WO2022051970A1 - Quality of service flow for communications - Google Patents

Quality of service flow for communications Download PDF

Info

Publication number
WO2022051970A1
WO2022051970A1 PCT/CN2020/114427 CN2020114427W WO2022051970A1 WO 2022051970 A1 WO2022051970 A1 WO 2022051970A1 CN 2020114427 W CN2020114427 W CN 2020114427W WO 2022051970 A1 WO2022051970 A1 WO 2022051970A1
Authority
WO
WIPO (PCT)
Prior art keywords
qos flow
packets
subset
base station
qos
Prior art date
Application number
PCT/CN2020/114427
Other languages
French (fr)
Inventor
Nan Zhang
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/114427 priority Critical patent/WO2022051970A1/en
Publication of WO2022051970A1 publication Critical patent/WO2022051970A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control

Definitions

  • the following relates to wireless communications, including quality of service flow for communications.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support quality of service flow for communications.
  • the described techniques provide for increasing uplink reliability by using separate Quality of Service (QoS) flows for uplink and downlink.
  • QoS Quality of Service
  • a user equipment (UE) may establish a high reliability connection with a wireless communications network.
  • Some applications may have stringent latency or reliability requirements, where missed packets or a dropped connection may affect the use of the application or disconnect the UE from a server providing the application.
  • the UE may be in motion or rotation to generate the information sent on the uplink.
  • a UE may utilize separate QoS flows for uplink information and downlink information and duplicate packets for the uplink to improve reliability.
  • Applying packet duplication for the uplink may improve reliability for the uplink, as the movements of the UE (e.g., the movements that occur during gaming or virtual reality application) may affect a beam connection and quality. Therefore, if one of the links experiences beam failure, the UE may still have enhanced reliability for sending the uplink information and prevent being disconnected from a server providing the application.
  • Separate QoS flows may be utilized for downlink signaling and uplink signaling because duplicating packets for some downlink signal may lead to network congestion.
  • a method for wireless communications at a UE may include identifying a first QoS flow for downlink signaling with a base station and a second QoS flow for uplink signaling different than the first QoS flow, the first QoS flow and the second QoS flow mapped to one or more data radio bearers, generating a first set of packets for the second QoS flow for the uplink signaling that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets, and transmitting, to the base station, the first set of packets over a primary cell, a secondary cell, or both.
  • the apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to identify a first QoS flow for downlink signaling with a base station and a second QoS flow for uplink signaling different than the first QoS flow, the first QoS flow and the second QoS flow mapped to one or more data radio bearers, generate a first set of packets for the second QoS flow for the uplink signaling that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets, and transmit, to the base station, the first set of packets over a primary cell, a secondary cell, or both.
  • the apparatus may include means for identifying a first QoS flow for downlink signaling with a base station and a second QoS flow for uplink signaling different than the first QoS flow, the first QoS flow and the second QoS flow mapped to one or more data radio bearers, means for generating a first set of packets for the second QoS flow for the uplink signaling that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets, and means for transmitting, to the base station, the first set of packets over a primary cell, a secondary cell, or both.
  • a non-transitory computer-readable medium storing code for wireless communications at a UE is described.
  • the code may include instructions executable by a processor to identify a first QoS flow for downlink signaling with a base station and a second QoS flow for uplink signaling different than the first QoS flow, the first QoS flow and the second QoS flow mapped to one or more data radio bearers, generate a first set of packets for the second QoS flow for the uplink signaling that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets, and transmit, to the base station, the first set of packets over a primary cell, a secondary cell, or both.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for detecting a high reliability communications connection with the base station, where the first QoS flow may be associated with the high reliability communications connection, where identifying the second QoS flow may be based on detecting the high reliability communications connection.
  • the first set of packets include control information or motion event information associated with the high reliability communications connection.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the base station over a downlink channel, video information associated with the high reliability communications connection.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the base station, a request to configure the second QoS flow at the base station, where identifying the second QoS flow may be based on transmitting the request.
  • transmitting the first set of packets may include operations, features, means, or instructions for transmitting the first subset of packets over the primary cell, and transmitting the second subset of packets over the secondary cell.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for detecting a beam failure for the primary cell, where the second subset of packets may be transmitted over the secondary cell, and receiving an acknowledgment for the second subset of packets based on transmitting the second subset of packets over the secondary cell.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a third QoS flow different than the second QoS flow for the uplink signaling, and transmitting a second set of packets for the third QoS flow to the base station.
  • the second QoS flow may be associated with a higher reliability QoS than the third QoS flow.
  • the first QoS flow may be indicated by a first QoS flow identifier (QFI) and the second QoS flow may be indicated by a second QFI.
  • QFI QoS flow identifier
  • a method for wireless communications at a base station may include identifying a first QoS flow for downlink signaling with a UE and a second QoS flow for uplink signaling flow different than the first QoS flow, monitoring, via a first cell, a second cell, or both, for a first set of packets for the second QoS flow that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets, and transmitting, to the UE, downlink information for the first QoS flow based on the first set of packets.
  • the apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to identify a first QoS flow for downlink signaling with a UE and a second QoS flow for uplink signaling flow different than the first QoS flow, monitor, via a first cell, a second cell, or both, for a first set of packets for the second QoS flow that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets, and transmit, to the UE, downlink information for the first QoS flow based on the first set of packets.
  • the apparatus may include means for identifying a first QoS flow for downlink signaling with a UE and a second QoS flow for uplink signaling flow different than the first QoS flow, means for monitoring, via a first cell, a second cell, or both, for a first set of packets for the second QoS flow that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets, and means for transmitting, to the UE, downlink information for the first QoS flow based on the first set of packets.
  • a non-transitory computer-readable medium storing code for wireless communications at a base station is described.
  • the code may include instructions executable by a processor to identify a first QoS flow for downlink signaling with a UE and a second QoS flow for uplink signaling flow different than the first QoS flow, monitor, via a first cell, a second cell, or both, for a first set of packets for the second QoS flow that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets, and transmit, to the UE, downlink information for the first QoS flow based on the first set of packets.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the UE, a request to configure the second QoS flow at the base station, where identifying the second QoS flow at the base station may be based on receiving the request.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for monitoring for the first subset of packets over the first cell, where the first cell may be a primary cell, and monitoring for the second subset of packets over the second cell, where the second cell may be a secondary cell.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for detecting a beam failure for the primary cell, receiving the second subset of packets over the secondary cell, and transmitting an acknowledgment for the second subset of packets to the UE.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a third QoS flow different than the second QoS flow for the uplink signaling, and receiving a second set of packets for the third QoS flow to the base station.
  • the second QoS flow may be associated with a higher reliability QoS than the third QoS flow.
  • the first QoS flow and the second QoS flow correspond to a high reliability communications connection with the UE.
  • the first set of packets include control information or motion event information associated with the high reliability communications connection.
  • the downlink information include downlink video information associated with the high reliability communications connection.
  • FIG. 1 illustrates an example of a system for wireless communications that supports quality of service flow for communications in accordance with aspects of the present disclosure.
  • FIG. 2 illustrates an example of a wireless communications system that supports quality of service flow for communications in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of a packet duplication scheme that supports quality of service flow for communications in accordance with aspects of the present disclosure.
  • FIG. 4 illustrates an example of a process flow that supports quality of service flow for communications in accordance with aspects of the present disclosure.
  • FIGs. 5 and 6 show block diagrams of devices that support quality of service flow for communications in accordance with aspects of the present disclosure.
  • FIG. 7 shows a block diagram of a communication manager that supports quality of service flow for communications in accordance with aspects of the present disclosure.
  • FIG. 8 shows a diagram of a system including a device that supports quality of service flow for communications in accordance with aspects of the present disclosure.
  • FIGs. 9 and 10 show block diagrams of devices that support quality of service flow for communications in accordance with aspects of the present disclosure.
  • FIG. 11 shows a block diagram of a communication manager that supports quality of service flow for communications in accordance with aspects of the present disclosure.
  • FIG. 12 shows a diagram of a system including a device that supports quality of service flow for communications in accordance with aspects of the present disclosure.
  • FIGs. 13 through 17 show flowcharts illustrating methods that support quality of service flow for communications in accordance with aspects of the present disclosure.
  • a user equipment may establish a high reliability connection with a wireless communications network.
  • Some applications may have stringent latency or reliability requirements, where missed packets or a dropped connection may affect the use of the application or disconnect the UE from a server providing the application.
  • a UE may be used for cloud gaming, virtual reality, or augmented reality, where the UE receives video streaming information over downlink signaling and transmits control or motion events over uplink signaling.
  • the UE may experience motion or rotation, or both.
  • these movements may generate the control information or motion information sent on the uplink.
  • these movements may affect a beam connection, which may lead to beam failure, such that the UE cannot reliably send the uplink information or receive the downlink information or both. If the UE experiences beam failure for a high reliability application, the UE may disconnect from the server providing the high reliability application, preventing the UE from using the application.
  • the techniques described herein provide enhanced reliability for sending uplink information for high reliability communications.
  • Some systems may use a single quality of service (QoS) flow for both downlink information and uplink information.
  • QoS quality of service
  • a wireless communications system described herein may utilize separate QoS flows for uplink information and downlink information, and a UE may duplicate packets for the uplink.
  • the UE may duplicate uplink packets for a high reliability application and transmit the uplink packets and duplicated uplink packets for the high reliability application using an uplink-specific QoS flow.
  • Separate QoS flows may be utilized for downlink information and uplink information because duplicating packets for some downlink information may lead to network congestion.
  • the uplink packets and the duplicated uplink packets may be transmitted on separate links (e.g., a master cell group and a secondary cell group of a dual connectivity scheme) to improve reliability of transmitting the control information or motion information. Therefore, if one of the links experiences beam failure, the UE may still have enhanced reliability for sending the uplink information and mitigate a likelihood of being disconnected from a server providing the application. While these techniques are generally described in the context of a high reliability application, the techniques may be used for other scenarios, such as a mobile call or data communication.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to quality of service flow for communications.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports quality of service flow for communications in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • a carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • a carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
  • the communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115.
  • Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) .
  • Devices of the wireless communications system 100 e.g., the base stations 105, the UEs 115, or both
  • the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths.
  • each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing ( ⁇ f) and a cyclic prefix.
  • a carrier may be divided into one or more BWPs having the same or different numerologies.
  • a UE 115 may be configured with multiple BWPs.
  • a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells.
  • Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may support synchronous or asynchronous operation.
  • the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time.
  • the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Some UEs 115 may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) .
  • half-duplex communications may be performed at a reduced peak rate.
  • Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) .
  • vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these.
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • a vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system.
  • vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
  • V2N vehicle-to-network
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to IP services 150 for one or more network operators.
  • the IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • SHF super high frequency
  • EHF extremely high frequency
  • the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device.
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions.
  • the techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • the base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) .
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations.
  • a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115.
  • Some signals e.g., synchronization signals, reference signals, beam selection signals, or other control signals
  • the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission.
  • Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
  • a transmitting device such as a base station 105
  • a receiving device such as a UE 115
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
  • transmissions by a device may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) .
  • the UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands.
  • the base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded.
  • a reference signal e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS)
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • the UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) .
  • PMI precoding matrix indicator
  • codebook-based feedback e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • receive configurations e.g., directional listening
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions.
  • receive beamforming weight sets e.g., different directional listening weight sets
  • a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
  • SNR signal-to-noise ratio
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based.
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency.
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • the UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) .
  • a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be multiple-access systems capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • a wireless network for example a wireless local area network (WLAN) , such as a Wi-Fi (i.e., Institute of Electrical and Electronics Engineers (IEEE) 802.11) network may include an access point (AP) that may communicate with one or more wireless or mobile devices.
  • the AP may be coupled to a network, such as the Internet, and may enable a mobile device to communicate via the network (or communicate with other devices coupled to the access point) .
  • a wireless device may communicate with a network device bi-directionally.
  • a device may communicate with an associated AP via downlink (e.g., the communication link from the AP to the device) and uplink (e.g., the communication link from the device to the AP) .
  • a wireless personal area network which may include a Bluetooth connection, may provide for short range wireless connections between two or more paired wireless devices.
  • wireless devices such as cellular phones may utilize wireless PAN communications to exchange information such as audio signals with wireless headsets.
  • a UE 115 may establish a high reliability connection with a wireless communications network, such as via one or more base stations 105. Some applications may have stringent latency or reliability requirements, where missed packets or a dropped connection may affect the use of the application or disconnect the UE 115 from a server providing the application. For some of these application, the UE 115 may be in motion or rotation to generate the information sent on the uplink. A UE 115 may utilize separate QoS flows for uplink information and downlink information and duplicate packets for the uplink to improve reliability. Applying packet duplication for the uplink may improve reliability for the uplink, as the movements may affect a beam connection and quality. Therefore, if one of the links experiences beam failure, the UE 115 may still have enhanced reliability for sending the uplink information and prevent being disconnected from a server providing the application.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports quality of service flow for communications in accordance with aspects of the present disclosure.
  • the wireless communications system 200 may implement aspects of wireless communication system 100.
  • the wireless communications system 200 includes UE 115-a and base station 105-a, which may be respective examples of a UE 115 and a base station 105 described with reference to FIG. 1.
  • the wireless communications system 200 may implement a dual connectivity scheme, where UE 115-a is connected to a network via a master cell group and one or more secondary cell groups.
  • the master cell group and the one or more secondary cell groups may be provided by a single transmission and reception point, such as base station 105-a, or separate transmission and reception points, such as separate base stations 105.
  • the master cell group may include a primary cell, and a secondary cell group may include one or more secondary cells or primary secondary cells.
  • the UE 115-a and base station 105-a may establish a high reliability wireless communications connection.
  • the high reliability wireless communications connection may be used to support a high reliability application, such as virtual reality, augmented reality, cloud gaming, or the like.
  • UE 115-a may receive downlink information 210 from base station 105-a and transmit uplink information 205 to base station 105-a.
