WO2022052236A1 - 机器人系统及机器人避障方法 - Google Patents

机器人系统及机器人避障方法 Download PDF

Info

Publication number
WO2022052236A1
WO2022052236A1 PCT/CN2020/124380 CN2020124380W WO2022052236A1 WO 2022052236 A1 WO2022052236 A1 WO 2022052236A1 CN 2020124380 W CN2020124380 W CN 2020124380W WO 2022052236 A1 WO2022052236 A1 WO 2022052236A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
sub
conductor segment
obstacle
magnetic field
Prior art date
Application number
PCT/CN2020/124380
Other languages
English (en)
French (fr)
Inventor
陈飞
高娟
Original Assignee
苏州科瓴精密机械科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州科瓴精密机械科技有限公司 filed Critical 苏州科瓴精密机械科技有限公司
Publication of WO2022052236A1 publication Critical patent/WO2022052236A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/04Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by terrestrial means
    • G01C21/08Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by terrestrial means involving use of the magnetic field of the earth

Definitions

  • the invention relates to the field of intelligent control, in particular to a robot system and a robot obstacle avoidance method.
  • Low repetition rate and high coverage rate are the goals pursued by mobile robots such as traversing robots such as vacuuming, lawn mowing and swimming pool cleaning.
  • traversing robots such as vacuuming, lawn mowing and swimming pool cleaning.
  • the lawn mowing robot uses the lawn enclosed by the border as the working area for mowing operations, and the outside of the lawn is defined as the non-working area.
  • obstacle avoidance methods include: identifying obstacles through sensor collision detection, distinguishing obstacles through visual identification, or detecting through ultrasonic detection.
  • the obstacle identification method in the prior art is easily obscured and interfered by the external environment, resulting in false identification, resulting in the inability to accurately identify real obstacles.
  • the purpose of the present invention is to provide a robot system and a robot obstacle avoidance method.
  • an embodiment of the present invention provides a robot system, which includes: a robot and an obstacle avoidance unit; the obstacle avoidance unit is configured to be arranged on the walking route of the robot and located at a preset distance from an obstacle place;
  • the robot is configured to determine whether the robot encounters an obstacle according to the strength and direction of the magnetic field signal generated by the obstacle avoidance unit during traveling.
  • the robot can effectively assist the robot to identify the blind spot for obstacle avoidance and improve the robot's recognition accuracy of obstacles.
  • the obstacle avoidance unit includes: a pulse current generator, a single electrical wire connected to the pulse current generator and forming a closed current loop;
  • the electric wire comprises: after the electric wire is folded in half, a first sub-conductor segment, a second sub-conductor segment and a third sub-conductor segment which are sequentially connected to each other are formed, and the third sub-conductor segment corresponds to the obstacle a shielding case covered on the periphery of the interval segment of the object, the shielding case is used to shield the magnetic field signal generated by the interval segment of the third sub-conductor segment covered by the shielding case;
  • bent portion of the electrical wire forms the second sub-wire segment
  • the first sub-conductor segment and the third sub-conductor segment are respectively connected to the pulse current generator, the third sub-conductor segment and the first sub-conductor segment are arranged in parallel with each other, and the current flows in opposite directions;
  • the obstacle avoidance unit arranged in the above-mentioned special way provides a magnetic field that is beneficial to the robot's identification.
  • the first sub-conductor segment and the third sub-conductor segment start from the end connected to the pulse current generator, and always extend in a direction away from the pulse current generator ;
  • the pulse current generator and the second sub-conductor segment are respectively arranged close to two opposite side ends of the obstacle;
  • the distribution of the magnetic field at each position is relatively uniform, and the magnetic field that is conducive to the recognition of the robot is provided.
  • the first sub-conductor segment and the third sub-conductor segment are straight line segments arranged in parallel to each other;
  • the distribution of the magnetic field at each position is uniform and consistent, and a magnetic field that is conducive to the recognition of the robot is provided.
  • the first sub-conductor segment and the third sub-conductor segment are arranged in abutment with each other;
  • the magnetic field strengths outside the two sides of the first sub-conductor segment and the third sub-conductor segment are made to cancel each other as much as possible, so as to provide a magnetic field that is beneficial to the recognition of the robot.
  • the third sub-conductor segment is arranged between the first sub-conductor segment and the obstacle;
  • the robot is configured to determine that there is an obstacle in front of the robot when a magnetic field signal is detected and the direction of the detected magnetic field signal is the same as the direction of the magnetic field signal generated by the first sub-conductor segment.
  • the robot is further configured to continue walking along the walking route after determining that an obstacle is set in front of the robot, if the magnetic field signal detected by the robot continues to strengthen within a preset time, and the detected The direction of the magnetic field signal is always the same as the direction of the magnetic field signal generated by the first sub-conductor segment, then it is confirmed that the robot detects the obstacle correctly; and the robot is driven to turn.
  • an embodiment of the present invention provides an obstacle avoidance method for a robot.
  • the method includes: setting an obstacle avoidance unit on a walking route of the robot and at a preset distance from the obstacle; the obstacle avoidance The unit generates a magnetic field signal with a predetermined direction;
  • the set obstacle avoidance unit includes: a pulse current generator, a single electrical wire connected to the pulse current generator and forming a closed current loop;
  • the electric wire comprises: after the electric wire is folded in half, a first sub-conductor segment, a second sub-conductor segment and a third sub-conductor segment which are sequentially connected to each other are formed, and the third sub-conductor segment corresponds to the obstacle a shielding case covered on the periphery of the interval segment of the object, the shielding case is used to shield the magnetic field signal generated by the interval segment of the third sub-conductor segment covered by the shielding case;
