WO2022052250A1 - 用于bim管综深化设计的同模型多人协同作业方法 - Google Patents

用于bim管综深化设计的同模型多人协同作业方法 Download PDF

Info

Publication number
WO2022052250A1
WO2022052250A1 PCT/CN2020/125047 CN2020125047W WO2022052250A1 WO 2022052250 A1 WO2022052250 A1 WO 2022052250A1 CN 2020125047 W CN2020125047 W CN 2020125047W WO 2022052250 A1 WO2022052250 A1 WO 2022052250A1
Authority
WO
WIPO (PCT)
Prior art keywords
bim
model
detailing
comprehensive
design
Prior art date
Application number
PCT/CN2020/125047
Other languages
English (en)
French (fr)
Inventor
徐亮
周天浩
孙耀奇
林灵鹏
吴佳
Original Assignee
浙江勤业建工集团有限公司
徐亮
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江勤业建工集团有限公司, 徐亮 filed Critical 浙江勤业建工集团有限公司
Priority to DE112020003893.9T priority Critical patent/DE112020003893T5/de
Publication of WO2022052250A1 publication Critical patent/WO2022052250A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/14Pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the invention relates to the field of BIM deepening design, in particular to a multi-person collaborative operation method with the same model for the BIM comprehensive comprehensive design.
  • BIM Building Information Model
  • the BIM pipeline integration (hereinafter referred to as the pipeline integration) of the revit platform is currently the most mature. Integrate the structural, water, heating, and electrical models into a shared building model space, and visualize the spatial relationship between the structure and HVAC, electrical and water supply and drainage pipelines in 3D. Engineers use the 3D cutting frame to arbitrarily cut the model to view In the high-simulation 3D model, the best elevation control, space sharing and the most reasonable line space allocation and arrangement can be accurately found, and finally integrated into an optimal comprehensive design scheme.
  • the current BIM comprehensive detailed design workflow is mainly divided into two steps: in the first step, each BIM engineer conducts modeling at the same time according to the structure, water, heating and electricity, which takes about 1/5 of the total time; in the second step, the After all the professional models are integrated, one person will optimize the integrated management system, and the remaining few people cannot help, occupying about 4/5 of the total time. Obviously, the second step of integrated integrated management optimization occupies most of the working time.
  • the collaborative operation software on the market can only realize the collaborative work of different operators according to their specialties, and all professional models must be integrated in the management and integrated management optimization stage, and a single professional operation cannot work in the management and integrated management optimization stage; , underground), and then assigned to 2 people to work together, but the basement model that occupies the main workload is still unable to achieve multi-person collaborative optimization of the same model, and the improvement of efficiency is limited, and the model is divided by floor and optimized separately. It is easy to cause vertical pipe components to go up and down The layers are dislocated, and the integration stage requires a second rework adjustment.
  • the purpose of the present invention is to provide a multi-person collaborative operation method of the same model for the detailed design of the BIM management system, which can be realized from the aspects of software technology and management method, so as to shorten the time of the detailed design of the BIM management system and improve the efficiency. Solve a major problem in the promotion and application of BIM.
  • a multi-person collaborative operation method for the same model for the BIM comprehensive management detailed design comprising the following steps:
  • each 3D view can create an independent 3D section frame, and assign multiple 3D views and 3D section frames to step S2.
  • the optimization plan for the component can be determined through consultation with the BIM detailing designers of the corresponding several partitions.
  • the BIM comprehensive model is divided into a plurality of areas according to different elevations of axes or descending plates.
  • the advantages of the present invention lie in that a plurality of BIM detailing designers carry out detailing design work simultaneously according to their assigned work divisions and three-dimensional views, thereby multiplying the work efficiency in the BIM management and comprehensive optimization stage.
  • FIG. 1 is a schematic diagram of a software interface for partitioning a BIM comprehensive model through virtual walls in an embodiment
  • Figure 2 is a schematic top view of the BIM comprehensive model in Figure 1;
  • FIG. 3 is a schematic diagram of a software interface for creating multiple three-dimensional views in an embodiment
  • Fig. 4 is the state schematic diagram that the user A carries out the detailed design to the BIM comprehensive model in the embodiment
  • Fig. 5 is the state schematic diagram that user B carries out the detailed design to the BIM comprehensive model in the embodiment
  • Fig. 6 is the state schematic diagram that user C carries out the detailed design to the BIM comprehensive model in the embodiment
  • FIG. 7 is a schematic diagram of a state in which a user D performs a detailed design on a BIM comprehensive model in an embodiment.
  • any professional model component is the only element, which can only be operated by a single user.
  • the 3D section frame is also regarded as a graphic element by the software, and the operation must be kept on during the optimization of the management system.
  • the 3D cutting frame is used to realize the operation of cutting, zooming in and out of the model at any position. When a user uses the 3D cutting frame to cut and view the model, the other users can only wait in line. This is the most fundamental reason why the BIM model cannot be optimized collaboratively. .
  • the present invention proposes a multi-person collaborative operation method with the same model for BIM comprehensive pipe comprehensive design, including the following steps: S1. On the revit software platform, integrate the civil engineering, HVAC, electrical, water supply and drainage BIM models into a BIM comprehensive model .
  • the integrated BIM comprehensive model is divided into multiple areas, and the model is divided by virtual walls, and a BIM detailing designer is designated for each area. This step is used to solve problem 1.
  • the BIM comprehensive model can be divided into multiple areas according to the axis or the elevation of the descending plate.
  • the advantages of partitioning by the descending plate are: the basic elevation of the pipeline in the same descending area is the same, which is convenient for the subsequent optimization of the pipeline; The advantage is: the problem of the ownership of all beams, slabs and columns can be clearly divided, and the same beam or slab can be avoided as much as possible, appearing in two partitions (the beams, columns and slabs of buildings are generally positioned according to the axis).
  • the division method can also be divided according to expansion joints, settlement joints or post-casting belts, and the effect is similar to that of axis division.
  • the model partition is virtually divided by a virtual wall, and the operator is assigned, it is greatly avoided that multiple people operate the same model component primitives. Only a few large components spanning multiple partitions will have the possibility of queuing at the same time.
  • the corresponding detailing designers can be resolved through negotiation (for example, a water pipe spans two partitions, and the corresponding two detailing designers can negotiate and discuss to obtain a common plan for adjusting the elevation and horizontal position of the water pipe), avoiding the previous model.
  • the upper and lower models are adjusted and optimized respectively, and the vertical pipeline components are dislocated in the later model integration stage.
  • each 3D view can create an independent 3D cutting frame, and cut multiple 3D views, 3D sections
  • the box designation is assigned to the BIM detailer in step S2, which is used to solve problem 2.
  • BIM detailer After research, it is found that although all professional model components and 3D section frames are also regarded as primitives by the software, professional model components are the only primitives in any state, and 3D section frames are the only primitives based on 3D views, so As long as multiple 3D views (3D view users A, B, C, D in Figure 3) can be created, and BIM detailing designers are designated respectively, the BIM detailing designer can arbitrarily operate the 3D views under the assigned 3D views.
  • Revit software itself only has one 3D view, Revit supports secondary development and provides the underlying interface, and multiple custom 3D views can be added through the secondary development of Revit (use the underlying interface for secondary development provided by Revit to create 3D views, It belongs to the prior art, and is generally used to partially cut out the detailed drawings of model components, while the solution in this embodiment is that in the process of creating multiple three-dimensional views, after finding that the three-dimensional cutting frame is the only primitive based on the corresponding three-dimensional view, use A method of creating multiple custom 3D views to assign 3D cut boxes for independent work to multiple BIM engineers to achieve collaborative work).
  • multiple BIM detailing designers can implement BIM model management optimization design work on Revit's own collaborative platform or a third-party collaborative platform at the same time. It can double the work efficiency in the optimization stage of BIM management.