  • the downlink information 210 may include downlink video streaming information for the high reliability application.
  • the uplink information 205 may include motion information, control information, or both, for the high reliability application.
  • the downlink information 210 may include downlink video streaming for a cloud gaming application, and a user may move, rotate, provide tactile inputs, or other interaction, to generate the uplink information 205 for the cloud gaming application.
  • the uplink information 205 may be processed by the server providing the cloud gaming application to control or play the cloud gaming application.
  • a beam connection may fail for UE 115-a, which may affect the connection with the server providing the high reliability application.
  • the wireless communications system 200 may support wireless communications at very high frequencies, such as in Frequency Range 2, which may be susceptible to weakened channel conditions or connectivity issues by a change of orientation, movement, or rotation of a device. For example, as a user moves or rotates UE 115-a to generate the uplink information 205, the movements may weaken or break a beam connection to base station 105-a. For a high reliability application, missing packets or a dropping a beam may disconnect UE 115-a from the server providing the application, ending the service for UE 115-a.
  • the wireless communications system 200 may implement techniques to improve reliability for uplink communications. These techniques may increase the likelihood of successfully transmitting the uplink information 205, thereby ensuring UE 115-a remains connected to the high reliability application and service.
  • UE 115-a may use separate QoS flows for the uplink and the downlink and apply packet duplication for the uplink information 205 on the uplink QoS flow.
  • a QoS for the high reliability wireless communications connection may be enforced at a QoS flow level between UE 115-a and the wireless communications network.
  • communications for a QoS flow may have a configured packet delay budget, packet error rate, and priority level for any signaling on the QoS flow.
  • the QoS flow may be the lowest level granularity within the wireless communication system (e.g., 5G) and may be where policy and charging are enforced.
  • One or more Service Data Flows may be transported in the same QoS flow, if they share the same policy and charging rules (which may be similar to a role of an evolved packet switched system (EPS) bearer in 4G) .
  • SDFs Service Data Flows
  • EPS evolved packet switched system
  • each QoS flow may be mapped to a single general packet radio service (GPRS) tunneling protocol (GTP) tunnel.
  • GTP general packet radio service
  • the base station 105 may map individual QoS flows to one more data radio bearers (DRBs) . Therefore, a protocol data unit (PDU) session may contain multiple QoS flows and several DRBs but only a single N3 GTP-U tunnel.
  • a DRB may transport one or more QoS flows.
  • a QoS flow may indicating by a QoS flow identifier (QFI) or a reflective QoS indicator (RQI) or both.
  • QFI QoS flow identifier
  • RQI reflective QoS indicator
  • RRC signaling may communicate the QFI, the RQI, or both between the base station 105 and the UE 115.
  • the QFI that identifies the QoS flow may be carried in an extension header on N3 in the GTP-U protocol, using uplink and downlink PDU session information frames.
  • the downlink and uplink PDU session information frame may include a QFI field for each packet.
  • both uplink and downlink for a high reliability application may use the same QoS flow.
  • UE 115-a may implement separate policies for the uplink and downlink. For example, UE 115-a may use packet duplication for the uplink QoS flow to transmit separate sets of duplicated uplink packets to improve reliability for the uplink.
  • a UE may utilize separate QoS flows for uplink information and downlink information and duplicate packets for the uplink to improve reliability in some applications.
  • the quantity of downlink signaling may be greater than the quantity of uplink signaling.
  • the information that is transmitted over the uplink signals may be critical to the proper functioning of the application.
  • the UE may experience movement, including rotations, lateral movement, vertical movement, or combinations thereof. Such movement may cause beam failures, especially for uplink signaling. Beam failure for uplink information may lead to the loss of information (e.g., control information or motion information) , which may result to a poor user experience or a failure of the application.
  • Applying packet duplication for the uplink may improve reliability for the uplink, as the movements of the UE (e.g., the movements that occur during gaming or virtual reality application) may affect a beam connection and quality. Therefore, if one of the links experiences beam failure, the UE may still have enhanced reliability for sending the uplink information and prevent being disconnected from a server providing the application.
  • Separate QoS flows may be utilized for downlink signaling and uplink signaling because duplicating packets for some downlink signal may lead to network congestion.
  • UE 115-a may duplicate the uplink information using the uplink QoS flow and transmit both a set of packets for the uplink information and a duplicated set of packets for the uplink information.
  • UE 115-a may transmit the set of packets and the duplicated set of packets to the master cell group, the secondary cell group, or both.
  • the set of packets may be transmitted to the master cell group (e.g., a primary cell)
  • the duplicated set of packets may be transmitted to the secondary cell group (e.g., a secondary cell or a primary secondary cell) .
  • both the set of packets and the duplicated set of packets may be transmitted to one of the master cell group and the secondary cell group.
  • the set of packets and the duplicated set of packets may be scheduled concurrently. If one of the connections experiences beam failure, the other connection may still be used to transmit the uplink information 205.
  • UE 115-a may detect that an application is a high reliability application and initiate the separate uplink QoS flow and packet duplication. For example, UE 115-a may detect the high reliability application and generate the separate uplink QoS flow. In some example, UE 115-a may send a request to base station 105-a to configure the separate uplink QoS flow at the wireless communications network (e.g., and base station 105-a) . Additionally, or alternatively, base station 105-a may send signaling to configure the separate uplink QoS flow.
  • base station 105-a may send signaling to configure the separate uplink QoS flow.
  • UE 115-a may use multiple QoS flows for uplink communications. For example, UE 115-a may use a first uplink QoS flow for the high reliability application and a second uplink QoS flow for other uplink signaling. The first uplink QoS flow may be used to transmit the uplink information 205 for the high reliability application, and the second uplink QoS flow may be used for data communications, cellular calls, etc. In some examples, the packet duplication may be implemented at the first uplink QoS flow and not the second uplink QoS flow.
  • the downlink QoS flow may be referred to as the first QoS flow
  • the first uplink QoS flow may be referred to as a second QoS flow
  • the second uplink QoS flow may be referred to as a third QoS flow.
  • the uplink QoS flow and the downlink QoS flows may have separate QoS flow identifiers.
  • a first QoS flow identifier for the uplink QoS flow may correspond to a first set of QoS characteristics
  • a second QoS flow identifier for the downlink QoS flow may correspond to a second set of QoS characteristics.
  • the first set of QoS characteristics and the second set of QoS characteristics may have some overlap to support the high reliability application.
  • the sets of QoS characteristics may also have some different values to separately improve uplink communications and downlink communications, such as utilizing the packet duplication for the uplink QoS flow.
  • the first uplink QoS flow and the second uplink QoS flow may have different QoS flow identifiers.
  • the uplink QoS flow and the downlink QoS flow may be mapped to one or more data radio bearers.
  • UE 115-a and base station 105-a may communicate the uplink information 205 and the downlink information 210 over a wireless interface via the data radio bearers.
  • the uplink QoS flow and the downlink QoS flow may be mapped to a common data radio bearer, or the uplink QoS flow and the downlink QoS flow may be mapped to one or more separate data radio bearers.
  • the reliability may be greatly increased without greatly increasing the use of radio resources.
  • a size of the uplink information 205 may be significantly smaller (e.g., less than 0.0001%) than a size of the downlink information 210. Therefore, by using separate QoS flow for uplink and downlink then applying packet duplication for the uplink QoS, the reliability is increased without greatly increasing the amount of data sent.
  • the downlink QoS flow may utilize packet duplication or separate QoS policies or conditions.
  • the downlink QoS flow may be configured to improve transmission or reliability of the downlink information 210.
  • FIG. 3 illustrates an example of a packet duplication scheme 300 that supports quality of service flow for communications in accordance with aspects of the present disclosure.
  • the packet duplication scheme 300 may implement aspects of wireless communication system 100 or 200.
  • a UE 115 as described with reference to FIG. 1, may implement the packet duplication scheme 300 via an uplink QoS flow to transmit a set of packets and a duplicated set of packets to a wireless network.
  • a UE 115 may use separate uplink and downlink QoS flows.
  • the uplink and downlink QoS flows may be used to improve reliability for a high reliability wireless communications connection without over-burdening the network.
  • the UE 115 may be using a high reliability application, such as virtual reality, augmented reality, or cloud gaming.
  • the UE 115 may duplicate uplink packets to improve reliability of uplink information without duplicating the packets of downlink information.
  • the UE 115 may duplicate packets using packet duplication entities 305.
  • the UE 115 may obtain packet data convergence protocol (PDCP) protocol data units (PDUs) at a PDCP entity 310.
  • PDCP packet data convergence protocol
  • PDUs protocol data units
  • duplication may include submitting the same PDCP PDUs multiple times, such as once to each activated RLC entity for the radio bearer.
  • the UE 115 may send the PDCP PDUs to primary RLC entity 315 and to secondary RLC entity 320, creating a duplicated set of PDCP PDUs for the secondary RLC entity 320.
  • the set of PDCP PDUs may then correspond to a primary logical channel 325, and the duplicated set of PDCP PDUs may correspond to secondary logical channel 330.
  • the set of PDCP PDUs and the duplicated set of PDCP PDUs may then be transmitted to the wireless communications network (e.g., via one or more base stations 105) via the primary logical channel 325 and the secondary logical channel 330.
  • FIG. 4 illustrates an example of a process flow 400 that supports quality of service flow for communications in accordance with aspects of the present disclosure.
  • the process flow 400 may implement aspects of wireless communication system 100.
  • the process flow 400 may be implemented by UE 115-b, base station 105-b, or both.
  • UE 115-b and base station 105-b may be respective examples of a UE 115 and a base station 105 as described with reference to FIGs. 1 and 2.
  • base station 105-b may provide a master cell group and a secondary cell group of a dual connectivity scheme.
  • base station 105-b may provide a master cell group, and a second base station 105 may provide a secondary cell group for a dual connectivity scheme.
  • UE 115-b may implement the techniques described herein to use separate QoS flows for uplink and downlink. To improve reliability for uplink communications, UE 115-b may duplicate packets on the uplink QoS flow. These techniques may improve reliability and increase a likelihood that UE 115-b remains connected to a server providing a high reliability communications connection or application, such as virtual reality, augmented reality, cloud gaming, and the like.
  • UE 115-b may detect a high reliability communications connection with base station 105-b. For example, UE 115-b may determine that an application which is used by UE 115-b is a virtual reality application, a cloud gaming application, an augmented reality application, or some other type of high reliability application. In some cases, the high reliability communications connection may use uplink information which may be generated based on movements or rotations of UE 115-b.
  • UE 115-b may transmit a request to configure a second QoS flow at base station 105-b.
  • UE 115-b may determine to use the second QoS flow for uplink based on the high reliability communications connection.
  • UE 115-b may construct the second QoS flow at UE 115-b based on detecting the high reliability connection, transmitting the request, or receiving a response to the request.
  • UE 115-b may identify a first QoS flow for downlink signaling with base station 105-b and a second QoS flow for uplink signaling different than the first QoS flow.
  • the first QoS flow and the second QoS flow may be mapped to one or more data radio bearers.
  • the first QoS flow may be an example of a downlink QoS described herein
  • the second QoS flow may be an example of an uplink QoS as described herein.
  • base station 105-b may identify the first QoS flow for downlink signaling with UE 115-b and the second QoS flow for uplink signaling.
  • UE 115-b and base station 105-b may identify the first QoS flow and the second QoS flow based on detecting the high reliability communications connection, a request from UE 115-b to configure the uplink QoS flow, or both.
  • UE 115-b may generate a first set of packets for the second QoS flow for the uplink signaling that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets. For example, UE 115-b may generate the first set of packets based on techniques described with reference to FIG. 3.
  • UE 115-b may transmit, to base station 105-b, the first set of packets over a primary cell, a secondary cell, or both. For example, UE 115-b may transmit the first subset of packets over the primary cell and transmit the second subset of packets over the secondary cell. In some cases, UE 115-b may transmit the first subset of packets and the second (e.g., duplicated) subset of packets to base station 105-b, such as if base station 105-b provides the primary cell, or a master cell group, and the secondary cell, or a secondary cell group.
  • UE 115-b may transmit one of the subset of packets (e.g., the first subset of packets) to base station 105-b and transmit the other subset of packets (e.g., the second subset of packets) to another base station 105.
  • the subset of packets e.g., the first subset of packets
  • the other subset of packets e.g., the second subset of packets
  • base station 105-b may transmit downlink information for the first QoS flow based on the set of packets.
  • the set of packets transmitted on the second (e.g., uplink) QoS may include control or motion information for an application which uses virtual reality, augmented reality, or is based on cloud gaming.
  • the network may process the uplink information and generate the downlink information based on the uplink information.
  • FIG. 5 shows a block diagram 500 of a device 505 that supports quality of service flow for communications in accordance with aspects of the present disclosure.
  • the device 505 may be an example of aspects of a UE 115 as described herein.
  • the device 505 may include a receiver 510, a communication manager 515, and a transmitter 520.
  • the device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to quality of service flow for communications, etc. ) . Information may be passed on to other components of the device 505.
  • the receiver 510 may be an example of aspects of the transceiver 815 described with reference to FIG. 8.
  • the receiver 510 may utilize a single antenna or a set of antennas.
  • the communication manager 515 may generate a first set of packets for the second QoS flow for the uplink signaling that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets, transmit, to the base station, the first set of packets over a primary cell, a secondary cell, or both, and identify a first QoS flow for downlink signaling with a base station and a second QoS flow for uplink signaling different than the first QoS flow, the first QoS flow and the second QoS flow mapped to one or more data radio bearers.
  • the communication manager 515 may be an example of aspects of the communication manager 810 described herein.
  • the communication manager 515 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communication manager 515, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • the communication manager 515 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communication manager 515, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communication manager 515, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the actions performed by the communication manager 515 as described herein may be implemented to realize one or more potential advantages.
  • One implementation may allow a UE 115 to improve reliability for uplink signaling by using separate QoS flows for uplink and downlink signaling.
  • the UE 115 may then duplicate packets for the uplink QoS flow to increase redundancy and a likelihood that at least one connection remains established to reliably send uplink information, even if another beam connection fails or experiences weakened conditions.
  • the transmitter 520 may transmit signals generated by other components of the device 505.
  • the transmitter 520 may be collocated with a receiver 510 in a transceiver module.
  • the transmitter 520 may be an example of aspects of the transceiver 815 described with reference to FIG. 8.
  • the transmitter 520 may utilize a single antenna or a set of antennas.
  • FIG. 6 shows a block diagram 600 of a device 605 that supports quality of service flow for communications in accordance with aspects of the present disclosure.
  • the device 605 may be an example of aspects of a device 505, or a UE 115 as described herein.
  • the device 605 may include a receiver 610, a communication manager 615, and a transmitter 635.
  • the device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to quality of service flow for communications, etc. ) . Information may be passed on to other components of the device 605.
  • the receiver 610 may be an example of aspects of the transceiver 815 described with reference to FIG. 8.
  • the receiver 610 may utilize a single antenna or a set of antennas.
  • the communication manager 615 may be an example of aspects of the communication manager 515 as described herein.
  • the communication manager 615 may include a packet generating component 620, a packet transmission component 625, and a QoS flow identifying component 630.
  • the communication manager 615 may be an example of aspects of the communication manager 810 described herein.
  • the packet generating component 620 may generate a first set of packets for the second QoS flow for the uplink signaling that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets.
  • the packet transmission component 625 may transmit, to the base station, the first set of packets over a primary cell, a secondary cell, or both.
  • the QoS flow identifying component 630 may identify a first QoS flow for downlink signaling with a base station and a second QoS flow for uplink signaling different than the first QoS flow, the first QoS flow and the second QoS flow mapped to one or more data radio bearers.
  • the transmitter 635 may transmit signals generated by other components of the device 605.
  • the transmitter 635 may be collocated with a receiver 610 in a transceiver module.
  • the transmitter 635 may be an example of aspects of the transceiver 815 described with reference to FIG. 8.
  • the transmitter 635 may utilize a single antenna or a set of antennas.
  • FIG. 7 shows a block diagram 700 of a communication manager 705 that supports quality of service flow for communications in accordance with aspects of the present disclosure.
  • the communication manager 705 may be an example of aspects of a communication manager 515, a communication manager 615, or a communication manager 810 described herein.
  • the communication manager 705 may include a packet generating component 710, a packet transmission component 715, a high reliability connection component 720, an uplink QoS flow request component 725, and a QoS flow identifying component 730. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the packet generating component 710 may generate a first set of packets for the second QoS flow for the uplink signaling that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets.
  • the packet transmission component 715 may transmit, to the base station, the first set of packets over a primary cell, a secondary cell, or both. In some examples, the packet transmission component 715 may transmit the first subset of packets over the primary cell. In some examples, the packet transmission component 715 may transmit the second subset of packets over the secondary cell. In some examples, the packet transmission component 715 may detect a beam failure for the primary cell, where the second subset of packets are transmitted over the secondary cell. In some examples, the packet transmission component 715 may receive an acknowledgment for the second subset of packets based on transmitting the second subset of packets over the secondary cell.