  • bent portion of the electrical wire forms the second sub-wire segment
  • the first sub-conductor segment and the third sub-conductor segment are respectively connected to the pulse current generator, the third sub-conductor segment and the first sub-conductor segment are arranged in parallel with each other, and the current flows in opposite directions.
  • a magnetic field that is beneficial to the robot's identification is provided, which effectively assists the robot in identifying the blind spot for obstacle avoidance, and improves the robot's identification accuracy for obstacles.
  • the third sub-conductor segment is arranged to be arranged between the first sub-conductor segment and the obstacle;
  • the robot detects the magnetic field signal, and the direction of the detected magnetic field signal is the same as the direction of the magnetic field signal generated by the first sub-conductor segment, it is determined that there is an obstacle in front of the robot;
  • the specific identification method of magnetic field strength and magnetic field direction can effectively assist the robot to identify the blind spot for obstacle avoidance and improve the robot's identification accuracy of obstacles.
  • the method further includes:
  • the judgment result is verified to improve the robot's recognition accuracy of obstacles.
  • an obstacle avoidance unit that generates a magnetic field signal with a predetermined direction is arranged near the obstacle, and during the walking process of the robot, the magnetic field signal generated by the obstacle avoidance unit and the direction, determine whether there are obstacles on the travel path, effectively assist the robot to identify the blind spot for obstacle avoidance, improve the robot's recognition accuracy of obstacles, and achieve better obstacle avoidance effect.
  • FIG. 1 is a schematic structural diagram of a robot system provided by the present invention.
  • FIG. 2 is a schematic flowchart of a method for obstacle avoidance of a robot provided by the present invention.
  • the robot of the present invention can be a lawn mowing robot, a sweeping robot, a snow plow, a leaf suction machine, a golf ball pick-up machine, etc.
  • Various robots can automatically walk in the work area and perform corresponding work.
  • the working area may be a lawn.
  • the lawn mowing robot includes: a main body, a walking unit and a control unit arranged on the main body.
  • the walking unit is used to control the walking, turning, etc. of the robot;
  • the control unit is used to plan the walking direction and the walking route of the robot, store the external parameters obtained by the robot, and process and analyze the obtained parameters, and according to the processing, The analysis result specifically controls the robot;
  • the control unit is, for example, MCU or DSP.
  • the robot also includes: various sensors, such as: a magnetic field signal sensing sensor for sensing the strength and direction of the magnetic field, dumping, ground clearance, geomagnetism, gyroscope, etc.; storage modules such as: EPROM, Flash or SD card, etc., as well as a working mechanism and a power supply for working; in this embodiment, the working mechanism is a lawn mower, which will not be described in detail here.
  • various sensors such as: a magnetic field signal sensing sensor for sensing the strength and direction of the magnetic field, dumping, ground clearance, geomagnetism, gyroscope, etc.
  • storage modules such as: EPROM, Flash or SD card, etc., as well as a working mechanism and a power supply for working; in this embodiment, the working mechanism is a lawn mower, which will not be described in detail here.
  • an embodiment of the present invention provides a robot system including an obstacle avoidance unit and a robot 30 ; the obstacle avoidance unit is configured to be arranged on the walking route of the robot 30 and located at a preset distance from the obstacle 40 ; The robot 30 is configured to determine whether the robot encounters an obstacle according to the strength and direction of the magnetic field signal generated by the obstacle avoidance unit during the traveling process.
  • the obstacle avoidance unit includes: a pulse current generator 10, a single electric wire 20 connected to the pulse current generator 10 and forming a closed current loop; the electric wire 20 includes: After the electric wire 20 is folded in half, a first sub-conductor segment 21 , a second sub-conductor segment 22 and a third sub-conductor segment 23 are formed which are connected to each other in sequence, and the third sub-conductor segment 23 corresponds to the interval of the obstacle 40 .
  • Two sub-conductor segments 22; the first sub-conductor segment 21 and the third sub-conductor segment 23 are respectively connected to the pulse current generator 10, and the third sub-conductor segment 23 and the first sub-conductor segment 21 are parallel to each other arranged, and the current flows in the opposite direction.
  • the pulse current generator 10 when the pulse current generator 10 is turned on and sends a pulse current signal into the electric wire 20, a loop is formed inside the electric wire 20, and according to the principle of electromagnetism, a specific magnetic field is generated around the electric wire 20; At this time, since the first sub-conductor segment 21 and the third sub-conductor segment 23 formed by folding the electrical wire 20 in half are arranged in parallel with each other, the currents in the first sub-conductor segment 21 and the third sub-conductor segment 23 flow in opposite directions.
  • the magnetic fields at the positions between the first sub-conductor segment 21 and the third sub-conductor segment 23 superimpose and strengthen each other, and the magnetic fields outside the two sides cancel each other and weaken, and the farther away from it, the weaker the magnetic field.
  • the third sub-conductor segment 23 corresponds to the shielding cover 231 covered on the periphery of the segment of the obstacle, the first sub-conductor segment 21 is away from the obstacle at a portion of the first sub-conductor segment 21 away from the obstacle. and for the section of the first sub-conductor segment 21 corresponding to the shield 231, the magnetic field signal generated by the third sub-conductor section 23 is shielded, and only the first sub-conductor section 21 corresponds to the section of the shield 231.
  • the generated magnetic field will not be cancelled by the magnetic field generated by the third sub-conductor segment 23; and, from the position of the first sub-conductor segment 21 corresponding to the section of the shield 231, it begins to move away from the obstacle, the generated The strength of the magnetic field is gradually weakened; and for other sections of the first sub-conductor segment 21, the magnetic fields at the positions between the first sub-conductor segment 21 and the third sub-conductor segment 23 are superimposed and strengthened, and the magnetic fields outside the two sides are mutually enhanced.