Abstract

涉及BIM深化设计领域,尤其涉及一种用于BIM管综深化设计的同模型多人协同作业方法,多个BIM深化设计师根据各自分配的作业分区、三维视图和三维剖切框,可实现在revit自身的协同平台或第三方协同平台,多人同时开展BIM模型管综优化设计工作,成倍的提高BIM管综优化阶段的工作效率。

Description

用于BIM管综深化设计的同模型多人协同作业方法 技术领域
本发明涉及BIM深化设计领域,尤其涉及一种用于BIM管综深化设计的同模型多人协同作业方法。
背景技术
建筑信息化模型(BIM)的英文全称是Building Information Model,是一个完备的信息模型,能够将工程项目在全生命周期中各个不同阶段的工程信息、过程和资源集成在一个模型中,方便的被工程各参与方使用。随着建筑信息化的高度发展,建筑信息模型(BIM)也在建设项目各方得到了广泛的推广与应用。
BIM众多应用之中,目前以revit平台的BIM管道综合(之后简称管综)深化设计最为成熟。将结构、水、暖、电模型全部整合到一个共享的建筑模型空间中,结构与暖通、电气与给排水管线间的空间关系三维可视化,工程师们利用三维剖切框,任意剖切模型查看的方式,在高仿真的三维模型中准确地寻找最佳的高程控制、空间共享及最合理的线路空间分配、安排,并最终整合成一个最优化的综合设计方案。
但上述应用,存在着以下不足:绝大部分建设工程项目,暖通、电气、给排水管道及其设备主要集中于地下室,因此BIM管综深化设计主要工作量在于地下室工程,而地下室工程又是整个工程最早开始施工位置。因此,项目开工后,留给地下室BIM管综深化设计的时间往往非常紧迫,很多时候只能提交一个完成度不高的初步优化模型,对BIM技术的推广应用形成了阻碍。
当前BIM管综深化设计工作流程主要分为两步:第一步,各BIM工程师按结构、水、暖、电分专业多人同时建模,占据总时间约1/5;第二步,将所有专业模型整合后,由一人进行管综优化,剩下几人无法提供帮助,占据总时间约4/5,显而易见,第二步管综优化占据了绝大部分的工作时间。
目前市场上的协同作业软件只能实现不同作业人员分专业协同工作,而管综优化阶段必须整合所有专业模型,单专业作业无法在管综优化阶段工作;或将模型按楼层分割(一般分地上、地下),再分配给2人协同作业,但是占据主要工作量的地下室模型仍旧无法实现同模型多人协同优化,提升效率有限,且按楼层分割模型并各自优化后容易导致竖向管道构件上下层错位,整合阶段需要二次返工调整。
基于此,本案由此而生。
发明内容
本发明的目的在于提供一种用于BIM管综深化设计的同模型多人协同作业方法,从软件技术和管理方法两方面共同实现,以此来缩短BIM管综深化设计的时间,提高效率,解决BIM推广应用的一大难题。
为了实现上述目的,本发明的技术方案如下:
一种用于BIM管综深化设计的同模型多人协同作业方法,包括以下步骤:
S1.利用BIM软件将各专业的BIM模型整合为一个BIM综合模型;
S2.将BIM综合模型划分为多个区域,并利用虚拟墙体对BIM综合模型进行分区,为各分区指定BIM深化设计师;
S3.利用BIM软件的二次开发功能,创建多个自定义三维视图,每个三维视图可创建一个独立三维剖切框,并将多个三维视图、三维剖切框指定分配给步骤S2中的BIM深化设计师;
S4.多个BIM深化设计师根据各自分配的作业分区、三维视图和三维剖切框,基于BIM软件平台,同时开展深化设计工作。
进一步的,在深化设计工作开展过程中,若存在跨越多个分区的大型构件,可通过相应几个分区的BIM深化设计师协商确定该构件优化方案。
进一步的,所述步骤S1中,将BIM综合模型按轴线或降板标高不同划分为多个区域。
本发明的优点在于:多个BIM深化设计师根据各自分配的作业分区和三维视图,同时开展深化设计工作,成倍的提高了BIM管综优化阶段的工作效率。
附图说明
