WO2022052098A1 - 波束跟踪方法、设备及存储介质 - Google Patents

波束跟踪方法、设备及存储介质 Download PDF

Info

Publication number
WO2022052098A1
WO2022052098A1 PCT/CN2020/115034 CN2020115034W WO2022052098A1 WO 2022052098 A1 WO2022052098 A1 WO 2022052098A1 CN 2020115034 W CN2020115034 W CN 2020115034W WO 2022052098 A1 WO2022052098 A1 WO 2022052098A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam adjustment
adjustment information
information
channel
transmit
Prior art date
Application number
PCT/CN2020/115034
Other languages
English (en)
French (fr)
Inventor
杜冬阳
Original Assignee
深圳传音控股股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳传音控股股份有限公司 filed Critical 深圳传音控股股份有限公司
Priority to PCT/CN2020/115034 priority Critical patent/WO2022052098A1/zh
Priority to CN202080105185.6A priority patent/CN116195294A/zh
Publication of WO2022052098A1 publication Critical patent/WO2022052098A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the embodiments of the present application relate to the field of communications technologies, and in particular, to a beam tracking method, device, and storage medium.
  • NR 5G New Radio
  • the application of large-scale antenna arrays based on beams enables the system to form one or more beams with strong directivity. Reduce distractions.
  • a common beam tracking scheme is that after the initial beam connection between the terminal and the base station is established, the terminal monitors the quality of the downlink beams in real time, and reports the quality monitoring parameters of multiple beams to the base station, and the base station adjusts the beams accordingly.
  • the reported information is carried on the Physical Uplink Shared Channel (PUSCH), which is completed by a series of signaling interactions.
  • PUSCH Physical Uplink Shared Channel
  • the above scheme includes a large number of measurements and information exchanges between the base station and the terminal.
  • the above scheme will cause a decrease in the connection performance between the terminal and the base station due to the large signaling interaction.
  • Embodiments of the present application provide a beam tracking method, device, and storage medium, so as to solve the problem that the connection performance between the terminal and the base station is degraded due to large signaling interaction during frequent beam adjustment.
  • an embodiment of the present application provides a beam tracking method, which is applied to a terminal device, including:
  • the beam adjustment information is sent through the first channel.
  • the beam adjustment information is used to indicate at least one of the following data:
  • the size of the beam adjustment information is at least one bit.
  • the beam adjustment information is located at a preset position of the first channel.
  • the method further includes:
  • First information is received, where the first information is used to indicate a start position of the preset position in the time domain and/or the frequency domain occupied by the first channel.
  • the sending the beam adjustment information through the first channel includes:
  • the beam adjustment information is sent through the first channel according to a preset time interval.
  • the preset time interval is at least one time slot; or,
  • the preset time interval is at least one subframe; or,
  • the preset time interval is at least one uplink symbol.
  • the beam adjustment information includes a beam index of at least one beam.
  • the beam adjustment information includes beam adjustment direction information
  • the beam adjustment direction information is used to indicate the positional arrangement of the currently connected beam and the first transmit beam in a spatial position or a coverage direction relation.
  • the position arrangement relationship indicates that the first transmit beam is located at the position of the currently connected beam.
  • the signal quality of the first transmit beam is higher than the signal quality of other beams except the first transmit beam among the multiple measurement beams.
  • the method further includes:
  • the beam adjustment information may be sent through control information resources (such as PUCCH/PUSCH).
  • an embodiment of the present application provides a beam tracking method, which is applied to a network device, including:
  • a first transmit beam is determined according to the beam adjustment information.
  • the beam adjustment information is used to indicate at least one of the following data:
  • the size of the beam adjustment information is at least one bit.
  • the beam adjustment information is located at a preset position of the first channel.
  • the method further includes:
  • the terminal device sends first information to the terminal device, where the first information indicates that the preset position is a start position in the time domain and/or frequency domain occupied by the first channel.
  • receiving beam adjustment information through the first channel includes:
  • the beam adjustment information is received through the first channel according to a preset time interval.
  • the preset time interval is at least one time slot
  • the preset time interval is at least one subframe; or,
  • the preset time interval is at least one uplink symbol.
  • the beam adjustment information includes a beam index of at least one beam.
  • the beam adjustment information includes current beam adjustment direction information
  • the beam adjustment direction information indicates a positional arrangement relationship between the currently connected beam and the first transmit beam in a spatial position or a coverage direction .
  • the position arrangement relationship indicates that the first transmit beam is located at the position of the currently connected beam.
  • the signal quality of the first transmit beam is higher than the signal quality of other beams except the first transmit beam among the multiple measurement beams.
  • the method further includes:
  • the signal qualities of the plurality of measurement beams are acquired from the terminal device.
  • the method further includes:
  • the beam adjustment information may be received through a control information resource (such as PUCCH/PUSCH).
  • a control information resource such as PUCCH/PUSCH
  • an embodiment of the present application provides a beam tracking apparatus, including:
  • an acquisition module for acquiring beam adjustment information
  • a sending module configured to send the beam adjustment information through the first channel.
  • the beam adjustment information is used to indicate at least one of the following data:
  • the size of the beam adjustment information is at least one bit.
  • the beam adjustment information is located at a preset position of the first channel.
  • the obtaining module is further used for:
  • First information is received, where the first information is used to indicate a start position of the preset position in the time domain and/or the frequency domain occupied by the first channel.
  • the sending module is specifically used for:
  • the beam adjustment information is sent through the first channel according to a preset time interval.
  • the preset time interval is at least one time slot
  • the preset time interval is at least one subframe; or,
  • the preset time interval is at least one uplink symbol.
  • the beam adjustment information includes a beam index of at least one beam.
  • the beam adjustment information includes beam adjustment direction information
  • the beam adjustment direction information is used to indicate the positional arrangement of the currently connected beam and the first transmit beam in a spatial position or a coverage direction relation.
  • the position arrangement relationship indicates that the first transmit beam is located at the position of the currently connected beam.
  • the signal quality of the first transmit beam is higher than the signal quality of other beams except the first transmit beam among the multiple measurement beams.
  • the obtaining module is further used for:
  • an embodiment of the present application provides a beam tracking apparatus, including:
  • a receiving module configured to receive beam adjustment information through the first channel
  • a determination module configured to determine the first transmit beam according to the beam adjustment information.
  • the beam adjustment information is used to indicate at least one of the following data:
  • the size of the beam adjustment information is at least one bit.
  • the beam adjustment information is located at a preset position of the first channel.
  • it also includes a sending module, and the sending module is used for:
  • the terminal device sends first information to the terminal device, where the first information indicates that the preset position is a start position in the time domain and/or frequency domain occupied by the first channel.
  • the receiving module is specifically used for:
  • the beam adjustment information is received through the first channel according to a preset time interval.
  • the preset time interval is at least one time slot
  • the preset time interval is at least one subframe; or,
  • the preset time interval is at least one uplink symbol.
  • the beam adjustment information includes a beam index of at least one beam.
  • the beam adjustment information includes current beam adjustment direction information
  • the beam adjustment direction information indicates a positional arrangement relationship between the currently connected beam and the first transmit beam in a spatial position or a coverage direction .
  • the position arrangement relationship indicates that the first transmit beam is located at the position of the currently connected beam.
  • the signal quality of the first transmit beam is higher than the signal quality of other beams except the first transmit beam among the multiple measurement beams.
  • the receiving module is further configured to:
  • the signal qualities of the plurality of measurement beams are acquired from the terminal device.
  • the determining module is further configured to:
  • an embodiment of the present application provides a communication device, including: a processor and a memory;
  • the memory stores computer-executable instructions
  • the computer-executable instructions when executed by the processor, implement the method of any one of the first aspect or the second aspect.
  • embodiments of the present application provide a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the computer-executable instructions are executed by a processor, are used to implement the first aspect or The method of any one of the second aspects.
  • the terminal device after the terminal device obtains the beam adjustment information, it sends the beam adjustment information through the first channel, and the network device receives the beam adjustment information through the first channel, and according to the beam adjustment information
  • the first transmit beam is determined to realize beam tracking.
  • the terminal device when the terminal device reports the beam adjustment information to the network device, it uses a dedicated first channel for reporting without using the existing channel, so the beam adjustment information can be set on the first channel
  • the process of reporting there is no need for a large amount of measurement and information exchange between the network device and the terminal device.
  • the signaling interaction is reduced, and the connection performance between the terminal device and the network device is improved. .
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application
  • FIG. 2 is a signaling diagram of a beam tracking method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a beam tracking scheme