  • the cancellation weakens, and the farther away it is, the weaker the magnetic field.
  • the first sub-conductor segment 21 and the third sub-conductor segment 23 start from the end connected to the pulse current generator 10 and always extend away from the pulse current generator 10; space In terms of position, the pulse current generator 10 and the second sub-conductor segment 22 are respectively arranged near two opposite side ends of the obstacle 40 .
  • the first sub-conductor segment 21 and the third sub-conductor segment 23 are straight line segments arranged in parallel with each other; in this way, the strengths of the magnetic field signals on both sides thereof are the same.
  • the first sub-conductor segment 21 and the third sub-conductor segment 23 are arranged in contact with each other; the smaller the distance between the first sub-conductor segment 21 and the third sub-conductor segment 23, the greater the distance.
  • the third sub-conductor segment 23 is arranged between the first sub-conductor segment 21 and the obstacle 40; correspondingly, when the robot approaches the first sub-conductor segment in front of the obstacle, When there is a sub-conductor segment 21, the closer it is to the first sub-conductor segment 21, the stronger the detected magnetic field strength. Therefore, the strength of the magnetic field and the positional relationship between the first sub-conductor segment 21 and the obstacle can be determined according to the intensity of the magnetic field. , which can indirectly determine the position of the robot.
  • the robot 30 is configured to determine that there is an obstacle 40 in front of the robot 30 when a magnetic field signal is detected and the direction of the detected magnetic field signal is the same as the direction of the magnetic field signal generated by the first sub-conductor segment 21 .
  • the robot 30 is further configured to verify the detection result; specifically, the robot 30 is further configured to continue walking along the walking route after determining that an obstacle 40 is set in front of the robot 30, if the preset time If the magnetic field signal detected by the robot 30 continues to strengthen, and the direction of the detected magnetic field signal is always the same as the direction of the magnetic field signal generated by the first sub-conductor segment 21, it is confirmed that the result of the robot 30 detecting the obstacle is correct; and the robot is driven. 30 turns.
  • the strength and direction of the magnetic field signal detected by the robot can usually be converted into a current signal or a voltage signal by the internal microcontroller for output, which will not be further described here.
  • the present invention provides an obstacle avoidance method for a robot.
  • the method includes: S1, setting an obstacle avoidance unit on the robot walking route and at a preset distance from the obstacle; the obstacle avoidance unit generates a predetermined distance from the obstacle.
  • S1 setting an obstacle avoidance unit on the robot walking route and at a preset distance from the obstacle
  • S2 The magnetic field signal of the direction
  • S2 determine whether the robot encounters an obstacle according to the strength and direction of the magnetic field signal generated by the obstacle avoidance unit.
  • a walking route is planned for the robot, and after the robot is started, the robot is driven to walk according to the set walking route.
  • the obstacle avoidance unit provided includes: a pulse current generator 10, a single electric wire 20 connected to the pulse current generator 10 and forming a closed current loop; the electric wire 20 includes: After the electrical wire 20 is folded in half, a first sub-conductor segment 21 , a second sub-conductor segment 22 and a third sub-conductor segment 23 are formed in sequence, and the third sub-conductor segment 23 corresponds to the obstacle.
  • the shielding cover 231 covered on the periphery of the interval segment 40 is used to shield the magnetic field signal generated by the interval segment of the third sub-conductor segment 23 covered by the shielding cover 231; wherein, the bent portion of the electrical wire 20 forms a
  • the second sub-conductor segment 22; the first sub-conductor segment 21 and the third sub-conductor segment 23 are respectively connected to the pulse current generator 10, and the third sub-conductor segment 23 and the first sub-conductor segment 21 are connected to each other. They are arranged parallel to each other, and the current flows in opposite directions.
  • the third sub-conductor segment 23 is set to be arranged between the first sub-conductor segment 21 and the obstacle 40; when the robot detects the magnetic field signal, and detects When the direction of the magnetic field signal is the same as the direction of the magnetic field signal generated by the first sub-conductor segment, it is determined that there is an obstacle in front of the robot.
  • the method further includes: verifying the detection result, specifically, driving the robot to continue walking along the walking route. If the magnetic field signal detected by the robot continues to strengthen, and the direction of the detected magnetic field signal is always the same as the direction of the magnetic field signal generated by the first sub-conductor segment, it is confirmed that the robot detects the obstacle correctly; and the robot is driven to turn.
  • the obstacle avoidance unit involved in the specific working process of the above described method can refer to the corresponding structure and working principle of the aforementioned robot system, and will not be repeated here.
  • an obstacle avoidance unit that generates a magnetic field signal with a predetermined direction is arranged near the obstacle. Detect the magnetic field signal and direction generated by the obstacle avoidance unit, determine whether there are obstacles on the travel path, effectively assist the robot to identify the blind spot for obstacle avoidance, improve the robot's recognition accuracy of obstacles, and achieve better obstacle avoidance effects.
  • modules described as separate components may or may not be physically separated, and the components shown as modules may or may not be physical modules, that is, they may be located in one place, or may be distributed to multiple network modules, Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this implementation manner.
  • each functional module in each embodiment of the present application may be integrated into one processing module, or each module may exist physically alone, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, or can be implemented in the form of hardware plus software function modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种机器人系统及机器人(30)避障方法,机器人系统包括机器人(30),避障单元;机器人(30)避障方法为:在机器人(30)行走路线上、且位于障碍物(40)的预设距离处设置避障单元,避障单元产生具有预定方向的磁场信号(S1);机器人(30)在行进过程中,根据避障单元产生的磁场信号的强弱及方向确定机器人(30)是否遇到障碍物(30)(S2)。机器人系统及机器人(30)避障方法,有效辅助机器人(30)识别避障盲区,提高机器人(30)对障碍物的识别精度,达到更好避障的效果。

