WO2022052094A1 - 数据处理方法、设备及计算机可读储存介质 - Google Patents

数据处理方法、设备及计算机可读储存介质 Download PDF

Info

Publication number
WO2022052094A1
WO2022052094A1 PCT/CN2020/115025 CN2020115025W WO2022052094A1 WO 2022052094 A1 WO2022052094 A1 WO 2022052094A1 CN 2020115025 W CN2020115025 W CN 2020115025W WO 2022052094 A1 WO2022052094 A1 WO 2022052094A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink data
random access
time
transmission time
measurement gap
Prior art date
Application number
PCT/CN2020/115025
Other languages
English (en)
French (fr)
Inventor
黄鈞蔚
Original Assignee
深圳传音控股股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳传音控股股份有限公司 filed Critical 深圳传音控股股份有限公司
Priority to CN202080105127.3A priority Critical patent/CN116210331A/zh
Priority to PCT/CN2020/115025 priority patent/WO2022052094A1/zh
Publication of WO2022052094A1 publication Critical patent/WO2022052094A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the embodiments of the present application relate to communication technologies, and in particular, to a data processing method, device, and computer-readable storage medium.
  • a UE User Equipment, user equipment
  • the UE cannot send any uplink data.
  • the measurement gap overlaps with the PO (PUSCH occasion, opportunity to send uplink data)
  • the measurement gap is usually not considered, and the uplink data (payload) is normally sent at the PO, so the UE will not be able to determine the candidate. community.
  • the network congestion causes no response to the random access information initiated by the UE, the UE needs to wait for the maximum number of transmissions before performing cell reselection.
  • the neighbor cells without candidates can directly establish a connection, which will cause a delay in connection establishment.
  • Embodiments of the present application provide a data processing method, a device, and a computer-readable storage medium to solve the problem of delay in establishing a UE connection because a candidate cell cannot be determined when a measurement gap overlaps with a PO.
  • an embodiment of the present application provides a data processing method, which is applied to a terminal device, and the method includes:
  • the random access information sending time is determined according to the random access parameter and the measurement gap parameter, where the random access information includes at least one of the following: uplink data or uplink data and time difference information.
  • the random access information may further include a random access preamble.
  • determining the random access information sending time according to the random access parameter and the measurement gap parameter includes:
  • the random access parameter and the measurement gap parameter if it is determined that the original transmission time of the uplink data in the random access information overlaps with the measurement gap, then determine the actual transmission time of the uplink data, and/or the original transmission time and Time difference information of the actual sending time.
  • the method further includes: sending the random access at the actual sending time. information.
  • the determining the actual sending time of the uplink data includes:
  • An uplink data transmission time is determined from the uplink data transmission time that does not overlap with the measurement gap as the actual transmission time.
  • a manner of determining an uplink data transmission time from the uplink data transmission time that does not overlap with the measurement gap includes at least one of the following:
  • An uplink data sending time is randomly selected as the actual sending time.
  • the time difference information includes at least: a time difference between the actual sending time of the uplink data and the original sending time.
  • the time difference information is carried in the random access information as control information and sent.
  • the carrying the time difference information in the random access information for sending includes:
  • the time difference information is carried in the header, or the bearer, or the control element of the media access control protocol data unit and sent.
  • the method further includes: receiving random access parameters and/or measurement gap parameters.
  • the random access parameter includes at least one of the following:
  • the measurement gap parameter includes at least one of the following:
  • an embodiment of the present application provides a data processing method, which is applied to a network device, and the method includes:
  • Receive random access information where the random access information includes at least one of the following: uplink data or uplink data and time difference information, and the actual sending time of the random access information is determined according to random access parameters and measurement gap parameters.
  • the random access information may further include a random access preamble.
  • the method further includes:
  • the random access preamble corresponding to the uplink data is determined.
  • the determining the random access preamble corresponding to the uplink data according to the time difference information and the random access parameter includes:
  • the random access preamble corresponding to the uplink data is determined.
  • the actual sending time is: an uplink data sending time determined among the uplink data sending times that do not overlap with the measurement gap in the time slot where the original sending time is located.
  • a method for determining an uplink data transmission time includes at least one of the following:
  • the time difference information includes at least: a time difference between the actual sending time of the uplink data and the original sending time.
  • the time difference information is carried in the random access information as control information.
  • the time difference information is carried in the header, or the bearer, or the control element of the media access control protocol data unit.
  • the method further includes: sending random access parameters and/or measurement gap parameters.
  • the random access parameter includes at least one of the following:
  • the measurement gap parameter includes at least one of the following:
  • an embodiment of the present application provides a terminal device, including:
  • the time determination module is configured to determine the sending time of random access information according to the random access parameter and the measurement gap parameter, where the random access information includes at least one of the following: uplink data or uplink data and time difference information.
  • the random access information may further include a random access preamble.
  • an embodiment of the present application provides a network device, including:
  • a receiving module configured to receive random access information
  • the random access information includes at least one of the following: uplink data or uplink data and time difference information, the actual sending time of the random access information is based on random access parameters and measurement The gap parameter is determined.
  • the random access information may further include a random access preamble.
  • embodiments of the present application provide a terminal device, including: a processor and a memory;
  • the memory stores computer-executable instructions
  • embodiments of the present application provide a network device, including: a processor and a memory;
  • the memory stores computer-executable instructions
  • embodiments of the present application provide a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the computer-executable instructions are executed by a processor, are used to implement the above-mentioned first aspect Or the data processing method described in the second aspect.
  • the UE determines the sending time of random access information according to the random access parameter and the measurement gap parameter, where the random access information includes at least one of the following: Data or uplink data and time difference information
  • the network device receives the random access information sent by the UE, and realizes that when the original transmission time of the uplink data overlaps with the measurement gap, the actual transmission time of the uplink data is re-determined, so that the actual transmission time of the uplink data is realized.
  • the time and the measurement gap do not overlap, so that the neighbor cell measurement can be performed normally and more candidate cells can be found.
  • the random access of the existing serving cell fails, it can quickly switch to another neighbor cell and initiate random access, which can improve the performance. Random access success rate and reduced delay.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a 4-step random access process provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a 2-step random access process provided by an embodiment of the present application.
  • FIG. 5 is a flowchart of a data processing method provided in Embodiment 2 of the present application.
  • FIG. 6 is a schematic diagram of the time difference between RO and PO provided by Embodiment 2 of the present application.
  • FIG. 7 is a configuration method of measuring gap duration provided by Embodiment 2 of the present application.
  • FIG. 8 is a configuration mode of an MGTA according to Embodiment 2 of the present application.
  • Embodiment 9 is a format of a MAC PDU provided by Embodiment 2 of the present application.
  • FIG. 10 is a schematic diagram of overlapping a PO and a measurement gap according to Embodiment 2 of the present application;
  • FIG. 11 is a schematic diagram of overlapping a PO and a measurement gap according to Embodiment 2 of the present application.
  • FIG. 12 is a schematic diagram of overlapping a PO and a measurement gap according to Embodiment 2 of the present application.
  • FIG. 13 is a schematic diagram of overlapping a PO and a measurement gap according to Embodiment 2 of the present application.
  • FIG. 14 is a schematic structural diagram of a terminal device according to Embodiment 3 of the present application.
  • FIG. 15 is a schematic structural diagram of a terminal device according to Embodiment 4 of the present application.
  • FIG. 16 is a schematic structural diagram of a network device according to Embodiment 5 of the present application.
  • FIG. 17 is a schematic structural diagram of a network device according to Embodiment 6 of the present application.
  • FIG. 18 is a schematic structural diagram of a terminal device according to Embodiment 7 of the present application.
  • FIG. 19 is a schematic structural diagram of a network device according to Embodiment 8 of the present application.
  • first, second, third, etc. may be used herein to describe various information, such information should not be limited by these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information, and similarly, second information may also be referred to as first information, without departing from the scope of this document.
  • the word “if” as used herein can be interpreted as “at the time of” or “when” or “in response to determining”, depending on the context.
  • the singular forms "a,” “an,” and “the” are intended to include the plural forms as well, unless the context dictates otherwise.
  • the communication system includes: a network device and multiple terminal devices. It is assumed that the multiple terminal devices include terminal device 1 , terminal device 2 , terminal device 3 and terminal device 4 in the figure. It should be noted that the communication system shown in FIG.
  • the above communication system may be a system in a scenario of URLLC (Ultra-Reliable and Low Latency Communications, high reliability and low latency communication) transmission in a 5G communication system.
  • GSM Global System of Mobile communication, global mobile communication
  • CDMA Code Division Multiple Access, code division multiple access
  • WCDMA Wideband Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access, Time Division Synchronous Code Division Multiple Access
  • LTE Long Term Evolution, Long Term Evolution
  • future 5G and other network standards for example, can be applied to GSM (Global System of Mobile communication, global mobile communication), CDMA (Code Division Multiple Access, code division multiple access) , WCDMA (Wideband Code Division Multiple Access, Wideband Code Division Multiple Access), TD-SCDMA (Time Division-Synchronous Code Division Multiple Access, Time Division Synchronous Code Division Multiple Access), LTE (Long Term Evolution, Long Term Evolution) system and future 5G and other network standards.
  • the above communication system may be a system
  • the above-mentioned network equipment may be BTS (Base Transceiver Station, base station) and/or base station controller in GSM or CDMA, or may be NB (NodeB, base station) and/or RNC (Radio Network) in WCDMA. Controller, radio network controller), it can also be an evolved eNB (Evolutional Node B, base station) or eNodeB in LTE, or a relay station or access point, or a base station (gNB) in the future 5G network, etc., this application is here Not limited.
  • BTS Base Transceiver Station, base station
  • NB NodeB, base station
  • RNC Radio Network
  • Controller radio network controller
  • the above-mentioned terminal device may be a wireless terminal or a wired terminal.
  • a wireless terminal may be a device that provides voice and/or other service data connectivity to a user, a handheld device with wireless connectivity, or other processing device connected to a wireless modem.
  • a wireless terminal can communicate with one or more core network devices via a RAN (Radio Access Network), and the wireless terminal can be a mobile terminal, such as a mobile phone (or called a "cellular" phone) and a mobile phone with a mobile terminal.
  • Computers for example, may be portable, pocket-sized, hand-held, computer-built-in or vehicle-mounted mobile devices that exchange language and/or data with the wireless access network.
  • the wireless terminal may also be a PCS (Personal Communication Service, personal communication service) phone, a cordless phone, a SIP (Session Initiation Protocol, session initiation protocol) phone, a WLL (Wireless Local Loop, wireless local loop) station, a PDA ( Personal Digital Assistant) and other devices.
  • a wireless terminal may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a connection Access Terminal, User Terminal, User Agent, User Device or User Equipment, which are not limited here.
  • the above-mentioned terminal device may also be a device such as a smart watch, a tablet computer, or the like.
  • random access message may correspond to msgA in the 2-step random access process
  • random access feedback message It can correspond to msgB in the 2-step random access process
  • the "first message” can correspond to msg1 in the 4-step random access process
  • the "second message” can correspond to msg2 in the 4-step random access process
  • the "third message” can correspond to msg3 in the 4-step random access process
  • "fourth message” can correspond to msg4 in the 4-step random access process.
  • FIG. 2 is a schematic diagram of a four-step random access process according to an embodiment of the present application. As shown in Figure 2, the 4-step random access procedure may include the following steps:
  • Step S201 the UE sends a first message msg1 to the network device, where the msg1 includes a random access preamble.
  • msg1 may include a random access preamble, and may also include other information, which will not be repeated here in this embodiment.
  • Step S202 the network device sends a second message msg2 to the UE.
  • msg2 may be a random access response message, but is not limited to this message.
  • the msg2 may further include one or more of a fallback indication, uplink grant information, and a random access network temporary identifier.
  • the msg2 may also include other information, which will not be repeated in this embodiment.
  • Step S203 the UE sends a third message msg3 to the network device.
  • msg3 may be an RRC (Radio Resource Control, Radio Resource Control) connection request message, but is not limited to this message.
  • msg3 may include a system architecture evolution temporary mobile station identifier, etc., and may also include other information, which will not be repeated in this embodiment.
  • Step S204 the network measuring device sends a fourth message msg4 to the UE.
  • msg4 may be an RRC connection establishment message, but is not limited to this message. msg4 may include contention resolution (Contention Resolution), etc. msg4 may also include other information, which will not be repeated in this embodiment.
  • FIG. 3 is a schematic diagram of a 2-step random access process according to an embodiment of the present application. As shown in Figure 3, the 2-step random access procedure may include the following steps:
  • Step S301 the UE sends a random access message msgA to the network device, where the msgA includes a random access preamble and a payload (Payload) sent on the PUSCH.
  • the msgA includes a random access preamble and a payload (Payload) sent on the PUSCH.
  • the UE sends a random access preamble through PRACH (Physical Random Access Channel, physical random access channel), and sends uplink data (Payload) to the network device through PUSCH.
  • PRACH Physical Random Access Channel
  • Payload uplink data
  • the msgA may also carry other information such as the UE identifier, which is not repeated here in this embodiment.
  • Step S302 the network device sends a random access feedback message msgB to the UE, where the msgB includes an acknowledgement indication.
  • msgB may include a confirmation indication.
  • msgB may further include contention resolution (Contention Resolution, abbreviated CR), fallback indication (Fallback Indication, abbreviated FI), fallback indication (Backoff Indication, abbreviated BI) and other information, which will not be repeated here in this embodiment.