  • the QoS flow identifying component 730 may identify a first QoS flow for downlink signaling with a base station and a second QoS flow for uplink signaling different than the first QoS flow, the first QoS flow and the second QoS flow mapped to one or more data radio bearers. In some examples, the QoS flow identifying component 730 may identify a third QoS flow different than the second QoS flow for the uplink signaling. In some examples, the QoS flow identifying component 730 may transmit a second set of packets for the third QoS flow to the base station.
  • the high reliability connection component 720 may detect a high reliability communications connection with the base station, where the first QoS flow is associated with the high reliability communications connection, where identifying the second QoS flow is based on detecting the high reliability communications connection.
  • the high reliability connection component 720 may receive, from the base station over a downlink channel, video information associated with the high reliability communications connection.
  • the uplink QoS flow request component 725 may transmit, to the base station, a request to configure the second QoS flow at the base station, where identifying the second QoS flow is based on transmitting the request.
  • FIG. 8 shows a diagram of a system 800 including a device 805 that supports quality of service flow for communications in accordance with aspects of the present disclosure.
  • the device 805 may be an example of or include the components of device 505, device 605, or a UE 115 as described herein.
  • the device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communication manager 810, a transceiver 815, an antenna 820, memory 825, and a processor 835. These components may be in electronic communication via one or more buses (e.g., bus 840) .
  • buses e.g., bus 840
  • the communication manager 810 may generate a first set of packets for the second QoS flow for the uplink signaling that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets, transmit, to the base station, the first set of packets over a primary cell, a secondary cell, or both, and identify a first QoS flow for downlink signaling with a base station and a second QoS flow for uplink signaling different than the first QoS flow, the first QoS flow and the second QoS flow mapped to one or more data radio bearers.
  • the transceiver 815 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 815 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 815 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 820. However, in some cases the device may have more than one antenna 820, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 825 may include random access memory (RAM) and read-only memory (ROM) .
  • the memory 825 may store computer-readable, computer-executable code 830 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 825 may contain, among other things, a basic input/output system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic input/output system
  • the code 830 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 830 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory.
  • the code 830 may not be directly executable by the processor 835 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • the processor 835 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 835 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 835.
  • the processor 835 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 825) to cause the device 805 to perform various functions (e.g., functions or tasks supporting quality of service flow for communications) .
  • FIG. 9 shows a block diagram 900 of a device 905 that supports quality of service flow for communications in accordance with aspects of the present disclosure.
  • the device 905 may be an example of aspects of a base station 105 as described herein.
  • the device 905 may include a receiver 910, a communication manager 915, and a transmitter 920.
  • the device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to quality of service flow for communications, etc. ) . Information may be passed on to other components of the device 905.
  • the receiver 910 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the receiver 910 may utilize a single antenna or a set of antennas.
  • the communication manager 915 may identify a first QoS flow for downlink signaling with a UE and a second QoS flow for uplink signaling flow different than the first QoS flow, monitor, via a first cell, a second cell, or both, for a first set of packets for the second QoS flow that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets, and transmit, to the UE, downlink information for the first QoS flow based on the first set of packets.
  • the communication manager 915 may be an example of aspects of the communication manager 1210 described herein.
  • the communication manager 915 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communication manager 915, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • the communication manager 915 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communication manager 915, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communication manager 915, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 920 may transmit signals generated by other components of the device 905.
  • the transmitter 920 may be collocated with a receiver 910 in a transceiver module.
  • the transmitter 920 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the transmitter 920 may utilize a single antenna or a set of antennas.
  • FIG. 10 shows a block diagram 1000 of a device 1005 that supports quality of service flow for communications in accordance with aspects of the present disclosure.
  • the device 1005 may be an example of aspects of a device 905, or a base station 105 as described herein.
  • the device 1005 may include a receiver 1010, a communication manager 1015, and a transmitter 1035.
  • the device 1005 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1010 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to quality of service flow for communications, etc. ) . Information may be passed on to other components of the device 1005.
  • the receiver 1010 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the receiver 1010 may utilize a single antenna or a set of antennas.
  • the communication manager 1015 may be an example of aspects of the communication manager 915 as described herein.
  • the communication manager 1015 may include a QoS flow identifying component 1020, a packet monitoring component 1025, and a downlink information transmitting component 1030.
  • the communication manager 1015 may be an example of aspects of the communication manager 1210 described herein.
  • the QoS flow identifying component 1020 may identify a first quality of service QoS flow for downlink signaling with a UE and a second QoS flow for uplink signaling flow different than the first QoS flow.
  • the packet monitoring component 1025 may monitor, via a first cell, a second cell, or both, for a first set of packets for the second QoS flow that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets.
  • the downlink information transmitting component 1030 may transmit, to the UE, downlink information for the first QoS flow based on the first set of packets.
  • the transmitter 1035 may transmit signals generated by other components of the device 1005.
  • the transmitter 1035 may be collocated with a receiver 1010 in a transceiver module.
  • the transmitter 1035 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the transmitter 1035 may utilize a single antenna or a set of antennas.
  • FIG. 11 shows a block diagram 1100 of a communication manager 1105 that supports quality of service flow for communications in accordance with aspects of the present disclosure.
  • the communication manager 1105 may be an example of aspects of a communication manager 915, a communication manager 1015, or a communication manager 1210 described herein.
  • the communication manager 1105 may include a QoS flow identifying component 1110, a packet monitoring component 1115, a downlink information transmitting component 1120, and an uplink QoS flow request component 1125. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the QoS flow identifying component 1110 may identify a first QoS flow for downlink signaling with a UE and a second QoS flow for uplink signaling flow different than the first QoS flow. In some examples, the QoS flow identifying component 1110 may identify a third QoS flow different than the second QoS flow for the uplink signaling. In some examples, the QoS flow identifying component 1110 may receive a second set of packets for the third QoS flow to the base station.
  • the packet monitoring component 1115 may monitor, via a first cell, a second cell, or both, for a first set of packets for the second QoS flow that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets. In some examples, the packet monitoring component 1115 may monitor for the first subset of packets over the first cell, where the first cell is a primary cell. In some examples, the packet monitoring component 1115 may monitor for the second subset of packets over the second cell, where the second cell is a secondary cell. In some examples, the packet monitoring component 1115 may detect a beam failure for the primary cell. In some examples, the packet monitoring component 1115 may receive the second subset of packets over the secondary cell. In some examples, the packet monitoring component 1115 may transmit an acknowledgment for the second subset of packets to the UE.
  • the downlink information transmitting component 1120 may transmit, to the UE, downlink information for the first QoS flow based on the first set of packets.
  • the uplink QoS flow request component 1125 may receive, from the UE, a request to configure the second QoS flow at the base station, where identifying the second QoS flow at the base station is based on receiving the request.
  • FIG. 12 shows a diagram of a system 1200 including a device 1205 that supports quality of service flow for communications in accordance with aspects of the present disclosure.
  • the device 1205 may be an example of or include the components of device 905, device 1005, or a base station 105 as described herein.
  • the device 1205 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communication manager 1210, a network communications manager 1215, a transceiver 1220, an antenna 1225, memory 1230, a processor 1240, and an inter-station communications manager 1245. These components may be in electronic communication via one or more buses (e.g., bus 1250) .
  • buses e.g., bus 1250
  • the communication manager 1210 may identify a first QoS flow for downlink signaling with a UE and a second QoS flow for uplink signaling flow different than the first QoS flow, monitor, via a first cell, a second cell, or both, for a first set of packets for the second QoS flow that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets, and transmit, to the UE, downlink information for the first QoS flow based on the first set of packets.
  • the network communications manager 1215 may manage communications with the core network (e.g., via one or more wired backhaul links) .
  • the network communications manager 1215 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the transceiver 1220 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1220 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1220 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1225. However, in some cases the device may have more than one antenna 1225, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1230 may include RAM and ROM.
  • the memory 1230 may store computer-readable, computer-executable code 1235 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 1230 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the code 1235 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1235 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1235 may not be directly executable by the processor 1240 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • the processor 1240 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1240 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1240.
  • the processor 1240 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1230) to cause the device 1205 to perform various functions (e.g., functions or tasks supporting quality of service flow for communications) .
  • the inter-station communications manager 1245 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1245 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1245 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
  • FIG. 13 shows a flowchart illustrating a method 1300 that supports quality of service flow for communications in accordance with aspects of the present disclosure.
  • the operations of method 1300 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1300 may be performed by a communication manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions.
  • a UE may perform aspects of the described functions using special-purpose hardware.
  • the UE may identify a first QoS flow for downlink signaling with a base station and a second QoS flow for uplink signaling different than the first QoS flow, the first QoS flow and the second QoS flow mapped to one or more data radio bearers.
  • the operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a QoS flow identifying component as described with reference to FIGs. 5 through 8.
  • the UE may generate a first set of packets for the second QoS flow for the uplink signaling that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets.
  • the operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by a packet generating component as described with reference to FIGs. 5 through 8.
  • the UE may transmit, to the base station, the first set of packets over a primary cell, a secondary cell, or both.
  • the operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by a packet transmission component as described with reference to FIGs. 5 through 8.
  • FIG. 14 shows a flowchart illustrating a method 1400 that supports quality of service flow for communications in accordance with aspects of the present disclosure.
  • the operations of method 1400 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1400 may be performed by a communication manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions.
  • a UE may perform aspects of the described functions using special-purpose hardware.
  • the UE may detect a high reliability communications connection with the base station.
  • the operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a high reliability connection component as described with reference to FIGs. 5 through 8.
  • the UE may identify a first QoS flow for downlink signaling with a base station and a second QoS flow for uplink signaling different than the first QoS flow, the first QoS flow and the second QoS flow mapped to one or more data radio bearers.
  • the first QoS flow and the second QoS flow may be associated with the high reliability communications connection.
  • identifying the second QoS flow is based on detecting the high reliability communications connection.
  • the operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a QoS flow identifying component as described with reference to FIGs. 5 through 8.
  • the UE may generate a first set of packets for the second QoS flow for the uplink signaling that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets.
  • the operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a packet generating component as described with reference to FIGs. 5 through 8.
  • the UE may transmit, to the base station, the first set of packets over a primary cell, a secondary cell, or both.
  • the operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by a packet transmission component as described with reference to FIGs. 5 through 8.
  • FIG. 15 shows a flowchart illustrating a method 1500 that supports quality of service flow for communications in accordance with aspects of the present disclosure.
  • the operations of method 1500 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1500 may be performed by a communication manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions.
  • a UE may perform aspects of the described functions using special-purpose hardware.
  • the UE may transmit, to the base station, a request to configure the second QoS flow at the base station.
  • the operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by an uplink QoS flow request component as described with reference to FIGs. 5 through 8.
  • the UE may identify a first QoS flow for downlink signaling with a base station and a second QoS flow for uplink signaling different than the first QoS flow, the first QoS flow and the second QoS flow mapped to one or more data radio bearers. In some cases, identifying the second QoS flow is based on transmitting the request.
  • the operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a QoS flow identifying component as described with reference to FIGs. 5 through 8.
  • the UE may generate a first set of packets for the second QoS flow for the uplink signaling that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets.
  • the operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a packet generating component as described with reference to FIGs. 5 through 8.
  • the UE may transmit, to the base station, the first set of packets over a primary cell, a secondary cell, or both.
  • the operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a packet transmission component as described with reference to FIGs. 5 through 8.
  • FIG. 16 shows a flowchart illustrating a method 1600 that supports quality of service flow for communications in accordance with aspects of the present disclosure.
  • the operations of method 1600 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1600 may be performed by a communication manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions.
  • a UE may perform aspects of the described functions using special-purpose hardware.
  • the UE may identify a first QoS flow for downlink signaling with a base station and a second QoS flow for uplink signaling different than the first QoS flow, the first QoS flow and the second QoS flow mapped to one or more data radio bearers.
  • the operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a QoS flow identifying component as described with reference to FIGs. 5 through 8.
  • the UE may generate a first set of packets for the second QoS flow for the uplink signaling that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets.
  • the operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a packet generating component as described with reference to FIGs. 5 through 8.
  • the UE may transmit the first subset of packets over the primary cell.
  • the operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a packet transmission component as described with reference to FIGs. 5 through 8.
  • the UE may transmit the second subset of packets over the secondary cell.
  • the operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by a packet transmission component as described with reference to FIGs. 5 through 8.
  • FIG. 17 shows a flowchart illustrating a method 1700 that supports quality of service flow for communications in accordance with aspects of the present disclosure.
  • the operations of method 1700 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1700 may be performed by a communication manager as described with reference to FIGs. 9 through 12.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the described functions.
  • a base station may perform aspects of the described functions using special-purpose hardware.
  • the base station may identify a first QoS flow for downlink signaling with a UE and a second QoS flow for uplink signaling flow different than the first QoS flow.
  • the operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a QoS flow identifying component as described with reference to FIGs. 9 through 12.
  • the base station may monitor, via a first cell, a second cell, or both, for a first set of packets for the second QoS flow that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets.
  • the operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a packet monitoring component as described with reference to FIGs. 9 through 12.
  • the base station may transmit, to the UE, downlink information for the first QoS flow based on the first set of packets.
  • the operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by a downlink information transmitting component as described with reference to FIGs. 9 through 12.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communications are described. A user equipment (UE) may identify a first quality of service (QoS) flow for downlink signaling with a base station and a second QoS flow for uplink signaling different than the first QoS flow. The first QoS flow and the second QoS flow may be mapped to one or more data radio bearers. The UE may generate a first set of packets for the second QoS flow for the uplink signaling that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets, and the UE may transmit, to the base station, the first set of packets over a primary cell, a secondary cell, or both.

