯模组的工作模式包括正常工作状态和低功耗状态。
- 一种利用如权利要求1-8任意一项所述的NB-IoT通讯模组内嵌程序的燃气表实现数据处理方法,其特征在于,该数据处理方法包括以下步骤;启动定时器开始计时,当计时时间达到超时时间时,所述定时器唤醒处于低功耗状态下的所述燃气表中的NB-IoT通讯模组;所述NB-IoT通讯模组切换为正常工作状态,以IIC通信方式获取存储在存储模块中的燃气消费信息,并将所述燃气消费信息发送至物联网平台;所述NB-IoT通讯模组接收所述物联网平台反馈的结果,并将该结果存储后切换为低功耗状态,以等待下一次被唤醒。
- 根据权利要求9所述的NB-IoT通讯模组内嵌程序的燃气表实现数据处理方法,其特征在于,该数据处理方法还包括:当检测到用户用气以产生中断信号时,所述NB-IoT通讯模组被唤醒以切换为正常工作状态;所述NB-IoT通讯模组获取并执行待执行任务,以实现计量计价的功能,并将计量计价后的相关数据存储在存储模块中;当所述NB-IoT通讯模组完成所述待执行任务时切换为低功耗状态,以等待下一次被唤醒。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010935676.5A CN112235742A (zh) | 2020-09-08 | 2020-09-08 | NB-IoT通讯模组内嵌程序的燃气表及数据处理方法 |
CN202010935676.5 | 2020-09-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022052492A1 true WO2022052492A1 (zh) | 2022-03-17 |
Family
ID=74116751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/092450 WO2022052492A1 (zh) | 2020-09-08 | 2021-05-08 | NB-IoT通讯模组内嵌程序的燃气表及数据处理方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112235742A (zh) |
WO (1) | WO2022052492A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112235742A (zh) * | 2020-09-08 | 2021-01-15 | 深圳市燃气集团股份有限公司 | NB-IoT通讯模组内嵌程序的燃气表及数据处理方法 |
WO2022198921A1 (zh) * | 2021-03-22 | 2022-09-29 | 上海飞奥燃气设备有限公司 | 基于OpenCPU技术的NB-IoT智能燃气表 |
CN113063471A (zh) * | 2021-03-23 | 2021-07-02 | 上海飞奥燃气设备有限公司 | 一种基于OpenCPU技术的NB-IoT智能燃气表 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102063764A (zh) * | 2011-01-25 | 2011-05-18 | 邵泽华 | 物联网智能燃气表及其控制系统 |
CN108799597A (zh) * | 2017-04-28 | 2018-11-13 | 宁波大学 | 一种按需供应燃气的智能控制系统 |
CN109389757A (zh) * | 2017-08-09 | 2019-02-26 | 辽宁思凯科技股份有限公司 | 一种基于nb-iot调制解调器的智能燃气表专用模组 |
JP6532932B2 (ja) * | 2017-12-27 | 2019-06-19 | 株式会社Nttドコモ | ユーザ端末、無線基地局及び無線通信方法 |
CN110648458A (zh) * | 2018-06-27 | 2020-01-03 | 辽宁思凯科技股份有限公司 | 一种基于内嵌智能超声波燃气表功能窄带nb-iot通讯模组的智能超声波燃气表 |
CN112235742A (zh) * | 2020-09-08 | 2021-01-15 | 深圳市燃气集团股份有限公司 | NB-IoT通讯模组内嵌程序的燃气表及数据处理方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109752060A (zh) * | 2017-11-02 | 2019-05-14 | 辽宁思凯科技股份有限公司 | 一种基于内嵌智能燃气表功能窄带nb-iot通讯模组的智能燃气表 |
-
2020
- 2020-09-08 CN CN202010935676.5A patent/CN112235742A/zh active Pending
-
2021
- 2021-05-08 WO PCT/CN2021/092450 patent/WO2022052492A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102063764A (zh) * | 2011-01-25 | 2011-05-18 | 邵泽华 | 物联网智能燃气表及其控制系统 |
CN108799597A (zh) * | 2017-04-28 | 2018-11-13 | 宁波大学 | 一种按需供应燃气的智能控制系统 |
CN109389757A (zh) * | 2017-08-09 | 2019-02-26 | 辽宁思凯科技股份有限公司 | 一种基于nb-iot调制解调器的智能燃气表专用模组 |
JP6532932B2 (ja) * | 2017-12-27 | 2019-06-19 | 株式会社Nttドコモ | ユーザ端末、無線基地局及び無線通信方法 |
CN110648458A (zh) * | 2018-06-27 | 2020-01-03 | 辽宁思凯科技股份有限公司 | 一种基于内嵌智能超声波燃气表功能窄带nb-iot通讯模组的智能超声波燃气表 |
CN112235742A (zh) * | 2020-09-08 | 2021-01-15 | 深圳市燃气集团股份有限公司 | NB-IoT通讯模组内嵌程序的燃气表及数据处理方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112235742A (zh) | 2021-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022052492A1 (zh) | NB-IoT通讯模组内嵌程序的燃气表及数据处理方法 | |
CN203414451U (zh) | 便携式空气质量检测仪 | |
CN101539803B (zh) | 待机管理方法及其相关待机管理模块 | |
CN112530056B (zh) | 降低智能门锁功耗的方法、智能门锁和存储介质 | |
CN201853186U (zh) | 一种具有甩动唤醒功能的手持式电子装置 | |
CN108089689A (zh) | 一种小型SoC超低功耗控制电路与方法 | |
CN204066009U (zh) | 一种可降低功耗及复杂性的指纹系统 | |
CN104375929A (zh) | 一种信息处理方法及电子设备 | |
CN202485766U (zh) | 电子秤 | |
CN202795225U (zh) | 一种基于人脸检测的计算机省电系统 | |
CN110703896B (zh) | 一种用于低功耗soc芯片的常开电路 | |
CN101968678A (zh) | 一种嵌入式Linux设备低功耗电源管理设备 | |
CN113721751B (zh) | 一种基于事件与休眠定时器的低功耗管理方法及系统 | |
CN208314989U (zh) | 基于窄带物联网的智能采集终端 | |
CN202472757U (zh) | 工地考勤系统 | |
CN110968344A (zh) | 一种8位超低功耗微控制系统 | |
CN203870786U (zh) | 具有超低功耗唤醒功能的无线远传抄表设备 | |
CN111857841A (zh) | 一种主控芯片的唤醒方法、存储介质及智能终端 | |
CN208421596U (zh) | 一种自动唤醒与休眠的低功耗声音采集设备 | |
CN216485106U (zh) | 一种省电的声学多普勒流速剖面仪 | |
CN205750914U (zh) | 基于物联网的篮球比赛控制系统 | |
CN103777973A (zh) | 电脑装置及其唤醒方法 | |
CN204537379U (zh) | 一种基于物联网的智能火灾监测报警系统 | |
CN104267240A (zh) | 一种低功耗带振动检测的锂电池组电压检测方法及装置 | |
CN209858986U (zh) | 一种基于esp32的电子秤休眠唤醒设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21865553 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21865553 Country of ref document: EP Kind code of ref document: A1 |