  • contention resolution Contention Resolution, abbreviated CR
  • fallback indication Fallback Indication, abbreviated FI
  • BI Fallback indication
  • other information which will not be repeated here in this embodiment.
  • the 2-step random access process simplifies and optimizes the traditional 4-step random access process, improves the performance of terminal equipment accessing the network and sending data, and reduces the delay to meet the diversified 5G services. need.
  • the specific application scenario of this application in the 2-step random access process, when sending msgA, RO (PRACH occasion, the opportunity to send the random access preamble or the random access preamble sending time) and PO (PUSCH occasion, the transmission time of the uplink data)
  • the timing or uplink data transmission time) has the difference in time, the unit is time slot (slot), each RO has a corresponding available PO, that is, there is a time interval for sending the random access preamble and uplink data , are not sent on the same time slot at the same time, but are sent on the time slot for sending the random access preamble and the time slot for sending uplink data, respectively, and the random access preamble and uplink data cannot be sent at the same time.
  • the measurement gap overlaps with the PO, the measurement gap is usually not considered, and uplink data is normally sent at the PO, so that the UE cannot determine the candidate cell.
  • the UE needs to wait for the maximum number of transmissions before performing cell reselection. At this time, there is no confirmed candidate neighbor cell to directly establish a connection, which will cause a delay in connection establishment. .
  • the data transmission method provided by the present application aims to determine the sending time of random access information (including uplink data) based on the above scenario, according to the random access parameter and the measurement gap parameter, so as to realize the original sending time of the uplink data and the measurement gap.
  • the actual transmission time of uplink data is re-determined so that the actual transmission time of uplink data does not overlap with the measurement gap, so that neighbor cell measurement can be performed normally and more candidate cells can be found.
  • random access failure occurs in the existing serving cell , it can quickly switch to another neighboring cell and initiate random access, which can improve the success rate of random access and reduce the delay.
  • FIG. 4 is a flowchart of a data processing method provided in Embodiment 1 of the present application. As shown in Figure 4, the specific steps of the method are as follows:
  • Step S401 the UE determines the random access information sending time according to the random access parameter and the measurement gap parameter, where the random access information includes at least one of the following: uplink data or uplink data and time difference information.
  • the UE may determine the sending time of the random access information including the above data according to the random access parameter and the measurement gap parameter, so that the actual sending time of the uplink data does not overlap with the measurement gap.
  • Step S402 the network device receives the random access information sent by the UE, the random access information includes at least one of the following: uplink data or uplink data and time difference information, and the actual sending time of the random access information is determined by the UE according to random access parameters and measurements.
  • the gap parameter is determined.
  • the network device After the network device receives the random access information sent by the UE, if the random access information includes uplink data and time difference information, the network device can determine the random access preamble corresponding to the uplink data according to the time difference information and the actual sending time of the uplink data.
  • the random access information may further include a random access preamble.
  • the UE determines the random access information sending time according to the random access parameter and the measurement gap parameter, and the random access information includes at least one of the following: uplink data or uplink data and time difference information, and the network device receives the information sent by the UE.
  • the random access information realizes that when the original transmission time of the uplink data overlaps with the measurement gap, the actual transmission time of the uplink data is re-determined, so that the actual transmission time of the uplink data does not overlap with the measurement gap, so that the neighbor cell measurement can be performed normally. , find more candidate cells, when the existing serving cell fails random access, it can quickly switch to another neighboring cell and initiate random access, which can improve the success rate of random access and reduce the delay.
  • FIG. 5 is a flowchart of a data processing method provided in Embodiment 2 of the present application.
  • determining the random access information sending time according to the random access parameter and the measurement gap parameter includes: according to the random access parameter and the measurement gap parameter, if the random access information is determined If the original transmission time of the mid-uplink data overlaps with the measurement gap, the actual transmission time of the uplink data and/or the time difference information between the original transmission time and the actual transmission time are determined.
  • the network device determines the random access preamble corresponding to the uplink data according to the time difference information and the random access parameter.
  • Step S500 the network device sends random access parameters and/or measurement gap parameters.
  • Step S501 the UE receives random access parameters and/or measurement gap parameters.
  • the random access parameter includes at least one of the following:
  • At least one random access preamble transmission time slot (RACH slot); the time difference between at least one random access preamble transmission time slot and the uplink data transmission time slot (PUSCH slot); at least one uplink data transmission time slot adjacent to The time difference between two uplink data transmission times (PO); the number of uplink data transmission times included in at least one uplink data transmission time slot; at least one random access preamble transmission time (RO) and the uplink data transmission time ( Correspondence between PO).
  • the timing at which the UE can send random access information can be configured through the network and obtained through a system message (ra-ssb-OccasionMaskIndex); the time difference between the RO and the PO can be configured through the network upper layer signaling RRC ( msgA-PUSCH-TimeDomainOffset); the interval between PO and PO in a time slot can be configured through the network upper layer signaling RRC (guardPeriodMsgAPUSCH), the unit is symbols (symbols); how many POs in a time slot can pass through the network
  • the upper layer signaling RRC configuration (nrofMsgAPOperSlot); each RO has a corresponding available PO, and the time difference (msgA-PUSCH-TimeDomainOffset) between the RO and the PO is shown in Figure 6, and the unit is a slot (slot). ).
  • the measurement gap refers to a period during which the UE can perform measurement.
  • the measurement gap parameter includes at least one of the following:
  • Measurement Gap Length MDL for short
  • Measurement Gap Timing Advance MGTA for short
  • the measurement gap duration can be any of the following: 1.5ms, 3ms, 3.5ms, 4ms, 5.5ms, 6ms.
  • the measurement gap duration can be configured as shown in FIG. 7 .
  • MGTA can be configured to any of the following: 0ms, 0.25ms, 0.5ms.
  • the MGTA can be configured as shown in Figure 8.
  • the measurement is performed on a predetermined subframe in advance according to the MGTA.
  • a radio frame has a length of 10ms
  • a subframe has a length of 1ms
  • each frame consists of 10 subframes with a duration of 1ms.
  • interval of a time slot can be calculated according to the relationship between the time slot and the subframe, as shown in Table 1 below:
  • is the identification
  • Indicates how many symbols (symbols) are in a slot Indicates how many time slots there are in a frame
  • Step S502 the UE determines the actual sending time of the uplink data, and/or the original sending time and the actual sending time if it is determined that the original sending time of the uplink data in the random access information overlaps the measuring gap according to the random access parameter and the measurement gap parameter. Time difference information.
  • the time difference information is used to indicate that there is a time difference between the actual sending time of the uplink data and the original sending time, and the time difference information at least includes: the time difference between the actual sending time of the uplink data and the original sending time.
  • the random access information may further include a random access preamble.
  • the time difference between the actual sending time of the uplink data and the original sending time may be represented by a quantity including a unit time interval.
  • the unit time interval may be the interval (guardPeriodMsgAPUSCH) between the PO and the PO in a time slot.
  • the time difference is n, it means that the time difference is a time difference of n ⁇ guardPeriodMsgAPUSCH symbols.
  • the measurement gap does not completely overlap with multiple POs in a PUSCH slot.
  • the UE determines the original transmission time of uplink data (which can be represented by "PO#1") and When the measurement gaps overlap, other feasible POs can be considered, and one of the other feasible POs can be selected as the actual transmission time of the uplink data (it can be represented by "PO#2"), and the original transmission time PO#1 of the uplink data can also be calculated.
  • the time difference between the actual sending time PO#2 in the time domain (it can be represented by "PO offset ").
  • other feasible POs may be uplink data transmission times that do not overlap with the measurement gap in the time slot where the original transmission time is located.
  • determining the actual sending time of the uplink data may be implemented in the following manner:
  • a method for determining an uplink data transmission time from the uplink data transmission time that does not overlap with the measurement gap includes at least one of the following:
  • the earliest uplink data transmission time among the uplink data transmission times that do not overlap with the measurement gap may be used as the actual transmission time, which can further reduce the transmission delay of the uplink data.
  • the latest uplink data transmission time among the uplink data transmission times that do not overlap with the measurement gap may be used as the actual transmission time.
  • any uplink data sending time except the earliest or the latest among the uplink data sending times that do not overlap with the measurement gap may be used as the actual sending time.
  • the randomly selected uplink data transmission time can be any uplink data transmission time from the earliest, the latest, or the middle as the actual transmission time. Because it is randomly selected, it can further improve the random access success rate and Reduce latency.
  • Step S503 the UE sends random access information at the actual sending time.
  • the UE After determining the actual sending time of the uplink data, the UE sends random access information including the uplink data at the actual sending time.
  • the time difference information between the original sending time and the actual sending time may also be carried in the random access information for sending; that is, the random access
  • the information includes uplink data and time difference information.
  • the time difference information may be carried in the random access information and sent, optionally, the time difference information may be carried in the random access information as control information and sent.
  • the time difference information may be carried in a header of a media access control protocol data unit (MAC PDU), or in a payload (payload), or in a control element (MAC CE) for transmission.
  • MAC PDU media access control protocol data unit
  • payload payload
  • MAC CE control element
  • time difference information may also be carried in a subheader (subheader) in a subdata unit (MAC subPDU) of the media access control protocol data unit for transmission.
  • subheader subheader
  • MAC subPDU subdata unit
  • Figure 9 shows a format of the MAC PDU of uplink data.
  • the MAC PDU includes multiple MAC subPDUs, and some MAC subPDUs include subheaders and MAC SDUs.
  • the time difference information can be carried in the subheader of the MAC subPDU.
  • some MAC subPDUs contain subheader and MAC CE, and the time difference information can be carried in the MAC CE of the MAC subPDU.
  • the MAC PDU can also be implemented in other formats.
  • the time difference information can be carried in the MAC PDU as control information. Specifically, which part of the MAC PDU can be configured according to the format of the MAC PDU, or a new column can be added in the MAC PDU. bit to store time difference information, which is not specifically limited in this embodiment.
  • Step S504 the network device receives random access information.
  • the random access information includes at least one of the following: uplink data or uplink data and time difference information, and the actual sending time of the random access information is determined according to the random access parameter and the measurement gap parameter.
  • the random access information received by the network device is sent by the UE at the determined actual sending time.
  • the actual sending time is: a determined sending time of uplink data in the sending time of uplink data that does not overlap with the measurement gap in the time slot where the original sending time is located.
  • a method for determining an uplink data transmission time may be: determining the earliest, middle, or latest, or randomly selected uplink data transmission time.
  • the earliest uplink data transmission time among the uplink data transmission times that do not overlap with the measurement gap may be used as the actual transmission time, which can further reduce the transmission delay of the uplink data.
  • the latest uplink data transmission time among the uplink data transmission times that do not overlap with the measurement gap may be used as the actual transmission time.
  • any uplink data sending time except the earliest or the latest among the uplink data sending times that do not overlap with the measurement gap may be used as the actual sending time.
  • the randomly selected uplink data transmission time can be any uplink data transmission time from the earliest, the latest, or the middle as the actual transmission time. Because it is randomly selected, it can further improve the random access success rate and Reduce latency.
  • the time difference information is carried in the random access information, optionally, the time difference information is carried in the random access information as control information.
  • the time difference information is carried in the header, or bearer, or control element of the media access control protocol data unit.
  • Step S505 the network device determines the random access preamble corresponding to the uplink data according to the time difference information and the random access parameter.
  • the network device After receiving the random access information, if the random access information includes time difference information, the network device determines the random access preamble corresponding to the uplink data according to the time difference information and the random access parameter.
  • this step can be specifically implemented in the following manner:
  • the time difference information and the actual sending time of the uplink data determine the original sending time corresponding to the uplink data; according to the original sending time and random access parameters, determine the random access preamble sending time corresponding to the uplink data; according to the random access preamble sending time , and determine the random access preamble corresponding to the uplink data.
  • a RACH slot contains two ROs (RO#1 and RO#2)
  • a PUSCH slot contains two POs (PO#1 and PO#2)
  • a RACH slot and PUSCH The slots are all 1 ms in length, and the configured measurement gap (measurement gap) interval may be 1.5 ms as an example for illustrative illustration.
  • the UE selects RO#1 as the random access preamble (preamble) for sending msgA, its corresponding PO#1 just overlaps with the measurement gap (MG in Figure 10).
  • the UE can choose to use PO#2 for sending msgA uplink data (payload) opportunity (occasion), in this example PO#1 and PO#2 are two consecutive POs, so the interval is the interval between PO and PO in a time slot configured in the above step S501 ( guardPeriodMsgAPUSCH).
  • the UE may carry a unit of time difference information in the msgA containing uplink data sent by PO#2, and the time difference information indicates that the actual sending time PO#2 of the sent uplink data is different from the originally scheduled original sending time PO#1
  • the time difference one unit represents the time difference between the actual sending time PO#2 and the original sending time PO#1.
  • the value PO offset is: 1 ⁇ guardPeriodMsgAPUSCH symbol time.
  • the base station When the base station receives the msgA containing uplink data sent by the UE at PO#2, it can determine the time when the UE sends the random access preamble according to the time difference value PO offset carried by it, and further determine the random access preamble corresponding to the uplink data.