Description

QUALITY OF SERVICE FLOW FOR COMMUNICATIONS
FIELD OF TECHNOLOGY
The following relates to wireless communications, including quality of service flow for communications.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support quality of service flow for communications. Generally, the described techniques provide for increasing uplink reliability by using separate Quality of Service (QoS) flows for uplink and downlink. A user equipment (UE) may establish a high reliability connection with a wireless communications network. Some applications may have stringent latency or reliability requirements, where missed packets or a dropped connection may affect the use of the application or disconnect the UE from a server providing the application. For some of these application, the UE may be in motion or rotation to generate the information sent on the uplink. A UE may utilize separate QoS flows for uplink information and downlink information and duplicate packets for the uplink to improve reliability. Applying packet  duplication for the uplink may improve reliability for the uplink, as the movements of the UE (e.g., the movements that occur during gaming or virtual reality application) may affect a beam connection and quality. Therefore, if one of the links experiences beam failure, the UE may still have enhanced reliability for sending the uplink information and prevent being disconnected from a server providing the application. Separate QoS flows may be utilized for downlink signaling and uplink signaling because duplicating packets for some downlink signal may lead to network congestion.
A method for wireless communications at a UE is described. The method may include identifying a first QoS flow for downlink signaling with a base station and a second QoS flow for uplink signaling different than the first QoS flow, the first QoS flow and the second QoS flow mapped to one or more data radio bearers, generating a first set of packets for the second QoS flow for the uplink signaling that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets, and transmitting, to the base station, the first set of packets over a primary cell, a secondary cell, or both.
An apparatus for wireless communications at a UE is described. The apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to identify a first QoS flow for downlink signaling with a base station and a second QoS flow for uplink signaling different than the first QoS flow, the first QoS flow and the second QoS flow mapped to one or more data radio bearers, generate a first set of packets for the second QoS flow for the uplink signaling that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets, and transmit, to the base station, the first set of packets over a primary cell, a secondary cell, or both.
Another apparatus for wireless communications at a UE is described. The apparatus may include means for identifying a first QoS flow for downlink signaling with a base station and a second QoS flow for uplink signaling different than the first QoS flow, the first QoS flow and the second QoS flow mapped to one or more data radio bearers, means for generating a first set of packets for the second QoS flow for the uplink signaling that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets, and means for transmitting, to the base station, the first set of packets over a primary cell, a secondary cell, or both.
A non-transitory computer-readable medium storing code for wireless communications at a UE is described. The code may include instructions executable by a processor to identify a first QoS flow for downlink signaling with a base station and a second QoS flow for uplink signaling different than the first QoS flow, the first QoS flow and the second QoS flow mapped to one or more data radio bearers, generate a first set of packets for the second QoS flow for the uplink signaling that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets, and transmit, to the base station, the first set of packets over a primary cell, a secondary cell, or both.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for detecting a high reliability communications connection with the base station, where the first QoS flow may be associated with the high reliability communications connection, where identifying the second QoS flow may be based on detecting the high reliability communications connection.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first set of packets include control information or motion event information associated with the high reliability communications connection.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the base station over a downlink channel, video information associated with the high reliability communications connection.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the base station, a request to configure the second QoS flow at the base station, where identifying the second QoS flow may be based on transmitting the request.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the first set of packets may include operations, features, means, or instructions for transmitting the first subset of packets over the primary cell, and transmitting the second subset of packets over the secondary cell.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for detecting a beam failure for the primary cell, where the second subset of packets may be transmitted over the secondary cell, and receiving an acknowledgment for the second subset of packets based on transmitting the second subset of packets over the secondary cell.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a third QoS flow different than the second QoS flow for the uplink signaling, and transmitting a second set of packets for the third QoS flow to the base station.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the second QoS flow may be associated with a higher reliability QoS than the third QoS flow.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first QoS flow may be indicated by a first QoS flow identifier (QFI) and the second QoS flow may be indicated by a second QFI.
A method for wireless communications at a base station is described. The method may include identifying a first QoS flow for downlink signaling with a UE and a second QoS flow for uplink signaling flow different than the first QoS flow, monitoring, via a first cell, a second cell, or both, for a first set of packets for the second QoS flow that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets, and transmitting, to the UE, downlink information for the first QoS flow based on the first set of packets.
An apparatus for wireless communications at a base station is described. The apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to identify a first QoS flow for downlink signaling with a UE and a second QoS flow for uplink signaling flow different than the first QoS flow, monitor, via a first cell, a second cell, or both, for a first set of packets for the second QoS flow that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets, and transmit, to the UE, downlink information for the first QoS flow based on the first set of packets.
Another apparatus for wireless communications at a base station is described. The apparatus may include means for identifying a first QoS flow for downlink signaling with a UE and a second QoS flow for uplink signaling flow different than the first QoS flow, means for monitoring, via a first cell, a second cell, or both, for a first set of packets for the second QoS flow that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets, and means for transmitting, to the UE, downlink information for the first QoS flow based on the first set of packets.
A non-transitory computer-readable medium storing code for wireless communications at a base station is described. The code may include instructions executable by a processor to identify a first QoS flow for downlink signaling with a UE and a second QoS flow for uplink signaling flow different than the first QoS flow, monitor, via a first cell, a second cell, or both, for a first set of packets for the second QoS flow that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets, and transmit, to the UE, downlink information for the first QoS flow based on the first set of packets.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the UE, a request to configure the second QoS flow at the base station, where identifying the second QoS flow at the base station may be based on receiving the request.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for monitoring for the first subset of packets over the first cell, where the first cell may be a primary cell, and monitoring for the second subset of packets over the second cell, where the second cell may be a secondary cell.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for detecting a beam failure for the primary cell, receiving the second subset of packets over the secondary cell, and transmitting an acknowledgment for the second subset of packets to the UE.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for  identifying a third QoS flow different than the second QoS flow for the uplink signaling, and receiving a second set of packets for the third QoS flow to the base station.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the second QoS flow may be associated with a higher reliability QoS than the third QoS flow.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first QoS flow and the second QoS flow correspond to a high reliability communications connection with the UE.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first set of packets include control information or motion event information associated with the high reliability communications connection.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the downlink information include downlink video information associated with the high reliability communications connection.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a system for wireless communications that supports quality of service flow for communications in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications system that supports quality of service flow for communications in accordance with aspects of the present disclosure.
FIG. 3 illustrates an example of a packet duplication scheme that supports quality of service flow for communications in accordance with aspects of the present disclosure.
FIG. 4 illustrates an example of a process flow that supports quality of service flow for communications in accordance with aspects of the present disclosure.
FIGs. 5 and 6 show block diagrams of devices that support quality of service flow for communications in accordance with aspects of the present disclosure.
FIG. 7 shows a block diagram of a communication manager that supports quality of service flow for communications in accordance with aspects of the present disclosure.
FIG. 8 shows a diagram of a system including a device that supports quality of service flow for communications in accordance with aspects of the present disclosure.
FIGs. 9 and 10 show block diagrams of devices that support quality of service flow for communications in accordance with aspects of the present disclosure.
FIG. 11 shows a block diagram of a communication manager that supports quality of service flow for communications in accordance with aspects of the present disclosure.
FIG. 12 shows a diagram of a system including a device that supports quality of service flow for communications in accordance with aspects of the present disclosure.
FIGs. 13 through 17 show flowcharts illustrating methods that support quality of service flow for communications in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
A user equipment (UE) may establish a high reliability connection with a wireless communications network. Some applications may have stringent latency or reliability requirements, where missed packets or a dropped connection may affect the use of the application or disconnect the UE from a server providing the application. For example, a UE may be used for cloud gaming, virtual reality, or augmented reality, where the UE receives video streaming information over downlink signaling and transmits control or motion events over uplink signaling. For some of these application, the UE may experience motion or rotation, or both. In some cases, these movements may generate the control information or motion information sent on the uplink. However, these movements may affect a beam connection, which may lead to beam failure, such that the UE cannot reliably send the uplink information or receive the downlink information or both. If the UE experiences beam failure for a high reliability application, the UE may disconnect from the server providing the high reliability application, preventing the UE from using the application.
The techniques described herein provide enhanced reliability for sending uplink information for high reliability communications. Some systems may use a single quality of service (QoS) flow for both downlink information and uplink information. A wireless  communications system described herein may utilize separate QoS flows for uplink information and downlink information, and a UE may duplicate packets for the uplink. For example, the UE may duplicate uplink packets for a high reliability application and transmit the uplink packets and duplicated uplink packets for the high reliability application using an uplink-specific QoS flow. Separate QoS flows may be utilized for downlink information and uplink information because duplicating packets for some downlink information may lead to network congestion. In some cases, the uplink packets and the duplicated uplink packets may be transmitted on separate links (e.g., a master cell group and a secondary cell group of a dual connectivity scheme) to improve reliability of transmitting the control information or motion information. Therefore, if one of the links experiences beam failure, the UE may still have enhanced reliability for sending the uplink information and mitigate a likelihood of being disconnected from a server providing the application. While these techniques are generally described in the context of a high reliability application, the techniques may be used for other scenarios, such as a mobile call or data communication.
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to quality of service flow for communications.
FIG. 1 illustrates an example of a wireless communications system 100 that supports quality of service flow for communications in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate  via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT)  device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers. A carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115. A carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
The communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) . Devices of the wireless communications system 100 (e.g., the base stations 105, the UEs 115, or both) may have hardware configurations that support communications over a particular carrier bandwidth or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths. In some examples, each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing (Δf) and a cyclic prefix. A carrier may be divided into one or more BWPs having the same or different numerologies. In some examples, a UE 115 may be configured with multiple BWPs. In some examples, a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s= 1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally, or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a  downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof. The term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) . In some examples, a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates. Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105. For example, a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell. A small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service  subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) . A base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may support synchronous or asynchronous operation. For synchronous operation, the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time. For asynchronous operation, the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program  that makes use of the information or presents the information to humans interacting with the application program. Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples, half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques. For example, some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
In some systems, the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) . In some examples, vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these. A vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system. In some examples, vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to IP services 150 for one or more network  operators. The IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band. In some examples, the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device. The propagation of EHF transmissions, however, may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. The techniques disclosed herein may be employed across transmissions that  use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally, or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
The base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple  signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) . Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations. For example, a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115. Some signals (e.g., synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions. For example, the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
In some examples, transmissions by a device (e.g., by a base station 105 or a UE 115) may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) . The UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands. The base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded. The UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) . Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115) may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive  beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions. In some examples, a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) . The single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
The wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data. At the physical layer, transport channels may be mapped to physical channels.
The UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) . In some examples, a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be multiple-access systems capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . A wireless network, for example a wireless local area network (WLAN) , such as a Wi-Fi (i.e., Institute of Electrical and Electronics Engineers (IEEE) 802.11) network may include an access point (AP) that may communicate with one or more wireless or mobile devices. The AP may be coupled to a network, such as the Internet, and may enable a mobile device to communicate via the network (or communicate with other devices coupled to the access point) . A wireless device may communicate with a network device bi-directionally. For example, in a WLAN, a device may communicate with an associated AP via downlink (e.g., the communication link from the AP to the device) and uplink (e.g., the communication link from the device to the AP) . A wireless personal area network (PAN) , which may include a Bluetooth connection, may provide for short range wireless connections between two or more paired wireless devices. For example, wireless devices such as cellular phones may utilize wireless PAN communications to exchange information such as audio signals with wireless headsets.
UE 115 may establish a high reliability connection with a wireless communications network, such as via one or more base stations 105. Some applications may have stringent latency or reliability requirements, where missed packets or a dropped connection may affect the use of the application or disconnect the UE 115 from a server providing the application. For some of these application, the UE 115 may be in motion or rotation to generate the information sent on the uplink. A UE 115 may utilize separate QoS flows for uplink information and downlink information and duplicate packets for the uplink to improve reliability. Applying packet duplication for the uplink may improve reliability for the uplink, as the movements may affect a beam connection and quality. Therefore, if one of the links experiences beam failure, the UE 115 may still have enhanced reliability for sending the uplink information and prevent being disconnected from a server providing the application.
FIG. 2 illustrates an example of a wireless communications system 200 that supports quality of service flow for communications in accordance with aspects of the present  disclosure. In some examples, the wireless communications system 200 may implement aspects of wireless communication system 100.
The wireless communications system 200 includes UE 115-a and base station 105-a, which may be respective examples of a UE 115 and a base station 105 described with reference to FIG. 1. In some examples, the wireless communications system 200 may implement a dual connectivity scheme, where UE 115-a is connected to a network via a master cell group and one or more secondary cell groups. The master cell group and the one or more secondary cell groups may be provided by a single transmission and reception point, such as base station 105-a, or separate transmission and reception points, such as separate base stations 105. The master cell group may include a primary cell, and a secondary cell group may include one or more secondary cells or primary secondary cells.
UE 115-a and base station 105-a may establish a high reliability wireless communications connection. The high reliability wireless communications connection may be used to support a high reliability application, such as virtual reality, augmented reality, cloud gaming, or the like.