图1为实施例中对BIM综合模型通过虚拟墙体进行分区分割的软件界面示意图;
图2为图1中BIM综合模型的俯视示意图;
图3为实施例中创建多个三维视图的软件界面示意图;
图4为实施例中用户A对BIM综合模型进行深化设计的状态示意图;
图5为实施例中用户B对BIM综合模型进行深化设计的状态示意图;
图6为实施例中用户C对BIM综合模型进行深化设计的状态示意图;
图7为实施例中用户D对BIM综合模型进行深化设计的状态示意图。
具体实施方式
以下结合实施例对本发明作进一步详细描述。
BIM综合模型现阶段无法在协同平台真正做到同模型协同优化,根本问题有两个:1、同一模型内,任意专业模型构件都是唯一图元,只能允许唯一用户操作,当A用户首先 操作某一图元时,其余所有用户必须排队等待A用户操作完成后才能操作该图元;2、三维剖切框也被软件视作图元,而管综优化作业时,必须不停的操作三维剖切框,以实现模型任意位置剖切、放大缩小操作,当一个用户在使用三维剖切框剖切查看模型时,其余用户只能排队等候,这就是BIM模型无法协同优化的最根本原因。
本发明提出一种用于BIM管综深化设计的同模型多人协同作业方法,包括以下步骤:S1.在revit软件平台,将土建、暖通、电气、给排水BIM模型整合为一个BIM综合模型。
S2.如图1和2所示,将整合后的BIM综合模型划分成多个区域,并以虚拟墙体分割模型,并为各分区分别指定BIM深化设计师,此步骤用于解决问题1。
本实施例中,BIM综合模型可按轴线或降板标高不同划分为多个区域,按降板分区的优势为:同一降板区域管线的基础标高是一致的,便于后续对管线的优化;按轴线分区的优势为:可以比较明确的划分所有梁板柱归属的问题,尽量避免出现同一梁或板,出现在两个分区(建筑的梁柱板一般情况下都是按轴线来定位的)。当然,该划分方式也可按伸缩缝、沉降缝或后浇带进行划分,效果与轴线划分类似。
将模型分区以虚拟墙体虚拟分割,并指定作业人员后,极大程度的避免了多人操作同一模型构件图元,只有极少数跨越多个分区的大型构件会出现同时操作排队的可能性,此时相应的深化设计师可通过协商解决(例如一根水管跨越了两个分区,相应两个深化设计师可协商讨论,得出对该水管标高、水平位置调整的共同方案),避免以往模型按楼层实际分割后,上下层模型各自调整优化,后期模型整合阶段竖向管道构件错位问题。
S3.如图3至7所示,利用BIM软件的二次开发功能,创建多个自定义三维视图,每个三维视图可创建一个独立三维剖切框,并将多个三维视图、三维剖切框指定分配给步骤S2中的BIM深化设计师,此步骤用于解决问题2。经过研究后发现,所有专业模型构件和三维剖切框虽然同样被软件视作图元,但专业模型构件是任意状态的唯一图元,而三维剖切框是基于三维视图的唯一图元,所以只要能创建多个三维视图(如图3中的三维视图用户A、B、C、D),并分别指定BIM深化设计师,那么该BIM深化设计师就能任意操作所分配三维视图下的三维剖切框,不受唯一图元排队困扰。虽然revit软件本身只具备一个三维视图,但revit支持二次开发,提供底层接口,可通过revit二次开发增加多个自定义三维视图(利用revit提供的二次开发底层接口进行三维视图的创建,属于现有技术,一般用于局部剖切出模型构件详图,而本实施例方案是在创建多个三维视图的过程中,发现三维剖切框是基于相应三维视图的唯一图元后,利用创建多个自定义三维视图的方法,来给多个BIM工程师分配独立作业的三维剖切框,以此来达成协同作业)。
S4.多个BIM深化设计师根据各自分配的作业分区、三维视图和三维剖切框,可实现在revit自身的协同平台或第三方协同平台,多人同时开展BIM模型管综优化设计工作,成倍的提高BIM管综优化阶段的工作效率。
上述实施例仅用于解释说明本发明的构思,而非对本发明权利保护的限定,凡利用此构思对本发明进行非实质性的改动,均应落入本发明的保护范围。