  • the measurement gap duration (MGL) is 3ms
  • the measurement gap advance time (MGTA) is 0.5ms
  • a time slot interval is 1ms as an example: the measurement gap (MG) time is advanced by 0.5ms, if The uplink data is originally to be sent in the first half of the third slot, so the uplink data (payload of msgA) can be sent in the second half (0.5ms) time interval of the third slot.
  • the measurement gap duration (MGL) is 3ms
  • the measurement gap time advance (MGTA) is 0.25ms
  • a time slot interval is 0.5ms as an example: the measurement gap (MG) time is advanced by 0.25ms
  • the measurement gap duration (MGL) is 3ms
  • the measurement gap time advance (MGTA) is 0.25ms
  • a time slot interval is 1ms as an example: the measurement gap (MG) time is advanced by 0.25ms, if The uplink data is originally to be sent in the first half of the third slot, so the uplink data (payload of msgA) can be sent in the last 0.25ms time interval of the third slot.
  • the UE when determining that the original transmission time of uplink data overlaps with the measurement gap, determines an uplink data transmission time from the uplink data transmission time that does not overlap with the measurement gap, as the actual transmission time.
  • the random access information of uplink data and time difference information After receiving the random access information, the network device determines the random access preamble corresponding to the uplink data according to the time difference information and random access parameters. Neighbor cell measurement is performed normally to find more candidate cells. When random access failure occurs in the existing serving cell, it can quickly switch to another neighbor cell and initiate random access, which can improve the success rate of random access and reduce delay. .
  • FIG. 14 is a schematic structural diagram of a terminal device according to Embodiment 3 of the present application.
  • the terminal device provided in this embodiment of the present application may execute the processing flow executed by the UE in Embodiment 1.
  • the terminal device 60 includes: a time determination module 601 .
  • the time determining module 601 is configured to: determine the random access information sending time according to the random access parameter and the measurement gap parameter, where the random access information includes at least one of the following: uplink data or uplink data and time difference information.
  • the random access information may further include a random access preamble.
  • the terminal device provided in this embodiment of the present application may be specifically used to execute the method process performed by the UE in the above-mentioned first embodiment, and the specific functions will not be repeated here.
  • the UE determines the random access information sending time according to the random access parameter and the measurement gap parameter, and the random access information includes at least one of the following: uplink data or uplink data and time difference information, and the network device receives the information sent by the UE.
  • the random access information realizes that when the original transmission time of uplink data overlaps with the measurement gap, the actual transmission time of uplink data is re-determined, so that the actual transmission time of uplink data does not overlap with the measurement gap, so that neighbor cell measurement can be performed normally , find more candidate cells, and when random access failure occurs in the existing serving cell, it can quickly switch to another neighboring cell and initiate random access, which can improve the success rate of random access.
  • FIG. 15 is a schematic structural diagram of a terminal device according to Embodiment 4 of the present application.
  • the time determination module is further used for:
  • the actual transmission time of the uplink data and/or the time difference information between the original transmission time and the actual transmission time are determined.
  • the terminal device 60 further includes:
  • the sending module 602 is configured to: send the random access information at the actual sending time.
  • the time determination module is further used for:
  • the method of determining an uplink data transmission time from the uplink data transmission time that does not overlap with the measurement gap may be: determining the earliest or middle or latest or randomly selected uplink data transmission time as Actual delivery time.
  • the earliest uplink data transmission time among the uplink data transmission times that do not overlap with the measurement gap may be used as the actual transmission time, which can further reduce the transmission delay of the uplink data.
  • the latest uplink data transmission time among the uplink data transmission times that do not overlap with the measurement gap may be used as the actual transmission time.
  • any uplink data sending time except the earliest or the latest among the uplink data sending times that do not overlap with the measurement gap may be used as the actual sending time.
  • the randomly selected uplink data transmission time can be any uplink data transmission time from the earliest, the latest, or the middle as the actual transmission time. Because it is randomly selected, it can further improve the random access success rate and Reduce latency.
  • the time difference information at least includes: a time difference between the actual sending time of the uplink data and the original sending time.
  • the time difference information is carried in the random access information and sent, optionally, the time difference information is carried in the random access information as control information and sent.
  • the time difference information is carried in the header, or the bearer, or the control element of the media access control protocol data unit and sent.
  • the terminal device 60 further includes:
  • a receiving module 603, configured to: receive random access parameters and/or measurement gap parameters.
  • the random access parameter includes at least one of the following:
  • the measurement gap parameter includes at least one of the following:
  • Measurement Gap Duration Measurement Gap Advance Time.
  • the terminal device provided in this embodiment of the present application may be specifically used to execute the method process performed by the UE in the second embodiment above, and the specific functions will not be repeated here.
  • the UE when determining that the original transmission time of uplink data overlaps with the measurement gap, determines an uplink data transmission time from the uplink data transmission time that does not overlap with the measurement gap, as the actual transmission time.
  • the random access information of uplink data and time difference information After receiving the random access information, the network device determines the random access preamble corresponding to the uplink data according to the time difference information and random access parameters. Neighbor cell measurement is performed normally to find more candidate cells. When random access failure occurs in the existing serving cell, it can quickly switch to another neighbor cell and initiate random access, which can improve the success rate of random access and reduce delay. .
  • FIG. 16 is a schematic structural diagram of a network device according to Embodiment 5 of the present application.
  • the network device provided in this embodiment of the present application may execute the processing flow of the network device in the first embodiment.
  • the network device 70 includes: a receiving module 701 .
  • the receiving module 701 is configured to receive random access information, the random access information includes at least one of the following: uplink data or uplink data and time difference information, and the actual sending time of the random access information is based on random access parameters and measurement gaps parameters are determined.
  • the random access information may further include a random access preamble.
  • the network device provided in this embodiment of the present application may be specifically used to execute the processing flow performed by the network device in the above-mentioned first embodiment, and the specific functions will not be repeated here.
  • the UE determines the random access information sending time according to the random access parameter and the measurement gap parameter, and the random access information includes at least one of the following: uplink data or uplink data and time difference information, and the network device receives the information sent by the UE.
  • the random access information realizes that when the original transmission time of uplink data overlaps with the measurement gap, the actual transmission time of uplink data is re-determined, so that the actual transmission time of uplink data does not overlap with the measurement gap, so that neighbor cell measurement can be performed normally , find more candidate cells, when the existing serving cell fails random access, it can quickly switch to another neighboring cell and initiate random access, which can improve the success rate of random access and reduce the delay.
  • FIG. 17 is a schematic structural diagram of a network device according to Embodiment 6 of the present application.
  • the network device 70 further includes: a data processing module 702, configured to: determine the random access parameter corresponding to the uplink data according to the time difference information and the random access parameter. Access preamble.
  • the data processing module 702 is further configured to:
  • the time difference information and the actual sending time of the uplink data determine the original sending time corresponding to the uplink data; according to the original sending time and random access parameters, determine the random access preamble sending time corresponding to the uplink data; according to the random access preamble sending time , and determine the random access preamble corresponding to the uplink data.
  • the actual transmission time is: a determined uplink data transmission time among the uplink data transmission times that do not overlap with the measurement gap in the time slot where the original transmission time is located.
  • a method of determining an uplink data transmission time may be: from the actual transmission time to the time slot that does not overlap with the measurement gap In the uplink data transmission time, determine the earliest or middle or latest or randomly selected uplink data transmission time.
  • the earliest uplink data transmission time among the uplink data transmission times that do not overlap with the measurement gap may be used as the actual transmission time, which can further reduce the transmission delay of the uplink data.
  • the latest uplink data transmission time among the uplink data transmission times that do not overlap with the measurement gap may be used as the actual transmission time.
  • any uplink data sending time except the earliest or the latest among the uplink data sending times that do not overlap with the measurement gap may be used as the actual sending time.
  • the randomly selected uplink data transmission time can be any uplink data transmission time from the earliest, the latest, or the middle as the actual transmission time. Because it is randomly selected, it can further improve the random access success rate and Reduce latency.
  • the time difference information at least includes: a time difference between the actual sending time of the uplink data and the original sending time.
  • the time difference information is carried in the random access information, optionally, the time difference information is carried in the random access information as control information.
  • the time difference information is carried in the header, or bearer, or control element of the media access control protocol data unit.
  • the network device 70 further includes: a sending module 703, configured to: send random access parameters and/or measurement gap parameters.
  • the random access parameter includes at least one of the following:
  • the measurement gap parameter includes at least one of the following:
  • Measurement Gap Duration Measurement Gap Advance Time.
  • the network device provided in this embodiment of the present application may be specifically used to execute the method process performed by the network device in the foregoing second embodiment, and the specific functions will not be repeated here.
  • the UE when determining that the original transmission time of uplink data overlaps with the measurement gap, determines an uplink data transmission time from the uplink data transmission time that does not overlap with the measurement gap, as the actual transmission time.
  • the random access information of uplink data and time difference information After receiving the random access information, the network device determines the random access preamble corresponding to the uplink data according to the time difference information and random access parameters. Neighbor cell measurement is performed normally to find more candidate cells. When random access failure occurs in the existing serving cell, it can quickly switch to another neighbor cell and initiate random access, which can improve the success rate of random access and reduce delay. .
  • FIG. 18 is a schematic structural diagram of a terminal device according to Embodiment 7 of the present application.
  • the terminal device includes: a processor 1001 and a memory 1002 .
  • Memory 1002 stores computer-executable instructions.
  • the processor 1001 executes the computer-executed instructions stored in the memory 1002, so that the processor 1001 executes the method process performed by the UE in any of the foregoing method embodiments.
  • the UE determines the random access information sending time according to the random access parameter and the measurement gap parameter, and the random access information includes at least one of the following: uplink data or uplink data and time difference information, and the network device receives the information sent by the UE.
  • the random access information realizes that when the original transmission time of the uplink data overlaps with the measurement gap, the actual transmission time of the uplink data is re-determined, so that the actual transmission time of the uplink data does not overlap with the measurement gap, so that the neighbor cell measurement can be performed normally. , find more candidate cells, when the existing serving cell fails random access, it can quickly switch to another neighboring cell and initiate random access, which can improve the success rate of random access and reduce the delay.
  • FIG. 19 is a schematic structural diagram of a network device according to Embodiment 8 of the present application.
  • the network device 110 includes: a processor 1101 and a memory 1102 .
  • the memory 1102 stores computer-executed instructions; the processor 1101 executes the computer-executed instructions stored in the memory 1102, so that the processor 1101 executes the method process performed by the network device in any of the above method embodiments.
  • the UE determines the random access information sending time according to the random access parameter and the measurement gap parameter, and the random access information includes at least one of the following: uplink data or uplink data and time difference information, and the network device receives the information sent by the UE.
  • the random access information realizes that when the original transmission time of the uplink data overlaps with the measurement gap, the actual transmission time of the uplink data is re-determined, so that the actual transmission time of the uplink data does not overlap with the measurement gap, so that the neighbor cell measurement can be performed normally. , find more candidate cells, when the existing serving cell fails random access, it can quickly switch to another neighboring cell and initiate random access, which can improve the success rate of random access and reduce the delay.
  • Embodiments of the present application further provide a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the computer-executable instructions are executed by a processor, are used to implement the method performed by the UE in any of the foregoing method embodiments process.
  • Embodiments of the present application further provide a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the computer-executable instructions are executed by a processor, are used to implement the operations executed by the network device in any of the foregoing method embodiments. method flow.
  • Embodiments of the present application also provide a computer program product, where the computer program product includes computer program code, when the computer program code runs on a computer, the computer can execute the methods in the various possible implementation manners above.
  • the embodiments of the present application further provide a chip, including a memory and a processor, the memory is used for storing a computer program, and the processor is used for calling and running the computer program from the memory, so that the device with the chip installed performs the above various possible implementation manners. Methods.
  • step codes such as S201 and S202 are used, the purpose of which is to express the corresponding content more clearly and briefly, and does not constitute a substantial restriction on the sequence.
  • S202 will be executed first and then S201, etc., but these should all fall within the protection scope of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据处理方法、设备及计算机可读储存介质。所述方法中,UE根据随机接入参数和测量间隙参数,确定随机接入信息发送时间,所述随机接入信息包含以下至少一种:上行数据或上行数据与时间差信息(S401),网络设备接收UE发送的该随机接入信息(S402),实现了在上行数据的原发送时间与测量间隙重叠时,重新确定上行数据的实际发送时间,使得上行数据的实际发送时间与测量间隙不重叠,从而可以正常进行邻小区测量,寻找更多候选小区,当现有服务小区发生随机接入失败时,可以很快切换至另一个邻小区并发起随机接入,能够提高随机接入成功率。