Description

机器人系统及机器人避障方法 技术领域
本发明涉及智能控制领域,尤其涉及一种机器人系统及机器人避障方法。
背景技术
低重复率、高覆盖率是遍历式机器人如吸尘、割草及泳池清洗等移动机器人追求的目标。以移动机器人为智能割草机器人为例,割草机器人以边界围住的草坪为工作区域以进行割草作业,草坪之外定义为非工作区域。
机器人在工作过程中,由于机器人存在一定的盲区,容易误入障碍物区域;现有技术中,避障方法包括:通过传感器碰撞检测识别障碍物,通过视觉识别区别障碍物,或通过超声波探测检测障碍物等方式,然而,现有技术的障碍物识别方式容易被外界环境遮蔽和干扰造成错误识别,导致无法准确识别真实障碍物。
发明内容
为解决上述技术问题,本发明的目的在于提供一种机器人系统及机器人避障方法。
为了实现上述发明目的之一,本发明一实施方式提供一种机器人系统,其包括:机器人,避障单元;所述避障单元配置成布置于机器人行走路线上、且位于障碍物的预设距离处;
所述机器人配置成在行进过程中,根据所述避障单元产生的磁场信号的强弱及方向确定机器人是否遇到障碍物。
通过上述系统,有效辅助机器人识别避障盲区,提高机器人对障碍物的识别精度。
作为本发明一实施方式的进一步改进,所述避障单元包括:脉冲电流发生器,连接所述脉冲电流发生器且形成闭合电流回路的单根电导线;
所述电导线包括:以所述电导线对折后,形成依次相互连接的第一子导线 段、第二子导线段和第三子导线段,以及于所述第三子导线段对应所述障碍物的区间段外围所包覆的屏蔽罩,所述屏蔽罩用于屏蔽其包覆的第三子导线段区间段所产生的磁场信号;
其中,所述电导线折弯部分形成所述第二子导线段;
所述第一子导线段和所述第三子导线段分别连接所述脉冲电流发生器,第三子导线段与第一子导线段之间相互平行排布,且电流流向相反;
通过上述特殊方式排布的避障单元,提供利于机器人识别的磁场。
作为本发明一实施方式的进一步改进,所述第一子导线段和所述第三子导线段自连接所述脉冲电流发生器的端部开始,始终朝远离所述脉冲电流发生器的方向延伸;
空间位置上,所述脉冲电流发生器和所述第二子导线段分别靠近所述障碍物相对设置的两个侧端排布;
通过该系统,使得各位置磁场分布较为均匀,提供利于机器人识别的磁场。
作为本发明一实施方式的进一步改进,所述第一子导线段和所述第三子导线段为相互平行排布的直线段;
通过该系统,使得各位置磁场分布均匀一致,提供利于机器人识别的磁场。
作为本发明一实施方式的进一步改进,所述第一子导线段和所述第三子导线段相互抵接排布;
通过该系统,使得第一子导线段和所述第三子导线段两侧之外的磁场强度尽可能的相互抵消,提供利于机器人识别的磁场。
作为本发明一实施方式的进一步改进,所述第三子导线段排布在所述第一子导线段和所述障碍物之间;
所述机器人配置成当检测到磁场信号且检测到的磁场信号的方向与第一子导线段产生的磁场信号方向相同时,确定机器人前方设置有障碍物。
作为本发明一实施方式的进一步改进,所述机器人还配置成在确定机器人前方设置有障碍物后沿行走路线继续行走,若在预设时间内,机器人检测到的 磁场信号持续加强,且检测到的磁场信号的方向始终与第一子导线段产生的磁场信号方向相同,则确认机器人检测到障碍物的结果正确;并驱动机器人转向。
为了实现上述发明目的之一,本发明一实施方式提供一种机器人避障方法,所述方法包括:在机器人行走路线上、且位于障碍物的预设距离处设置避障单元;所述避障单元产生具有预定方向的磁场信号;
机器人行进过程中,根据所述避障单元产生的磁场信号的强弱及方向确定机器人是否遇到障碍物;
设置的所述避障单元包括:脉冲电流发生器,连接所述脉冲电流发生器且形成闭合电流回路的单根电导线;
所述电导线包括:以所述电导线对折后,形成依次相互连接的第一子导线段、第二子导线段和第三子导线段,以及于所述第三子导线段对应所述障碍物的区间段外围所包覆的屏蔽罩,所述屏蔽罩用于屏蔽其包覆的第三子导线段区间段所产生的磁场信号;
其中,所述电导线折弯部分形成所述第二子导线段;
所述第一子导线段和所述第三子导线段分别连接所述脉冲电流发生器,第三子导线段与第一子导线段之间相互平行排布,且电流流向相反。
通过上述方法,上述特殊方式排布的避障单元,提供利于机器人识别的磁场,有效辅助机器人识别避障盲区,提高机器人对障碍物的识别精度。
作为本发明一实施方式的进一步改进,设置所述第三子导线段排布在所述第一子导线段和所述障碍物之间;
“机器人行进过程中,根据所述避障单元产生的磁场信号的强弱及方向确定机器人是否遇到障碍物”包括:
当机器人检测到磁场信号,且检测到的磁场信号的方向与第一子导线段产生的磁场信号方向相同时,确定机器人前方设置有障碍物;
具体的磁场强度和磁场方向的识别方式,有效辅助机器人识别避障盲区,提高机器人对障碍物的识别精度。