Using the high reliability wireless communications connection, UE 115-a may receive downlink information 210 from base station 105-a and transmit uplink information 205 to base station 105-a. In some cases, the downlink information 210 may include downlink video streaming information for the high reliability application. In some cases, the uplink information 205 may include motion information, control information, or both, for the high reliability application. In an example, the downlink information 210 may include downlink video streaming for a cloud gaming application, and a user may move, rotate, provide tactile inputs, or other interaction, to generate the uplink information 205 for the cloud gaming application. For example, the uplink information 205 may be processed by the server providing the cloud gaming application to control or play the cloud gaming application.
In some cases, a beam connection may fail for UE 115-a, which may affect the connection with the server providing the high reliability application. The wireless communications system 200 may support wireless communications at very high frequencies, such as in Frequency Range 2, which may be susceptible to weakened channel conditions or connectivity issues by a change of orientation, movement, or rotation of a device. For  example, as a user moves or rotates UE 115-a to generate the uplink information 205, the movements may weaken or break a beam connection to base station 105-a. For a high reliability application, missing packets or a dropping a beam may disconnect UE 115-a from the server providing the application, ending the service for UE 115-a.
The wireless communications system 200 may implement techniques to improve reliability for uplink communications. These techniques may increase the likelihood of successfully transmitting the uplink information 205, thereby ensuring UE 115-a remains connected to the high reliability application and service.
UE 115-a may use separate QoS flows for the uplink and the downlink and apply packet duplication for the uplink information 205 on the uplink QoS flow. A QoS for the high reliability wireless communications connection may be enforced at a QoS flow level between UE 115-a and the wireless communications network. For example, communications for a QoS flow may have a configured packet delay budget, packet error rate, and priority level for any signaling on the QoS flow. The QoS flow may be the lowest level granularity within the wireless communication system (e.g., 5G) and may be where policy and charging are enforced. One or more Service Data Flows (SDFs) may be transported in the same QoS flow, if they share the same policy and charging rules (which may be similar to a role of an evolved packet switched system (EPS) bearer in 4G) . In some cases, some or all traffic within the same QoS flow may receive the same treatment. In some cases, each QoS flow may be mapped to a single general packet radio service (GPRS) tunneling protocol (GTP) tunnel. In some cases, the base station 105 may map individual QoS flows to one more data radio bearers (DRBs) . Therefore, a protocol data unit (PDU) session may contain multiple QoS flows and several DRBs but only a single N3 GTP-U tunnel. A DRB may transport one or more QoS flows.
In some cases, a QoS flow may indicating by a QoS flow identifier (QFI) or a reflective QoS indicator (RQI) or both. In some cases, RRC signaling may communicate the QFI, the RQI, or both between the base station 105 and the UE 115. The QFI that identifies the QoS flow may be carried in an extension header on N3 in the GTP-U protocol, using uplink and downlink PDU session information frames. The downlink and uplink PDU session information frame may include a QFI field for each packet.
In some wireless communications systems, both uplink and downlink for a high reliability application may use the same QoS flow. However, by using separate QoS flow for uplink and downlink, UE 115-a may implement separate policies for the uplink and downlink. For example, UE 115-a may use packet duplication for the uplink QoS flow to transmit separate sets of duplicated uplink packets to improve reliability for the uplink.
A UE may utilize separate QoS flows for uplink information and downlink information and duplicate packets for the uplink to improve reliability in some applications. For example in gaming, virtual reality, or augmented reality applications, the quantity of downlink signaling may be greater than the quantity of uplink signaling. Even though there is less uplink signaling, the information that is transmitted over the uplink signals may be critical to the proper functioning of the application. Sometimes in these applications, the UE may experience movement, including rotations, lateral movement, vertical movement, or combinations thereof. Such movement may cause beam failures, especially for uplink signaling. Beam failure for uplink information may lead to the loss of information (e.g., control information or motion information) , which may result to a poor user experience or a failure of the application. Applying packet duplication for the uplink may improve reliability for the uplink, as the movements of the UE (e.g., the movements that occur during gaming or virtual reality application) may affect a beam connection and quality. Therefore, if one of the links experiences beam failure, the UE may still have enhanced reliability for sending the uplink information and prevent being disconnected from a server providing the application. Separate QoS flows may be utilized for downlink signaling and uplink signaling because duplicating packets for some downlink signal may lead to network congestion.
UE 115-a may duplicate the uplink information using the uplink QoS flow and transmit both a set of packets for the uplink information and a duplicated set of packets for the uplink information. In some cases, UE 115-a may transmit the set of packets and the duplicated set of packets to the master cell group, the secondary cell group, or both. For example, the set of packets may be transmitted to the master cell group (e.g., a primary cell) , and the duplicated set of packets may be transmitted to the secondary cell group (e.g., a secondary cell or a primary secondary cell) . Additionally, or alternatively, both the set of packets and the duplicated set of packets may be transmitted to one of the master cell group and the secondary cell group. In some cases, the set of packets and the duplicated set of  packets may be scheduled concurrently. If one of the connections experiences beam failure, the other connection may still be used to transmit the uplink information 205.
In some cases, UE 115-a may detect that an application is a high reliability application and initiate the separate uplink QoS flow and packet duplication. For example, UE 115-a may detect the high reliability application and generate the separate uplink QoS flow. In some example, UE 115-a may send a request to base station 105-a to configure the separate uplink QoS flow at the wireless communications network (e.g., and base station 105-a) . Additionally, or alternatively, base station 105-a may send signaling to configure the separate uplink QoS flow.
In some cases, UE 115-a may use multiple QoS flows for uplink communications. For example, UE 115-a may use a first uplink QoS flow for the high reliability application and a second uplink QoS flow for other uplink signaling. The first uplink QoS flow may be used to transmit the uplink information 205 for the high reliability application, and the second uplink QoS flow may be used for data communications, cellular calls, etc. In some examples, the packet duplication may be implemented at the first uplink QoS flow and not the second uplink QoS flow. In some cases, the downlink QoS flow may be referred to as the first QoS flow, the first uplink QoS flow may be referred to as a second QoS flow, and the second uplink QoS flow may be referred to as a third QoS flow.
The uplink QoS flow and the downlink QoS flows may have separate QoS flow identifiers. For example, a first QoS flow identifier for the uplink QoS flow may correspond to a first set of QoS characteristics, and a second QoS flow identifier for the downlink QoS flow may correspond to a second set of QoS characteristics. In some cases, the first set of QoS characteristics and the second set of QoS characteristics may have some overlap to support the high reliability application. In some cases, the sets of QoS characteristics may also have some different values to separately improve uplink communications and downlink communications, such as utilizing the packet duplication for the uplink QoS flow. In some cases, if UE 115-a has two uplink QoS flows, the first uplink QoS flow and the second uplink QoS flow may have different QoS flow identifiers.
The uplink QoS flow and the downlink QoS flow may be mapped to one or more data radio bearers. UE 115-a and base station 105-a may communicate the uplink information 205 and the downlink information 210 over a wireless interface via the data radio bearers. In  some cases, the uplink QoS flow and the downlink QoS flow may be mapped to a common data radio bearer, or the uplink QoS flow and the downlink QoS flow may be mapped to one or more separate data radio bearers.
These techniques may improve reliability without significant overhead. For example, by utilizing packet duplication for uplink, but not for downlink, the reliability may be greatly increased without greatly increasing the use of radio resources. In some cases, a size of the uplink information 205 may be significantly smaller (e.g., less than 0.0001%) than a size of the downlink information 210. Therefore, by using separate QoS flow for uplink and downlink then applying packet duplication for the uplink QoS, the reliability is increased without greatly increasing the amount of data sent. In some examples, the downlink QoS flow may utilize packet duplication or separate QoS policies or conditions. For example, the downlink QoS flow may be configured to improve transmission or reliability of the downlink information 210.
While these techniques are generally described in the context of a high reliability communications connection, the techniques are further applicable to other scenarios. For example, other types of connections may be affected by UE movement or rotation, which may disconnect UE 115-a from base station 105-a or otherwise affect channel or connection conditions. Using separate QoS flows and implementing packet duplication may improve reliability for other types of communications connections as well.
FIG. 3 illustrates an example of a packet duplication scheme 300 that supports quality of service flow for communications in accordance with aspects of the present disclosure. In some examples, the packet duplication scheme 300 may implement aspects of  wireless communication system  100 or 200. A UE 115, as described with reference to FIG. 1, may implement the packet duplication scheme 300 via an uplink QoS flow to transmit a set of packets and a duplicated set of packets to a wireless network.
As described herein, a UE 115 may use separate uplink and downlink QoS flows. The uplink and downlink QoS flows may be used to improve reliability for a high reliability wireless communications connection without over-burdening the network. For example, the UE 115 may be using a high reliability application, such as virtual reality, augmented reality, or cloud gaming. The UE 115 may duplicate uplink packets to improve reliability of uplink information without duplicating the packets of downlink information.
The UE 115 may duplicate packets using packet duplication entities 305. For example, the UE 115 may obtain packet data convergence protocol (PDCP) protocol data units (PDUs) at a PDCP entity 310. When duplication is configured for a radio bearer, at least one secondary RLC entity is added to the radio bearer to handle the duplicated PDCP PDUs. In some cases, duplication may include submitting the same PDCP PDUs multiple times, such as once to each activated RLC entity for the radio bearer. For example, the UE 115 may send the PDCP PDUs to primary RLC entity 315 and to secondary RLC entity 320, creating a duplicated set of PDCP PDUs for the secondary RLC entity 320. The set of PDCP PDUs may then correspond to a primary logical channel 325, and the duplicated set of PDCP PDUs may correspond to secondary logical channel 330. The set of PDCP PDUs and the duplicated set of PDCP PDUs may then be transmitted to the wireless communications network (e.g., via one or more base stations 105) via the primary logical channel 325 and the secondary logical channel 330.
FIG. 4 illustrates an example of a process flow 400 that supports quality of service flow for communications in accordance with aspects of the present disclosure. In some examples, the process flow 400 may implement aspects of wireless communication system 100. The process flow 400 may be implemented by UE 115-b, base station 105-b, or both. UE 115-b and base station 105-b may be respective examples of a UE 115 and a base station 105 as described with reference to FIGs. 1 and 2. In some examples, base station 105-b may provide a master cell group and a secondary cell group of a dual connectivity scheme. In some other example, base station 105-b may provide a master cell group, and a second base station 105 may provide a secondary cell group for a dual connectivity scheme.
UE 115-b may implement the techniques described herein to use separate QoS flows for uplink and downlink. To improve reliability for uplink communications, UE 115-b may duplicate packets on the uplink QoS flow. These techniques may improve reliability and increase a likelihood that UE 115-b remains connected to a server providing a high reliability communications connection or application, such as virtual reality, augmented reality, cloud gaming, and the like.
In some cases, at 505, UE 115-b may detect a high reliability communications connection with base station 105-b. For example, UE 115-b may determine that an application which is used by UE 115-b is a virtual reality application, a cloud gaming  application, an augmented reality application, or some other type of high reliability application. In some cases, the high reliability communications connection may use uplink information which may be generated based on movements or rotations of UE 115-b.
In some cases, at 510, UE 115-b may transmit a request to configure a second QoS flow at base station 105-b. UE 115-b may determine to use the second QoS flow for uplink based on the high reliability communications connection. In some cases, UE 115-b may construct the second QoS flow at UE 115-b based on detecting the high reliability connection, transmitting the request, or receiving a response to the request.
At 515-a, UE 115-b may identify a first QoS flow for downlink signaling with base station 105-b and a second QoS flow for uplink signaling different than the first QoS flow. The first QoS flow and the second QoS flow may be mapped to one or more data radio bearers. In some cases, the first QoS flow may be an example of a downlink QoS described herein, and the second QoS flow may be an example of an uplink QoS as described herein. At 515-b, base station 105-b may identify the first QoS flow for downlink signaling with UE 115-b and the second QoS flow for uplink signaling. In some cases, UE 115-b and base station 105-b may identify the first QoS flow and the second QoS flow based on detecting the high reliability communications connection, a request from UE 115-b to configure the uplink QoS flow, or both.
At 520, UE 115-b may generate a first set of packets for the second QoS flow for the uplink signaling that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets. For example, UE 115-b may generate the first set of packets based on techniques described with reference to FIG. 3.
At 525, UE 115-b may transmit, to base station 105-b, the first set of packets over a primary cell, a secondary cell, or both. For example, UE 115-b may transmit the first subset of packets over the primary cell and transmit the second subset of packets over the secondary cell. In some cases, UE 115-b may transmit the first subset of packets and the second (e.g., duplicated) subset of packets to base station 105-b, such as if base station 105-b provides the primary cell, or a master cell group, and the secondary cell, or a secondary cell group. In some examples, UE 115-b may transmit one of the subset of packets (e.g., the first subset of packets) to base station 105-b and transmit the other subset of packets (e.g., the second subset of packets) to another base station 105.
At 530, base station 105-b may transmit downlink information for the first QoS flow based on the set of packets. For example, the set of packets transmitted on the second (e.g., uplink) QoS may include control or motion information for an application which uses virtual reality, augmented reality, or is based on cloud gaming. The network may process the uplink information and generate the downlink information based on the uplink information.
FIG. 5 shows a block diagram 500 of a device 505 that supports quality of service flow for communications in accordance with aspects of the present disclosure. The device 505 may be an example of aspects of a UE 115 as described herein. The device 505 may include a receiver 510, a communication manager 515, and a transmitter 520. The device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to quality of service flow for communications, etc. ) . Information may be passed on to other components of the device 505. The receiver 510 may be an example of aspects of the transceiver 815 described with reference to FIG. 8. The receiver 510 may utilize a single antenna or a set of antennas.
The communication manager 515 may generate a first set of packets for the second QoS flow for the uplink signaling that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets, transmit, to the base station, the first set of packets over a primary cell, a secondary cell, or both, and identify a first QoS flow for downlink signaling with a base station and a second QoS flow for uplink signaling different than the first QoS flow, the first QoS flow and the second QoS flow mapped to one or more data radio bearers. The communication manager 515 may be an example of aspects of the communication manager 810 described herein.
The communication manager 515, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communication manager 515, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or  transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communication manager 515, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communication manager 515, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communication manager 515, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The actions performed by the communication manager 515 as described herein may be implemented to realize one or more potential advantages. One implementation may allow a UE 115 to improve reliability for uplink signaling by using separate QoS flows for uplink and downlink signaling. The UE 115 may then duplicate packets for the uplink QoS flow to increase redundancy and a likelihood that at least one connection remains established to reliably send uplink information, even if another beam connection fails or experiences weakened conditions.
The transmitter 520 may transmit signals generated by other components of the device 505. In some examples, the transmitter 520 may be collocated with a receiver 510 in a transceiver module. For example, the transmitter 520 may be an example of aspects of the transceiver 815 described with reference to FIG. 8. The transmitter 520 may utilize a single antenna or a set of antennas.
FIG. 6 shows a block diagram 600 of a device 605 that supports quality of service flow for communications in accordance with aspects of the present disclosure. The device 605 may be an example of aspects of a device 505, or a UE 115 as described herein. The device 605 may include a receiver 610, a communication manager 615, and a transmitter 635. The device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to quality of service flow for communications, etc. ) . Information may be passed on to other components of the device 605. The receiver 610 may be an example of aspects of the transceiver 815 described with reference to FIG. 8. The receiver 610 may utilize a single antenna or a set of antennas.
The communication manager 615 may be an example of aspects of the communication manager 515 as described herein. The communication manager 615 may include a packet generating component 620, a packet transmission component 625, and a QoS flow identifying component 630. The communication manager 615 may be an example of aspects of the communication manager 810 described herein.
The packet generating component 620 may generate a first set of packets for the second QoS flow for the uplink signaling that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets.
The packet transmission component 625 may transmit, to the base station, the first set of packets over a primary cell, a secondary cell, or both.
The QoS flow identifying component 630 may identify a first QoS flow for downlink signaling with a base station and a second QoS flow for uplink signaling different than the first QoS flow, the first QoS flow and the second QoS flow mapped to one or more data radio bearers.
The transmitter 635 may transmit signals generated by other components of the device 605. In some examples, the transmitter 635 may be collocated with a receiver 610 in a transceiver module. For example, the transmitter 635 may be an example of aspects of the transceiver 815 described with reference to FIG. 8. The transmitter 635 may utilize a single antenna or a set of antennas.