Description

数据处理方法、设备及计算机可读储存介质 技术领域
本申请实施例涉及通信技术,尤其涉及一种数据处理方法、设备及计算机可读储存介质。
背景技术
UE(User Equipment,用户设备)能够根据网络配置的测量间隙进行邻小区的测量,以发现更多的候选小区。
在测量间隙期间,UE不能发送任何上行数据。目前在2步随机接入过程中,当测量间隙与PO(PUSCH occasion,发送上行数据机会)重叠时,通常不考虑测量间隙,而在PO正常发送上行数据(payload),这样UE将无法确定候选小区。这样,当网路拥塞导致没有响应UE发起的随机接入信息,UE需要等待至发送最大次数后进行小区重选,此时没候选的邻小区可直接建立连接,将导致连接建立时延。
前面的叙述在于提供一般的背景信息,并不一定构成现有技术。
发明内容
本申请实施例提供一种数据处理方法、设备及计算机可读储存介质,用以解决当测量间隙与PO重叠时,无法确定候选小区,导致UE连接建立时延问题。
第一方面,本申请的实施例提供一种数据处理方法,应用于终端设备,所述方法包括:
根据随机接入参数和测量间隙参数,确定随机接入信息发送时间,所述随机接入信息包含以下至少一种:上行数据或上行数据与时间差信息。
可选地,所述随机接入信息还可以包含随机接入前导。
可选地,所述根据随机接入参数和测量间隙参数,确定随机接入信息发送时间,包括:
根据随机接入参数和测量间隙参数,若确定所述随机接入信息中上行数据的 原发送时间与测量间隙重叠,则确定所述上行数据的实际发送时间,和/或所述原发送时间和所述实际发送时间的时间差信息。
可选地,所述确定所述上行数据的实际发送时间,和/或所述原发送时间和所述实际发送时间的时间差信息之后,还包括:在所述实际发送时间发送所述随机接入信息。
可选地,所述确定所述上行数据的实际发送时间,包括:
确定所述原发送时间所在时隙内与所述测量间隙无重叠的上行数据发送时间;
从所述与所述测量间隙无重叠的上行数据发送时间中确定一个上行数据发送时间,作为所述实际发送时间。
可选地,从所述与所述测量间隙无重叠的上行数据发送时间中确定一个上行数据发送时间的方式包括以下至少一种:
确定最早的上行数据发送时间,作为所述实际发送时间;
确定中间的上行数据发送时间,作为所述实际发送时间;
确定最晚的上行数据发送时间,作为所述实际发送时间;
随机选择一个上行数据发送时间,作为所述实际发送时间。
可选地,所述时间差信息至少包括:所述上行数据的实际发送时间与原发送时间之间的时间差值。
可选地,将所述时间差信息作为控制信息携带在所述随机接入信息中发送。
可选地,所述将所述时间差信息携带在所述随机接入信息中发送,包括:
将所述时间差信息携带在媒体访问控制协议数据单元的表头、或者承载、或者控制元素中发送。
可选地,还包括:接收随机接入参数和/或测量间隙参数。
可选地,所述随机接入参数包括以下至少一种:
至少一个随机接入前导发送时隙;
至少一个随机接入前导发送时隙与上行数据发送时隙之间的时间差值;
至少一个上行数据发送时隙中相邻两个上行数据发送时间之间的时间差值;
至少一个上行数据发送时隙中包含的上行数据发送时间的数量;
至少一个随机接入前导发送时间与上行数据发送时间之间的对应关系。
可选地,所述测量间隙参数包括以下至少一种:
测量间隙时长;
测量间隙提前时间。
第二方面,本申请的实施例提供一种数据处理方法,应用于网络设备,所述方法包括:
接收随机接入信息,所述随机接入信息包含以下至少一种:上行数据或上行数据与时间差信息,所述随机接入信息的实际发送时间是根据随机接入参数和测量间隙参数确定的。
可选地,所述随机接入信息还可以包含随机接入前导。
可选地,所述接收随机接入信息之后,还包括:
根据所述时间差信息和随机接入参数,确定所述上行数据对应的随机接入前导。
可选地,所述根据所述时间差信息和随机接入参数,确定所述上行数据对应的随机接入前导,包括:
根据所述时间差信息和所述上行数据的实际发送时间,确定所述上行数据对应的原发送时间;
根据所述原发送时间,以及随机接入参数,确定所述上行数据对应的随机接入前导发送时间;
根据所述随机接入前导发送时间,确定所述上行数据对应的随机接入前导。
可选地,所述实际发送时间为:在所述原发送时间所在时隙内与所述测量间隙无重叠的上行数据发送时间中,确定的一个上行数据发送时间。
可选地,在所述原发送时间所在时隙内与所述测量间隙无重叠的上行数据发送时间中,确定一个上行数据发送时间的方式包括以下至少一种:
确定最早的上行数据发送时间;
确定中间的上行数据发送时间;
确定最晚的上行数据发送时间;
随机选择一个上行数据发送时间。
可选地,所述时间差信息至少包括:所述上行数据的实际发送时间与原发送时间之间的时间差值。
可选地,所述时间差信息作为控制信息携带在所述随机接入信息中。
可选地,所述时间差信息携带在媒体访问控制协议数据单元的表头、或者承载、或者控制元素中。
可选地,还包括:发送随机接入参数和/或测量间隙参数。
可选地,所述随机接入参数包括以下至少一种:
至少一个随机接入前导发送时隙;
至少一个随机接入前导发送时隙与上行数据发送时隙之间的时间差值;
至少一个上行数据发送时隙中相邻两个上行数据发送时间之间的时间差值;
至少一个上行数据发送时隙中包含的上行数据发送时间的数量;
至少一个随机接入前导发送时间与上行数据发送时间之间的对应关系。
可选地,所述测量间隙参数包括以下至少一种:
测量间隙时长;
测量间隙提前时间。
第三方面,本申请的实施例提供一种终端设备,包括:
时间确定模块,用于根据随机接入参数和测量间隙参数,确定随机接入信息发送时间,所述随机接入信息包含以下至少一种:上行数据或上行数据与时间差信息。
可选地,所述随机接入信息还可以包含随机接入前导。
第四方面,本申请的实施例提供一种网络设备,包括:
接收模块,用于接收随机接入信息,所述随机接入信息包含以下至少一种:上行数据或上行数据与时间差信息,所述随机接入信息的实际发送时间是根据随机接入参数和测量间隙参数确定的。
可选地,所述随机接入信息还可以包含随机接入前导。
第五方面,本申请的实施例提供一种终端设备,包括:处理器和存储器;
所述存储器存储计算机执行指令;
所述计算机执行指令被所述处理器执行时实现上述第一方面所述的数据处理方法。
第六方面,本申请的实施例提供一种网络设备,包括:处理器和存储器;
所述存储器存储计算机执行指令;
所述计算机执行指令被所述处理器执行时实现上述第二方面所述的数据处理方法。
第七方面,本申请的实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现上述第一方面或者第二方面所述的数据处理方法。
本申请实施例提供的数据处理方法、设备及计算机可读储存介质,UE根据随机接入参数和测量间隙参数,确定随机接入信息发送时间,所述随机接入信息包含以下至少一种:上行数据或上行数据与时间差信息,网络设备接收UE发送的该随机接入信息,实现了在上行数据的原发送时间与测量间隙重叠时,重新确定上行数据的实际发送时间,使得上行数据的实际发送时间与测量间隙不重叠,从而可以正常进行邻小区测量,寻找更多候选小区,当现有服务小区发生随机接入失败时,可以很快切换至另一个邻小区并发起随机接入,能够提高随机接入成功率与降低时延。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
图1为本申请实施例提供的一种通信系统架构示意图;
图2为本申请实施例提供的一种4步随机接入过程的示意图;
图3为本申请实施例提供的一种2步随机接入过程的示意图;
图4为本申请实施例一提供的一种数据处理方法流程图;
图5为本申请实施例二提供的一种数据处理方法流程图;
图6为本申请实施例二提供的RO与PO之间时间上的差值的示意图;
图7为本申请实施例二提供的一种测量间隙时长的配置方式;
图8为本申请实施例二提供的一种MGTA的配置方式;
图9为本申请实施例二提供的一种MAC PDU的格式;
图10为本申请实施例二提供的一种PO与测量间隙重叠的示意图;
图11为本申请实施例二提供的一种PO与测量间隙重叠的示意图;
图12为本申请实施例二提供的一种PO与测量间隙重叠的示意图;
图13为本申请实施例二提供的一种PO与测量间隙重叠的示意图;
图14为本申请实施例三提供的一种终端设备的结构示意图;
图15为本申请实施例四提供的一种终端设备的结构示意图;
图16为本申请实施例五提供的一种网络设备的结构示意图;
图17为本申请实施例六提供的一种网络设备的结构示意图;
图18为本申请实施例七提供的一种终端设备的结构示意图;
图19为本申请实施例八提供的一种网络设备的结构示意图。
通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
应当理解,尽管在本文可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本文范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语"如果"可以被解释成为"在……时"或"当……时"或"响应于确定"。再者,如同在本文中所使用的,单数形式“一”、“一个”和“该”旨在也包括复数形式,除非上下文中有相反的指示。应当进一步理解,术语“包含”、“包括”表明存在的特征、步骤、操作、元件、组件、项目、种类、和/或组,但不排除一个或多个其他特征、步骤、操作、元件、组件、项目、种类、和/或组的存在、出现或添加。此处使用的术语“或”和“和/或”被解释为包括性的,或意味着任一个或任何组合。因此, “A、B或C”或者“A、B和/或C”意味着“以下任一个:A;B;C;A和B;A和C;B和C;A、B和C”。仅当元件、功能、步骤或操作的组合在某些方式下内在地互相排斥时,才会出现该定义的例外。
本申请实施例提供的数据处理方法,可以适用于图1所示的通信系统架构示意图。如图1所示,该通信系统包括:网络设备以及多个终端设备,假设多个终端设备包括图中的终端设备1、终端设备2、终端设备3和终端设备4。需要说明的是,图1所示的通信系统可以适用于不同的网络制式,例如,可以适用于GSM(Global System of Mobile communication,全球移动通讯)、CDMA(Code Division Multiple Access,码分多址)、WCDMA(Wideband Code Division Multiple Access,宽带码分多址)、TD-SCDMA(Time Division-Synchronous Code Division Multiple Access,时分同步码分多址)、LTE(Long Term Evolution,长期演进)系统及未来的5G等网络制式。可选的,上述通信系统可以为5G通信系统中URLLC(Ultra-Reliable and Low Latency Communications,高可靠低时延通信)传输的场景中的系统。