  • FIG. 4 is a schematic diagram of a preset position configuration provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a beam space information correspondence table provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of determining a first transmit beam according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a beam tracking apparatus provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a beam tracking apparatus provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a hardware structure of a communication device provided by an embodiment of the present application.
  • Terminal equipment usually with wireless transceiver function, terminal equipment can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons, etc.) and satellite, etc.).
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, industrial Wireless terminals in industrial control, in-vehicle terminal equipment, wireless terminals in self-driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid, Wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, wearable terminal equipment, etc.
  • VR virtual reality
  • AR augmented reality
  • the terminal equipment involved in the embodiments of this application may also be referred to as terminal, user equipment (UE), access terminal equipment, vehicle-mounted terminal, industrial control terminal, UE unit, UE station, mobile station, mobile station, and remote station , remote terminal equipment, mobile equipment, UE terminal equipment, wireless communication equipment, UE proxy or UE device, etc.
  • Terminal devices can also be stationary or mobile.
  • Network device usually has a wireless transceiver function, and the network device may have mobile characteristics, for example, the network device may be a mobile device.
  • the network device may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a High Elliptical Orbit (HEO) ) satellite etc.
  • LEO low earth orbit
  • MEO medium earth orbit
  • GEO geostationary earth orbit
  • HEO High Elliptical Orbit
  • the orbital altitude of LEO satellites is usually in the range of 500km to 1500km, and the orbital period (the period of rotation around the earth) is about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users is about 20ms.
  • the single-hop communication delay between users refers to the transmission delay between terminal equipment and network equipment, or the delay between network equipment and transmission equipment.
  • the maximum visible time of the satellite is about 20 minutes.
  • the maximum visible time refers to the longest time that the beam of the satellite covers a certain area of the ground.
  • the LEO satellite moves relative to the ground. As the satellite moves, the ground area it covers is also the same. changing.
  • the signal propagation distance of the LEO satellite is short, the link loss is small, and the transmission power requirements of the terminal equipment are not high.
  • the orbital altitude of GEO satellites is usually 35786km, and the orbital period is 24 hours.
  • the signal propagation delay of single-hop communication between users is about 250ms.
  • satellites can use multiple beams to cover the ground.
  • a satellite can form tens or hundreds of beams to cover the ground, and a beam can cover tens to hundreds of kilometers in diameter ground area.
  • the network device may also be a base station located on land, water, etc.
  • the network device may be a next generation NodeB (gNB) or a next generation-evolved NodeB (ng-eNB) .
  • the gNB provides the user plane function and control plane function of the new radio interface (NR) for the UE
  • the ng-eNB provides the user plane of the evolved universal terrestrial radio access (E-UTRA) for the UE.
  • NR new radio interface
  • E-UTRA evolved universal terrestrial radio access
  • the network device may also be a base station (base transceiver station, BTS) in a GSM system or a CDMA system, a base station (nodeB, NB) in a WCDMA system, or an evolutional node B (evolutional node B) in an LTE system, eNB or eNodeB).
  • BTS base transceiver station
  • NodeB base station
  • NB base station
  • evolutional node B evolutional node B
  • the network device may also be a relay station, an access point, a vehicle-mounted device, a wearable device, and a network-side device in a network after 5G or a network device in a future evolved PLMN network, a roadside site unit (RSU) )Wait.
  • RSU roadside site unit
  • Beam refers to the characteristic that the energy of the electromagnetic wave emitted by the antenna is concentrated in a certain area in space.
  • SR Schedule Request, scheduling request.
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • a network device 101 and a terminal device 102 are included.
  • the network device 101 can transmit a beam 103
  • the terminal device 102 is located within the coverage of the beam 103 .
  • the network including the network device 101 and the terminal device 102 may also be referred to as a non-terrestrial communication network (Non-Terrestrial Network, NTN), wherein the NTN refers to the communication between the terminal device and a satellite (also referred to as a network device) The internet.
  • NTN non-terrestrial communication network
  • satellite also referred to as a network device
  • the connected beams need to be quickly tracked and switched to ensure the connection between the terminal device 102 and the network device 101 .
  • a network device may include multiple transmission and reception points (transmit receive points, TRP for short), and in this embodiment of the present application, the network device 101 may also be a TRP.
  • NR refers to a new generation of wireless access network technology
  • future evolutionary networks such as the 5th Generation Mobile communication in the future. Communication, 5G) system.
  • the solutions in the embodiments of the present application can also be applied to other wireless communication networks such as Wireless Fidelity (WIFI) and Long Term Evolution (Long Term Evolution, LTE), and the corresponding names may also use the corresponding names in other wireless communication networks. Replace the name of the function.
  • WIFI Wireless Fidelity
  • LTE Long Term Evolution
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • FIG. 2 is a signaling diagram of a beam tracking method provided by an embodiment of the present application. As shown in FIG. 2 , the method may include:
  • the terminal device acquires beam adjustment information.
  • the terminal device After the initial beam connection between the terminal device and the network device is established, the terminal device will monitor the quality of the downlink beam in real time, and obtain beam adjustment information according to the quality of the monitored downlink beam.
  • the terminal device sends the beam adjustment information through the first channel.
  • the terminal device After acquiring the beam adjustment information, the terminal device will periodically or aperiodically report the beam adjustment information to the network device.
  • a first channel dedicated to transmitting the beam adjustment information is set, and the terminal device sends the beam adjustment information to the network device through the dedicated first channel.
  • the network device receives the beam adjustment information through the first channel.
  • the network device After the terminal device sends the beam adjustment information to the network device, the network device receives the beam adjustment information through the first channel.
  • the network device determines the first transmit beam according to the beam adjustment information.
  • the quality of each downlink beam can be obtained according to the beam adjustment information, so that according to the quality of each downlink beam, a first transmit beam can be selected from among them as a signal for subsequent connection with the terminal device. beam.
  • the beam adjustment information is sent through the first channel, and the network device receives the beam adjustment information through the first channel, and determines the first transmit beam according to the beam adjustment information. , to achieve beam tracking.
  • the terminal device reports the beam adjustment information to the network device, it uses a dedicated first channel for reporting without using the existing channel, so the beam adjustment information can be set on the first channel
  • the process of reporting there is no need for a large amount of measurement and information exchange between the network device and the terminal device.
  • the signaling interaction is reduced, and the connection performance between the terminal device and the network device is improved. .
  • Figure 3 is a schematic diagram of a beam tracking scheme.
  • the UE will monitor the quality of the downlink beam in real time, and periodically or aperiodically
  • the quality monitoring parameters of multiple beams are reported to the gNB, and the gNB receives the quality monitoring parameters of the multiple beams, and adjusts the beams according to the quality monitoring parameters. Specific steps are as follows:
  • the UE determines whether there is data to be transmitted, and if so, executes S32.
  • the data that the UE needs to transmit is the quality monitoring parameters of multiple beams.
  • S32 is performed, otherwise, the UE does not perform any operation.
  • the UE sends an SR to the gNB through a Physical Uplink Control Channel (Physical Uplink Control Channel, PUCCH for short).
  • PUCCH Physical Uplink Control Channel
  • the UE requests uplink resources from the gNB by sending the SR to the gNB.
  • the UE can transmit the SR through the control message UCI in the PUCCH according to the configuration of the upper layer and according to a certain period and subframe position.
  • the SR is only used to inform the gNB whether there is a resource requirement, and how many resources are required will be told to the ENB by the subsequent signaling interaction.
  • the gNB sends a UL Grant to the UE through a Physical Downlink Control Channel (PDCCH for short).
  • PDCCH Physical Downlink Control Channel
  • UL Grant is a kind of physical control information from the gNB, which is used to tell the UE that data can be sent. After receiving the SR, the gNB issues the UL Grant. In the UL Grant, related information sent to the data is also carried. For example, the UE can be informed that after 4 ms, that is, after 4 subframes, the UE can send data.
  • the UE sends the quality monitoring parameter through a Physical Uplink Shared Channel (Physical Uplink Shared Channel, PUSCH for short).
  • Physical Uplink Shared Channel Physical Uplink Shared Channel
  • the UE After receiving the UL Grant sent by the gNB, according to the instruction of the UL Grant, the UE can report the quality monitoring parameters of multiple beams.
  • the quality monitoring parameters of multiple beams are reported, other channels, such as PUSCH, need to be occupied, and PUSCH may also carry other information. Therefore, every time quality monitoring is transmitted through PUSCH
  • the parameters are used, a large amount of measurement and information exchange are required between the terminal device and the network device.
  • the information that needs to be synchronized between the terminal device and the network device includes the size of the quality monitoring parameters, the location on the PUSCH, including the time domain. location and frequency domain location, etc.
  • the amount of signaling interaction in the beam tracking scheme is relatively large, which is not suitable for a system requiring frequent adjustment.
  • the coverage of each beam is very limited, and frequent beam adjustments will occur when the location of the terminal device changes. If a large number of signaling interactions are performed each time beam adjustment is performed, the system burden is relatively heavy, which will lead to serious degradation of the connection performance between the terminal device and the network device.
  • an embodiment of the present application provides a beam tracking solution, which uses a dedicated first channel to send beam adjustment information, thereby greatly reducing signaling interaction during beam adjustment.