作为本发明一实施方式的进一步改进,在确定机器人前方设置有障碍物后,所述方法还包括:
驱动机器人沿行走路线继续行走,若在预设时间内,机器人检测到的磁场信号持续加强,且检测到的磁场信号的方向始终与第一子导线段产生的磁场信号方向相同,则确认机器人检测到障碍物的结果正确;并驱动机器人转向;
对判断结果进行校验,提高机器人对障碍物的识别精度。
与现有技术相比,本发明的机器人系统及机器人避障方法,在障碍物附近设置产生具有预定方向的磁场信号的避障单元,机器人行走过程中,通过检测避障单元产生的磁场信号及方向,确定行进路径上是否具有障碍物,有效辅助机器人识别避障盲区,提高机器人对障碍物的识别精度,达到更好避障的效果。
附图说明
图1是本发明提供的机器人系统的结构示意图;
图2是本发明提供的机器人避障方法的流程示意图。
具体实施方式
以下将结合附图所示的各实施方式对本发明进行详细描述。但这些实施方式并不限制本发明,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。
本发明的机器人可以是割草机器人,扫地机器人、扫雪机、吸叶机,高尔夫球场拾球机等,各种机器人可以自动行走于工作区域并进行相对应的工作,本发明具体示例中,以机器人为割草机器人为例做具体说明,相应的,所述工作区域可为草坪。
所述割草机器人包括:本体,设置于本体上的行走单元、控制单元。所述行走单元用于控制机器人行走、转向等;所述控制单元用于规划机器人的行走方向、行走路线,储存机器人获得的外部参数,以及对获取的参数进行处理、分析等,并根据处理、分析结果具体控制机器人;所述控制单元例如:MCU或DSP等。
另外,所述机器人还包括:各种传感器,所述传感器例如:用于感应磁场强度及磁场方向的磁场信号感应传感器,倾倒、离地、地磁、陀螺仪等;存储模块例如:EPROM、Flash或SD卡等,以及用于工作的工作机构及供电电源;在本实施例中,工作机构为割草刀盘,在此不再一一具体赘述。
如图1所示,本发明一实施方式提供一种机器人系统,包括避障单元和机器人30;所述避障单元配置成布置于机器人30行走路线上、且位于障碍物40的预设距离处;所述机器人30配置成在行进过程中,根据所述避障单元产生的磁场信号的强弱及方向确定机器人是否遇到障碍物。
本发明具体实施方式中,所述避障单元包括:脉冲电流发生器10,连接所述脉冲电流发生器10且形成闭合电流回路的单根电导线20;所述电导线20包括:以所述电导线20对折后,形成依次相互连接的第一子导线段21、第二子导线段22和第三子导线段23,以及于所述第三子导线段23对应所述障碍物40的区间段外围所包覆的屏蔽罩231,所述屏蔽罩231用于屏蔽其包覆的第三子导线段23区间段所产生的磁场信号;其中,所述电导线20折弯部分形成所述第二子导线段22;所述第一子导线段21和所述第三子导线段23分别连接所述脉冲电流发生器10,第三子导线段23与第一子导线段21之间相互平行排布,且电流流向相反。
可以理解的是,当脉冲电流发生器10导通,并发出脉冲电流信号通入所述电导线20后,电导线20内部形成回路,根据电生磁原理,电导线20周围产生特定的磁场;此时,由于对折所述电导线20形成的第一子导线段21和第三子导线段23相互平行排布,如此,第一子导线段21和第三子导线段23内的电流流向相反;因此,在第一子导线段21和第三子导线段23之间位置的磁场互相叠加增强,其两侧之外的磁场相互抵消减弱,且距其越远,磁场越弱。
然而,在本发明具体实施方式中,由于第三子导线段23对应所述障碍物的区间段外围所包覆的屏蔽罩231,因此,在第一子导线段21远离所述障碍物的一侧、且对于第一子导线段21对应所述屏蔽罩231的区间段,第三子导线段 23产生的磁场信号被屏蔽,仅有第一子导线段21对应所述屏蔽罩231的区间段产生的磁场,且不会被第三子导线段23产生的磁场相互抵消;并且,自第一子导线段21对应所述屏蔽罩231的区间段所在位置开始向远离障碍物方向,其产生的磁场强度逐级减弱;而对于第一子导线段21的其他区间段,在第一子导线段21和第三子导线段23之间位置的磁场互相叠加增强,其两侧之外的磁场相互抵消减弱,且距其越远,磁场越弱。
较佳的,所述第一子导线段21和所述第三子导线段23自连接所述脉冲电流发生器10的端部开始,始终朝远离所述脉冲电流发生器10的方向延伸;空间位置上,所述脉冲电流发生器10和所述第二子导线段22分别靠近所述障碍物40相对设置的两个侧端排布。
较佳的,所述第一子导线段21和所述第三子导线段23为相互平行排布的直线段;如此,使得其两侧各部分磁场信号的强度相同。
较佳的,所述第一子导线段21和所述第三子导线段23相互抵接排布;第一子导线段21和所述第三子导线段23之间距离越小,其之间的磁场强度越强;其两者侧边之外的磁场强度相互抵消,且在其之间距离最小,即相互抵接时,其两侧之外的磁场强度几乎为零;相应的,其之间距离越大,其两侧之外的磁场强度则会以其所在位置开始,向两侧逐渐减小。