故而,可选的,上述网络设备可以是GSM或CDMA中的BTS(Base Transceiver Station,基站)和/或基站控制器,也可以是WCDMA中的NB(NodeB,基站)和/或RNC(Radio Network Controller,无线网络控制器),还可以是LTE中的演进型eNB(Evolutional Node B,基站)或eNodeB,或者中继站或接入点,或者未来5G网络中的基站(gNB)等,本申请在此并不限定。
上述终端设备可以是无线终端也可以是有线终端。无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经RAN(Radio Access Network,无线接入网)与一个或多个核心网设备进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。再例如,无线终端还可以是PCS(Personal Communication Service,个人通信业务)电话、无绳电话、SIP(Session Initiation Protocol,会话发起协议)话机、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digital Assistant,个人数字助理)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile  Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。可选的,上述终端设备还可以是智能手表、平板电脑等设备。
需要说明的是,为了方便描述及理解,本申请的说明书和权利要求书及上述附图中,“随机接入消息”可以对应2步随机接入过程中的msgA,“随机接入反馈消息”可以对应2步随机接入过程中的msgB,“第一消息”可以对应4步随机接入过程中的msg1,“第二消息”可以对应4步随机接入过程中的msg2,“第三消息”可以对应4步随机接入过程中的msg3,“第四消息”可以对应4步随机接入过程中的msg4。
图2为本申请实施例提供的一种4步随机接入过程的示意图。如图2所示,4步随机接入过程可以包括以下步骤:
步骤S201、UE向网络设备发送第一消息msg1,msg1包括随机接入前导。
该步骤中,msg1可以包括随机接入前导,还可以包括其他信息,本实施例此处不再赘述。
步骤S202、网络设备向UE发送第二消息msg2。
该步骤中,msg2可以为随机接入响应消息,但不限于此消息。msg2还可以包括回退指示、上行授权信息、随机接入网络临时标识中的一项或者多项,当然,msg2还可以包括其他信息,本实施例此处不再赘述。
步骤S203、UE向网络设备发送第三消息msg3。
该步骤中,msg3可以为RRC(Radio Resource Control,无线资源控制)连接请求消息,但不限于此消息。msg3可以包括系统架构演进临时移动站标识符等,还可以包括其他信息,本实施例此处不再赘述。
步骤S204、网络测设备向UE发送第四消息msg4。
该步骤中,msg4可以为RRC连接建立消息,但不限于此消息。msg4可以包括竞争解决(Contention Resolution)等,msg4还可以包括其他信息,本实施例此处不再赘述。
图3为本申请实施例提供的一种2步随机接入过程的示意图。如图3所示,2步随机接入过程可以包括如下步骤:
步骤S301、UE向网络设备发送随机接入消息msgA,msgA包括随机接入前 导和在PUSCH上发送的载荷(Payload)。
该步骤中,UE通过PRACH(Physical Random Access Channel,物理随机接入信道)发送随机接入前导,通过PUSCH向网络设备发送上行数据(Payload)。另外,msgA还可以携带UE标识等其他信息,本实施例此处不再赘述。
步骤S302、网络设备向UE发送随机接入反馈消息msgB,msgB包括确认指示。
该步骤中,msgB可以包括确认指示。msgB还可以包括竞争解决(Contention Resolution,缩写CR)、回落指示(Fallback Indication,缩写FI)、回退指示(Backoff Indication,缩写BI)等信息,本实施例此处不再赘述。
由此可见,2步随机接入过程对传统4步随机接入过程进行了简化和优化,提升了终端设备接入网络和发送数据的性能,减少了延时,用以满足5G多样化的业务需求。
本申请具体的应用场景:在2步随机接入过程中,发送msgA时,RO(PRACH occasion,发送随机接入前导的时机或随机接入前导发送时间)与PO(PUSCH occasion,发送上行数据的时机或上行数据发送时间)有时间上的差值,单位为时隙(slot),每一个RO有对应的一个可用的PO,也即是发送随机接入前导和上行数据是有时间上的间隔,不是同时发送在相同时隙上,分别在发送随机接入前导的时隙以及发送上行数据的时隙上发送,不能同时发送随机接入前导和上行数据。当测量间隙与PO重叠时,通常不考虑测量间隙,而在PO正常发送上行数据,这样UE将无法确定候选小区。这样,当网路拥塞导致没有响应UE发起的随机接入信息,UE需要等待至发送最大次数后进行小区重选,此时没有已确认候选的邻小区可直接建立连接,将导致连接建立时延。
本申请提供的数据传输方法,旨在基于上述场景,根据随机接入参数和测量间隙参数,确定随机接入信息(包括上行数据)的发送时间,以实现在上行数据的原发送时间与测量间隙重叠时,重新确定上行数据的实际发送时间,使得上行数据的实际发送时间与测量间隙不重叠,从而可以正常进行邻小区测量,寻找更多候选小区,当现有服务小区发生随机接入失败时,可以很快切换至另一个邻小区并发起随机接入,能够提高随机接入成功率与降低时延。
下面以具体地实施例对本申请实施例的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对 于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本申请实施例的实施例进行描述。
图4为本申请实施例一提供的一种数据处理方法流程图。如图4所示,该方法具体步骤如下:
步骤S401、UE根据随机接入参数和测量间隙参数,确定随机接入信息发送时间,随机接入信息包含以下至少一种:上行数据或上行数据与时间差信息。
本实施例中,UE可以根据随机接入参数和测量间隙参数,来确定包含上述数据的随机接入信息的发送时间,使得上行数据的实际发送时间与测量间隙不重叠。
步骤S402、网络设备接收UE发送的随机接入信息,随机接入信息包含以下至少一种:上行数据或上行数据与时间差信息,随机接入信息的实际发送时间是UE根据随机接入参数和测量间隙参数确定的。
网络设备在接收到UE发送的随机接入信息之后,若随机接入信息包含上行数据与时间差信息,网络设备可以根据时间差信息和上行数据的实际发送时间,确定上行数据对应的随机接入前导。
另外,随机接入信息还可以包含随机接入前导。
本申请实施例中,UE根据随机接入参数和测量间隙参数,确定随机接入信息发送时间,随机接入信息包含以下至少一种:上行数据或上行数据与时间差信息,网络设备接收UE发送的该随机接入信息,实现了在上行数据的原发送时间与测量间隙重叠时,重新确定上行数据的实际发送时间,使得上行数据的实际发送时间与测量间隙不重叠,从而可以正常进行邻小区测量,寻找更多候选小区,当现有服务小区发生随机接入失败时,可以很快切换至另一个邻小区并发起随机接入,能够提高随机接入成功率与降低时延。
图5为本申请实施例二提供的一种数据处理方法流程图。在上述实施例一的基础上,本实施例中,根据随机接入参数和测量间隙参数,确定随机接入信息发送时间,包括:根据随机接入参数和测量间隙参数,若确定随机接入信息中上行数据的原发送时间与测量间隙重叠,则确定上行数据的实际发送时间,和/或原发送时间和实际发送时间的时间差信息。网络设备在接收随机接入信息之后,根据时间差信息和随机接入参数,确定上行数据对应的随机接入前导。
如图5所示,该方法具体步骤如下:
步骤S500、网络设备发送随机接入参数和/或测量间隙参数。
步骤S501、UE接收随机接入参数和/或测量间隙参数。
本实施例中,随机接入参数包括以下至少一种:
至少一个随机接入前导发送时隙(RACH slot);至少一个随机接入前导发送时隙与上行数据发送时隙(PUSCH slot)之间的时间差值;至少一个上行数据发送时隙中相邻两个上行数据发送时间(PO)之间的时间差值;至少一个上行数据发送时隙中包含的上行数据发送时间的数量;至少一个随机接入前导发送时间(RO)与上行数据发送时间(PO)之间的对应关系。
示例性地,UE可以发送随机接入信息的时机可以通过网路配置,通过系统消息(ra-ssb-OccasionMaskIndex)获得;RO与PO间的时间差值可以透过网路上层信令RRC配置(msgA-PUSCH-TimeDomainOffset);一个时隙里PO与PO之间的间隔可以透过网路上层信令RRC配置(guardPeriodMsgAPUSCH),单位是symbols(符号);一个时隙里有多少PO可以透过网路上层信令RRC配置(nrofMsgAPOperSlot);每一个RO有对应的一个可用的PO,RO与PO之间时间上的差值(msgA-PUSCH-TimeDomainOffset)如图6所示,单位为时隙(slot)。
其中,测量间隙是指UE可以用来执行测量的周期。
本实施例中,测量间隙参数包括以下至少一种:
测量间隙时长(Measurement Gap Length,缩写MGL);测量间隙提前时间(Measurement Gap Timing Advance,缩写MGTA)。
例如,测量间隙时长可以是以下任意一种:1.5ms,3ms,3.5ms,4ms,5.5ms,6ms。测量间隙时长可以通过如图7所示的方式进行配置。
例如,MGTA可以配置为以下任意一种:0ms,0.25ms,0.5ms。MGTA可以通过如图8所示的方式进行配置。
另外,若网络设备配置了MGTA,则根据MGTA提前在预定子帧上做测量。
示例性地,一个无线帧长度为10ms,子帧长度为1ms,每个帧由10个持续时间为1ms的子帧组成。
进一步地,一个时隙的区间可以根据时隙与子帧的关系推算出,如下表1所示:
表1时隙的区间与子帧的关系
Figure PCTCN2020115025-appb-000001
其中,μ为标识,
Figure PCTCN2020115025-appb-000002
表示一个时隙中有多少个symbols(符号),
Figure PCTCN2020115025-appb-000003