  • a first channel is set up exclusively for uplink feedback resources, that is, beam adjustment information.
  • the beam adjustment information is transmitted in the first channel, which is different from existing channels such as PDCCH, PUCCH, and PUSCH, and is a channel specially set for transmitting beam adjustment information.
  • the first channel is dedicated to transmitting beam adjustment information, there is no need to share the channel with other information that needs to be carried.
  • the beam adjustment information may be set at a preset position of the first channel, and the size of the beam adjustment information is at least one bit.
  • the size of the beam adjustment information can be set to a fixed value, or the beam adjustment information can be set within a range of a fixed size, so that when the terminal device sends the beam adjustment information through the first channel, the network device can A fixed area of a channel acquires the beam adjustment information.
  • the network device may send first information to the terminal device, where the first information indicates that the preset position is in the time domain and/or the starting position of the frequency domain occupied by the first channel, and after receiving the first information, the terminal device can The beam adjustment information is sent at the time domain and/or frequency domain starting position indicated by the first information. Since the preset position is configured by the network device for the terminal device through the first information, the network device can know the position of the preset position on the first channel, and then obtain the beam adjustment information at the corresponding position.
  • FIG. 4 is a schematic diagram of a preset position configuration provided by an embodiment of the present application.
  • a network device configures a channel starting position, including Lindex and Cindex, where Lindex indicates the frequency domain starting position, and Cindex indicates the time domain starting position.
  • the horizontal direction represents a time slot, wherein each small square in the horizontal direction represents a time domain unit, and the vertical direction represents a bandwidth part, wherein each small square in the vertical direction represents a frequency domain unit.
  • the time-frequency resources of different UEs can be distinguished by controlling different time-domain starting positions. Lindex and Cindex have a corresponding relationship with the UEs in the activated bandwidth part (Bandwidth Part, BWP for short).
  • the beam adjustment information is carried by the first channel, and only the time domain start position and the frequency domain start position of the beam adjustment information need to be configured.
  • the time domain unit occupied by the beam adjustment information is one, and the frequency domain unit is 13.
  • the starting position of the frequency domain of the beam adjustment information is obtained through Lindex in the 4th unit of the activated BWP, the beam is obtained through Cindex. If the time domain starting unit of the adjustment information is the sixth unit of the time slot, the position of the beam adjustment information in the first channel can be determined, as shown by the black part in FIG. 4 .
  • the starting position in the frequency domain and the starting position in the time domain of the beam adjustment information can be configured through the RRC or MAC of the network device.
  • the network device needs to send the first information to the terminal device to inform the preset position.
  • the starting position in the frequency domain and the starting position in the time domain are combined with the information length of the beam adjustment information to determine that the beam adjustment information is located at the preset position of the first channel, as shown in the black area in FIG. 4 .
  • the frequency domain starting position and the time domain starting position of each configuration may be the same or different.
  • the starting position of the frequency domain and the starting position of the time domain can also be fixed configurations of the system, that is, the starting position of the frequency domain and the starting position of the time domain are fixed values, and both the terminal device and the network device can know the frequency in advance. Domain start position and time domain start position. Since the starting position of the frequency domain and the starting position of the time domain are fixedly configured by the system, the network device does not need to send the first information to the terminal device separately to inform the starting position of the frequency domain and the starting position of the time domain, which further reduces the beam size. Signaling interactions between network devices and end devices in tracking and tuning.
  • the beam tracking scheme can also be designed as a reusable mechanism.
  • the beam adjustment information and control information (such as UCI) need to be sent at the same time, the beam adjustment information can be multiplexed into the UCI and sent through UCI resources, such as PUCCH/PUSCH.
  • the UCI resources such as PUCCH/PUSCH.
  • the UCI in addition to carrying at least one of CSI, ACK/NACK, HARQ or SR, the UCI also needs to add a beam adjustment information to save resources.
  • the upper layer can configure the reporting period, for example, each time slot feedback or each subframe feedback can be configured, or how many uplink symbol feedback can be configured according to a parameter, and so on.
  • feedback can also be performed by designing a specific PUCCH format, for example, designing PUCCH format 5 to carry beam adjustment information. Since the length of the beam adjustment information is constant, and the length of the channel coding is also unchanged, the length of the PUCCH format is constant, and only the starting position of the time domain and the starting position of the frequency domain need to be configured.
  • the upper layer When in the wave speed tracking state, the upper layer (RRC, MAC) can configure the beam measurement period, and the corresponding beam tracking information is sent through the PUCCH.
  • the feedback of each time slot or each subframe can be configured, or the number of uplink intervals can be configured according to a parameter. Symbolic feedback.
  • the channel quality may be indicated, the beam index value may also be indicated, and the beam adjustment direction may also be indicated.
  • the beam adjustment information indicates a beam index value
  • the beam adjustment information includes the beam index of at least one beam
  • the network device can determine the corresponding first transmit beam according to the beam index of the at least one beam.
  • the beam adjustment information indicates the beam adjustment direction
  • the beam adjustment information includes beam adjustment direction information
  • the network device can determine the corresponding first transmit beam according to the beam adjustment direction information.
  • the beam adjustment information includes beam adjustment direction information, where the beam adjustment direction information is used to indicate the positional arrangement relationship between the currently connected beam and the first transmit beam in a spatial position or a coverage direction.
  • the beam space information correspondence table can be used to assist in the implementation.
  • FIG. 5 is a schematic diagram of a beam spatial information correspondence table provided by an embodiment of the present application. As shown in FIG. 5 , it illustrates beams that can be transmitted by a TRP or a network device, and the spatial relative position relationship of each beam.
  • the horizontal direction in FIG. 5 is the horizontal direction
  • the vertical direction is the vertical direction.
  • each CB represents a beam
  • different beams are numbered with different numbers
  • the position of each beam in the figure reflects the spatial information of the beam.
  • CB10 and CB11 are adjacent, indicating that the coverage of the CB10 beam is relatively close to the coverage of the CB11 beam.
  • CB11 is between CB10 and CB12, indicating that the coverage of the CB11 beam is between the coverage of the CB10 beam and the coverage of the CB12 beam, and so on.
  • the position of each CB in FIG. 5 basically corresponds to the position of the coverage area of the corresponding beam.
  • the positional arrangement relationship between the currently connected beam and the first transmit beam in the spatial position or the coverage direction can be obtained, wherein the positional arrangement relationship can indicate that the first transmit beam is located at the position of the currently connected beam.
  • the location may be above, below, left, right, top left, bottom left, top right, bottom right, and the like.
  • indicating the direction for example, only 2 bits are required for four directions, and only 3 bits are required for eight directions.
  • indicating the beam index requires more bits, such as 6 bits for 64 beams and 7 bits for 128 beams. etc.
  • the terminal device acquires the signal qualities of multiple measurement beams, and the beam adjustment information includes the signal qualities of the multiple measurement beams.
  • the first transmit beam may be determined according to the signal qualities of the multiple measurement beams. For example, a beam with higher signal quality may be selected as the first transmit beam among the multiple transmit beams, so that the signal quality of the first transmit beam is higher than that of other beams except the first transmit beam among the multiple measurement beams.
  • CB11 is to the right of CB10
  • CB20 is to the left of CB21
  • CB37 is below CB29
  • above CB45 CB37 is also below and to the right of CB28, and so on.
  • the adjustment unit in addition to the beam adjustment direction information, the adjustment unit may also be included.
  • both CB19 and CB20 are located to the right of CB18. If an adjusted unit, such as 1 unit, can also be included at this time, it can be determined that the indicated beam is CB19 instead of CB20. If the adjusted unit is not included, a preset unit, such as 1 unit, can be selected.
  • FIG. 6 is a schematic diagram of determining a first transmit beam provided by an embodiment of the present application.
  • a correspondence table of beam space information of a network device is shown, wherein CB19 is the current connection beam between the terminal device and the network device. If the packet adjustment direction information in the beam adjustment information indicates the right side at this time, and one unit is defaulted, then it can be determined that the CB20 located to the right of the CB19 is the first transmit beam. In the above manner, the network device can determine the first transmit beam according to the beam adjustment information. Further, downlink data may also be sent to the terminal device according to the first transmit beam.
  • the beam adjustment information is sent through the first channel, and the network device receives the beam adjustment information through the first channel, and determines the first transmit beam according to the beam adjustment information. , to achieve beam tracking.
  • the terminal device reports the beam adjustment information to the network device, it uses a dedicated first channel for reporting without using the existing channel, so the beam adjustment information can be set on the first channel
  • the process of reporting there is no need for a large amount of measurement and information exchange between the network device and the terminal device.
  • the signaling interaction is reduced, and the connection performance between the terminal device and the network device is improved. .