FIG. 7 shows a block diagram 700 of a communication manager 705 that supports quality of service flow for communications in accordance with aspects of the present disclosure. The communication manager 705 may be an example of aspects of a communication manager 515, a communication manager 615, or a communication manager 810 described herein. The communication manager 705 may include a packet generating  component 710, a packet transmission component 715, a high reliability connection component 720, an uplink QoS flow request component 725, and a QoS flow identifying component 730. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The packet generating component 710 may generate a first set of packets for the second QoS flow for the uplink signaling that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets.
The packet transmission component 715 may transmit, to the base station, the first set of packets over a primary cell, a secondary cell, or both. In some examples, the packet transmission component 715 may transmit the first subset of packets over the primary cell. In some examples, the packet transmission component 715 may transmit the second subset of packets over the secondary cell. In some examples, the packet transmission component 715 may detect a beam failure for the primary cell, where the second subset of packets are transmitted over the secondary cell. In some examples, the packet transmission component 715 may receive an acknowledgment for the second subset of packets based on transmitting the second subset of packets over the secondary cell.
The QoS flow identifying component 730 may identify a first QoS flow for downlink signaling with a base station and a second QoS flow for uplink signaling different than the first QoS flow, the first QoS flow and the second QoS flow mapped to one or more data radio bearers. In some examples, the QoS flow identifying component 730 may identify a third QoS flow different than the second QoS flow for the uplink signaling. In some examples, the QoS flow identifying component 730 may transmit a second set of packets for the third QoS flow to the base station.
The high reliability connection component 720 may detect a high reliability communications connection with the base station, where the first QoS flow is associated with the high reliability communications connection, where identifying the second QoS flow is based on detecting the high reliability communications connection. In some examples, the high reliability connection component 720 may receive, from the base station over a downlink channel, video information associated with the high reliability communications connection. The uplink QoS flow request component 725 may transmit, to the base station, a  request to configure the second QoS flow at the base station, where identifying the second QoS flow is based on transmitting the request.
FIG. 8 shows a diagram of a system 800 including a device 805 that supports quality of service flow for communications in accordance with aspects of the present disclosure. The device 805 may be an example of or include the components of device 505, device 605, or a UE 115 as described herein. The device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communication manager 810, a transceiver 815, an antenna 820, memory 825, and a processor 835. These components may be in electronic communication via one or more buses (e.g., bus 840) .
The communication manager 810 may generate a first set of packets for the second QoS flow for the uplink signaling that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets, transmit, to the base station, the first set of packets over a primary cell, a secondary cell, or both, and identify a first QoS flow for downlink signaling with a base station and a second QoS flow for uplink signaling different than the first QoS flow, the first QoS flow and the second QoS flow mapped to one or more data radio bearers.
The transceiver 815 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 815 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 815 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 820. However, in some cases the device may have more than one antenna 820, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 825 may include random access memory (RAM) and read-only memory (ROM) . The memory 825 may store computer-readable, computer-executable code 830 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 825 may contain, among other things,  a basic input/output system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The code 830 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 830 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 830 may not be directly executable by the processor 835 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
The processor 835 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 835 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 835. The processor 835 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 825) to cause the device 805 to perform various functions (e.g., functions or tasks supporting quality of service flow for communications) .
FIG. 9 shows a block diagram 900 of a device 905 that supports quality of service flow for communications in accordance with aspects of the present disclosure. The device 905 may be an example of aspects of a base station 105 as described herein. The device 905 may include a receiver 910, a communication manager 915, and a transmitter 920. The device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to quality of service flow for communications, etc. ) . Information may be passed on to other components of the device 905. The receiver 910 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The receiver 910 may utilize a single antenna or a set of antennas.
The communication manager 915 may identify a first QoS flow for downlink signaling with a UE and a second QoS flow for uplink signaling flow different than the first  QoS flow, monitor, via a first cell, a second cell, or both, for a first set of packets for the second QoS flow that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets, and transmit, to the UE, downlink information for the first QoS flow based on the first set of packets. The communication manager 915 may be an example of aspects of the communication manager 1210 described herein.
The communication manager 915, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communication manager 915, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communication manager 915, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communication manager 915, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communication manager 915, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 920 may transmit signals generated by other components of the device 905. In some examples, the transmitter 920 may be collocated with a receiver 910 in a transceiver module. For example, the transmitter 920 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The transmitter 920 may utilize a single antenna or a set of antennas.
FIG. 10 shows a block diagram 1000 of a device 1005 that supports quality of service flow for communications in accordance with aspects of the present disclosure. The device 1005 may be an example of aspects of a device 905, or a base station 105 as described herein. The device 1005 may include a receiver 1010, a communication manager 1015, and a  transmitter 1035. The device 1005 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1010 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to quality of service flow for communications, etc. ) . Information may be passed on to other components of the device 1005. The receiver 1010 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The receiver 1010 may utilize a single antenna or a set of antennas.
The communication manager 1015 may be an example of aspects of the communication manager 915 as described herein. The communication manager 1015 may include a QoS flow identifying component 1020, a packet monitoring component 1025, and a downlink information transmitting component 1030. The communication manager 1015 may be an example of aspects of the communication manager 1210 described herein.
The QoS flow identifying component 1020 may identify a first quality of service QoS flow for downlink signaling with a UE and a second QoS flow for uplink signaling flow different than the first QoS flow.
The packet monitoring component 1025 may monitor, via a first cell, a second cell, or both, for a first set of packets for the second QoS flow that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets.
The downlink information transmitting component 1030 may transmit, to the UE, downlink information for the first QoS flow based on the first set of packets.
The transmitter 1035 may transmit signals generated by other components of the device 1005. In some examples, the transmitter 1035 may be collocated with a receiver 1010 in a transceiver module. For example, the transmitter 1035 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The transmitter 1035 may utilize a single antenna or a set of antennas.
FIG. 11 shows a block diagram 1100 of a communication manager 1105 that supports quality of service flow for communications in accordance with aspects of the present disclosure. The communication manager 1105 may be an example of aspects of a communication manager 915, a communication manager 1015, or a communication manager  1210 described herein. The communication manager 1105 may include a QoS flow identifying component 1110, a packet monitoring component 1115, a downlink information transmitting component 1120, and an uplink QoS flow request component 1125. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The QoS flow identifying component 1110 may identify a first QoS flow for downlink signaling with a UE and a second QoS flow for uplink signaling flow different than the first QoS flow. In some examples, the QoS flow identifying component 1110 may identify a third QoS flow different than the second QoS flow for the uplink signaling. In some examples, the QoS flow identifying component 1110 may receive a second set of packets for the third QoS flow to the base station.
The packet monitoring component 1115 may monitor, via a first cell, a second cell, or both, for a first set of packets for the second QoS flow that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets. In some examples, the packet monitoring component 1115 may monitor for the first subset of packets over the first cell, where the first cell is a primary cell. In some examples, the packet monitoring component 1115 may monitor for the second subset of packets over the second cell, where the second cell is a secondary cell. In some examples, the packet monitoring component 1115 may detect a beam failure for the primary cell. In some examples, the packet monitoring component 1115 may receive the second subset of packets over the secondary cell. In some examples, the packet monitoring component 1115 may transmit an acknowledgment for the second subset of packets to the UE.
The downlink information transmitting component 1120 may transmit, to the UE, downlink information for the first QoS flow based on the first set of packets. The uplink QoS flow request component 1125 may receive, from the UE, a request to configure the second QoS flow at the base station, where identifying the second QoS flow at the base station is based on receiving the request.
FIG. 12 shows a diagram of a system 1200 including a device 1205 that supports quality of service flow for communications in accordance with aspects of the present disclosure. The device 1205 may be an example of or include the components of device 905, device 1005, or a base station 105 as described herein. The device 1205 may include  components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communication manager 1210, a network communications manager 1215, a transceiver 1220, an antenna 1225, memory 1230, a processor 1240, and an inter-station communications manager 1245. These components may be in electronic communication via one or more buses (e.g., bus 1250) .
The communication manager 1210 may identify a first QoS flow for downlink signaling with a UE and a second QoS flow for uplink signaling flow different than the first QoS flow, monitor, via a first cell, a second cell, or both, for a first set of packets for the second QoS flow that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets, and transmit, to the UE, downlink information for the first QoS flow based on the first set of packets.
The network communications manager 1215 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communications manager 1215 may manage the transfer of data communications for client devices, such as one or more UEs 115.
The transceiver 1220 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1220 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1220 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1225. However, in some cases the device may have more than one antenna 1225, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1230 may include RAM and ROM. The memory 1230 may store computer-readable, computer-executable code 1235 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 1230 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The code 1235 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1235 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1235 may not be directly executable by the processor 1240 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
The processor 1240 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1240 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 1240. The processor 1240 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1230) to cause the device 1205 to perform various functions (e.g., functions or tasks supporting quality of service flow for communications) .
The inter-station communications manager 1245 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1245 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1245 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
FIG. 13 shows a flowchart illustrating a method 1300 that supports quality of service flow for communications in accordance with aspects of the present disclosure. The operations of method 1300 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1300 may be performed by a communication manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally, or alternatively, a UE may perform aspects of the described functions using special-purpose hardware.
At 1305, the UE may identify a first QoS flow for downlink signaling with a base station and a second QoS flow for uplink signaling different than the first QoS flow, the first QoS flow and the second QoS flow mapped to one or more data radio bearers. The operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a QoS flow identifying component as described with reference to FIGs. 5 through 8.
At 1310, the UE may generate a first set of packets for the second QoS flow for the uplink signaling that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets. The operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by a packet generating component as described with reference to FIGs. 5 through 8.
At 1315, the UE may transmit, to the base station, the first set of packets over a primary cell, a secondary cell, or both. The operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by a packet transmission component as described with reference to FIGs. 5 through 8.
FIG. 14 shows a flowchart illustrating a method 1400 that supports quality of service flow for communications in accordance with aspects of the present disclosure. The operations of method 1400 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1400 may be performed by a communication manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally, or alternatively, a UE may perform aspects of the described functions using special-purpose hardware.
At 1405, the UE may detect a high reliability communications connection with the base station. The operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a high reliability connection component as described with reference to FIGs. 5 through 8.
At 1410, the UE may identify a first QoS flow for downlink signaling with a base station and a second QoS flow for uplink signaling different than the first QoS flow, the first  QoS flow and the second QoS flow mapped to one or more data radio bearers. In some cases, the first QoS flow and the second QoS flow may be associated with the high reliability communications connection. In some examples, identifying the second QoS flow is based on detecting the high reliability communications connection. The operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a QoS flow identifying component as described with reference to FIGs. 5 through 8.
At 1415, the UE may generate a first set of packets for the second QoS flow for the uplink signaling that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets. The operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a packet generating component as described with reference to FIGs. 5 through 8.
At 1420, the UE may transmit, to the base station, the first set of packets over a primary cell, a secondary cell, or both. The operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by a packet transmission component as described with reference to FIGs. 5 through 8.
FIG. 15 shows a flowchart illustrating a method 1500 that supports quality of service flow for communications in accordance with aspects of the present disclosure. The operations of method 1500 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1500 may be performed by a communication manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally, or alternatively, a UE may perform aspects of the described functions using special-purpose hardware.
At 1505, the UE may transmit, to the base station, a request to configure the second QoS flow at the base station. The operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by an uplink QoS flow request component as described with reference to FIGs. 5 through 8.
At 1510, the UE may identify a first QoS flow for downlink signaling with a base station and a second QoS flow for uplink signaling different than the first QoS flow, the first QoS flow and the second QoS flow mapped to one or more data radio bearers. In some cases, identifying the second QoS flow is based on transmitting the request. The operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a QoS flow identifying component as described with reference to FIGs. 5 through 8.
At 1515, the UE may generate a first set of packets for the second QoS flow for the uplink signaling that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets. The operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a packet generating component as described with reference to FIGs. 5 through 8.
At 1520, the UE may transmit, to the base station, the first set of packets over a primary cell, a secondary cell, or both. The operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a packet transmission component as described with reference to FIGs. 5 through 8.
FIG. 16 shows a flowchart illustrating a method 1600 that supports quality of service flow for communications in accordance with aspects of the present disclosure. The operations of method 1600 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1600 may be performed by a communication manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally, or alternatively, a UE may perform aspects of the described functions using special-purpose hardware.
At 1605, the UE may identify a first QoS flow for downlink signaling with a base station and a second QoS flow for uplink signaling different than the first QoS flow, the first QoS flow and the second QoS flow mapped to one or more data radio bearers. The operations of 1605 may be performed according to the methods described herein. In some examples,  aspects of the operations of 1605 may be performed by a QoS flow identifying component as described with reference to FIGs. 5 through 8.
At 1610, the UE may generate a first set of packets for the second QoS flow for the uplink signaling that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets. The operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a packet generating component as described with reference to FIGs. 5 through 8.
At 1615, the UE may transmit the first subset of packets over the primary cell. The operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a packet transmission component as described with reference to FIGs. 5 through 8.
At 1620, the UE may transmit the second subset of packets over the secondary cell. The operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by a packet transmission component as described with reference to FIGs. 5 through 8.
FIG. 17 shows a flowchart illustrating a method 1700 that supports quality of service flow for communications in accordance with aspects of the present disclosure. The operations of method 1700 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1700 may be performed by a communication manager as described with reference to FIGs. 9 through 12. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the described functions. Additionally, or alternatively, a base station may perform aspects of the described functions using special-purpose hardware.
At 1705, the base station may identify a first QoS flow for downlink signaling with a UE and a second QoS flow for uplink signaling flow different than the first QoS flow. The operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a QoS flow identifying component as described with reference to FIGs. 9 through 12.
At 1710, the base station may monitor, via a first cell, a second cell, or both, for a first set of packets for the second QoS flow that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets. The operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a packet monitoring component as described with reference to FIGs. 9 through 12.
At 1715, the base station may transmit, to the UE, downlink information for the first QoS flow based on the first set of packets. The operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by a downlink information transmitting component as described with reference to FIGs. 9 through 12.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or  transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein,  include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be  applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (42)