Claims (3)

  1. 一种用于BIM管综深化设计的同模型多人协同作业方法,其特征在于,包括以下步骤:
    S1.利用BIM软件将各专业的BIM模型整合为一个BIM综合模型;
    S2.将BIM综合模型划分为多个区域,并利用虚拟墙体对BIM综合模型进行分区,为各分区指定BIM深化设计师;
    S3.利用BIM软件的二次开发功能,创建多个自定义三维视图,每个三维视图可创建一个独立三维剖切框,并将多个三维视图、三维剖切框指定分配给步骤S2中的BIM深化设计师;
    S4.多个BIM深化设计师根据各自分配的作业分区、三维视图和三维剖切框,基于BIM软件平台,同时开展深化设计工作。
  2. 如权利要求1所述的一种用于BIM管综深化设计的同模型多人协同作业方法,其特征在于:在深化设计工作开展过程中,若存在跨越多个分区的大型构件,可通过相应几个分区的BIM深化设计师协商确定该构件优化方案。
  3. 如权利要求1所述的一种用于BIM管综深化设计的同模型多人协同作业方法,其特征在于:所述步骤S1中,将BIM综合模型按轴线或降板标高不同划分为多个区域。
PCT/CN2020/125047 2020-09-11 2020-10-30 用于bim管综深化设计的同模型多人协同作业方法 WO2022052250A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112020003893.9T DE112020003893T5 (de) 2020-09-11 2020-10-30 Kollaborativen Mehrpersonenbetrieb desselben Modells zur umfassenden Vertiefungsplanung von BIM-Management

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010952938.9A CN112100722B (zh) 2020-09-11 2020-09-11 用于bim管综深化设计的同模型多人协同作业方法
CN202010952938.9 2020-09-11