  • FIG. 7 is a schematic structural diagram of a beam tracking apparatus provided by an embodiment of the present application. As shown in FIG. 7 , the beam tracking apparatus 70 includes:
  • an acquisition module 71 configured to acquire beam adjustment information
  • a sending module 72 configured to send the beam adjustment information through the first channel.
  • the beam adjustment information is used to indicate at least one of the following data:
  • the size of the beam adjustment information is at least one bit.
  • the beam adjustment information is located at a preset position of the first channel.
  • the obtaining module 71 is further configured to:
  • First information is received, where the first information is used to indicate a start position of the preset position in the time domain and/or the frequency domain occupied by the first channel.
  • the sending module 72 is specifically configured to:
  • the beam adjustment information is sent through the first channel according to a preset time interval.
  • the preset time interval is at least one time slot
  • the preset time interval is at least one subframe; or,
  • the preset time interval is at least one uplink symbol.
  • the beam adjustment information includes a beam index of at least one beam.
  • the beam adjustment information includes beam adjustment direction information
  • the beam adjustment direction information is used to indicate the positional arrangement of the currently connected beam and the first transmit beam in a spatial position or a coverage direction relation.
  • the position arrangement relationship indicates that the first transmit beam is located at the position of the currently connected beam.
  • the signal quality of the first transmit beam is higher than the signal quality of other beams except the first transmit beam among the multiple measurement beams.
  • the obtaining module 71 is further configured to:
  • the signal qualities of the plurality of measurement beams are acquired, and the signal qualities of the plurality of measurement beams are sent to the network device.
  • the beam tracking apparatus provided in this embodiment of the present application is used to execute the foregoing method embodiments, and the implementation principle and technical effect thereof are similar, and details are not described herein again in this embodiment.
  • FIG. 8 is a schematic structural diagram of a beam tracking apparatus provided by an embodiment of the present application. As shown in FIG. 8 , the beam tracking apparatus 80 includes:
  • a receiving module 81 configured to receive beam adjustment information through the first channel
  • the determining module 82 is configured to determine the first transmit beam according to the beam adjustment information.
  • the beam adjustment information is used to indicate at least one of the following data:
  • the size of the beam adjustment information is at least one bit.
  • the beam adjustment information is located at a preset position of the first channel.
  • it also includes a sending module, and the sending module is used for:
  • the terminal device sends first information to the terminal device, where the first information indicates that the preset position is a start position in the time domain and/or frequency domain occupied by the first channel.
  • the receiving module 81 is specifically configured to:
  • the beam adjustment information is received through the first channel according to a preset time interval.
  • the preset time interval is at least one time slot
  • the preset time interval is at least one subframe; or,
  • the preset time interval is at least one uplink symbol.
  • the beam adjustment information includes a beam index of at least one beam.
  • the beam adjustment information includes current beam adjustment direction information
  • the beam adjustment direction information indicates a positional arrangement relationship between the currently connected beam and the first transmit beam in a spatial position or a coverage direction .
  • the position arrangement relationship indicates that the first transmit beam is located at the position of the currently connected beam.
  • the signal quality of the first transmit beam is higher than the signal quality of other beams except the first transmit beam among the multiple measurement beams.
  • the receiving module 81 is further configured to:
  • the signal qualities of the plurality of measurement beams are acquired from the terminal device.
  • the determining module 82 is further configured to:
  • the beam processing apparatus provided in this embodiment of the present application is used to execute the foregoing method embodiments, and the implementation principle and technical effect thereof are similar, and details are not described herein again in this embodiment.
  • FIG. 9 is a schematic diagram of a hardware structure of a communication device provided by an embodiment of the present application.
  • the communication device in this embodiment includes: a processor 91 and a memory 92;
  • memory 92 for storing computer programs
  • the processor 91 is configured to execute the computer program stored in the memory, so as to implement each step performed by the network device in the foregoing embodiment, or to implement each step performed by the terminal device in the foregoing embodiment.
  • the processor 91 is configured to execute the computer program stored in the memory, so as to implement each step performed by the network device in the foregoing embodiment, or to implement each step performed by the terminal device in the foregoing embodiment.
  • the memory 92 may be independent of the processor 91 or independent of the network device, and may also be within the processor 91 or the communication device.
  • the storage 92 may be a physically independent unit, or may be a storage space on a cloud server or a network hard disk or the like.
  • the communication device may further include: a bus 93 for connecting the memory 92 and the processor 91 .
  • the bus 93 may be an industry standard architecture (Industry Standard Architecture, ISA) bus, a Peripheral Component (Peripheral Component, PCI) bus, or an Extended Industry Standard Architecture (Extended Industry Standard Architecture, EISA) bus, or the like.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus and so on.
  • the buses in the drawings of the present application are not limited to only one bus or one type of bus.
  • the processor 91 may be a central processing unit, a general-purpose processor, a digital signal processor (English: Digital Signal Processor, abbreviation: DSP), an application-specific integrated circuit (English: Application Specific Integrated Circuit, abbreviation: ASIC), a field Programmable gate arrays or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the application can be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor. It may implement or execute the various exemplary logical blocks, modules and circuits described in connection with this disclosure.
  • the processor may also be a combination that performs computing functions, such as a combination comprising one or more microprocessors, a combination of a digital signal processor and a microprocessor, and the like.
  • the memory 142 may include: volatile memory (volatile memory), such as random-access memory (random-access memory, RAM); the memory may also include non-volatile memory (non-volatile memory), such as flash memory Storage (flash memory), hard disk drive (HDD) or solid-state drive (SSD), cloud storage (cloud storage), network attached storage (NAS: network attached Storage), network drive (network drive) ), etc.; the memory may also include a combination of the above-mentioned types of memory or any other medium or product with a storage function.
  • the communication device provided in this embodiment can be used to execute the method executed by the network device or terminal in the foregoing embodiment, and its implementation principle and technical effect are similar, and details are not described herein again in this embodiment.
  • An embodiment of the present application further provides a storage medium, where the storage medium includes a computer program, and the computer program is used to implement the method described in the various possible implementation manners above.
  • the embodiments of the present application also provide a computer program product, the computer program product includes computer program code, when the computer program code is run on a computer, the computer is made to execute the method described in the various possible implementation manners above.
  • An embodiment of the present application further provides a chip, including a memory and a processor, where the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that a chip installed with the chip is
  • the communication device performs the method as described in the various possible embodiments above.
  • An embodiment of the present application further provides a communication system, where the communication system includes the network device and the terminal device in the foregoing embodiments.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or modules, and may be in electrical, mechanical or other forms.
  • modules described as separate components may or may not be physically separated, and the components shown as modules may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional module in each embodiment of the present application may be integrated in one processing unit, or each module may exist physically alone, or two or more modules may be integrated in one unit.
  • the units formed by the above modules can be implemented in the form of hardware, or can be implemented in the form of hardware plus software functional units.
  • the above-mentioned integrated modules implemented in the form of software functional modules may be stored in a computer-readable storage medium.
  • the above-mentioned software function modules are stored in a storage medium, and include several instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (English: processor) to execute the various embodiments of the present application. part of the method.
  • the above-mentioned storage medium may be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Except programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable except programmable read only memory
  • PROM programmable read only memory
  • ROM read only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • a storage medium can be any available medium that can be accessed by a general purpose or special purpose computer.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium may be located in application specific integrated circuits (Application Specific Integrated Circuits, ASIC for short).
  • ASIC Application Specific Integrated Circuits
  • the processor and storage medium may also exist in the device as discrete components.
  • first, second, third, etc. may be used herein to describe various information, such information should not be limited by these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be referred to as second information, and similarly, second information may also be referred to as first information, without departing from the scope of this document.
  • the word “if” as used herein can be interpreted as “at the time of” or “when” or “in response to determining”, depending on the context.
  • the singular forms "a,” “an,” and “the” are intended to include the plural forms as well, unless the context dictates otherwise.
  • step codes such as S21 and S22 are used, the purpose of which is to express the corresponding content more clearly and briefly, and does not constitute a substantial restriction on the sequence.
  • S22 will be executed first and then S21, etc., but these should all fall within the protection scope of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种波束跟踪方法、设备及存储介质,该方法包括:终端设备获取波束调整信息,并通过第一信道发送所述波束调整信息。网络设备通过第一信道接收波束调整信息,并根据所述波束调整信息,确定第一发射波束。在进行频繁的波束调整和跟踪时,减小信令交互,提高终端设备和网络设备之间的连接性能。