较佳的,在本发明具体示例中,所述第三子导线段23排布在所述第一子导线段21和所述障碍物40之间;相应的,当机器人靠近障碍物前方的第一子导线段21时,其越靠近第一子导线段21,所能检测到的磁场强度越强,也因此,可以根据磁场强度的强弱以及第一子导线段21与障碍物的位置关系,可间接判断机器人的位置。
具体的,所述机器人30配置成当检测到磁场信号且检测到的磁场信号的方向与第一子导线段21产生的磁场信号方向相同时,确定机器人30前方设置有障碍物40。
进一步的,所述机器人30还被配置为对检测结果进行校验;具体的,所述 机器人30还配置成在确定机器人30前方设置有障碍物40后沿行走路线继续行走,若在预设时间内,机器人30检测到的磁场信号持续加强,且检测到的磁场信号的方向始终与第一子导线段21产生的磁场信号方向相同,则确认机器人30检测到障碍物的结果正确;并驱动机器人30转向。
当然,机器人检测到的磁场信号强度和方向通常可通过内部单片机将其转换为电流信号或电压信号进行输出,在此不做进一步的赘述。
结合图2所示,本发明提供的机器人避障方法,所述方法包括:S1、在机器人行走路线上、且位于障碍物的预设距离处设置避障单元;所述避障单元产生具有预定方向的磁场信号;S2、机器人行进过程中,根据所述避障单元产生的磁场信号的强弱及方向确定机器人是否遇到障碍物。
本发明具体实施方式中,当工作区域确定后,为机器人规划行走路线,并在机器人启动后,驱动机器人按照设定的行走路线行走,该技术在现有技术中已经较为成熟,在此不做详细赘述。
较佳的,对于步骤S1,设置的所述避障单元包括:脉冲电流发生器10,连接所述脉冲电流发生器10且形成闭合电流回路的单根电导线20;所述电导线20包括:以所述电导线20对折后,形成依次相互连接的第一子导线段21、第二子导线段22和第三子导线段23,以及于所述第三子导线段23对应所述障碍物40的区间段外围所包覆的屏蔽罩231,所述屏蔽罩231用于屏蔽其包覆的第三子导线段23区间段所产生的磁场信号;其中,所述电导线20折弯部分形成所述第二子导线段22;所述第一子导线段21和所述第三子导线段23分别连接所述脉冲电流发生器10,第三子导线段23与第一子导线段21之间相互平行排布,且电流流向相反。
需要说明的是,所述避障单元的具体结构可以参照上述对机器人系统的描述,在此不做进一步的赘述。
对于步骤S2,本发明具体实施方式中,设置所述第三子导线段23排布在所述第一子导线段21和所述障碍物40之间;当机器人检测到磁场信号,且检测 到的磁场信号的方向与第一子导线段产生的磁场信号方向相同时,确定机器人前方设置有障碍物。
较佳的,对于上述实施方式,在确定机器人前方设置有障碍物后,所述方法还包括:对检测结果进行校验,具体的,驱动机器人沿行走路线继续行走,若在预设时间内,机器人检测到的磁场信号持续加强,且检测到的磁场信号的方向始终与第一子导线段产生的磁场信号方向相同,则确认机器人检测到障碍物的结果正确;并驱动机器人转向。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述方法具体工作过程中所涉及的避障单元,可以参考前述机器人系统的对应结构及工作原理,在此不再赘述。
综上所述,本发明的机器人系统及机器人避障方法,本发明的机器人系统及机器人避障方法,在障碍物附近设置产生具有预定方向的磁场信号的避障单元,机器人行走过程中,通过检测避障单元产生的磁场信号及方向,确定行进路径上是否具有障碍物,有效辅助机器人识别避障盲区,提高机器人对障碍物的识别精度,达到更好避障的效果。
在本申请所提供的几个实施方式中,应该理解到,所揭露的模块,系统和方法,均可以通过其它的方式实现。以上所描述的系统实施方式仅仅是示意性的,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上,可以根据实际的需要选择其中的部分或者全部模块来实现本实施方式方案的目的。
另外,在本申请各个实施方式中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以2个或2个以上模块集成在一个模块 中。上述集成的模块既可以采用硬件的形式实现,也可以采用硬件加软件功能模块的形式实现。
最后应说明的是:以上实施方式仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施方式对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施方式所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施方式技术方案的精神和范围。