  1. A method for wireless communications at a user equipment (UE) , comprising:
    identifying a first quality of service (QoS) flow for downlink signaling with a base station and a second QoS flow for uplink signaling different than the first QoS flow, the first QoS flow and the second QoS flow mapped to one or more data radio bearers;
    generating a first set of packets for the second QoS flow for the uplink signaling that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets; and
    transmitting, to the base station, the first set of packets over a primary cell, a secondary cell, or both.
  2. The method of claim 1, further comprising:
    detecting a high reliability communications connection with the base station, wherein the first QoS flow is associated with the high reliability communications connection, wherein identifying the second QoS flow is based at least in part on detecting the high reliability communications connection.
  3. The method of claim 2, wherein the first set of packets comprise control information or motion event information associated with the high reliability communications connection.
  4. The method of claim 2, further comprising:
    receiving, from the base station over a downlink channel, video information associated with the high reliability communications connection.
  5. The method of claim 1, further comprising:
    transmitting, to the base station, a request to configure the second QoS flow at the base station, wherein identifying the second QoS flow is based at least in part on transmitting the request.
  6. The method of claim 1, wherein transmitting the first set of packets comprises:
    transmitting the first subset of packets over the primary cell; and
    transmitting the second subset of packets over the secondary cell.
  7. The method of claim 6, further comprising:
    detecting a beam failure for the primary cell, wherein the second subset of packets are transmitted over the secondary cell; and
    receiving an acknowledgment for the second subset of packets based at least in part on transmitting the second subset of packets over the secondary cell.
  8. The method of claim 1, further comprising:
    identifying a third QoS flow different than the second QoS flow for the uplink signaling; and
    transmitting a second set of packets for the third QoS flow to the base station.
  9. The method of claim 8, wherein the second QoS flow is associated with a higher reliability QoS than the third QoS flow.
  10. The method of claim 8, wherein the first QoS flow is indicated by a first QoS flow identifier (QFI) and the second QoS flow is indicated by a second QFI.
  11. A method for wireless communications at a base station, comprising:
    identifying a first quality of service (QoS) flow for downlink signaling with a user equipment (UE) and a second QoS flow for uplink signaling flow different than the first QoS flow;
    monitoring, via a first cell, a second cell, or both, for a first set of packets for the second QoS flow that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets; and
    transmitting, to the UE, downlink information for the first QoS flow based at least in part on the first set of packets.
  12. The method of claim 11, further comprising:
    receiving, from the UE, a request to configure the second QoS flow at the base station, wherein identifying the second QoS flow at the base station is based at least in part on receiving the request.
  13. The method of claim 11, further comprising:
    monitoring for the first subset of packets over the first cell, wherein the first cell is a primary cell; and
    monitoring for the second subset of packets over the second cell, wherein the second cell is a secondary cell.
  14. The method of claim 13, further comprising:
    detecting a beam failure for the primary cell;
    receiving the second subset of packets over the secondary cell; and
    transmitting an acknowledgment for the second subset of packets to the UE.
  15. The method of claim 11, further comprising:
    identifying a third QoS flow different than the second QoS flow for the uplink signaling; and
    receiving a second set of packets for the third QoS flow to the base station.
  16. The method of claim 15, wherein the second QoS flow is associated with a higher reliability QoS than the third QoS flow.
  17. The method of claim 11, wherein the first QoS flow and the second QoS flow correspond to a high reliability communications connection with the UE.
  18. The method of claim 17, wherein the first set of packets comprise control information or motion event information associated with the high reliability communications connection.
  19. The method of claim 17, wherein the downlink information include downlink video information associated with the high reliability communications connection.
  20. An apparatus for wireless communications at a user equipment (UE) , comprising:
    a processor,
    memory coupled with the processor, and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    identify a first quality of service (QoS) flow for downlink signaling with a base station and a second QoS flow for uplink signaling different than the first QoS flow, the first QoS flow and the second QoS flow mapped to one or more data radio bearers;
    generate a first set of packets for the second QoS flow for the uplink signaling that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets; and
    transmit, to the base station, the first set of packets over a primary cell, a secondary cell, or both.
  21. The apparatus of claim 20, wherein the instructions are further executable by the processor to cause the apparatus to:
    detect a high reliability communications connection with the base station, wherein the first QoS flow is associated with the high reliability communications connection, wherein identifying the second QoS flow is based at least in part on detecting the high reliability communications connection.
  22. The apparatus of claim 21, wherein the first set of packets comprise control information or motion event information associated with the high reliability communications connection.
  23. The apparatus of claim 21, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from the base station over a downlink channel, video information associated with the high reliability communications connection.
  24. The apparatus of claim 20, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit, to the base station, a request to configure the second QoS flow at the base station, wherein identifying the second QoS flow is based at least in part on transmitting the request.
  25. The apparatus of claim 20, wherein the instructions to transmit the first set of packets are executable by the processor to cause the apparatus to:
    transmit the first subset of packets over the primary cell; and
    transmit the second subset of packets over the secondary cell.
  26. The apparatus of claim 25, wherein the instructions are further executable by the processor to cause the apparatus to:
    detect a beam failure for the primary cell, wherein the second subset of packets are transmitted over the secondary cell; and
    receive an acknowledgment for the second subset of packets based at least in part on transmitting the second subset of packets over the secondary cell.
  27. The apparatus of claim 20, wherein the instructions are further executable by the processor to cause the apparatus to:
    identify a third QoS flow different than the second QoS flow for the uplink signaling; and
    transmit a second set of packets for the third QoS flow to the base station.
  28. The apparatus of claim 27, wherein the second QoS flow is associated with a higher reliability QoS than the third QoS flow.
  29. The apparatus of claim 27, wherein the first QoS flow is indicated by a first QoS flow identifier (QFI) and the second QoS flow is indicated by a second QFI.
  30. An apparatus for wireless communications at a base station, comprising:
    a processor,
    memory coupled with the processor, and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    identify a first quality of service (QoS) flow for downlink signaling with a user equipment (UE) and a second QoS flow for uplink signaling flow different than the first QoS flow;
    monitor, via a first cell, a second cell, or both, for a first set of packets for the second QoS flow that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets; and
    transmit, to the UE, downlink information for the first QoS flow based at least in part on the first set of packets.
  31. The apparatus of claim 30, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from the UE, a request to configure the second QoS flow at the base station, wherein identifying the second QoS flow at the base station is based at least in part on receiving the request.
  32. The apparatus of claim 30, wherein the instructions are further executable by the processor to cause the apparatus to:
    monitor for the first subset of packets over the first cell, wherein the first cell is a primary cell; and
    monitor for the second subset of packets over the second cell, wherein the second cell is a secondary cell.
  33. The apparatus of claim 32, wherein the instructions are further executable by the processor to cause the apparatus to:
    detect a beam failure for the primary cell;
    receive the second subset of packets over the secondary cell; and
    transmit an acknowledgment for the second subset of packets to the UE.
  34. The apparatus of claim 30, wherein the instructions are further executable by the processor to cause the apparatus to:
    identify a third QoS flow different than the second QoS flow for the uplink signaling; and
    receive a second set of packets for the third QoS flow to the base station.
  35. The apparatus of claim 34, wherein the second QoS flow is associated with a higher reliability QoS than the third QoS flow.
  36. The apparatus of claim 30, wherein the first QoS flow and the second QoS flow correspond to a high reliability communications connection with the UE.
  37. The apparatus of claim 36, wherein the first set of packets comprise control information or motion event information associated with the high reliability communications connection.
  38. The apparatus of claim 36, wherein the downlink information include downlink video information associated with the high reliability communications connection.
  39. An apparatus for wireless communications at a user equipment (UE) , comprising:
    means for identifying a first quality of service (QoS) flow for downlink signaling with a base station and a second QoS flow for uplink signaling different than the first QoS flow, the first QoS flow and the second QoS flow mapped to one or more data radio bearers;
    means for generating a first set of packets for the second QoS flow for the uplink signaling that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets; and
    means for transmitting, to the base station, the first set of packets over a primary cell, a secondary cell, or both.
  40. An apparatus for wireless communications at a base station, comprising:
    means for identifying a first quality of service (QoS) flow for downlink signaling with a user equipment (UE) and a second QoS flow for uplink signaling flow different than the first QoS flow;
    means for monitoring, via a first cell, a second cell, or both, for a first set of packets for the second QoS flow that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets; and
    means for transmitting, to the UE, downlink information for the first QoS flow based at least in part on the first set of packets.
  41. A non-transitory computer-readable medium storing code for wireless communications at a user equipment (UE) , the code comprising instructions executable by a processor to:
    identify a first quality of service (QoS) flow for downlink signaling with a base station and a second QoS flow for uplink signaling different than the first QoS flow, the first QoS flow and the second QoS flow mapped to one or more data radio bearers;
    generate a first set of packets for the second QoS flow for the uplink signaling that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets; and
    transmit, to the base station, the first set of packets over a primary cell, a secondary cell, or both.
  42. A non-transitory computer-readable medium storing code for wireless communications at a base station, the code comprising instructions executable by a processor to:
    identify a first quality of service (QoS) flow for downlink signaling with a user equipment (UE) and a second QoS flow for uplink signaling flow different than the first QoS flow;
    monitor, via a first cell, a second cell, or both, for a first set of packets for the second QoS flow that includes a first subset of packets and a second subset of packets that are duplicates of the first subset of packets; and
    transmit, to the UE, downlink information for the first QoS flow based at least in part on the first set of packets.
PCT/CN2020/114427 2020-09-10 2020-09-10 Quality of service flow for communications WO2022051970A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/114427 WO2022051970A1 (en) 2020-09-10 2020-09-10 Quality of service flow for communications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/114427 WO2022051970A1 (en) 2020-09-10 2020-09-10 Quality of service flow for communications