Description

波束跟踪方法、设备及存储介质 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种波束跟踪方法、设备及存储介质。
背景技术
在5G新空口(New Radio,简称NR)中,基于波束(beam)的大规模天线阵列的应用,使得系统可以形成一个或多个指向性很强的波束,在提升系统覆盖面积的同时也可以降低干扰。
在高频系统中,由于波束的覆盖范围较窄,当终端移动时,需要触发波束切换流程,而触发波束切换流程就需要对波束进行跟踪,及时反馈连接信号质量较好的波束。常用波束跟踪方案是,在终端和基站初始波束连接建立后,终端实时监测下行波束的质量,并将多个波束的质量监测参数上报给基站,由基站对波束进行相应的调整。在此过程中,上报信息承载在物理上行共享信道(Physical Uplink Shared Channel,PUSCH)上,由一系列信令交互完成。
上述方案中包括大量的基站和终端的测量和信息交互,当进行频繁的波束调整时,上述方案由于信令交互较大,会导致终端和基站连接性能的下降。
前面的叙述在于提供一般的背景信息,并不一定构成现有技术。
发明内容
本申请实施例提供一种波束跟踪方法、设备及存储介质,以解决频繁的波束调整时由于信令交互较大导致终端和基站连接性能下降的问题。
第一方面,本申请实施例提供一种波束跟踪方法,应用于终端设备,包括:
获取波束调整信息;
通过第一信道发送所述波束调整信息。
在一种可能的实施方式中,所述波束调整信息用于指示以下数据中的至少一种:
信道质量;
波束索引值;
波束调整方向。
在一种可能的实施方式中,所述波束调整信息的大小为至少一个比特。
在一种可能的实施方式中,所述波束调整信息位于所述第一信道的预设位置。
在一种可能的实施方式中,所述方法还包括:
接收第一信息,所述第一信息用于指示所述预设位置在所述第一信道占用的时域和/或频域起始位置。
在一种可能的实施方式中,所述通过第一信道发送所述波束调整信息,包括:
根据预设时间间隔,通过所述第一信道发送所述波束调整信息。
在一种可能的实施方式中,
所述预设时间间隔为至少一个时隙;或者,
所述预设时间间隔为至少一个子帧;或者,
所述预设时间间隔为至少一个上行符号。
在一种可能的实施方式中,所述波束调整信息中包括至少一个波束的波束索引。
在一种可能的实施方式中,所述波束调整信息中包括波束调整方向信息,所述波束调整方向信息用于指示所述当前连接波束和第一发射波束在空间位置或覆盖方向上的位置排列关系。
在一种可能的实施方式中,所述位置排列关系指示所述第一发射波束位于所述当前连接波束的位置。
在一种可能的实施方式中,所述第一发射波束的信号质量高于多个测量波束中除所述第一发射波束外的其他波束的信号质量。
在一种可能的实施方式中,所述方法还包括:
获取所述多个测量波束的信号质量,并向所述网络设备发送所述多个测量波束的信号质量。
在一种可能的实施方式中,若所述波束调整信息与控制信息(如UCI)同时需要被发送,则所述波束调整信息可通过控制信息资源(如PUCCH/PUSCH)进行发送。
第二方面,本申请实施例提供一种波束跟踪方法,应用于网络设备,包括:
通过第一信道接收波束调整信息;
根据所述波束调整信息,确定第一发射波束。
在一种可能的实施方式中,所述波束调整信息用于指示以下数据中的至少一种:
信道质量;
波束索引值;
波束调整方向。
在一种可能的实施方式中,所述波束调整信息的大小为至少一个比特。
在一种可能的实施方式中,所述波束调整信息位于所述第一信道的预设位置。
在一种可能的实施方式中,所述方法还包括:
向所述终端设备发送第一信息,所述第一信息指示所述预设位置在所述第一信道占用的时域和/或频域起始位置。
在一种可能的实施方式中,通过第一信道接收波束调整信息,包括:
根据预设时间间隔,通过所述第一信道接收所述波束调整信息。
在一种可能的实施方式中,所述预设时间间隔为至少一个时隙;或者,
所述预设时间间隔为至少一个子帧;或者,
所述预设时间间隔为至少一个上行符号。
在一种可能的实施方式中,所述波束调整信息中包括至少一个波束的波束索引。
在一种可能的实施方式中,所述波束调整信息中包括当波束调整方向信息,所述波束调整方向信息指示所述当前连接波束和第一发射波束在空间位置或覆盖方向上的位置排列关系。
在一种可能的实施方式中,所述位置排列关系指示所述第一发射波束位于所述当前连接波束的位置。
在一种可能的实施方式中,所述第一发射波束的信号质量高于多个测量波束中除所述第一发射波束外的其他波束的信号质量。
在一种可能的实施方式中,所述方法还包括:
从所述终端设备获取所述多个测量波束的信号质量。
在一种可能的实施方式中,所述方法还包括:
通过所述第一发射波束向所述终端设备发送下行数据。
在一种可能的实施方式中,若所述波束调整信息与控制信息(如UCI)同时被发送,则可通过控制信息资源(如PUCCH/PUSCH)接收所述波束调整信息。
第三方面,本申请实施例提供一种波束跟踪装置,包括:
获取模块,用于获取波束调整信息;
发送模块,用于通过第一信道发送所述波束调整信息。
在一种可能的实施方式中,所述波束调整信息用于指示以下数据中的至少一种:
信道质量;
波束索引值;
波束调整方向。
在一种可能的实施方式中,所述波束调整信息的大小为至少一个比特。
在一种可能的实施方式中,所述波束调整信息位于所述第一信道的预设位置。
在一种可能的实施方式中,所述获取模块还用于:
接收第一信息,所述第一信息用于指示所述预设位置在所述第一信道占用的时域和/或频域起始位置。
在一种可能的实施方式中,所述发送模块具体用于:
根据预设时间间隔,通过所述第一信道发送所述波束调整信息。
在一种可能的实施方式中,所述预设时间间隔为至少一个时隙;或者,
所述预设时间间隔为至少一个子帧;或者,
所述预设时间间隔为至少一个上行符号。
在一种可能的实施方式中,所述波束调整信息中包括至少一个波束的波束索引。
在一种可能的实施方式中,所述波束调整信息中包括波束调整方向信息,所述波束调整方向信息用于指示所述当前连接波束和第一发射波束在空间位置或覆盖方向上的位置排列关系。
在一种可能的实施方式中,所述位置排列关系指示所述第一发射波束位于所述当前连接波束的位置。
在一种可能的实施方式中,所述第一发射波束的信号质量高于多个测量波束中除所述第一发射波束外的其他波束的信号质量。
在一种可能的实施方式中,所述获取模块还用于:
获取所述多个测量波束的信号质量,并向所述网络设备发送所述多个测量波束的信号质量。
第四方面,本申请实施例提供一种波束跟踪装置,包括:
接收模块,用于通过第一信道接收波束调整信息;
确定模块,用于根据所述波束调整信息,确定第一发射波束。
在一种可能的实施方式中,所述波束调整信息用于指示以下数据中的至少一种:
信道质量;
波束索引值;
波束调整方向。
在一种可能的实施方式中,所述波束调整信息的大小为至少一个比特。
在一种可能的实施方式中,所述波束调整信息位于所述第一信道的预设位置。
在一种可能的实施方式中,还包括发送模块,所述发送模块用于:
向所述终端设备发送第一信息,所述第一信息指示所述预设位置在所述第一信道占用的时域和/或频域起始位置。
在一种可能的实施方式中,所述接收模块具体用于:
根据预设时间间隔,通过所述第一信道接收所述波束调整信息。
在一种可能的实施方式中,所述预设时间间隔为至少一个时隙;或者,
所述预设时间间隔为至少一个子帧;或者,
所述预设时间间隔为至少一个上行符号。
在一种可能的实施方式中,所述波束调整信息中包括至少一个波束的波 束索引。
在一种可能的实施方式中,所述波束调整信息中包括当波束调整方向信息,所述波束调整方向信息指示所述当前连接波束和第一发射波束在空间位置或覆盖方向上的位置排列关系。
在一种可能的实施方式中,所述位置排列关系指示所述第一发射波束位于所述当前连接波束的位置。
在一种可能的实施方式中,所述第一发射波束的信号质量高于多个测量波束中除所述第一发射波束外的其他波束的信号质量。
在一种可能的实施方式中,所述接收模块还用于:
从所述终端设备获取所述多个测量波束的信号质量。
在一种可能的实施方式中,所述确定模块还用于:
通过所述第一发射波束向所述终端设备发送下行数据。
第五方面,本申请实施例提供一种通信设备,包括:处理器、存储器;
所述存储器存储计算机执行指令;
所述计算机执行指令被所述处理器执行时实现如第一方面或第二方面中任一项所述的方法。
第六方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如第一方面或第二方面中任一项所述的方法。
本申请实施例提供的波束跟踪方法、设备及存储介质,在终端设备获取波束调整信息之后,通过第一信道发送波束调整信息,网络设备通过第一信道接收该波束调整信息,并根据波束调整信息确定第一发射波束,实现波束的跟踪。本申请实施例提供的方案,在终端设备向网络设备上报波束调整信息时,采用专门的第一信道来进行上报,而无需采用现有的信道,因此可以将波束调整信息设定在第一信道的固定位置,上报过程中,无需网络设备和终端设备之间大量的测量和信息交互,在进行频繁的波束调整和跟踪时,减小信令交互,提高终端设备和网络设备之间的连接性能。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申 请的实施例,并与说明书一起用于解释本申请的原理。为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的应用场景的示意图;
图2为本申请实施例提供的波束跟踪方法的信令图;
图3为一种波束跟踪方案的示意图;
图4为本申请实施例提供的预设位置配置示意图;
图5为本申请实施例提供的波束空间信息对应表的示意图;
图6为本申请实施例提供的第一发射波束确定示意图;
图7为本申请实施例提供的波束跟踪装置的结构示意图;
图8为本申请实施例提供的波束跟踪装置的结构示意图;
图9为本申请实施例提供的通信设备的硬件结构示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
首先对本申请涉及的概念进行解释。
终端设备:通常具有无线收发功能,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,简称VR)终端设备、增强现实(augmented reality,简称AR)终端 设备、工业控制(industrial control)中的无线终端、车载终端设备、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备、可穿戴终端设备等。本申请实施例所涉及的终端设备还可以称为终端、用户设备(user equipment,UE)、接入终端设备、车载终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、无线通信设备、UE代理或UE装置等。终端设备也可以是固定的或者移动的。
网络设备:通常具有无线收发功能,网络设备可以具有移动特性,例如,网络设备可以为移动的设备。可选的,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。例如,LEO卫星的轨道高度范围通常为500km~1500km,轨道周期(围绕地球旋转的周期)约为1.5小时~2小时。用户间单跳通信的信号传播延迟约为20ms,用户间单跳通信时延是指终端设备到网络设备之间的传输时延,或者网络设备到传输设备之间的时延。最大卫星可视时间约为20分钟,最大可视时间是指卫星的波束覆盖地面某一片区域的最长时间,LEO卫星相对地面是移动的,随着卫星的移动,其覆盖到的地面区域也是变化的。LEO卫星的信号传播距离短,链路损耗少,对终端设备的发射功率要求不高。GEO卫星的轨道高度通常为35786km,轨道周期为24小时。用户间单跳通信的信号传播延迟约为250ms。为了保证卫星的覆盖以及提升通信网络的系统容量,卫星可以采用多波束覆盖地面,例如,一颗卫星可以形成几十或者几百个波束来覆盖地面,一个波束可以覆盖直径几十至几百公里的地面区域。当然,网络设备还可以为设置在陆地、水域等位置的基站,例如,网络设备可以是下一代基站(next generation NodeB,gNB)或者下一代演进型基站(next generation-evolved NodeB,ng-eNB)。其中,gNB为UE提供新空口(new radio,NR)的用户面功能和控制面功能,ng-eNB为UE提供演进型通用陆地无线接入(evolved universal terrestrial radio access,E-UTRA)的用户面功能和控制面功能,需要说明的是, gNB和ng-eNB仅是一种名称,用于表示支持5G网络系统的基站,并不具有限制意义。网络设备还可以为GSM系统或CDMA系统中的基站(base transceiver station,BTS),也可以是WCDMA系统中的基站(nodeB,NB),还可以是LTE系统中的演进型基站(evolutional node B,eNB或eNodeB)。或者,网络设备还可以为中继站、接入点、车载设备、可穿戴设备以及5G之后的网络中的网络侧设备或未来演进的PLMN网络中的网络设备、路边站点单元(road site unit,RSU)等。