Claims (10)

  1. 一种机器人系统,其包括机器人,其特征在于,所述机器人系统还包括:
    避障单元,所述避障单元配置成布置于机器人行走路线上、且位于障碍物的预设距离处;
    所述机器人配置成在行进过程中,根据所述避障单元产生的磁场信号的强弱及方向确定机器人是否遇到障碍物。
  2. 根据权利要求1所述的机器人系统,其特征在于,
    所述避障单元包括:脉冲电流发生器,连接所述脉冲电流发生器且形成闭合电流回路的单根电导线;
    所述电导线包括:以所述电导线对折后,形成依次相互连接的第一子导线段、第二子导线段和第三子导线段,以及于所述第三子导线段对应所述障碍物的区间段外围所包覆的屏蔽罩,所述屏蔽罩用于屏蔽其包覆的第三子导线段区间段所产生的磁场信号;
    其中,所述电导线折弯部分形成所述第二子导线段;
    所述第一子导线段和所述第三子导线段分别连接所述脉冲电流发生器,第三子导线段与第一子导线段之间相互平行排布,且电流流向相反。
  3. 根据权利要求2所述的机器人系统,其特征在于,
    所述第一子导线段和所述第三子导线段自连接所述脉冲电流发生器的端部开始,始终朝远离所述脉冲电流发生器的方向延伸;
    空间位置上,所述脉冲电流发生器和所述第二子导线段分别靠近所述障碍物相对设置的两个侧端排布。
  4. 根据权利要求3所述的机器人系统,其特征在于,所述第一子导线段和所述第三子导线段为相互平行排布的直线段。
  5. 根据权利要求2所述的机器人系统,其特征在于,所述第一子导线段和所述第三子导线段相互抵接排布。
  6. 根据权利要求2至5任一项所述的机器人系统,其特征在于,所述第三 子导线段排布在所述第一子导线段和所述障碍物之间;
    所述机器人配置成当检测到磁场信号且检测到的磁场信号的方向与第一子导线段产生的磁场信号方向相同时,确定机器人前方设置有障碍物。
  7. 根据权利要求6所述的机器人系统,其特征在于,所述机器人还配置成在确定机器人前方设置有障碍物后沿行走路线继续行走,若在预设时间内,机器人检测到的磁场信号持续加强,且检测到的磁场信号的方向始终与第一子导线段产生的磁场信号方向相同,则确认机器人检测到障碍物的结果正确;并驱动机器人转向。
  8. 一种机器人避障方法,其特征在于,所述方法包括:
    在机器人行走路线上、且位于障碍物的预设距离处设置避障单元;所述避障单元产生具有预定方向的磁场信号;
    机器人行进过程中,根据所述避障单元产生的磁场信号的强弱及方向确定机器人是否遇到障碍物;
    设置的所述避障单元包括:脉冲电流发生器,连接所述脉冲电流发生器且形成闭合电流回路的单根电导线;
    所述电导线包括:以所述电导线对折后,形成依次相互连接的第一子导线段、第二子导线段和第三子导线段,以及于所述第三子导线段对应所述障碍物的区间段外围所包覆的屏蔽罩,所述屏蔽罩用于屏蔽其包覆的第三子导线段区间段所产生的磁场信号;
    其中,所述电导线折弯部分形成所述第二子导线段;
    所述第一子导线段和所述第三子导线段分别连接所述脉冲电流发生器,第三子导线段与第一子导线段之间相互平行排布,且电流流向相反。
  9. 根据权利要求8所述的机器人避障方法,其特征在于,设置所述第三子导线段排布在所述第一子导线段和所述障碍物之间;
    “机器人行进过程中,根据所述避障单元产生的磁场信号的强弱及方向确定机器人是否遇到障碍物”包括:
    当机器人检测到磁场信号,且检测到的磁场信号的方向与第一子导线段产生的磁场信号方向相同时,确定机器人前方设置有障碍物。
  10. 根据权利要求9所述的机器人避障方法,其特征在于,在确定机器人前方设置有障碍物后,所述方法还包括:
    驱动机器人沿行走路线继续行走,若在预设时间内,机器人检测到的磁场信号持续加强,且检测到的磁场信号的方向始终与第一子导线段产生的磁场信号方向相同,则确认机器人检测到障碍物的结果正确;并驱动机器人转向。
PCT/CN2020/124380 2020-09-11 2020-10-28 机器人系统及机器人避障方法 WO2022052236A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010953632.5 2020-09-11
CN202010953632.5A CN114166212B (zh) 2020-09-11 2020-09-11 机器人系统及机器人避障方法