表示一个帧里面有多少个时隙,
Figure PCTCN2020115025-appb-000004
表示一个子帧里面有多少个时隙。
步骤S502、UE根据随机接入参数和测量间隙参数,若确定随机接入信息中上行数据的原发送时间与测量间隙重叠,则确定上行数据的实际发送时间,和/或原发送时间和实际发送时间的时间差信息。
其中,时间差信息用于表示上行数据的实际发送时间与原发送时间有时间差异,时间差信息至少包括:上行数据的实际发送时间与原发送时间之间的时间差值。另外,随机接入信息还可以包含随机接入前导。
示例性地,上行数据的实际发送时间与原发送时间之间的时间差值可以用包含单位时间间隔的数量表示。其中,单位时间间隔可以是一个时隙里PO与PO之间的间隔(guardPeriodMsgAPUSCH)。例如,时间差值为n,则表示时间差值为n×guardPeriodMsgAPUSCH个symbol(符号)的时间差。
在一种可能的情况下,测量间隙并不会完全与一个PUSCH slot中的多个PO重叠,本实施例中,UE在确定上行数据的原发送时间(可以用“PO#1”表示)与测量间隙重叠时,可以考虑其他可行的PO,从其他可行的PO中选择一个作为上行数据的实际发送时间(可以用“PO#2”表示),还可以计算上行数据的原发送时间PO#1与实际发送时间PO#2在时间域上的时间差值(可以用“PO offset”表示)。
其中,其他可行的PO可以是原发送时间所在时隙内与测量间隙无重叠的上行数据发送时间。
示例性地,确定上行数据的实际发送时间,可以采用如下方式实现:
确定原发送时间所在时隙内与测量间隙无重叠的上行数据发送时间;从与测 量间隙无重叠的上行数据发送时间中确定一个上行数据发送时间,作为实际发送时间。
进一步地,从与测量间隙无重叠的上行数据发送时间中确定一个上行数据发送时间的方式包括以下至少一种:
确定最早、或中间、或最晚、或随机选择的上行数据发送时间,作为实际发送时间。
优选地,确定最早的上行数据发送时间可以将与测量间隙无重叠的上行数据发送时间中最早的上行数据发送时间作为实际发送时间,这样可以进一步减少上行数据的发送时延。
可选地,确定最晚的上行数据发送时间可以将与测量间隙无重叠的上行数据发送时间中最晚的上行数据发送时间作为实际发送时间。
可选地,确定中间的上行数据发送时间可以将与测量间隙无重叠的上行数据发送时间中排除最早的或最晚的以外的任一上行数据发送时间作为实际发送时间。
可选地,确定随机选择的上行数据发送时间可以是从最早的、最晚的、中间的任一上行数据发送时间作为实际发送时间,因为是随机选择,因此可以进一步提高随机接入成功率与降低时延。
步骤S503、UE在实际发送时间发送随机接入信息。
在确定上行数据的实际发送时间之后,UE在实际发送时间发送包含上行数据的随机接入信息。
在一种可能的实施方式中,UE发送包含上行数据的随机接入信息时,还可以将原发送时间和实际发送时间的时间差信息携带在随机接入信息中发送;也即是,随机接入信息包括上行数据和时间差信息。
示例性地,可以将时间差信息携带在随机接入信息中发送,可选地,可以将时间差信息作为控制信息携带在随机接入信息中发送。
具体地,可以将时间差信息携带在媒体访问控制协议数据单元(MAC PDU)的表头、或者承载(payload)、或者控制元素(MAC CE)中发送。
进一步地,还可以将时间差信息携带在媒体访问控制协议数据单元的子数据单元(MAC subPDU)中的子表头(subheader)中发送。
例如,图9示出了上行数据的MAC PDU的一种格式,如图9所示,MAC PDU 包括多个MAC subPDU,有的MAC subPDU包含subheader和MAC SDU,时间差信息可以携带在MAC subPDU的subheader中;有的MAC subPDU包含subheader和MAC CE,时间差信息可以携带在MAC subPDU的MAC CE中。
另外,MAC PDU还可以采用其他格式实现,时间差信息可以作为控制信息携带在MAC PDU中,具体在MAC PDU的哪一部分可以根据MAC PDU的格式进行配置,或者还可以在MAC PDU中增加新的栏位来存储时间差信息,本实施例此处不做具体限定。
步骤S504、网络设备接收随机接入信息。
其中,随机接入信息包含以下至少一种:上行数据或上行数据与时间差信息,随机接入信息的实际发送时间是根据随机接入参数和测量间隙参数确定的。
该步骤中,网络设备接收的随机接入信息是UE在确定的实际发送时间发送的。其中,实际发送时间为:在原发送时间所在时隙内与测量间隙无重叠的上行数据发送时间中,确定的一个上行数据发送时间。
在原发送时间所在时隙内与测量间隙无重叠的上行数据发送时间中,确定一个上行数据发送时间的方式可以为:确定最早、或中间、或最晚、或随机选择的上行数据发送时间。
优选地,确定最早的上行数据发送时间可以将与测量间隙无重叠的上行数据发送时间中最早的上行数据发送时间作为实际发送时间,这样可以进一步减少上行数据的发送时延。
可选地,确定最晚的上行数据发送时间可以将与测量间隙无重叠的上行数据发送时间中最晚的上行数据发送时间作为实际发送时间。
可选地,确定中间的上行数据发送时间可以将与测量间隙无重叠的上行数据发送时间中排除最早的或最晚的以外的任一上行数据发送时间作为实际发送时间。
可选地,确定随机选择的上行数据发送时间可以是从最早的、最晚的、中间的任一上行数据发送时间作为实际发送时间,因为是随机选择,因此可以进一步提高随机接入成功率与降低时延。
示例性地,时间差信息携带在随机接入信息中,可选地,时间差信息作为控制信息携带在随机接入信息中。
具体地,时间差信息携带在媒体访问控制协议数据单元的表头、或者承载、 或者控制元素中。
该步骤中,随机接入信息的实际发送时间以及所包含的数据详见步骤S503-S504中的说明,本实施例此处不再赘述。
步骤S505、网络设备根据时间差信息和随机接入参数,确定上行数据对应的随机接入前导。
在接收到随机接入信息之后,若随机接入信息包含时间差信息,网络设备根据时间差信息和随机接入参数,确定上行数据对应的随机接入前导。
示例性地,该步骤具体可以采用如下方式实现:
根据时间差信息和上行数据的实际发送时间,确定上行数据对应的原发送时间;根据原发送时间,以及随机接入参数,确定上行数据对应的随机接入前导发送时间;根据随机接入前导发送时间,确定上行数据对应的随机接入前导。
例如,如图10所示,以一个RACH slot包含有两个RO(RO#1与RO#2),一个PUSCH slot包含有两个PO(PO#1与PO#2),一个RACH slot与PUSCH slot皆为1ms长度,配置的测量间隙(measurement gap)区间可以为1.5ms为例,进行示例性地说明。当UE选择RO#1为发送msgA的随机接入前导(preamble)时,其对应的PO#1刚好与测量间隙(如图10中的MG)重叠,此时UE可以选择使用PO#2为发送msgA上行数据(payload)的机会(occasion),本示例PO#1与PO#2为两个连续的PO,因此其间隔为上述步骤S501中配置的一个时隙里PO与PO之间的间隔(guardPeriodMsgAPUSCH)。
UE在PO#2发送的包含上行数据的msgA中,可以携带一个单位的时间差信息,该时间差信息表示:所发送的上行数据的实际发送时间PO#2与原先预定的原发送时间PO#1有时间上的差异,一个单位表示实际发送时间PO#2与原发送时间PO#1有时间上的差异的值PO offset为:1×guardPeriodMsgAPUSCH个symbol的时间。
基站在PO#2接收到UE发送的包含上行数据的msgA,可以依据其所携带的时间差异值PO offset对应确定该UE发送随机接入前导的时间,进一步确定行数据对应的随机接入前导。
例如,如图11所示,以测量间隙时长(MGL)为3ms,测量间隙提前时间(MGTA)为0.5ms,一个时隙区间为1ms为例:测量间隙(MG)时间提早了0.5ms,若该上行数据原本是要发送在第三个slot前半部,那么可以在第三个 slot后半部(0.5ms)时间区间发送上行数据(msgA的payload)。
例如,如图12所示,以测量间隙时长(MGL)为3ms,测量间隙时间提前(MGTA)为0.25ms,一个时隙区间为0.5ms为例:测量间隙(MG)时间提早了0.25ms,若该上行数据原本是要发送在第三个slot前半部,那么可以在第三个slot后半部(0.25ms)时间区间发送上行数据(msgA的payload)。
例如,如图13所示,以测量间隙时长(MGL)为3ms,测量间隙时间提前(MGTA)为0.25ms,一个时隙区间为1ms为例:测量间隙(MG)时间提早了0.25ms,若该上行数据原本是要发送在第三个slot前半部,那么可以在第三个slot最后0.25ms的时间区间发送上行数据(msgA的payload)。
本申请实施例通过UE在确定上行数据的原发送时间与测量间隙重叠时,从与测量间隙无重叠的上行数据发送时间中确定一个上行数据发送时间,作为实际发送时间,在实际发送时间发送包含上行数据和时间差信息的随机接入信息,网络设备在接收随机接入信息之后,根据时间差信息和随机接入参数,确定上行数据对应的随机接入前导,在不影响上行数据发送的同时,能够正常进行邻小区测量,寻找更多候选小区,当现有服务小区发生随机接入失败时,可以很快切换至另一个邻小区并发起随机接入,能够提高随机接入成功率与降低时延。
图14为本申请实施例三提供的一种终端设备的结构示意图。本申请实施例提供的终端设备可以执行实施例一中UE执行的处理流程。如图14所示,该终端设备60包括:时间确定模块601。
具体地,时间确定模块601用于:根据随机接入参数和测量间隙参数,确定随机接入信息发送时间,随机接入信息包含以下至少一种:上行数据或上行数据与时间差信息。
可选地,随机接入信息还可以包含随机接入前导。
本申请实施例提供的终端设备可以具体用于执行上述实施例一中UE所执行的方法流程,具体功能此处不再赘述。
本申请实施例中,UE根据随机接入参数和测量间隙参数,确定随机接入信息发送时间,随机接入信息包含以下至少一种:上行数据或上行数据与时间差信息,网络设备接收UE发送的该随机接入信息,实现了在上行数据的原发送时间与测量间隙重叠时,重新确定上行数据的实际发送时间,使得上行数据的实际发送时间与测量间隙不重叠,从而可以正常进行邻小区测量,寻找更多候选小区, 当现有服务小区发生随机接入失败时,可以很快切换至另一个邻小区并发起随机接入,能够提高随机接入成功率。
图15为本申请实施例四提供的一种终端设备的结构示意图。在上述实施例三的基础上,本实施例中,时间确定模块还用于:
根据随机接入参数和测量间隙参数,若确定随机接入信息中上行数据的原发送时间与测量间隙重叠,则确定上行数据的实际发送时间,和/或原发送时间和实际发送时间的时间差信息。