波束:指的是由天线发射出来的电磁波的能量在空间中集中在某个区域的特性。
SR:Schedule Request,调度请求。
UL Grant:Uplink Scheduling,上行调度准许。
图1为本申请实施例提供的应用场景的示意图。请参见图1,包括网络设备101和终端设备102,网络设备101可以发射波束103,终端设备102位于波束103的覆盖范围内。
其中,包括网络设备101和终端设备102的网络还可以称为非地面通信网络(Non-Terrestrial Network,NTN),其中,NTN是指终端设备和卫星(还可以称为网络设备)之间的通信网络。
当终端设备102在多个高频波束覆盖下移动时,连接的波束需要快速进行跟踪切换,以保证终端设备102和网络设备101之间的连接。
需要说明的是,一个网络设备下可以包括多个传输接收点(transmit receive point,简称TRP),本申请实施例中,网络设备101也可以为一个TRP。
可以理解的是,本申请实施例的技术方案可应用于NR通信技术中,NR是指新一代无线接入网络技术,可以应用在未来演进网络,如未来第五代移动通信(the 5th Generation Mobile Communication,5G)系统中。本申请实施例中的方案还可以应用于无线保真(Wireless Fidelity,WIFI)和长期演进(Long Term Evolution,LTE)等其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申 请实施例提供的技术方案对于类似的技术问题,同样适用。
图2为本申请实施例提供的波束跟踪方法的信令图,如图2所示,该方法可以包括:
S21,终端设备获取波束调整信息。
终端设备和网络设备初始波束连接建立之后,终端设备会实时的监测下行波束的质量,根据监测得到的下行波束的质量,获取波束调整信息。
S22,终端设备通过第一信道发送所述波束调整信息。
终端设备在获取波束调整信息之后,会周期性或非周期性的把波束调整信息上报给网络设备。本申请实施例中,设置了专门用于传输该波束调整信息的第一信道,终端设备通过专门的第一信道向网络设备发送波束调整信息。
S23,网络设备通过第一信道接收波束调整信息。
终端设备向网络设备发送波束调整信息之后,网络设备通过该第一信道接收波束调整信息。
S24,网络设备根据所述波束调整信息,确定第一发射波束。
网络设备接收波束调整信息之后,根据该波束调整信息,能够获取到各个下行波束的质量,从而可以根据各个下行波束的质量,在从中选取一个第一发射波束,作为后续与终端设备进行连接时的波束。
本申请实施例提供的波束跟踪方法,在终端设备获取波束调整信息之后,通过第一信道发送波束调整信息,网络设备通过第一信道接收该波束调整信息,并根据波束调整信息确定第一发射波束,实现波束的跟踪。本申请实施例提供的方案,在终端设备向网络设备上报波束调整信息时,采用专门的第一信道来进行上报,而无需采用现有的信道,因此可以将波束调整信息设定在第一信道的固定位置,上报过程中,无需网络设备和终端设备之间大量的测量和信息交互,在进行频繁的波束调整和跟踪时,减小信令交互,提高终端设备和网络设备之间的连接性能。
下面结合具体的实施例对本申请的方案进行详细介绍。
图3为一种波束跟踪方案的示意图,如图3所示,目前的波束跟踪方案中,在UE和gNB初始波束连接建立之后,UE会实时的监测下行波束的质量,并周期性或非周期性的把多个波束的质量监测参数上报给gNB,gNB接收这多个波束的质量监测参数,并根据质量监测参数进行波束的调整。具体 步骤如下:
S31,UE判断是否有数据需要传输,若是,则执行S32。
在S31中,UE需要传输的数据即多个波束的质量监测参数,当UE有质量监测参数需要传输时,则执行S32,否则,UE不执行任何操作。
S32,UE判断是否可以发送SR,若是,则执行S33。
S33,UE通过物理上行链路控制信道(Physical Uplink Control Channel,简称PUCCH)向gNB发送SR。
UE通过向gNB发送SR,来向gNB请求上行资源,UE可以根据上层的配置,按照一定的周期和子帧位置上通过PUCCH中的控制消息UCI传输SR。SR只用于告知gNB是否有资源需求,而具体需要多少资源则由之后的信令交互告诉ENB。
S34,gNB通过物理下行控制信道(Physical Downlink Control Channel,简称PDCCH)向UE发送UL Grant。
UL Grant是一种来自gNB的物理控制信息,用于告诉UE,可以发送数据了。gNB在收到SR之后,下发UL Grant。在ULGrant中,还携带有发送给数据的相关信息,例如,可以告知UE,在4ms之后,即4个子帧之后,UE可以发送数据了。
S35,UE通过物理上行共享信道(Physical Uplink Shared Channel,简称PUSCH)发送质量监测参数。
在接收到gNB发送的UL Grant之后,根据UL Grant的指示,UE就可以上报多个波束的质量监测参数了。
在上述图3示例的波束跟踪方案中,由于上报多个波束的质量监测参数,需要占用其他的信道,例如PUSCH,而PUSCH上还可能承载其他的信息,因此,在每次通过PUSCH传输质量监测参数时,均需要终端设备和网络设备之间进行大量的测量和信息交互,例如,终端设备和网络设备之间需要同步的信息包括,质量监测参数的大小,在PUSCH上的位置,包括时域位置和频域位置等等。
因此,图3示例的方案中,波束跟踪方案的信令交互量较大,不适用于需要频繁调整的系统。在高频系统中,由于波束能量和波束宽度的限制,每个波束的覆盖范围十分有限,在终端设备的位置发生改变时,会产生频繁的 波束调整。若每次进行波束调整时均进行大量的信令交互,系统负担较为繁重,会导致终端设备和网络设备连接性能的严重下降。
基于此,本申请实施例提供一种波束跟踪方案,采用专门的第一信道发送波束调整信息,从而极大的减小波束调整时的信令交互。
具体的,在高频波束跟踪状态下,设立第一信道专用于上行反馈资源,即波束调整信息。在第一信道中,来传输该波束调整信息,该第一信道与目前已经存在的PDCCH、PUCCH、PUSCH等信道均不同,是专用于传输波束调整信息而设置的信道。
由于第一信道专用于传输波束调整信息,因此无需与其他需要承载的信息共用信道。
可选的,可以将波束调整信息设置在第一信道的预设位置,波束调整信息的大小为至少一个比特。
可选的,可以设置波束调整信息的大小为一个固定值,或者将该波束调整信息设置在一个固定大小的范围内,从而使得终端设备通过第一信道发送波束调整信息时,网络设备可以在第一信道的固定区域获取该波束调整信息。
可选的,网络设备可以向终端设备发送第一信息,第一信息指示预设位置在第一信道占用的时域和/或频域起始位置,终端设备在接收第一信息之后,可以根据第一信息指示的时域和/或频域起始位置,进行波束调整信息的发送。由于预设位置是网络设备通过第一信息为终端设备配置的,因此网络设备能够获知预设位置在第一信道的位置,进而在相应的位置获取该波束调整信息。
图4为本申请实施例提供的预设位置配置示意图,如图4所示,例如,网络设备可以通过无线资源控制(Radio Resource Control,简称RRC),介质访问控制层(Media Access Control,简称MAC)层配置一个信道起始位置,包括Lindex和Cindex,其中,Lindex表示频域起始位置,Cindex表示时域起始位置。
在图4中,横向表示时隙,其中横向的每一个小方格代表一个时域单位,纵向表示带宽部分,其中纵向的每一个小方格代表一个频域单位。在激活BWP内,通过控制不同的时域起始位置可以区分不同UE的时频资源,Lindex和Cindex与激活带宽部分(Bandwidth Part,简称BWP)内的UE有对应关 系。
在波束调整信息占用的时域单位和频域单位一定时,通过第一信道承载波束调整信息,只需要配置波束调整信息的时域起始位置和频域起始位置即可。例如在图4中,波束调整信息占用的时域单位为一个,频域单位为13个,只要通过Lindex获知波束调整信息的频域起始位置在激活BWP的第4个单位,通过Cindex获知波束调整信息的时域起始单位在时隙的第6个单位,就能够确定波束调整信息在第一信道中的位置,如图4中的黑色部分所示。
可选的,波束调整信息的频域起始位置和时域起始位置可以通过网络设备的RRC或MAC来配置,在此情况下,网络设备需要向终端设备发送第一信息告知预设位置的频域起始位置和时域起始位置,结合波束调整信息的信息长度,从而确定波束调整信息位于第一信道的预设位置,如图4中黑色区域。每次配置的频域起始位置和时域起始位置,可以相同,也可以不同。
可选的,频域起始位置和时域起始位置也可以为系统的固定配置,即频域起始位置和时域起始位置都是固定值,终端设备和网络设备预先都可以获知频域起始位置和时域起始位置。由于频域起始位置和时域起始位置都是系统固定配置的,因此网络设备无需再单独向终端设备发送第一信息来告知频域起始位置和时域起始位置,进一步降低了波束跟踪和调整中网络设备和终端设备之间的信令交互。
可选的,波束跟踪方案也可以设计为可复用的机制。例如,若波束调整信息与控制信息(如UCI)同时需要被发送,则可以将波束调整信息复用到UCI里,并通过UCI资源进行发送,比如:PUCCH/PUSCH。此时UCI除了可以携带CSI,ACK/NACK,HARQ或SR中至少一种之外,还需要增加一个波束调整信息,以节省资源。
当处于波速跟踪状态时,高层可配置上报周期,例如可以配置每个时隙反馈或每个子帧反馈,或根据一个参数配置间隔多少个上行符号反馈,等等。
可选的,还可以通过设计PUCCH特定格式来反馈,例如设计PUCCH format5来携带波束调整信息。由于此波束调整信息的长度一定,信道编码后长度也不变,所以此PUCCH格式长度一定,只需配置时域起始位置和频域起始位置即可。
当处于波速跟踪状态时,高层(RRC,MAC)可配置波束测量周期,对 应的波束跟踪信息通过PUCCH发送,可以配置每个时隙反馈或每个子帧反馈,或根据一个参数配置间隔多少个上行符号反馈。
当没有其他UCI需要反馈时,发送PUCCH format5,当有其他UCI需要反馈时,波束跟踪反馈信息可以和其他UCI复用在一起发送。此时UCI也可支持与PUSCH复用。
在波束调整信息中,可以指示信道质量,也可以指示波束索引值,也可以指示波束调整方向。
当波束调整信息指示波束索引值时,波束调整信息中包括至少一个波束的波束索引,网络设备可以根据这至少一个波束的波束索引,确定对应的第一发射波束。
当波束调整信息指示波束调整方向时,波束调整信息中包括波束调整方向信息,网络设备可以根据这波束调整方向信息,确定对应的第一发射波束。
在一种可能的实现方式中,波束调整信息中包括波束调整方向信息,该波束调整方向信息用于指示当前连接波束和第一发射波束在空间位置或覆盖方向上的位置排列关系。
当波束调整信息中包括波束调整方向信息时,可以通过波束空间信息对应表来辅助实现。
图5为本申请实施例提供的波束空间信息对应表的示意图,如图5所示,示意出了一个TRP或者一个网络设备可以发射的波束,以及各个波束的空间相对位置关系。其中,图5中横向为水平方向,竖向为垂直方向。
在图5中,每个CB代表一个波束,不同的波束编了不同的编号,每个波束在图中的位置反应了波束的空间信息。例如在图5中,CB10和CB11相邻,表示CB10这个波束的覆盖范围和CB11这个波束的覆盖范围比较接近。CB11在CB10和CB12之间,表示CB11这个波束的覆盖范围在CB10这个波束的覆盖范围和CB12这个波束的覆盖范围之间,等等。各个CB在图5中的位置与对应的波束的覆盖范围所在的位置基本对应。