Publications (1)

Publication Number Publication Date
WO2022051970A1 true WO2022051970A1 (en) 2022-03-17

Family

ID=80630244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114427 WO2022051970A1 (en) 2020-09-10 2020-09-10 Quality of service flow for communications

Country Status (1)

Country Link
WO (1) WO2022051970A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190028920A1 (en) * 2017-07-20 2019-01-24 Asustek Computer Inc. Method and apparatus for servicing qos (quality of service) flow in a wireless communication system
WO2019029642A1 (en) * 2017-08-11 2019-02-14 华为技术有限公司 Communication method, base station, terminal device and system
WO2019141239A1 (en) * 2018-01-22 2019-07-25 华为技术有限公司 Communication method, device and system
WO2019158219A1 (en) * 2018-02-19 2019-08-22 Huawei Technologies Duesseldorf Gmbh Ran device and core network device for network slicing
US20190387561A1 (en) * 2018-06-14 2019-12-19 Qualcomm Incorporated Mobility robustness and spatial reliability using multi-connectivity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190028920A1 (en) * 2017-07-20 2019-01-24 Asustek Computer Inc. Method and apparatus for servicing qos (quality of service) flow in a wireless communication system
WO2019029642A1 (en) * 2017-08-11 2019-02-14 华为技术有限公司 Communication method, base station, terminal device and system
WO2019141239A1 (en) * 2018-01-22 2019-07-25 华为技术有限公司 Communication method, device and system
WO2019158219A1 (en) * 2018-02-19 2019-08-22 Huawei Technologies Duesseldorf Gmbh Ran device and core network device for network slicing
US20190387561A1 (en) * 2018-06-14 2019-12-19 Qualcomm Incorporated Mobility robustness and spatial reliability using multi-connectivity

Similar Documents

Publication Publication Date Title
WO2022141614A1 (en) Techniques for sidelink control connection with carrier aggregation
WO2021226956A1 (en) Monitoring for downlink repetitions
US11792771B2 (en) Transport block forwarding over different air interfaces
US20210289476A1 (en) Sidelink communication during a downlink slot
WO2022094903A1 (en) Relay selection based on early measurement in l2 relay
US11368944B2 (en) Parallel duplicated uplink control channels in uplink carrier aggregation
US11546038B2 (en) Beam sweeping patterns for single frequency network broadcast channel
WO2021047539A1 (en) Uplink transmission timing patterns
US20230164819A1 (en) Uplink control information multiplexing rule for simultaneous uplink control channel and uplink shared channel transmission
WO2021258385A1 (en) Dynamic uplink control multiplexing between physical uplink channels
US20210385735A1 (en) Gateway-based voice calls via a base station
WO2022147646A1 (en) Forward handover procedures for l2 relay mobility
US11304198B2 (en) Packet data convergence protocol traffic monitoring
WO2021189239A1 (en) Small data and radio resource control transmission to disaggregated base station
WO2021056512A1 (en) Recovery from cell failure in carrier aggregation
WO2022051970A1 (en) Quality of service flow for communications
US12068987B2 (en) Techniques for managing partially overlapping transmission and reception
US11937213B2 (en) Optimizations for sidelink user equipment for integrated access and backhaul network
WO2022052087A1 (en) Sidelink reliability enhancements
WO2022227001A1 (en) Techniques for radio resource control reconfiguration alignment
WO2021226916A1 (en) Packet sequence number based network resynchronization
US11272496B2 (en) Narrowband retuning in wireless communications
WO2022061566A1 (en) Resource selection under congested conditions
WO2021195911A1 (en) Connecting to multi-radio access technology service in non-standalone mode
WO2022056763A1 (en) Optimization for internet protocol multimedia subsystem evolved packet system fallback

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952758

Country of ref document: EP

Kind code of ref document: A1