Publications (1)

Publication Number Publication Date
WO2022052236A1 true WO2022052236A1 (zh) 2022-03-17

Family

ID=80475436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124380 WO2022052236A1 (zh) 2020-09-11 2020-10-28 机器人系统及机器人避障方法

Country Status (2)

Country Link
CN (1) CN114166212B (zh)
WO (1) WO2022052236A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117086919A (zh) * 2023-10-16 2023-11-21 武汉东湖学院 一种工业机器人避障检测装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118295390A (zh) * 2022-12-30 2024-07-05 苏州科瓴精密机械科技有限公司 智能割草机的控制方法、装置、智能割草机及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919224A (en) * 1988-05-16 1990-04-24 Industrial Technology Research Institute Automatic working vehicular system
CN202632111U (zh) * 2012-06-29 2012-12-26 山东电力集团公司电力科学研究院 用于无人机巡检带电导线的电场测量避障系统
CN102877888A (zh) * 2012-09-26 2013-01-16 三一重型装备有限公司 接近预警系统
CN104049229A (zh) * 2014-05-28 2014-09-17 苏州中盛纳米科技有限公司 一种标准高频交变磁场的产生方法
CN104820425A (zh) * 2015-05-15 2015-08-05 济南大学 一种基于电磁检测的农田智能喷药机器人
CN105911981A (zh) * 2012-04-28 2016-08-31 苏州宝时得电动工具有限公司 自动工作系统、自动行走设备及其转向方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169345B (zh) * 2011-01-28 2013-05-01 浙江亚特电器有限公司 一种机器人行动区域设定方法
AU2019201138B2 (en) * 2018-02-20 2023-12-14 The Raymond Corporation Wire guidance and remote operation for material handling vehicles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919224A (en) * 1988-05-16 1990-04-24 Industrial Technology Research Institute Automatic working vehicular system
CN105911981A (zh) * 2012-04-28 2016-08-31 苏州宝时得电动工具有限公司 自动工作系统、自动行走设备及其转向方法
CN202632111U (zh) * 2012-06-29 2012-12-26 山东电力集团公司电力科学研究院 用于无人机巡检带电导线的电场测量避障系统
CN102877888A (zh) * 2012-09-26 2013-01-16 三一重型装备有限公司 接近预警系统
CN104049229A (zh) * 2014-05-28 2014-09-17 苏州中盛纳米科技有限公司 一种标准高频交变磁场的产生方法
CN104820425A (zh) * 2015-05-15 2015-08-05 济南大学 一种基于电磁检测的农田智能喷药机器人

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117086919A (zh) * 2023-10-16 2023-11-21 武汉东湖学院 一种工业机器人避障检测装置
CN117086919B (zh) * 2023-10-16 2023-12-15 武汉东湖学院 一种工业机器人避障检测装置

Also Published As

Publication number Publication date
CN114166212A (zh) 2022-03-11
CN114166212B (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
WO2022052236A1 (zh) 机器人系统及机器人避障方法
EP2829937A1 (en) Robotic working apparatus for a limited working area
WO2022052230A1 (zh) 机器人系统及基于磁场信号的机器人避障方法
CN102759924B (zh) 自动工作系统、自动行走设备及其转向方法
CN108762259B (zh) 基于无线信号强度的割草机器人遍历路径规划方法
CN106272420B (zh) 机器人及机器人控制方法
WO2017166971A1 (zh) 自动工作系统、自动行走设备及其转向方法
JPS63501664A (ja) 作業車輌の自動制御方法及び装置
CN104000541B (zh) 支持门槛检测的扫地机器人及门槛检测方法
CN108209744A (zh) 清洁方法、装置、计算机设备和存储介质
CN108567379A (zh) 自走式清洁装置分区清洁方法及使用该方法的自走式清洁装置
CN108628316A (zh) 建立吸尘机器人栅格地图的方法
CN108567380A (zh) 自走式清洁装置及其建立室内地图的方法
CN112799399A (zh) 自动割草机的路径规划方法、系统、设备及自动割草机
CN108972563A (zh) 基于多传感器的巡检机器人自主越障装置
CN113805571A (zh) 机器人行走控制方法、系统,机器人及可读存储介质
CN114052561A (zh) 自移动机器人
CN110731734B (zh) 智能机器人规划清扫的控制方法和芯片及清洁机器人
US20240004395A1 (en) Intelligent mowing system and intelligent mowing device
CN215343198U (zh) 机器人的引导装置及充电站
CN111941418B (zh) 自移动机器人的控制方法及自移动机器人系统
JPS5911410A (ja) 無人走行作業車
JPH0372241B2 (zh)
CN113168178A (zh) 自移动设备和磁性边界系统
CN115674181A (zh) 机器人系统的控制方法、机器人及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953021

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20953021

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 04-10-2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20953021

Country of ref document: EP

Kind code of ref document: A1