根据该波束空间信息对应表,可以获知当前连接波束和第一发射波束在空间位置或覆盖方向上的位置排列关系,其中,该位置排列关系可以指示第一发射波束位于当前连接波束的位置。例如,位置可以是上方、下方、左方、右方、左上方、左下方、右上方、右下方等等。指示方向时,例如四个方向 只需要2比特,八个方向只需要3比特即可实现,而指示波束索引,需要的比特数更多,例如64个波束需要6比特,128个波束需要7比特等等。通过波束调整方向信息,能够节省资源,提升解码性能。
通常,终端设备会获取多个测量波束的信号质量,波束调整信息中包括多个测量波束的信号质量。当网络设备获取了多个测量波束的信号质量之后,可以根据多个测量波束的信号质量确定第一发射波束。例如,可以在多个发射波束中选择信号质量较高的波束作为第一发射波束,使得第一发射波束的信号质量高于多个测量波束中除第一发射波束外的其他波束的信号质量。
例如在图5中,CB11位于CB10的右方,CB20位于CB21的左方,CB37位于CB29的下方,位于CB45的上方,CB37还位于CB28的右下方,等等。
进一步的,在波束调整信息中,除了包括波束调整方向信息,还可以包括调整的单位。例如在图5中,CB19和CB20均位于CB18的右方,此时若还可以包括调整的单位,例如1个单位,则可以确定指示的波束为CB19,而不是CB20。若不包括调整的单位,则可以选择预先设定的单位,例如1个单位。
图6为本申请实施例提供的第一发射波束确定示意图,如图6所示,示出了网络设备的波束空间信息对应表,其中,CB19为终端设备和网络设备的当前连接波束。若此时波束调整信息中的包调整方向信息指示的是右方,默认一个单位,则此时可以确定位于CB19右方的CB20为第一发射波束。通过上述方式,根据波束调整信息,网络设备即可确定第一发射波束。进一步的,还可以根据第一发射波束向终端设备发送下行数据。
本申请实施例提供的波束跟踪方法,在终端设备获取波束调整信息之后,通过第一信道发送波束调整信息,网络设备通过第一信道接收该波束调整信息,并根据波束调整信息确定第一发射波束,实现波束的跟踪。本申请实施例提供的方案,在终端设备向网络设备上报波束调整信息时,采用专门的第一信道来进行上报,而无需采用现有的信道,因此可以将波束调整信息设定在第一信道的固定位置,上报过程中,无需网络设备和终端设备之间大量的测量和信息交互,在进行频繁的波束调整和跟踪时,减小信令交互,提高终端设备和网络设备之间的连接性能。
图7为本申请实施例提供的波束跟踪装置的结构示意图,如图7所示, 该波束跟踪装置70包括:
获取模块71,用于获取波束调整信息;
发送模块72,用于通过第一信道发送所述波束调整信息。
在一种可能的实施方式中,所述波束调整信息用于指示以下数据中的至少一种:
信道质量;
波束索引值;
波束调整方向。
在一种可能的实施方式中,所述波束调整信息的大小为至少一个比特。
在一种可能的实施方式中,所述波束调整信息位于所述第一信道的预设位置。
在一种可能的实施方式中,所述获取模块71还用于:
接收第一信息,所述第一信息用于指示所述预设位置在所述第一信道占用的时域和/或频域起始位置。
在一种可能的实施方式中,所述发送模块72具体用于:
根据预设时间间隔,通过所述第一信道发送所述波束调整信息。
在一种可能的实施方式中,所述预设时间间隔为至少一个时隙;或者,
所述预设时间间隔为至少一个子帧;或者,
所述预设时间间隔为至少一个上行符号。
在一种可能的实施方式中,所述波束调整信息中包括至少一个波束的波束索引。
在一种可能的实施方式中,所述波束调整信息中包括波束调整方向信息,所述波束调整方向信息用于指示所述当前连接波束和第一发射波束在空间位置或覆盖方向上的位置排列关系。
在一种可能的实施方式中,所述位置排列关系指示所述第一发射波束位于所述当前连接波束的位置。
在一种可能的实施方式中,所述第一发射波束的信号质量高于多个测量波束中除所述第一发射波束外的其他波束的信号质量。
在一种可能的实施方式中,所述获取模块71还用于:
获取所述多个测量波束的信号质量,并向所述网络设备发送所述多个测 量波束的信号质量。
本申请实施例提供的波束跟踪装置,用于执行上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
图8为本申请实施例提供的波束跟踪装置的结构示意图,如图8所示,该波束跟踪装置80包括:
接收模块81,用于通过第一信道接收波束调整信息;
确定模块82,用于根据所述波束调整信息,确定第一发射波束。
在一种可能的实施方式中,所述波束调整信息用于指示以下数据中的至少一种:
信道质量;
波束索引值;
波束调整方向。
在一种可能的实施方式中,所述波束调整信息的大小为至少一个比特。
在一种可能的实施方式中,所述波束调整信息位于所述第一信道的预设位置。
在一种可能的实施方式中,还包括发送模块,所述发送模块用于:
向所述终端设备发送第一信息,所述第一信息指示所述预设位置在所述第一信道占用的时域和/或频域起始位置。
在一种可能的实施方式中,所述接收模块81具体用于:
根据预设时间间隔,通过所述第一信道接收所述波束调整信息。
在一种可能的实施方式中,所述预设时间间隔为至少一个时隙;或者,
所述预设时间间隔为至少一个子帧;或者,
所述预设时间间隔为至少一个上行符号。
在一种可能的实施方式中,所述波束调整信息中包括至少一个波束的波束索引。
在一种可能的实施方式中,所述波束调整信息中包括当波束调整方向信息,所述波束调整方向信息指示所述当前连接波束和第一发射波束在空间位置或覆盖方向上的位置排列关系。
在一种可能的实施方式中,所述位置排列关系指示所述第一发射波束位于所述当前连接波束的位置。
在一种可能的实施方式中,所述第一发射波束的信号质量高于多个测量波束中除所述第一发射波束外的其他波束的信号质量。
在一种可能的实施方式中,所述接收模块81还用于:
从所述终端设备获取所述多个测量波束的信号质量。
在一种可能的实施方式中,所述确定模块82还用于:
通过所述第一发射波束向所述终端设备发送下行数据。
本申请实施例提供的波束处理装置,用于执行上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
图9为本申请实施例提供的通信设备的硬件结构示意图。本实施例的通信设备包括:处理器91以及存储器92;
存储器92,用于存储计算机程序;
处理器91,用于执行存储器存储的计算机程序,以实现上述实施例中网络设备所执行的各个步骤,或者,以实现上述实施例中终端设备所执行的各个步骤。具体可以参见前述方法实施例中的相关描述。
可选地,存储器92可以独立于处理器91之外或独立于网络设备之外,也可以在处理器91或通信设备之内。存储器92可以是物理上独立的单元,也可以是云服务器上的存储空间或网络硬盘等。
当所述存储器92是独立于处理器91之外的器件时,所述通信设备还可以包括:总线93,用于连接所述存储器92和处理器91。
总线93可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,本申请附图中的总线并不限定仅有一根总线或一种类型的总线。
另外,该处理器91可以是中央处理器单元,通用处理器,数字信号处理器(英文:Digital Signal Processor,简称:DSP)、专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)、现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合申请所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器 中的硬件及软件模块组合执行完成。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。
所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。另外,该存储器142可以包括:易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)、云存储(cloud storage)、网络附接存储(NAS:network attached Storage)、网盘(network drive)等;存储器还可以包括上述种类的存储器的组合或者其他具有存储功能的任意形态的介质或产品。
本实施例提供的通信设备,可用于执行上述实施例网络设备或终端所执行的方法,其实现原理和技术效果类似,本实施例此处不再赘述。
本申请实施例还提供一种存储介质,所述存储介质包括计算机程序,所述计算机程序用于实现如上各种可能的实施方式中所述的方法。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如上各种可能的实施方式中所述的方法。
本申请实施例还提供一种芯片,包括存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于从所述存储器中调用并运行所述计算机程序,使得安装有所述芯片的通信设备执行如上各种可能的实施方式中所述的方法。
本申请实施例还提供一种通信系统,所述通信系统包括上述实施例中的网络设备和终端设备。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理单元中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个单元中。上述模块成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能模块的形式实现的集成的模块,可以存储在一个计算机可读取存储介质中。上述软件功能模块存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(英文:processor)执行本申请各个实施例所述方法的部分步骤。
上述存储介质可以是由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。存储介质可以是通用或专用计算机能够存取的任何可用介质。
一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于专用集成电路(Application Specific Integrated Circuits,简称:ASIC)中。当然,处理器和存储介质也可以作为分立组件存在于设备中。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
应当理解,尽管在本文可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此 区分开。例如,在不脱离本文范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语"如果"可以被解释成为"在……时"或"当……时"或"响应于确定"。再者,如同在本文中所使用的,单数形式“一”、“一个”和“该”旨在也包括复数形式,除非上下文中有相反的指示.应当进一步理解,术语“包含”、“包括”表明存在所述的特征、步骤、操作、元件、组件、项目、种类、和/或组,但不排除一个或多个其他特征、步骤、操作、元件、组件、项目、种类、和/或组的存在、出现或添加。此处使用的术语“或”和“和/或”被解释为包括性的,或意味着任一个或任何组合。因此,“A、B或C”或者“A、B和/或C”意味着“以下任一个:A;B;C;A和B;A和C;B和C;A、B和C”。仅当元件、功能、步骤或操作的组合在某些方式下内在地互相排斥时,才会出现该定义的例外。
应该理解的是,虽然上述实施例中的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
需要说明的是,在本文中,采用了诸如S21、S22等步骤代号,其目的是为了更清楚简要地表述相应内容,不构成顺序上的实质性限制,本领域技术人员在具体实施时,可能会先执行S22后执行S21等,但这些均应在本申请的保护范围之内。
最后应说明的是:以上各实施例仅用以说明本申请实施例的技术方案,而非对其限制;尽管参照前述各实施例对本申请实施例进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请实施例方案的范围。