在一种可能的实施方式中,如图15所示,该终端设备60还包括:
发送模块602,用于:在实际发送时间发送随机接入信息。
在一种可能的实施方式中,时间确定模块还用于:
确定原发送时间所在时隙内与测量间隙无重叠的上行数据发送时间;从与测量间隙无重叠的上行数据发送时间中确定一个上行数据发送时间,作为实际发送时间。
在一种可能的实施方式中,从与测量间隙无重叠的上行数据发送时间中确定一个上行数据发送时间的方式可以为:将确定最早或中间或最晚或随机选择的上行数据发送时间,作为实际发送时间。
优选地,确定最早的上行数据发送时间可以将与测量间隙无重叠的上行数据发送时间中最早的上行数据发送时间作为实际发送时间,这样可以进一步减少上行数据的发送时延。
可选地,确定最晚的上行数据发送时间可以将与测量间隙无重叠的上行数据发送时间中最晚的上行数据发送时间作为实际发送时间。
可选地,确定中间的上行数据发送时间可以将与测量间隙无重叠的上行数据发送时间中排除最早的或最晚的以外的任一上行数据发送时间作为实际发送时间。
可选地,确定随机选择的上行数据发送时间可以是从最早的、最晚的、中间的任一上行数据发送时间作为实际发送时间,因为是随机选择,因此可以进一步提高随机接入成功率与降低时延。
在一种可能的实施方式中,时间差信息至少包括:上行数据的实际发送时间与原发送时间之间的时间差值。
在一种可能的实施方式中,将时间差信息携带在随机接入信息中发送,可选 地,将时间差信息作为控制信息携带在随机接入信息中发送。
在一种可能的实施方式中,将时间差信息携带在媒体访问控制协议数据单元的表头、或者承载、或者控制元素中发送。
在一种可能的实施方式中,如图15所示,该终端设备60还包括:
接收模块603,用于:接收随机接入参数和/或测量间隙参数。
在一种可能的实施方式中,随机接入参数包括以下至少一种:
至少一个随机接入前导发送时隙;
至少一个随机接入前导发送时隙与上行数据发送时隙之间的时间差值;
至少一个上行数据发送时隙中相邻两个上行数据发送时间之间的时间差值;
至少一个上行数据发送时隙中包含的上行数据发送时间的数量;
至少一个随机接入前导发送时间与上行数据发送时间之间的对应关系。
在一种可能的实施方式中,测量间隙参数包括以下至少一种:
测量间隙时长;测量间隙提前时间。
本申请实施例提供的终端设备可以具体用于执行上述实施例二中UE所执行的方法流程,具体功能此处不再赘述。
本申请实施例通过UE在确定上行数据的原发送时间与测量间隙重叠时,从与测量间隙无重叠的上行数据发送时间中确定一个上行数据发送时间,作为实际发送时间,在实际发送时间发送包含上行数据和时间差信息的随机接入信息,网络设备在接收随机接入信息之后,根据时间差信息和随机接入参数,确定上行数据对应的随机接入前导,在不影响上行数据发送的同时,能够正常进行邻小区测量,寻找更多候选小区,当现有服务小区发生随机接入失败时,可以很快切换至另一个邻小区并发起随机接入,能够提高随机接入成功率与降低时延。
图16为本申请实施例五提供的一种网络设备的结构示意图。本申请实施例提供的网络设备可以执行实施例一中网络设备的处理流程。如图16所示,该网络设备70包括:接收模块701。
具体地,接收模块701用于接收随机接入信息,随机接入信息包含以下至少一种:上行数据或上行数据与时间差信息,随机接入信息的实际发送时间是根据随机接入参数和测量间隙参数确定的。
可选地,随机接入信息还可以包含随机接入前导。
本申请实施例提供的网络设备可以具体用于执行上述实施例一中网络设备 所执行的处理流程,具体功能此处不再赘述。
本申请实施例中,UE根据随机接入参数和测量间隙参数,确定随机接入信息发送时间,随机接入信息包含以下至少一种:上行数据或上行数据与时间差信息,网络设备接收UE发送的该随机接入信息,实现了在上行数据的原发送时间与测量间隙重叠时,重新确定上行数据的实际发送时间,使得上行数据的实际发送时间与测量间隙不重叠,从而可以正常进行邻小区测量,寻找更多候选小区,当现有服务小区发生随机接入失败时,可以很快切换至另一个邻小区并发起随机接入,能够提高随机接入成功率与降低时延。
图17为本申请实施例六提供的一种网络设备的结构示意图。在上述实施例五的基础上,本实施例中,如图17所示,该网络设备70还包括:数据处理模块702,用于:根据时间差信息和随机接入参数,确定上行数据对应的随机接入前导。
在一种可能的实施方式中,数据处理模块702还用于:
根据时间差信息和上行数据的实际发送时间,确定上行数据对应的原发送时间;根据原发送时间,以及随机接入参数,确定上行数据对应的随机接入前导发送时间;根据随机接入前导发送时间,确定上行数据对应的随机接入前导。
在一种可能的实施方式中,实际发送时间为:在原发送时间所在时隙内与测量间隙无重叠的上行数据发送时间中,确定的一个上行数据发送时间。
在一种可能的实施方式中,在原发送时间所在时隙内与测量间隙无重叠的上行数据发送时间中,确定一个上行数据发送时间的方式可以为:从实际发送时间为与测量间隙无重叠的上行数据发送时间中,确定最早或中间或最晚或随机选择的上行数据发送时间。
优选地,确定最早的上行数据发送时间可以将与测量间隙无重叠的上行数据发送时间中最早的上行数据发送时间作为实际发送时间,这样可以进一步减少上行数据的发送时延。
可选地,确定所述最晚的上行数据发送时间可以将与测量间隙无重叠的上行数据发送时间中最晚的上行数据发送时间作为实际发送时间。
可选地,确定中间的上行数据发送时间可以将与测量间隙无重叠的上行数据发送时间中排除最早的或最晚的以外的任一上行数据发送时间作为实际发送时间。
可选地,确定随机选择的上行数据发送时间可以是从最早的、最晚的、中间的任一上行数据发送时间作为实际发送时间,因为是随机选择,因此可以进一步提高随机接入成功率与降低时延。
在一种可能的实施方式中,时间差信息至少包括:上行数据的实际发送时间与原发送时间之间的时间差值。
在一种可能的实施方式中,时间差信息携带在随机接入信息中,可选地,时间差信息作为控制信息携带在随机接入信息中。
在一种可能的实施方式中,时间差信息携带在媒体访问控制协议数据单元的表头、或者承载、或者控制元素中。
在一种可能的实施方式中,如图17所示,该网络设备70还包括:发送模块703,用于:发送随机接入参数和/或测量间隙参数。
在一种可能的实施方式中,随机接入参数包括以下至少一种:
至少一个随机接入前导发送时隙;
至少一个随机接入前导发送时隙与上行数据发送时隙之间的时间差值;
至少一个上行数据发送时隙中相邻两个上行数据发送时间之间的时间差值;
至少一个上行数据发送时隙中包含的上行数据发送时间的数量;
至少一个随机接入前导发送时间与上行数据发送时间之间的对应关系。
在一种可能的实施方式中,测量间隙参数包括以下至少一种:
测量间隙时长;测量间隙提前时间。
本申请实施例提供的网络设备可以具体用于执行上述实施例二中网络设备所执行的方法流程,具体功能此处不再赘述。
本申请实施例通过UE在确定上行数据的原发送时间与测量间隙重叠时,从与测量间隙无重叠的上行数据发送时间中确定一个上行数据发送时间,作为实际发送时间,在实际发送时间发送包含上行数据和时间差信息的随机接入信息,网络设备在接收随机接入信息之后,根据时间差信息和随机接入参数,确定上行数据对应的随机接入前导,在不影响上行数据发送的同时,能够正常进行邻小区测量,寻找更多候选小区,当现有服务小区发生随机接入失败时,可以很快切换至另一个邻小区并发起随机接入,能够提高随机接入成功率与降低时延。
图18为本申请实施例七提供的一种终端设备的结构示意图。如图18所示,该终端设备包括:处理器1001、存储器1002。存储器1002存储计算机执行指令。 其中,处理器1001执行存储器1002存储的计算机执行指令,使得处理器1001执行上述任一方法实施例中UE所执行的方法流程。
本申请实施例中,UE根据随机接入参数和测量间隙参数,确定随机接入信息发送时间,随机接入信息包含以下至少一种:上行数据或上行数据与时间差信息,网络设备接收UE发送的该随机接入信息,实现了在上行数据的原发送时间与测量间隙重叠时,重新确定上行数据的实际发送时间,使得上行数据的实际发送时间与测量间隙不重叠,从而可以正常进行邻小区测量,寻找更多候选小区,当现有服务小区发生随机接入失败时,可以很快切换至另一个邻小区并发起随机接入,能够提高随机接入成功率与降低时延。
图19为本申请实施例八提供的一种网络设备的结构示意图。如图19所示,该网络设备110包括:处理器1101、存储器1102。其中,存储器1102存储计算机执行指令;处理器1101执行存储器1102存储的计算机执行指令,使得处理器1101执行如上述任一方法实施例中网络设备所执行的方法流程。
本申请实施例中,UE根据随机接入参数和测量间隙参数,确定随机接入信息发送时间,随机接入信息包含以下至少一种:上行数据或上行数据与时间差信息,网络设备接收UE发送的该随机接入信息,实现了在上行数据的原发送时间与测量间隙重叠时,重新确定上行数据的实际发送时间,使得上行数据的实际发送时间与测量间隙不重叠,从而可以正常进行邻小区测量,寻找更多候选小区,当现有服务小区发生随机接入失败时,可以很快切换至另一个邻小区并发起随机接入,能够提高随机接入成功率与降低时延。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令,当计算机执行指令被处理器执行时用于实现上述任一方法实施例中UE所执行的方法流程。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令,当计算机执行指令被处理器执行时用于实现上述任一方法实施例中网络设备所执行的方法流程。
本申请实施例还提供一种计算机程序产品,计算机程序产品包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行如上各种可能的实施方式中的方法。
本申请实施例还提供一种芯片,包括存储器和处理器,存储器用于存储计算 机程序,处理器用于从存储器中调用并运行计算机程序,使得安装有芯片的设备执行如上各种可能的实施方式中的方法。
需要说明的是,在本文中,采用了诸如S201、S202等步骤代号,其目的是为了更清楚简要地表述相应内容,不构成顺序上的实质性限制,本领域技术人员在具体实施时,可能会先执行S202后执行S201等,但这些均应在本申请的保护范围之内。
应该理解的是,虽然上述实施例中的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请的实施例旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求书指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求书来限制。