Publications (1)

Publication Number Publication Date
WO2022052250A1 true WO2022052250A1 (zh) 2022-03-17

Family

ID=73752343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125047 WO2022052250A1 (zh) 2020-09-11 2020-10-30 用于bim管综深化设计的同模型多人协同作业方法

Country Status (3)

Country Link
CN (1) CN112100722B (zh)
DE (1) DE112020003893T5 (zh)
WO (1) WO2022052250A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105719200A (zh) * 2016-01-19 2016-06-29 上海杰图天下网络科技有限公司 运用三维全景技术结合bim技术进行工程进度监督的方法
CN105824621A (zh) * 2016-03-11 2016-08-03 深圳航天科技创新研究院 基于图形建模的嵌入式软件多人并发建模方法及系统
US20180032649A1 (en) * 2016-07-27 2018-02-01 Applied Software Technology, Inc. Managing Custom REVIT Inheritance-Based Assembly Families for Manufacturing
CN110245918A (zh) * 2019-06-15 2019-09-17 上海博联工程监理有限公司 基于bim的工程监理监管方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105719200A (zh) * 2016-01-19 2016-06-29 上海杰图天下网络科技有限公司 运用三维全景技术结合bim技术进行工程进度监督的方法
CN105824621A (zh) * 2016-03-11 2016-08-03 深圳航天科技创新研究院 基于图形建模的嵌入式软件多人并发建模方法及系统
US20180032649A1 (en) * 2016-07-27 2018-02-01 Applied Software Technology, Inc. Managing Custom REVIT Inheritance-Based Assembly Families for Manufacturing
CN110245918A (zh) * 2019-06-15 2019-09-17 上海博联工程监理有限公司 基于bim的工程监理监管方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHENG SILONG: "Research on the Application of Collaborative Design in Urban Ultility Tunnel Based on BIM", MASTER THESIS, TIANJIN POLYTECHNIC UNIVERSITY, CN, 15 February 2018 (2018-02-15), CN , XP055909823, ISSN: 1674-0246 *

Also Published As

Publication number Publication date
CN112100722A (zh) 2020-12-18
DE112020003893T5 (de) 2022-05-05
CN112100722B (zh) 2023-08-25

Similar Documents

Publication Publication Date Title
Gourlis et al. Building Information Modelling for analysis of energy efficient industrial buildings–A case study
WO2017219921A1 (zh) 一种基于构件分类和组合的建筑协同构建系统和方法
CN108595891A (zh) 混凝土桥主梁施工临时支架结构的二维化bim设计方法
Chua et al. Process-parameter-interface model for design management
Wang et al. A seven-dimensional building information model for the improvement of construction efficiency
Steiner et al. Integrated structural–architectural design for interactive planning
Wu et al. Multi-objective optimization in floor tile planning: Coupling BIM and parametric design
WO2022222432A1 (zh) 一种基于bim的建筑全生命周期动态智能管理系统及方法
WO2022052250A1 (zh) 用于bim管综深化设计的同模型多人协同作业方法
Park et al. Tall building form generation by parametric design process
CN109558636A (zh) 一种基于Revit综合管廊BIM模型的创建方法
CN108984876A (zh) 一种基于bim的预埋套管自动化建模方法和系统
CN116204962B (zh) 一种基于bim的结构设计方法
JP2003316835A (ja) 建築生産情報統合システム
CN113761632B (zh) 一种基于bim的机电全装配式三维正向设计方法
JP2020166327A (ja) 異なるbimモデルの構成要素比較装置、bimモデル共有システム、異なるbimモデルの構成要素比較方法、及び異なるbimモデルの構成要素比較プログラム
Li et al. Application research of BIM technology in water supply and drainage engineering
Huang et al. Research on 4D Visual BIM Technology in Dynamic Decora-tion Building Site Construction
Li et al. Smart City Construction Visual Simulation Application Based on Intelligent BIM Technology
Lixiao et al. Research and development of prefabricated detailed design software based on intelligent construction
Wang Analysis on the Application of BIM Technology in the Design of Building Rebuilding
Wang Application of BIM Technology in Hospital Engineering Project
Yang et al. Investigation of quality management of construction projects based on BIM technology
M Eldeep et al. Benefits of Integration Between Lean and Bim in the Design and Construction Phase; Lessons Learned
Liao A study of the classification and main functions of BIM software

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953035

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20953035

Country of ref document: EP

Kind code of ref document: A1