Claims (29)

  1. 一种波束跟踪方法,应用于终端设备,其特征在于,包括:
    获取波束调整信息;
    通过第一信道发送所述波束调整信息。
  2. 根据权利要求1所述的方法,其特征在于,所述波束调整信息用于指示以下数据中的至少一种:
    信道质量;
    波束索引值;
    波束调整方向。
  3. 根据权利要求1所述的方法,其特征在于,所述波束调整信息的大小为至少一个比特。
  4. 根据权利要求3所述的方法,其特征在于,所述波束调整信息位于所述第一信道的预设位置。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    接收第一信息,所述第一信息用于指示所述预设位置在所述第一信道占用的时域和/或频域起始位置。
  6. 根据权利要求1所述的方法,其特征在于,所述通过第一信道发送所述波束调整信息,包括:
    根据预设时间间隔,通过所述第一信道发送所述波束调整信息。
  7. 根据权利要求6所述的方法,其特征在于,
    所述预设时间间隔为至少一个时隙;或者,
    所述预设时间间隔为至少一个子帧;或者,
    所述预设时间间隔为至少一个上行符号。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述波束调整信息中包括至少一个波束的波束索引。
  9. 根据权利要求1至7中任一项所述的方法,其特征在于,所述波束调整信息中包括波束调整方向信息,所述波束调整方向信息用于指示当前连接波束和第一发射波束在空间位置或覆盖方向上的位置排列关系。
  10. 根据权利要求9所述的方法,其特征在于,所述位置排列关系指示所述第一发射波束位于所述当前连接波束的位置。
  11. 根据权利要求9所述的方法,其特征在于,所述第一发射波束的信号质量高于多个测量波束中除所述第一发射波束外的其他波束的信号质量。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    获取所述多个测量波束的信号质量,并向网络设备发送所述多个测量波束的信号质量。
  13. 根据权利要求1至7中任一项所述的方法,其特征在于,若所述波束调整信息与控制信息同时需要被发送,则所述波束调整信息可通过控制信息资源进行发送。
  14. 一种波束跟踪方法,应用于网络设备,其特征在于,包括:
    通过第一信道接收波束调整信息;
    根据所述波束调整信息,确定第一发射波束。
  15. 根据权利要求14所述的方法,其特征在于,所述波束调整信息用于指示以下数据中的至少一种:
    信道质量;
    波束索引值;
    波束调整方向。
  16. 根据权利要求14所述的方法,其特征在于,所述波束调整信息的大小为至少一个比特。
  17. 根据权利要求16所述的方法,其特征在于,所述波束调整信息位于所述第一信道的预设位置。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    向终端设备发送第一信息,所述第一信息指示所述预设位置在所述第一信道占用的时域和/或频域起始位置。
  19. 根据权利要求14所述的方法,其特征在于,通过第一信道接收波束调整信息,包括:
    根据预设时间间隔,通过所述第一信道接收所述波束调整信息。
  20. 根据权利要求19所述的方法,其特征在于,所述预设时间间隔为至少一个时隙;或者,
    所述预设时间间隔为至少一个子帧;或者,
    所述预设时间间隔为至少一个上行符号。
  21. 根据权利要求14至20中任一项所述的方法,其特征在于,所述波束调整信息中包括至少一个波束的波束索引。
  22. 根据权利要求14至20中任一项所述的方法,其特征在于,所述波束调整信息中包括当波束调整方向信息,所述波束调整方向信息指示当前连接波束和第一发射波束在空间位置或覆盖方向上的位置排列关系。
  23. 根据权利要求22所述的方法,其特征在于,所述位置排列关系指示所述第一发射波束位于所述当前连接波束的位置。
  24. 根据权利要求22所述的方法,其特征在于,所述第一发射波束的信号质量高于多个测量波束中除所述第一发射波束外的其他波束的信号质量。
  25. 根据权利要求24所述的方法,其特征在于,所述方法还包括:
    从终端设备获取所述多个测量波束的信号质量。
  26. 根据权利要求14至20中任一项所述的方法,其特征在于,所述方法还包括:
    通过所述第一发射波束向终端设备发送下行数据。
  27. 根据权利要求14至20中任一项所述的方法,其特征在于,若所述波束调整信息与控制信息同时被发送,则可通过控制信息资源接收所述波束调整信息。
  28. 一种通信设备,其特征在于,包括:处理器、存储器;
    所述存储器存储计算机执行指令;
    所述计算机执行指令被所述处理器执行时实现如权利要求1至27中任一项所述的方法。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如权利要求1至27中任一项所述的方法。
PCT/CN2020/115034 2020-09-14 2020-09-14 波束跟踪方法、设备及存储介质 WO2022052098A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/115034 WO2022052098A1 (zh) 2020-09-14 2020-09-14 波束跟踪方法、设备及存储介质
CN202080105185.6A CN116195294A (zh) 2020-09-14 2020-09-14 波束跟踪方法、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/115034 WO2022052098A1 (zh) 2020-09-14 2020-09-14 波束跟踪方法、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022052098A1 true WO2022052098A1 (zh) 2022-03-17

Family

ID=80630162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115034 WO2022052098A1 (zh) 2020-09-14 2020-09-14 波束跟踪方法、设备及存储介质

Country Status (2)

Country Link
CN (1) CN116195294A (zh)
WO (1) WO2022052098A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018202071A1 (zh) * 2017-05-05 2018-11-08 华为技术有限公司 数据传输方法、终端设备和网络设备
CN111034338A (zh) * 2017-06-23 2020-04-17 华为技术有限公司 统一rlf检测、nr中的多波束rlm和全分集bfr机制
CN111316700A (zh) * 2017-09-11 2020-06-19 高通股份有限公司 使用第二分量载波的波束恢复过程

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1722583A1 (de) * 2005-05-11 2006-11-15 Siemens Aktiengesellschaft Beam-Hopping in einem Funkkommunikationssystem
EP2283580B1 (en) * 2008-05-09 2019-07-10 Apple Inc. System and method for supporting antenna beamforming in a cellular network
CN108366376B (zh) * 2017-01-26 2021-10-29 中国移动通信有限公司研究院 一种波束扫描方法及基站
CN108633043B (zh) * 2017-03-24 2021-06-29 中兴通讯股份有限公司 波束恢复的处理方法及装置
EP3591856B1 (en) * 2018-07-04 2021-10-27 Intel Corporation Techniques for control of beam switching
CN111510267B (zh) * 2019-01-31 2021-12-14 成都华为技术有限公司 波束指示的方法和通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018202071A1 (zh) * 2017-05-05 2018-11-08 华为技术有限公司 数据传输方法、终端设备和网络设备
CN111034338A (zh) * 2017-06-23 2020-04-17 华为技术有限公司 统一rlf检测、nr中的多波束rlm和全分集bfr机制
CN111316700A (zh) * 2017-09-11 2020-06-19 高通股份有限公司 使用第二分量载波的波束恢复过程

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, ALCATEL-LUCENT SHANGHAI BELL: "Beam Management – Beam Reporting", 3GPP DRAFT; R1-1703162, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20170213 - 20170217, 12 February 2017 (2017-02-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051210299 *

Also Published As

Publication number Publication date
CN116195294A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
CN109716836B (zh) 一种支持波束扫描的寻呼通知的调度
EP3691212B1 (en) Uplink transmission and configuration method, terminal, and base station
EP3874647B1 (en) Lch mapping to harq process id for non-terrestrial networks
US20200022067A1 (en) Methods and systems for beamformed system information transmission
KR20210044856A (ko) 업링크 전송을 지시하기 위한 방법, 단말, 기지국 및 컴퓨터 저장 매체
US10375671B2 (en) Paging with enhanced beamforming
US20210136739A1 (en) Method and device for transmitting uplink signal
KR102635875B1 (ko) 사이드 링크에 사용되는 통신 방법 및 장치
WO2018227441A1 (zh) 波束失败恢复请求的传输资源配置装置、波束失败请求的响应装置、方法及通信系统
US20230140393A1 (en) Method and apparatus for beam management on sidelink
CN115443632A (zh) 用于多传输/接收点操作的方法和用户设备
WO2021087895A1 (zh) 传输参数的确定方法及装置
US20190379519A1 (en) Confirmation apparatus for activation command, report apparatus for data transmission mode and methods thereof
CN112740758B (zh) 具有网络信息的切换请求
KR20230150890A (ko) 무선 통신에서의 링크 복구
EP3493640B1 (en) Random access signal transmission method and related product
CN115580380A (zh) 无线通信的方法及装置
CN111106863B (zh) 用于信号传输的方法和设备
CN114765515A (zh) 用于非周期信道状态信息报告的方法与装置、相关设备
US20190110275A1 (en) Radio base station and communication control method
US12022464B2 (en) Apparatus and methods of scheduling for low power consumption
WO2022052098A1 (zh) 波束跟踪方法、设备及存储介质
WO2021253400A1 (zh) 波束处理方法、设备、系统及存储介质
WO2021142663A1 (zh) 调度请求sr发送方法及相关装置
CN114788362A (zh) 媒体接入控制层控制单元生效时间的确定方法及相关产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952886

Country of ref document: EP

Kind code of ref document: A1