Claims (25)

  1. 一种数据处理方法,其中,应用于终端设备,所述方法包括:
    根据随机接入参数和测量间隙参数,确定随机接入信息发送时间,所述随机接入信息包含以下至少一种:上行数据或上行数据与时间差信息。
  2. 根据权利要求1所述的方法,其中,所述根据随机接入参数和测量间隙参数,确定随机接入信息发送时间,包括:
    根据随机接入参数和测量间隙参数,若确定所述随机接入信息中上行数据的原发送时间与测量间隙重叠,则确定所述上行数据的实际发送时间,和/或所述原发送时间和所述实际发送时间的时间差信息。
  3. 根据权利要求2所述的方法,其中,所述确定所述上行数据的实际发送时间,和/或所述原发送时间和所述实际发送时间的时间差信息之后,还包括:在所述实际发送时间发送所述随机接入信息。
  4. 根据权利要求2所述的方法,其中,所述确定所述上行数据的实际发送时间,包括:
    确定所述原发送时间所在时隙内与所述测量间隙无重叠的上行数据发送时间;
    从所述与所述测量间隙无重叠的上行数据发送时间中确定一个上行数据发送时间,作为所述实际发送时间。
  5. 根据权利要求4所述的方法,其中,从所述与所述测量间隙无重叠的上行数据发送时间中确定一个上行数据发送时间的方式包括以下至少一种:
    确定最早的上行数据发送时间,作为所述实际发送时间;
    确定中间的上行数据发送时间,作为所述实际发送时间;
    确定最晚的上行数据发送时间,作为所述实际发送时间;
    随机选择一个上行数据发送时间,作为所述实际发送时间。
  6. 根据权利要求1所述的方法,其中,
    所述时间差信息至少包括:所述上行数据的实际发送时间与原发送时间之间的时间差值。
  7. 根据权利要求1至6中任一项所述的方法,其中,
    将所述时间差信息作为控制信息携带在所述随机接入信息中发送。
  8. 根据权利要求7所述的方法,其中,所述将所述时间差信息携带在所述随机接入信息中发送,包括:
    将所述时间差信息携带在媒体访问控制协议数据单元的表头、或者承载、或者控制元素中发送。
  9. 根据权利要求1至6中任一项所述的方法,其中,还包括:
    接收随机接入参数和/或测量间隙参数。
  10. 根据权利要求9所述的方法,其中,所述随机接入参数包括以下至少一种:
    至少一个随机接入前导发送时隙;
    至少一个随机接入前导发送时隙与上行数据发送时隙之间的时间差值;
    至少一个上行数据发送时隙中相邻两个上行数据发送时间之间的时间差值;
    至少一个上行数据发送时隙中包含的上行数据发送时间的数量;
    至少一个随机接入前导发送时间与上行数据发送时间之间的对应关系。
  11. 根据权利要求9所述的方法,其中,所述测量间隙参数包括以下至少一种:
    测量间隙时长;
    测量间隙提前时间。
  12. 一种数据处理方法,其中,应用于网络设备,所述方法包括:
    接收随机接入信息,所述随机接入信息包含以下至少一种:上行数据或上行数据与时间差信息,所述随机接入信息的实际发送时间是根据随机接入参数和测量间隙参数确定的。
  13. 根据权利要求12所述的方法,其中,所述接收随机接入信息之后,还包 括:
    根据所述时间差信息和随机接入参数,确定所述上行数据对应的随机接入前导。
  14. 根据权利要求13所述的方法,其中,所述根据所述时间差信息和随机接入参数,确定所述上行数据对应的随机接入前导,包括:
    根据所述时间差信息和所述上行数据的实际发送时间,确定所述上行数据对应的原发送时间;
    根据所述原发送时间,以及随机接入参数,确定所述上行数据对应的随机接入前导发送时间;
    根据所述随机接入前导发送时间,确定所述上行数据对应的随机接入前导。
  15. 根据权利要求14所述的方法,其中,所述实际发送时间为:在所述原发送时间所在时隙内与所述测量间隙无重叠的上行数据发送时间中,确定的一个上行数据发送时间。
  16. 根据权利要求15所述的方法,其中,在所述原发送时间所在时隙内与所述测量间隙无重叠的上行数据发送时间中,确定一个上行数据发送时间的方式包括以下至少一种:
    确定最早的上行数据发送时间;
    确定中间的上行数据发送时间;
    确定最晚的上行数据发送时间;
    随机选择一个上行数据发送时间。
  17. 根据权利要求12所述的方法,其中,
    所述时间差信息至少包括:所述上行数据的实际发送时间与原发送时间之间的时间差值。
  18. 根据权利要求12至17中任一项所述的方法,其中,所述时间差信息作为控制信息携带在所述随机接入信息中。
  19. 根据权利要求18所述的方法,其中,
    所述时间差信息携带在媒体访问控制协议数据单元的表头、或者承载、或者控制元素中。
  20. 根据权利要求12至17中任一项所述的方法,其中,还包括:
    发送随机接入参数和/或测量间隙参数。
  21. 根据权利要求20所述的方法,其中,所述随机接入参数包括以下至少一种:
    至少一个随机接入前导发送时隙;
    至少一个随机接入前导发送时隙与上行数据发送时隙之间的时间差值;
    至少一个上行数据发送时隙中相邻两个上行数据发送时间之间的时间差值;
    至少一个上行数据发送时隙中包含的上行数据发送时间的数量;
    至少一个随机接入前导发送时间与上行数据发送时间之间的对应关系。
  22. 根据权利要求20所述的方法,其中,所述测量间隙参数包括以下至少一种:
    测量间隙时长;
    测量间隙提前时间。
  23. 一种终端设备,其中,包括:处理器和存储器;
    所述存储器存储计算机执行指令;
    所述计算机执行指令被所述处理器执行时实现如权利要求1所述的数据处理方法。
  24. 一种网络设备,其中,包括:处理器和存储器;
    所述存储器存储计算机执行指令;
    所述计算机执行指令被所述处理器执行时实现如权利要求12所述的数据处理方法。
  25. 一种计算机可读存储介质,其中,所述计算机可读存储介质中存储有计 算机执行指令,当所述计算机执行指令被处理器执行时用于实现如权利要求1或12所述的数据处理方法。
PCT/CN2020/115025 2020-09-14 2020-09-14 数据处理方法、设备及计算机可读储存介质 WO2022052094A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080105127.3A CN116210331A (zh) 2020-09-14 2020-09-14 数据处理方法、设备及计算机可读储存介质
PCT/CN2020/115025 WO2022052094A1 (zh) 2020-09-14 2020-09-14 数据处理方法、设备及计算机可读储存介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/115025 WO2022052094A1 (zh) 2020-09-14 2020-09-14 数据处理方法、设备及计算机可读储存介质

Publications (1)

Publication Number Publication Date
WO2022052094A1 true WO2022052094A1 (zh) 2022-03-17

Family

ID=80630157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115025 WO2022052094A1 (zh) 2020-09-14 2020-09-14 数据处理方法、设备及计算机可读储存介质

Country Status (2)

Country Link
CN (1) CN116210331A (zh)
WO (1) WO2022052094A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220322407A1 (en) * 2021-04-05 2022-10-06 Qualcomm Incorporated Frequency resource hop extension, skipping, and modification, and rescheduling uplink and downlink transmissions that overlap with time gap for frequency resource switching
WO2024031499A1 (en) * 2022-08-11 2024-02-15 Qualcomm Incorporated Cross-carrier random access channel transmission triggering

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101646251A (zh) * 2008-08-07 2010-02-10 中兴通讯股份有限公司 随机接入过程和测量间隙冲突的处理方法
US20190342912A1 (en) * 2017-01-05 2019-11-07 Sony Mobile Communications Inc. Low-latency random access for wireless networks
CN110856200A (zh) * 2019-12-02 2020-02-28 上海第二工业大学 一种用于5g的测量间隙配置
CN111263464A (zh) * 2019-01-30 2020-06-09 维沃移动通信有限公司 随机接入方法及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101646251A (zh) * 2008-08-07 2010-02-10 中兴通讯股份有限公司 随机接入过程和测量间隙冲突的处理方法
US20190342912A1 (en) * 2017-01-05 2019-11-07 Sony Mobile Communications Inc. Low-latency random access for wireless networks
CN111263464A (zh) * 2019-01-30 2020-06-09 维沃移动通信有限公司 随机接入方法及设备
CN110856200A (zh) * 2019-12-02 2020-02-28 上海第二工业大学 一种用于5g的测量间隙配置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220322407A1 (en) * 2021-04-05 2022-10-06 Qualcomm Incorporated Frequency resource hop extension, skipping, and modification, and rescheduling uplink and downlink transmissions that overlap with time gap for frequency resource switching
US11800530B2 (en) * 2021-04-05 2023-10-24 Qualcomm Incorporated Frequency resource hop extension, skipping, and modification, and rescheduling uplink and downlink transmissions that overlap with time gap for frequency resource switching
WO2024031499A1 (en) * 2022-08-11 2024-02-15 Qualcomm Incorporated Cross-carrier random access channel transmission triggering

Also Published As

Publication number Publication date
CN116210331A (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
US10149339B2 (en) Base station, user equipment and methods for random access
JP6422999B2 (ja) 省電力化、範囲の改善、及び改善された検出のための拡張されたprachスキーム
US20200068624A1 (en) Data sending method and apparatus thereof
TWI751258B (zh) 用於隨機接入的方法和設備
WO2017132848A1 (zh) 一种tti配置方法、设备和系统
WO2018126418A1 (zh) 用于随机接入的方法和终端设备
CN111565473A (zh) 一种随机接入方法和装置
US20220007426A1 (en) Random access method and device
CN111869306B (zh) 随机接入的方法、终端设备和网络设备
WO2022052094A1 (zh) 数据处理方法、设备及计算机可读储存介质
WO2018171626A1 (zh) 随机接入响应的方法和设备以及随机接入的方法和设备
EP3857782A1 (en) Selecting a bandwidth part (bwp)
EP3826419A1 (en) Data transmission method and apparatus, and terminal
CN111972032B (zh) 随机接入的方法和设备
WO2020019762A1 (zh) 一种随机接入方法、终端设备、网络设备及存储介质
TW202008837A (zh) 一種隨機存取方法及相關設備
EP4124146A1 (en) Communication method and communication apparatus
US20180049273A1 (en) Device and Method of Handling Communication with Communication Device
CN116325894A (zh) 用于处置小数据传输过程的时间对准的方法及设备
WO2020206658A1 (zh) 无线通信方法、终端设备和网络设备
WO2021077377A1 (zh) 一种信息指示方法及装置、终端设备、网络设备
CN111757526A (zh) 一种随机接入方法、终端及网络侧设备
CN114222350B (zh) 一种随机接入方法及装置、用户设备、网络设备
JP7496834B2 (ja) 2ステップのランダムアクセスのための方法、端末デバイス及びネットワークデバイス
WO2020186468A1 (zh) 随机接入的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952882

Country of ref document: EP

Kind code of ref document: A1